CINXE.COM
Search results for: force response
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: force response</title> <meta name="description" content="Search results for: force response"> <meta name="keywords" content="force response"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="force response" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="force response"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 7270</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: force response</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7270</span> Characterization of a LiFeOP₄ Battery Cell with Mechanical Responses</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ki-Yong%20Oh">Ki-Yong Oh</a>, <a href="https://publications.waset.org/abstracts/search?q=Eunji%20Kwak"> Eunji Kwak</a>, <a href="https://publications.waset.org/abstracts/search?q=Due%20Su%20Son"> Due Su Son</a>, <a href="https://publications.waset.org/abstracts/search?q=Siheon%20Jung"> Siheon Jung</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A pouch type of 10 Ah LiFePO₄ battery cell is characterized with two mechanical responses: swelling and bulk force. Both responses vary upon the state of charge significantly, whereas voltage shows flat responses, suggesting that mechanical responses can become a sensitive gauge to characterize microstructure transformation of a battery cell. The derivative of swelling s with respect to capacity Q, (ds/dQ) and the derivative of force F with respect to capacity Q, (dF/dQ) more clearly identify phase transitions of cathode and anode electrodes in the overall charge process than the derivative of voltage V with respect to capacity Q, (dV/dQ). Especially, the force versus swelling curves over the state of charge clearly elucidates three different stiffness over the state of charge oriented from phase transitions: the α-phase, the β-phase, and the metastable solid-solution phase. The observation from mechanical responses suggests that macro-scale mechanical responses of a battery cell are directly correlated to microscopic transformation of a battery cell. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=force%20response" title="force response">force response</a>, <a href="https://publications.waset.org/abstracts/search?q=LiFePO%E2%82%84%20battery" title=" LiFePO₄ battery"> LiFePO₄ battery</a>, <a href="https://publications.waset.org/abstracts/search?q=strain%20response" title=" strain response"> strain response</a>, <a href="https://publications.waset.org/abstracts/search?q=stress%20response" title=" stress response"> stress response</a>, <a href="https://publications.waset.org/abstracts/search?q=swelling%20response" title=" swelling response"> swelling response</a> </p> <a href="https://publications.waset.org/abstracts/97098/characterization-of-a-lifeop4-battery-cell-with-mechanical-responses" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/97098.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">170</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7269</span> Design and Optimization for a Compliant Gripper with Force Regulation Mechanism</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nhat%20Linh%20Ho">Nhat Linh Ho</a>, <a href="https://publications.waset.org/abstracts/search?q=Thanh-Phong%20Dao"> Thanh-Phong Dao</a>, <a href="https://publications.waset.org/abstracts/search?q=Shyh-Chour%20Huang"> Shyh-Chour Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Hieu%20Giang%20Le"> Hieu Giang Le</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a design and optimization for a compliant gripper. The gripper is constructed based on the concept of compliant mechanism with flexure hinge. A passive force regulation mechanism is presented to control the grasping force a micro-sized object instead of using a sensor force. The force regulation mechanism is designed using the planar springs. The gripper is expected to obtain a large range of displacement to handle various sized objects. First of all, the statics and dynamics of the gripper are investigated by using the finite element analysis in ANSYS software. And then, the design parameters of the gripper are optimized via Taguchi method. An orthogonal array <em>L<sub>9</sub></em> is used to establish an experimental matrix. Subsequently, the signal to noise ratio is analyzed to find the optimal solution. Finally, the response surface methodology is employed to model the relationship between the design parameters and the output displacement of the gripper. The design of experiment method is then used to analyze the sensitivity so as to determine the effect of each parameter on the displacement. The results showed that the compliant gripper can move with a large displacement of 213.51 mm and the force regulation mechanism is expected to be used for high precision positioning systems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flexure%20hinge" title="flexure hinge">flexure hinge</a>, <a href="https://publications.waset.org/abstracts/search?q=compliant%20mechanism" title=" compliant mechanism"> compliant mechanism</a>, <a href="https://publications.waset.org/abstracts/search?q=compliant%20gripper" title=" compliant gripper"> compliant gripper</a>, <a href="https://publications.waset.org/abstracts/search?q=force%20regulation%20mechanism" title=" force regulation mechanism"> force regulation mechanism</a>, <a href="https://publications.waset.org/abstracts/search?q=Taguchi%20method" title=" Taguchi method"> Taguchi method</a>, <a href="https://publications.waset.org/abstracts/search?q=response%20surface%20methodology" title=" response surface methodology"> response surface methodology</a>, <a href="https://publications.waset.org/abstracts/search?q=design%20of%20experiment" title=" design of experiment"> design of experiment</a> </p> <a href="https://publications.waset.org/abstracts/61596/design-and-optimization-for-a-compliant-gripper-with-force-regulation-mechanism" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61596.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">331</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7268</span> Multilayer Ceramic Capacitors: Based Force Sensor Array for Occlusal Force Measurement</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sheng-Che%20Chen">Sheng-Che Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Keng-Ren%20Lin"> Keng-Ren Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Che-Hsin%20Lin"> Che-Hsin Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Hao-Yuan%20Tseng"> Hao-Yuan Tseng</a>, <a href="https://publications.waset.org/abstracts/search?q=Chih-Han%20Chang"> Chih-Han Chang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Teeth play an important role in providing the essential nutrients. The force loading of chewing on the crow is important condition to evaluate long-term success of many dental treatments. However, the quantification of the force regarding forces are distributed over the dental crow is still not well recognized. This study presents an industrial-grade piezoelectric-based multilayer ceramic capacitors (MLCCs) force sensor for measuring the distribution of the force distribute over the first molar. The developed sensor array is based on a flexible polyimide electrode and barium titanate-based MLCCs. MLCCs are commonly used in the electronic industry and it is a typical electric component composed of BaTiO₃, which is used as a capacitive material. The most important is that it also can be used as a force-sensing component by its piezoelectric property. In this study, to increase the sensitivity as well as to reduce the variation of different MLCCs, a treatment process is utilized. The MLCC force sensors are able to measure large forces (above 500 N), making them suitable for measuring the bite forces on the tooth crown. Moreover, the sensors also show good force response and good repeatability. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=force%20sensor%20array" title="force sensor array">force sensor array</a>, <a href="https://publications.waset.org/abstracts/search?q=multilayer%20ceramic%20capacitors" title=" multilayer ceramic capacitors"> multilayer ceramic capacitors</a>, <a href="https://publications.waset.org/abstracts/search?q=occlusal%20force" title=" occlusal force"> occlusal force</a>, <a href="https://publications.waset.org/abstracts/search?q=piezoelectric" title=" piezoelectric"> piezoelectric</a> </p> <a href="https://publications.waset.org/abstracts/45572/multilayer-ceramic-capacitors-based-force-sensor-array-for-occlusal-force-measurement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45572.