CINXE.COM
Search | arXiv e-print repository
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1–37 of 37 results for author: <span class="mathjax">Qin, M</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> <div class="content"> <form method="GET" action="/search/quant-ph" aria-role="search"> Searching in archive <strong>quant-ph</strong>. <a href="/search/?searchtype=author&query=Qin%2C+M">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Qin, M"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Qin%2C+M&terms-0-field=author&size=50&order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Qin, M"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.17452">arXiv:2411.17452</a> <span> [<a href="https://arxiv.org/pdf/2411.17452">pdf</a>, <a href="https://arxiv.org/format/2411.17452">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> From the Shastry-Sutherland model to the $J_1$-$J_2$ Heisenberg model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Qian%2C+X">Xiangjian Qian</a>, <a href="/search/quant-ph?searchtype=author&query=Lv%2C+R">Rongyi Lv</a>, <a href="/search/quant-ph?searchtype=author&query=Lee%2C+J+Y">Jong Yeon Lee</a>, <a href="/search/quant-ph?searchtype=author&query=Qin%2C+M">Mingpu Qin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.17452v1-abstract-short" style="display: inline;"> We propose a generalized Shastry-Sutherland model which bridges the Shastry-Sutherland model and the $J_1$-$J_2$ Heisenberg model. By employing large scale Density Matrix Renormalization Group and Fully Augmented Matrix Product State calculations, combined with careful finite-size scaling, we find the phase transition between the plaquette valence bond state (PVBS) and Neel anti-ferromagnetic (AFM… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.17452v1-abstract-full').style.display = 'inline'; document.getElementById('2411.17452v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.17452v1-abstract-full" style="display: none;"> We propose a generalized Shastry-Sutherland model which bridges the Shastry-Sutherland model and the $J_1$-$J_2$ Heisenberg model. By employing large scale Density Matrix Renormalization Group and Fully Augmented Matrix Product State calculations, combined with careful finite-size scaling, we find the phase transition between the plaquette valence bond state (PVBS) and Neel anti-ferromagnetic (AFM) phase in the pure Shastry-Sutherland model is a weak first one. This result indicates the existence of an exotic tri-critical point in the PVBS to AFM transition line in the phase diagram, as the transition in the $J_1$-$J_2$ Heisenberg model was previously determined to be continuous. We determine the location of the tri-critical point in the phase diagram at which first-order transition turns to continuous. Our generalized Shastry-Sutherland model provides not only a valuable platform to explore exotic phases and phase transitions but also more realistic description of Shastry-Sutherland materials like SrCu$_2$(BO$_3$)$_2$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.17452v1-abstract-full').style.display = 'none'; document.getElementById('2411.17452v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.12683">arXiv:2411.12683</a> <span> [<a href="https://arxiv.org/pdf/2411.12683">pdf</a>, <a href="https://arxiv.org/format/2411.12683">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> </div> <p class="title is-5 mathjax"> Disentangling critical quantum spin chains with Clifford circuits </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Fan%2C+C">Chaohui Fan</a>, <a href="/search/quant-ph?searchtype=author&query=Qian%2C+X">Xiangjian Qian</a>, <a href="/search/quant-ph?searchtype=author&query=Zhang%2C+H">Hua-Chen Zhang</a>, <a href="/search/quant-ph?searchtype=author&query=Huang%2C+R">Rui-Zhen Huang</a>, <a href="/search/quant-ph?searchtype=author&query=Qin%2C+M">Mingpu Qin</a>, <a href="/search/quant-ph?searchtype=author&query=Xiang%2C+T">Tao Xiang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.12683v1-abstract-short" style="display: inline;"> Clifford circuits can be utilized to disentangle quantum state with polynomial cost, thanks to the Gottesman-Knill theorem. Based on this idea, Clifford Circuits Augmented Matrix Product States (CAMPS) method, which is a seamless integration of Clifford circuits within the DMRG algorithm, was proposed recently and was shown to be able to reduce entanglement in various quantum systems. In this work… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.12683v1-abstract-full').style.display = 'inline'; document.getElementById('2411.12683v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.12683v1-abstract-full" style="display: none;"> Clifford circuits can be utilized to disentangle quantum state with polynomial cost, thanks to the Gottesman-Knill theorem. Based on this idea, Clifford Circuits