CINXE.COM
Search results for: evoked responses
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: evoked responses</title> <meta name="description" content="Search results for: evoked responses"> <meta name="keywords" content="evoked responses"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="evoked responses" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="evoked responses"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 2227</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: evoked responses</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2227</span> Spatiotemporal Analysis of Visual Evoked Responses Using Dense EEG</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rima%20Hleiss">Rima Hleiss</a>, <a href="https://publications.waset.org/abstracts/search?q=Elie%20Bitar"> Elie Bitar</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahmoud%20Hassan"> Mahmoud Hassan</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamad%20Khalil"> Mohamad Khalil</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A comprehensive study of object recognition in the human brain requires combining both spatial and temporal analysis of brain activity. Here, we are mainly interested in three issues: the time perception of visual objects, the ability of discrimination between two particular categories (objects vs. animals), and the possibility to identify a particular spatial representation of visual objects. Our experiment consisted of acquiring dense electroencephalographic (EEG) signals during a picture-naming task comprising a set of objects and animals’ images. These EEG responses were recorded from nine participants. In order to determine the time perception of the presented visual stimulus, we analyzed the Event Related Potentials (ERPs) derived from the recorded EEG signals. The analysis of these signals showed that the brain perceives animals and objects with different time instants. Concerning the discrimination of the two categories, the support vector machine (SVM) was applied on the instantaneous EEG (excellent temporal resolution: on the order of millisecond) to categorize the visual stimuli into two different classes. The spatial differences between the evoked responses of the two categories were also investigated. The results showed a variation of the neural activity with the properties of the visual input. Results showed also the existence of a spatial pattern of electrodes over particular regions of the scalp in correspondence to their responses to the visual inputs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=brain%20activity" title="brain activity">brain activity</a>, <a href="https://publications.waset.org/abstracts/search?q=categorization" title=" categorization"> categorization</a>, <a href="https://publications.waset.org/abstracts/search?q=dense%20EEG" title=" dense EEG"> dense EEG</a>, <a href="https://publications.waset.org/abstracts/search?q=evoked%20responses" title=" evoked responses"> evoked responses</a>, <a href="https://publications.waset.org/abstracts/search?q=spatio-temporal%20analysis" title=" spatio-temporal analysis"> spatio-temporal analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=SVM" title=" SVM"> SVM</a>, <a href="https://publications.waset.org/abstracts/search?q=time%20perception" title=" time perception"> time perception</a> </p> <a href="https://publications.waset.org/abstracts/39234/spatiotemporal-analysis-of-visual-evoked-responses-using-dense-eeg" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39234.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">422</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2226</span> Event Related Brain Potentials Evoked by Carmen in Musicians and Dancers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hanna%20Poikonen">Hanna Poikonen</a>, <a href="https://publications.waset.org/abstracts/search?q=Petri%20Toiviainen"> Petri Toiviainen</a>, <a href="https://publications.waset.org/abstracts/search?q=Mari%20Tervaniemi"> Mari Tervaniemi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Event-related potentials (ERPs) evoked by simple tones in the brain have been extensively studied. However, in reality the music surrounding us is spectrally and temporally complex and dynamic. Thus, the research using natural sounds is crucial in understanding the operation of the brain in its natural environment. Music is an excellent example of natural stimulation, which, in various forms, has always been an essential part of different cultures. In addition to sensory responses, music elicits vast cognitive and emotional processes in the brain. When compared to laymen, professional musicians have stronger ERP responses in processing individual musical features in simple tone sequences, such as changes in pitch, timbre and harmony. Here we show that the ERP responses evoked by rapid changes in individual musical features are more intense in musicians than in laymen, also while listening to long excerpts of the composition Carmen. Interestingly, for professional dancers, the amplitudes of the cognitive P300 response are weaker than for musicians but still stronger than for laymen. Also, the cognitive P300 latencies of musicians are significantly shorter whereas the latencies of laymen are significantly longer. In contrast, sensory N100 do not differ in amplitude or latency between musicians and laymen. These results, acquired from a novel ERP methodology for natural music, suggest that we can take the leap of studying the brain with long pieces of natural music also with the ERP method of electroencephalography (EEG), as has already been made with functional magnetic resonance (fMRI), as these two brain imaging devices complement each other. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electroencephalography" title="electroencephalography">electroencephalography</a>, <a href="https://publications.waset.org/abstracts/search?q=expertise" title=" expertise"> expertise</a>, <a href="https://publications.waset.org/abstracts/search?q=musical%20features" title=" musical features"> musical features</a>, <a href="https://publications.waset.org/abstracts/search?q=real-life%20music" title=" real-life music"> real-life music</a> </p> <a href="https://publications.waset.org/abstracts/25311/event-related-brain-potentials-evoked-by-carmen-in-musicians-and-dancers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25311.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">484</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2225</span> The Latency-Amplitude Binomial of Waves Resulting from the Application of Evoked Potentials for the Diagnosis of Dyscalculia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maria%20Isabel%20Garcia-Planas">Maria Isabel Garcia-Planas</a>, <a href="https://publications.waset.org/abstracts/search?q=Maria%20Victoria%20Garcia-Camba"> Maria Victoria Garcia-Camba</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recent advances in cognitive neuroscience have allowed a step forward in perceiving the processes involved in learning from the point of view of the acquisition of new information or the modification of existing mental content. The evoked potentials technique reveals how basic brain processes interact to achieve adequate and flexible behaviours. The objective of this work, using evoked potentials, is to study if it is possible to distinguish if a patient suffers a specific type of learning disorder to decide the possible therapies to follow. The methodology used, is the analysis of the dynamics of different areas of the brain during a cognitive activity to find the relationships between the different areas analyzed in order to better understand the functioning of neural networks. Also, the latest advances in neuroscience have revealed the existence of different brain activity in the learning process that can be highlighted through the use of non-invasive, innocuous, low-cost and easy-access techniques such as, among others, the evoked potentials that can help to detect early possible neuro-developmental difficulties for their subsequent assessment and cure. From the study of the amplitudes and latencies of the evoked potentials, it is possible to detect brain alterations in the learning process specifically in dyscalculia, to achieve specific corrective measures for the application of personalized psycho pedagogical plans that allow obtaining an optimal integral development of the affected people. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dyscalculia" title="dyscalculia">dyscalculia</a>, <a href="https://publications.waset.org/abstracts/search?q=neurodevelopment" title=" neurodevelopment"> neurodevelopment</a>, <a href="https://publications.waset.org/abstracts/search?q=evoked%20potentials" title=" evoked potentials"> evoked potentials</a>, <a href="https://publications.waset.org/abstracts/search?q=Learning%20disabilities" title=" Learning disabilities"> Learning disabilities</a>, <a href="https://publications.waset.org/abstracts/search?q=neural%20networks" title=" neural networks"> neural networks</a> </p> <a href="https://publications.waset.org/abstracts/133533/the-latency-amplitude-binomial-of-waves-resulting-from-the-application-of-evoked-potentials-for-the-diagnosis-of-dyscalculia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/133533.