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">411</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7267</span> Development of an Systematic Design in Evaluating Force-On-Force Security Exercise at Nuclear Power Plants</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seungsik%20Yu">Seungsik Yu</a>, <a href="https://publications.waset.org/abstracts/search?q=Minho%20Kang"> Minho Kang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As the threat of terrorism to nuclear facilities is increasing globally after the attacks of September 11, we are striving to recognize the physical protection system and strengthen the emergency response system. Since 2015, Korea has implemented physical protection security exercise for nuclear facilities. The exercise should be carried out with full cooperation between the operator and response forces. Performance testing of the physical protection system should include appropriate exercises, for example, force-on-force exercises, to determine if the response forces can provide an effective and timely response to prevent sabotage. Significant deficiencies and actions taken should be reported as stipulated by the competent authority. The IAEA(International Atomic Energy Agency) is also preparing force-on-force exercise program documents to support exercise of member states. Currently, ROK(Republic of Korea) is implementing exercise on the force-on-force exercise evaluation system which is developed by itself for the nuclear power plant, and it is necessary to establish the exercise procedure considering the use of the force-on-force exercise evaluation system. The purpose of this study is to establish the work procedures of the three major organizations related to the force-on-force exercise of nuclear power plants in ROK, which conduct exercise using force-on-force exercise evaluation system. The three major organizations are composed of licensee, KINAC (Korea Institute of Nuclear Nonproliferation and Control), and the NSSC(Nuclear Safety and Security Commission). Major activities are as follows. First, the licensee establishes and conducts an exercise plan, and when recommendations are derived from the result of the exercise, it prepares and carries out a force-on-force result report including a plan for implementation of the recommendations. Other detailed tasks include consultation with surrounding units for adversary, interviews with exercise participants, support for document evaluation, and self-training to improve the familiarity of the MILES (Multiple Integrated Laser Engagement System). Second, KINAC establishes a force-on-force exercise plan review report and reviews the force-on-force exercise plan report established by licensee. KINAC evaluate force-on-force exercise using exercise evaluation system and prepare training evaluation report. Other detailed tasks include MILES training, adversary consultation, management of exercise evaluation systems, and analysis of exercise evaluation results. Finally, the NSSC decides whether or not to approve the force-on-force exercise and makes a correction request to the nuclear facility based on the exercise results. The most important part of ROK's force-on-force exercise system is the analysis through the exercise evaluation system implemented by KINAC after the exercise. The analytical method proceeds in the order of collecting data from the exercise evaluation system and analyzing the collected data. The exercise application process of the exercise evaluation system introduced in ROK in 2016 will be concretely set up, and a system will be established to provide objective and consistent conclusions between exercise sessions. Based on the conclusions drawn up, the ultimate goal is to complement the physical protection system of licensee so that the system makes licensee respond effectively and timely against sabotage or unauthorized removal of nuclear materials. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Force-on-Force%20exercise" title="Force-on-Force exercise">Force-on-Force exercise</a>, <a href="https://publications.waset.org/abstracts/search?q=nuclear%20power%20plant" title=" nuclear power plant"> nuclear power plant</a>, <a href="https://publications.waset.org/abstracts/search?q=physical%20protection" title=" physical protection"> physical protection</a>, <a href="https://publications.waset.org/abstracts/search?q=sabotage" title=" sabotage"> sabotage</a>, <a href="https://publications.waset.org/abstracts/search?q=unauthorized%20removal" title=" unauthorized removal"> unauthorized removal</a> </p> <a href="https://publications.waset.org/abstracts/97671/development-of-an-systematic-design-in-evaluating-force-on-force-security-exercise-at-nuclear-power-plants" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/97671.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">141</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7266</span> Influence of Solenoid Configuration on Electromagnetic Acceleration of Plunger</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shreyansh%20Bharadwaj">Shreyansh Bharadwaj</a>, <a href="https://publications.waset.org/abstracts/search?q=Raghavendra%20Kollipara"> Raghavendra Kollipara</a>, <a href="https://publications.waset.org/abstracts/search?q=Sijoy%20C.%20D."> Sijoy C. D.</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20K.%20Mittal"> R. K. Mittal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Utilizing the Lorentz force to propel an electrically conductive plunger through a solenoid represents a fundamental application in electromagnetism. The parameters of the solenoid significantly influence the force exerted on the plunger, impacting its response. A parametric study has been done to understand the effect of these parameters on the force acting on the plunger. This study is done to determine the most optimal combination of parameters to obtain the fast response. Analysis has been carried out using an algorithm capable of simulating the scenario of a plunger undergoing acceleration within a solenoid. Authors have conducted an analysis focusing on several key configuration parameters of the solenoid. These parameters include the inter-layer gap (in the case of a multi-turn solenoid), different conductor diameters, varying numbers of turns, and diverse numbers of layers. Primary objective of this paper is to discern how alterations in these parameters affect the force applied to the plunger. Through extensive numerical simulations, a dataset has been generated and utilized to construct informative plots. These plots provide visual representations of the relationships between the solenoid configuration parameters and the resulting force exerted on the plunger, which can further be used to deduce scaling laws. This research endeavors to offer valuable insights into optimizing solenoid configurations for enhanced electromagnetic acceleration, thereby contributing to advancements in electromagnetic propulsion technology. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lorentz%20force" title="Lorentz force">Lorentz force</a>, <a href="https://publications.waset.org/abstracts/search?q=solenoid%20configuration" title=" solenoid configuration"> solenoid configuration</a>, <a href="https://publications.waset.org/abstracts/search?q=electromagnetic%20acceleration" title=" electromagnetic acceleration"> electromagnetic acceleration</a>, <a href="https://publications.waset.org/abstracts/search?q=parametric%20analysis" title=" parametric analysis"> parametric analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a> </p> <a href="https://publications.waset.org/abstracts/185612/influence-of-solenoid-configuration-on-electromagnetic-acceleration-of-plunger" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/185612.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">47</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7265</span> In situ Modelling of Lateral-Torsional Vibration of a Rotor-Stator with Multiple Parametric Excitations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20X.%20Tchomeni">B. X. Tchomeni</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20A.%20Alugongo"> A. A. Alugongo</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20M.%20Masu"> L. M. Masu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a 4-DOF nonlinear model of a cracked of Laval rotor established based on Energy Principles. The model has been used to simulate coupled torsional-lateral response of the cracked rotor stator-system with multiple parametric excitations, namely, rotor-stator-rub, a breathing transverse crack, unbalanced mass, and an axial force. Nonlinearity due to a “breathing” crack is incorporated by considering a simple hinge model which is suitable for small breathing crack. The vibration response of a cracked rotor passing through its critical speed with rotor-stator interaction is analyzed, and an attempt for crack detection and monitoring explored. Effects of unbalanced eccentricity with phase and acceleration are investigated. By solving the motion equations, steady-state vibration response is obtained in presence of several rotor faults. The presence of a crack is observable in the power spectrum despite the excitation by the axial force and rotor-stator rub impact. Presented results are consistent with existing literature and could be adopted into rotor condition monitoring strategies <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rotor" title="rotor">rotor</a>, <a href="https://publications.waset.org/abstracts/search?q=crack" title=" crack"> crack</a>, <a href="https://publications.waset.org/abstracts/search?q=rubbing" title=" rubbing"> rubbing</a>, <a href="https://publications.waset.org/abstracts/search?q=axial%20force" title=" axial force"> axial force</a>, <a href="https://publications.waset.org/abstracts/search?q=non%20linear" title=" non linear"> non linear</a> </p> <a href="https://publications.waset.org/abstracts/15695/in-situ-modelling-of-lateral-torsional-vibration-of-a-rotor-stator-with-multiple-parametric-excitations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15695.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">401</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7264</span> Prediction of Heavy-Weight Impact Noise and Vibration of Floating Floor Using Modified Impact Spectrum</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ju-Hyung%20Kim">Ju-Hyung Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Dae-Ho%20Mun"> Dae-Ho Mun</a>, <a href="https://publications.waset.org/abstracts/search?q=Hong-Gun%20Park"> Hong-Gun Park</a> </p> <p class="card-text"><strong>Abstract:</strong></p> When an impact is applied to a floating floor, noise and vibration response of high-frequency range is reduced effectively, while amplifies the response at low-frequency range. This means floating floor can make worse noise condition when heavy-weight impact is applied. The amplified response is the result of interaction between finishing layer (mortar plate) and concrete slab. Because an impact force is not directly delivered to concrete slab, the impact force waveform or spectrum can be changed. In this paper, the changed impact spectrum was derived from several floating floor vibration tests. Based on the measured data, numerical modeling can describe the floating floor response, especially at low-frequency range. As a result, heavy-weight impact noise can be predicted using modified impact spectrum. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=floating%20floor" title="floating floor">floating floor</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy-weight%20impact" title=" heavy-weight impact"> heavy-weight impact</a>, <a href="https://publications.waset.org/abstracts/search?q=prediction" title=" prediction"> prediction</a>, <a href="https://publications.waset.org/abstracts/search?q=vibration" title=" vibration"> vibration</a> </p> <a href="https://publications.waset.org/abstracts/60227/prediction-of-heavy-weight-impact-noise-and-vibration-of-floating-floor-using-modified-impact-spectrum" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60227.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">372</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7263</span> Studying the Dynamical Response of Nano-Microelectromechanical Devices for Nanomechanical Testing of Nanostructures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Reza%20Zamani%20Kouhpanji">Mohammad Reza Zamani Kouhpanji</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Characterizing the fatigue and fracture properties of nanostructures is one of the most challenging tasks in nanoscience and nanotechnology due to lack of a MEMS/NEMS device for generating uniform cyclic loadings at high frequencies. Here, the dynamic response of a recently proposed MEMS/NEMS device under different inputs signals is completely investigated. This MEMS/NEMS device is designed and modeled based on the electromagnetic force induced between paired parallel wires carrying electrical currents, known as Ampere’s Force Law (AFL). Since this MEMS/NEMS device only uses two paired wires for actuation part and sensing part, it represents highly sensitive and linear response for nanostructures with any stiffness and shapes (single or arrays of nanowires, nanotubes, nanosheets or nanowalls). In addition to studying the maximum gains at different resonance frequencies of the MEMS/NEMS device, its dynamical responses are investigated for different inputs and nanostructure properties to demonstrate the capability, usability, and reliability of the device for wide range of nanostructures. This MEMS/NEMS device can be readily integrated into SEM/TEM instruments to provide real time study of the fatigue and fracture properties of nanostructures as well as their softening or hardening behaviors, and initiation and/or propagation of nanocracks in them. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=MEMS%2FNEMS%20devices" title="MEMS/NEMS devices">MEMS/NEMS devices</a>, <a href="https://publications.waset.org/abstracts/search?q=paired%20wire%20actuators%20and%20sensors" title=" paired wire actuators and sensors"> paired wire actuators and sensors</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamical%20response" title=" dynamical response"> dynamical response</a>, <a href="https://publications.waset.org/abstracts/search?q=fatigue%20and%20fracture%20characterization" title=" fatigue and fracture characterization"> fatigue and fracture characterization</a>, <a href="https://publications.waset.org/abstracts/search?q=Ampere%E2%80%99s%20force%20law" title=" Ampere’s force law"> Ampere’s force law</a> </p> <a href="https://publications.waset.org/abstracts/82093/studying-the-dynamical-response-of-nano-microelectromechanical-devices-for-nanomechanical-testing-of-nanostructures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82093.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">400</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7262</span> Human Walking Vertical Force and Vertical Vibration of Pedestrian Bridge Induced by Its Higher Components</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Masahiro%20Yoneda">Masahiro Yoneda</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of this study is to identify human walking vertical force by using FFT power spectrum density from the experimental acceleration data of the human body. An experiment on human walking is carried out on a stationary floor especially paying attention to higher components of dynamic vertical walking force. Based on measured acceleration data of the human lumbar part, not only in-phase component with frequency of 2 fw, 3 fw, but also in-opposite-phase component with frequency of 0.5 fw, 1.5 fw, 2.5 fw where fw is the walking rate is observed. The vertical vibration of pedestrian bridge induced by higher components of human walking vertical force is also discussed in this paper. A full scale measurement for the existing pedestrian bridge with center span length of 33 m is carried out focusing on the resonance phenomenon due to higher components of human walking vertical force. Dynamic response characteristics excited by these vertical higher components of human walking are revealed from the dynamic design viewpoint of pedestrian bridge. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=simplified%20method" title="simplified method">simplified method</a>, <a href="https://publications.waset.org/abstracts/search?q=human%20walking%20vertical%20force" title=" human walking vertical force"> human walking vertical force</a>, <a href="https://publications.waset.org/abstracts/search?q=higher%20component" title=" higher component"> higher component</a>, <a href="https://publications.waset.org/abstracts/search?q=pedestrian%20bridge%20vibration" title=" pedestrian bridge vibration"> pedestrian bridge vibration</a> </p> <a href="https://publications.waset.org/abstracts/28100/human-walking-vertical-force-and-vertical-vibration-of-pedestrian-bridge-induced-by-its-higher-components" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28100.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">434</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7261</span> Seismic Base Shear Force Depending on Building Fundamental Period and Site Conditions: Deterministic Formulation and Probabilistic Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Dorbani">S. Dorbani</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Badaoui"> M. Badaoui</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Benouar"> D. Benouar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this paper is to investigate the effect of the building fundamental period of reinforced concrete buildings of (6, 9, and 12-storey), with different floor plans: Symmetric, mono-symmetric, and unsymmetric. These structures are erected at different epicentral distances. Using the Boumerdes, Algeria (2003) earthquake data, we focused primarily on the establishment of the deterministic formulation linking the base shear force to two parameters: The first one is the fundamental period that represents the numerical fingerprint of the structure, and the second one is the epicentral distance used to represent the impact of the earthquake on this force. In a second step, with a view to highlight the effect of uncertainty in these parameters on the analyzed response, these parameters are modeled as random variables with a log-normal distribution. The variability of the coefficients of variation of the chosen uncertain parameters, on the statistics on the seismic base shear force, showed that the effect of uncertainty on fundamental period on this force statistics is low compared to the epicentral distance uncertainty influence. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=base%20shear%20force" title="base shear force">base shear force</a>, <a href="https://publications.waset.org/abstracts/search?q=fundamental%20period" title=" fundamental period"> fundamental period</a>, <a href="https://publications.waset.org/abstracts/search?q=epicentral%20distance" title=" epicentral distance"> epicentral distance</a>, <a href="https://publications.waset.org/abstracts/search?q=uncertainty" title=" uncertainty"> uncertainty</a>, <a href="https://publications.waset.org/abstracts/search?q=lognormal%20variables" title=" lognormal variables"> lognormal variables</a>, <a href="https://publications.waset.org/abstracts/search?q=statistics" title=" statistics"> statistics</a> </p> <a href="https://publications.waset.org/abstracts/59431/seismic-base-shear-force-depending-on-building-fundamental-period-and-site-conditions-deterministic-formulation-and-probabilistic-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59431.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">320</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7260</span> Key Technologies and Evolution Strategies for Computing Force Bearer Network</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zhaojunfeng">Zhaojunfeng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Driven by the national policy of "East Data and Western Calculation", the computing first network will attract a new wave of development. As the foundation of the development of the computing first network, the computing force bearer network has become the key direction of technology research and development in the industry. This article will analyze typical computing force application scenarios and bearing requirements and sort out the SLA indicators of computing force applications. On this basis, this article carries out research and discussion on the key technologies of computing force bearer network in a slice packet network, and finally, gives evolution policy for SPN computing force bearer network to support the development of SPN computing force bearer network technology and network deployment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=component-computing%20force%20bearing" title="component-computing force bearing">component-computing force bearing</a>, <a href="https://publications.waset.org/abstracts/search?q=bearing%20requirements%20of%20computing%20force%20application" title=" bearing requirements of computing force application"> bearing requirements of computing force application</a>, <a href="https://publications.waset.org/abstracts/search?q=dual-SLA%20indicators%20for%20computing%20force%20applications" title=" dual-SLA indicators for computing force applications"> dual-SLA indicators for computing force applications</a>, <a href="https://publications.waset.org/abstracts/search?q=SRv6" title=" SRv6"> SRv6</a>, <a href="https://publications.waset.org/abstracts/search?q=evolution%20strategies" title=" evolution strategies"> evolution strategies</a> </p> <a href="https://publications.waset.org/abstracts/155006/key-technologies-and-evolution-strategies-for-computing-force-bearer-network" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/155006.