Augmented Matrix Product States (CAMPS) method, which is a seamless integration of Clifford circuits within the DMRG algorithm, was proposed recently and was shown to be able to reduce entanglement in various quantum systems. In this work, we further explore the power of CAMPS method in critical spin chains described by conformal field theories (CFTs) in the scaling limit. We find that the variationally optimized disentangler corresponds to {\it duality} transformations, which significantly reduce the entanglement entropy in the ground state. For critical quantum Ising spin chain governed by the Ising CFT with self-duality, the Clifford circuits found by CAMPS coincide with the duality transformation, e.g., the Kramer-Wannier self-duality in the critical Ising chain. It reduces the entanglement entropy by mapping the free conformal boundary condition to the fixed one. In the more general case of XXZ chain, the CAMPS gives rise to a duality transformation mapping the model to the quantum Ashkin-Teller spin chain. Our results highlight the potential of CAMPS as a versatile tool for uncovering hidden dualities and simplifying the entanglement structure of critical quantum systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.12683v1-abstract-full').style.display = 'none'; document.getElementById('2411.12683v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.03734">arXiv:2411.03734</a> <span> [<a href="https://arxiv.org/pdf/2411.03734">pdf</a>, <a href="https://arxiv.org/format/2411.03734">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Quantum Mpemba effect of Localization in the dissipative Mosaic model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Dong%2C+J+W">J. W. Dong</a>, <a href="/search/quant-ph?searchtype=author&query=Mu%2C+H+F">H. F. Mu</a>, <a href="/search/quant-ph?searchtype=author&query=Qin%2C+M">M. Qin</a>, <a href="/search/quant-ph?searchtype=author&query=Cui%2C+H+T">H. T. Cui</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.03734v1-abstract-short" style="display: inline;"> The quantum Mpemba effect in open quantum systems has been extensively studied, but a comprehensive understanding of this phenomenon remains elusive. In this paper, we conduct an analytical investigation of the dissipative dynamics of single excitations in the Mosaic model. Surprisingly, we discover that the presence of asymptotic mobility edge, denoted as $E_c^{\infty}$, can lead to unique dissip… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.03734v1-abstract-full').style.display = 'inline'; document.getElementById('2411.03734v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.03734v1-abstract-full" style="display: none;"> The quantum Mpemba effect in open quantum systems has been extensively studied, but a comprehensive understanding of this phenomenon remains elusive. In this paper, we conduct an analytical investigation of the dissipative dynamics of single excitations in the Mosaic model. Surprisingly, we discover that the presence of asymptotic mobility edge, denoted as $E_c^{\infty}$, can lead to unique dissipation behavior, serving as a hallmark of quantum Mpemba effect. Specially, it is found that the energy level $E_c^{\infty}$ exhibits a global periodicity in real configuration, which acts to inhibit dissipation in the system. Conversely, when the system deviates from $E_c^{\infty}$, the quasidisorder sets in, leading to increased dissipative effects due to the broken of periodicity. Furthermore, we find that the rate of dissipation is closely linked to the localization of the initial state. As a result, the quantum Mpemba effect can be observed clearly by a measure of localization. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.03734v1-abstract-full').style.display = 'none'; document.getElementById('2411.03734v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 4 figures and 1 table</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.15709">arXiv:2410.15709</a> <span> [<a href="https://arxiv.org/pdf/2410.15709">pdf</a>, <a href="https://arxiv.org/format/2410.15709">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Augmenting Finite Temperature Tensor Network with Clifford Circuits </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Qian%2C+X">Xiangjian Qian</a>, <a href="/search/quant-ph?searchtype=author&query=Huang%2C+J">Jiale Huang</a>, <a href="/search/quant-ph?searchtype=author&query=Qin%2C+M">Mingpu Qin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.15709v1-abstract-short" style="display: inline;"> Recent studies have highlighted the combination of tensor network methods and the stabilizer formalism as a very effective framework for simulating quantum many-body systems, encompassing areas from ground state to time evolution simulations. In these approaches, the entanglement associated with stabilizers is transferred to Clifford circuits, which