CINXE.COM
Francisco Antonio Doria | Universidade Federal do Rio de Janeiro (UFRJ) - Academia.edu
<!DOCTYPE html> <html lang="en" xmlns:fb="http://www.facebook.com/2008/fbml" class="wf-loading"> <head prefix="og: https://ogp.me/ns# fb: https://ogp.me/ns/fb# academia: https://ogp.me/ns/fb/academia#"> <meta charset="utf-8"> <meta name=viewport content="width=device-width, initial-scale=1"> <meta rel="search" type="application/opensearchdescription+xml" href="/open_search.xml" title="Academia.edu"> <title>Francisco Antonio Doria | Universidade Federal do Rio de Janeiro (UFRJ) - Academia.edu</title> <!-- _ _ _ | | (_) | | __ _ ___ __ _ __| | ___ _ __ ___ _ __ _ ___ __| |_ _ / _` |/ __/ _` |/ _` |/ _ \ '_ ` _ \| |/ _` | / _ \/ _` | | | | | (_| | (_| (_| | (_| | __/ | | | | | | (_| || __/ (_| | |_| | \__,_|\___\__,_|\__,_|\___|_| |_| |_|_|\__,_(_)___|\__,_|\__,_| We're hiring! See https://www.academia.edu/hiring --> <link href="//a.academia-assets.com/images/favicons/favicon-production.ico" rel="shortcut icon" type="image/vnd.microsoft.icon"> <link rel="apple-touch-icon" sizes="57x57" href="//a.academia-assets.com/images/favicons/apple-touch-icon-57x57.png"> <link rel="apple-touch-icon" sizes="60x60" href="//a.academia-assets.com/images/favicons/apple-touch-icon-60x60.png"> <link rel="apple-touch-icon" sizes="72x72" href="//a.academia-assets.com/images/favicons/apple-touch-icon-72x72.png"> <link rel="apple-touch-icon" sizes="76x76" href="//a.academia-assets.com/images/favicons/apple-touch-icon-76x76.png"> <link rel="apple-touch-icon" sizes="114x114" href="//a.academia-assets.com/images/favicons/apple-touch-icon-114x114.png"> <link rel="apple-touch-icon" sizes="120x120" href="//a.academia-assets.com/images/favicons/apple-touch-icon-120x120.png"> <link rel="apple-touch-icon" sizes="144x144" href="//a.academia-assets.com/images/favicons/apple-touch-icon-144x144.png"> <link rel="apple-touch-icon" sizes="152x152" href="//a.academia-assets.com/images/favicons/apple-touch-icon-152x152.png"> <link rel="apple-touch-icon" sizes="180x180" href="//a.academia-assets.com/images/favicons/apple-touch-icon-180x180.png"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-32x32.png" sizes="32x32"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-194x194.png" sizes="194x194"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-96x96.png" sizes="96x96"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/android-chrome-192x192.png" sizes="192x192"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-16x16.png" sizes="16x16"> <link rel="manifest" href="//a.academia-assets.com/images/favicons/manifest.json"> <meta name="msapplication-TileColor" content="#2b5797"> <meta name="msapplication-TileImage" content="//a.academia-assets.com/images/favicons/mstile-144x144.png"> <meta name="theme-color" content="#ffffff"> <script> window.performance && window.performance.measure && window.performance.measure("Time To First Byte", "requestStart", "responseStart"); </script> <script> (function() { if (!window.URLSearchParams || !window.history || !window.history.replaceState) { return; } var searchParams = new URLSearchParams(window.location.search); var paramsToDelete = [ 'fs', 'sm', 'swp', 'iid', 'nbs', 'rcc', // related content category 'rcpos', // related content carousel position 'rcpg', // related carousel page 'rchid', // related content hit id 'f_ri', // research interest id, for SEO tracking 'f_fri', // featured research interest, for SEO tracking (param key without value) 'f_rid', // from research interest directory for SEO tracking 'f_loswp', // from research interest pills on LOSWP sidebar for SEO tracking 'rhid', // referrring hit id ]; if (paramsToDelete.every((key) => searchParams.get(key) === null)) { return; } paramsToDelete.forEach((key) => { searchParams.delete(key); }); var cleanUrl = new URL(window.location.href); cleanUrl.search = searchParams.toString(); history.replaceState({}, document.title, cleanUrl); })(); </script> <script async src="https://www.googletagmanager.com/gtag/js?id=G-5VKX33P2DS"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-5VKX33P2DS', { cookie_domain: 'academia.edu', send_page_view: false, }); gtag('event', 'page_view', { 'controller': "profiles/works", 'action': "summary", 'controller_action': 'profiles/works#summary', 'logged_in': 'false', 'edge': 'unknown', // Send nil if there is no A/B test bucket, in case some records get logged // with missing data - that way we can distinguish between the two cases. // ab_test_bucket should be of the form <ab_test_name>:<bucket> 'ab_test_bucket': null, }) </script> <script type="text/javascript"> window.sendUserTiming = function(timingName) { if (!(window.performance && window.performance.measure)) return; var entries = window.performance.getEntriesByName(timingName, "measure"); if (entries.length !== 1) return; var timingValue = Math.round(entries[0].duration); gtag('event', 'timing_complete', { name: timingName, value: timingValue, event_category: 'User-centric', }); }; window.sendUserTiming("Time To First Byte"); </script> <meta name="csrf-param" content="authenticity_token" /> <meta name="csrf-token" content="99Vitnfoa_a6In7jePlnqh2kWMAjEnMCtAKth0FypIZxQD4O5vMorCBYTraCV_n-J6DJRFBk9gYzYtNkCmyVwQ" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/wow-3d36c19b4875b226bfed0fcba1dcea3f2fe61148383d97c0465c016b8c969290.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/social/home-79e78ce59bef0a338eb6540ec3d93b4a7952115b56c57f1760943128f4544d42.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/single_work_page/figure_carousel-2004283e0948681916eefa74772df54f56cb5c7413d82b160212231c2f474bb3.css" /><script type="application/ld+json">{"@context":"https://schema.org","@type":"ProfilePage","mainEntity":{"@context":"https://schema.org","@type":"Person","name":"Francisco Antonio Doria","url":"https://ufrj.academia.edu/FranciscoDoria","image":"https://0.academia-photos.com/631545/218015/254671/s200_francisco.doria.jpg","sameAs":[]},"dateCreated":"2011-07-31T14:20:54-07:00","dateModified":"2025-02-24T06:12:50-08:00","name":"Francisco Antonio Doria","description":"Researcher","image":"https://0.academia-photos.com/631545/218015/254671/s200_francisco.doria.jpg","thumbnailUrl":"https://0.academia-photos.com/631545/218015/254671/s65_francisco.doria.jpg","primaryImageOfPage":{"@type":"ImageObject","url":"https://0.academia-photos.com/631545/218015/254671/s200_francisco.doria.jpg","width":200},"sameAs":[],"relatedLink":"https://www.academia.edu/96762497/The_Map_and_the_Territory"}</script><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/heading-95367dc03b794f6737f30123738a886cf53b7a65cdef98a922a98591d60063e3.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/button-8c9ae4b5c8a2531640c354d92a1f3579c8ff103277ef74913e34c8a76d4e6c00.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/body-170d1319f0e354621e81ca17054bb147da2856ec0702fe440a99af314a6338c5.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/single_work_page/figure_carousel-2004283e0948681916eefa74772df54f56cb5c7413d82b160212231c2f474bb3.css" /><style type="text/css">@media(max-width: 567px){:root{--token-mode: Parity;--dropshadow: 0 2px 4px 0 #22223340;--primary-brand: #0645b1;--error-dark: #b60000;--success-dark: #05b01c;--inactive-fill: #ebebee;--hover: #0c3b8d;--pressed: #082f75;--button-primary-fill-inactive: #ebebee;--button-primary-fill: #0645b1;--button-primary-text: #ffffff;--button-primary-fill-hover: #0c3b8d;--button-primary-fill-press: #082f75;--button-primary-icon: #ffffff;--button-primary-fill-inverse: #ffffff;--button-primary-text-inverse: #082f75;--button-primary-icon-inverse: #0645b1;--button-primary-fill-inverse-hover: #cddaef;--button-primary-stroke-inverse-pressed: #0645b1;--button-secondary-stroke-inactive: #b1b1ba;--button-secondary-fill: #eef2f9;--button-secondary-text: #082f75;--button-secondary-fill-press: #cddaef;--button-secondary-fill-inactive: #ebebee;--button-secondary-stroke: #cddaef;--button-secondary-stroke-hover: #386ac1;--button-secondary-stroke-press: #0645b1;--button-secondary-text-inactive: #b1b1ba;--button-secondary-icon: #082f75;--button-secondary-fill-hover: #e6ecf7;--button-secondary-stroke-inverse: #ffffff;--button-secondary-fill-inverse: rgba(255, 255, 255, 0);--button-secondary-icon-inverse: #ffffff;--button-secondary-icon-hover: #082f75;--button-secondary-icon-press: #082f75;--button-secondary-text-inverse: #ffffff;--button-secondary-text-hover: #082f75;--button-secondary-text-press: #082f75;--button-secondary-fill-inverse-hover: #043059;--button-xs-stroke: #141413;--button-xs-stroke-hover: #0c3b8d;--button-xs-stroke-press: #082f75;--button-xs-stroke-inactive: #ebebee;--button-xs-text: #141413;--button-xs-text-hover: #0c3b8d;--button-xs-text-press: #082f75;--button-xs-text-inactive: #91919e;--button-xs-icon: #141413;--button-xs-icon-hover: #0c3b8d;--button-xs-icon-press: #082f75;--button-xs-icon-inactive: #91919e;--button-xs-fill: #ffffff;--button-xs-fill-hover: #f4f7fc;--button-xs-fill-press: #eef2f9;--buttons-button-text-inactive: #91919e;--buttons-button-focus: #0645b1;--buttons-button-icon-inactive: #91919e;--buttons-small-buttons-corner-radius: 8px;--buttons-small-buttons-l-r-padding: 12px;--buttons-small-buttons-height: 44px;--buttons-small-buttons-gap: 8px;--buttons-small-buttons-icon-only-width: 44px;--buttons-small-buttons-icon-size: 20px;--buttons-small-buttons-stroke-default: 1px;--buttons-small-buttons-stroke-thick: 2px;--buttons-large-buttons-l-r-padding: 20px;--buttons-large-buttons-height: 54px;--buttons-large-buttons-icon-only-width: 54px;--buttons-large-buttons-icon-size: 20px;--buttons-large-buttons-gap: 8px;--buttons-large-buttons-corner-radius: 8px;--buttons-large-buttons-stroke-default: 1px;--buttons-large-buttons-stroke-thick: 2px;--buttons-extra-small-buttons-l-r-padding: 8px;--buttons-extra-small-buttons-height: 32px;--buttons-extra-small-buttons-icon-size: 16px;--buttons-extra-small-buttons-gap: 4px;--buttons-extra-small-buttons-corner-radius: 8px;--buttons-stroke-default: 1px;--buttons-stroke-thick: 2px;--background-beige: #f9f7f4;--error-light: #fff2f2;--text-placeholder: #6d6d7d;--stroke-dark: #141413;--stroke-light: #dddde2;--stroke-medium: #535366;--accent-green: #ccffd4;--accent-turquoise: #ccf7ff;--accent-yellow: #f7ffcc;--accent-peach: #ffd4cc;--accent-violet: #f7ccff;--accent-purple: #f4f7fc;--text-primary: #141413;--secondary-brand: #141413;--text-hover: #0c3b8d;--text-white: #ffffff;--text-link: #0645b1;--text-press: #082f75;--success-light: #f0f8f1;--background-light-blue: #eef2f9;--background-white: #ffffff;--premium-dark: #877440;--premium-light: #f9f6ed;--stroke-white: #ffffff;--inactive-content: #b1b1ba;--annotate-light: #a35dff;--annotate-dark: #824acc;--grid: #eef2f9;--inactive-stroke: #ebebee;--shadow: rgba(34, 34, 51, 0.25);--text-inactive: #6d6d7d;--text-error: #b60000;--stroke-error: #b60000;--background-error: #fff2f2;--background-black: #141413;--icon-default: #141413;--icon-blue: #0645b1;--background-grey: #dddde2;--icon-grey: #b1b1ba;--text-focus: #082f75;--brand-colors-neutral-black: #141413;--brand-colors-neutral-900: #535366;--brand-colors-neutral-800: #6d6d7d;--brand-colors-neutral-700: #91919e;--brand-colors-neutral-600: #b1b1ba;--brand-colors-neutral-500: #c8c8cf;--brand-colors-neutral-400: #dddde2;--brand-colors-neutral-300: #ebebee;--brand-colors-neutral-200: #f8f8fb;--brand-colors-neutral-100: #fafafa;--brand-colors-neutral-white: #ffffff;--brand-colors-blue-900: #043059;--brand-colors-blue-800: #082f75;--brand-colors-blue-700: #0c3b8d;--brand-colors-blue-600: #0645b1;--brand-colors-blue-500: #386ac1;--brand-colors-blue-400: #cddaef;--brand-colors-blue-300: #e6ecf7;--brand-colors-blue-200: #eef2f9;--brand-colors-blue-100: #f4f7fc;--brand-colors-gold-500: #877440;--brand-colors-gold-400: #e9e3d4;--brand-colors-gold-300: #f2efe8;--brand-colors-gold-200: #f9f6ed;--brand-colors-gold-100: #f9f7f4;--brand-colors-error-900: #920000;--brand-colors-error-500: #b60000;--brand-colors-success-900: #035c0f;--brand-colors-green: #ccffd4;--brand-colors-turquoise: #ccf7ff;--brand-colors-yellow: #f7ffcc;--brand-colors-peach: #ffd4cc;--brand-colors-violet: #f7ccff;--brand-colors-error-100: #fff2f2;--brand-colors-success-500: #05b01c;--brand-colors-success-100: #f0f8f1;--text-secondary: #535366;--icon-white: #ffffff;--background-beige-darker: #f2efe8;--icon-dark-grey: #535366;--type-font-family-sans-serif: Roboto;--type-font-family-serif: Georgia;--type-font-family-mono: IBM Plex Mono;--type-weights-300: 300;--type-weights-400: 400;--type-weights-500: 500;--type-weights-700: 700;--type-sizes-12: 12px;--type-sizes-14: 14px;--type-sizes-16: 16px;--type-sizes-18: 18px;--type-sizes-20: 20px;--type-sizes-22: 22px;--type-sizes-24: 24px;--type-sizes-28: 28px;--type-sizes-30: 30px;--type-sizes-32: 32px;--type-sizes-40: 40px;--type-sizes-42: 42px;--type-sizes-48-2: 48px;--type-line-heights-16: 16px;--type-line-heights-20: 20px;--type-line-heights-23: 23px;--type-line-heights-24: 24px;--type-line-heights-25: 25px;--type-line-heights-26: 26px;--type-line-heights-29: 29px;--type-line-heights-30: 30px;--type-line-heights-32: 32px;--type-line-heights-34: 34px;--type-line-heights-35: 35px;--type-line-heights-36: 36px;--type-line-heights-38: 38px;--type-line-heights-40: 40px;--type-line-heights-46: 46px;--type-line-heights-48: 48px;--type-line-heights-52: 52px;--type-line-heights-58: 58px;--type-line-heights-68: 68px;--type-line-heights-74: 74px;--type-line-heights-82: 82px;--type-paragraph-spacings-0: 0px;--type-paragraph-spacings-4: 4px;--type-paragraph-spacings-8: 8px;--type-paragraph-spacings-16: 16px;--type-sans-serif-xl-font-weight: 400;--type-sans-serif-xl-size: 32px;--type-sans-serif-xl-line-height: 46px;--type-sans-serif-xl-paragraph-spacing: 16px;--type-sans-serif-lg-font-weight: 400;--type-sans-serif-lg-size: 30px;--type-sans-serif-lg-line-height: 36px;--type-sans-serif-lg-paragraph-spacing: 16px;--type-sans-serif-md-font-weight: 400;--type-sans-serif-md-line-height: 30px;--type-sans-serif-md-paragraph-spacing: 16px;--type-sans-serif-md-size: 24px;--type-sans-serif-xs-font-weight: 700;--type-sans-serif-xs-line-height: 24px;--type-sans-serif-xs-paragraph-spacing: 0px;--type-sans-serif-xs-size: 18px;--type-sans-serif-sm-font-weight: 400;--type-sans-serif-sm-line-height: 32px;--type-sans-serif-sm-paragraph-spacing: 16px;--type-sans-serif-sm-size: 20px;--type-body-xl-font-weight: 400;--type-body-xl-size: 24px;--type-body-xl-line-height: 36px;--type-body-xl-paragraph-spacing: 0px;--type-body-sm-font-weight: 400;--type-body-sm-size: 14px;--type-body-sm-line-height: 20px;--type-body-sm-paragraph-spacing: 8px;--type-body-xs-font-weight: 400;--type-body-xs-size: 12px;--type-body-xs-line-height: 16px;--type-body-xs-paragraph-spacing: 0px;--type-body-md-font-weight: 400;--type-body-md-size: 16px;--type-body-md-line-height: 20px;--type-body-md-paragraph-spacing: 4px;--type-body-lg-font-weight: 400;--type-body-lg-size: 20px;--type-body-lg-line-height: 26px;--type-body-lg-paragraph-spacing: 16px;--type-body-lg-medium-font-weight: 500;--type-body-lg-medium-size: 20px;--type-body-lg-medium-line-height: 32px;--type-body-lg-medium-paragraph-spacing: 16px;--type-body-md-medium-font-weight: 500;--type-body-md-medium-size: 16px;--type-body-md-medium-line-height: 20px;--type-body-md-medium-paragraph-spacing: 4px;--type-body-sm-bold-font-weight: 700;--type-body-sm-bold-size: 14px;--type-body-sm-bold-line-height: 20px;--type-body-sm-bold-paragraph-spacing: 8px;--type-body-sm-medium-font-weight: 500;--type-body-sm-medium-size: 14px;--type-body-sm-medium-line-height: 20px;--type-body-sm-medium-paragraph-spacing: 8px;--type-serif-md-font-weight: 400;--type-serif-md-size: 32px;--type-serif-md-paragraph-spacing: 0px;--type-serif-md-line-height: 40px;--type-serif-sm-font-weight: 400;--type-serif-sm-size: 24px;--type-serif-sm-paragraph-spacing: 0px;--type-serif-sm-line-height: 26px;--type-serif-lg-font-weight: 400;--type-serif-lg-size: 48px;--type-serif-lg-paragraph-spacing: 0px;--type-serif-lg-line-height: 52px;--type-serif-xs-font-weight: 400;--type-serif-xs-size: 18px;--type-serif-xs-line-height: 24px;--type-serif-xs-paragraph-spacing: 0px;--type-serif-xl-font-weight: 400;--type-serif-xl-size: 48px;--type-serif-xl-paragraph-spacing: 0px;--type-serif-xl-line-height: 58px;--type-mono-md-font-weight: 400;--type-mono-md-size: 22px;--type-mono-md-line-height: 24px;--type-mono-md-paragraph-spacing: 0px;--type-mono-lg-font-weight: 400;--type-mono-lg-size: 40px;--type-mono-lg-line-height: 40px;--type-mono-lg-paragraph-spacing: 0px;--type-mono-sm-font-weight: 400;--type-mono-sm-size: 14px;--type-mono-sm-line-height: 24px;--type-mono-sm-paragraph-spacing: 0px;--spacing-xs-4: 4px;--spacing-xs-8: 8px;--spacing-xs-16: 16px;--spacing-sm-24: 24px;--spacing-sm-32: 32px;--spacing-md-40: 40px;--spacing-md-48: 48px;--spacing-lg-64: 64px;--spacing-lg-80: 80px;--spacing-xlg-104: 104px;--spacing-xlg-152: 152px;--spacing-xs-12: 12px;--spacing-page-section: 80px;--spacing-card-list-spacing: 48px;--spacing-text-section-spacing: 64px;--spacing-md-xs-headings: 40px;--corner-radius-radius-lg: 16px;--corner-radius-radius-sm: 4px;--corner-radius-radius-md: 8px;--corner-radius-radius-round: 104px}}@media(min-width: 568px)and (max-width: 1279px){:root{--token-mode: Parity;--dropshadow: 0 2px 4px 0 #22223340;--primary-brand: #0645b1;--error-dark: #b60000;--success-dark: #05b01c;--inactive-fill: #ebebee;--hover: #0c3b8d;--pressed: #082f75;--button-primary-fill-inactive: #ebebee;--button-primary-fill: #0645b1;--button-primary-text: #ffffff;--button-primary-fill-hover: #0c3b8d;--button-primary-fill-press: #082f75;--button-primary-icon: #ffffff;--button-primary-fill-inverse: #ffffff;--button-primary-text-inverse: #082f75;--button-primary-icon-inverse: #0645b1;--button-primary-fill-inverse-hover: #cddaef;--button-primary-stroke-inverse-pressed: #0645b1;--button-secondary-stroke-inactive: #b1b1ba;--button-secondary-fill: #eef2f9;--button-secondary-text: #082f75;--button-secondary-fill-press: #cddaef;--button-secondary-fill-inactive: #ebebee;--button-secondary-stroke: #cddaef;--button-secondary-stroke-hover: #386ac1;--button-secondary-stroke-press: #0645b1;--button-secondary-text-inactive: #b1b1ba;--button-secondary-icon: #082f75;--button-secondary-fill-hover: #e6ecf7;--button-secondary-stroke-inverse: #ffffff;--button-secondary-fill-inverse: rgba(255, 255, 255, 0);--button-secondary-icon-inverse: #ffffff;--button-secondary-icon-hover: #082f75;--button-secondary-icon-press: #082f75;--button-secondary-text-inverse: #ffffff;--button-secondary-text-hover: #082f75;--button-secondary-text-press: #082f75;--button-secondary-fill-inverse-hover: #043059;--button-xs-stroke: #141413;--button-xs-stroke-hover: #0c3b8d;--button-xs-stroke-press: #082f75;--button-xs-stroke-inactive: #ebebee;--button-xs-text: #141413;--button-xs-text-hover: #0c3b8d;--button-xs-text-press: #082f75;--button-xs-text-inactive: #91919e;--button-xs-icon: #141413;--button-xs-icon-hover: #0c3b8d;--button-xs-icon-press: #082f75;--button-xs-icon-inactive: #91919e;--button-xs-fill: #ffffff;--button-xs-fill-hover: #f4f7fc;--button-xs-fill-press: #eef2f9;--buttons-button-text-inactive: #91919e;--buttons-button-focus: #0645b1;--buttons-button-icon-inactive: #91919e;--buttons-small-buttons-corner-radius: 8px;--buttons-small-buttons-l-r-padding: 12px;--buttons-small-buttons-height: 44px;--buttons-small-buttons-gap: 8px;--buttons-small-buttons-icon-only-width: 44px;--buttons-small-buttons-icon-size: 20px;--buttons-small-buttons-stroke-default: 1px;--buttons-small-buttons-stroke-thick: 2px;--buttons-large-buttons-l-r-padding: 20px;--buttons-large-buttons-height: 54px;--buttons-large-buttons-icon-only-width: 54px;--buttons-large-buttons-icon-size: 20px;--buttons-large-buttons-gap: 8px;--buttons-large-buttons-corner-radius: 8px;--buttons-large-buttons-stroke-default: 1px;--buttons-large-buttons-stroke-thick: 2px;--buttons-extra-small-buttons-l-r-padding: 8px;--buttons-extra-small-buttons-height: 32px;--buttons-extra-small-buttons-icon-size: 16px;--buttons-extra-small-buttons-gap: 4px;--buttons-extra-small-buttons-corner-radius: 8px;--buttons-stroke-default: 1px;--buttons-stroke-thick: 2px;--background-beige: #f9f7f4;--error-light: #fff2f2;--text-placeholder: #6d6d7d;--stroke-dark: #141413;--stroke-light: #dddde2;--stroke-medium: #535366;--accent-green: #ccffd4;--accent-turquoise: #ccf7ff;--accent-yellow: #f7ffcc;--accent-peach: #ffd4cc;--accent-violet: #f7ccff;--accent-purple: #f4f7fc;--text-primary: #141413;--secondary-brand: #141413;--text-hover: #0c3b8d;--text-white: #ffffff;--text-link: #0645b1;--text-press: #082f75;--success-light: #f0f8f1;--background-light-blue: #eef2f9;--background-white: #ffffff;--premium-dark: #877440;--premium-light: #f9f6ed;--stroke-white: #ffffff;--inactive-content: #b1b1ba;--annotate-light: #a35dff;--annotate-dark: #824acc;--grid: #eef2f9;--inactive-stroke: #ebebee;--shadow: rgba(34, 34, 51, 0.25);--text-inactive: #6d6d7d;--text-error: #b60000;--stroke-error: #b60000;--background-error: #fff2f2;--background-black: #141413;--icon-default: #141413;--icon-blue: #0645b1;--background-grey: #dddde2;--icon-grey: #b1b1ba;--text-focus: #082f75;--brand-colors-neutral-black: #141413;--brand-colors-neutral-900: #535366;--brand-colors-neutral-800: #6d6d7d;--brand-colors-neutral-700: #91919e;--brand-colors-neutral-600: #b1b1ba;--brand-colors-neutral-500: #c8c8cf;--brand-colors-neutral-400: #dddde2;--brand-colors-neutral-300: #ebebee;--brand-colors-neutral-200: #f8f8fb;--brand-colors-neutral-100: #fafafa;--brand-colors-neutral-white: #ffffff;--brand-colors-blue-900: #043059;--brand-colors-blue-800: #082f75;--brand-colors-blue-700: #0c3b8d;--brand-colors-blue-600: #0645b1;--brand-colors-blue-500: #386ac1;--brand-colors-blue-400: #cddaef;--brand-colors-blue-300: #e6ecf7;--brand-colors-blue-200: #eef2f9;--brand-colors-blue-100: #f4f7fc;--brand-colors-gold-500: #877440;--brand-colors-gold-400: #e9e3d4;--brand-colors-gold-300: #f2efe8;--brand-colors-gold-200: #f9f6ed;--brand-colors-gold-100: #f9f7f4;--brand-colors-error-900: #920000;--brand-colors-error-500: #b60000;--brand-colors-success-900: #035c0f;--brand-colors-green: #ccffd4;--brand-colors-turquoise: #ccf7ff;--brand-colors-yellow: #f7ffcc;--brand-colors-peach: #ffd4cc;--brand-colors-violet: #f7ccff;--brand-colors-error-100: #fff2f2;--brand-colors-success-500: #05b01c;--brand-colors-success-100: #f0f8f1;--text-secondary: #535366;--icon-white: #ffffff;--background-beige-darker: #f2efe8;--icon-dark-grey: #535366;--type-font-family-sans-serif: Roboto;--type-font-family-serif: Georgia;--type-font-family-mono: IBM Plex Mono;--type-weights-300: 300;--type-weights-400: 400;--type-weights-500: 500;--type-weights-700: 700;--type-sizes-12: 12px;--type-sizes-14: 14px;--type-sizes-16: 16px;--type-sizes-18: 18px;--type-sizes-20: 20px;--type-sizes-22: 22px;--type-sizes-24: 24px;--type-sizes-28: 28px;--type-sizes-30: 30px;--type-sizes-32: 32px;--type-sizes-40: 40px;--type-sizes-42: 42px;--type-sizes-48-2: 48px;--type-line-heights-16: 16px;--type-line-heights-20: 20px;--type-line-heights-23: 23px;--type-line-heights-24: 24px;--type-line-heights-25: 25px;--type-line-heights-26: 26px;--type-line-heights-29: 29px;--type-line-heights-30: 30px;--type-line-heights-32: 32px;--type-line-heights-34: 34px;--type-line-heights-35: 35px;--type-line-heights-36: 36px;--type-line-heights-38: 38px;--type-line-heights-40: 40px;--type-line-heights-46: 46px;--type-line-heights-48: 48px;--type-line-heights-52: 52px;--type-line-heights-58: 58px;--type-line-heights-68: 68px;--type-line-heights-74: 74px;--type-line-heights-82: 82px;--type-paragraph-spacings-0: 0px;--type-paragraph-spacings-4: 4px;--type-paragraph-spacings-8: 8px;--type-paragraph-spacings-16: 16px;--type-sans-serif-xl-font-weight: 400;--type-sans-serif-xl-size: 42px;--type-sans-serif-xl-line-height: 46px;--type-sans-serif-xl-paragraph-spacing: 16px;--type-sans-serif-lg-font-weight: 400;--type-sans-serif-lg-size: 32px;--type-sans-serif-lg-line-height: 36px;--type-sans-serif-lg-paragraph-spacing: 16px;--type-sans-serif-md-font-weight: 400;--type-sans-serif-md-line-height: 34px;--type-sans-serif-md-paragraph-spacing: 16px;--type-sans-serif-md-size: 28px;--type-sans-serif-xs-font-weight: 700;--type-sans-serif-xs-line-height: 25px;--type-sans-serif-xs-paragraph-spacing: 0px;--type-sans-serif-xs-size: 20px;--type-sans-serif-sm-font-weight: 400;--type-sans-serif-sm-line-height: 30px;--type-sans-serif-sm-paragraph-spacing: 16px;--type-sans-serif-sm-size: 24px;--type-body-xl-font-weight: 400;--type-body-xl-size: 24px;--type-body-xl-line-height: 36px;--type-body-xl-paragraph-spacing: 0px;--type-body-sm-font-weight: 400;--type-body-sm-size: 14px;--type-body-sm-line-height: 20px;--type-body-sm-paragraph-spacing: 8px;--type-body-xs-font-weight: 400;--type-body-xs-size: 12px;--type-body-xs-line-height: 16px;--type-body-xs-paragraph-spacing: 0px;--type-body-md-font-weight: 400;--type-body-md-size: 16px;--type-body-md-line-height: 20px;--type-body-md-paragraph-spacing: 4px;--type-body-lg-font-weight: 400;--type-body-lg-size: 20px;--type-body-lg-line-height: 26px;--type-body-lg-paragraph-spacing: 16px;--type-body-lg-medium-font-weight: 500;--type-body-lg-medium-size: 20px;--type-body-lg-medium-line-height: 32px;--type-body-lg-medium-paragraph-spacing: 16px;--type-body-md-medium-font-weight: 500;--type-body-md-medium-size: 16px;--type-body-md-medium-line-height: 20px;--type-body-md-medium-paragraph-spacing: 4px;--type-body-sm-bold-font-weight: 700;--type-body-sm-bold-size: 14px;--type-body-sm-bold-line-height: 20px;--type-body-sm-bold-paragraph-spacing: 8px;--type-body-sm-medium-font-weight: 500;--type-body-sm-medium-size: 14px;--type-body-sm-medium-line-height: 20px;--type-body-sm-medium-paragraph-spacing: 8px;--type-serif-md-font-weight: 400;--type-serif-md-size: 40px;--type-serif-md-paragraph-spacing: 0px;--type-serif-md-line-height: 48px;--type-serif-sm-font-weight: 400;--type-serif-sm-size: 28px;--type-serif-sm-paragraph-spacing: 0px;--type-serif-sm-line-height: 32px;--type-serif-lg-font-weight: 400;--type-serif-lg-size: 58px;--type-serif-lg-paragraph-spacing: 0px;--type-serif-lg-line-height: 68px;--type-serif-xs-font-weight: 400;--type-serif-xs-size: 18px;--type-serif-xs-line-height: 24px;--type-serif-xs-paragraph-spacing: 0px;--type-serif-xl-font-weight: 400;--type-serif-xl-size: 74px;--type-serif-xl-paragraph-spacing: 0px;--type-serif-xl-line-height: 82px;--type-mono-md-font-weight: 400;--type-mono-md-size: 22px;--type-mono-md-line-height: 24px;--type-mono-md-paragraph-spacing: 0px;--type-mono-lg-font-weight: 400;--type-mono-lg-size: 40px;--type-mono-lg-line-height: 40px;--type-mono-lg-paragraph-spacing: 0px;--type-mono-sm-font-weight: 400;--type-mono-sm-size: 14px;--type-mono-sm-line-height: 24px;--type-mono-sm-paragraph-spacing: 0px;--spacing-xs-4: 4px;--spacing-xs-8: 8px;--spacing-xs-16: 16px;--spacing-sm-24: 24px;--spacing-sm-32: 32px;--spacing-md-40: 40px;--spacing-md-48: 48px;--spacing-lg-64: 64px;--spacing-lg-80: 80px;--spacing-xlg-104: 104px;--spacing-xlg-152: 152px;--spacing-xs-12: 12px;--spacing-page-section: 104px;--spacing-card-list-spacing: 48px;--spacing-text-section-spacing: 80px;--spacing-md-xs-headings: 40px;--corner-radius-radius-lg: 16px;--corner-radius-radius-sm: 4px;--corner-radius-radius-md: 8px;--corner-radius-radius-round: 104px}}@media(min-width: 1280px){:root{--token-mode: Parity;--dropshadow: 0 2px 4px 0 #22223340;--primary-brand: #0645b1;--error-dark: #b60000;--success-dark: #05b01c;--inactive-fill: #ebebee;--hover: #0c3b8d;--pressed: #082f75;--button-primary-fill-inactive: #ebebee;--button-primary-fill: #0645b1;--button-primary-text: #ffffff;--button-primary-fill-hover: #0c3b8d;--button-primary-fill-press: #082f75;--button-primary-icon: #ffffff;--button-primary-fill-inverse: #ffffff;--button-primary-text-inverse: #082f75;--button-primary-icon-inverse: #0645b1;--button-primary-fill-inverse-hover: #cddaef;--button-primary-stroke-inverse-pressed: #0645b1;--button-secondary-stroke-inactive: #b1b1ba;--button-secondary-fill: #eef2f9;--button-secondary-text: #082f75;--button-secondary-fill-press: #cddaef;--button-secondary-fill-inactive: #ebebee;--button-secondary-stroke: #cddaef;--button-secondary-stroke-hover: #386ac1;--button-secondary-stroke-press: #0645b1;--button-secondary-text-inactive: #b1b1ba;--button-secondary-icon: #082f75;--button-secondary-fill-hover: #e6ecf7;--button-secondary-stroke-inverse: #ffffff;--button-secondary-fill-inverse: rgba(255, 255, 255, 0);--button-secondary-icon-inverse: #ffffff;--button-secondary-icon-hover: #082f75;--button-secondary-icon-press: #082f75;--button-secondary-text-inverse: #ffffff;--button-secondary-text-hover: #082f75;--button-secondary-text-press: #082f75;--button-secondary-fill-inverse-hover: #043059;--button-xs-stroke: #141413;--button-xs-stroke-hover: #0c3b8d;--button-xs-stroke-press: #082f75;--button-xs-stroke-inactive: #ebebee;--button-xs-text: #141413;--button-xs-text-hover: #0c3b8d;--button-xs-text-press: #082f75;--button-xs-text-inactive: #91919e;--button-xs-icon: #141413;--button-xs-icon-hover: #0c3b8d;--button-xs-icon-press: #082f75;--button-xs-icon-inactive: #91919e;--button-xs-fill: #ffffff;--button-xs-fill-hover: #f4f7fc;--button-xs-fill-press: #eef2f9;--buttons-button-text-inactive: #91919e;--buttons-button-focus: #0645b1;--buttons-button-icon-inactive: #91919e;--buttons-small-buttons-corner-radius: 8px;--buttons-small-buttons-l-r-padding: 12px;--buttons-small-buttons-height: 44px;--buttons-small-buttons-gap: 8px;--buttons-small-buttons-icon-only-width: 44px;--buttons-small-buttons-icon-size: 20px;--buttons-small-buttons-stroke-default: 1px;--buttons-small-buttons-stroke-thick: 2px;--buttons-large-buttons-l-r-padding: 20px;--buttons-large-buttons-height: 54px;--buttons-large-buttons-icon-only-width: 54px;--buttons-large-buttons-icon-size: 20px;--buttons-large-buttons-gap: 8px;--buttons-large-buttons-corner-radius: 8px;--buttons-large-buttons-stroke-default: 1px;--buttons-large-buttons-stroke-thick: 2px;--buttons-extra-small-buttons-l-r-padding: 8px;--buttons-extra-small-buttons-height: 32px;--buttons-extra-small-buttons-icon-size: 16px;--buttons-extra-small-buttons-gap: 4px;--buttons-extra-small-buttons-corner-radius: 8px;--buttons-stroke-default: 1px;--buttons-stroke-thick: 2px;--background-beige: #f9f7f4;--error-light: #fff2f2;--text-placeholder: #6d6d7d;--stroke-dark: #141413;--stroke-light: #dddde2;--stroke-medium: #535366;--accent-green: #ccffd4;--accent-turquoise: #ccf7ff;--accent-yellow: #f7ffcc;--accent-peach: #ffd4cc;--accent-violet: #f7ccff;--accent-purple: #f4f7fc;--text-primary: #141413;--secondary-brand: #141413;--text-hover: #0c3b8d;--text-white: #ffffff;--text-link: #0645b1;--text-press: #082f75;--success-light: #f0f8f1;--background-light-blue: #eef2f9;--background-white: #ffffff;--premium-dark: #877440;--premium-light: #f9f6ed;--stroke-white: #ffffff;--inactive-content: #b1b1ba;--annotate-light: #a35dff;--annotate-dark: #824acc;--grid: #eef2f9;--inactive-stroke: #ebebee;--shadow: rgba(34, 34, 51, 0.25);--text-inactive: #6d6d7d;--text-error: #b60000;--stroke-error: #b60000;--background-error: #fff2f2;--background-black: #141413;--icon-default: #141413;--icon-blue: #0645b1;--background-grey: #dddde2;--icon-grey: #b1b1ba;--text-focus: #082f75;--brand-colors-neutral-black: #141413;--brand-colors-neutral-900: #535366;--brand-colors-neutral-800: #6d6d7d;--brand-colors-neutral-700: #91919e;--brand-colors-neutral-600: #b1b1ba;--brand-colors-neutral-500: #c8c8cf;--brand-colors-neutral-400: #dddde2;--brand-colors-neutral-300: #ebebee;--brand-colors-neutral-200: #f8f8fb;--brand-colors-neutral-100: #fafafa;--brand-colors-neutral-white: #ffffff;--brand-colors-blue-900: #043059;--brand-colors-blue-800: #082f75;--brand-colors-blue-700: #0c3b8d;--brand-colors-blue-600: #0645b1;--brand-colors-blue-500: #386ac1;--brand-colors-blue-400: #cddaef;--brand-colors-blue-300: #e6ecf7;--brand-colors-blue-200: #eef2f9;--brand-colors-blue-100: #f4f7fc;--brand-colors-gold-500: #877440;--brand-colors-gold-400: #e9e3d4;--brand-colors-gold-300: #f2efe8;--brand-colors-gold-200: #f9f6ed;--brand-colors-gold-100: #f9f7f4;--brand-colors-error-900: #920000;--brand-colors-error-500: #b60000;--brand-colors-success-900: #035c0f;--brand-colors-green: #ccffd4;--brand-colors-turquoise: #ccf7ff;--brand-colors-yellow: #f7ffcc;--brand-colors-peach: #ffd4cc;--brand-colors-violet: #f7ccff;--brand-colors-error-100: #fff2f2;--brand-colors-success-500: #05b01c;--brand-colors-success-100: #f0f8f1;--text-secondary: #535366;--icon-white: #ffffff;--background-beige-darker: #f2efe8;--icon-dark-grey: #535366;--type-font-family-sans-serif: Roboto;--type-font-family-serif: Georgia;--type-font-family-mono: IBM Plex Mono;--type-weights-300: 300;--type-weights-400: 400;--type-weights-500: 500;--type-weights-700: 700;--type-sizes-12: 12px;--type-sizes-14: 14px;--type-sizes-16: 16px;--type-sizes-18: 18px;--type-sizes-20: 20px;--type-sizes-22: 22px;--type-sizes-24: 24px;--type-sizes-28: 28px;--type-sizes-30: 30px;--type-sizes-32: 32px;--type-sizes-40: 40px;--type-sizes-42: 42px;--type-sizes-48-2: 48px;--type-line-heights-16: 16px;--type-line-heights-20: 20px;--type-line-heights-23: 23px;--type-line-heights-24: 24px;--type-line-heights-25: 25px;--type-line-heights-26: 26px;--type-line-heights-29: 29px;--type-line-heights-30: 30px;--type-line-heights-32: 32px;--type-line-heights-34: 34px;--type-line-heights-35: 35px;--type-line-heights-36: 36px;--type-line-heights-38: 38px;--type-line-heights-40: 40px;--type-line-heights-46: 46px;--type-line-heights-48: 48px;--type-line-heights-52: 52px;--type-line-heights-58: 58px;--type-line-heights-68: 68px;--type-line-heights-74: 74px;--type-line-heights-82: 82px;--type-paragraph-spacings-0: 0px;--type-paragraph-spacings-4: 4px;--type-paragraph-spacings-8: 8px;--type-paragraph-spacings-16: 16px;--type-sans-serif-xl-font-weight: 400;--type-sans-serif-xl-size: 42px;--type-sans-serif-xl-line-height: 46px;--type-sans-serif-xl-paragraph-spacing: 16px;--type-sans-serif-lg-font-weight: 400;--type-sans-serif-lg-size: 32px;--type-sans-serif-lg-line-height: 38px;--type-sans-serif-lg-paragraph-spacing: 16px;--type-sans-serif-md-font-weight: 400;--type-sans-serif-md-line-height: 34px;--type-sans-serif-md-paragraph-spacing: 16px;--type-sans-serif-md-size: 28px;--type-sans-serif-xs-font-weight: 700;--type-sans-serif-xs-line-height: 25px;--type-sans-serif-xs-paragraph-spacing: 0px;--type-sans-serif-xs-size: 20px;--type-sans-serif-sm-font-weight: 400;--type-sans-serif-sm-line-height: 30px;--type-sans-serif-sm-paragraph-spacing: 16px;--type-sans-serif-sm-size: 24px;--type-body-xl-font-weight: 400;--type-body-xl-size: 24px;--type-body-xl-line-height: 36px;--type-body-xl-paragraph-spacing: 0px;--type-body-sm-font-weight: 400;--type-body-sm-size: 14px;--type-body-sm-line-height: 20px;--type-body-sm-paragraph-spacing: 8px;--type-body-xs-font-weight: 400;--type-body-xs-size: 12px;--type-body-xs-line-height: 16px;--type-body-xs-paragraph-spacing: 0px;--type-body-md-font-weight: 400;--type-body-md-size: 16px;--type-body-md-line-height: 20px;--type-body-md-paragraph-spacing: 4px;--type-body-lg-font-weight: 400;--type-body-lg-size: 20px;--type-body-lg-line-height: 26px;--type-body-lg-paragraph-spacing: 16px;--type-body-lg-medium-font-weight: 500;--type-body-lg-medium-size: 20px;--type-body-lg-medium-line-height: 32px;--type-body-lg-medium-paragraph-spacing: 16px;--type-body-md-medium-font-weight: 500;--type-body-md-medium-size: 16px;--type-body-md-medium-line-height: 20px;--type-body-md-medium-paragraph-spacing: 4px;--type-body-sm-bold-font-weight: 700;--type-body-sm-bold-size: 14px;--type-body-sm-bold-line-height: 20px;--type-body-sm-bold-paragraph-spacing: 8px;--type-body-sm-medium-font-weight: 500;--type-body-sm-medium-size: 14px;--type-body-sm-medium-line-height: 20px;--type-body-sm-medium-paragraph-spacing: 8px;--type-serif-md-font-weight: 400;--type-serif-md-size: 40px;--type-serif-md-paragraph-spacing: 0px;--type-serif-md-line-height: 48px;--type-serif-sm-font-weight: 400;--type-serif-sm-size: 28px;--type-serif-sm-paragraph-spacing: 0px;--type-serif-sm-line-height: 32px;--type-serif-lg-font-weight: 400;--type-serif-lg-size: 58px;--type-serif-lg-paragraph-spacing: 0px;--type-serif-lg-line-height: 68px;--type-serif-xs-font-weight: 400;--type-serif-xs-size: 18px;--type-serif-xs-line-height: 24px;--type-serif-xs-paragraph-spacing: 0px;--type-serif-xl-font-weight: 400;--type-serif-xl-size: 74px;--type-serif-xl-paragraph-spacing: 0px;--type-serif-xl-line-height: 82px;--type-mono-md-font-weight: 400;--type-mono-md-size: 22px;--type-mono-md-line-height: 24px;--type-mono-md-paragraph-spacing: 0px;--type-mono-lg-font-weight: 400;--type-mono-lg-size: 40px;--type-mono-lg-line-height: 40px;--type-mono-lg-paragraph-spacing: 0px;--type-mono-sm-font-weight: 400;--type-mono-sm-size: 14px;--type-mono-sm-line-height: 24px;--type-mono-sm-paragraph-spacing: 0px;--spacing-xs-4: 4px;--spacing-xs-8: 8px;--spacing-xs-16: 16px;--spacing-sm-24: 24px;--spacing-sm-32: 32px;--spacing-md-40: 40px;--spacing-md-48: 48px;--spacing-lg-64: 64px;--spacing-lg-80: 80px;--spacing-xlg-104: 104px;--spacing-xlg-152: 152px;--spacing-xs-12: 12px;--spacing-page-section: 152px;--spacing-card-list-spacing: 48px;--spacing-text-section-spacing: 80px;--spacing-md-xs-headings: 40px;--corner-radius-radius-lg: 16px;--corner-radius-radius-sm: 4px;--corner-radius-radius-md: 8px;--corner-radius-radius-round: 104px}}</style><link crossorigin="" href="https://fonts.gstatic.com/" rel="preconnect" /><link href="https://fonts.googleapis.com/css2?family=DM+Sans:ital,opsz,wght@0,9..40,100..1000;1,9..40,100..1000&family=Gupter:wght@400;500;700&family=IBM+Plex+Mono:wght@300;400&family=Material+Symbols+Outlined:opsz,wght,FILL,GRAD@20,400,0,0&display=swap" rel="stylesheet" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/common-57f9da13cef3fd4e2a8b655342c6488eded3e557e823fe67571f2ac77acd7b6f.css" /> <meta name="author" content="francisco antonio doria" /> <meta name="description" content="Francisco Antonio Doria, Universidade Federal do Rio de Janeiro (UFRJ): 408 Followers, 288 Following, 80 Research papers. Research interests: Logic, Formal…" /> <meta name="google-site-verification" content="bKJMBZA7E43xhDOopFZkssMMkBRjvYERV-NaN4R6mrs" /> <script> var $controller_name = 'works'; var $action_name = "summary"; var $rails_env = 'production'; var $app_rev = '9744e839ffe2d813ef8b7eb988ae0a3341a6052d'; var $domain = 'academia.edu'; var $app_host = "academia.edu"; var $asset_host = "academia-assets.com"; var $start_time = new Date().getTime(); var $recaptcha_key = "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB"; var $recaptcha_invisible_key = "6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj"; var $disableClientRecordHit = false; </script> <script> window.Aedu = { hit_data: null }; window.Aedu.SiteStats = {"premium_universities_count":13919,"monthly_visitors":"139 million","monthly_visitor_count":139296536,"monthly_visitor_count_in_millions":139,"user_count":286068623,"paper_count":55203019,"paper_count_in_millions":55,"page_count":432000000,"page_count_in_millions":432,"pdf_count":16500000,"pdf_count_in_millions":16}; window.Aedu.serverRenderTime = new Date(1743413509000); window.Aedu.timeDifference = new Date().getTime() - 1743413509000; window.Aedu.isUsingCssV1 = false; window.Aedu.enableLocalization = true; window.Aedu.activateFullstory = false; window.Aedu.serviceAvailability = { status: {"attention_db":"on","bibliography_db":"on","contacts_db":"on","email_db":"on","indexability_db":"on","mentions_db":"on","news_db":"on","notifications_db":"on","offsite_mentions_db":"on","redshift":"on","redshift_exports_db":"on","related_works_db":"on","ring_db":"on","user_tests_db":"on"}, serviceEnabled: function(service) { return this.status[service] === "on"; }, readEnabled: function(service) { return this.serviceEnabled(service) || this.status[service] === "read_only"; }, }; window.Aedu.viewApmTrace = function() { // Check if x-apm-trace-id meta tag is set, and open the trace in APM // in a new window if it is. var apmTraceId = document.head.querySelector('meta[name="x-apm-trace-id"]'); if (apmTraceId) { var traceId = apmTraceId.content; // Use trace ID to construct URL, an example URL looks like: // https://app.datadoghq.com/apm/traces?query=trace_id%31298410148923562634 var apmUrl = 'https://app.datadoghq.com/apm/traces?query=trace_id%3A' + traceId; window.open(apmUrl, '_blank'); } }; </script> <!--[if lt IE 9]> <script src="//cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.2/html5shiv.min.js"></script> <![endif]--> <link href="https://fonts.googleapis.com/css?family=Roboto:100,100i,300,300i,400,400i,500,500i,700,700i,900,900i" rel="stylesheet"> <link rel="preload" href="//maxcdn.bootstrapcdn.com/font-awesome/4.3.0/css/font-awesome.min.css" as="style" onload="this.rel='stylesheet'"> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/libraries-a9675dcb01ec4ef6aa807ba772c7a5a00c1820d3ff661c1038a20f80d06bb4e4.css" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/academia-9982828ed1de4777566441c35ccf7157c55ca779141fce69380d727ebdbbb926.css" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system_legacy-056a9113b9a0f5343d013b29ee1929d5a18be35fdcdceb616600b4db8bd20054.css" /> <script src="//a.academia-assets.com/assets/webpack_bundles/runtime-bundle-005434038af4252ca37c527588411a3d6a0eabb5f727fac83f8bbe7fd88d93bb.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/webpack_libraries_and_infrequently_changed.wjs-bundle-cf157bca4ef673abcac8051ac68ed1136134beba22a884388e7ed6391572eef4.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/core_webpack.wjs-bundle-f96ab8a6334d161855249975a57d3f3d57f65c2e7553c6d20ab43c63efb79575.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/sentry.wjs-bundle-5fe03fddca915c8ba0f7edbe64c194308e8ce5abaed7bffe1255ff37549c4808.js"></script> <script> jade = window.jade || {}; jade.helpers = window.$h; jade._ = window._; </script> <!-- Google Tag Manager --> <script id="tag-manager-head-root">(function(w,d,s,l,i){w[l]=w[l]||[];w[l].push({'gtm.start': new Date().getTime(),event:'gtm.js'});var f=d.getElementsByTagName(s)[0], j=d.createElement(s),dl=l!='dataLayer'?'&l='+l:'';j.async=true;j.src= 'https://www.googletagmanager.com/gtm.js?id='+i+dl;f.parentNode.insertBefore(j,f); })(window,document,'script','dataLayer_old','GTM-5G9JF7Z');</script> <!-- End Google Tag Manager --> <script> window.gptadslots = []; window.googletag = window.googletag || {}; window.googletag.cmd = window.googletag.cmd || []; </script> <script type="text/javascript"> // TODO(jacob): This should be defined, may be rare load order problem. // Checking if null is just a quick fix, will default to en if unset. // Better fix is to run this immedietely after I18n is set. if (window.I18n != null) { I18n.defaultLocale = "en"; I18n.locale = "en"; I18n.fallbacks = true; } </script> <link rel="canonical" href="https://ufrj.academia.edu/FranciscoDoria" /> </head> <!--[if gte IE 9 ]> <body class='ie ie9 c-profiles/works a-summary logged_out'> <![endif]--> <!--[if !(IE) ]><!--> <body class='c-profiles/works a-summary logged_out'> <!--<![endif]--> <div id="fb-root"></div><script>window.fbAsyncInit = function() { FB.init({ appId: "2369844204", version: "v8.0", status: true, cookie: true, xfbml: true }); // Additional initialization code. if (window.InitFacebook) { // facebook.ts already loaded, set it up. window.InitFacebook(); } else { // Set a flag for facebook.ts to find when it loads. window.academiaAuthReadyFacebook = true; } };</script><script>window.fbAsyncLoad = function() { // Protection against double calling of this function if (window.FB) { return; } (function(d, s, id){ var js, fjs = d.getElementsByTagName(s)[0]; if (d.getElementById(id)) {return;} js = d.createElement(s); js.id = id; js.src = "//connect.facebook.net/en_US/sdk.js"; fjs.parentNode.insertBefore(js, fjs); }(document, 'script', 'facebook-jssdk')); } if (!window.defer_facebook) { // Autoload if not deferred window.fbAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.fbAsyncLoad(); }, 5000); }</script> <div id="google-root"></div><script>window.loadGoogle = function() { if (window.InitGoogle) { // google.ts already loaded, set it up. window.InitGoogle("331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"); } else { // Set a flag for google.ts to use when it loads. window.GoogleClientID = "331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"; } };</script><script>window.googleAsyncLoad = function() { // Protection against double calling of this function (function(d) { var js; var id = 'google-jssdk'; var ref = d.getElementsByTagName('script')[0]; if (d.getElementById(id)) { return; } js = d.createElement('script'); js.id = id; js.async = true; js.onload = loadGoogle; js.src = "https://accounts.google.com/gsi/client" ref.parentNode.insertBefore(js, ref); }(document)); } if (!window.defer_google) { // Autoload if not deferred window.googleAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.googleAsyncLoad(); }, 5000); }</script> <div id="tag-manager-body-root"> <!-- Google Tag Manager (noscript) --> <noscript><iframe src="https://www.googletagmanager.com/ns.html?id=GTM-5G9JF7Z" height="0" width="0" style="display:none;visibility:hidden"></iframe></noscript> <!-- End Google Tag Manager (noscript) --> <!-- Event listeners for analytics --> <script> window.addEventListener('load', function() { if (document.querySelector('input[name="commit"]')) { document.querySelector('input[name="commit"]').addEventListener('click', function() { gtag('event', 'click', { event_category: 'button', event_label: 'Log In' }) }) } }); </script> </div> <script>var _comscore = _comscore || []; _comscore.push({ c1: "2", c2: "26766707" }); (function() { var s = document.createElement("script"), el = document.getElementsByTagName("script")[0]; s.async = true; s.src = (document.location.protocol == "https:" ? "https://sb" : "http://b") + ".scorecardresearch.com/beacon.js"; el.parentNode.insertBefore(s, el); })();</script><img src="https://sb.scorecardresearch.com/p?c1=2&c2=26766707&cv=2.0&cj=1" style="position: absolute; visibility: hidden" /> <div id='react-modal'></div> <div class='DesignSystem'> <a class='u-showOnFocus' href='#site'> Skip to main content </a> </div> <div id="upgrade_ie_banner" style="display: none;"><p>Academia.edu no longer supports Internet Explorer.</p><p>To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to <a href="https://www.academia.edu/upgrade-browser">upgrade your browser</a>.</p></div><script>// Show this banner for all versions of IE if (!!window.MSInputMethodContext || /(MSIE)/.test(navigator.userAgent)) { document.getElementById('upgrade_ie_banner').style.display = 'block'; }</script> <div class="DesignSystem bootstrap ShrinkableNav"><div class="navbar navbar-default main-header"><div class="container-wrapper" id="main-header-container"><div class="container"><div class="navbar-header"><div class="nav-left-wrapper u-mt0x"><div class="nav-logo"><a data-main-header-link-target="logo_home" href="https://www.academia.edu/"><img class="visible-xs-inline-block" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015-A.svg" width="24" height="24" /><img width="145.2" height="18" class="hidden-xs" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015.svg" /></a></div><div class="nav-search"><div class="SiteSearch-wrapper select2-no-default-pills"><form class="js-SiteSearch-form DesignSystem" action="https://www.academia.edu/search" accept-charset="UTF-8" method="get"><i class="SiteSearch-icon fa fa-search u-fw700 u-positionAbsolute u-tcGrayDark"></i><input class="js-SiteSearch-form-input SiteSearch-form-input form-control" data-main-header-click-target="search_input" name="q" placeholder="Search" type="text" value="" /></form></div></div></div><div class="nav-right-wrapper pull-right"><ul class="NavLinks js-main-nav list-unstyled"><li class="NavLinks-link"><a class="js-header-login-url Button Button--inverseGray Button--sm u-mb4x" id="nav_log_in" rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="NavLinks-link u-p0x"><a class="Button Button--inverseGray Button--sm u-mb4x" rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li></ul><button class="hidden-lg hidden-md hidden-sm u-ml4x navbar-toggle collapsed" data-target=".js-mobile-header-links" data-toggle="collapse" type="button"><span class="icon-bar"></span><span class="icon-bar"></span><span class="icon-bar"></span></button></div></div><div class="collapse navbar-collapse js-mobile-header-links"><ul class="nav navbar-nav"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li><li class="u-borderColorGrayLight u-borderBottom1 js-mobile-nav-expand-trigger"><a href="#">more <span class="caret"></span></a></li><li><ul class="js-mobile-nav-expand-section nav navbar-nav u-m0x collapse"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/about">About</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/press">Press</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/documents">Papers</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/hiring"><i class="fa fa-briefcase"></i> We're Hiring!</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://support.academia.edu/hc/en-us"><i class="fa fa-question-circle"></i> Help Center</a></li><li class="js-mobile-nav-collapse-trigger u-borderColorGrayLight u-borderBottom1 dropup" style="display:none"><a href="#">less <span class="caret"></span></a></li></ul></li></ul></div></div></div><script>(function(){ var $moreLink = $(".js-mobile-nav-expand-trigger"); var $lessLink = $(".js-mobile-nav-collapse-trigger"); var $section = $('.js-mobile-nav-expand-section'); $moreLink.click(function(ev){ ev.preventDefault(); $moreLink.hide(); $lessLink.show(); $section.collapse('show'); }); $lessLink.click(function(ev){ ev.preventDefault(); $moreLink.show(); $lessLink.hide(); $section.collapse('hide'); }); })() if ($a.is_logged_in() || false) { new Aedu.NavigationController({ el: '.js-main-nav', showHighlightedNotification: false }); } else { $(".js-header-login-url").attr("href", $a.loginUrlWithRedirect()); } Aedu.autocompleteSearch = new AutocompleteSearch({el: '.js-SiteSearch-form'});</script></div></div> <div id='site' class='fixed'> <div id="content" class="clearfix"> <script>document.addEventListener('DOMContentLoaded', function(){ var $dismissible = $(".dismissible_banner"); $dismissible.click(function(ev) { $dismissible.hide(); }); });</script> <script src="//a.academia-assets.com/assets/webpack_bundles/profile.wjs-bundle-091a194a2533e53e1630c5cfd78813a4445aff73d16c70cdba1eafe8c0939f4a.js" defer="defer"></script><script>$viewedUser = Aedu.User.set_viewed( {"id":631545,"first_name":"Francisco Antonio","middle_initials":"","last_name":"Doria","page_name":"FranciscoDoria","domain_name":"ufrj","created_at":"2011-07-31T14:20:54.461-07:00","display_name":"Francisco Antonio Doria","url":"https://ufrj.academia.edu/FranciscoDoria","photo":"https://0.academia-photos.com/631545/218015/254671/s65_francisco.doria.jpg","has_photo":true,"department":{"id":285940,"name":"COPPE, Production Engineering","url":"https://ufrj.academia.edu/Departments/COPPE_Production_Engineering/Documents","university":{"id":822,"name":"Universidade Federal do Rio de Janeiro (UFRJ)","url":"https://ufrj.academia.edu/"}},"position":"Faculty Member","position_id":1,"is_analytics_public":false,"interests":[{"id":924,"name":"Logic","url":"https://www.academia.edu/Documents/in/Logic"},{"id":984553,"name":"Formal Systems","url":"https://www.academia.edu/Documents/in/Formal_Systems"},{"id":13279,"name":"Philosophy of Logic","url":"https://www.academia.edu/Documents/in/Philosophy_of_Logic"},{"id":806,"name":"Philosophy of Mind","url":"https://www.academia.edu/Documents/in/Philosophy_of_Mind"},{"id":465,"name":"Artificial Intelligence","url":"https://www.academia.edu/Documents/in/Artificial_Intelligence"},{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics"},{"id":9434,"name":"Chaos Theory","url":"https://www.academia.edu/Documents/in/Chaos_Theory"},{"id":136972,"name":"Goedel","url":"https://www.academia.edu/Documents/in/Goedel"},{"id":77905,"name":"Incompleteness","url":"https://www.academia.edu/Documents/in/Incompleteness"},{"id":198478,"name":"Goedel's Theorem","url":"https://www.academia.edu/Documents/in/Goedels_Theorem"},{"id":503,"name":"Theoretical Physics","url":"https://www.academia.edu/Documents/in/Theoretical_Physics"},{"id":2509,"name":"Philosophy Of Mathematics","url":"https://www.academia.edu/Documents/in/Philosophy_Of_Mathematics"},{"id":881267,"name":"Cristóvão Colombo","url":"https://www.academia.edu/Documents/in/Cristovao_Colombo"},{"id":200470,"name":"Discovery of America","url":"https://www.academia.edu/Documents/in/Discovery_of_America"},{"id":129538,"name":"Christopher Columbus","url":"https://www.academia.edu/Documents/in/Christopher_Columbus"}]} ); if ($a.is_logged_in() && $viewedUser.is_current_user()) { $('body').addClass('profile-viewed-by-owner'); } $socialProfiles = []</script><div id="js-react-on-rails-context" style="display:none" data-rails-context="{"inMailer":false,"i18nLocale":"en","i18nDefaultLocale":"en","href":"https://ufrj.academia.edu/FranciscoDoria","location":"/FranciscoDoria","scheme":"https","host":"ufrj.academia.edu","port":null,"pathname":"/FranciscoDoria","search":null,"httpAcceptLanguage":null,"serverSide":false}"></div> <div class="js-react-on-rails-component" style="display:none" data-component-name="ProfileCheckPaperUpdate" data-props="{}" data-trace="false" data-dom-id="ProfileCheckPaperUpdate-react-component-2be08e95-bc4e-419d-9be7-5bb649c5810e"></div> <div id="ProfileCheckPaperUpdate-react-component-2be08e95-bc4e-419d-9be7-5bb649c5810e"></div> <div class="DesignSystem"><div class="onsite-ping" id="onsite-ping"></div></div><div class="profile-user-info DesignSystem"><div class="social-profile-container"><div class="left-panel-container"><div class="user-info-component-wrapper"><div class="user-summary-cta-container"><div class="user-summary-container"><div class="social-profile-avatar-container"><img class="profile-avatar u-positionAbsolute" alt="Francisco Antonio Doria" border="0" onerror="if (this.src != '//a.academia-assets.com/images/s200_no_pic.png') this.src = '//a.academia-assets.com/images/s200_no_pic.png';" width="200" height="200" src="https://0.academia-photos.com/631545/218015/254671/s200_francisco.doria.jpg" /></div><div class="title-container"><h1 class="ds2-5-heading-sans-serif-sm">Francisco Antonio Doria</h1><div class="affiliations-container fake-truncate js-profile-affiliations"><div><a class="u-tcGrayDarker" href="https://ufrj.academia.edu/">Universidade Federal do Rio de Janeiro (UFRJ)</a>, <a class="u-tcGrayDarker" href="https://ufrj.academia.edu/Departments/COPPE_Production_Engineering/Documents">COPPE, Production Engineering</a>, <span class="u-tcGrayDarker">Faculty Member</span></div></div></div></div><div class="sidebar-cta-container"><button class="ds2-5-button hidden profile-cta-button grow js-profile-follow-button" data-broccoli-component="user-info.follow-button" data-click-track="profile-user-info-follow-button" data-follow-user-fname="Francisco Antonio" data-follow-user-id="631545" data-follow-user-source="profile_button" data-has-google="false"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">add</span>Follow</button><button class="ds2-5-button hidden profile-cta-button grow js-profile-unfollow-button" data-broccoli-component="user-info.unfollow-button" data-click-track="profile-user-info-unfollow-button" data-unfollow-user-id="631545"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">done</span>Following</button></div></div><div class="user-stats-container"><a><div class="stat-container js-profile-followers"><p class="label">Followers</p><p class="data">408</p></div></a><a><div class="stat-container js-profile-followees" data-broccoli-component="user-info.followees-count" data-click-track="profile-expand-user-info-following"><p class="label">Following</p><p class="data">288</p></div></a><a><div class="stat-container js-profile-coauthors" data-broccoli-component="user-info.coauthors-count" data-click-track="profile-expand-user-info-coauthors"><p class="label">Co-authors</p><p class="data">3</p></div></a><span><div class="stat-container"><p class="label"><span class="js-profile-total-view-text">Public Views</span></p><p class="data"><span class="js-profile-view-count"></span></p></div></span></div><div class="user-bio-container"><div class="profile-bio fake-truncate js-profile-about" style="margin: 0px;">Researcher<br /><div class="js-profile-less-about u-linkUnstyled u-tcGrayDarker u-textDecorationUnderline u-displayNone">less</div></div></div><div class="suggested-academics-container"><div class="suggested-academics--header"><h3 class="ds2-5-heading-sans-serif-xs">Related Authors</h3></div><ul class="suggested-user-card-list" data-nosnippet="true"><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a data-nosnippet="" href="https://dartmouth.academia.edu/MarceloGleiser"><img class="profile-avatar u-positionAbsolute" alt="Marcelo Gleiser related author profile picture" border="0" onerror="if (this.src != '//a.academia-assets.com/images/s200_no_pic.png') this.src = '//a.academia-assets.com/images/s200_no_pic.png';" width="200" height="200" src="https://0.academia-photos.com/26348640/9834473/10960292/s200_marcelo.gleiser.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://dartmouth.academia.edu/MarceloGleiser">Marcelo Gleiser</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">Dartmouth College</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a data-nosnippet="" href="https://independent.academia.edu/HariSeldon32"><img class="profile-avatar u-positionAbsolute" alt="Hari Seldon related author profile picture" border="0" onerror="if (this.src != '//a.academia-assets.com/images/s200_no_pic.png') this.src = '//a.academia-assets.com/images/s200_no_pic.png';" width="200" height="200" src="https://0.academia-photos.com/195077114/57494897/45713674/s200_hari.seldon.png" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://independent.academia.edu/HariSeldon32">Hari Seldon</a></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a data-nosnippet="" href="https://independent.academia.edu/DSowinski"><img class="profile-avatar u-positionAbsolute" alt="Damian Sowinski related author profile picture" border="0" onerror="if (this.src != '//a.academia-assets.com/images/s200_no_pic.png') this.src = '//a.academia-assets.com/images/s200_no_pic.png';" src="https://gravatar.com/avatar/0f58d38684a8d1f4b9b6bb6366a516c3?s=200" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://independent.academia.edu/DSowinski">Damian Sowinski</a></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a data-nosnippet="" href="https://independent.academia.edu/JochenAlbrecht"><img class="profile-avatar u-positionAbsolute" alt="Jochen Albrecht related author profile picture" border="0" onerror="if (this.src != '//a.academia-assets.com/images/s200_no_pic.png') this.src = '//a.academia-assets.com/images/s200_no_pic.png';" width="200" height="200" src="https://0.academia-photos.com/1168457/80245790/68822384/s200_jochen.albrecht.jpeg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://independent.academia.edu/JochenAlbrecht">Jochen Albrecht</a></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a data-nosnippet="" href="https://ucl.academia.edu/PhyllisIllari"><img class="profile-avatar u-positionAbsolute" alt="Phyllis Illari related author profile picture" border="0" onerror="if (this.src != '//a.academia-assets.com/images/s200_no_pic.png') this.src = '//a.academia-assets.com/images/s200_no_pic.png';" width="200" height="200" src="https://0.academia-photos.com/274195/56788/965722/s200_phyllis.illari.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://ucl.academia.edu/PhyllisIllari">Phyllis Illari</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">University College London</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a data-nosnippet="" href="https://nus.academia.edu/EricTKerr"><img class="profile-avatar u-positionAbsolute" alt="Eric Kerr related author profile picture" border="0" onerror="if (this.src != '//a.academia-assets.com/images/s200_no_pic.png') this.src = '//a.academia-assets.com/images/s200_no_pic.png';" width="200" height="200" src="https://0.academia-photos.com/18670/6292/30672955/s200_eric.kerr.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://nus.academia.edu/EricTKerr">Eric Kerr</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">National University of Singapore</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a data-nosnippet="" href="https://herts.academia.edu/ChristophSchulz"><img class="profile-avatar u-positionAbsolute" alt="Christoph Schulz related author profile picture" border="0" onerror="if (this.src != '//a.academia-assets.com/images/s200_no_pic.png') this.src = '//a.academia-assets.com/images/s200_no_pic.png';" width="200" height="200" src="https://0.academia-photos.com/1734975/596989/4256680/s200_christoph.schulz.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://herts.academia.edu/ChristophSchulz">Christoph Schulz</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">University of Hertfordshire</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a data-nosnippet="" href="https://bgu.academia.edu/NirFresco"><img class="profile-avatar u-positionAbsolute" alt="Nir Fresco related author profile picture" border="0" onerror="if (this.src != '//a.academia-assets.com/images/s200_no_pic.png') this.src = '//a.academia-assets.com/images/s200_no_pic.png';" width="200" height="200" src="https://0.academia-photos.com/14759521/4047470/4722501/s200_nir.fresco.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://bgu.academia.edu/NirFresco">Nir Fresco</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">Ben Gurion University of the Negev</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a data-nosnippet="" href="https://mjc.academia.edu/CarsonGrubaugh"><img class="profile-avatar u-positionAbsolute" alt="Carson Grubaugh related author profile picture" border="0" onerror="if (this.src != '//a.academia-assets.com/images/s200_no_pic.png') this.src = '//a.academia-assets.com/images/s200_no_pic.png';" width="200" height="200" src="https://0.academia-photos.com/34742410/10484620/13090606/s200_carson.grubaugh.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://mjc.academia.edu/CarsonGrubaugh">Carson Grubaugh</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">Modesto Junior College</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a data-nosnippet="" href="https://vub.academia.edu/PatrickAllo"><img class="profile-avatar u-positionAbsolute" alt="Patrick Allo related author profile picture" border="0" onerror="if (this.src != '//a.academia-assets.com/images/s200_no_pic.png') this.src = '//a.academia-assets.com/images/s200_no_pic.png';" width="200" height="200" src="https://0.academia-photos.com/12226954/3941358/11634345/s200_patrick.allo.