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">140</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2224</span> Adaptation to Repeated Eccentric Exercise Assessed by Double to Single Twitch Ratio</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Damian%20Janecki">Damian Janecki</a>, <a href="https://publications.waset.org/abstracts/search?q=Anna%20Jask%C3%B3lska"> Anna Jaskólska</a>, <a href="https://publications.waset.org/abstracts/search?q=Jaros%C5%82aw%20Marusiak"> Jarosław Marusiak</a>, <a href="https://publications.waset.org/abstracts/search?q=Artur%20Jask%C3%B3lski"> Artur Jaskólski</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this study was to assess double to single twitch ratio after two bouts of eccentric exercise of the elbow flexors. Maximal isometric torque, single and double twitch responses and low-frequency fatigue were assessed on the elbow flexors in 19 untrained male volunteers before, immediately after, 24 and 48 hours following two bouts of eccentric exercise consisted of 30 repetitions of lowering a dumbbell adjusted to ~75% of each individual's maximal isometric torque. Maximal isometric torque and electrically evoked responses decreased significantly in all measurements after the first bout of eccentric exercise (P<0.05). In measurements performed at 24 and 48 hours after the second bout both maximal voluntary isometric torque and electrically evoked contractions were significantly higher than in measurements performed after the fist bout (P<0.05). Although low-frequency fatigue significantly increased up to 48 hours after each bout of eccentric exercise, its values at 24 and 48 hours after the second bout were significantly lower than at respective time points after the first bout (P<0.05). Smaller changes in double to single twitch ratio at 24 and 48 hours after the second bout of eccentric exercise reflects repeated bout effect that confers protection against subsequent exercise-induced muscle damage. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biceps%20brachii" title="biceps brachii">biceps brachii</a>, <a href="https://publications.waset.org/abstracts/search?q=electrical%20stimulation" title=" electrical stimulation"> electrical stimulation</a>, <a href="https://publications.waset.org/abstracts/search?q=lenghtening%20contractions" title=" lenghtening contractions"> lenghtening contractions</a>, <a href="https://publications.waset.org/abstracts/search?q=repeated%20bout%20effect" title=" repeated bout effect "> repeated bout effect </a> </p> <a href="https://publications.waset.org/abstracts/49190/adaptation-to-repeated-eccentric-exercise-assessed-by-double-to-single-twitch-ratio" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49190.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">320</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2223</span> Track and Evaluate Cortical Responses Evoked by Electrical Stimulation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kyosuke%20Kamada">Kyosuke Kamada</a>, <a href="https://publications.waset.org/abstracts/search?q=Christoph%20Kapeller"> Christoph Kapeller</a>, <a href="https://publications.waset.org/abstracts/search?q=Michael%20Jordan"> Michael Jordan</a>, <a href="https://publications.waset.org/abstracts/search?q=Mostafa%20Mohammadpour"> Mostafa Mohammadpour</a>, <a href="https://publications.waset.org/abstracts/search?q=Christy%20Li"> Christy Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Christoph%20Guger"> Christoph Guger</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cortico-cortical evoked potentials (CCEP) refer to responses generated by cortical electrical stimulation at distant brain sites. These responses provide insights into the functional networks associated with language or motor functions, and in the context of epilepsy, they can reveal pathological networks. Locating the origin and spread of seizures within the cortex is crucial for pre-surgical planning. This process can be enhanced by employing cortical stimulation at the seizure onset zone (SOZ), leading to the generation of CCEPs in remote brain regions that may be targeted for disconnection. In the case of a 24-year-old male patient suffering from intractable epilepsy, corpus callosotomy was performed as part of the treatment. DTI-MRI imaging, conducted using a 3T MRI scanner for fiber tracking, along with CCEP, is used as part of an assessment for surgical planning. Stimulation of the SOZ, with alternating monophasic pulses of 300µs duration and 15mA current intensity, resulted in CCEPs on the contralateral frontal cortex, reaching a peak amplitude of 206µV with a latency of 31ms, specifically in the left pars triangularis. The related fiber tracts were identified with a two-tensor unscented Kalman filter (UKF) technique, showing transversal fibers through the corpus callosum. The CCEPs were monitored through the progress of the surgery. Notably, the SOZ-associated CCEPs exhibited a reduction following the resection of the anterior portion of the corpus callosum, reaching the identified connecting fibers. This intervention demonstrated a potential strategy for mitigating the impact of intractable epilepsy through targeted disconnection of identified cortical regions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CCEP" title="CCEP">CCEP</a>, <a href="https://publications.waset.org/abstracts/search?q=SOZ" title=" SOZ"> SOZ</a>, <a href="https://publications.waset.org/abstracts/search?q=Corpus%20callosotomy" title=" Corpus callosotomy"> Corpus callosotomy</a>, <a href="https://publications.waset.org/abstracts/search?q=DTI" title=" DTI"> DTI</a> </p> <a href="https://publications.waset.org/abstracts/176639/track-and-evaluate-cortical-responses-evoked-by-electrical-stimulation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/176639.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">67</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2222</span> Artificial Generation of Visual Evoked Potential to Enhance Visual Ability</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Vani">A. Vani</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20N.%20Mamatha"> M. N. Mamatha </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Visual signal processing in human beings occurs in the occipital lobe of the brain. The signals that are generated in the brain are universal for all the human beings and they are called Visual Evoked Potential (VEP). Generally, the visually impaired people lose sight because of severe damage to only the eyes natural photo sensors, but the occipital lobe will still be functioning. In this paper, a technique of artificially generating VEP is proposed to enhance the visual ability of the subject. The system uses the electrical photoreceptors to capture image, process the image, to detect and recognize the subject or object. This voltage is further processed and can transmit wirelessly to a BIOMEMS implanted into occipital lobe of the patient’s brain. The proposed BIOMEMS consists of array of electrodes that generate the neuron potential which is similar to VEP of normal people. Thus, the neurons get the visual data from the BioMEMS which helps in generating partial vision or sight for the visually challenged patient. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=BioMEMS" title="BioMEMS">BioMEMS</a>, <a href="https://publications.waset.org/abstracts/search?q=neuro-prosthetic" title=" neuro-prosthetic"> neuro-prosthetic</a>, <a href="https://publications.waset.org/abstracts/search?q=openvibe" title=" openvibe"> openvibe</a>, <a href="https://publications.waset.org/abstracts/search?q=visual%20evoked%20potential" title=" visual evoked potential"> visual evoked potential</a> </p> <a href="https://publications.waset.org/abstracts/51396/artificial-generation-of-visual-evoked-potential-to-enhance-visual-ability" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51396.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">315</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2221</span> Task Evoked Pupillary Response for Surgical Task Difficulty Prediction via Multitask Learning </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Beilei%20Xu">Beilei Xu</a>, <a href="https://publications.waset.org/abstracts/search?q=Wencheng%20Wu"> Wencheng Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=Lei%20Lin"> Lei Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Rachel%20Melnyk"> Rachel Melnyk</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Ghazi"> Ahmed Ghazi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In operating rooms, excessive cognitive stress can impede the performance of a surgeon, while low engagement can lead to unavoidable mistakes due to complacency. As a consequence, there is a strong desire in the surgical community to be able to monitor and quantify the cognitive stress of a surgeon while performing surgical procedures. Quantitative cognitiveload-based feedback can also provide valuable insights during surgical training to optimize training efficiency and effectiveness. Various physiological measures have been evaluated for quantifying cognitive stress for different mental challenges. In this paper, we present a study using the cognitive stress measured by the task evoked pupillary response extracted from the time series eye-tracking measurements to predict task difficulties in a virtual reality based robotic surgery training environment. In particular, we proposed a differential-task-difficulty scale, utilized a comprehensive feature extraction approach, and implemented a multitask learning framework and compared the regression accuracy between the conventional single-task-based and three multitask approaches across subjects. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=surgical%20metric" title="surgical metric">surgical metric</a>, <a href="https://publications.waset.org/abstracts/search?q=task%20evoked%20pupillary%20response" title=" task evoked pupillary response"> task evoked pupillary response</a>, <a href="https://publications.waset.org/abstracts/search?q=multitask%20learning" title=" multitask learning"> multitask learning</a>, <a href="https://publications.waset.org/abstracts/search?q=TSFresh" title=" TSFresh"> TSFresh</a> </p> <a href="https://publications.waset.org/abstracts/128967/task-evoked-pupillary-response-for-surgical-task-difficulty-prediction-via-multitask-learning" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/128967.