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">130</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7259</span> Simulating Drilling Using a CAD System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Panagiotis%20Kyratsis">Panagiotis Kyratsis</a>, <a href="https://publications.waset.org/abstracts/search?q=Konstantinos%20Kakoulis"> Konstantinos Kakoulis</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nowadays, the rapid development of CAD systems’ programming environments results in the creation of multiple downstream applications, which are developed and becoming increasingly available. CAD based manufacturing simulations is gradually following the same trend. Drilling is the most popular hole-making process used in a variety of industries. A specially built piece of software that deals with the drilling kinematics is presented. The cutting forces are calculated based on the tool geometry, the cutting conditions and the tool/work piece materials. The results are verified by experimental work. Finally, the response surface methodology (RSM) is applied and mathematical models of the total thrust force and the thrust force developed because of the main cutting edges are proposed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CAD" title="CAD">CAD</a>, <a href="https://publications.waset.org/abstracts/search?q=application%20programming%20interface" title=" application programming interface"> application programming interface</a>, <a href="https://publications.waset.org/abstracts/search?q=response%20surface%20methodology" title=" response surface methodology"> response surface methodology</a>, <a href="https://publications.waset.org/abstracts/search?q=drilling" title=" drilling"> drilling</a>, <a href="https://publications.waset.org/abstracts/search?q=RSM" title=" RSM"> RSM</a> </p> <a href="https://publications.waset.org/abstracts/32951/simulating-drilling-using-a-cad-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32951.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">470</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7258</span> A Deep Explanation for the Formation of Force as a Foundational Law of Physics by Incorporating Unknown Degrees of Freedom into Space</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohsen%20Farshad">Mohsen Farshad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Information and force definition has been intertwined with the concept of entropy for many years. The displacement information of degrees of freedom with Brownian motions at a given temperature in space emerges as an entropic force between species. Here, we use this concept of entropy to understand the underlying physics behind the formation of attractive and repulsive forces by imagining that space is filled with free Brownian degrees of freedom. We incorporate the radius of bodies and the distance between them into entropic force relation systematically. Using this modified gravitational entropic force, we derive the attractive entropic force between bodies without considering their spin. We further hypothesize a possible mechanism for the formation of the repulsive force between two bodies. We visually elaborate that the repulsive entropic force will be manifested through the rotation of degrees of freedom around the spinning particles. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=entropy" title="entropy">entropy</a>, <a href="https://publications.waset.org/abstracts/search?q=information" title=" information"> information</a>, <a href="https://publications.waset.org/abstracts/search?q=force" title=" force"> force</a>, <a href="https://publications.waset.org/abstracts/search?q=Brownian%20Motions" title=" Brownian Motions"> Brownian Motions</a> </p> <a href="https://publications.waset.org/abstracts/150175/a-deep-explanation-for-the-formation-of-force-as-a-foundational-law-of-physics-by-incorporating-unknown-degrees-of-freedom-into-space" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/150175.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">76</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7257</span> Viability of Slab Sliding System for Single Story Structure</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=C.%20Iihoshi">C. Iihoshi</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20A.%20MacRae"> G. A. MacRae</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20W.%20Rodgers"> G. W. Rodgers</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20G.%20Chase"> J. G. Chase</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Slab Sliding System (SSS) with Coulomb friction interface between slab and supporting frame is a passive structural vibration control technology. The system can significantly reduce the slab acceleration and accompanied lateral force of the frame. At the same time it is expected to cause the slab displacement magnification by sliding movement. To obtain the general comprehensive seismic response of a single story structure, inelastic response spectra were computed for a large ensemble of ground motions and a practical range of structural periods and friction coefficient values. It was shown that long period structures have no trade-off relation between force reduction and displacement magnification with respect to elastic response, unlike short period structures. For structures with the majority of mass in the slab, the displacement magnification value can be predicted according to simple inelastic displacement relation for in elastically responding SDOF structures because the system behaves elastically to a SDOF structure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=earthquake" title="earthquake">earthquake</a>, <a href="https://publications.waset.org/abstracts/search?q=isolation" title=" isolation"> isolation</a>, <a href="https://publications.waset.org/abstracts/search?q=slab" title=" slab"> slab</a>, <a href="https://publications.waset.org/abstracts/search?q=sliding" title=" sliding"> sliding</a> </p> <a href="https://publications.waset.org/abstracts/2706/viability-of-slab-sliding-system-for-single-story-structure" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2706.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">250</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7256</span> Optimal Design of Submersible Permanent Magnet Linear Synchronous Motor Based Design of Experiment and Genetic Algorithm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xiao%20Zhang">Xiao Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Wensheng%20Xiao"> Wensheng Xiao</a>, <a href="https://publications.waset.org/abstracts/search?q=Junguo%20Cui"> Junguo Cui</a>, <a href="https://publications.waset.org/abstracts/search?q=Hongmin%20Wang"> Hongmin Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Submersible permanent magnet linear synchronous motors (SPMLSMs) are electromagnetic devices, which can directly drive plunger pump to obtain the crude oil. Those motors have been gradually applied in oil fields due to high thrust force density and high efficiency. Since the force performance closely depends on the concrete structural parameters, the seven different structural parameters are investigated in detail. This paper presents an optimum design of an SPMLSM to minimize the detent force and maximize the thrust by using design of experiment (DOE) and genetic algorithm (GA). The three significant structural parameters (air-gap length, slot width, pole-arc coefficient) are separately screened using 27 1/16 fractional factorial design (FFD) to investigate the significant effect of seven parameters used in this research on the force performance. Response surface methodology (RSM) is well adapted to make analytical model of thrust and detent force with constraints of corresponding significant parameters and enable objective function to be easily created, respectively. GA is performed as a searching tool to search for the Pareto-optimal solutions. By finite element analysis, the proposed PMLSM shows merits in improving thrust and reducing the detent force dramatically. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=optimization" title="optimization">optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=force%20performance" title=" force performance"> force performance</a>, <a href="https://publications.waset.org/abstracts/search?q=design%20of%20experiment%20%28DOE%29" title=" design of experiment (DOE)"> design of experiment (DOE)</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20algorithm%20%28GA%29" title=" genetic algorithm (GA)"> genetic algorithm (GA)</a> </p> <a href="https://publications.waset.org/abstracts/72951/optimal-design-of-submersible-permanent-magnet-linear-synchronous-motor-based-design-of-experiment-and-genetic-algorithm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72951.