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://vub.academia.edu/PatrickAllo">Patrick Allo</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">Vrije Universiteit Brussel</p></div></div></ul></div><style type="text/css">.suggested-academics--header h3{font-size:16px;font-weight:500;line-height:20px}</style><div class="ri-section"><div class="ri-section-header"><span>Interests</span><a class="ri-more-link js-profile-ri-list-card" data-click-track="profile-user-info-primary-research-interest" data-has-card-for-ri-list="631545">View All (10)</a></div><div class="ri-tags-container"><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="631545" href="https://www.academia.edu/Documents/in/Logic"><div id="js-react-on-rails-context" style="display:none" data-rails-context="{"inMailer":false,"i18nLocale":"en","i18nDefaultLocale":"en","href":"https://ufrj.academia.edu/FranciscoDoria","location":"/FranciscoDoria","scheme":"https","host":"ufrj.academia.edu","port":null,"pathname":"/FranciscoDoria","search":null,"httpAcceptLanguage":null,"serverSide":false}"></div> <div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{"color":"gray","children":["Logic"]}" data-trace="false" data-dom-id="Pill-react-component-b7c4e56c-2211-41f1-b41b-60a7d2b0ab8d"></div> <div id="Pill-react-component-b7c4e56c-2211-41f1-b41b-60a7d2b0ab8d"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="631545" href="https://www.academia.edu/Documents/in/Formal_Systems"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{"color":"gray","children":["Formal Systems"]}" data-trace="false" data-dom-id="Pill-react-component-6d84d800-69f9-49b9-8696-fbf12d0d1eee"></div> <div id="Pill-react-component-6d84d800-69f9-49b9-8696-fbf12d0d1eee"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="631545" href="https://www.academia.edu/Documents/in/Philosophy_of_Logic"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{"color":"gray","children":["Philosophy of Logic"]}" data-trace="false" data-dom-id="Pill-react-component-0e31bca7-465c-40c1-8ee8-4b9168410842"></div> <div id="Pill-react-component-0e31bca7-465c-40c1-8ee8-4b9168410842"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="631545" href="https://www.academia.edu/Documents/in/Philosophy_of_Mind"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{"color":"gray","children":["Philosophy of Mind"]}" data-trace="false" data-dom-id="Pill-react-component-2db4f9f6-2ff4-4c96-a310-7f4d943f1437"></div> <div id="Pill-react-component-2db4f9f6-2ff4-4c96-a310-7f4d943f1437"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="631545" href="https://www.academia.edu/Documents/in/Artificial_Intelligence"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{"color":"gray","children":["Artificial Intelligence"]}" data-trace="false" data-dom-id="Pill-react-component-60184212-8e48-43b2-a07d-4ed5dbfe4762"></div> <div id="Pill-react-component-60184212-8e48-43b2-a07d-4ed5dbfe4762"></div> </a></div></div></div></div><div class="right-panel-container"><div class="user-content-wrapper"><div class="uploads-container" id="social-redesign-work-container"><div class="upload-header"><h2 class="ds2-5-heading-sans-serif-xs">Uploads</h2></div><div class="nav-container backbone-profile-documents-nav hidden-xs"><ul class="nav-tablist" role="tablist"><li class="nav-chip active" role="presentation"><a data-section-name="" data-toggle="tab" href="#all" role="tab">all</a></li><li class="nav-chip" role="presentation"><a class="js-profile-docs-nav-section u-textTruncate" data-click-track="profile-works-tab" data-section-name="Books" data-toggle="tab" href="#books" role="tab" title="Books"><span>1</span> <span class="ds2-5-body-sm-bold">Books</span></a></li><li class="nav-chip" role="presentation"><a class="js-profile-docs-nav-section u-textTruncate" data-click-track="profile-works-tab" data-section-name="Papers" data-toggle="tab" href="#papers" role="tab" title="Papers"><span>77</span> <span class="ds2-5-body-sm-bold">Papers</span></a></li><li class="nav-chip" role="presentation"><a class="js-profile-docs-nav-section u-textTruncate" data-click-track="profile-works-tab" data-section-name="Drafts" data-toggle="tab" href="#drafts" role="tab" title="Drafts"><span>1</span> <span class="ds2-5-body-sm-bold">Drafts</span></a></li></ul></div><div class="divider ds-divider-16" style="margin: 0px;"></div><div class="documents-container backbone-social-profile-documents" style="width: 100%;"><div class="u-taCenter"></div><div class="profile--tab_content_container js-tab-pane tab-pane active" id="all"><div class="profile--tab_heading_container js-section-heading" data-section="Books" id="Books"><h3 class="profile--tab_heading_container">Books by Francisco Antonio Doria</h3></div><div class="js-work-strip profile--work_container" data-work-id="1028034"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/1028034/Goedels_Way"><img alt="Research paper thumbnail of Goedel's Way" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Goedel's Way</div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">My book with Greg Chaitin and Newton da Costa. Heretic viewpoints. </span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="1028034"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="1028034"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 1028034; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=1028034]").text(description); $(".js-view-count[data-work-id=1028034]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 1028034; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='1028034']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=1028034]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":1028034,"title":"Goedel's Way","translated_title":"","metadata":{"abstract":"My book with Greg Chaitin and Newton da Costa. Heretic viewpoints. "},"translated_abstract":"My book with Greg Chaitin and Newton da Costa. Heretic viewpoints. ","internal_url":"https://www.academia.edu/1028034/Goedels_Way","translated_internal_url":"","created_at":"2011-10-19T11:18:30.876-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":631545,"coauthors_can_edit":true,"document_type":"book","co_author_tags":[],"downloadable_attachments":[],"slug":"Goedels_Way","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"My book with Greg Chaitin and Newton da Costa. Heretic viewpoints. ","owner":{"id":631545,"first_name":"Francisco Antonio","middle_initials":"","last_name":"Doria","page_name":"FranciscoDoria","domain_name":"ufrj","created_at":"2011-07-31T14:20:54.461-07:00","display_name":"Francisco Antonio Doria","url":"https://ufrj.academia.edu/FranciscoDoria"},"attachments":[],"research_interests":[],"urls":[{"id":140387,"url":"http://www.taylorandfrancis.com/books/details/9780415690850/"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-1028034-figures'); } }); </script> <div class="profile--tab_heading_container js-section-heading" data-section="Papers" id="Papers"><h3 class="profile--tab_heading_container">Papers by Francisco Antonio Doria</h3></div><div class="js-work-strip profile--work_container" data-work-id="96762497"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/96762497/The_Map_and_the_Territory"><img alt="Research paper thumbnail of The Map and the Territory" class="work-thumbnail" src="https://attachments.academia-assets.com/98570856/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/96762497/The_Map_and_the_Territory">The Map and the Territory</a></div><div class="wp-workCard_item"><span>The Frontiers Collection</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Science is a constructed narrative of the natural world based on information gathering and its su...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Science is a constructed narrative of the natural world based on information gathering and its subsequent analysis. In this essay, we develop a novel approach to the epistemic foundations of the scientific narrative, as based on our experiential interactions with the natural world. We first review some of the basic aspects of both Bayesian statistics and Shannon's information theory as applied to the construction of meaningful conceptualization of the natural world. This conceptualization is rendered through the maps we construct of the world based on our limited knowledge of reality. We propose a path from experience to information and physics based on the notion that information is experience that induces change in an Epistemic Agent (EA): the change may be local and focused to a minor aspect of reality or it may be broad and worldview-changing. We illustrate our approach through an analysis of a measure of spatial complexity proposed by one of us called Configuration Entropy (CE), and establish a link between experience at the cognitive level and information content, showing that the CE is a quantitative measure of how much information in spatial-complexity the external world hides from an EA. All philosophy is based on two things only: curiosity and poor eyesight. The trouble is, we want to know more than we can see. Bernard le Bovier de Fontenelle a To appear in Map and Territory-Exploring the Foundations of Science, Thought and Reality, ed.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="1c6d514ffb72831b007a64604eb6a43b" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":98570856,"asset_id":96762497,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/98570856/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="96762497"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="96762497"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 96762497; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=96762497]").text(description); $(".js-view-count[data-work-id=96762497]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 96762497; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='96762497']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "1c6d514ffb72831b007a64604eb6a43b" } } $('.js-work-strip[data-work-id=96762497]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":96762497,"title":"The Map and the Territory","translated_title":"","metadata":{"publisher":"Springer International Publishing","ai_title_tag":"From Experience to Information: The Epistemic Foundations of Science","grobid_abstract":"Science is a constructed narrative of the natural world based on information gathering and its subsequent analysis. In this essay, we develop a novel approach to the epistemic foundations of the scientific narrative, as based on our experiential interactions with the natural world. We first review some of the basic aspects of both Bayesian statistics and Shannon's information theory as applied to the construction of meaningful conceptualization of the natural world. This conceptualization is rendered through the maps we construct of the world based on our limited knowledge of reality. We propose a path from experience to information and physics based on the notion that information is experience that induces change in an Epistemic Agent (EA): the change may be local and focused to a minor aspect of reality or it may be broad and worldview-changing. We illustrate our approach through an analysis of a measure of spatial complexity proposed by one of us called Configuration Entropy (CE), and establish a link between experience at the cognitive level and information content, showing that the CE is a quantitative measure of how much information in spatial-complexity the external world hides from an EA. All philosophy is based on two things only: curiosity and poor eyesight. The trouble is, we want to know more than we can see. Bernard le Bovier de Fontenelle a To appear in Map and Territory-Exploring the Foundations of Science, Thought and Reality, ed.","publication_name":"The Frontiers Collection","grobid_abstract_attachment_id":98570856},"translated_abstract":null,"internal_url":"https://www.academia.edu/96762497/The_Map_and_the_Territory","translated_internal_url":"","created_at":"2023-02-12T05:58:26.501-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":631545,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":98570856,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/98570856/thumbnails/1.jpg","file_name":"1710.pdf","download_url":"https://www.academia.edu/attachments/98570856/download_file","bulk_download_file_name":"The_Map_and_the_Territory.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/98570856/1710-libre.pdf?1676212325=\u0026response-content-disposition=attachment%3B+filename%3DThe_Map_and_the_Territory.pdf\u0026Expires=1743417109\u0026Signature=VHiL6Pw1~0NuRFyQbabCYSYPUYB6FlLltpBFxX~umcw-kI0T5pIL06Vt4lhHB6j65bmcNN6qaaDH75gQaS83kRsRFxW9FPgZzwHHgUBgGpsBylE5qobAG5R7PCi0v2fYTHqmN8ovqGR4Q-sxhgbqOC9U2iDS4SNBeEUoMp8uuwb4njmy3VG4u~SOdzijnObvwCwt8RSmX-D9h4pZDpyqlaUgU46ASebuHwbHBRlHoszMYE3werHOmzd8UzHhrqHgfasB7HzprQU-AtfUKxtUslHUaQwkIU~hlN4UOdNWu~NRUg0glIPYq~4vPDLlHHqP984xGbAsg4ehNAiL2vHtQw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"The_Map_and_the_Territory","translated_slug":"","page_count":28,"language":"en","content_type":"Work","summary":"Science is a constructed narrative of the natural world based on information gathering and its subsequent analysis. In this essay, we develop a novel approach to the epistemic foundations of the scientific narrative, as based on our experiential interactions with the natural world. We first review some of the basic aspects of both Bayesian statistics and Shannon's information theory as applied to the construction of meaningful conceptualization of the natural world. This conceptualization is rendered through the maps we construct of the world based on our limited knowledge of reality. We propose a path from experience to information and physics based on the notion that information is experience that induces change in an Epistemic Agent (EA): the change may be local and focused to a minor aspect of reality or it may be broad and worldview-changing. We illustrate our approach through an analysis of a measure of spatial complexity proposed by one of us called Configuration Entropy (CE), and establish a link between experience at the cognitive level and information content, showing that the CE is a quantitative measure of how much information in spatial-complexity the external world hides from an EA. All philosophy is based on two things only: curiosity and poor eyesight. The trouble is, we want to know more than we can see. Bernard le Bovier de Fontenelle a To appear in Map and Territory-Exploring the Foundations of Science, Thought and Reality, ed.","owner":{"id":631545,"first_name":"Francisco Antonio","middle_initials":"","last_name":"Doria","page_name":"FranciscoDoria","domain_name":"ufrj","created_at":"2011-07-31T14:20:54.461-07:00","display_name":"Francisco Antonio Doria","url":"https://ufrj.academia.edu/FranciscoDoria"},"attachments":[{"id":98570856,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/98570856/thumbnails/1.jpg","file_name":"1710.pdf","download_url":"https://www.academia.edu/attachments/98570856/download_file","bulk_download_file_name":"The_Map_and_the_Territory.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/98570856/1710-libre.pdf?1676212325=\u0026response-content-disposition=attachment%3B+filename%3DThe_Map_and_the_Territory.pdf\u0026Expires=1743417109\u0026Signature=VHiL6Pw1~0NuRFyQbabCYSYPUYB6FlLltpBFxX~umcw-kI0T5pIL06Vt4lhHB6j65bmcNN6qaaDH75gQaS83kRsRFxW9FPgZzwHHgUBgGpsBylE5qobAG5R7PCi0v2fYTHqmN8ovqGR4Q-sxhgbqOC9U2iDS4SNBeEUoMp8uuwb4njmy3VG4u~SOdzijnObvwCwt8RSmX-D9h4pZDpyqlaUgU46ASebuHwbHBRlHoszMYE3werHOmzd8UzHhrqHgfasB7HzprQU-AtfUKxtUslHUaQwkIU~hlN4UOdNWu~NRUg0glIPYq~4vPDLlHHqP984xGbAsg4ehNAiL2vHtQw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":128,"name":"History","url":"https://www.academia.edu/Documents/in/History"},{"id":261,"name":"Geography","url":"https://www.academia.edu/Documents/in/Geography"},{"id":493463,"name":"Science in General","url":"https://www.academia.edu/Documents/in/Science_in_General"}],"urls":[{"id":28911652,"url":"http://link.springer.com/content/pdf/10.1007/978-3-319-72478-2.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-96762497-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="96762495"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/96762495/G%C3%B6del_Incompleteness_and_the_Empirical_Sciences"><img alt="Research paper thumbnail of Gödel Incompleteness and the Empirical Sciences" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Gödel Incompleteness and the Empirical Sciences</div><div class="wp-workCard_item"><span>Space, Time and the Limits of Human Understanding</span><span>, 2016</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We show how widespread are metamathematical phenomena in mathematics and in the sciences which re...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We show how widespread are metamathematical phenomena in mathematics and in the sciences which rely on mathematics. We will consider specific examples of undecidable sentences in mathematics, physics and economics. Our presentation is informal; rigorous developments can be found in the references.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="96762495"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="96762495"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 96762495; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=96762495]").text(description); $(".js-view-count[data-work-id=96762495]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 96762495; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='96762495']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=96762495]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":96762495,"title":"Gödel Incompleteness and the Empirical Sciences","translated_title":"","metadata":{"abstract":"We show how widespread are metamathematical phenomena in mathematics and in the sciences which rely on mathematics. We will consider specific examples of undecidable sentences in mathematics, physics and economics. Our presentation is informal; rigorous developments can be found in the references.","publisher":"Springer International Publishing","publication_date":{"day":null,"month":null,"year":2016,"errors":{}},"publication_name":"Space, Time and the Limits of Human Understanding"},"translated_abstract":"We show how widespread are metamathematical phenomena in mathematics and in the sciences which rely on mathematics. We will consider specific examples of undecidable sentences in mathematics, physics and economics. Our presentation is informal; rigorous developments can be found in the references.","internal_url":"https://www.academia.edu/96762495/G%C3%B6del_Incompleteness_and_the_Empirical_Sciences","translated_internal_url":"","created_at":"2023-02-12T05:58:26.365-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":631545,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Gödel_Incompleteness_and_the_Empirical_Sciences","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"We show how widespread are metamathematical phenomena in mathematics and in the sciences which rely on mathematics. We will consider specific examples of undecidable sentences in mathematics, physics and economics. Our presentation is informal; rigorous developments can be found in the references.","owner":{"id":631545,"first_name":"Francisco Antonio","middle_initials":"","last_name":"Doria","page_name":"FranciscoDoria","domain_name":"ufrj","created_at":"2011-07-31T14:20:54.461-07:00","display_name":"Francisco Antonio Doria","url":"https://ufrj.academia.edu/FranciscoDoria"},"attachments":[],"research_interests":[],"urls":[{"id":28911651,"url":"http://link.springer.com/content/pdf/10.1007/978-3-319-44418-5_35"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-96762495-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="96762492"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/96762492/Consequences_of_an_exotic_definition_for_P_NP_q"><img alt="Research paper thumbnail of Consequences of an exotic definition for P NP q" class="work-thumbnail" src="https://attachments.academia-assets.com/98570853/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/96762492/Consequences_of_an_exotic_definition_for_P_NP_q">Consequences of an exotic definition for P NP q</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We introduce a formal sentence noted P NPŠ F (the ‘‘exotic definition’’) that is intuitively equi...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We introduce a formal sentence noted P NPŠ F (the ‘‘exotic definition’’) that is intuitively equivalent to P NP; however P NP and P NPŠ F may not be equivalent in ZFC for some choices of F. Again for some F we show that P NPŠ F is consistent with ZFC, and so is the equivalence P NPŠ F $P NPŠ. We finally derive a consistency result for P NP itself.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="b96003029bd2e84d81eb0a3a2761b4b5" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":98570853,"asset_id":96762492,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/98570853/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="96762492"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="96762492"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 96762492; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=96762492]").text(description); $(".js-view-count[data-work-id=96762492]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 96762492; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='96762492']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "b96003029bd2e84d81eb0a3a2761b4b5" } } $('.js-work-strip[data-work-id=96762492]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":96762492,"title":"Consequences of an exotic definition for P NP q","translated_title":"","metadata":{"abstract":"We introduce a formal sentence noted P NPŠ F (the ‘‘exotic definition’’) that is intuitively equivalent to P NP; however P NP and P NPŠ F may not be equivalent in ZFC for some choices of F. Again for some F we show that P NPŠ F is consistent with ZFC, and so is the equivalence P NPŠ F $P NPŠ. We finally derive a consistency result for P NP itself.","publication_date":{"day":null,"month":null,"year":2008,"errors":{}}},"translated_abstract":"We introduce a formal sentence noted P NPŠ F (the ‘‘exotic definition’’) that is intuitively equivalent to P NP; however P NP and P NPŠ F may not be equivalent in ZFC for some choices of F. Again for some F we show that P NPŠ F is consistent with ZFC, and so is the equivalence P NPŠ F $P NPŠ. We finally derive a consistency result for P NP itself.","internal_url":"https://www.academia.edu/96762492/Consequences_of_an_exotic_definition_for_P_NP_q","translated_internal_url":"","created_at":"2023-02-12T05:58:26.241-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":631545,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":98570853,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/98570853/thumbnails/1.jpg","file_name":"AMC7887page.pdf","download_url":"https://www.academia.edu/attachments/98570853/download_file","bulk_download_file_name":"Consequences_of_an_exotic_definition_for.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/98570853/AMC7887page-libre.pdf?1676212326=\u0026response-content-disposition=attachment%3B+filename%3DConsequences_of_an_exotic_definition_for.pdf\u0026Expires=1743333191\u0026Signature=f6lPBIanDZLuY-xF66BEk8kb7L4iBVm7EhMSq-~lukVKnsQ9IpmwM0lqtV1gbo37WVlq2ISM7q3a8J-l4cXMT13mi1ej1FNIDZt0av-jE167rWwqgJxhyGSiEpfFVhhh8mEwt~ZHyE~7haqxczez8UdJGxt6hfjbWxoJ1ZfRiQg6piv1zgx~ZRe-nqejigFSh8p2D6KHQpFM~4pyrQnbNiSlkaydXBVTlrJVFgRnCxSlUjJNq4RAAt8i4l70ra7-BJ~C16CWrjVQEU4BKtt0-WdN9HwK8H0Wl8cjrVOLSBSTVzoAbVySwfoUvGl4LWwc6-vl5U8tjmzp2EOCM65zZg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Consequences_of_an_exotic_definition_for_P_NP_q","translated_slug":"","page_count":11,"language":"en","content_type":"Work","summary":"We introduce a formal sentence noted P NPŠ F (the ‘‘exotic definition’’) that is intuitively equivalent to P NP; however P NP and P NPŠ F may not be equivalent in ZFC for some choices of F. Again for some F we show that P NPŠ F is consistent with ZFC, and so is the equivalence P NPŠ F $P NPŠ. We finally derive a consistency result for P NP itself.","owner":{"id":631545,"first_name":"Francisco Antonio","middle_initials":"","last_name":"Doria","page_name":"FranciscoDoria","domain_name":"ufrj","created_at":"2011-07-31T14:20:54.461-07:00","display_name":"Francisco Antonio Doria","url":"https://ufrj.academia.edu/FranciscoDoria"},"attachments":[{"id":98570853,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/98570853/thumbnails/1.jpg","file_name":"AMC7887page.pdf","download_url":"https://www.academia.edu/attachments/98570853/download_file","bulk_download_file_name":"Consequences_of_an_exotic_definition_for.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/98570853/AMC7887page-libre.pdf?1676212326=\u0026response-content-disposition=attachment%3B+filename%3DConsequences_of_an_exotic_definition_for.pdf\u0026Expires=1743333191\u0026Signature=f6lPBIanDZLuY-xF66BEk8kb7L4iBVm7EhMSq-~lukVKnsQ9IpmwM0lqtV1gbo37WVlq2ISM7q3a8J-l4cXMT13mi1ej1FNIDZt0av-jE167rWwqgJxhyGSiEpfFVhhh8mEwt~ZHyE~7haqxczez8UdJGxt6hfjbWxoJ1ZfRiQg6piv1zgx~ZRe-nqejigFSh8p2D6KHQpFM~4pyrQnbNiSlkaydXBVTlrJVFgRnCxSlUjJNq4RAAt8i4l70ra7-BJ~C16CWrjVQEU4BKtt0-WdN9HwK8H0Wl8cjrVOLSBSTVzoAbVySwfoUvGl4LWwc6-vl5U8tjmzp2EOCM65zZg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[{"id":28911650,"url":"http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.92.5882\u0026rep=rep1\u0026type=pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-96762492-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="96762491"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/96762491/Baker_Gill_Solovay_set_of_polynomial_Turing"><img alt="Research paper thumbnail of Baker–Gill–Solovay set of polynomial Turing" class="work-thumbnail" src="https://attachments.academia-assets.com/98570854/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/96762491/Baker_Gill_Solovay_set_of_polynomial_Turing">Baker–Gill–Solovay set of polynomial Turing</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We prove here a lemma that connects some properties of the so-called "counterexample function" to...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We prove here a lemma that connects some properties of the so-called "counterexample function" to the P = N P conjecture over the Baker-Gill-Solovay set of polynomial Turing machines to the behavior of the same function "at large," over the set of all polynomial Turing machines.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="c7faad172cd03a9bf41e4c4889cb0401" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":98570854,"asset_id":96762491,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/98570854/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="96762491"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="96762491"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 96762491; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=96762491]").text(description); $(".js-view-count[data-work-id=96762491]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 96762491; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='96762491']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "c7faad172cd03a9bf41e4c4889cb0401" } } $('.js-work-strip[data-work-id=96762491]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":96762491,"title":"Baker–Gill–Solovay set of polynomial Turing","translated_title":"","metadata":{"grobid_abstract":"We prove here a lemma that connects some properties of the so-called \"counterexample function\" to the P = N P conjecture over the Baker-Gill-Solovay set of polynomial Turing machines to the behavior of the same function \"at large,\" over the set of all polynomial Turing machines.","publication_date":{"day":null,"month":null,"year":2008,"errors":{}},"grobid_abstract_attachment_id":98570854},"translated_abstract":null,"internal_url":"https://www.academia.edu/96762491/Baker_Gill_Solovay_set_of_polynomial_Turing","translated_internal_url":"","created_at":"2023-02-12T05:58:26.116-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":631545,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":98570854,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/98570854/thumbnails/1.jpg","file_name":"0106096v1.pdf","download_url":"https://www.academia.edu/attachments/98570854/download_file","bulk_download_file_name":"Baker_Gill_Solovay_set_of_polynomial_Tur.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/98570854/0106096v1-libre.pdf?1676212325=\u0026response-content-disposition=attachment%3B+filename%3DBaker_Gill_Solovay_set_of_polynomial_Tur.pdf\u0026Expires=1743333191\u0026Signature=TXroJxi1AclVbmE3EOI1rmY5CN3szok04zTT-oSvdxE815~~7xqU5ujXtmF-xwQWQxN1Tvb5BOVM-xTU7CeIp45a1b2eu6-H67sWuY-YSTJlGGNXf6VAxjoT7VlFqg9s7NIWXLUUQHQIRg2g5uycCdfhjHffqsjYrFtId8-B~P2uzawMyjt5Rysg7ZSj28epuSavVJcjvpY6znfZTIAZ8GKw~Fn0WRYrpHHe9CcJDJVr3ktcX-uAUtCF~~rXlppB3EeJMapGY834JWuVJXBaZ3SqWwsIs-16PjIr1NIa74xrqPjYAkMWf4-Ft2OggdG5EYTxjqF7F41nJxuirAnWWQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Baker_Gill_Solovay_set_of_polynomial_Turing","translated_slug":"","page_count":7,"language":"en","content_type":"Work","summary":"We prove here a lemma that connects some properties of the so-called \"counterexample function\" to the P = N P conjecture over the Baker-Gill-Solovay set of polynomial Turing machines to the behavior of the same function \"at large,\" over the set of all polynomial Turing machines.","owner":{"id":631545,"first_name":"Francisco Antonio","middle_initials":"","last_name":"Doria","page_name":"FranciscoDoria","domain_name":"ufrj","created_at":"2011-07-31T14:20:54.461-07:00","display_name":"Francisco Antonio Doria","url":"https://ufrj.academia.edu/FranciscoDoria"},"attachments":[{"id":98570854,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/98570854/thumbnails/1.jpg","file_name":"0106096v1.pdf","download_url":"https://www.academia.edu/attachments/98570854/download_file","bulk_download_file_name":"Baker_Gill_Solovay_set_of_polynomial_Tur.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/98570854/0106096v1-libre.pdf?1676212325=\u0026response-content-disposition=attachment%3B+filename%3DBaker_Gill_Solovay_set_of_polynomial_Tur.pdf\u0026Expires=1743333191\u0026Signature=TXroJxi1AclVbmE3EOI1rmY5CN3szok04zTT-oSvdxE815~~7xqU5ujXtmF-xwQWQxN1Tvb5BOVM-xTU7CeIp45a1b2eu6-H67sWuY-YSTJlGGNXf6VAxjoT7VlFqg9s7NIWXLUUQHQIRg2g5uycCdfhjHffqsjYrFtId8-B~P2uzawMyjt5Rysg7ZSj28epuSavVJcjvpY6znfZTIAZ8GKw~Fn0WRYrpHHe9CcJDJVr3ktcX-uAUtCF~~rXlppB3EeJMapGY834JWuVJXBaZ3SqWwsIs-16PjIr1NIa74xrqPjYAkMWf4-Ft2OggdG5EYTxjqF7F41nJxuirAnWWQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[{"id":28911649,"url":"http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.233.8498\u0026rep=rep1\u0026type=pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-96762491-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="96762489"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/96762489/On_Teitler_s_higher_spin_field_equations"><img alt="Research paper thumbnail of On Teitler’s higher-spin field equations" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">On Teitler’s higher-spin field equations</div><div class="wp-workCard_item"><span>Lettere Al Nuovo Cimento Series 2</span><span>, 1977</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="96762489"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="96762489"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 96762489; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=96762489]").text(description); $(".js-view-count[data-work-id=96762489]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 96762489; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='96762489']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=96762489]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":96762489,"title":"On Teitler’s higher-spin field equations","translated_title":"","metadata":{"publisher":"Springer Nature","publication_date":{"day":null,"month":null,"year":1977,"errors":{}},"publication_name":"Lettere Al Nuovo Cimento Series 2"},"translated_abstract":null,"internal_url":"https://www.academia.edu/96762489/On_Teitler_s_higher_spin_field_equations","translated_internal_url":"","created_at":"2023-02-12T05:58:25.987-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":631545,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"On_Teitler_s_higher_spin_field_equations","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":null,"owner":{"id":631545,"first_name":"Francisco Antonio","middle_initials":"","last_name":"Doria","page_name":"FranciscoDoria","domain_name":"ufrj","created_at":"2011-07-31T14:20:54.461-07:00","display_name":"Francisco Antonio Doria","url":"https://ufrj.academia.edu/FranciscoDoria"},"attachments":[],"research_interests":[{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics"},{"id":2713,"name":"Quantum Electrodynamics","url":"https://www.academia.edu/Documents/in/Quantum_Electrodynamics"}],"urls":[{"id":28911647,"url":"http://link.springer.com/content/pdf/10.1007/BF02780569"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-96762489-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="96762487"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/96762487/On_the_O_Donnell_Algorithm_for_NP_Complete_Problems"><img alt="Research paper thumbnail of On the O’Donnell Algorithm for NP-Complete Problems" class="work-thumbnail" src="https://attachments.academia-assets.com/98570857/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/96762487/On_the_O_Donnell_Algorithm_for_NP_Complete_Problems">On the O’Donnell Algorithm for NP-Complete Problems</a></div><div class="wp-workCard_item"><span>Review of Behavioral Economics</span><span>, 2016</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We present and discuss the O'Donnell 1979 algorithm for the solution of N P-complete problems. If...