can be efficiently managed due to the Gottesman-… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.15709v1-abstract-full').style.display = 'inline'; document.getElementById('2410.15709v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.15709v1-abstract-full" style="display: none;"> Recent studies have highlighted the combination of tensor network methods and the stabilizer formalism as a very effective framework for simulating quantum many-body systems, encompassing areas from ground state to time evolution simulations. In these approaches, the entanglement associated with stabilizers is transferred to Clifford circuits, which can be efficiently managed due to the Gottesman-Knill theorem. Consequently, only the non-stabilizerness entanglement needs to be handled, thereby reducing the computational resources required for accurate simulations of quantum many-body systems in tensor network related methods. In this work, we adapt this paradigm for finite temperature simulations in the framework of Time-Dependent Variational Principle, in which imaginary time evolution is performed using the purification scheme. Our numerical results on the one-dimensional Heisenberg model and the two-dimensional $J_1-J_2$ Heisenberg model demonstrate that Clifford circuits can significantly improve the efficiency and accuracy of finite temperature simulations for quantum many-body systems. This improvement not only provides a useful tool for calculating finite temperature properties of quantum many-body systems, but also paves the way for further advancements in boosting the finite temperature tensor network calculations with Clifford circuits and other quantum circuits. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.15709v1-abstract-full').style.display = 'none'; document.getElementById('2410.15709v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.16895">arXiv:2409.16895</a> <span> [<a href="https://arxiv.org/pdf/2409.16895">pdf</a>, <a href="https://arxiv.org/format/2409.16895">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Non-stabilizerness Entanglement Entropy: a measure of hardness in the classical simulation of quantum many-body systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Huang%2C+J">Jiale Huang</a>, <a href="/search/quant-ph?searchtype=author&query=Qian%2C+X">Xiangjian Qian</a>, <a href="/search/quant-ph?searchtype=author&query=Qin%2C+M">Mingpu Qin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.16895v1-abstract-short" style="display: inline;"> Classical and quantum states can be distinguished by entanglement entropy, which can be viewed as a measure of quantum resources. Entanglement entropy also plays a pivotal role in understanding computational complexity in simulating quantum systems. However, stabilizer states formed solely by Clifford gates can be efficiently simulated with the tableau algorithm according to the Gottesman-Knill th… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.16895v1-abstract-full').style.display = 'inline'; document.getElementById('2409.16895v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.16895v1-abstract-full" style="display: none;"> Classical and quantum states can be distinguished by entanglement entropy, which can be viewed as a measure of quantum resources. Entanglement entropy also plays a pivotal role in understanding computational complexity in simulating quantum systems. However, stabilizer states formed solely by Clifford gates can be efficiently simulated with the tableau algorithm according to the Gottesman-Knill theorem, although they can host large entanglement entropy. In this work, we introduce the concept of non-stabilizerness entanglement entropy which is basically the minimum residual entanglement entropy for a quantum state by excluding the contribution from Clifford circuits. It can serve as a new practical and better measure of difficulty in the classical simulation of quantum many-body systems. We discuss why it is a better criterion than previously proposed metrics such as Stabilizer R茅nyi Entropy. We also show numerical results of non-stabilizerness entanglement entropy with concrete quantum many-body models. The concept of non-stabilizerness entanglement entropy expands our understanding of the ``hardness`` in the classical simulation of quantum many-body systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.16895v1-abstract-full').style.display = 'none'; document.getElementById('2409.16895v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.03202">arXiv:2407.03202</a> <span> [<a href="https://arxiv.org/pdf/2407.03202">pdf</a>, <a href="https://arxiv.org/format/2407.03202">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Clifford Circuits Augmented Time-Dependent Variational Principle </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Qian%2C+X">Xiangjian Qian</a>, <a