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">290</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7255</span> The Response of Optical Properties to Temperature in Three-Layer Micro Device Under Influence of Casimir Force</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Motahare%20Aali">Motahare Aali</a>, <a href="https://publications.waset.org/abstracts/search?q=Fatemeh%20Tajik"> Fatemeh Tajik</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Here, we investigate the sensitivity the Casimir force and consequently dynamical actuation of a three-layer microswitch to some ambient conditions. In fact, we have considered the effect of optical properties on the stable operation of the microswitch for both good (e.g. metals) and poor conductors via a three layer Casimir oscillator. Indeed, gold (Au) has been chosen as a good conductor which is widely used for Casimir force measurements, and highly doped conductive silicon carbide (SiC) has been considered as a poor conductor which is a promising material for device operating under harsh environments. Also, the intervening stratum is considered ethanol or water. It is also supposed that the microswitches are frictionless and autonomous. Using reduction factor diagrams and bifurcation curves, it has been shown how performance of the microswitches is sensitive to temperature and intervening stratum, moreover it is investigated how the conductivity of the components can affect this sensitivity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Casimir%20force" title="Casimir force">Casimir force</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20properties" title=" optical properties"> optical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=Lifshitz%20theory" title=" Lifshitz theory"> Lifshitz theory</a>, <a href="https://publications.waset.org/abstracts/search?q=dielectric%20function" title=" dielectric function"> dielectric function</a> </p> <a href="https://publications.waset.org/abstracts/164613/the-response-of-optical-properties-to-temperature-in-three-layer-micro-device-under-influence-of-casimir-force" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/164613.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">95</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7254</span> Percentage Contribution of Lower Limb Moments to Vertical Ground Reaction Force in Normal Walking</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Salam%20M.%20Elhafez">Salam M. Elhafez</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20A.%20Ashour"> Ahmed A. Ashour</a>, <a href="https://publications.waset.org/abstracts/search?q=Naglaa%20M.%20Elhafez"> Naglaa M. Elhafez</a>, <a href="https://publications.waset.org/abstracts/search?q=Ghada%20M.%20Elhafez"> Ghada M. Elhafez</a>, <a href="https://publications.waset.org/abstracts/search?q=Azza%20M.%20Abdelmohsen"> Azza M. Abdelmohsen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Patients suffering from gait disturbances are referred by having muscle group dysfunctions. There is a need for more studies investigating the contribution of muscle moments of the lower limb to the vertical ground reaction force using 3D gait analysis system. The purpose of this study was to investigate how the hip, knee and ankle moments in the sagittal plane contribute to the vertical ground reaction force in healthy subjects during normal speed of walking. Forty healthy male individuals volunteered to participate in this study. They were filmed using six high speed (120 Hz) Pro-Reflex Infrared cameras (Qualisys) while walking on an AMTI force platform. The data collected were the percentage contribution of the moments of the hip, knee and ankle joints in the sagittal plane at the instant of occurrence of the first peak, second peak, and the trough of the vertical ground reaction force. The results revealed that at the first peak of the ground reaction force (loading response), the highest contribution was generated from the knee extension moment, followed by the hip extension moment. Knee flexion and ankle plantar flexion moments produced high contribution to the trough of the ground reaction force (midstance) with approximately equal values. The second peak of the ground reaction force was mainly produced by the ankle plantar flexion moment. Conclusion: Hip and knee flexion and extension moments and ankle plantar flexion moment play important roles in the supporting phase of normal walking. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gait%20analysis" title="gait analysis">gait analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=ground%20reaction%20force" title=" ground reaction force"> ground reaction force</a>, <a href="https://publications.waset.org/abstracts/search?q=moment%20contribution" title=" moment contribution"> moment contribution</a>, <a href="https://publications.waset.org/abstracts/search?q=normal%20walking" title=" normal walking"> normal walking</a> </p> <a href="https://publications.waset.org/abstracts/76697/percentage-contribution-of-lower-limb-moments-to-vertical-ground-reaction-force-in-normal-walking" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76697.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">378</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7253</span> Evaluation of Response Modification Factor and Behavior of Seismic Base-Isolated RC Structures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Parsaeimaram">Mohammad Parsaeimaram</a>, <a href="https://publications.waset.org/abstracts/search?q=Fang%20Congqi"> Fang Congqi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, one of the significant seismic design parameter as response modification factor in reinforced concrete (RC) buildings with base isolation system was evaluated. The seismic isolation system is a capable approach to absorbing seismic energy at the base and transfer to the substructure with lower response modification factor as compared to non-isolated structures. A response spectrum method and static nonlinear pushover analysis in according to Uniform Building Code (UBC-97), have been performed on building models involve 5, 8, 12 and 15 stories building with fixed and isolated bases consist of identical moment resisting configurations. The isolation system is composed of lead rubber bearing (LRB) was designed with help UBC-97 parameters. The force-deformation behavior of isolators was modeled as bi-linear hysteretic behavior which can be effectively used to create the isolation systems. The obtained analytical results highlight the response modification factor of considered base isolation system with higher values than recommended in the codes. The response modification factor is used in modern seismic codes to scale down the elastic response of structures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=response%20modification%20factor" title="response modification factor">response modification factor</a>, <a href="https://publications.waset.org/abstracts/search?q=base%20isolation%20system" title=" base isolation system"> base isolation system</a>, <a href="https://publications.waset.org/abstracts/search?q=pushover%20analysis" title=" pushover analysis"> pushover analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=lead%20rubber%20bearing" title=" lead rubber bearing"> lead rubber bearing</a>, <a href="https://publications.waset.org/abstracts/search?q=bi-linear%20hysteretic" title=" bi-linear hysteretic"> bi-linear hysteretic</a> </p> <a href="https://publications.waset.org/abstracts/72242/evaluation-of-response-modification-factor-and-behavior-of-seismic-base-isolated-rc-structures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72242.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">324</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7252</span> Assessment of the Effect of Wind Turbulence on the Aero-Hydrodynamic Behavior of Offshore Wind Turbines</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Reza%20Dezvareh">Reza Dezvareh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this study is to investigate the amount of wind turbulence on the aero hydrodynamic behavior of offshore wind turbines with a monopile holder platform. Since in the sea, the wind turbine structures are under water and structures interactions, the dynamic analysis has been conducted under combined wind and wave loading. The offshore wind turbines have been investigated undertow models of normal and severe wind turbulence, and the results of this study show that the amplitude of fluctuation of dynamic response of structures including thrust force and base shear force of structures is increased with increasing the amount of wind turbulence, and this increase is not necessarily observed in the mean values of responses. Therefore, conducting the dynamic analysis is inevitable in order to observe the effect of wind turbulence on the structures' response. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=offshore%20wind%20turbine" title="offshore wind turbine">offshore wind turbine</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20turbulence" title=" wind turbulence"> wind turbulence</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20vibration" title=" structural vibration"> structural vibration</a>, <a href="https://publications.waset.org/abstracts/search?q=aero-hydro%20dynamic" title=" aero-hydro dynamic"> aero-hydro dynamic</a> </p> <a href="https://publications.waset.org/abstracts/82641/assessment-of-the-effect-of-wind-turbulence-on-the-aero-hydrodynamic-behavior-of-offshore-wind-turbines" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82641.