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We present and discuss the O'Donnell 1979 algorithm for the solution of N P-complete problems. If P < N P is proved in a theory with greater "provability strength" than Primitive Recursive Arithmetic, the O'Donnell algorithm turns out to be almost polynomial. We elaborate on how close to polynomial it might be. As an application, we show that follows from Maymin's theorem on efficient markets that, given our metamathematical condition above, there are "almost efficient" markets (that is to say, markets where information about their operation is known in almost polynomial time).</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="a31d259e320db5b6f368b6cc0374b79b" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":98570857,"asset_id":96762487,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/98570857/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="96762487"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="96762487"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 96762487; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=96762487]").text(description); $(".js-view-count[data-work-id=96762487]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 96762487; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='96762487']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "a31d259e320db5b6f368b6cc0374b79b" } } $('.js-work-strip[data-work-id=96762487]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":96762487,"title":"On the O’Donnell Algorithm for NP-Complete Problems","translated_title":"","metadata":{"publisher":"Now Publishers","grobid_abstract":"We present and discuss the O'Donnell 1979 algorithm for the solution of N P-complete problems. If P \u003c N P is proved in a theory with greater \"provability strength\" than Primitive Recursive Arithmetic, the O'Donnell algorithm turns out to be almost polynomial. We elaborate on how close to polynomial it might be. As an application, we show that follows from Maymin's theorem on efficient markets that, given our metamathematical condition above, there are \"almost efficient\" markets (that is to say, markets where information about their operation is known in almost polynomial time).","publication_date":{"day":null,"month":null,"year":2016,"errors":{}},"publication_name":"Review of Behavioral Economics","grobid_abstract_attachment_id":98570857},"translated_abstract":null,"internal_url":"https://www.academia.edu/96762487/On_the_O_Donnell_Algorithm_for_NP_Complete_Problems","translated_internal_url":"","created_at":"2023-02-12T05:58:25.856-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":631545,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":98570857,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/98570857/thumbnails/1.jpg","file_name":"105.0000004820230212-1-ia16mn.pdf","download_url":"https://www.academia.edu/attachments/98570857/download_file","bulk_download_file_name":"On_the_O_Donnell_Algorithm_for_NP_Comple.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/98570857/105.0000004820230212-1-ia16mn-libre.pdf?1676212332=\u0026response-content-disposition=attachment%3B+filename%3DOn_the_O_Donnell_Algorithm_for_NP_Comple.pdf\u0026Expires=1743333191\u0026Signature=gxLeIwFqzJ-OfNeQAVW5YB-xkq60IFClfG0cISJxChecMiOu0kgd0ReeTdUSUQNq87Zfc6esjw8DCrw5adjKbX4BiIOGdDig8~BO2CsTYzw4jrZUR9dEz-l~5byNUuqBEmFC3WPuzpFdMGZ4nPFv6CgPx1w7Y9qLbxbYZA15VUKMb7tX5oy0pug5NxS6xJosEfsRIaU6UU4s1cdXjw6ye9lyEgnQ15RMurf56SBVCGMmYS6L2hrhkxnKR7QJnd~EDVx7iADks5Buq4QuFHzXDtRtyqX-gNakMAM~AVxdz9beeMcpRx8QneAW8fvy0~dMpmF6r80wel6uMupB20P6mw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"On_the_O_Donnell_Algorithm_for_NP_Complete_Problems","translated_slug":"","page_count":22,"language":"en","content_type":"Work","summary":"We present and discuss the O'Donnell 1979 algorithm for the solution of N P-complete problems. If P \u003c N P is proved in a theory with greater \"provability strength\" than Primitive Recursive Arithmetic, the O'Donnell algorithm turns out to be almost polynomial. We elaborate on how close to polynomial it might be. As an application, we show that follows from Maymin's theorem on efficient markets that, given our metamathematical condition above, there are \"almost efficient\" markets (that is to say, markets where information about their operation is known in almost polynomial time).","owner":{"id":631545,"first_name":"Francisco Antonio","middle_initials":"","last_name":"Doria","page_name":"FranciscoDoria","domain_name":"ufrj","created_at":"2011-07-31T14:20:54.461-07:00","display_name":"Francisco Antonio Doria","url":"https://ufrj.academia.edu/FranciscoDoria"},"attachments":[{"id":98570857,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/98570857/thumbnails/1.jpg","file_name":"105.0000004820230212-1-ia16mn.pdf","download_url":"https://www.academia.edu/attachments/98570857/download_file","bulk_download_file_name":"On_the_O_Donnell_Algorithm_for_NP_Comple.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/98570857/105.0000004820230212-1-ia16mn-libre.pdf?1676212332=\u0026response-content-disposition=attachment%3B+filename%3DOn_the_O_Donnell_Algorithm_for_NP_Comple.pdf\u0026Expires=1743333191\u0026Signature=gxLeIwFqzJ-OfNeQAVW5YB-xkq60IFClfG0cISJxChecMiOu0kgd0ReeTdUSUQNq87Zfc6esjw8DCrw5adjKbX4BiIOGdDig8~BO2CsTYzw4jrZUR9dEz-l~5byNUuqBEmFC3WPuzpFdMGZ4nPFv6CgPx1w7Y9qLbxbYZA15VUKMb7tX5oy0pug5NxS6xJosEfsRIaU6UU4s1cdXjw6ye9lyEgnQ15RMurf56SBVCGMmYS6L2hrhkxnKR7QJnd~EDVx7iADks5Buq4QuFHzXDtRtyqX-gNakMAM~AVxdz9beeMcpRx8QneAW8fvy0~dMpmF6r80wel6uMupB20P6mw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":724,"name":"Economics","url":"https://www.academia.edu/Documents/in/Economics"},{"id":13805,"name":"Behavioral Economics","url":"https://www.academia.edu/Documents/in/Behavioral_Economics"},{"id":17442,"name":"Mathematical Logic","url":"https://www.academia.edu/Documents/in/Mathematical_Logic"},{"id":1673612,"name":"Np Complete","url":"https://www.academia.edu/Documents/in/Np_Complete"}],"urls":[{"id":28911645,"url":"http://www.nowpublishers.com/article/Download/RBE-0048"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-96762487-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="96762485"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/96762485/Equations_for_a_spin_two_field_from_a_Dirac_like_equation"><img alt="Research paper thumbnail of Equations for a spin-two field from a Dirac-like equation" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Equations for a spin-two field from a Dirac-like equation</div><div class="wp-workCard_item"><span>Lettere Al Nuovo Cimento Series 2</span><span>, 1973</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="96762485"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="96762485"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 96762485; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=96762485]").text(description); $(".js-view-count[data-work-id=96762485]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 96762485; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='96762485']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=96762485]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":96762485,"title":"Equations for a spin-two field from a Dirac-like equation","translated_title":"","metadata":{"publisher":"Springer Nature","publication_date":{"day":null,"month":null,"year":1973,"errors":{}},"publication_name":"Lettere Al Nuovo Cimento Series 2"},"translated_abstract":null,"internal_url":"https://www.academia.edu/96762485/Equations_for_a_spin_two_field_from_a_Dirac_like_equation","translated_internal_url":"","created_at":"2023-02-12T05:58:25.728-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":631545,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Equations_for_a_spin_two_field_from_a_Dirac_like_equation","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":null,"owner":{"id":631545,"first_name":"Francisco Antonio","middle_initials":"","last_name":"Doria","page_name":"FranciscoDoria","domain_name":"ufrj","created_at":"2011-07-31T14:20:54.461-07:00","display_name":"Francisco Antonio Doria","url":"https://ufrj.academia.edu/FranciscoDoria"},"attachments":[],"research_interests":[{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics"},{"id":2713,"name":"Quantum Electrodynamics","url":"https://www.academia.edu/Documents/in/Quantum_Electrodynamics"},{"id":143488,"name":"Dirac equation","url":"https://www.academia.edu/Documents/in/Dirac_equation"}],"urls":[{"id":28911644,"url":"http://link.springer.com/content/pdf/10.1007/BF02746347"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-96762485-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="96762483"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/96762483/A_Weyl_like_equation_for_the_gravitational_field"><img alt="Research paper thumbnail of A Weyl-like equation for the gravitational field" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">A Weyl-like equation for the gravitational field</div><div class="wp-workCard_item"><span>Lettere Al Nuovo Cimento Series 2</span><span>, 1975</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="96762483"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="96762483"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 96762483; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=96762483]").text(description); $(".js-view-count[data-work-id=96762483]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 96762483; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='96762483']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=96762483]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":96762483,"title":"A Weyl-like equation for the gravitational field","translated_title":"","metadata":{"publisher":"Springer Nature","publication_date":{"day":null,"month":null,"year":1975,"errors":{}},"publication_name":"Lettere Al Nuovo Cimento Series 2"},"translated_abstract":null,"internal_url":"https://www.academia.edu/96762483/A_Weyl_like_equation_for_the_gravitational_field","translated_internal_url":"","created_at":"2023-02-12T05:58:25.598-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":631545,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"A_Weyl_like_equation_for_the_gravitational_field","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":null,"owner":{"id":631545,"first_name":"Francisco Antonio","middle_initials":"","last_name":"Doria","page_name":"FranciscoDoria","domain_name":"ufrj","created_at":"2011-07-31T14:20:54.461-07:00","display_name":"Francisco Antonio Doria","url":"https://ufrj.academia.edu/FranciscoDoria"},"attachments":[],"research_interests":[{"id":318,"name":"Mathematical Physics","url":"https://www.academia.edu/Documents/in/Mathematical_Physics"},{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics"},{"id":1246,"name":"Gravitation","url":"https://www.academia.edu/Documents/in/Gravitation"},{"id":553570,"name":"Gravitational Field","url":"https://www.academia.edu/Documents/in/Gravitational_Field"}],"urls":[{"id":28911642,"url":"http://link.springer.com/content/pdf/10.1007/BF02746018"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-96762483-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="96762482"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/96762482/Janus_Faced_Physics_On_Hilberts_6th_Problem"><img alt="Research paper thumbnail of Janus–Faced Physics: On Hilbert's 6th Problem" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Janus–Faced Physics: On Hilbert's 6th Problem</div><div class="wp-workCard_item"><span>Randomness and Complexity, From Leibniz to Chaitin</span><span>, 2007</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="96762482"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="96762482"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 96762482; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=96762482]").text(description); $(".js-view-count[data-work-id=96762482]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 96762482; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='96762482']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=96762482]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":96762482,"title":"Janus–Faced Physics: On Hilbert's 6th Problem","translated_title":"","metadata":{"publisher":"WORLD SCIENTIFIC","publication_date":{"day":null,"month":null,"year":2007,"errors":{}},"publication_name":"Randomness and Complexity, From Leibniz to Chaitin"},"translated_abstract":null,"internal_url":"https://www.academia.edu/96762482/Janus_Faced_Physics_On_Hilberts_6th_Problem","translated_internal_url":"","created_at":"2023-02-12T05:58:25.507-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":631545,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Janus_Faced_Physics_On_Hilberts_6th_Problem","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":null,"owner":{"id":631545,"first_name":"Francisco Antonio","middle_initials":"","last_name":"Doria","page_name":"FranciscoDoria","domain_name":"ufrj","created_at":"2011-07-31T14:20:54.461-07:00","display_name":"Francisco Antonio Doria","url":"https://ufrj.academia.edu/FranciscoDoria"},"attachments":[],"research_interests":[{"id":2150069,"name":"Janus","url":"https://www.academia.edu/Documents/in/Janus"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-96762482-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="96762480"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/96762480/On_Some_Recent_Undecidability_and_Incompleteness_Results_in_the_Axiomatized_Sciences"><img alt="Research paper thumbnail of On Some Recent Undecidability and Incompleteness Results in the Axiomatized Sciences" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">On Some Recent Undecidability and Incompleteness Results in the Axiomatized Sciences</div><div class="wp-workCard_item"><span>Philosophy of Latin America</span><span>, 2003</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We summarize in an intuitive vein a few recent results by the authors on the incompleteness of el...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We summarize in an intuitive vein a few recent results by the authors on the incompleteness of elementary real analysis and its consequences to the axiomatized sciences, from chaos theory to the dynamics of populations.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="96762480"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="96762480"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 96762480; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=96762480]").text(description); $(".js-view-count[data-work-id=96762480]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 96762480; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='96762480']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=96762480]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":96762480,"title":"On Some Recent Undecidability and Incompleteness Results in the Axiomatized Sciences","translated_title":"","metadata":{"abstract":"We summarize in an intuitive vein a few recent results by the authors on the incompleteness of elementary real analysis and its consequences to the axiomatized sciences, from chaos theory to the dynamics of populations.","publisher":"Springer Netherlands","publication_date":{"day":null,"month":null,"year":2003,"errors":{}},"publication_name":"Philosophy of Latin America"},"translated_abstract":"We summarize in an intuitive vein a few recent results by the authors on the incompleteness of elementary real analysis and its consequences to the axiomatized sciences, from chaos theory to the dynamics of populations.","internal_url":"https://www.academia.edu/96762480/On_Some_Recent_Undecidability_and_Incompleteness_Results_in_the_Axiomatized_Sciences","translated_internal_url":"","created_at":"2023-02-12T05:58:25.375-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":631545,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"On_Some_Recent_Undecidability_and_Incompleteness_Results_in_the_Axiomatized_Sciences","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"We summarize in an intuitive vein a few recent results by the authors on the incompleteness of elementary real analysis and its consequences to the axiomatized sciences, from chaos theory to the dynamics of populations.","owner":{"id":631545,"first_name":"Francisco Antonio","middle_initials":"","last_name":"Doria","page_name":"FranciscoDoria","domain_name":"ufrj","created_at":"2011-07-31T14:20:54.461-07:00","display_name":"Francisco Antonio Doria","url":"https://ufrj.academia.edu/FranciscoDoria"},"attachments":[],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":2385079,"name":"Philosophy in Latin America","url":"https://www.academia.edu/Documents/in/Philosophy_in_Latin_America"}],"urls":[{"id":28911640,"url":"http://link.springer.com/content/pdf/10.1007/978-94-017-3651-0_13"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-96762480-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="96762479"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/96762479/Metamathematical_Limits_to_Computation"><img alt="Research paper thumbnail of Metamathematical Limits to Computation" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Metamathematical Limits to Computation</div><div class="wp-workCard_item"><span>The Handbook on Reasoning-Based Intelligent Systems</span><span>, 2013</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="96762479"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="96762479"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 96762479; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=96762479]").text(description); $(".js-view-count[data-work-id=96762479]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 96762479; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='96762479']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=96762479]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":96762479,"title":"Metamathematical Limits to Computation","translated_title":"","metadata":{"publisher":"WORLD SCIENTIFIC","publication_date":{"day":null,"month":null,"year":2013,"errors":{}},"publication_name":"The Handbook on Reasoning-Based Intelligent Systems"},"translated_abstract":null,"internal_url":"https://www.academia.edu/96762479/Metamathematical_Limits_to_Computation","translated_internal_url":"","created_at":"2023-02-12T05:58:25.282-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":631545,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Metamathematical_Limits_to_Computation","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":null,"owner":{"id":631545,"first_name":"Francisco Antonio","middle_initials":"","last_name":"Doria","page_name":"FranciscoDoria","domain_name":"ufrj","created_at":"2011-07-31T14:20:54.461-07:00","display_name":"Francisco Antonio Doria","url":"https://ufrj.academia.edu/FranciscoDoria"},"attachments":[],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":59487,"name":"Computation","url":"https://www.academia.edu/Documents/in/Computation"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-96762479-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="96762478"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/96762478/On_Arnolds_Hilbert_symposium_problems"><img alt="Research paper thumbnail of On Arnol'd's Hilbert symposium problems" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">On Arnol'd's Hilbert symposium problems</div><div class="wp-workCard_item"><span>Lecture Notes in Computer Science</span><span>, 1993</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We prove that stability is undecidable for dynamical systems whose right-hand side is explicitly ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We prove that stability is undecidable for dynamical systems whose right-hand side is explicitly written in the language of elementary analysis.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="96762478"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="96762478"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 96762478; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=96762478]").text(description); $(".js-view-count[data-work-id=96762478]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 96762478; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='96762478']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=96762478]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":96762478,"title":"On Arnol'd's Hilbert symposium problems","translated_title":"","metadata":{"abstract":"We prove that stability is undecidable for dynamical systems whose right-hand side is explicitly written in the language of elementary analysis.","publication_date":{"day":null,"month":null,"year":1993,"errors":{}},"publication_name":"Lecture Notes in Computer Science"},"translated_abstract":"We prove that stability is undecidable for dynamical systems whose right-hand side is explicitly written in the language of elementary analysis.","internal_url":"https://www.academia.edu/96762478/On_Arnolds_Hilbert_symposium_problems","translated_internal_url":"","created_at":"2023-02-12T05:58:25.193-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":631545,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"On_Arnolds_Hilbert_symposium_problems","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"We prove that stability is undecidable for dynamical systems whose right-hand side is explicitly written in the language of elementary analysis.","owner":{"id":631545,"first_name":"Francisco Antonio","middle_initials":"","last_name":"Doria","page_name":"FranciscoDoria","domain_name":"ufrj","created_at":"2011-07-31T14:20:54.461-07:00","display_name":"Francisco Antonio Doria","url":"https://ufrj.academia.edu/FranciscoDoria"},"attachments":[],"research_interests":[{"id":128,"name":"History","url":"https://www.academia.edu/Documents/in/History"},{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":868912,"name":"Dynamic System","url":"https://www.academia.edu/Documents/in/Dynamic_System"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-96762478-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="96762477"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/96762477/Structures_Suppes_Predicates_and_Boolean_Valued_Models_in_Physics"><img alt="Research paper thumbnail of Structures, Suppes Predicates, and Boolean-Valued Models in Physics" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Structures, Suppes Predicates, and Boolean-Valued Models in Physics</div><div class="wp-workCard_item"><span>Philosophical Logic and Logical Philosophy</span><span>, 1996</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">An old and important question concerning physical theories has to do with their axiomatization [4...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">An old and important question concerning physical theories has to do with their axiomatization [47]. The sixth problem in Hilbert’s celebrated list of mathematical problems deals with its desirable (or ideal) contours [31]:</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="96762477"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="96762477"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 96762477; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=96762477]").text(description); $(".js-view-count[data-work-id=96762477]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 96762477; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='96762477']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=96762477]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":96762477,"title":"Structures, Suppes Predicates, and Boolean-Valued Models in Physics","translated_title":"","metadata":{"abstract":"An old and important question concerning physical theories has to do with their axiomatization [47]. The sixth problem in Hilbert’s celebrated list of mathematical problems deals with its desirable (or ideal) contours [31]:","publication_date":{"day":null,"month":null,"year":1996,"errors":{}},"publication_name":"Philosophical Logic and Logical Philosophy"},"translated_abstract":"An old and important question concerning physical theories has to do with their axiomatization [47]. The sixth problem in Hilbert’s celebrated list of mathematical problems deals with its desirable (or ideal) contours [31]:","internal_url":"https://www.academia.edu/96762477/Structures_Suppes_Predicates_and_Boolean_Valued_Models_in_Physics","translated_internal_url":"","created_at":"2023-02-12T05:58:25.105-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":631545,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Structures_Suppes_Predicates_and_Boolean_Valued_Models_in_Physics","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"An old and important question concerning physical theories has to do with their axiomatization [47]. The sixth problem in Hilbert’s celebrated list of mathematical problems deals with its desirable (or ideal) contours [31]:","owner":{"id":631545,"first_name":"Francisco Antonio","middle_initials":"","last_name":"Doria","page_name":"FranciscoDoria","domain_name":"ufrj","created_at":"2011-07-31T14:20:54.461-07:00","display_name":"Francisco Antonio Doria","url":"https://ufrj.academia.edu/FranciscoDoria"},"attachments":[],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":2451605,"name":"Ideal Ethics","url":"https://www.academia.edu/Documents/in/Ideal_Ethics"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-96762477-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="96762475"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/96762475/Clifford_algebra_formulation_of_multispin_field_equations"><img alt="Research paper thumbnail of Clifford-algebra formulation of multispin field equations" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Clifford-algebra formulation of multispin field equations</div><div class="wp-workCard_item"><span>Lettere al Nuovo Cimento</span><span>, 1973</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">ABSTRACT</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="96762475"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="96762475"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 96762475; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=96762475]").text(description); $(".js-view-count[data-work-id=96762475]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 96762475; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='96762475']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=96762475]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":96762475,"title":"Clifford-algebra formulation of multispin field equations","translated_title":"","metadata":{"abstract":"ABSTRACT","publisher":"Springer Nature","publication_date":{"day":null,"month":null,"year":1973,"errors":{}},"publication_name":"Lettere al Nuovo Cimento"},"translated_abstract":"ABSTRACT","internal_url":"https://www.academia.edu/96762475/Clifford_algebra_formulation_of_multispin_field_equations","translated_internal_url":"","created_at":"2023-02-12T05:58:25.013-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":631545,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Clifford_algebra_formulation_of_multispin_field_equations","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"ABSTRACT","owner":{"id":631545,"first_name":"Francisco Antonio","middle_initials":"","last_name":"Doria","page_name":"FranciscoDoria","domain_name":"ufrj","created_at":"2011-07-31T14:20:54.461-07:00","display_name":"Francisco Antonio Doria","url":"https://ufrj.academia.edu/FranciscoDoria"},"attachments":[],"research_interests":[{"id":318,"name":"Mathematical Physics","url":"https://www.academia.edu/Documents/in/Mathematical_Physics"},{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics"},{"id":406353,"name":"Clifford algebra","url":"https://www.academia.edu/Documents/in/Clifford_algebra"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-96762475-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="96762474"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/96762474/Suppes_Predicates_and_the_Construction_of_Unsolvable_Problems_in_the_Axiomatized_Sciences"><img alt="Research paper thumbnail of Suppes Predicates and the Construction of Unsolvable Problems in the Axiomatized Sciences" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Suppes Predicates and the Construction of Unsolvable Problems in the Axiomatized Sciences</div><div class="wp-workCard_item"><span>Patrick Suppes: Scientific Philosopher</span><span>, 1994</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We first review our previous work on Suppes predicates and the axiomatization of the empirical sc...