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">146</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2220</span> Relevance of Brain Stem Evoked Potential in Diagnosis of Central Demyelination in Guillain Barre’ Syndrome</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Geetanjali%20Sharma">Geetanjali Sharma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Guillain Barre’ syndrome (GBS) is an auto-immune mediated demyelination poly-radiculo-neuropathy. Clinical features include progressive symmetrical ascending muscle weakness of more than two limbs, areflexia with or without sensory, autonomic and brainstem abnormalities, the purpose of this study was to determine subclinical neurological changes of CNS with GBS and to establish the presence of central demyelination in GBS. The study was prospective and conducted in the Department of Physiology, Pt. B. D. Sharma Post-graduate Institute of Medical Sciences, University of Health Sciences, Rohtak, Haryana, India to find out early central demyelination in clinically diagnosed patients of GBS. These patients were referred from the department of Medicine of our Institute to our department for electro-diagnostic evaluation. The study group comprised of 40 subjects (20 clinically diagnosed GBS patients and 20 healthy individuals as controls) aged between 6-65 years. Brain Stem evoked Potential (BAEP) were done in both groups using RMS EMG EP mark II machine. BAEP parameters included the latencies of waves I to IV, inter peak latencies I-III, III-IV & I-V. Statistically significant increase in absolute peak and inter peak latencies in the GBS group as compared with control group was noted. Results of evoked potential reflect impairment of auditory pathways probably due to focal demyelination in Schwann cell derived myelin sheaths that cover the extramedullary portion of auditory nerves. Early detection of the sub-clinical abnormalities is important as timely intervention reduces morbidity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=brainstem" title="brainstem">brainstem</a>, <a href="https://publications.waset.org/abstracts/search?q=demyelination" title=" demyelination"> demyelination</a>, <a href="https://publications.waset.org/abstracts/search?q=evoked%20potential" title=" evoked potential"> evoked potential</a>, <a href="https://publications.waset.org/abstracts/search?q=Guillain%20Barre%E2%80%99" title=" Guillain Barre’"> Guillain Barre’</a> </p> <a href="https://publications.waset.org/abstracts/66591/relevance-of-brain-stem-evoked-potential-in-diagnosis-of-central-demyelination-in-guillain-barre-syndrome" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66591.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">302</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2219</span> Pelvic Floor Electrophysiology Patterns Associated with Obstructed Defecation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Emmanuel%20Kamal%20Aziz%20Saba">Emmanuel Kamal Aziz Saba</a>, <a href="https://publications.waset.org/abstracts/search?q=Gihan%20Abd%20El-Lateif%20Younis%20El-Tantawi"> Gihan Abd El-Lateif Younis El-Tantawi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Hamdy%20Zahran"> Mohammed Hamdy Zahran</a>, <a href="https://publications.waset.org/abstracts/search?q=Ibrahim%20Khalil%20Ibrahim"> Ibrahim Khalil Ibrahim</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Abd%20El-Salam%20Shehata"> Mohammed Abd El-Salam Shehata</a>, <a href="https://publications.waset.org/abstracts/search?q=Hussein%20Al-Moghazy%20Sultan"> Hussein Al-Moghazy Sultan</a>, <a href="https://publications.waset.org/abstracts/search?q=Medhat"> Medhat </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Pelvic floor electrophysiological tests are essential for assessment of patients with obstructed defecation. The present study was conducted to determine the different patterns of pelvic floor electrophysiology that are associated with obstructed defecation. The present cross sectional study included 25 patients with obstructed defecation. A control group of 20 apparently healthy subjects were included. All patients were subjected to history taking, clinical examination, proctosigmoidoscopy, lateral proctography (evacuation proctography), dynamic pelvic magnetic resonance imaging, anal manometry and electrophysiological studies. Electrophysiological studies were including pudendal nerve motor conduction study, pudendo-anal reflex, needle electromyography of external anal sphincter and puborectalis muscles, pudendal somatosensory evoked potential and tibial somatosensory evoked potential. The control group was subjected to electrophysiological studies which included pudendal nerve motor conduction study, pudendo-anal reflex, pudendal somatosensory evoked potential and tibial somatosensory evoked potential. The most common pelvic floor electrodiagnostic pattern characteristics of obstructed defecation was pudendal neuropathy, denervation and anismus of external anal sphincter and puborectalis with complete interference pattern of external anal sphincter and puborectalis at squeezing and cough and no localized defect in external anal sphincter. In conclusion, there were characteristic pelvic floor electrodiagnostic patterns associated with obstructed defecation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=obstructed%20defecation" title="obstructed defecation">obstructed defecation</a>, <a href="https://publications.waset.org/abstracts/search?q=pudendal%20nerve%20terminal%20motor%20latency" title=" pudendal nerve terminal motor latency"> pudendal nerve terminal motor latency</a>, <a href="https://publications.waset.org/abstracts/search?q=pudendoanal%20reflex" title=" pudendoanal reflex"> pudendoanal reflex</a>, <a href="https://publications.waset.org/abstracts/search?q=sphincter%20electromyography" title=" sphincter electromyography"> sphincter electromyography</a> </p> <a href="https://publications.waset.org/abstracts/30915/pelvic-floor-electrophysiology-patterns-associated-with-obstructed-defecation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30915.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">439</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2218</span> Auditory Brainstem Response in Wave VI for the Detection of Learning Disabilities</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maria%20Isabel%20Garcia-Planas">Maria Isabel Garcia-Planas</a>, <a href="https://publications.waset.org/abstracts/search?q=Maria%20Victoria%20Garcia-Camba"> Maria Victoria Garcia-Camba</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The use of brain stem auditory evoked potential (BAEP) is a common way to study the auditory function of people, a way to learn the functionality of a part of the brain neuronal groups that intervene in the learning process by studying the behaviour of wave VI. The latest advances in neuroscience have revealed the existence of different brain activity in the learning process that can be highlighted through the use of innocuous, low-cost, and easy-access techniques such as, among others, the BAEP that can help us to detect early possible neurodevelopmental difficulties for their subsequent assessment and cure. To date and to the authors' best knowledge, only the latency data obtained, observing the first to V waves and mainly in the left ear, were taken into account. This work shows that it is essential to take into account both ears; with these latest data, it has been possible had diagnosed more precise some cases than with the previous data had been diagnosed as 'normal' despite showing signs of some alteration that motivated the new consultation to the specialist. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ear" title="ear">ear</a>, <a href="https://publications.waset.org/abstracts/search?q=neurodevelopment" title=" neurodevelopment"> neurodevelopment</a>, <a href="https://publications.waset.org/abstracts/search?q=auditory%20evoked%20potentials" title=" auditory evoked potentials"> auditory evoked potentials</a>, <a href="https://publications.waset.org/abstracts/search?q=intervals%20of%20normality" title=" intervals of normality"> intervals of normality</a>, <a href="https://publications.waset.org/abstracts/search?q=learning%20disabilities" title=" learning disabilities"> learning disabilities</a> </p> <a href="https://publications.waset.org/abstracts/132905/auditory-brainstem-response-in-wave-vi-for-the-detection-of-learning-disabilities" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/132905.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">165</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2217</span> Corticomotor Excitability after Two Different Repetitive Transcranial Magnetic Stimulation Protocols in Ischemic Stroke Patients</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Asrarul%20Fikri%20Abu%20Hassan">Asrarul Fikri Abu Hassan</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Hafiz%20bin%20Hanafi"> Muhammad Hafiz bin Hanafi</a>, <a href="https://publications.waset.org/abstracts/search?q=Jafri%20Malin%20Abdullah"> Jafri Malin Abdullah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study is to compare the motor evoked potential (MEP) changes using different settings of repetitive transcranial magnetic stimulation (rTMS) in the post-haemorrhagic stroke patient which treated conservatively. The goal of the study is to determine changes in corticomotor excitability and functional outcome after repetitive transcranial magnetic stimulation (rTMS) therapy regime. 20 post-stroke patients with upper limb hemiparesis were studied due to haemorrhagic stroke. One of the three settings; (I) Inhibitory setting, or (II) facilitatory setting, or (III) control group, no excitatory or inhibitory setting have been applied randomly during the first meeting. The motor evoked potential (MEP) were recorded before and after application of the rTMS setting. Functional outcomes were evaluated using the Barthel index score. We found pre-treatment MEP values of the lesional side were lower compared to post-treatment values in both settings. In contrast, we found that the pre-treatment MEP values of the non-lesional side were higher compared to post-treatment values in both settings. Interestingly, patients with treatment, either facilitatory setting and inhibitory setting have faster motor recovery compared to the control group. Our data showed both settings might improve the MEP of the upper extremity and functional outcomes in the haemorrhagic stroke patient. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Barthel%20index" title="Barthel index">Barthel index</a>, <a href="https://publications.waset.org/abstracts/search?q=corticomotor%20excitability" title=" corticomotor excitability"> corticomotor excitability</a>, <a href="https://publications.waset.org/abstracts/search?q=motor%20evoked%20potential" title=" motor evoked potential"> motor evoked potential</a>, <a href="https://publications.waset.org/abstracts/search?q=repetitive%20transcranial%20magnetic%20stimulation" title=" repetitive transcranial magnetic stimulation"> repetitive transcranial magnetic stimulation</a>, <a href="https://publications.waset.org/abstracts/search?q=stroke" title=" stroke"> stroke</a> </p> <a href="https://publications.waset.org/abstracts/98326/corticomotor-excitability-after-two-different-repetitive-transcranial-magnetic-stimulation-protocols-in-ischemic-stroke-patients" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/98326.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">159</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2216</span> Assessment of an ICA-Based Method for Detecting the Effect of Attention in the Auditory Late Response</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Siavash%20Mirahmadizoghi">Siavash Mirahmadizoghi</a>, <a href="https://publications.waset.org/abstracts/search?q=Steven%20Bell"> Steven Bell</a>, <a href="https://publications.waset.org/abstracts/search?q=David%20Simpson"> David Simpson</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work a new independent component analysis (ICA) based method for noise reduction in evoked potentials is evaluated on for auditory late responses (ALR) captured with a 63-channel electroencephalogram (EEG) from 10 normal-hearing subjects. The performance of the new method is compared with a single channel alternative in terms of signal to noise ratio (SNR), the number of channels with an SNR above an empirically derived statistical critical value and an estimate of the effect of attention on the major components in the ALR waveform. The results show that the multichannel signal processing method can significantly enhance the quality of the ALR signal and also detect the effect of the attention on the ALR better than the single channel alternative. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=auditory%20late%20response%20%28ALR%29" title="auditory late response (ALR)">auditory late response (ALR)</a>, <a href="https://publications.waset.org/abstracts/search?q=attention" title=" attention"> attention</a>, <a href="https://publications.waset.org/abstracts/search?q=EEG" title=" EEG"> EEG</a>, <a href="https://publications.waset.org/abstracts/search?q=independent%20component%20analysis%20%28ICA%29" title=" independent component analysis (ICA)"> independent component analysis (ICA)</a>, <a href="https://publications.waset.org/abstracts/search?q=multichannel%20signal%20processing" title=" multichannel signal processing"> multichannel signal processing</a> </p> <a href="https://publications.waset.org/abstracts/11551/assessment-of-an-ica-based-method-for-detecting-the-effect-of-attention-in-the-auditory-late-response" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11551.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">505</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2215</span> The Drama and Dynamics of Economic Shocks and Households Responses in Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Doki%20Naomi%20Onyeje">Doki Naomi Onyeje</a>, <a href="https://publications.waset.org/abstracts/search?q=Doki%20Gowon%20Ama"> Doki Gowon Ama</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The past 4 years have been traumatic for Nigerians, having to deal with a number of complex economic issues with dire consequences for the economy. Households have had to respond variously to some of these problems in peculiar ways, depending, of course, on the nature and character of a particular shock. The type, magnitude, intensity and duration of a particular shock might be the determinant of different household responses. While households’ responses to the Global Financial Crisis and Covid 19 Pandemic have been documented by researchers, other economic shocks have continued to emerge in Nigeria. The dramatic turn of events since coming on board of the new government on May 29th 2023, has introduced a new economic twist that households will have to adjust to. This study, therefore, sets out to examine household responses by disaggregating them by their livelihood sources. A survey of 420 households across North Central Nigeria will be done to generate information on the respective responses. A Multinomial logit regression analysis will be employed to test the hypothesis that livelihood source(s) influences household responses to economic shocks. Consequently, responses from public and private households will be examined. The expected results should be that household responses might have some similarities, but it is expected that some peculiar responses across groups will emerge and these differences will guide for group-specific interventions. The Theatre for Development (TfD) approach will be used to disseminate and propagate results from this study to and among stakeholders for effective policy frameworks. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=drama" title="drama">drama</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamics" title=" dynamics"> dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=economic%20shocks" title=" economic shocks"> economic shocks</a>, <a href="https://publications.waset.org/abstracts/search?q=household%20responses" title=" household responses"> household responses</a>, <a href="https://publications.waset.org/abstracts/search?q=Nigeria" title=" Nigeria"> Nigeria</a> </p> <a href="https://publications.waset.org/abstracts/170578/the-drama-and-dynamics-of-economic-shocks-and-households-responses-in-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/170578.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">73</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2214</span> Characterization of a LiFeOP₄ Battery Cell with Mechanical Responses</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ki-Yong%20Oh">Ki-Yong Oh</a>, <a href="https://publications.waset.org/abstracts/search?q=Eunji%20Kwak"> Eunji Kwak</a>, <a href="https://publications.waset.org/abstracts/search?q=Due%20Su%20Son"> Due Su Son</a>, <a href="https://publications.waset.org/abstracts/search?q=Siheon%20Jung"> Siheon Jung</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A pouch type of 10 Ah LiFePO₄ battery cell is characterized with two mechanical responses: swelling and bulk force. Both responses vary upon the state of charge significantly, whereas voltage shows flat responses, suggesting that mechanical responses can become a sensitive gauge to characterize microstructure transformation of a battery cell. The derivative of swelling s with respect to capacity Q, (ds/dQ) and the derivative of force F with respect to capacity Q, (dF/dQ) more clearly identify phase transitions of cathode and anode electrodes in the overall charge process than the derivative of voltage V with respect to capacity Q, (dV/dQ). Especially, the force versus swelling curves over the state of charge clearly elucidates three different stiffness over the state of charge oriented from phase transitions: the α-phase, the β-phase, and the metastable solid-solution phase. The observation from mechanical responses suggests that macro-scale mechanical responses of a battery cell are directly correlated to microscopic transformation of a battery cell. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=force%20response" title="force response">force response</a>, <a href="https://publications.waset.org/abstracts/search?q=LiFePO%E2%82%84%20battery" title=" LiFePO₄ battery"> LiFePO₄ battery</a>, <a href="https://publications.waset.org/abstracts/search?q=strain%20response" title=" strain response"> strain response</a>, <a href="https://publications.waset.org/abstracts/search?q=stress%20response" title=" stress response"> stress response</a>, <a href="https://publications.waset.org/abstracts/search?q=swelling%20response" title=" swelling response"> swelling response</a> </p> <a href="https://publications.waset.org/abstracts/97098/characterization-of-a-lifeop4-battery-cell-with-mechanical-responses" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/97098.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">170</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2213</span> The Influence of Neural Synchrony on Auditory Middle Latency and Late Latency Responses and Its Correlation with Audiological Profile in Individuals with Auditory Neuropathy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20Renjitha">P. Renjitha</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Hari%20Prakash"> P. Hari Prakash</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Auditory neuropathy spectrum disorder (ANSD) is an auditory disorder with normal cochlear outer hair cell function and disrupted auditory nerve function. It results in unique clinical characteristic with absent auditory brainstem response (ABR), absent acoustic reflex and the presence of otoacoustic emissions (OAE) and cochlear microphonics. The lesion site could be at cochlear inner hair cells, the synapse between the inner hair cells and type I auditory nerve fibers, and/or the auditory nerve itself. But the literatures on synchrony at higher auditory system are sporadic and are less understood. It might be interesting to see if there is a recovery of neural synchrony at higher auditory centers. Also, does the level at which the auditory system recovers with adequate synchrony to the extent of observable evoke response potentials (ERPs) can predict speech perception? In the current study, eight ANSD participants and healthy controls underwent detailed audiological assessment including ABR, auditory middle latency response (AMLR), and auditory late latency response (ALLR). AMLR was recorded for clicks and ALLR was evoked using 500Hz and 2 kHz tone bursts. Analysis revealed that the participant could be categorized into three groups. Group I (2/8) where ALLR was present only for 2kHz tone burst. Group II (4/8), where AMLR was absent and ALLR was seen for both the stimuli. Group III (2/8) consisted individuals with identifiable AMLR and ALLR for all the stimuli. The highest speech identification sore observed in ANSD group was 30% and hence considered having poor speech perception. Overall test result indicates that the site of neural synchrony recovery could be varying across individuals with ANSD. Some individuals show recovery of neural synchrony at the thalamocortical level while others show the same only at the cortical level. Within ALLR itself there could be variation across stimuli again could be related to neural synchrony. Nevertheless, none of these patterns could possible explain the speech perception ability of the individuals. Hence, it could be concluded that neural synchrony as measured by evoked potentials could not be a good clinical predictor speech perception. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=auditory%20late%20latency%20response" title="auditory late latency response">auditory late latency response</a>, <a href="https://publications.waset.org/abstracts/search?q=auditory%20middle%20latency%20response" title=" auditory middle latency response"> auditory middle latency response</a>, <a href="https://publications.waset.org/abstracts/search?q=auditory%20neuropathy%20spectrum%20disorder" title=" auditory neuropathy spectrum disorder"> auditory neuropathy spectrum disorder</a>, <a href="https://publications.waset.org/abstracts/search?q=correlation%20with%20speech%20identification%20score" title=" correlation with speech identification score"> correlation with speech identification score</a> </p> <a href="https://publications.waset.org/abstracts/93772/the-influence-of-neural-synchrony-on-auditory-middle-latency-and-late-latency-responses-and-its-correlation-with-audiological-profile-in-individuals-with-auditory-neuropathy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/93772.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">149</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2212</span> Device Control Using Brain Computer Interface</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20Neeraj">P. Neeraj</a>, <a href="https://publications.waset.org/abstracts/search?q=Anurag%20Sharma"> Anurag Sharma</a>, <a href="https://publications.waset.org/abstracts/search?q=Harsukhpreet%20Singh"> Harsukhpreet Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In current years, Brain-Computer Interface (BCI) scheme based on steady-state Visual Evoked Potential (SSVEP) have earned much consideration. This study tries to evolve an SSVEP based BCI scheme that can regulate any gadget mock-up in two unique positions ON and OFF. In this paper, two distinctive gleam frequencies in low-frequency part were utilized to evoke the SSVEPs and were shown on a Liquid Crystal Display (LCD) screen utilizing Lab View. Two stimuli shading, Yellow, and Blue were utilized to prepare the system in SSVEPs. The Electroencephalogram (EEG) signals recorded from the occipital part. Elements of the brain were separated by utilizing discrete wavelet Transform. A prominent system for multilayer system diverse Neural Network Algorithm (NNA), is utilized to characterize SSVEP signals. During training of the network with diverse calculation Regression plot results demonstrated that when Levenberg-Marquardt preparing calculation was utilized the exactness turns out to be 93.9%, which is superior to another training algorithm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=brain%20computer%20interface" title="brain computer interface">brain computer interface</a>, <a href="https://publications.waset.org/abstracts/search?q=electroencephalography" title=" electroencephalography"> electroencephalography</a>, <a href="https://publications.waset.org/abstracts/search?q=steady-state%20visual%20evoked%20potential" title=" steady-state visual evoked potential"> steady-state visual evoked potential</a>, <a href="https://publications.waset.org/abstracts/search?q=wavelet%20transform" title=" wavelet transform"> wavelet transform</a>, <a href="https://publications.waset.org/abstracts/search?q=neural%20network" title=" neural network"> neural network</a> </p> <a href="https://publications.waset.org/abstracts/47898/device-control-using-brain-computer-interface" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47898.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">334</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2211</span> Numerical Analysis of Dynamic Responses of the Plate Subjected to Impulsive Loads</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Behzad%20Mohammadzadeh">Behzad Mohammadzadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Huyk%20Chun%20Noh"> Huyk Chun Noh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The plate is one of the popular structural elements used in a wide range of industries and structures. They may be subjected to blast loads during explosion events, missile attacks or aircraft attacks. This study is to investigate dynamic responses of the rectangular plate subjected to explosive loads. The effects of material properties and plate thickness on responses of the plate are to be investigated. The compressive pressure is applied to the surface of the plate. Different amounts of thickness in the range from 10mm to 30mm are considered for the plate to evaluate the changes in responses of the plate with respect to the plate thickness. Two different properties are considered for the steel. First, the analysis is performed by considering only the elastic-plastic properties for the steel plate. Later on damping is considered to investigate its effects on the responses of the plate. To do analysis, the numerical method using a finite element based package ABAQUS is applied. Finally, dynamic responses and graphs showing the relation between maximum displacement of the plate and aim parameters are provided. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=impulsive%20loaded%20plates" title="impulsive loaded plates">impulsive loaded plates</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20analysis" title=" dynamic analysis"> dynamic analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=ABAQUS" title=" ABAQUS"> ABAQUS</a>, <a href="https://publications.waset.org/abstracts/search?q=material%20nonlinearity" title=" material nonlinearity"> material nonlinearity</a> </p> <a href="https://publications.waset.org/abstracts/28535/numerical-analysis-of-dynamic-responses-of-the-plate-subjected-to-impulsive-loads" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28535.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">523</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2210</span> Somatosensory-Evoked Blink Reflex in Peripheral Facial Palsy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sarah%20Sayed%20El-%20Tawab">Sarah Sayed El- Tawab</a>, <a href="https://publications.waset.org/abstracts/search?q=Emmanuel%20Kamal%20Azix%20Saba"> Emmanuel Kamal Azix Saba</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Objectives: Somatosensory blink reflex (SBR) is an eye blink response obtained from electrical stimulation of peripheral nerves or skin area of the body. It has been studied in various neurological diseases as well as among healthy subjects in different population. We designed this study to detect SBR positivity in patients with facial palsy and patients with post facial syndrome, to relate the facial palsy severity and the presence of SBR, and to associate between trigeminal BR changes and SBR positivity in peripheral facial palsy patients. Methods: 50 patients with peripheral facial palsy and post-facial syndrome 31 age and gender matched healthy volunteers were enrolled to this study. Facial motor conduction studies, trigeminal BR, and SBR were studied in all. Results: SBR was elicited in 67.7% of normal subjects, in 68% of PFS group, and in 32% of PFP group. On the non-paralytic side SBR was found in 28% by paralyzed side stimulation and in 24% by healthy side stimulation among PFP patients. For PFS group SBR was found on the non- paralytic side in 48%. Bilateral SBR elicitability was higher than its unilateral elicitability. Conclusion: Increased brainstem interneurons excitability is not essential to generate SBR. The hypothetical sensory-motor gating mechanism is responsible for SBR generation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=somatosensory%20evoked%20blink%20reflex" title="somatosensory evoked blink reflex">somatosensory evoked blink reflex</a>, <a href="https://publications.waset.org/abstracts/search?q=post%20facial%20syndrome" title=" post facial syndrome"> post facial syndrome</a>, <a href="https://publications.waset.org/abstracts/search?q=blink%20reflex" title=" blink reflex"> blink reflex</a>, <a href="https://publications.waset.org/abstracts/search?q=enchanced%20gain" title=" enchanced gain"> enchanced gain</a> </p> <a href="https://publications.waset.org/abstracts/18913/somatosensory-evoked-blink-reflex-in-peripheral-facial-palsy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18913.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">619</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2209</span> Association of Major Histocompatibility Complex with Cell Mediated Immunity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Atefeh%20Esmailnejad">Atefeh Esmailnejad</a>, <a href="https://publications.waset.org/abstracts/search?q=Gholamreza%20Nikbakht%20Brujeni"> Gholamreza Nikbakht Brujeni</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Major histocompatibility complex (MHC) is one of the best characterized genetic regions associated with immune responses and controlling disease resistance in chicken. Association of the MHC with a wide range of immune responses makes it a valuable predictive factor for the disease pathogenesis and outcome. In this study, the association of MHC with cell-mediated immune responses was analyzed in commercial broiler chicken. The tandem repeat LEI0258 was applied to investigate the MHC polymorphism. Cell-mediated immune response was evaluated by peripheral blood lymphocyte proliferation assay using MTT method. Association study revealed a significant influence of MHC alleles on cellular immune responses in this population. Alleles 385 and 448 bp were associated with elevated cell-mediated immunity. Haplotypes associated with improved immune responses could be considered as candidate markers for disease resistance and applied to breeding strategies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=MHC" title="MHC">MHC</a>, <a href="https://publications.waset.org/abstracts/search?q=cell-mediated%20immunity" title=" cell-mediated immunity"> cell-mediated immunity</a>, <a href="https://publications.waset.org/abstracts/search?q=broiler" title=" broiler"> broiler</a>, <a href="https://publications.waset.org/abstracts/search?q=chicken" title=" chicken"> chicken</a> </p> <a href="https://publications.waset.org/abstracts/97236/association-of-major-histocompatibility-complex-with-cell-mediated-immunity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/97236.