href="/search/quant-ph?searchtype=author&query=Huang%2C+J">Jiale Huang</a>, <a href="/search/quant-ph?searchtype=author&query=Qin%2C+M">Mingpu Qin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.03202v1-abstract-short" style="display: inline;"> The recently proposed Clifford Circuits Augmented Matrix Product States (CA-MPS) (arXiv:2405.09217) seamlessly augments Density Matrix Renormalization Group with Clifford circuits. In CA-MPS, the entanglement from stabilizers is transferred to the Clifford circuits which can be easily handled according to the Gottesman-Knill theorem. As a result, MPS needs only to deal with the non-stabilizer enta… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.03202v1-abstract-full').style.display = 'inline'; document.getElementById('2407.03202v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.03202v1-abstract-full" style="display: none;"> The recently proposed Clifford Circuits Augmented Matrix Product States (CA-MPS) (arXiv:2405.09217) seamlessly augments Density Matrix Renormalization Group with Clifford circuits. In CA-MPS, the entanglement from stabilizers is transferred to the Clifford circuits which can be easily handled according to the Gottesman-Knill theorem. As a result, MPS needs only to deal with the non-stabilizer entanglement, which largely reduce the bond dimension and the resource required for the accurate simulation of many-body systems. In this work, we generalize CA-MPS to the framework of Time-Dependent Variational Principle (TDVP) for time evolution simulations. In this method, we apply Clifford circuits to the resulting MPS in each TDVP step with a two-site sweeping process similar as in DMRG, aiming at reducing the entanglement entropy in the MPS, and the Hamiltonian is transformed accordingly using the chosen Clifford circuits. Similar as in CA-MPS, the Clifford circuits doesn't increase the number of terms in the Hamiltonian which makes the overhead very small in the new method. We test this method in both XXZ chain and two dimensional Heisenberg model. The results show that the Clifford circuits augmented TDVP method can reduce the entanglement entropy in the time evolution process and hence makes the simulation reliable for longer time. The Clifford circuits augmented Time-Dependent Variational Principle provides a useful tool for the simulation of time evolution process of many-body systems in the future. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.03202v1-abstract-full').style.display = 'none'; document.getElementById('2407.03202v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.17417">arXiv:2406.17417</a> <span> [<a href="https://arxiv.org/pdf/2406.17417">pdf</a>, <a href="https://arxiv.org/format/2406.17417">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.110.195111">10.1103/PhysRevB.110.195111 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Plaquette-type valence bond solid state in the $J_1$-$J_2$ square-lattice Heisenberg model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Huang%2C+J">Jiale Huang</a>, <a href="/search/quant-ph?searchtype=author&query=Qian%2C+X">Xiangjian Qian</a>, <a href="/search/quant-ph?searchtype=author&query=Qin%2C+M">Mingpu Qin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.17417v3-abstract-short" style="display: inline;"> We utilize Density Matrix Renormalization Group (DMRG) and Fully Augmented Matrix Product States (FAMPS) methods to investigate the Valence Bond Solid (VBS) phase in the $J_1$-$J_2$ square lattice Heisenberg model. To differentiate between the Columnar Valence Bond Solid (CVBS) and Plaquette Valence Bond Solid (PVBS) phases, we introduce an anisotropy $螖_y$ in the nearest neighboring coupling in t… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.17417v3-abstract-full').style.display = 'inline'; document.getElementById('2406.17417v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.17417v3-abstract-full" style="display: none;"> We utilize Density Matrix Renormalization Group (DMRG) and Fully Augmented Matrix Product States (FAMPS) methods to investigate the Valence Bond Solid (VBS) phase in the $J_1$-$J_2$ square lattice Heisenberg model. To differentiate between the Columnar Valence Bond Solid (CVBS) and Plaquette Valence Bond Solid (PVBS) phases, we introduce an anisotropy $螖_y$ in the nearest neighboring coupling in the $y$-direction, aiming at detecting the possible spontaneous rotational symmetry breaking in the VBS phase. In the calculations, we push the bond dimension to as large as $D = 25000$ in FAMPS, simulating systems at a maximum size of $14 \times 14$. With a careful extrapolation of the truncation errors and appropriate finite-size scaling, followed by finite $螖_y$ scaling analysis of the VBS dimer order parameters, we identify the VBS phase as a PVBS type, meaning there is no spontaneous rotational symmetry breaking in the VBS phase. This study