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">208</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7251</span> Vertical and Lateral Vibration Response for Corrugated Track Curves Supported on High-Density Polyethylene and Hytrel Rail Pads</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.M.%20Balekwa">B.M. Balekwa</a>, <a href="https://publications.waset.org/abstracts/search?q=D.V.V.%20Kallon"> D.V.V. Kallon</a>, <a href="https://publications.waset.org/abstracts/search?q=D.J.%20Fourie"> D.J. Fourie</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Modal analysis is applied to establish the dynamic difference between vibration response of the rails supported on High Density Polyethylene (HDPE) and Hytrel/6358 rail pads. The experiment was conducted to obtain the results in the form of Frequency Response Functions (FRFs) in the vertical and lateral directions. Three antiresonance modes are seen in the vertical direction; one occurs at about 150 Hz when the rail resting on the Hytrel/6358 pad experiences a force mid-span. For the rail resting on this type of rail pad, no antiresonance occurs when the force is applied on the point of the rail that is resting on the pad and directly on top of a sleeper. The two antiresonance modes occur in a frequency range of 250 – 300 Hz in the vertical direction for the rail resting on HDPE pads. At resonance, the rail vibrates with a higher amplitude, but at antiresonance, the rail transmits vibration downwards to the sleepers. When the rail is at antiresonance, the stiffness of the rail pads play a vital role in terms of damping the vertical vibration to protect the sleepers. From the FRFs it is understood that the Hytrel/6358 rail pads perform better than the HDPE in terms of vertical response, given that at a lower frequency range of 0 – 300 Hz only one antiresonance mode was identified for vertical vibration of the rail supported on Hytrel/6358. This means the rail is at antiresonance only once within this frequency range and this is the only time when vibration is transmitted downwards. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=accelerance" title="accelerance">accelerance</a>, <a href="https://publications.waset.org/abstracts/search?q=FRF" title=" FRF"> FRF</a>, <a href="https://publications.waset.org/abstracts/search?q=rail%20corrugation" title=" rail corrugation"> rail corrugation</a>, <a href="https://publications.waset.org/abstracts/search?q=rail%20pad" title=" rail pad"> rail pad</a> </p> <a href="https://publications.waset.org/abstracts/125399/vertical-and-lateral-vibration-response-for-corrugated-track-curves-supported-on-high-density-polyethylene-and-hytrel-rail-pads" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/125399.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">179</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7250</span> Application of Taguchi Techniques on Machining of A356/Al2O3 Metal Matrix Nano-Composite</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdallah%20M.%20Abdelkawy">Abdallah M. Abdelkawy</a>, <a href="https://publications.waset.org/abstracts/search?q=Tarek%20M.%20El%20Hossainya"> Tarek M. El Hossainya</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20El%20Mahallawib"> I. El Mahallawib</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recently, significant achievements have been made in development and manufacturing of nano-dispersed metal matrix nanocomposites (MMNCs). They gain their importance due to their high strength to weight ratio. The machining problems of these new materials are less widely investigated, thus this work focuses on machining of them. Aluminum-Silicon (A356)/ MMNC dispersed with alumina (Al2O3) is important in many applications include engine blocks. The final finish process of this application depends heavily on machining. The most important machining parameter studied includes: cutting force and surface roughness. Experimental trails are performed on the number of special samples of MMNC (with different Al2O3%) where the relation between Al2O3% and cutting speed, feed rate and cutting depth with cutting force and surface roughness were studied. The data obtained were statistically analyzed using Analysis of variance (ANOVA) to define the significant factors on both cutting force and surface roughness and their level of confident. Response Surface Methodology (RSM) is used to build a model relating cutting conditions and Al2O3% to the cutting force and surface roughness. The results have shown that feed and depth of cut have the major contribution on the cutting force and the surface roughness followed by cutting speed and nano-percent in MMNCs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=machinability" title="machinability">machinability</a>, <a href="https://publications.waset.org/abstracts/search?q=cutting%20force" title=" cutting force"> cutting force</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20roughness" title=" surface roughness"> surface roughness</a>, <a href="https://publications.waset.org/abstracts/search?q=Ra" title=" Ra"> Ra</a>, <a href="https://publications.waset.org/abstracts/search?q=RSM" title=" RSM"> RSM</a>, <a href="https://publications.waset.org/abstracts/search?q=ANOVA" title=" ANOVA"> ANOVA</a>, <a href="https://publications.waset.org/abstracts/search?q=MMNCs" title=" MMNCs"> MMNCs</a> </p> <a href="https://publications.waset.org/abstracts/20821/application-of-taguchi-techniques-on-machining-of-a356al2o3-metal-matrix-nano-composite" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20821.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">369</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7249</span> Tensile Force Estimation for Real-Size Pre-Stressed Concrete Girder using Embedded Elasto-Magnetic Sensor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Junkyeong%20Kim">Junkyeong Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Jooyoung%20Park"> Jooyoung Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Aoqi%20Zhang"> Aoqi Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Seunghee%20Park"> Seunghee Park</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The tensile force of Pre-Stressed Concrete (PSC) girder is the most important factor for evaluating the performance of PSC girder bridges. To measure the tensile force of PSC girder, several NDT methods were studied. However, conventional NDT method cannot be applied to the real-size PSC girder because the PS tendons could not be approached. To measure the tensile force of real-size PSC girder, this study proposed embedded EM sensor based tensile force estimation method. The embedded EM sensor could be installed inside of PSC girder as a sheath joint before the concrete casting. After curing process, the PS tendons were installed, and the tensile force was induced step by step using hydraulic jacking machine. The B-H loop was measured using embedded EM sensor at each tensile force steps and to compare with actual tensile force, the load cell was installed at each end of girder. The magnetization energy loss, that is the closed area of B-H loop, was decreased according to the increase of tensile force with regular pattern. Thus, the tensile force could be estimated by the tracking the change of magnetization energy loss of PS tendons. Through the experimental result, the proposed method can be used to estimate the tensile force of the in-situ real-size PSC girder bridge. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tensile%20force%20estimation" title="tensile force estimation">tensile force estimation</a>, <a href="https://publications.waset.org/abstracts/search?q=embedded%20EM%20sensor" title=" embedded EM sensor"> embedded EM sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetization%20energy%20loss" title=" magnetization energy loss"> magnetization energy loss</a>, <a href="https://publications.waset.org/abstracts/search?q=PSC%20girder" title=" PSC girder"> PSC girder</a> </p> <a href="https://publications.waset.org/abstracts/57237/tensile-force-estimation-for-real-size-pre-stressed-concrete-girder-using-embedded-elasto-magnetic-sensor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57237.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">337</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7248</span> A Method to Determine Cutting Force Coefficients in Turning Using Mechanistic Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=T.%20C.%20Bera">T. C. Bera</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Bansal"> A. Bansal</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Nema"> D. Nema</a> </p> <p class="card-text"><strong>Abstract:</strong></p> During performing turning operation, cutting force plays a significant role in metal cutting process affecting tool-work piece deflection, vibration and eventually part quality. The present research work aims to develop a mechanistic cutting force model and to study the mechanistic constants used in the force model in case of turning operation. The proposed model can be used for the reliable and accurate estimation of the cutting forces establishing relationship of various force components (cutting force and feed force) with uncut chip thickness. The accurate estimation of cutting force is required to improve thin-walled part accuracy by controlling the tool-work piece deflection induced surface errors and tool-work piece vibration. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=turning" title="turning">turning</a>, <a href="https://publications.waset.org/abstracts/search?q=cutting%20forces" title=" cutting forces"> cutting forces</a>, <a href="https://publications.waset.org/abstracts/search?q=cutting%20constants" title=" cutting constants"> cutting constants</a>, <a href="https://publications.waset.org/abstracts/search?q=uncut%20chip%20thickness" title=" uncut chip thickness"> uncut chip thickness</a> </p> <a href="https://publications.waset.org/abstracts/30832/a-method-to-determine-cutting-force-coefficients-in-turning-using-mechanistic-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30832.