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We first review our previous work on Suppes predicates and the axiomatization of the empirical sciences. We then state some undecidability and incompleteness results in classical analysis that lead to the explicit construction of expressions for characteristic functions in all complete arithmetical degrees. Out of those results we show that for any degree there are corresponding ‘meaningful’ unsolvable problems in</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="96762474"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="96762474"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 96762474; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=96762474]").text(description); $(".js-view-count[data-work-id=96762474]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 96762474; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='96762474']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=96762474]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":96762474,"title":"Suppes Predicates and the Construction of Unsolvable Problems in the Axiomatized Sciences","translated_title":"","metadata":{"abstract":"We first review our previous work on Suppes predicates and the axiomatization of the empirical sciences. We then state some undecidability and incompleteness results in classical analysis that lead to the explicit construction of expressions for characteristic functions in all complete arithmetical degrees. Out of those results we show that for any degree there are corresponding ‘meaningful’ unsolvable problems in","publication_date":{"day":null,"month":null,"year":1994,"errors":{}},"publication_name":"Patrick Suppes: Scientific Philosopher"},"translated_abstract":"We first review our previous work on Suppes predicates and the axiomatization of the empirical sciences. We then state some undecidability and incompleteness results in classical analysis that lead to the explicit construction of expressions for characteristic functions in all complete arithmetical degrees. Out of those results we show that for any degree there are corresponding ‘meaningful’ unsolvable problems in","internal_url":"https://www.academia.edu/96762474/Suppes_Predicates_and_the_Construction_of_Unsolvable_Problems_in_the_Axiomatized_Sciences","translated_internal_url":"","created_at":"2023-02-12T05:58:24.920-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":631545,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Suppes_Predicates_and_the_Construction_of_Unsolvable_Problems_in_the_Axiomatized_Sciences","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"We first review our previous work on Suppes predicates and the axiomatization of the empirical sciences. We then state some undecidability and incompleteness results in classical analysis that lead to the explicit construction of expressions for characteristic functions in all complete arithmetical degrees. Out of those results we show that for any degree there are corresponding ‘meaningful’ unsolvable problems in","owner":{"id":631545,"first_name":"Francisco Antonio","middle_initials":"","last_name":"Doria","page_name":"FranciscoDoria","domain_name":"ufrj","created_at":"2011-07-31T14:20:54.461-07:00","display_name":"Francisco Antonio Doria","url":"https://ufrj.academia.edu/FranciscoDoria"},"attachments":[],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":588229,"name":"Characteristic Function","url":"https://www.academia.edu/Documents/in/Characteristic_Function"},{"id":868912,"name":"Dynamic System","url":"https://www.academia.edu/Documents/in/Dynamic_System"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-96762474-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="96762472"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/96762472/A_Heuristic_Algorithmic_Procedure_to_Solve_Allocation_Problems_with_Fuzzy_Evaluations"><img alt="Research paper thumbnail of A Heuristic Algorithmic Procedure to Solve Allocation Problems with Fuzzy Evaluations" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">A Heuristic Algorithmic Procedure to Solve Allocation Problems with Fuzzy Evaluations</div><div class="wp-workCard_item"><span>The Handbook on Reasoning-Based Intelligent Systems</span><span>, 2013</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="96762472"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="96762472"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 96762472; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=96762472]").text(description); $(".js-view-count[data-work-id=96762472]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 96762472; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='96762472']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=96762472]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":96762472,"title":"A Heuristic Algorithmic Procedure to Solve Allocation Problems with Fuzzy Evaluations","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":2013,"errors":{}},"publication_name":"The Handbook on Reasoning-Based Intelligent Systems"},"translated_abstract":null,"internal_url":"https://www.academia.edu/96762472/A_Heuristic_Algorithmic_Procedure_to_Solve_Allocation_Problems_with_Fuzzy_Evaluations","translated_internal_url":"","created_at":"2023-02-12T05:58:24.828-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":631545,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"A_Heuristic_Algorithmic_Procedure_to_Solve_Allocation_Problems_with_Fuzzy_Evaluations","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":null,"owner":{"id":631545,"first_name":"Francisco Antonio","middle_initials":"","last_name":"Doria","page_name":"FranciscoDoria","domain_name":"ufrj","created_at":"2011-07-31T14:20:54.461-07:00","display_name":"Francisco Antonio Doria","url":"https://ufrj.academia.edu/FranciscoDoria"},"attachments":[],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":4165,"name":"Fuzzy Logic","url":"https://www.academia.edu/Documents/in/Fuzzy_Logic"},{"id":272592,"name":"Mathematical Optimization","url":"https://www.academia.edu/Documents/in/Mathematical_Optimization"},{"id":419504,"name":"Heuristic","url":"https://www.academia.edu/Documents/in/Heuristic"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-96762472-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="96762471"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/96762471/Foundations_of_Physics_Letters_4"><img alt="Research paper thumbnail of Foundations of Physics Letters 4" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Foundations of Physics Letters 4</div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="96762471"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="96762471"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 96762471; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=96762471]").text(description); $(".js-view-count[data-work-id=96762471]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 96762471; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='96762471']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=96762471]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":96762471,"title":"Foundations of Physics Letters 4","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":1991,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/96762471/Foundations_of_Physics_Letters_4","translated_internal_url":"","created_at":"2023-02-12T05:58:24.747-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":631545,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Foundations_of_Physics_Letters_4","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":null,"owner":{"id":631545,"first_name":"Francisco Antonio","middle_initials":"","last_name":"Doria","page_name":"FranciscoDoria","domain_name":"ufrj","created_at":"2011-07-31T14:20:54.461-07:00","display_name":"Francisco Antonio Doria","url":"https://ufrj.academia.edu/FranciscoDoria"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-96762471-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="96762470"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/96762470/Dirac_Like_Equations_for_Gauge_Fields"><img alt="Research paper thumbnail of Dirac-Like Equations for Gauge Fields" class="work-thumbnail" src="https://attachments.academia-assets.com/98570851/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/96762470/Dirac_Like_Equations_for_Gauge_Fields">Dirac-Like Equations for Gauge Fields</a></div><div class="wp-workCard_item"><span>Progress of Theoretical Physics</span><span>, 1986</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We construct Dirac-like equations on a principal bundle over spacetime which is also the setting ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We construct Dirac-like equations on a principal bundle over spacetime which is also the setting for the standard gauge field theories. We see that they describe other fields besides the. usual gauge fields, and impose certain degeneracies on the fields over a bifurcation domain.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="6fcc4e850e600ca848cae3ddb25a7be5" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":98570851,"asset_id":96762470,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/98570851/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="96762470"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="96762470"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 96762470; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=96762470]").text(description); $(".js-view-count[data-work-id=96762470]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 96762470; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='96762470']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "6fcc4e850e600ca848cae3ddb25a7be5" } } $('.js-work-strip[data-work-id=96762470]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":96762470,"title":"Dirac-Like Equations for Gauge Fields","translated_title":"","metadata":{"publisher":"Oxford University Press (OUP)","ai_title_tag":"Dirac-Like Equations for Gauge Field Theories","grobid_abstract":"We construct Dirac-like equations on a principal bundle over spacetime which is also the setting for the standard gauge field theories. We see that they describe other fields besides the. usual gauge fields, and impose certain degeneracies on the fields over a bifurcation domain.","publication_date":{"day":null,"month":null,"year":1986,"errors":{}},"publication_name":"Progress of Theoretical Physics","grobid_abstract_attachment_id":98570851},"translated_abstract":null,"internal_url":"https://www.academia.edu/96762470/Dirac_Like_Equations_for_Gauge_Fields","translated_internal_url":"","created_at":"2023-02-12T05:58:24.657-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":631545,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":98570851,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/98570851/thumbnails/1.jpg","file_name":"75-6-1440.pdf","download_url":"https://www.academia.edu/attachments/98570851/download_file","bulk_download_file_name":"Dirac_Like_Equations_for_Gauge_Fields.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/98570851/75-6-1440-libre.pdf?1676212331=\u0026response-content-disposition=attachment%3B+filename%3DDirac_Like_Equations_for_Gauge_Fields.pdf\u0026Expires=1743333192\u0026Signature=XMZAkWz7L8vv80jbpsguQL4qnOUEsqUhLdXo2gJNNAnkDgDIzB9-wRrABz7zf6wCHFkJbmNntXQWeXvHMibZ2XMNphYrTh3KWLRnvAOk1p1-P7egU8TAaPvp9hJuaBQ~rZUVW~LTqv0~oOcTmdTVR4OfwDpVAMr0MUoaR3cPgahrD2Serw-TLidIc7EMAvoaAQWgD99KEGvRGu6cYaXlqGCyQZwd3Dpts56WwONDqhzcnSSZIjcqXNr5aCknIVR24JVGFv3cpkDkeEtLOuODs9CBqW~m3RK1oeubAmbaCJvffH9yPhwN1uyDGUXCGzb-sJf9r6~aHVa7sRO~oLqV1Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Dirac_Like_Equations_for_Gauge_Fields","translated_slug":"","page_count":7,"language":"en","content_type":"Work","summary":"We construct Dirac-like equations on a principal bundle over spacetime which is also the setting for the standard gauge field theories. We see that they describe other fields besides the. usual gauge fields, and impose certain degeneracies on the fields over a bifurcation domain.","owner":{"id":631545,"first_name":"Francisco Antonio","middle_initials":"","last_name":"Doria","page_name":"FranciscoDoria","domain_name":"ufrj","created_at":"2011-07-31T14:20:54.461-07:00","display_name":"Francisco Antonio Doria","url":"https://ufrj.academia.edu/FranciscoDoria"},"attachments":[{"id":98570851,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/98570851/thumbnails/1.jpg","file_name":"75-6-1440.pdf","download_url":"https://www.academia.edu/attachments/98570851/download_file","bulk_download_file_name":"Dirac_Like_Equations_for_Gauge_Fields.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/98570851/75-6-1440-libre.pdf?1676212331=\u0026response-content-disposition=attachment%3B+filename%3DDirac_Like_Equations_for_Gauge_Fields.pdf\u0026Expires=1743333192\u0026Signature=XMZAkWz7L8vv80jbpsguQL4qnOUEsqUhLdXo2gJNNAnkDgDIzB9-wRrABz7zf6wCHFkJbmNntXQWeXvHMibZ2XMNphYrTh3KWLRnvAOk1p1-P7egU8TAaPvp9hJuaBQ~rZUVW~LTqv0~oOcTmdTVR4OfwDpVAMr0MUoaR3cPgahrD2Serw-TLidIc7EMAvoaAQWgD99KEGvRGu6cYaXlqGCyQZwd3Dpts56WwONDqhzcnSSZIjcqXNr5aCknIVR24JVGFv3cpkDkeEtLOuODs9CBqW~m3RK1oeubAmbaCJvffH9yPhwN1uyDGUXCGzb-sJf9r6~aHVa7sRO~oLqV1Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics"},{"id":80414,"name":"Mathematical Sciences","url":"https://www.academia.edu/Documents/in/Mathematical_Sciences"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":143488,"name":"Dirac equation","url":"https://www.academia.edu/Documents/in/Dirac_equation"},{"id":403158,"name":"Gauge Field","url":"https://www.academia.edu/Documents/in/Gauge_Field"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-96762470-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="96762469"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/96762469/A_Suppes_predicate_for_general_relativity_and_set_theoretically_generic_spacetimes"><img alt="Research paper thumbnail of A Suppes predicate for general relativity and set-theoretically generic spacetimes" class="work-thumbnail" src="https://attachments.academia-assets.com/98570852/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/96762469/A_Suppes_predicate_for_general_relativity_and_set_theoretically_generic_spacetimes">A Suppes predicate for general relativity and set-theoretically generic spacetimes</a></div><div class="wp-workCard_item"><span>International Journal of Theoretical Physics</span><span>, 1990</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We summarize ideas from Zermelo-Fraenkel set theory up to an axiomatic treatment for general rela...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We summarize ideas from Zermelo-Fraenkel set theory up to an axiomatic treatment for general relativity based on a Suppes predicate. We then examine the meaning of set-theoretic genericity for manifolds that underlie the Einstein equations. A physical interpretation is finally offered for those set-theoretically generic manifolds in gravitational theory.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="b8cf2120f81d006bbd92e885e2bb6a06" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":98570852,"asset_id":96762469,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/98570852/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="96762469"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="96762469"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 96762469; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=96762469]").text(description); $(".js-view-count[data-work-id=96762469]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 96762469; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='96762469']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "b8cf2120f81d006bbd92e885e2bb6a06" } } $('.js-work-strip[data-work-id=96762469]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":96762469,"title":"A Suppes predicate for general relativity and set-theoretically generic spacetimes","translated_title":"","metadata":{"publisher":"Springer Nature","grobid_abstract":"We summarize ideas from Zermelo-Fraenkel set theory up to an axiomatic treatment for general relativity based on a Suppes predicate. We then examine the meaning of set-theoretic genericity for manifolds that underlie the Einstein equations. A physical interpretation is finally offered for those set-theoretically generic manifolds in gravitational theory.","publication_date":{"day":null,"month":null,"year":1990,"errors":{}},"publication_name":"International Journal of Theoretical Physics","grobid_abstract_attachment_id":98570852},"translated_abstract":null,"internal_url":"https://www.academia.edu/96762469/A_Suppes_predicate_for_general_relativity_and_set_theoretically_generic_spacetimes","translated_internal_url":"","created_at":"2023-02-12T05:58:24.282-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":631545,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":98570852,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/98570852/thumbnails/1.jpg","file_name":"DoriaEtAl1990.pdf","download_url":"https://www.academia.edu/attachments/98570852/download_file","bulk_download_file_name":"A_Suppes_predicate_for_general_relativit.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/98570852/DoriaEtAl1990-libre.pdf?1676212337=\u0026response-content-disposition=attachment%3B+filename%3DA_Suppes_predicate_for_general_relativit.pdf\u0026Expires=1743333192\u0026Signature=TyWwOEYOZ3Ub4oFhG49qpJnFcvJVTaIqNI1GKL2ZqsmkJmnUkEJRELpkv89hjnPh20w1JSu14ahGyCMfxyQkfeUxEiR3b-neKIeynl1f34LZWl81IX8ilgEScK8bbPwDSPaVeEUmp1HGjTwEt6pcrndxdZe-aoW6mYmM14Et~gMe6VTpUihxQTRNNvho21AOqBwFOgxgbRLemj8UTiOcHnaYzGFALuply0DbdoxQvKAppKe1oTK7u2ILwkgTe8PZL3tiLvS8Jk11Adrfa9HT6NvTk~3Hx0l-eOGHeRfNOwgVaOw8AGI~SGigKCdtRlqCTPppL0ds7LMLjK0En~ISoA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"A_Suppes_predicate_for_general_relativity_and_set_theoretically_generic_spacetimes","translated_slug":"","page_count":27,"language":"en","content_type":"Work","summary":"We summarize ideas from Zermelo-Fraenkel set theory up to an axiomatic treatment for general relativity based on a Suppes predicate. We then examine the meaning of set-theoretic genericity for manifolds that underlie the Einstein equations. A physical interpretation is finally offered for those set-theoretically generic manifolds in gravitational theory.","owner":{"id":631545,"first_name":"Francisco Antonio","middle_initials":"","last_name":"Doria","page_name":"FranciscoDoria","domain_name":"ufrj","created_at":"2011-07-31T14:20:54.461-07:00","display_name":"Francisco Antonio Doria","url":"https://ufrj.academia.edu/FranciscoDoria"},"attachments":[{"id":98570852,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/98570852/thumbnails/1.jpg","file_name":"DoriaEtAl1990.pdf","download_url":"https://www.academia.edu/attachments/98570852/download_file","bulk_download_file_name":"A_Suppes_predicate_for_general_relativit.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/98570852/DoriaEtAl1990-libre.pdf?1676212337=\u0026response-content-disposition=attachment%3B+filename%3DA_Suppes_predicate_for_general_relativit.pdf\u0026Expires=1743333192\u0026Signature=TyWwOEYOZ3Ub4oFhG49qpJnFcvJVTaIqNI1GKL2ZqsmkJmnUkEJRELpkv89hjnPh20w1JSu14ahGyCMfxyQkfeUxEiR3b-neKIeynl1f34LZWl81IX8ilgEScK8bbPwDSPaVeEUmp1HGjTwEt6pcrndxdZe-aoW6mYmM14Et~gMe6VTpUihxQTRNNvho21AOqBwFOgxgbRLemj8UTiOcHnaYzGFALuply0DbdoxQvKAppKe1oTK7u2ILwkgTe8PZL3tiLvS8Jk11Adrfa9HT6NvTk~3Hx0l-eOGHeRfNOwgVaOw8AGI~SGigKCdtRlqCTPppL0ds7LMLjK0En~ISoA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":363,"name":"Set Theory","url":"https://www.academia.edu/Documents/in/Set_Theory"},{"id":503,"name":"Theoretical Physics","url":"https://www.academia.edu/Documents/in/Theoretical_Physics"},{"id":3504,"name":"General Relativity","url":"https://www.academia.edu/Documents/in/General_Relativity"},{"id":4102,"name":"Foundations of Physics","url":"https://www.academia.edu/Documents/in/Foundations_of_Physics"},{"id":80414,"name":"Mathematical Sciences","url":"https://www.academia.edu/Documents/in/Mathematical_Sciences"},{"id":93895,"name":"Theory of Relativity","url":"https://www.academia.edu/Documents/in/Theory_of_Relativity"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":1741682,"name":"Zermelo Fraenkel","url":"https://www.academia.edu/Documents/in/Zermelo_Fraenkel"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-96762469-figures'); } }); </script> </div><div class="profile--tab_content_container js-tab-pane tab-pane" data-section-id="125481" id="books"><div class="js-work-strip profile--work_container" data-work-id="1028034"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/1028034/Goedels_Way"><img alt="Research paper thumbnail of Goedel's Way" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Goedel's Way</div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">My book with Greg Chaitin and Newton da Costa. Heretic viewpoints. </span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="1028034"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="1028034"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 1028034; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=1028034]").text(description); $(".js-view-count[data-work-id=1028034]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 1028034; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='1028034']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=1028034]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":1028034,"title":"Goedel's Way","translated_title":"","metadata":{"abstract":"My book with Greg Chaitin and Newton da Costa. Heretic viewpoints. "},"translated_abstract":"My book with Greg Chaitin and Newton da Costa. Heretic viewpoints. ","internal_url":"https://www.academia.edu/1028034/Goedels_Way","translated_internal_url":"","created_at":"2011-10-19T11:18:30.876-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":631545,"coauthors_can_edit":true,"document_type":"book","co_author_tags":[],"downloadable_attachments":[],"slug":"Goedels_Way","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"My book with Greg Chaitin and Newton da Costa. Heretic viewpoints. ","owner":{"id":631545,"first_name":"Francisco Antonio","middle_initials":"","last_name":"Doria","page_name":"FranciscoDoria","domain_name":"ufrj","created_at":"2011-07-31T14:20:54.461-07:00","display_name":"Francisco Antonio Doria","url":"https://ufrj.academia.edu/FranciscoDoria"},"attachments":[],"research_interests":[],"urls":[{"id":140387,"url":"http://www.taylorandfrancis.com/books/details/9780415690850/"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-1028034-figures'); } }); </script> </div><div class="profile--tab_content_container js-tab-pane tab-pane" data-section-id="94543" id="papers"><div class="js-work-strip profile--work_container" data-work-id="96762497"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/96762497/The_Map_and_the_Territory"><img alt="Research paper thumbnail of The Map and the Territory" class="work-thumbnail" src="https://attachments.academia-assets.com/98570856/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/96762497/The_Map_and_the_Territory">The Map and the Territory</a></div><div class="wp-workCard_item"><span>The Frontiers Collection</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Science is a constructed narrative of the natural world based on information gathering and its su...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Science is a constructed narrative of the natural world based on information gathering and its subsequent analysis. In this essay, we develop a novel approach to the epistemic foundations of the scientific narrative, as based on our experiential interactions with the natural world. We first review some of the basic aspects of both Bayesian statistics and Shannon's information theory as applied to the construction of meaningful conceptualization of the natural world. This conceptualization is rendered through the maps we construct of the world based on our limited knowledge of reality. We propose a path from experience to information and physics based on the notion that information is experience that induces change in an Epistemic Agent (EA): the change may be local and focused to a minor aspect of reality or it may be broad and worldview-changing. We illustrate our approach through an analysis of a measure of spatial complexity proposed by one of us called Configuration Entropy (CE), and establish a link between experience at the cognitive level and information content, showing that the CE is a quantitative measure of how much information in spatial-complexity the external world hides from an EA. All philosophy is based on two things only: curiosity and poor eyesight. The trouble is, we want to know more than we can see. Bernard le Bovier de Fontenelle a To appear in Map and Territory-Exploring the Foundations of Science, Thought and Reality, ed.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="1c6d514ffb72831b007a64604eb6a43b" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":98570856,"asset_id":96762497,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/98570856/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="96762497"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="96762497"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 96762497; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=96762497]").text(description); $(".js-view-count[data-work-id=96762497]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 96762497; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='96762497']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "1c6d514ffb72831b007a64604eb6a43b" } } $('.js-work-strip[data-work-id=96762497]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":96762497,"title":"The Map and the Territory","translated_title":"","metadata":{"publisher":"Springer International Publishing","ai_title_tag":"From Experience to Information: The Epistemic Foundations of Science","grobid_abstract":"Science is a constructed narrative of the natural world based on information gathering and its subsequent analysis. In this essay, we develop a novel approach to the epistemic foundations of the scientific narrative, as based on our experiential interactions with the natural world. We first review some of the basic aspects of both Bayesian statistics and Shannon's information theory as applied to the construction of meaningful conceptualization of the natural world. This conceptualization is rendered through the maps we construct of the world based on our limited knowledge of reality. We propose a path from experience to information and physics based on the notion that information is experience that induces change in an Epistemic Agent (EA): the change may be local and focused to a minor aspect of reality or it may be broad and worldview-changing. We illustrate our approach through an analysis of a measure of spatial complexity proposed by one of us called Configuration Entropy (CE), and establish a link between experience at the cognitive level and information content, showing that the CE is a quantitative measure of how much information in spatial-complexity the external world hides from an EA. All philosophy is based on two things only: curiosity and poor eyesight. The trouble is, we want to know more than we can see. Bernard le Bovier de Fontenelle a To appear in Map and Territory-Exploring the Foundations of Science, Thought and Reality, ed.","publication_name":"The Frontiers Collection","grobid_abstract_attachment_id":98570856},"translated_abstract":null,"internal_url":"https://www.academia.edu/96762497/The_Map_and_the_Territory","translated_internal_url":"","created_at":"2023-02-12T05:58:26.501-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":631545,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":98570856,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/98570856/thumbnails/1.jpg","file_name":"1710.pdf","download_url":"https://www.academia.edu/attachments/98570856/download_file","bulk_download_file_name":"The_Map_and_the_Territory.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/98570856/1710-libre.pdf?1676212325=\u0026response-content-disposition=attachment%3B+filename%3DThe_Map_and_the_Territory.pdf\u0026Expires=1743417109\u0026Signature=VHiL6Pw1~0NuRFyQbabCYSYPUYB6FlLltpBFxX~umcw-kI0T5pIL06Vt4lhHB6j65bmcNN6qaaDH75gQaS83kRsRFxW9FPgZzwHHgUBgGpsBylE5qobAG5R7PCi0v2fYTHqmN8ovqGR4Q-sxhgbqOC9U2iDS4SNBeEUoMp8uuwb4njmy3VG4u~SOdzijnObvwCwt8RSmX-D9h4pZDpyqlaUgU46ASebuHwbHBRlHoszMYE3werHOmzd8UzHhrqHgfasB7HzprQU-AtfUKxtUslHUaQwkIU~hlN4UOdNWu~NRUg0glIPYq~4vPDLlHHqP984xGbAsg4ehNAiL2vHtQw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"The_Map_and_the_Territory","translated_slug":"","page_count":28,"language":"en","content_type":"Work","summary":"Science is a constructed narrative of the natural world based on information gathering and its subsequent analysis. In this essay, we develop a novel approach to the epistemic foundations of the scientific narrative, as based on our experiential interactions with the natural world. We first review some of the basic aspects of both Bayesian statistics and Shannon's information theory as applied to the construction of meaningful conceptualization of the natural world. This conceptualization is rendered through the maps we construct of the world based on our limited knowledge of reality. We propose a path from experience to information and physics based on the notion that information is experience that induces change in an Epistemic Agent (EA): the change may be local and focused to a minor aspect of reality or it may be broad and worldview-changing. We illustrate our approach through an analysis of a measure of spatial complexity proposed by one of us called Configuration Entropy (CE), and establish a link between experience at the cognitive level and information content, showing that the CE is a quantitative measure of how much information in spatial-complexity the external world hides from an EA. All philosophy is based on two things only: curiosity and poor eyesight. The trouble is, we want to know more than we can see. Bernard le Bovier de Fontenelle a To appear in Map and Territory-Exploring the Foundations of Science, Thought and Reality, ed.","owner":{"id":631545,"first_name":"Francisco Antonio","middle_initials":"","last_name":"Doria","page_name":"FranciscoDoria","domain_name":"ufrj","created_at":"2011-07-31T14:20:54.461-07:00","display_name":"Francisco Antonio Doria","url":"https://ufrj.academia.edu/FranciscoDoria"},"attachments":[{"id":98570856,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/98570856/thumbnails/1.jpg","file_name":"1710.pdf","download_url":"https://www.academia.edu/attachments/98570856/download_file","bulk_download_file_name":"The_Map_and_the_Territory.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/98570856/1710-libre.pdf?1676212325=\u0026response-content-disposition=attachment%3B+filename%3DThe_Map_and_the_Territory.pdf\u0026Expires=1743417109\u0026Signature=VHiL6Pw1~0NuRFyQbabCYSYPUYB6FlLltpBFxX~umcw-kI0T5pIL06Vt4lhHB6j65bmcNN6qaaDH75gQaS83kRsRFxW9FPgZzwHHgUBgGpsBylE5qobAG5R7PCi0v2fYTHqmN8ovqGR4Q-sxhgbqOC9U2iDS4SNBeEUoMp8uuwb4njmy3VG4u~SOdzijnObvwCwt8RSmX-D9h4pZDpyqlaUgU46ASebuHwbHBRlHoszMYE3werHOmzd8UzHhrqHgfasB7HzprQU-AtfUKxtUslHUaQwkIU~hlN4UOdNWu~NRUg0glIPYq~4vPDLlHHqP984xGbAsg4ehNAiL2vHtQw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":128,"name":"History","url":"https://www.academia.edu/Documents/in/History"},{"id":261,"name":"Geography","url":"https://www.academia.edu/Documents/in/Geography"},{"id":493463,"name":"Science in General","url":"https://www.academia.edu/Documents/in/Science_in_General"}],"urls":[{"id":28911652,"url":"http://link.springer.com/content/pdf/10.1007/978-3-319-72478-2.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-96762497-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="96762495"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/96762495/G%C3%B6del_Incompleteness_and_the_Empirical_Sciences"><img alt="Research paper thumbnail of Gödel Incompleteness and the Empirical Sciences" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Gödel Incompleteness and the Empirical Sciences</div><div class="wp-workCard_item"><span>Space, Time and the Limits of Human Understanding</span><span>, 2016</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We show how widespread are metamathematical phenomena in mathematics and in the sciences which re...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We show how widespread are metamathematical phenomena in mathematics and in the sciences which rely on mathematics. We will consider specific examples of undecidable sentences in mathematics, physics and economics. Our presentation is informal; rigorous developments can be found in the references.