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">145</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2208</span> Investigating the Associative Network of Color Terms among Turkish University Students: A Cognitive-Based Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20G%C3%BC%C3%A7l%C3%BC">R. Güçlü</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20K%C3%BC%C3%A7%C3%BCksakarya"> E. Küçüksakarya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Word association (WA) gives the broadest information on how knowledge is structured in the human mind. Cognitive linguistics, psycholinguistics, and applied linguistics are the disciplines that consider WA tests as substantial in gaining insights into the very nature of the human cognitive system and semantic knowledge. In this study, Berlin and Kay’s basic 11 color terms (1969) are presented as the stimuli words to a total number of 300 Turkish university students. The responses are analyzed according to Fitzpatrick’s model (2007), including four categories, namely meaning-based responses, position-based responses, form-based responses, and erratic responses. In line with the findings, the responses to free association tests are expected to give much information about Turkish university students’ psychological structuring of vocabulary, especially morpho-syntactic and semantic relationships among words. To conclude, theoretical and practical implications are discussed to make an in-depth evaluation of how associations of basic color terms are represented in the mental lexicon of Turkish university students. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=color%20term" title="color term">color term</a>, <a href="https://publications.waset.org/abstracts/search?q=gender" title=" gender"> gender</a>, <a href="https://publications.waset.org/abstracts/search?q=mental%20lexicon" title=" mental lexicon"> mental lexicon</a>, <a href="https://publications.waset.org/abstracts/search?q=word%20association%20task" title=" word association task"> word association task</a> </p> <a href="https://publications.waset.org/abstracts/113039/investigating-the-associative-network-of-color-terms-among-turkish-university-students-a-cognitive-based-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/113039.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">131</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2207</span> Simplified Analysis Procedure for Seismic Evaluation of Tall Building at Structure and Component Level</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tahir%20Mehmood">Tahir Mehmood</a>, <a href="https://publications.waset.org/abstracts/search?q=Pennung%20Warnitchai"> Pennung Warnitchai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Simplified static analysis procedures such Nonlinear Static Procedure (NSP) are gaining popularity for the seismic evaluation of buildings. However, these simplified procedures accounts only for the seismic responses of the fundamental vibration mode of the structure. Some other procedures which can take into account the higher modes of vibration, lack in accuracy to determine the component responses. Hence, such procedures are not suitable for evaluating the structures where many vibration modes may participate significantly or where component responses are needed to be evaluated. Moreover, these procedures were found to either computationally expensive or tedious to obtain individual component responses. In this paper, a simplified but accurate procedure is studied. It is called the Uncoupled Modal Response History Analysis (UMRHA) procedure. In this procedure, the nonlinear response of each vibration mode is first computed, and they are later on combined into the total response of the structure. The responses of four tall buildings are computed by this simplified UMRHA procedure and compared with those obtained from the NLRHA procedure. The comparison shows that the UMRHA procedure is able to accurately compute the global responses, i.e., story shears and story overturning moments, floor accelerations and inter-story drifts as well as the component level responses of these tall buildings with heights varying from 20 to 44 stories. The required computational effort is also extremely low compared to that of the Nonlinear Response History Analysis (NLRHA) procedure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=higher%20mode%20effects" title="higher mode effects">higher mode effects</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20evaluation%20procedure" title=" seismic evaluation procedure"> seismic evaluation procedure</a>, <a href="https://publications.waset.org/abstracts/search?q=tall%20buildings" title=" tall buildings"> tall buildings</a>, <a href="https://publications.waset.org/abstracts/search?q=component%20responses" title=" component responses"> component responses</a> </p> <a href="https://publications.waset.org/abstracts/38192/simplified-analysis-procedure-for-seismic-evaluation-of-tall-building-at-structure-and-component-level" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38192.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">342</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2206</span> Development of Interactional Competence: Listener Responses of Long-Term Stay Abroad Chinese L1 Speakers in Australian Universities</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wei%20Gao">Wei Gao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The current study investigates the change of listener responses in social conversations of the second language (L2) speakers who are staying abroad with Chinese L1 speakers in Australian universities and how their long-term stay abroad impacted their design for L2 recipient actions. There is a limited amount of empirical work on L2 English listener response acquisition, particularly regarding the influence of long-term stay abroad in English-speaking countries. Little is known whether the development of L2 listener responses and the improvement of interactional competence is affected by the prolonged residency in the target L2 country. Forty-eight participants were recruited, and they participated in the designed speaking task through Computer-Mediated Communication. Results showed that long-term stay abroad Chinese L1 speakers demonstrated an English-like pattern of listener responses in communication. Long-term stay abroad experience had a significant impact on L2 English listener responses production and organization in social conversation. Long-term stay abroad L1 Chinese speakers had an active and productive response in listenership than their non-stay abroad counterparts in terms of frequency and placement in producing listener responses. However, the L2 English listener response production only occurred to be partial in response tokens, such as backchannels and reactive expressions, also in resumptive openers' employment. This study shows that L2 English listener responses could be acquired during a long-term stay abroad in English-speaking countries but showed partial acquisition in collaborative finishes production. In addition, the most prominent finding was that Chinese L1 speakers changed their overall listener responses pattern from L1 Chinese to L2 English. The study reveals specific interactional changes in English L2 listener responses acquisition. It generates pedagogical implications for cross-cultural communication and L2 pragmatics acquisition during a long-term stay abroad. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=listener%20responses" title="listener responses">listener responses</a>, <a href="https://publications.waset.org/abstracts/search?q=stay%20abroad" title=" stay abroad"> stay abroad</a>, <a href="https://publications.waset.org/abstracts/search?q=interactional%20competence" title=" interactional competence"> interactional competence</a>, <a href="https://publications.waset.org/abstracts/search?q=L2%20pragmatics%20acquisition" title=" L2 pragmatics acquisition"> L2 pragmatics acquisition</a> </p> <a href="https://publications.waset.org/abstracts/150392/development-of-interactional-competence-listener-responses-of-long-term-stay-abroad-chinese-l1-speakers-in-australian-universities" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/150392.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">84</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2205</span> The Possibility of Using Somatosensory Evoked Potential(SSEP) as a Parameter for Cortical Vascular Dementia </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hyunsik%20Park">Hyunsik Park</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As the rate of cerebrovascular disease increases in old populations, the prevalence rate of vascular dementia would be expected. Therefore, authors designed this study to find out the possibility of somatosensory evoked potentials(SSEP) as a parameter for early diagnosis and prognosis prediction of vascular dementia in cortical vascular dementia patients. 