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">522</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7247</span> Viscoelastic Response of the Human Corneal Stroma Induced by Riboflavin/UVA Cross-Linking </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=C.%20Labate">C. Labate</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20P.%20De%20Santo"> M. P. De Santo</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Lombardo"> G. Lombardo</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Barberi"> R. Barberi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Lombardo"> M. Lombardo</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20M.%20Ziebarth"> N. M. Ziebarth</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the past decades, the importance of corneal biomechanics in the normal and pathological functions of the eye has gained its credibility. In fact, the mechanical properties of biological tissues are essential to their physiological function. We are convinced that an improved understanding of the nanomechanics of corneal tissue is important to understand the basic molecular interactions between collagen fibrils. Ultimately, this information will help in the development of new techniques to cure ocular diseases and in the development of biomimetic materials. Therefore, nanotechnology techniques are powerful tools and, in particular, Atomic Force Microscopy has demonstrated its ability to reliably characterize the biomechanics of biological tissues either at the micro- or nano-level. In the last years, we have investigated the mechanical anisotropy of the human corneal stroma at both the tissue and molecular levels. In particular, we have focused on corneal cross-linking, an established procedure aimed at slowing down or halting the progression of the disease known as keratoconus. We have obtained the first evidence that riboflavin/UV-A corneal cross-linking induces both an increase of the elastic response and a decrease of the viscous response of the most anterior stroma at the scale of stromal molecular interactions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=atomic%20force%20spectroscopy" title="atomic force spectroscopy">atomic force spectroscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=corneal%20stroma" title=" corneal stroma"> corneal stroma</a>, <a href="https://publications.waset.org/abstracts/search?q=cross-linking" title=" cross-linking"> cross-linking</a>, <a href="https://publications.waset.org/abstracts/search?q=viscoelasticity" title=" viscoelasticity"> viscoelasticity</a> </p> <a href="https://publications.waset.org/abstracts/44652/viscoelastic-response-of-the-human-corneal-stroma-induced-by-riboflavinuva-cross-linking" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44652.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">312</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7246</span> Study of Parameters Affecting the Electrostatic Attractions Force</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vahid%20Sabermand">Vahid Sabermand</a>, <a href="https://publications.waset.org/abstracts/search?q=Yousef%20Hojjat"> Yousef Hojjat</a>, <a href="https://publications.waset.org/abstracts/search?q=Majid%20Hasanzadeh"> Majid Hasanzadeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper contains two main parts. In the first part of paper we simulated and studied three type of electrode patterns used in various industries for suspension and handling of the semiconductor and glass and we selected the best pattern by evaluating the electrostatic force, which was comb pattern electrode. In the second part, we investigated the parameters affecting the amount of electrostatic force such as the gap between surface and electrode (g), the electrode width (w), the gap between electrodes (t), the surface permittivity and electrode Length and methods of improvement of adhesion force by changing these values. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electrostatic%20force" title="electrostatic force">electrostatic force</a>, <a href="https://publications.waset.org/abstracts/search?q=electrostatic%20adhesion" title=" electrostatic adhesion"> electrostatic adhesion</a>, <a href="https://publications.waset.org/abstracts/search?q=electrostatic%20chuck" title=" electrostatic chuck"> electrostatic chuck</a>, <a href="https://publications.waset.org/abstracts/search?q=electrostatic%20application%20in%20industry" title=" electrostatic application in industry"> electrostatic application in industry</a>, <a href="https://publications.waset.org/abstracts/search?q=electroadhesive%20grippers" title=" electroadhesive grippers"> electroadhesive grippers</a> </p> <a href="https://publications.waset.org/abstracts/16573/study-of-parameters-affecting-the-electrostatic-attractions-force" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16573.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">403</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7245</span> The Associations of Pes Planus Plantaris (Flat Foot) to the Postural Stability of Basketball Student-Athletes Through the Ground Reaction Force Vector (vGRF)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Def%20Primal">Def Primal</a>, <a href="https://publications.waset.org/abstracts/search?q=Sasanty%20Kusumaningtyas"> Sasanty Kusumaningtyas</a>, <a href="https://publications.waset.org/abstracts/search?q=Ermita%20I.%20Ibrahim"> Ermita I. Ibrahim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Purpose: The main objective of this study is to determine the pes planus plantaris (flat foot) condition can contribute to the disturbance of postural stability in basketball athletes in static and dynamic activities. Methods: This cross-sectional quantitative analytical retrospective study on 47 subjects of basketball student-athletes identified the foot arch index by extensive footprint area and AMTI (Advanced Mechanical Technology Inc.) Force flat-form (force plate) determined their postural stability. Subjects were conducted in three activities (static, dynamic vertical jump, and dynamic loading response) for ground reaction force (GRF) resultant vectors towards the vertical plane of body mass (W). Results Analytical results obtained that 80.9% of subjects had pes planus plantaris. It shows no significant differences in pes planus plantaris incidence in both sexes subject (p>0.005); however, there are differences in athlete’s exercise period aspect. Athlete students who have practiced strictly for more than four years’ experience over 50% of pes planus plantaris; furthermore, a long period of exercise was believed to stimulate pes planus. The average value of GRF vectors of pes planus plantaris subjects on three different basketball movements shows a significant correlation to postural stability. Conclusions Pes planus plantaris affected almost basketball athletes regarding the length and intensity of exercise performed. The condition significantly contributes to postural stability disturbance on a static condition, dynamic vertical jump, and dynamic vertical jump loading response. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pes%20planus%20plantaris" title="pes planus plantaris">pes planus plantaris</a>, <a href="https://publications.waset.org/abstracts/search?q=flatfoot" title=" flatfoot"> flatfoot</a>, <a href="https://publications.waset.org/abstracts/search?q=ground%20reaction%20force" title=" ground reaction force"> ground reaction force</a>, <a href="https://publications.waset.org/abstracts/search?q=static%20and%20dynamic%20stability" title=" static and dynamic stability"> static and dynamic stability</a> </p> <a href="https://publications.waset.org/abstracts/153583/the-associations-of-pes-planus-plantaris-flat-foot-to-the-postural-stability-of-basketball-student-athletes-through-the-ground-reaction-force-vector-vgrf" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/153583.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">144</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7244</span> 3D Simulation of Orthodontic Tooth Movement in the Presence of Horizontal Bone Loss</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Azin%20Zargham">Azin Zargham</a>, <a href="https://publications.waset.org/abstracts/search?q=Gholamreza%20Rouhi"> Gholamreza Rouhi</a>, <a href="https://publications.waset.org/abstracts/search?q=Allahyar%20Geramy"> Allahyar Geramy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the most prevalent types of alveolar bone loss is horizontal bone loss (HBL) in which the bone height around teeth is reduced homogenously. In the presence of HBL the magnitudes of forces during orthodontic treatment should be altered according to the degree of HBL, in a way that without further bone loss, desired tooth movement can be obtained. In order to investigate the appropriate orthodontic force system in the presence of HBL, a three-dimensional numerical model capable of the simulation of orthodontic tooth movement was developed. The main goal of this research was to evaluate the effect of different degrees of HBL on a long-term orthodontic tooth movement. Moreover, the effect of different force magnitudes on orthodontic tooth movement in the presence of HBL was studied. Five three-dimensional finite element models of a maxillary lateral incisor with 0 mm, 1.5 mm, 3 mm, 4.5 mm and 6 mm of HBL were constructed. The long-term orthodontic tooth tipping movements were attained during a 4-weeks period in an iterative process through the external remodeling of the alveolar bone based on strains in periodontal ligament as the bone remodeling mechanical stimulus. To obtain long-term orthodontic tooth movement in each iteration, first the strains in periodontal ligament under a 1-N tipping force were calculated using finite element analysis. Then, bone remodeling and the subsequent tooth movement were computed in a post-processing software using a custom written program. Incisal edge, cervical, and apical area displacement in the models with different alveolar bone heights (0, 1.5, 3, 4.5, 6 mm bone loss) in response to a 1-N tipping force were calculated. Maximum tooth displacement was found to be 2.65 mm at the top of the crown of the model with a 6 mm bone loss. Minimum tooth displacement was 0.45 mm at the cervical level of the model with a normal bone support. Tooth tipping degrees of models in response to different tipping force magnitudes were also calculated for models with different degrees of HBL. Degrees of tipping tooth movement increased as force level was increased. This increase was more prominent in the models with smaller degrees of HBL. By using finite element method and bone remodeling theories, this study indicated that in the presence of HBL, under the same load, long-term orthodontic tooth movement will increase. The simulation also revealed that even though tooth movement increases with increasing the force, this increase was only prominent in the models with smaller degrees of HBL, and tooth models with greater degrees of HBL will be less affected by the magnitude of an orthodontic force. Based on our results, the applied force magnitude must be reduced in proportion of degree of HBL. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bone%20remodeling" title="bone remodeling">bone remodeling</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title=" finite element method"> finite element method</a>, <a href="https://publications.waset.org/abstracts/search?q=horizontal%20bone%20loss" title=" horizontal bone loss"> horizontal bone loss</a>, <a href="https://publications.waset.org/abstracts/search?q=orthodontic%20tooth%20movement." title=" orthodontic tooth movement."> orthodontic tooth movement.</a> </p> <a href="https://publications.waset.org/abstracts/38672/3d-simulation-of-orthodontic-tooth-movement-in-the-presence-of-horizontal-bone-loss" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38672.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">342</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7243</span> The Effect of Main Factors on Forces during FSJ Processing of AA2024 Aluminum</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dunwen%20Zuo">Dunwen Zuo</a>, <a href="https://publications.waset.org/abstracts/search?q=Yongfang%20Deng"> Yongfang Deng</a>, <a href="https://publications.waset.org/abstracts/search?q=Bo%20Song"> Bo Song</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An attempt is made here to measure the forces of three directions, under conditions of different feed speeds, different tilt angles of tool and without or with the pin on the tool, by using octagonal ring dynamometer in the AA2024 aluminum FSJ (Friction Stir Joining) process, and investigate how four main factors influence forces in the FSJ process. It is found that, high feed speed lead to small feed force and small lateral force, but high feed speed leads to large feed force in the stable joining stage of process. As the rotational speed increasing, the time of axial force drop from the maximum to the minimum required increased in the push-up process. In the stable joining stage, the rotational speed has little effect on the feed force; large rotational speed leads to small lateral force and axial force. The maximum axial force increases as the tilt angle of tool increases at the downward movement stage. At the moment of start feeding, as tilt angle of tool increases, the amplitudes of the axial force increasing become large. In the stable joining stage, with the increase of tilt angle of tool, the axial force is increased, the lateral force is decreased, and the feed force almost unchanged. The tool with pin will decrease axial force in the downward movement stage. The feed force and lateral force will increase, but the axial force will reduced in the stable joining stage by using the tool with pin compare to by using the tool without pin. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=FSJ" title="FSJ">FSJ</a>, <a href="https://publications.waset.org/abstracts/search?q=force%20factor" title=" force factor"> force factor</a>, <a href="https://publications.waset.org/abstracts/search?q=AA2024%20aluminum" title=" AA2024 aluminum"> AA2024 aluminum</a>, <a href="https://publications.waset.org/abstracts/search?q=friction%20stir%20joining" title=" friction stir joining"> friction stir joining</a> </p> <a href="https://publications.waset.org/abstracts/22273/the-effect-of-main-factors-on-forces-during-fsj-processing-of-aa2024-aluminum" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22273.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">491</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7242</span> Dynamic Response Analyses for Human-Induced Lateral Vibration on Congested Pedestrian Bridges</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Yoneda">M. Yoneda</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, a lateral walking design force per person is proposed and compared with Imperial College test results. Numerical simulations considering the proposed walking design force which is incorporated into the neural-oscillator model are carried out placing much emphasis on the synchronization (the lock-in phenomenon) for a pedestrian bridge model with the span length of 50 m. Numerical analyses are also conducted for an existing pedestrian suspension bridge. As compared with full scale measurements for this suspension bridge, it is confirmed that the analytical method based on the neural-oscillator model might be one of the useful ways to explain the synchronization (the lock-in phenomenon) of pedestrians being on the bridge. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pedestrian%20bridge" title="pedestrian bridge">pedestrian bridge</a>, <a href="https://publications.waset.org/abstracts/search?q=human-induced%20lateral%20vibration" title=" human-induced lateral vibration"> human-induced lateral vibration</a>, <a href="https://publications.waset.org/abstracts/search?q=neural-oscillator" title=" neural-oscillator"> neural-oscillator</a>, <a href="https://publications.waset.org/abstracts/search?q=full%20scale%20measurement" title=" full scale measurement"> full scale measurement</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20response%20analysis" title=" dynamic response analysis"> dynamic response analysis</a> </p> <a href="https://publications.waset.org/abstracts/62163/dynamic-response-analyses-for-human-induced-lateral-vibration-on-congested-pedestrian-bridges" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62163.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">201</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7241</span> Research on Axial End Flux Leakage and Detent Force of Transverse Flux PM Linear Machine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=W.%20R.%20Li">W. R. Li</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20K.%20Xia"> J. K. Xia</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Q.%20Peng"> R. Q. Peng</a>, <a href="https://publications.waset.org/abstracts/search?q=Z.%20Y.%20Guo"> Z. Y. Guo</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Jiang"> L. Jiang </a> </p> <p class="card-text"><strong>Abstract:</strong></p> According to 3D magnetic circuit of the transverse flux PM linear machine, distribution law is presented, and analytical expression of axial end flux leakage is derived using numerical method. Maxwell stress tensor is used to solve detent force of mover. A 3D finite element model of the transverse flux PM machine is built to analyze the flux distribution and detent force. Experimental results of the prototype verified the validity of axial end flux leakage and detent force theoretical derivation, the research on axial end flux leakage and detent force provides a valuable reference to other types of linear machine. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=axial%20end%20flux%20leakage" title="axial end flux leakage">axial end flux leakage</a>, <a href="https://publications.waset.org/abstracts/search?q=detent%20force" title=" detent force"> detent force</a>, <a href="https://publications.waset.org/abstracts/search?q=flux%20distribution" title=" flux distribution"> flux distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=transverse%20flux%20PM%20linear%20machine" title=" transverse flux PM linear machine"> transverse flux PM linear machine</a> </p> <a href="https://publications.waset.org/abstracts/46785/research-on-axial-end-flux-leakage-and-detent-force-of-transverse-flux-pm-linear-machine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46785.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">449</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=force%20response&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=force%20response&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=force%20response&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=force%20response&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=force%20response&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=force%20response&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=force%20response&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=force%20response&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=force%20response&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=force%20response&page=242">242</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=force%20response&page=243">243</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=force%20response&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>