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="96762495"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="96762495"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 96762495; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=96762495]").text(description); $(".js-view-count[data-work-id=96762495]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 96762495; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='96762495']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=96762495]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":96762495,"title":"Gödel Incompleteness and the Empirical Sciences","translated_title":"","metadata":{"abstract":"We show how widespread are metamathematical phenomena in mathematics and in the sciences which rely on mathematics. We will consider specific examples of undecidable sentences in mathematics, physics and economics. Our presentation is informal; rigorous developments can be found in the references.","publisher":"Springer International Publishing","publication_date":{"day":null,"month":null,"year":2016,"errors":{}},"publication_name":"Space, Time and the Limits of Human Understanding"},"translated_abstract":"We show how widespread are metamathematical phenomena in mathematics and in the sciences which rely on mathematics. We will consider specific examples of undecidable sentences in mathematics, physics and economics. Our presentation is informal; rigorous developments can be found in the references.","internal_url":"https://www.academia.edu/96762495/G%C3%B6del_Incompleteness_and_the_Empirical_Sciences","translated_internal_url":"","created_at":"2023-02-12T05:58:26.365-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":631545,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Gödel_Incompleteness_and_the_Empirical_Sciences","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"We show how widespread are metamathematical phenomena in mathematics and in the sciences which rely on mathematics. We will consider specific examples of undecidable sentences in mathematics, physics and economics. Our presentation is informal; rigorous developments can be found in the references.","owner":{"id":631545,"first_name":"Francisco Antonio","middle_initials":"","last_name":"Doria","page_name":"FranciscoDoria","domain_name":"ufrj","created_at":"2011-07-31T14:20:54.461-07:00","display_name":"Francisco Antonio Doria","url":"https://ufrj.academia.edu/FranciscoDoria"},"attachments":[],"research_interests":[],"urls":[{"id":28911651,"url":"http://link.springer.com/content/pdf/10.1007/978-3-319-44418-5_35"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-96762495-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="96762492"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/96762492/Consequences_of_an_exotic_definition_for_P_NP_q"><img alt="Research paper thumbnail of Consequences of an exotic definition for P NP q" class="work-thumbnail" src="https://attachments.academia-assets.com/98570853/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/96762492/Consequences_of_an_exotic_definition_for_P_NP_q">Consequences of an exotic definition for P NP q</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We introduce a formal sentence noted P NPŠ F (the ‘‘exotic definition’’) that is intuitively equi...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We introduce a formal sentence noted P NPŠ F (the ‘‘exotic definition’’) that is intuitively equivalent to P NP; however P NP and P NPŠ F may not be equivalent in ZFC for some choices of F. Again for some F we show that P NPŠ F is consistent with ZFC, and so is the equivalence P NPŠ F $P NPŠ. We finally derive a consistency result for P NP itself.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="b96003029bd2e84d81eb0a3a2761b4b5" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":98570853,"asset_id":96762492,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/98570853/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="96762492"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="96762492"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 96762492; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=96762492]").text(description); $(".js-view-count[data-work-id=96762492]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 96762492; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='96762492']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "b96003029bd2e84d81eb0a3a2761b4b5" } } $('.js-work-strip[data-work-id=96762492]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":96762492,"title":"Consequences of an exotic definition for P NP q","translated_title":"","metadata":{"abstract":"We introduce a formal sentence noted P NPŠ F (the ‘‘exotic definition’’) that is intuitively equivalent to P NP; however P NP and P NPŠ F may not be equivalent in ZFC for some choices of F. Again for some F we show that P NPŠ F is consistent with ZFC, and so is the equivalence P NPŠ F $P NPŠ. We finally derive a consistency result for P NP itself.","publication_date":{"day":null,"month":null,"year":2008,"errors":{}}},"translated_abstract":"We introduce a formal sentence noted P NPŠ F (the ‘‘exotic definition’’) that is intuitively equivalent to P NP; however P NP and P NPŠ F may not be equivalent in ZFC for some choices of F. Again for some F we show that P NPŠ F is consistent with ZFC, and so is the equivalence P NPŠ F $P NPŠ. We finally derive a consistency result for P NP itself.","internal_url":"https://www.academia.edu/96762492/Consequences_of_an_exotic_definition_for_P_NP_q","translated_internal_url":"","created_at":"2023-02-12T05:58:26.241-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":631545,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":98570853,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/98570853/thumbnails/1.jpg","file_name":"AMC7887page.pdf","download_url":"https://www.academia.edu/attachments/98570853/download_file","bulk_download_file_name":"Consequences_of_an_exotic_definition_for.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/98570853/AMC7887page-libre.pdf?1676212326=\u0026response-content-disposition=attachment%3B+filename%3DConsequences_of_an_exotic_definition_for.pdf\u0026Expires=1743333191\u0026Signature=f6lPBIanDZLuY-xF66BEk8kb7L4iBVm7EhMSq-~lukVKnsQ9IpmwM0lqtV1gbo37WVlq2ISM7q3a8J-l4cXMT13mi1ej1FNIDZt0av-jE167rWwqgJxhyGSiEpfFVhhh8mEwt~ZHyE~7haqxczez8UdJGxt6hfjbWxoJ1ZfRiQg6piv1zgx~ZRe-nqejigFSh8p2D6KHQpFM~4pyrQnbNiSlkaydXBVTlrJVFgRnCxSlUjJNq4RAAt8i4l70ra7-BJ~C16CWrjVQEU4BKtt0-WdN9HwK8H0Wl8cjrVOLSBSTVzoAbVySwfoUvGl4LWwc6-vl5U8tjmzp2EOCM65zZg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Consequences_of_an_exotic_definition_for_P_NP_q","translated_slug":"","page_count":11,"language":"en","content_type":"Work","summary":"We introduce a formal sentence noted P NPŠ F (the ‘‘exotic definition’’) that is intuitively equivalent to P NP; however P NP and P NPŠ F may not be equivalent in ZFC for some choices of F. Again for some F we show that P NPŠ F is consistent with ZFC, and so is the equivalence P NPŠ F $P NPŠ. We finally derive a consistency result for P NP itself.","owner":{"id":631545,"first_name":"Francisco Antonio","middle_initials":"","last_name":"Doria","page_name":"FranciscoDoria","domain_name":"ufrj","created_at":"2011-07-31T14:20:54.461-07:00","display_name":"Francisco Antonio Doria","url":"https://ufrj.academia.edu/FranciscoDoria"},"attachments":[{"id":98570853,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/98570853/thumbnails/1.jpg","file_name":"AMC7887page.pdf","download_url":"https://www.academia.edu/attachments/98570853/download_file","bulk_download_file_name":"Consequences_of_an_exotic_definition_for.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/98570853/AMC7887page-libre.pdf?1676212326=\u0026response-content-disposition=attachment%3B+filename%3DConsequences_of_an_exotic_definition_for.pdf\u0026Expires=1743333191\u0026Signature=f6lPBIanDZLuY-xF66BEk8kb7L4iBVm7EhMSq-~lukVKnsQ9IpmwM0lqtV1gbo37WVlq2ISM7q3a8J-l4cXMT13mi1ej1FNIDZt0av-jE167rWwqgJxhyGSiEpfFVhhh8mEwt~ZHyE~7haqxczez8UdJGxt6hfjbWxoJ1ZfRiQg6piv1zgx~ZRe-nqejigFSh8p2D6KHQpFM~4pyrQnbNiSlkaydXBVTlrJVFgRnCxSlUjJNq4RAAt8i4l70ra7-BJ~C16CWrjVQEU4BKtt0-WdN9HwK8H0Wl8cjrVOLSBSTVzoAbVySwfoUvGl4LWwc6-vl5U8tjmzp2EOCM65zZg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[{"id":28911650,"url":"http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.92.5882\u0026rep=rep1\u0026type=pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-96762492-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="96762491"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/96762491/Baker_Gill_Solovay_set_of_polynomial_Turing"><img alt="Research paper thumbnail of Baker–Gill–Solovay set of polynomial Turing" class="work-thumbnail" src="https://attachments.academia-assets.com/98570854/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/96762491/Baker_Gill_Solovay_set_of_polynomial_Turing">Baker–Gill–Solovay set of polynomial Turing</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We prove here a lemma that connects some properties of the so-called "counterexample function" to...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We prove here a lemma that connects some properties of the so-called "counterexample function" to the P = N P conjecture over the Baker-Gill-Solovay set of polynomial Turing machines to the behavior of the same function "at large," over the set of all polynomial Turing machines.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="c7faad172cd03a9bf41e4c4889cb0401" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":98570854,"asset_id":96762491,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/98570854/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="96762491"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="96762491"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 96762491; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=96762491]").text(description); $(".js-view-count[data-work-id=96762491]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 96762491; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='96762491']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "c7faad172cd03a9bf41e4c4889cb0401" } } $('.js-work-strip[data-work-id=96762491]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":96762491,"title":"Baker–Gill–Solovay set of polynomial Turing","translated_title":"","metadata":{"grobid_abstract":"We prove here a lemma that connects some properties of the so-called \"counterexample function\" to the P = N P conjecture over the Baker-Gill-Solovay set of polynomial Turing machines to the behavior of the same function \"at large,\" over the set of all polynomial Turing machines.","publication_date":{"day":null,"month":null,"year":2008,"errors":{}},"grobid_abstract_attachment_id":98570854},"translated_abstract":null,"internal_url":"https://www.academia.edu/96762491/Baker_Gill_Solovay_set_of_polynomial_Turing","translated_internal_url":"","created_at":"2023-02-12T05:58:26.116-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":631545,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":98570854,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/98570854/thumbnails/1.jpg","file_name":"0106096v1.pdf","download_url":"https://www.academia.edu/attachments/98570854/download_file","bulk_download_file_name":"Baker_Gill_Solovay_set_of_polynomial_Tur.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/98570854/0106096v1-libre.pdf?1676212325=\u0026response-content-disposition=attachment%3B+filename%3DBaker_Gill_Solovay_set_of_polynomial_Tur.pdf\u0026Expires=1743333191\u0026Signature=TXroJxi1AclVbmE3EOI1rmY5CN3szok04zTT-oSvdxE815~~7xqU5ujXtmF-xwQWQxN1Tvb5BOVM-xTU7CeIp45a1b2eu6-H67sWuY-YSTJlGGNXf6VAxjoT7VlFqg9s7NIWXLUUQHQIRg2g5uycCdfhjHffqsjYrFtId8-B~P2uzawMyjt5Rysg7ZSj28epuSavVJcjvpY6znfZTIAZ8GKw~Fn0WRYrpHHe9CcJDJVr3ktcX-uAUtCF~~rXlppB3EeJMapGY834JWuVJXBaZ3SqWwsIs-16PjIr1NIa74xrqPjYAkMWf4-Ft2OggdG5EYTxjqF7F41nJxuirAnWWQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Baker_Gill_Solovay_set_of_polynomial_Turing","translated_slug":"","page_count":7,"language":"en","content_type":"Work","summary":"We prove here a lemma that connects some properties of the so-called \"counterexample function\" to the P = N P conjecture over the Baker-Gill-Solovay set of polynomial Turing machines to the behavior of the same function \"at large,\" over the set of all polynomial Turing machines.","owner":{"id":631545,"first_name":"Francisco Antonio","middle_initials":"","last_name":"Doria","page_name":"FranciscoDoria","domain_name":"ufrj","created_at":"2011-07-31T14:20:54.461-07:00","display_name":"Francisco Antonio Doria","url":"https://ufrj.academia.edu/FranciscoDoria"},"attachments":[{"id":98570854,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/98570854/thumbnails/1.jpg","file_name":"0106096v1.pdf","download_url":"https://www.academia.edu/attachments/98570854/download_file","bulk_download_file_name":"Baker_Gill_Solovay_set_of_polynomial_Tur.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/98570854/0106096v1-libre.pdf?1676212325=\u0026response-content-disposition=attachment%3B+filename%3DBaker_Gill_Solovay_set_of_polynomial_Tur.pdf\u0026Expires=1743333191\u0026Signature=TXroJxi1AclVbmE3EOI1rmY5CN3szok04zTT-oSvdxE815~~7xqU5ujXtmF-xwQWQxN1Tvb5BOVM-xTU7CeIp45a1b2eu6-H67sWuY-YSTJlGGNXf6VAxjoT7VlFqg9s7NIWXLUUQHQIRg2g5uycCdfhjHffqsjYrFtId8-B~P2uzawMyjt5Rysg7ZSj28epuSavVJcjvpY6znfZTIAZ8GKw~Fn0WRYrpHHe9CcJDJVr3ktcX-uAUtCF~~rXlppB3EeJMapGY834JWuVJXBaZ3SqWwsIs-16PjIr1NIa74xrqPjYAkMWf4-Ft2OggdG5EYTxjqF7F41nJxuirAnWWQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[{"id":28911649,"url":"http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.233.8498\u0026rep=rep1\u0026type=pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-96762491-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="96762489"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/96762489/On_Teitler_s_higher_spin_field_equations"><img alt="Research paper thumbnail of On Teitler’s higher-spin field equations" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">On Teitler’s higher-spin field equations</div><div class="wp-workCard_item"><span>Lettere Al Nuovo Cimento Series 2</span><span>, 1977</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="96762489"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="96762489"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 96762489; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=96762489]").text(description); $(".js-view-count[data-work-id=96762489]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 96762489; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='96762489']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=96762489]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":96762489,"title":"On Teitler’s higher-spin field equations","translated_title":"","metadata":{"publisher":"Springer Nature","publication_date":{"day":null,"month":null,"year":1977,"errors":{}},"publication_name":"Lettere Al Nuovo Cimento Series 2"},"translated_abstract":null,"internal_url":"https://www.academia.edu/96762489/On_Teitler_s_higher_spin_field_equations","translated_internal_url":"","created_at":"2023-02-12T05:58:25.987-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":631545,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"On_Teitler_s_higher_spin_field_equations","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":null,"owner":{"id":631545,"first_name":"Francisco Antonio","middle_initials":"","last_name":"Doria","page_name":"FranciscoDoria","domain_name":"ufrj","created_at":"2011-07-31T14:20:54.461-07:00","display_name":"Francisco Antonio Doria","url":"https://ufrj.academia.edu/FranciscoDoria"},"attachments":[],"research_interests":[{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics"},{"id":2713,"name":"Quantum Electrodynamics","url":"https://www.academia.edu/Documents/in/Quantum_Electrodynamics"}],"urls":[{"id":28911647,"url":"http://link.springer.com/content/pdf/10.1007/BF02780569"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-96762489-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="96762487"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/96762487/On_the_O_Donnell_Algorithm_for_NP_Complete_Problems"><img alt="Research paper thumbnail of On the O’Donnell Algorithm for NP-Complete Problems" class="work-thumbnail" src="https://attachments.academia-assets.com/98570857/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/96762487/On_the_O_Donnell_Algorithm_for_NP_Complete_Problems">On the O’Donnell Algorithm for NP-Complete Problems</a></div><div class="wp-workCard_item"><span>Review of Behavioral Economics</span><span>, 2016</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We present and discuss the O'Donnell 1979 algorithm for the solution of N P-complete problems. If...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We present and discuss the O'Donnell 1979 algorithm for the solution of N P-complete problems. If P < N P is proved in a theory with greater "provability strength" than Primitive Recursive Arithmetic, the O'Donnell algorithm turns out to be almost polynomial. We elaborate on how close to polynomial it might be. As an application, we show that follows from Maymin's theorem on efficient markets that, given our metamathematical condition above, there are "almost efficient" markets (that is to say, markets where information about their operation is known in almost polynomial time).</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="a31d259e320db5b6f368b6cc0374b79b" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":98570857,"asset_id":96762487,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/98570857/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="96762487"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="96762487"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 96762487; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=96762487]").text(description); $(".js-view-count[data-work-id=96762487]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 96762487; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='96762487']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "a31d259e320db5b6f368b6cc0374b79b" } } $('.js-work-strip[data-work-id=96762487]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":96762487,"title":"On the O’Donnell Algorithm for NP-Complete Problems","translated_title":"","metadata":{"publisher":"Now Publishers","grobid_abstract":"We present and discuss the O'Donnell 1979 algorithm for the solution of N P-complete problems. If P \u003c N P is proved in a theory with greater \"provability strength\" than Primitive Recursive Arithmetic, the O'Donnell algorithm turns out to be almost polynomial. We elaborate on how close to polynomial it might be. As an application, we show that follows from Maymin's theorem on efficient markets that, given our metamathematical condition above, there are \"almost efficient\" markets (that is to say, markets where information about their operation is known in almost polynomial time).","publication_date":{"day":null,"month":null,"year":2016,"errors":{}},"publication_name":"Review of Behavioral Economics","grobid_abstract_attachment_id":98570857},"translated_abstract":null,"internal_url":"https://www.academia.edu/96762487/On_the_O_Donnell_Algorithm_for_NP_Complete_Problems","translated_internal_url":"","created_at":"2023-02-12T05:58:25.856-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":631545,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":98570857,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/98570857/thumbnails/1.jpg","file_name":"105.0000004820230212-1-ia16mn.pdf","download_url":"https://www.academia.edu/attachments/98570857/download_file","bulk_download_file_name":"On_the_O_Donnell_Algorithm_for_NP_Comple.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/98570857/105.0000004820230212-1-ia16mn-libre.pdf?1676212332=\u0026response-content-disposition=attachment%3B+filename%3DOn_the_O_Donnell_Algorithm_for_NP_Comple.pdf\u0026Expires=1743333191\u0026Signature=gxLeIwFqzJ-OfNeQAVW5YB-xkq60IFClfG0cISJxChecMiOu0kgd0ReeTdUSUQNq87Zfc6esjw8DCrw5adjKbX4BiIOGdDig8~BO2CsTYzw4jrZUR9dEz-l~5byNUuqBEmFC3WPuzpFdMGZ4nPFv6CgPx1w7Y9qLbxbYZA15VUKMb7tX5oy0pug5NxS6xJosEfsRIaU6UU4s1cdXjw6ye9lyEgnQ15RMurf56SBVCGMmYS6L2hrhkxnKR7QJnd~EDVx7iADks5Buq4QuFHzXDtRtyqX-gNakMAM~AVxdz9beeMcpRx8QneAW8fvy0~dMpmF6r80wel6uMupB20P6mw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"On_the_O_Donnell_Algorithm_for_NP_Complete_Problems","translated_slug":"","page_count":22,"language":"en","content_type":"Work","summary":"We present and discuss the O'Donnell 1979 algorithm for the solution of N P-complete problems. If P \u003c N P is proved in a theory with greater \"provability strength\" than Primitive Recursive Arithmetic, the O'Donnell algorithm turns out to be almost polynomial. We elaborate on how close to polynomial it might be. As an application, we show that follows from Maymin's theorem on efficient markets that, given our metamathematical condition above, there are \"almost efficient\" markets (that is to say, markets where information about their operation is known in almost polynomial time).","owner":{"id":631545,"first_name":"Francisco Antonio","middle_initials":"","last_name":"Doria","page_name":"FranciscoDoria","domain_name":"ufrj","created_at":"2011-07-31T14:20:54.461-07:00","display_name":"Francisco Antonio Doria","url":"https://ufrj.academia.edu/FranciscoDoria"},"attachments":[{"id":98570857,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/98570857/thumbnails/1.jpg","file_name":"105.0000004820230212-1-ia16mn.pdf","download_url":"https://www.academia.edu/attachments/98570857/download_file","bulk_download_file_name":"On_the_O_Donnell_Algorithm_for_NP_Comple.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/98570857/105.0000004820230212-1-ia16mn-libre.pdf?1676212332=\u0026response-content-disposition=attachment%3B+filename%3DOn_the_O_Donnell_Algorithm_for_NP_Comple.pdf\u0026Expires=1743333191\u0026Signature=gxLeIwFqzJ-OfNeQAVW5YB-xkq60IFClfG0cISJxChecMiOu0kgd0ReeTdUSUQNq87Zfc6esjw8DCrw5adjKbX4BiIOGdDig8~BO2CsTYzw4jrZUR9dEz-l~5byNUuqBEmFC3WPuzpFdMGZ4nPFv6CgPx1w7Y9qLbxbYZA15VUKMb7tX5oy0pug5NxS6xJosEfsRIaU6UU4s1cdXjw6ye9lyEgnQ15RMurf56SBVCGMmYS6L2hrhkxnKR7QJnd~EDVx7iADks5Buq4QuFHzXDtRtyqX-gNakMAM~AVxdz9beeMcpRx8QneAW8fvy0~dMpmF6r80wel6uMupB20P6mw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":724,"name":"Economics","url":"https://www.academia.edu/Documents/in/Economics"},{"id":13805,"name":"Behavioral Economics","url":"https://www.academia.edu/Documents/in/Behavioral_Economics"},{"id":17442,"name":"Mathematical Logic","url":"https://www.academia.edu/Documents/in/Mathematical_Logic"},{"id":1673612,"name":"Np Complete","url":"https://www.academia.edu/Documents/in/Np_Complete"}],"urls":[{"id":28911645,"url":"http://www.nowpublishers.com/article/Download/RBE-0048"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-96762487-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="96762485"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/96762485/Equations_for_a_spin_two_field_from_a_Dirac_like_equation"><img alt="Research paper thumbnail of Equations for a spin-two field from a Dirac-like equation" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Equations for a spin-two field from a Dirac-like equation</div><div class="wp-workCard_item"><span>Lettere Al Nuovo Cimento Series 2</span><span>, 1973</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="96762485"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="96762485"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 96762485; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=96762485]").text(description); $(".js-view-count[data-work-id=96762485]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 96762485; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='96762485']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=96762485]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":96762485,"title":"Equations for a spin-two field from a Dirac-like equation","translated_title":"","metadata":{"publisher":"Springer Nature","publication_date":{"day":null,"month":null,"year":1973,"errors":{}},"publication_name":"Lettere Al Nuovo Cimento Series 2"},"translated_abstract":null,"internal_url":"https://www.academia.edu/96762485/Equations_for_a_spin_two_field_from_a_Dirac_like_equation","translated_internal_url":"","created_at":"2023-02-12T05:58:25.728-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":631545,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Equations_for_a_spin_two_field_from_a_Dirac_like_equation","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":null,"owner":{"id":631545,"first_name":"Francisco Antonio","middle_initials":"","last_name":"Doria","page_name":"FranciscoDoria","domain_name":"ufrj","created_at":"2011-07-31T14:20:54.461-07:00","display_name":"Francisco Antonio Doria","url":"https://ufrj.academia.edu/FranciscoDoria"},"attachments":[],"research_interests":[{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics"},{"id":2713,"name":"Quantum Electrodynamics","url":"https://www.academia.edu/Documents/in/Quantum_Electrodynamics"},{"id":143488,"name":"Dirac equation","url":"https://www.academia.edu/Documents/in/Dirac_equation"}],"urls":[{"id":28911644,"url":"http://link.springer.com/content/pdf/10.1007/BF02746347"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-96762485-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="96762483"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/96762483/A_Weyl_like_equation_for_the_gravitational_field"><img alt="Research paper thumbnail of A Weyl-like equation for the gravitational field" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">A Weyl-like equation for the gravitational field</div><div class="wp-workCard_item"><span>Lettere Al Nuovo Cimento Series 2</span><span>, 1975</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="96762483"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="96762483"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 96762483; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=96762483]").text(description); $(".js-view-count[data-work-id=96762483]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 96762483; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='96762483']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=96762483]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":96762483,"title":"A Weyl-like equation for the gravitational field","translated_title":"","metadata":{"publisher":"Springer Nature","publication_date":{"day":null,"month":null,"year":1975,"errors":{}},"publication_name":"Lettere Al Nuovo Cimento Series 2"},"translated_abstract":null,"internal_url":"https://www.academia.edu/96762483/A_Weyl_like_equation_for_the_gravitational_field","translated_internal_url":"","created_at":"2023-02-12T05:58:25.598-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":631545,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"A_Weyl_like_equation_for_the_gravitational_field","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":null,"owner":{"id":631545,"first_name":"Francisco Antonio","middle_initials":"","last_name":"Doria","page_name":"FranciscoDoria","domain_name":"ufrj","created_at":"2011-07-31T14:20:54.461-07:00","display_name":"Francisco Antonio Doria","url":"https://ufrj.academia.edu/FranciscoDoria"},"attachments":[],"research_interests":[{"id":318,"name":"Mathematical Physics","url":"https://www.academia.edu/Documents/in/Mathematical_Physics"},{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics"},{"id":1246,"name":"Gravitation","url":"https://www.academia.edu/Documents/in/Gravitation"},{"id":553570,"name":"Gravitational Field","url":"https://www.academia.edu/Documents/in/Gravitational_Field"}],"urls":[{"id":28911642,"url":"http://link.springer.com/content/pdf/10.1007/BF02746018"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-96762483-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="96762482"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/96762482/Janus_Faced_Physics_On_Hilberts_6th_Problem"><img alt="Research paper thumbnail of Janus–Faced Physics: On Hilbert's 6th Problem" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Janus–Faced Physics: On Hilbert's 6th Problem</div><div class="wp-workCard_item"><span>Randomness and Complexity, From Leibniz to Chaitin</span><span>, 2007</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="96762482"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="96762482"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 96762482; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=96762482]").text(description); $(".js-view-count[data-work-id=96762482]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 96762482; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='96762482']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=96762482]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":96762482,"title":"Janus–Faced Physics: On Hilbert's 6th Problem","translated_title":"","metadata":{"publisher":"WORLD SCIENTIFIC","publication_date":{"day":null,"month":null,"year":2007,"errors":{}},"publication_name":"Randomness and Complexity, From Leibniz to Chaitin"},"translated_abstract":null,"internal_url":"https://www.academia.edu/96762482/Janus_Faced_Physics_On_Hilberts_6th_Problem","translated_internal_url":"","created_at":"2023-02-12T05:58:25.507-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":631545,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Janus_Faced_Physics_On_Hilberts_6th_Problem","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":null,"owner":{"id":631545,"first_name":"Francisco Antonio","middle_initials":"","last_name":"Doria","page_name":"FranciscoDoria","domain_name":"ufrj","created_at":"2011-07-31T14:20:54.461-07:00","display_name":"Francisco Antonio Doria","url":"https://ufrj.academia.edu/FranciscoDoria"},"attachments":[],"research_interests":[{"id":2150069,"name":"Janus","url":"https://www.academia.edu/Documents/in/Janus"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-96762482-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="96762480"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/96762480/On_Some_Recent_Undecidability_and_Incompleteness_Results_in_the_Axiomatized_Sciences"><img alt="Research paper thumbnail of On Some Recent Undecidability and Incompleteness Results in the Axiomatized Sciences" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">On Some Recent Undecidability and Incompleteness Results in the Axiomatized Sciences</div><div class="wp-workCard_item"><span>Philosophy of Latin America</span><span>, 2003</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We summarize in an intuitive vein a few recent results by the authors on the incompleteness of el...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We summarize in an intuitive vein a few recent results by the authors on the incompleteness of elementary real analysis and its consequences to the axiomatized sciences, from chaos theory to the dynamics of populations.