21 patients who met the criteria for vascular dementia according to DSM-IV,ICD-10and NINDS-AIREN with the history of recent cognitive impairment, fluctuation progression, and neurologic deficit. We subdivided these patients into two groups; a mild dementia and a severe dementia groups by MMSE and CDR score; and analysed comparison between normal control group and patient control group who have been cerebrovascular attack(CVA) history without dementia by using N20 latency and amplitude of median nerve. In this study, mild dementia group showed significant differences on latency and amplitude with normal control group(p-value<0.05) except patient control group(p-value>0.05). Severe dementia group showed significant differences both normal control group and patient control group.(p-value<0.05, <001). Since no significant difference has founded between mild dementia group and patient control group, SSEP has limitation to use for early diagnosis test. However, the comparison between severe dementia group and others showed significant results which indicate SSEP can predict the prognosis of vascular dementia in cortical vascular dementia patients. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=SSEP" title="SSEP">SSEP</a>, <a href="https://publications.waset.org/abstracts/search?q=cortical%20vascular%20dementia" title=" cortical vascular dementia"> cortical vascular dementia</a>, <a href="https://publications.waset.org/abstracts/search?q=N20%20latency" title=" N20 latency"> N20 latency</a>, <a href="https://publications.waset.org/abstracts/search?q=N20%20amplitude" title=" N20 amplitude "> N20 amplitude </a> </p> <a href="https://publications.waset.org/abstracts/22594/the-possibility-of-using-somatosensory-evoked-potentialssep-as-a-parameter-for-cortical-vascular-dementia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22594.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">304</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2204</span> Numerical Simulation of a Three-Dimensional Framework under the Action of Two-Dimensional Moving Loads</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jia-Jang%20Wu">Jia-Jang Wu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this research is to develop a general technique so that one may predict the dynamic behaviour of a three-dimensional scale crane model subjected to time-dependent moving point forces by means of conventional finite element computer packages. To this end, the whole scale crane model is divided into two parts: the stationary framework and the moving substructure. In such a case, the dynamic responses of a scale crane model can be predicted from the forced vibration responses of the stationary framework due to actions of the four time-dependent moving point forces induced by the moving substructure. Since the magnitudes and positions of the moving point forces are dependent on the relative positions between the trolley, moving substructure and the stationary framework, it can be found from the numerical results that the time histories for the moving speeds of the moving substructure and the trolley are the key factors affecting the dynamic responses of the scale crane model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=moving%20load" title="moving load">moving load</a>, <a href="https://publications.waset.org/abstracts/search?q=moving%20substructure" title=" moving substructure"> moving substructure</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20responses" title=" dynamic responses"> dynamic responses</a>, <a href="https://publications.waset.org/abstracts/search?q=forced%20vibration%20responses" title=" forced vibration responses"> forced vibration responses</a> </p> <a href="https://publications.waset.org/abstracts/37626/numerical-simulation-of-a-three-dimensional-framework-under-the-action-of-two-dimensional-moving-loads" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37626.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">352</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2203</span> Ocular Immunology: In Face of Immune Privilege the Eye Remains Vulnerable to Autoimmune and Inflammatory-Mediated Diseases</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Husham%20Bayazed">Husham Bayazed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Purpose of Presentation: The eye is one of a few sites in the body with immune privilege (IP). However, this IP is relatively easily bypassed in the face of sufficient strong local or systemic immunological responses. As immune responses are crucial elements of the repair response, the eye has developed distinct mechanisms to deliver immune responses to injury in the avascular regions of the eye. This presentation may cover and provide an overview of the mechanisms that dictate immune cell trafficking to the local ocular microenvironment in response to different autoimmune and inflammatory-mediated diseases. Recent Findings: Literature reviews declare that immune responses and inflammation play a key role in a diverse range of eye diseases. In recent years, our understanding of ocular immune responses has widely spread in ocular surface inflammation, uveitis, age-related macular degeneration (AMD), glaucoma, transplantation rejection, and other ocular diseases. It is becoming increasingly clear that multiple seemingly unrelated diseases involve immune responses with common themes in their ocular pathogenesis. Recent studies are focusing on elucidating the pathogenesis of ocular inflammatory disease to identify new targets for immunotherapy that will not only improve efficacy but also minimize adverse effects from traditional therapy. Summary: While IP was believed to protect the eye from day-to-day inflammatory insults, however, it is relatively easily breached in the face of different strong local or systemic immunological and inflammatory responses. Therefore, the ocular immune response encapsulates the full range of classical and non-classical immune responses and demonstrates many features which are reflected in other tissues, but eye tissues, by modifying these responses, may reveal unexpected and novel findings which are relevant to immune responses generally. This may have therapeutic potential for new targeting immunotherapy, restoring immune tolerance in ocular autoimmune and inflammatory diseases, and preventing rejection such as stem cells, currently being considered for treatment of worldwide blinding diseases such as AMD. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ocular%20diseases" title="ocular diseases">ocular diseases</a>, <a href="https://publications.waset.org/abstracts/search?q=immunology" title=" immunology"> immunology</a>, <a href="https://publications.waset.org/abstracts/search?q=immune%20privilege" title=" immune privilege"> immune privilege</a>, <a href="https://publications.waset.org/abstracts/search?q=immunotherapy" title=" immunotherapy"> immunotherapy</a> </p> <a href="https://publications.waset.org/abstracts/159133/ocular-immunology-in-face-of-immune-privilege-the-eye-remains-vulnerable-to-autoimmune-and-inflammatory-mediated-diseases" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/159133.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">78</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2202</span> Modelling and Optimization of Laser Cutting Operations </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hany%20Mohamed%20Abdu">Hany Mohamed Abdu</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Hassan%20Gadallah"> Mohamed Hassan Gadallah</a>, <a href="https://publications.waset.org/abstracts/search?q=El-Giushi%20Mokhtar"> El-Giushi Mokhtar</a>, <a href="https://publications.waset.org/abstracts/search?q=Yehia%20Mahmoud%20Ismail"> Yehia Mahmoud Ismail </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Laser beam cutting is one nontraditional machining process. This paper optimizes the parameters of Laser beam cutting machining parameters of Stainless steel (316L) by considering the effect of input parameters viz. power, oxygen pressure, frequency and cutting speed. Statistical design of experiments are carried in three different levels and process responses such as 'Average kerf taper (Ta)' and 'Surface Roughness (Ra)' are measured accordingly. A quadratic mathematical model (RSM) for each of the responses is developed as a function of the process parameters. Responses predicted by the models (as per Taguchi’s L27 OA) are employed to search for an optimal parametric combination to achieve desired yield of the process. RSM models are developed for mean responses, S/N ratio, and standard deviation of responses. Optimization models are formulated as single objective problem subject to process constraints. Models are formulated based on Analysis of Variance (ANOVA) using MATLAB environment. Optimum solutions are compared with Taguchi Methodology results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=optimization" title="optimization">optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=laser%20cutting" title=" laser cutting"> laser cutting</a>, <a href="https://publications.waset.org/abstracts/search?q=robust%20design" title=" robust design"> robust design</a>, <a href="https://publications.waset.org/abstracts/search?q=kerf%20width" title=" kerf width"> kerf width</a>, <a href="https://publications.waset.org/abstracts/search?q=Taguchi%20method" title=" Taguchi method"> Taguchi method</a>, <a href="https://publications.waset.org/abstracts/search?q=RSM%20and%20DOE" title=" RSM and DOE"> RSM and DOE</a> </p> <a href="https://publications.waset.org/abstracts/31831/modelling-and-optimization-of-laser-cutting-operations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31831.