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="96762480"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="96762480"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 96762480; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=96762480]").text(description); $(".js-view-count[data-work-id=96762480]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 96762480; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='96762480']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=96762480]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":96762480,"title":"On Some Recent Undecidability and Incompleteness Results in the Axiomatized Sciences","translated_title":"","metadata":{"abstract":"We summarize in an intuitive vein a few recent results by the authors on the incompleteness of elementary real analysis and its consequences to the axiomatized sciences, from chaos theory to the dynamics of populations.","publisher":"Springer Netherlands","publication_date":{"day":null,"month":null,"year":2003,"errors":{}},"publication_name":"Philosophy of Latin America"},"translated_abstract":"We summarize in an intuitive vein a few recent results by the authors on the incompleteness of elementary real analysis and its consequences to the axiomatized sciences, from chaos theory to the dynamics of populations.","internal_url":"https://www.academia.edu/96762480/On_Some_Recent_Undecidability_and_Incompleteness_Results_in_the_Axiomatized_Sciences","translated_internal_url":"","created_at":"2023-02-12T05:58:25.375-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":631545,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"On_Some_Recent_Undecidability_and_Incompleteness_Results_in_the_Axiomatized_Sciences","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"We summarize in an intuitive vein a few recent results by the authors on the incompleteness of elementary real analysis and its consequences to the axiomatized sciences, from chaos theory to the dynamics of populations.","owner":{"id":631545,"first_name":"Francisco Antonio","middle_initials":"","last_name":"Doria","page_name":"FranciscoDoria","domain_name":"ufrj","created_at":"2011-07-31T14:20:54.461-07:00","display_name":"Francisco Antonio Doria","url":"https://ufrj.academia.edu/FranciscoDoria"},"attachments":[],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":2385079,"name":"Philosophy in Latin America","url":"https://www.academia.edu/Documents/in/Philosophy_in_Latin_America"}],"urls":[{"id":28911640,"url":"http://link.springer.com/content/pdf/10.1007/978-94-017-3651-0_13"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-96762480-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="96762479"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/96762479/Metamathematical_Limits_to_Computation"><img alt="Research paper thumbnail of Metamathematical Limits to Computation" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Metamathematical Limits to Computation</div><div class="wp-workCard_item"><span>The Handbook on Reasoning-Based Intelligent Systems</span><span>, 2013</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="96762479"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="96762479"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 96762479; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=96762479]").text(description); $(".js-view-count[data-work-id=96762479]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 96762479; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='96762479']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=96762479]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":96762479,"title":"Metamathematical Limits to Computation","translated_title":"","metadata":{"publisher":"WORLD SCIENTIFIC","publication_date":{"day":null,"month":null,"year":2013,"errors":{}},"publication_name":"The Handbook on Reasoning-Based Intelligent Systems"},"translated_abstract":null,"internal_url":"https://www.academia.edu/96762479/Metamathematical_Limits_to_Computation","translated_internal_url":"","created_at":"2023-02-12T05:58:25.282-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":631545,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Metamathematical_Limits_to_Computation","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":null,"owner":{"id":631545,"first_name":"Francisco Antonio","middle_initials":"","last_name":"Doria","page_name":"FranciscoDoria","domain_name":"ufrj","created_at":"2011-07-31T14:20:54.461-07:00","display_name":"Francisco Antonio Doria","url":"https://ufrj.academia.edu/FranciscoDoria"},"attachments":[],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":59487,"name":"Computation","url":"https://www.academia.edu/Documents/in/Computation"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-96762479-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="96762478"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/96762478/On_Arnolds_Hilbert_symposium_problems"><img alt="Research paper thumbnail of On Arnol'd's Hilbert symposium problems" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">On Arnol'd's Hilbert symposium problems</div><div class="wp-workCard_item"><span>Lecture Notes in Computer Science</span><span>, 1993</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We prove that stability is undecidable for dynamical systems whose right-hand side is explicitly ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We prove that stability is undecidable for dynamical systems whose right-hand side is explicitly written in the language of elementary analysis.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="96762478"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="96762478"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 96762478; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=96762478]").text(description); $(".js-view-count[data-work-id=96762478]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 96762478; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='96762478']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=96762478]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":96762478,"title":"On Arnol'd's Hilbert symposium problems","translated_title":"","metadata":{"abstract":"We prove that stability is undecidable for dynamical systems whose right-hand side is explicitly written in the language of elementary analysis.","publication_date":{"day":null,"month":null,"year":1993,"errors":{}},"publication_name":"Lecture Notes in Computer Science"},"translated_abstract":"We prove that stability is undecidable for dynamical systems whose right-hand side is explicitly written in the language of elementary analysis.","internal_url":"https://www.academia.edu/96762478/On_Arnolds_Hilbert_symposium_problems","translated_internal_url":"","created_at":"2023-02-12T05:58:25.193-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":631545,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"On_Arnolds_Hilbert_symposium_problems","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"We prove that stability is undecidable for dynamical systems whose right-hand side is explicitly written in the language of elementary analysis.","owner":{"id":631545,"first_name":"Francisco Antonio","middle_initials":"","last_name":"Doria","page_name":"FranciscoDoria","domain_name":"ufrj","created_at":"2011-07-31T14:20:54.461-07:00","display_name":"Francisco Antonio Doria","url":"https://ufrj.academia.edu/FranciscoDoria"},"attachments":[],"research_interests":[{"id":128,"name":"History","url":"https://www.academia.edu/Documents/in/History"},{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":868912,"name":"Dynamic System","url":"https://www.academia.edu/Documents/in/Dynamic_System"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-96762478-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="96762477"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/96762477/Structures_Suppes_Predicates_and_Boolean_Valued_Models_in_Physics"><img alt="Research paper thumbnail of Structures, Suppes Predicates, and Boolean-Valued Models in Physics" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Structures, Suppes Predicates, and Boolean-Valued Models in Physics</div><div class="wp-workCard_item"><span>Philosophical Logic and Logical Philosophy</span><span>, 1996</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">An old and important question concerning physical theories has to do with their axiomatization [4...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">An old and important question concerning physical theories has to do with their axiomatization [47]. The sixth problem in Hilbert’s celebrated list of mathematical problems deals with its desirable (or ideal) contours [31]:</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="96762477"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="96762477"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 96762477; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=96762477]").text(description); $(".js-view-count[data-work-id=96762477]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 96762477; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='96762477']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=96762477]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":96762477,"title":"Structures, Suppes Predicates, and Boolean-Valued Models in Physics","translated_title":"","metadata":{"abstract":"An old and important question concerning physical theories has to do with their axiomatization [47]. The sixth problem in Hilbert’s celebrated list of mathematical problems deals with its desirable (or ideal) contours [31]:","publication_date":{"day":null,"month":null,"year":1996,"errors":{}},"publication_name":"Philosophical Logic and Logical Philosophy"},"translated_abstract":"An old and important question concerning physical theories has to do with their axiomatization [47]. The sixth problem in Hilbert’s celebrated list of mathematical problems deals with its desirable (or ideal) contours [31]:","internal_url":"https://www.academia.edu/96762477/Structures_Suppes_Predicates_and_Boolean_Valued_Models_in_Physics","translated_internal_url":"","created_at":"2023-02-12T05:58:25.105-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":631545,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Structures_Suppes_Predicates_and_Boolean_Valued_Models_in_Physics","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"An old and important question concerning physical theories has to do with their axiomatization [47]. The sixth problem in Hilbert’s celebrated list of mathematical problems deals with its desirable (or ideal) contours [31]:","owner":{"id":631545,"first_name":"Francisco Antonio","middle_initials":"","last_name":"Doria","page_name":"FranciscoDoria","domain_name":"ufrj","created_at":"2011-07-31T14:20:54.461-07:00","display_name":"Francisco Antonio Doria","url":"https://ufrj.academia.edu/FranciscoDoria"},"attachments":[],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":2451605,"name":"Ideal Ethics","url":"https://www.academia.edu/Documents/in/Ideal_Ethics"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-96762477-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="96762475"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/96762475/Clifford_algebra_formulation_of_multispin_field_equations"><img alt="Research paper thumbnail of Clifford-algebra formulation of multispin field equations" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Clifford-algebra formulation of multispin field equations</div><div class="wp-workCard_item"><span>Lettere al Nuovo Cimento</span><span>, 1973</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">ABSTRACT</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="96762475"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="96762475"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 96762475; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=96762475]").text(description); $(".js-view-count[data-work-id=96762475]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 96762475; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='96762475']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=96762475]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":96762475,"title":"Clifford-algebra formulation of multispin field equations","translated_title":"","metadata":{"abstract":"ABSTRACT","publisher":"Springer Nature","publication_date":{"day":null,"month":null,"year":1973,"errors":{}},"publication_name":"Lettere al Nuovo Cimento"},"translated_abstract":"ABSTRACT","internal_url":"https://www.academia.edu/96762475/Clifford_algebra_formulation_of_multispin_field_equations","translated_internal_url":"","created_at":"2023-02-12T05:58:25.013-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":631545,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Clifford_algebra_formulation_of_multispin_field_equations","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"ABSTRACT","owner":{"id":631545,"first_name":"Francisco Antonio","middle_initials":"","last_name":"Doria","page_name":"FranciscoDoria","domain_name":"ufrj","created_at":"2011-07-31T14:20:54.461-07:00","display_name":"Francisco Antonio Doria","url":"https://ufrj.academia.edu/FranciscoDoria"},"attachments":[],"research_interests":[{"id":318,"name":"Mathematical Physics","url":"https://www.academia.edu/Documents/in/Mathematical_Physics"},{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics"},{"id":406353,"name":"Clifford algebra","url":"https://www.academia.edu/Documents/in/Clifford_algebra"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-96762475-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="96762474"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/96762474/Suppes_Predicates_and_the_Construction_of_Unsolvable_Problems_in_the_Axiomatized_Sciences"><img alt="Research paper thumbnail of Suppes Predicates and the Construction of Unsolvable Problems in the Axiomatized Sciences" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Suppes Predicates and the Construction of Unsolvable Problems in the Axiomatized Sciences</div><div class="wp-workCard_item"><span>Patrick Suppes: Scientific Philosopher</span><span>, 1994</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We first review our previous work on Suppes predicates and the axiomatization of the empirical sc...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We first review our previous work on Suppes predicates and the axiomatization of the empirical sciences. We then state some undecidability and incompleteness results in classical analysis that lead to the explicit construction of expressions for characteristic functions in all complete arithmetical degrees. Out of those results we show that for any degree there are corresponding ‘meaningful’ unsolvable problems in</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="96762474"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="96762474"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 96762474; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=96762474]").text(description); $(".js-view-count[data-work-id=96762474]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 96762474; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='96762474']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=96762474]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":96762474,"title":"Suppes Predicates and the Construction of Unsolvable Problems in the Axiomatized Sciences","translated_title":"","metadata":{"abstract":"We first review our previous work on Suppes predicates and the axiomatization of the empirical sciences. We then state some undecidability and incompleteness results in classical analysis that lead to the explicit construction of expressions for characteristic functions in all complete arithmetical degrees. Out of those results we show that for any degree there are corresponding ‘meaningful’ unsolvable problems in","publication_date":{"day":null,"month":null,"year":1994,"errors":{}},"publication_name":"Patrick Suppes: Scientific Philosopher"},"translated_abstract":"We first review our previous work on Suppes predicates and the axiomatization of the empirical sciences. We then state some undecidability and incompleteness results in classical analysis that lead to the explicit construction of expressions for characteristic functions in all complete arithmetical degrees. Out of those results we show that for any degree there are corresponding ‘meaningful’ unsolvable problems in","internal_url":"https://www.academia.edu/96762474/Suppes_Predicates_and_the_Construction_of_Unsolvable_Problems_in_the_Axiomatized_Sciences","translated_internal_url":"","created_at":"2023-02-12T05:58:24.920-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":631545,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Suppes_Predicates_and_the_Construction_of_Unsolvable_Problems_in_the_Axiomatized_Sciences","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"We first review our previous work on Suppes predicates and the axiomatization of the empirical sciences. We then state some undecidability and incompleteness results in classical analysis that lead to the explicit construction of expressions for characteristic functions in all complete arithmetical degrees. Out of those results we show that for any degree there are corresponding ‘meaningful’ unsolvable problems in","owner":{"id":631545,"first_name":"Francisco Antonio","middle_initials":"","last_name":"Doria","page_name":"FranciscoDoria","domain_name":"ufrj","created_at":"2011-07-31T14:20:54.461-07:00","display_name":"Francisco Antonio Doria","url":"https://ufrj.academia.edu/FranciscoDoria"},"attachments":[],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":588229,"name":"Characteristic Function","url":"https://www.academia.edu/Documents/in/Characteristic_Function"},{"id":868912,"name":"Dynamic System","url":"https://www.academia.edu/Documents/in/Dynamic_System"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-96762474-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="96762472"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/96762472/A_Heuristic_Algorithmic_Procedure_to_Solve_Allocation_Problems_with_Fuzzy_Evaluations"><img alt="Research paper thumbnail of A Heuristic Algorithmic Procedure to Solve Allocation Problems with Fuzzy Evaluations" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">A Heuristic Algorithmic Procedure to Solve Allocation Problems with Fuzzy Evaluations</div><div class="wp-workCard_item"><span>The Handbook on Reasoning-Based Intelligent Systems</span><span>, 2013</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="96762472"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="96762472"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 96762472; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=96762472]").text(description); $(".js-view-count[data-work-id=96762472]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 96762472; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='96762472']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=96762472]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":96762472,"title":"A Heuristic Algorithmic Procedure to Solve Allocation Problems with Fuzzy Evaluations","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":2013,"errors":{}},"publication_name":"The Handbook on Reasoning-Based Intelligent Systems"},"translated_abstract":null,"internal_url":"https://www.academia.edu/96762472/A_Heuristic_Algorithmic_Procedure_to_Solve_Allocation_Problems_with_Fuzzy_Evaluations","translated_internal_url":"","created_at":"2023-02-12T05:58:24.828-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":631545,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"A_Heuristic_Algorithmic_Procedure_to_Solve_Allocation_Problems_with_Fuzzy_Evaluations","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":null,"owner":{"id":631545,"first_name":"Francisco Antonio","middle_initials":"","last_name":"Doria","page_name":"FranciscoDoria","domain_name":"ufrj","created_at":"2011-07-31T14:20:54.461-07:00","display_name":"Francisco Antonio Doria","url":"https://ufrj.academia.edu/FranciscoDoria"},"attachments":[],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":4165,"name":"Fuzzy Logic","url":"https://www.academia.edu/Documents/in/Fuzzy_Logic"},{"id":272592,"name":"Mathematical Optimization","url":"https://www.academia.edu/Documents/in/Mathematical_Optimization"},{"id":419504,"name":"Heuristic","url":"https://www.academia.edu/Documents/in/Heuristic"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-96762472-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="96762471"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/96762471/Foundations_of_Physics_Letters_4"><img alt="Research paper thumbnail of Foundations of Physics Letters 4" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Foundations of Physics Letters 4</div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="96762471"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="96762471"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 96762471; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=96762471]").text(description); $(".js-view-count[data-work-id=96762471]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 96762471; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='96762471']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=96762471]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":96762471,"title":"Foundations of Physics Letters 4","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":1991,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/96762471/Foundations_of_Physics_Letters_4","translated_internal_url":"","created_at":"2023-02-12T05:58:24.747-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":631545,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Foundations_of_Physics_Letters_4","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":null,"owner":{"id":631545,"first_name":"Francisco Antonio","middle_initials":"","last_name":"Doria","page_name":"FranciscoDoria","domain_name":"ufrj","created_at":"2011-07-31T14:20:54.461-07:00","display_name":"Francisco Antonio Doria","url":"https://ufrj.academia.edu/FranciscoDoria"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-96762471-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="96762470"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/96762470/Dirac_Like_Equations_for_Gauge_Fields"><img alt="Research paper thumbnail of Dirac-Like Equations for Gauge Fields" class="work-thumbnail" src="https://attachments.academia-assets.com/98570851/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/96762470/Dirac_Like_Equations_for_Gauge_Fields">Dirac-Like Equations for Gauge Fields</a></div><div class="wp-workCard_item"><span>Progress of Theoretical Physics</span><span>, 1986</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We construct Dirac-like equations on a principal bundle over spacetime which is also the setting ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We construct Dirac-like equations on a principal bundle over spacetime which is also the setting for the standard gauge field theories. We see that they describe other fields besides the. usual gauge fields, and impose certain degeneracies on the fields over a bifurcation domain.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="6fcc4e850e600ca848cae3ddb25a7be5" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":98570851,"asset_id":96762470,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/98570851/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="96762470"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="96762470"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 96762470; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=96762470]").text(description); $(".js-view-count[data-work-id=96762470]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 96762470; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='96762470']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "6fcc4e850e600ca848cae3ddb25a7be5" } } $('.js-work-strip[data-work-id=96762470]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":96762470,"title":"Dirac-Like Equations for Gauge Fields","translated_title":"","metadata":{"publisher":"Oxford University Press (OUP)","ai_title_tag":"Dirac-Like Equations for Gauge Field Theories","grobid_abstract":"We construct Dirac-like equations on a principal bundle over spacetime which is also the setting for the standard gauge field theories. We see that they describe other fields besides the. usual gauge fields, and impose certain degeneracies on the fields over a bifurcation domain.","publication_date":{"day":null,"month":null,"year":1986,"errors":{}},"publication_name":"Progress of Theoretical Physics","grobid_abstract_attachment_id":98570851},"translated_abstract":null,"internal_url":"https://www.academia.edu/96762470/Dirac_Like_Equations_for_Gauge_Fields","translated_internal_url":"","created_at":"2023-02-12T05:58:24.657-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":631545,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":98570851,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/98570851/thumbnails/1.jpg","file_name":"75-6-1440.pdf","download_url":"https://www.academia.edu/attachments/98570851/download_file","bulk_download_file_name":"Dirac_Like_Equations_for_Gauge_Fields.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/98570851/75-6-1440-libre.pdf?1676212331=\u0026response-content-disposition=attachment%3B+filename%3DDirac_Like_Equations_for_Gauge_Fields.pdf\u0026Expires=1743333192\u0026Signature=XMZAkWz7L8vv80jbpsguQL4qnOUEsqUhLdXo2gJNNAnkDgDIzB9-wRrABz7zf6wCHFkJbmNntXQWeXvHMibZ2XMNphYrTh3KWLRnvAOk1p1-P7egU8TAaPvp9hJuaBQ~rZUVW~LTqv0~oOcTmdTVR4OfwDpVAMr0MUoaR3cPgahrD2Serw-TLidIc7EMAvoaAQWgD99KEGvRGu6cYaXlqGCyQZwd3Dpts56WwONDqhzcnSSZIjcqXNr5aCknIVR24JVGFv3cpkDkeEtLOuODs9CBqW~m3RK1oeubAmbaCJvffH9yPhwN1uyDGUXCGzb-sJf9r6~aHVa7sRO~oLqV1Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Dirac_Like_Equations_for_Gauge_Fields","translated_slug":"","page_count":7,"language":"en","content_type":"Work","summary":"We construct Dirac-like equations on a principal bundle over spacetime which is also the setting for the standard gauge field theories. We see that they describe other fields besides the. usual gauge fields, and impose certain degeneracies on the fields over a bifurcation domain.","owner":{"id":631545,"first_name":"Francisco Antonio","middle_initials":"","last_name":"Doria","page_name":"FranciscoDoria","domain_name":"ufrj","created_at":"2011-07-31T14:20:54.461-07:00","display_name":"Francisco Antonio Doria","url":"https://ufrj.academia.edu/FranciscoDoria"},"attachments":[{"id":98570851,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/98570851/thumbnails/1.jpg","file_name":"75-6-1440.pdf","download_url":"https://www.academia.edu/attachments/98570851/download_file","bulk_download_file_name":"Dirac_Like_Equations_for_Gauge_Fields.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/98570851/75-6-1440-libre.pdf?1676212331=\u0026response-content-disposition=attachment%3B+filename%3DDirac_Like_Equations_for_Gauge_Fields.pdf\u0026Expires=1743333192\u0026Signature=XMZAkWz7L8vv80jbpsguQL4qnOUEsqUhLdXo2gJNNAnkDgDIzB9-wRrABz7zf6wCHFkJbmNntXQWeXvHMibZ2XMNphYrTh3KWLRnvAOk1p1-P7egU8TAaPvp9hJuaBQ~rZUVW~LTqv0~oOcTmdTVR4OfwDpVAMr0MUoaR3cPgahrD2Serw-TLidIc7EMAvoaAQWgD99KEGvRGu6cYaXlqGCyQZwd3Dpts56WwONDqhzcnSSZIjcqXNr5aCknIVR24JVGFv3cpkDkeEtLOuODs9CBqW~m3RK1oeubAmbaCJvffH9yPhwN1uyDGUXCGzb-sJf9r6~aHVa7sRO~oLqV1Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics"},{"id":80414,"name":"Mathematical Sciences","url":"https://www.academia.edu/Documents/in/Mathematical_Sciences"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":143488,"name":"Dirac equation","url":"https://www.academia.edu/Documents/in/Dirac_equation"},{"id":403158,"name":"Gauge Field","url":"https://www.academia.edu/Documents/in/Gauge_Field"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-96762470-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="96762469"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/96762469/A_Suppes_predicate_for_general_relativity_and_set_theoretically_generic_spacetimes"><img alt="Research paper thumbnail of A Suppes predicate for general relativity and set-theoretically generic spacetimes" class="work-thumbnail" src="https://attachments.academia-assets.com/98570852/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/96762469/A_Suppes_predicate_for_general_relativity_and_set_theoretically_generic_spacetimes">A Suppes predicate for general relativity and set-theoretically generic spacetimes</a></div><div class="wp-workCard_item"><span>International Journal of Theoretical Physics</span><span>, 1990</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We summarize ideas from Zermelo-Fraenkel set theory up to an axiomatic treatment for general rela...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We summarize ideas from Zermelo-Fraenkel set theory up to an axiomatic treatment for general relativity based on a Suppes predicate. We then examine the meaning of set-theoretic genericity for manifolds that underlie the Einstein equations. A physical interpretation is finally offered for those set-theoretically generic manifolds in gravitational theory.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="b8cf2120f81d006bbd92e885e2bb6a06" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":98570852,"asset_id":96762469,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/98570852/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="96762469"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="96762469"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 96762469; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=96762469]").text(description); $(".js-view-count[data-work-id=96762469]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 96762469; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='96762469']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "b8cf2120f81d006bbd92e885e2bb6a06" } } $('.js-work-strip[data-work-id=96762469]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":96762469,"title":"A Suppes predicate for general relativity and set-theoretically generic spacetimes","translated_title":"","metadata":{"publisher":"Springer Nature","grobid_abstract":"We summarize ideas from Zermelo-Fraenkel set theory up to an axiomatic treatment for general relativity based on a Suppes predicate. We then examine the meaning of set-theoretic genericity for manifolds that underlie the Einstein equations. A physical interpretation is finally offered for those set-theoretically generic manifolds in gravitational theory.","publication_date":{"day":null,"month":null,"year":1990,"errors":{}},"publication_name":"International Journal of Theoretical Physics","grobid_abstract_attachment_id":98570852},"translated_abstract":null,"internal_url":"https://www.academia.edu/96762469/A_Suppes_predicate_for_general_relativity_and_set_theoretically_generic_spacetimes","translated_internal_url":"","created_at":"2023-02-12T05:58:24.282-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":631545,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":98570852,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/98570852/thumbnails/1.jpg","file_name":"DoriaEtAl1990.pdf","download_url":"https://www.academia.edu/attachments/98570852/download_file","bulk_download_file_name":"A_Suppes_predicate_for_general_relativit.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/98570852/DoriaEtAl1990-libre.pdf?1676212337=\u0026response-content-disposition=attachment%3B+filename%3DA_Suppes_predicate_for_general_relativit.pdf\u0026Expires=1743333192\u0026Signature=TyWwOEYOZ3Ub4oFhG49qpJnFcvJVTaIqNI1GKL2ZqsmkJmnUkEJRELpkv89hjnPh20w1JSu14ahGyCMfxyQkfeUxEiR3b-neKIeynl1f34LZWl81IX8ilgEScK8bbPwDSPaVeEUmp1HGjTwEt6pcrndxdZe-aoW6mYmM14Et~gMe6VTpUihxQTRNNvho21AOqBwFOgxgbRLemj8UTiOcHnaYzGFALuply0DbdoxQvKAppKe1oTK7u2ILwkgTe8PZL3tiLvS8Jk11Adrfa9HT6NvTk~3Hx0l-eOGHeRfNOwgVaOw8AGI~SGigKCdtRlqCTPppL0ds7LMLjK0En~ISoA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"A_Suppes_predicate_for_general_relativity_and_set_theoretically_generic_spacetimes","translated_slug":"","page_count":27,"language":"en","content_type":"Work","summary":"We summarize ideas from Zermelo-Fraenkel set theory up to an axiomatic treatment for general relativity based on a Suppes predicate. We then examine the meaning of set-theoretic genericity for manifolds that underlie the Einstein equations. A physical interpretation is finally offered for those set-theoretically generic manifolds in gravitational theory.","owner":{"id":631545,"first_name":"Francisco Antonio","middle_initials":"","last_name":"Doria","page_name":"FranciscoDoria","domain_name":"ufrj","created_at":"2011-07-31T14:20:54.461-07:00","display_name":"Francisco Antonio Doria","url":"https://ufrj.academia.edu/FranciscoDoria"},"attachments":[{"id":98570852,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/98570852/thumbnails/1.jpg","file_name":"DoriaEtAl1990.pdf","download_url":"https://www.academia.edu/attachments/98570852/download_file","bulk_download_file_name":"A_Suppes_predicate_for_general_relativit.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/98570852/DoriaEtAl1990-libre.pdf?1676212337=\u0026response-content-disposition=attachment%3B+filename%3DA_Suppes_predicate_for_general_relativit.pdf\u0026Expires=1743333192\u0026Signature=TyWwOEYOZ3Ub4oFhG49qpJnFcvJVTaIqNI1GKL2ZqsmkJmnUkEJRELpkv89hjnPh20w1JSu14ahGyCMfxyQkfeUxEiR3b-neKIeynl1f34LZWl81IX8ilgEScK8bbPwDSPaVeEUmp1HGjTwEt6pcrndxdZe-aoW6mYmM14Et~gMe6VTpUihxQTRNNvho21AOqBwFOgxgbRLemj8UTiOcHnaYzGFALuply0DbdoxQvKAppKe1oTK7u2ILwkgTe8PZL3tiLvS8Jk11Adrfa9HT6NvTk~3Hx0l-eOGHeRfNOwgVaOw8AGI~SGigKCdtRlqCTPppL0ds7LMLjK0En~ISoA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":363,"name":"Set Theory","url":"https://www.academia.edu/Documents/in/Set_Theory"},{"id":503,"name":"Theoretical Physics","url":"https://www.academia.edu/Documents/in/Theoretical_Physics"},{"id":3504,"name":"General Relativity","url":"https://www.academia.edu/Documents/in/General_Relativity"},{"id":4102,"name":"Foundations of Physics","url":"https://www.academia.edu/Documents/in/Foundations_of_Physics"},{"id":80414,"name":"Mathematical Sciences","url":"https://www.academia.edu/Documents/in/Mathematical_Sciences"},{"id":93895,"name":"Theory of Relativity","url":"https://www.academia.edu/Documents/in/Theory_of_Relativity"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":1741682,"name":"Zermelo Fraenkel","url":"https://www.academia.edu/Documents/in/Zermelo_Fraenkel"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-96762469-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="96762468"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/96762468/G%C3%B6del_incompleteness_explicit_expressions_for_complete_arithmetic_degrees_and_applications"><img alt="Research paper thumbnail of Gödel incompleteness, explicit expressions for complete arithmetic degrees and applications" class="work-thumbnail" src="https://attachments.academia-assets.com/98570848/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/96762468/G%C3%B6del_incompleteness_explicit_expressions_for_complete_arithmetic_degrees_and_applications">Gödel incompleteness, explicit expressions for complete arithmetic degrees and applications</a></div><div class="wp-workCard_item"><span>Complexity</span><span>, 1995</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We summarize in a n intuitiue vein a few concepts froin recursion theory and fi-om the theory ofj...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We summarize in a n intuitiue vein a few concepts froin recursion theory and fi-om the theory ofjormal systems and then state and comment our recent 1-esults on the incoinpleteness of elementary real analysis and its consequences. Their relation to forcing is also dealt with. 0 1995 John Wiiviley & Sons, Inc.</span></div><div class="wp-workCard_item"><div class="carousel-container carousel-container--sm" id="profile-work-96762468-figures"><div class="prev-slide-container js-prev-button-container"><button aria-label="Previous" class="carousel-navigation-button js-profile-work-96762468-figures-prev"><span class="material-symbols-outlined" style="font-size: 24px" translate="no">arrow_back_ios</span></button></div><div class="slides-container js-slides-container"><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/21744885/figure-1-example-let-us-be-given-the-following-infinite"><img alt="Example 5.6. Let us be given the following infinite denumer- able family A(m) of polynomial dynamical systems over Z, parametrized by ,,, m € w, and defined on an adequate Rx M: " class="figure-slide-image" src="https://figures.academia-assets.com/98570848/figure_001.jpg" /></a></figure></div><div class="next-slide-container js-next-button-container"><button aria-label="Next" class="carousel-navigation-button js-profile-work-96762468-figures-next"><span class="material-symbols-outlined" style="font-size: 24px" translate="no">arrow_forward_ios</span></button></div></div></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="6738de40f5afa7866bff4e093d0972bd" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":98570848,"asset_id":96762468,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/98570848/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="96762468"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="96762468"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 96762468; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=96762468]").text(description); $(".js-view-count[data-work-id=96762468]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 96762468; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='96762468']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "6738de40f5afa7866bff4e093d0972bd" } } $('.js-work-strip[data-work-id=96762468]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":96762468,"title":"Gödel incompleteness, explicit expressions for complete arithmetic degrees and applications","translated_title":"","metadata":{"ai_title_tag":"Incompleteness in Real Analysis and Applications","grobid_abstract":"We summarize in a n intuitiue vein a few concepts froin recursion theory and fi-om the theory ofjormal systems and then state and comment our recent 1-esults on the incoinpleteness of elementary real analysis and its consequences. Their relation to forcing is also dealt with. 0 1995 John Wiiviley \u0026 Sons, Inc.","publication_date":{"day":null,"month":null,"year":1995,"errors":{}},"publication_name":"Complexity","grobid_abstract_attachment_id":98570848},"translated_abstract":null,"internal_url":"https://www.academia.edu/96762468/G%C3%B6del_incompleteness_explicit_expressions_for_complete_arithmetic_degrees_and_applications","translated_internal_url":"","created_at":"2023-02-12T05:58:24.190-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":631545,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":98570848,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/98570848/thumbnails/1.jpg","file_name":"cplx.613001031220230212-1-1nzji37.pdf","download_url":"https://www.academia.edu/attachments/98570848/download_file","bulk_download_file_name":"Godel_incompleteness_explicit_expression.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/98570848/cplx.613001031220230212-1-1nzji37-libre.pdf?1676212334=\u0026response-content-disposition=attachment%3B+filename%3DGodel_incompleteness_explicit_expression.pdf\u0026Expires=1743417109\u0026Signature=Ue9DHyqqDvXo8RbX2nMPtEB9bbSEg8akHdYgAS7sGjycqS22IJx7UaVc0uHXHON8zDBmDndVW2nxFHtMbKMRVw5X8HNDPYm5PY6F9wGMkWd2elUD807PtFs20yp81O~TE~VWGj5g8IhVjBZuR1Givn5S7ecMTUnO76nQ6ptU-iUaAwmNjc1QL8oappiBzmhiCTLHvaQBLmSVRfVK7uJf9rlztVr5NovQF0EBu5vi6qgy7-t735TvLFZOXlGmO1nrm9iQmh7ksSheHqTFB8L3lCgc03vewdBb2vNOZ1IFkVb0sFr2Kn-omQLOOJBDaHGoKEEyW6h4F54YYiwBKrTgzg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Gödel_incompleteness_explicit_expressions_for_complete_arithmetic_degrees_and_applications","translated_slug":"","page_count":16,"language":"en","content_type":"Work","summary":"We summarize in a n intuitiue vein a few concepts froin recursion theory and fi-om the theory ofjormal systems and then state and comment our recent 1-esults on the incoinpleteness of elementary real analysis and its consequences. Their relation to forcing is also dealt with. 0 1995 John Wiiviley \u0026 Sons, Inc.","owner":{"id":631545,"first_name":"Francisco Antonio","middle_initials":"","last_name":"Doria","page_name":"FranciscoDoria","domain_name":"ufrj","created_at":"2011-07-31T14:20:54.461-07:00","display_name":"Francisco Antonio Doria","url":"https://ufrj.academia.edu/FranciscoDoria"},"attachments":[{"id":98570848,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/98570848/thumbnails/1.jpg","file_name":"cplx.613001031220230212-1-1nzji37.pdf","download_url":"https://www.academia.edu/attachments/98570848/download_file","bulk_download_file_name":"Godel_incompleteness_explicit_expression.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/98570848/cplx.613001031220230212-1-1nzji37-libre.pdf?1676212334=\u0026response-content-disposition=attachment%3B+filename%3DGodel_incompleteness_explicit_expression.pdf\u0026Expires=1743417109\u0026Signature=Ue9DHyqqDvXo8RbX2nMPtEB9bbSEg8akHdYgAS7sGjycqS22IJx7UaVc0uHXHON8zDBmDndVW2nxFHtMbKMRVw5X8HNDPYm5PY6F9wGMkWd2elUD807PtFs20yp81O~TE~VWGj5g8IhVjBZuR1Givn5S7ecMTUnO76nQ6ptU-iUaAwmNjc1QL8oappiBzmhiCTLHvaQBLmSVRfVK7uJf9rlztVr5NovQF0EBu5vi6qgy7-t735TvLFZOXlGmO1nrm9iQmh7ksSheHqTFB8L3lCgc03vewdBb2vNOZ1IFkVb0sFr2Kn-omQLOOJBDaHGoKEEyW6h4F54YYiwBKrTgzg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":305,"name":"Applied Mathematics","url":"https://www.academia.edu/Documents/in/Applied_Mathematics"},{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":8367,"name":"Complexity","url":"https://www.academia.edu/Documents/in/Complexity"},{"id":131903,"name":"Arithmetic","url":"https://www.academia.edu/Documents/in/Arithmetic"},{"id":556845,"name":"Numerical Analysis and Computational Mathematics","url":"https://www.academia.edu/Documents/in/Numerical_Analysis_and_Computational_Mathematics"},{"id":1135652,"name":"Complex","url":"https://www.academia.edu/Documents/in/Complex"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (true) { Aedu.setUpFigureCarousel('profile-work-96762468-figures'); } }); </script> </div><div class="profile--tab_content_container js-tab-pane tab-pane" data-section-id="9100416" id="drafts"><div class="js-work-strip profile--work_container" data-work-id="38873558"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/38873558/Can_a_Free_Market_be_Complete"><img alt="Research paper thumbnail of Can a Free Market be Complete?" class="work-thumbnail" src="https://attachments.academia-assets.com/58970041/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/38873558/Can_a_Free_Market_be_Complete">Can a Free Market be Complete?</a></div><div class="wp-workCard_item wp-workCard--coauthors"><span>by </span><span><a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/SamiAlSuwailem">Sami Al-Suwailem</a> and <a class="" data-click-track="profile-work-strip-authors" href="https://ufrj.academia.edu/FranciscoDoria">Francisco Antonio Doria</a></span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We define a complete market to be one in which complete contracts can be algorithmically written ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We define a complete market to be one in which complete contracts can be algorithmically written and executed. We define a free market to be a market where private ownership is positively valued by market members. In an economy with zero transaction costs, if the market is algorithmically complete, ownership will be worthless. Accordingly, the market can be either free or complete, but not both. For the same reason, the market can be either efficient or complete, but not both.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="a6ed6edbca463d49787093b844952c94" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":58970041,"asset_id":38873558,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/58970041/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="38873558"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="38873558"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 38873558; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=38873558]").text(description); $(".js-view-count[data-work-id=38873558]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 38873558; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='38873558']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "a6ed6edbca463d49787093b844952c94" } } $('.js-work-strip[data-work-id=38873558]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":38873558,"title":"Can a Free Market be Complete?","translated_title":"","metadata":{"abstract":"We define a complete market to be one in which complete contracts can be algorithmically written and executed. We define a free market to be a market where private ownership is positively valued by market members. In an economy with zero transaction costs, if the market is algorithmically complete, ownership will be worthless. Accordingly, the market can be either free or complete, but not both. For the same reason, the market can be either efficient or complete, but not both."},"translated_abstract":"We define a complete market to be one in which complete contracts can be algorithmically written and executed. We define a free market to be a market where private ownership is positively valued by market members. In an economy with zero transaction costs, if the market is algorithmically complete, ownership will be worthless. Accordingly, the market can be either free or complete, but not both. For the same reason, the market can be either efficient or complete, but not both.","internal_url":"https://www.academia.edu/38873558/Can_a_Free_Market_be_Complete","translated_internal_url":"","created_at":"2019-04-20T05:11:44.225-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":690303,"coauthors_can_edit":true,"document_type":"draft","co_author_tags":[{"id":32465796,"work_id":38873558,"tagging_user_id":690303,"tagged_user_id":631545,"co_author_invite_id":null,"email":"f***3@gmail.com","affiliation":"Universidade Federal do Rio de Janeiro (UFRJ)","display_order":1,"name":"Francisco Antonio Doria","title":"Can a Free Market be Complete?"}],"downloadable_attachments":[{"id":58970041,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/58970041/thumbnails/1.jpg","file_name":"Free_Markets_standard_format20190420-26211-1y055s3.pdf","download_url":"https://www.academia.edu/attachments/58970041/download_file","bulk_download_file_name":"Can_a_Free_Market_be_Complete.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/58970041/Free_Markets_standard_format20190420-26211-1y055s3-libre.pdf?1555809810=\u0026response-content-disposition=attachment%3B+filename%3DCan_a_Free_Market_be_Complete.pdf\u0026Expires=1743333192\u0026Signature=W5Cftj8h7GNlsxeVpowfw3DFPYaQoRU0x9n7Q~LXVNjYsEM-~8VJXWAMqB2bJoforEGqNtylU-zqbC42JyaRtHoScbpUc9JkXTT8nq6Qi55BvnvcusAIRrkrZexQfAhnmRhDK4uTv~8iBDZXraOVXRyrgdbwM3QzbnYYGVtvcYXNSCIMYCINFPQw8z~kAdv~c-8iTQTE0Ye3eaN2fE9EiQ~43g1x754i6oPSHz70khVwpXj7WRqZ6505KPASXIoa~ZxW~d9AQtvE93syFtfktyCiaPyUmXcCEhzG4MD0Zstv1l6dGBekk0bdCjJmNUAKwrsvCBbythI0xeITGFlVaw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Can_a_Free_Market_be_Complete","translated_slug":"","page_count":7,"language":"en","content_type":"Work","summary":"We define a complete market to be one in which complete contracts can be algorithmically written and executed. We define a free market to be a market where private ownership is positively valued by market members. In an economy with zero transaction costs, if the market is algorithmically complete, ownership will be worthless. Accordingly, the market can be either free or complete, but not both. For the same reason, the market can be either efficient or complete, but not both.","owner":{"id":690303,"first_name":"Sami","middle_initials":null,"last_name":"Al-Suwailem","page_name":"SamiAlSuwailem","domain_name":"independent","created_at":"2011-08-26T06:27:59.525-07:00","display_name":"Sami Al-Suwailem","url":"https://independent.academia.edu/SamiAlSuwailem"},"attachments":[{"id":58970041,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/58970041/thumbnails/1.jpg","file_name":"Free_Markets_standard_format20190420-26211-1y055s3.pdf","download_url":"https://www.academia.edu/attachments/58970041/download_file","bulk_download_file_name":"Can_a_Free_Market_be_Complete.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/58970041/Free_Markets_standard_format20190420-26211-1y055s3-libre.pdf?1555809810=\u0026response-content-disposition=attachment%3B+filename%3DCan_a_Free_Market_be_Complete.pdf\u0026Expires=1743333192\u0026Signature=W5Cftj8h7GNlsxeVpowfw3DFPYaQoRU0x9n7Q~LXVNjYsEM-~8VJXWAMqB2bJoforEGqNtylU-zqbC42JyaRtHoScbpUc9JkXTT8nq6Qi55BvnvcusAIRrkrZexQfAhnmRhDK4uTv~8iBDZXraOVXRyrgdbwM3QzbnYYGVtvcYXNSCIMYCINFPQw8z~kAdv~c-8iTQTE0Ye3eaN2fE9EiQ~43g1x754i6oPSHz70khVwpXj7WRqZ6505KPASXIoa~ZxW~d9AQtvE93syFtfktyCiaPyUmXcCEhzG4MD0Zstv1l6dGBekk0bdCjJmNUAKwrsvCBbythI0xeITGFlVaw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":425,"name":"Computability Theory","url":"https://www.academia.edu/Documents/in/Computability_Theory"},{"id":37925,"name":"Ownership","url":"https://www.academia.edu/Documents/in/Ownership"},{"id":67762,"name":"Efficient Market Hypothesis","url":"https://www.academia.edu/Documents/in/Efficient_Market_Hypothesis"},{"id":70953,"name":"Finite Automata","url":"https://www.academia.edu/Documents/in/Finite_Automata"},{"id":349061,"name":"Turing machine","url":"https://www.academia.edu/Documents/in/Turing_machine"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-38873558-figures'); } }); </script> </div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/google_contacts-0dfb882d836b94dbcb4a2d123d6933fc9533eda5be911641f20b4eb428429600.js"], function() { // from javascript_helper.rb $('.js-google-connect-button').click(function(e) { e.preventDefault(); GoogleContacts.authorize_and_show_contacts(); Aedu.Dismissibles.recordClickthrough("WowProfileImportContactsPrompt"); }); $('.js-update-biography-button').click(function(e) { e.preventDefault(); Aedu.Dismissibles.recordClickthrough("UpdateUserBiographyPrompt"); $.ajax({ url: $r.api_v0_profiles_update_about_path({ subdomain_param: 'api', about: "", }), type: 'PUT', success: function(response) { location.reload(); } }); }); $('.js-work-creator-button').click(function (e) { e.preventDefault(); window.location = $r.upload_funnel_document_path({ source: encodeURIComponent(""), }); }); $('.js-video-upload-button').click(function (e) { e.preventDefault(); window.location = $r.upload_funnel_video_path({ source: encodeURIComponent(""), }); }); $('.js-do-this-later-button').click(function() { $(this).closest('.js-profile-nag-panel').remove(); Aedu.Dismissibles.recordDismissal("WowProfileImportContactsPrompt"); }); $('.js-update-biography-do-this-later-button').click(function(){ $(this).closest('.js-profile-nag-panel').remove(); Aedu.Dismissibles.recordDismissal("UpdateUserBiographyPrompt"); }); $('.wow-profile-mentions-upsell--close').click(function(){ $('.wow-profile-mentions-upsell--panel').hide(); Aedu.Dismissibles.recordDismissal("WowProfileMentionsUpsell"); }); $('.wow-profile-mentions-upsell--button').click(function(){ Aedu.Dismissibles.recordClickthrough("WowProfileMentionsUpsell"); }); new WowProfile.SocialRedesignUserWorks({ initialWorksOffset: 20, allWorksOffset: 20, maxSections: 3 }) }); </script> </div></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile_edit-5ea339ee107c863779f560dd7275595239fed73f1a13d279d2b599a28c0ecd33.js","https://a.academia-assets.com/assets/add_coauthor-22174b608f9cb871d03443cafa7feac496fb50d7df2d66a53f5ee3c04ba67f53.js","https://a.academia-assets.com/assets/tab-dcac0130902f0cc2d8cb403714dd47454f11fc6fb0e99ae6a0827b06613abc20.js","https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js"], function() { // from javascript_helper.rb window.ae = window.ae || {}; window.ae.WowProfile = window.ae.WowProfile || {}; if(Aedu.User.current && Aedu.User.current.id === $viewedUser.id) { window.ae.WowProfile.current_user_edit = {}; new WowProfileEdit.EditUploadView({ el: '.js-edit-upload-button-wrapper', model: window.$current_user, }); new AddCoauthor.AddCoauthorsController(); } var userInfoView = new WowProfile.SocialRedesignUserInfo({ recaptcha_key: "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB" }); WowProfile.router = new WowProfile.Router({ userInfoView: userInfoView }); Backbone.history.start({ pushState: true, root: "/" + $viewedUser.page_name }); new WowProfile.UserWorksNav() }); </script> </div> <div class="bootstrap login"><div class="modal fade login-modal" id="login-modal"><div class="login-modal-dialog modal-dialog"><div class="modal-content"><div class="modal-header"><button class="close close" data-dismiss="modal" type="button"><span aria-hidden="true">×</span><span class="sr-only">Close</span></button><h4 class="modal-title text-center"><strong>Log In</strong></h4></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><button class="btn btn-fb btn-lg btn-block btn-v-center-content" id="login-facebook-oauth-button"><svg style="float: left; width: 19px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="facebook-square" class="svg-inline--fa fa-facebook-square fa-w-14" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512"><path fill="currentColor" d="M400 32H48A48 48 0 0 0 0 80v352a48 48 0 0 0 48 48h137.25V327.69h-63V256h63v-54.64c0-62.15 37-96.48 93.67-96.48 27.14 0 55.52 4.84 55.52 4.84v61h-31.27c-30.81 0-40.42 19.12-40.42 38.73V256h68.78l-11 71.69h-57.78V480H400a48 48 0 0 0 48-48V80a48 48 0 0 0-48-48z"></path></svg><small><strong>Log in</strong> with <strong>Facebook</strong></small></button><br /><button class="btn btn-google btn-lg btn-block btn-v-center-content" id="login-google-oauth-button"><svg style="float: left; width: 22px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="google-plus" class="svg-inline--fa fa-google-plus fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M256,8C119.1,8,8,119.1,8,256S119.1,504,256,504,504,392.9,504,256,392.9,8,256,8ZM185.3,380a124,124,0,0,1,0-248c31.3,0,60.1,11,83,32.3l-33.6,32.6c-13.2-12.9-31.3-19.1-49.4-19.1-42.9,0-77.2,35.5-77.2,78.1S142.3,334,185.3,334c32.6,0,64.9-19.1,70.1-53.3H185.3V238.1H302.2a109.2,109.2,0,0,1,1.9,20.7c0,70.8-47.5,121.2-118.8,121.2ZM415.5,273.8v35.5H380V273.8H344.5V238.3H380V202.8h35.5v35.5h35.2v35.5Z"></path></svg><small><strong>Log in</strong> with <strong>Google</strong></small></button><br /><style type="text/css">.sign-in-with-apple-button { width: 100%; height: 52px; border-radius: 3px; border: 1px solid black; cursor: pointer; } .sign-in-with-apple-button > div { margin: 0 auto; / This centers the Apple-rendered button horizontally }</style><script src="https://appleid.cdn-apple.com/appleauth/static/jsapi/appleid/1/en_US/appleid.auth.js" type="text/javascript"></script><div class="sign-in-with-apple-button" data-border="false" data-color="white" id="appleid-signin"><span ="Sign Up with Apple" class="u-fs11"></span></div><script>AppleID.auth.init({ clientId: 'edu.academia.applesignon', scope: 'name email', redirectURI: 'https://www.academia.edu/sessions', state: "d33dee62a6a5bb433bbb93f44f28b8718176e917bc23270c5338badfa832878e", });</script><script>// Hacky way of checking if on fast loswp if (window.loswp == null) { (function() { const Google = window?.Aedu?.Auth?.OauthButton?.Login?.Google; const Facebook = window?.Aedu?.Auth?.OauthButton?.Login?.Facebook; if (Google) { new Google({ el: '#login-google-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } if (Facebook) { new Facebook({ el: '#login-facebook-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } })(); }</script></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><div class="hr-heading login-hr-heading"><span class="hr-heading-text">or</span></div></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><form class="js-login-form" action="https://www.academia.edu/sessions" accept-charset="UTF-8" method="post"><input type="hidden" name="authenticity_token" value="GTteuWSkNY8aQMh2T2y4r_5iWpRbN0NkYc09R78OaIafrgIB9b921YA6-CO1wib7xGbLEChBxmDmrUOk9BBZwQ" autocomplete="off" /><div class="form-group"><label class="control-label" for="login-modal-email-input" style="font-size: 14px;">Email</label><input class="form-control" id="login-modal-email-input" name="login" type="email" /></div><div class="form-group"><label class="control-label" for="login-modal-password-input" style="font-size: 14px;">Password</label><input class="form-control" id="login-modal-password-input" name="password" type="password" /></div><input type="hidden" name="post_login_redirect_url" id="post_login_redirect_url" value="https://ufrj.academia.edu/FranciscoDoria" autocomplete="off" /><div class="checkbox"><label><input type="checkbox" name="remember_me" id="remember_me" value="1" checked="checked" /><small style="font-size: 12px; margin-top: 2px; display: inline-block;">Remember me on this computer</small></label></div><br><input type="submit" name="commit" value="Log In" class="btn btn-primary btn-block btn-lg js-login-submit" data-disable-with="Log In" /></br></form><script>typeof window?.Aedu?.recaptchaManagedForm === 'function' && window.Aedu.recaptchaManagedForm( document.querySelector('.js-login-form'), document.querySelector('.js-login-submit') );</script><small style="font-size: 12px;"><br />or <a data-target="#login-modal-reset-password-container" data-toggle="collapse" href="javascript:void(0)">reset password</a></small><div class="collapse" id="login-modal-reset-password-container"><br /><div class="well margin-0x"><form class="js-password-reset-form" action="https://www.academia.edu/reset_password" accept-charset="UTF-8" method="post"><input type="hidden" name="authenticity_token" value="hBDQpHPNoLNuE6c7A_x-TkDCqT9I9dahyUNC-xhhpnQChYwc4tbj6fRpl275UuAaesY4uzuDU6VOIzwYU3-XMw" autocomplete="off" /><p>Enter the email address you signed up with and we'll email you a reset link.</p><div class="form-group"><input class="form-control" name="email" type="email" /></div><script src="https://recaptcha.net/recaptcha/api.js" async defer></script> <script> var invisibleRecaptchaSubmit = function () { var closestForm = function (ele) { var curEle = ele.parentNode; while (curEle.nodeName !== 'FORM' && curEle.nodeName !== 'BODY'){ curEle = curEle.parentNode; } return curEle.nodeName === 'FORM' ? curEle : null }; var eles = document.getElementsByClassName('g-recaptcha'); if (eles.length > 0) { var form = closestForm(eles[0]); if (form) { form.submit(); } } }; </script> <input type="submit" data-sitekey="6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj" data-callback="invisibleRecaptchaSubmit" class="g-recaptcha btn btn-primary btn-block" value="Email me a link" value=""/> </form></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/collapse-45805421cf446ca5adf7aaa1935b08a3a8d1d9a6cc5d91a62a2a3a00b20b3e6a.js"], function() { // from javascript_helper.rb $("#login-modal-reset-password-container").on("shown.bs.collapse", function() { $(this).find("input[type=email]").focus(); }); }); </script> </div></div></div><div class="modal-footer"><div class="text-center"><small style="font-size: 12px;">Need an account? <a rel="nofollow" href="https://www.academia.edu/signup">Click here to sign up</a></small></div></div></div></div></div></div><script>// If we are on subdomain or non-bootstrapped page, redirect to login page instead of showing modal (function(){ if (typeof $ === 'undefined') return; var host = window.location.hostname; if ((host === $domain || host === "www."+$domain) && (typeof $().modal === 'function')) { $("#nav_log_in").click(function(e) { // Don't follow the link and open the modal e.preventDefault(); $("#login-modal").on('shown.bs.modal', function() { $(this).find("#login-modal-email-input").focus() }).modal('show'); }); } })()</script> <div class="bootstrap" id="footer"><div class="footer-content clearfix text-center padding-top-7x" style="width:100%;"><ul class="footer-links-secondary footer-links-wide list-inline margin-bottom-1x"><li><a href="https://www.academia.edu/about">About</a></li><li><a href="https://www.academia.edu/press">Press</a></li><li><a href="https://www.academia.edu/documents">Papers</a></li><li><a href="https://www.academia.edu/topics">Topics</a></li><li><a href="https://www.academia.edu/journals">Academia.edu Journals</a></li><li><a rel="nofollow" href="https://www.academia.edu/hiring"><svg style="width: 13px; height: 13px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="briefcase" class="svg-inline--fa fa-briefcase fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M320 336c0 8.84-7.16 16-16 16h-96c-8.84 0-16-7.16-16-16v-48H0v144c0 25.6 22.4 48 48 48h416c25.6 0 48-22.4 48-48V288H320v48zm144-208h-80V80c0-25.6-22.4-48-48-48H176c-25.6 0-48 22.4-48 48v48H48c-25.6 0-48 22.4-48 48v80h512v-80c0-25.6-22.4-48-48-48zm-144 0H192V96h128v32z"></path></svg> <strong>We're Hiring!</strong></a></li><li><a rel="nofollow" href="https://support.academia.edu/hc/en-us"><svg style="width: 12px; height: 12px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="question-circle" class="svg-inline--fa fa-question-circle fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M504 256c0 136.997-111.043 248-248 248S8 392.997 8 256C8 119.083 119.043 8 256 8s248 111.083 248 248zM262.655 90c-54.497 0-89.255 22.957-116.549 63.758-3.536 5.286-2.353 12.415 2.715 16.258l34.699 26.31c5.205 3.947 12.621 3.008 16.665-2.122 17.864-22.658 30.113-35.797 57.303-35.797 20.429 0 45.698 13.148 45.698 32.958 0 14.976-12.363 22.667-32.534 33.976C247.128 238.528 216 254.941 216 296v4c0 6.627 5.373 12 12 12h56c6.627 0 12-5.373 12-12v-1.333c0-28.462 83.186-29.647 83.186-106.667 0-58.002-60.165-102-116.531-102zM256 338c-25.365 0-46 20.635-46 46 0 25.364 20.635 46 46 46s46-20.636 46-46c0-25.365-20.635-46-46-46z"></path></svg> <strong>Help Center</strong></a></li></ul><ul class="footer-links-tertiary list-inline margin-bottom-1x"><li class="small">Find new research papers in:</li><li class="small"><a href="https://www.academia.edu/Documents/in/Physics">Physics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Chemistry">Chemistry</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Biology">Biology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Health_Sciences">Health Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Ecology">Ecology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Earth_Sciences">Earth Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Cognitive_Science">Cognitive Science</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Mathematics">Mathematics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Computer_Science">Computer Science</a></li></ul></div></div><div class="DesignSystem" id="credit" style="width:100%;"><ul class="u-pl0x footer-links-legal list-inline"><li><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li>Academia ©2025</li></ul></div><script> //<![CDATA[ window.detect_gmtoffset = true; window.Academia && window.Academia.set_gmtoffset && Academia.set_gmtoffset('/gmtoffset'); //]]> </script> <div id='overlay_background'></div> <div id='bootstrap-modal-container' class='bootstrap'></div> <div id='ds-modal-container' class='bootstrap DesignSystem'></div> <div id='full-screen-modal'></div> </div> </body> </html>