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">620</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2201</span> A Neurofeedback Learning Model Using Time-Frequency Analysis for Volleyball Performance Enhancement</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hamed%20Yousefi">Hamed Yousefi</a>, <a href="https://publications.waset.org/abstracts/search?q=Farnaz%20Mohammadi"> Farnaz Mohammadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Niloufar%20Mirian"> Niloufar Mirian</a>, <a href="https://publications.waset.org/abstracts/search?q=Navid%20Amini"> Navid Amini</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Investigating possible capacities of visual functions where adapted mechanisms can enhance the capability of sports trainees is a promising area of research, not only from the cognitive viewpoint but also in terms of unlimited applications in sports training. In this paper, the visual evoked potential (VEP) and event-related potential (ERP) signals of amateur and trained volleyball players in a pilot study were processed. Two groups of amateur and trained subjects are asked to imagine themselves in the state of receiving a ball while they are shown a simulated volleyball field. The proposed method is based on a set of time-frequency features using algorithms such as Gabor filter, continuous wavelet transform, and a multi-stage wavelet decomposition that are extracted from VEP signals that can be indicative of being amateur or trained. The linear discriminant classifier achieves the accuracy, sensitivity, and specificity of 100% when the average of the repetitions of the signal corresponding to the task is used. The main purpose of this study is to investigate the feasibility of a fast, robust, and reliable feature/model determination as a neurofeedback parameter to be utilized for improving the volleyball players’ performance. The proposed measure has potential applications in brain-computer interface technology where a real-time biomarker is needed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=visual%20evoked%20potential" title="visual evoked potential">visual evoked potential</a>, <a href="https://publications.waset.org/abstracts/search?q=time-frequency%20feature%20extraction" title=" time-frequency feature extraction"> time-frequency feature extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=short-time%20Fourier%20transform" title=" short-time Fourier transform"> short-time Fourier transform</a>, <a href="https://publications.waset.org/abstracts/search?q=event-related%20spectrum%20potential%20classification" title=" event-related spectrum potential classification"> event-related spectrum potential classification</a>, <a href="https://publications.waset.org/abstracts/search?q=linear%20discriminant%20analysis" title=" linear discriminant analysis"> linear discriminant analysis</a> </p> <a href="https://publications.waset.org/abstracts/134580/a-neurofeedback-learning-model-using-time-frequency-analysis-for-volleyball-performance-enhancement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/134580.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">138</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2200</span> Design and Development of Ssvep-Based Brain-Computer Interface for Limb Disabled Patients</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zerihun%20Ketema%20Tadesse">Zerihun Ketema Tadesse</a>, <a href="https://publications.waset.org/abstracts/search?q=Dabbu%20Suman%20Reddy"> Dabbu Suman Reddy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Brain-Computer Interfaces (BCIs) give the possibility for disabled people to communicate and control devices. This work aims at developing steady-state visual evoked potential (SSVEP)-based BCI for patients with limb disabilities. In hospitals, devices like nurse emergency call devices, lights, and TV sets are what patients use most frequently, but these devices are operated manually or using the remote control. Thus, disabled patients are not able to operate these devices by themselves. Hence, SSVEP-based BCI system that can allow disabled patients to control nurse calling device and other devices is proposed in this work. Portable LED visual stimulator that flickers at specific frequencies of 7Hz, 8Hz, 9Hz and 10Hz were developed as part of this project. Disabled patients can stare at specific flickering LED of visual stimulator and Emotiv EPOC used to acquire EEG signal in a non-invasive way. The acquired EEG signal can be processed to generate various control signals depending upon the amplitude and duration of signal components. MATLAB software is used for signal processing and analysis and also for command generation. Arduino is used as a hardware interface device to receive and transmit command signals to the experimental setup. Therefore, this study is focused on the design and development of Steady-state visually evoked potential (SSVEP)-based BCI for limb disabled patients, which helps them to operate and control devices in the hospital room/wards. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=SSVEP-BCI" title="SSVEP-BCI">SSVEP-BCI</a>, <a href="https://publications.waset.org/abstracts/search?q=Limb%20Disabled%20Patients" title=" Limb Disabled Patients"> Limb Disabled Patients</a>, <a href="https://publications.waset.org/abstracts/search?q=LED%20Visual%20Stimulator" title=" LED Visual Stimulator"> LED Visual Stimulator</a>, <a href="https://publications.waset.org/abstracts/search?q=EEG%20signal" title=" EEG signal"> EEG signal</a>, <a href="https://publications.waset.org/abstracts/search?q=control%20devices" title=" control devices"> control devices</a>, <a href="https://publications.waset.org/abstracts/search?q=hospital%20room%2Fwards" title=" hospital room/wards"> hospital room/wards</a> </p> <a href="https://publications.waset.org/abstracts/140313/design-and-development-of-ssvep-based-brain-computer-interface-for-limb-disabled-patients" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/140313.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">221</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2199</span> Early Detection of Damages in Railway Steel Truss Bridges from Measured Dynamic Responses</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dinesh%20Gundavaram">Dinesh Gundavaram</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents an investigation on bridge damage detection based on the dynamic responses estimated from a passing vehicle. A numerical simulation of steel truss bridge for railway was used in this investigation. The bridge response at different locations is measured using CSI-Bridge software. Several damage scenarios are considered including different locations and severities. The possibilities of dynamic properties of global modes in the identification of structural changes in truss bridges were discussed based on the results of measurement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bridge" title="bridge">bridge</a>, <a href="https://publications.waset.org/abstracts/search?q=damage" title=" damage"> damage</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20responses" title=" dynamic responses"> dynamic responses</a>, <a href="https://publications.waset.org/abstracts/search?q=detection" title=" detection"> detection</a> </p> <a href="https://publications.waset.org/abstracts/64523/early-detection-of-damages-in-railway-steel-truss-bridges-from-measured-dynamic-responses" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64523.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">271</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2198</span> Design and Development of the Force Plate for the Study of Driving-Point Biodynamic Responses</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vikas%20Kumar">Vikas Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20H.%20Saran"> V. H. Saran</a>, <a href="https://publications.waset.org/abstracts/search?q=Arpit%20Mathur"> Arpit Mathur</a>, <a href="https://publications.waset.org/abstracts/search?q=Avik%20Kathuria"> Avik Kathuria</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The evaluation of biodynamic responses of the human body to whole body vibration exposure is necessary to quantify the exposure effects. A force plate model has been designed with the help of CAD software, which was investigated by performing the modal, stress and strain analysis using finite element approach in the software. The results of the modal, stress and strain analysis were under the limits for measurements of biodynamic responses to whole body vibration. The physical model of the force plate was manufactured and fixed to the vibration simulator and further used in the experimentation for the evaluation of apparent mass responses of the ten recruited subjects standing in an erect posture exposed to vertical whole body vibration. The platform was excited with sinusoidal vibration at vibration magnitude: 1.0 and 1.5 m/s2 rms at different frequency of 2, 3, 4, 5, 6, 8, 10, 12.5, 16 and 20 Hz. The results of magnitude of normalised apparent mass have shown the trend observed in the many past studies. The peak in the normalised apparent mass has been observed at 4 & 5 Hz frequency of vertical whole body vibration. The nonlinearity with respect to vibration magnitude has been also observed in the normalised apparent mass responses. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=whole%20body%20vibration" title="whole body vibration">whole body vibration</a>, <a href="https://publications.waset.org/abstracts/search?q=apparent%20mass" title=" apparent mass"> apparent mass</a>, <a href="https://publications.waset.org/abstracts/search?q=modeling" title=" modeling"> modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=force%20plate" title=" force plate"> force plate</a> </p> <a href="https://publications.waset.org/abstracts/35435/design-and-development-of-the-force-plate-for-the-study-of-driving-point-biodynamic-responses" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35435.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">416</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=evoked%20responses&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=evoked%20responses&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=evoked%20responses&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=evoked%20responses&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=evoked%20responses&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=evoked%20responses&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=evoked%20responses&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=evoked%20responses&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=evoked%20responses&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=evoked%20responses&page=74">74</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=evoked%20responses&page=75">75</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=evoked%20responses&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>