not only resolves the long-standing issue of the characterization of the VBS order in the $J_1$-$J_2$ square lattice Heisenberg model but also highlights the capabilities of FAMPS in the study of two-dimensional quantum many-body systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.17417v3-abstract-full').style.display = 'none'; document.getElementById('2406.17417v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">close to the published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys.Rev.B 110,195111 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.09217">arXiv:2405.09217</a> <span> [<a href="https://arxiv.org/pdf/2405.09217">pdf</a>, <a href="https://arxiv.org/format/2405.09217">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.133.190402">10.1103/PhysRevLett.133.190402 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Augmenting Density Matrix Renormalization Group with Clifford Circuits </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Qian%2C+X">Xiangjian Qian</a>, <a href="/search/quant-ph?searchtype=author&query=Huang%2C+J">Jiale Huang</a>, <a href="/search/quant-ph?searchtype=author&query=Qin%2C+M">Mingpu Qin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.09217v2-abstract-short" style="display: inline;"> Density Matrix Renormalization Group (DMRG) or Matrix Product States (MPS) are widely acknowledged as highly effective and accurate methods for solving one-dimensional quantum many-body systems. However, the direct application of DMRG to the study two-dimensional systems encounters challenges due to the limited entanglement encoded in the wave-function ansatz. Conversely, Clifford circuits offer a… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.09217v2-abstract-full').style.display = 'inline'; document.getElementById('2405.09217v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.09217v2-abstract-full" style="display: none;"> Density Matrix Renormalization Group (DMRG) or Matrix Product States (MPS) are widely acknowledged as highly effective and accurate methods for solving one-dimensional quantum many-body systems. However, the direct application of DMRG to the study two-dimensional systems encounters challenges due to the limited entanglement encoded in the wave-function ansatz. Conversely, Clifford circuits offer a promising avenue for simulating states with substantial entanglement, albeit confined to stabilizer states. In this work, we present the seamless integration of Clifford circuits within the DMRG algorithm, leveraging the advantages of both Clifford circuits and DMRG. This integration leads to a significant enhancement in simulation accuracy with small additional computational cost. Moreover, this framework is useful not only for its current application but also for its potential to be easily adapted to various other numerical approaches <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.09217v2-abstract-full').style.display = 'none'; document.getElementById('2405.09217v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 133, 190402 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.01979">arXiv:2404.01979</a> <span> [<a href="https://arxiv.org/pdf/2404.01979">pdf</a>, <a href="https://arxiv.org/format/2404.01979">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> The ground state of electron-doped $t-t'-J$ model on cylinders </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Shen%2C+Y">Yang Shen</a>, <a href="/search/quant-ph?searchtype=author&query=Qian%2C+X">Xiangjian Qian</a>, <a href="/search/quant-ph?searchtype=author&query=Qin%2C+M">Mingpu Qin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.01979v1-abstract-short" style="display: inline;"> We perform a comprehensive study of the electron-doped $t-t'-J$ model on cylinders with Density Matrix Renormalization Group (DMRG). We adopt both periodic and anti-periodic boundary conditions along the circumference direction to explore the finite size effect. We study doping levels of $1/6$, $1/8$, and $1/12$ which represent the most interesting region in the phase diagram of electron-doped cup… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.01979v1-abstract-full').style.display = 'inline'; document.getElementById('2404.01979v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.01979v1-abstract-full" style="display: none;"> We perform a comprehensive study of the electron-doped $t-t'-J$ model on cylinders with Density Matrix Renormalization Group (DMRG). We adopt both periodic and anti-periodic boundary conditions along the circumference direction to explore the finite size effect. We study doping levels of $1/6$, $1/8$, and $1/12$ which represent the most interesting region in the phase diagram of electron-doped cuprates. We find that for width-4 and 6 systems, the ground state for fixed doping switches between anti-ferromagnetic Neel state and stripe state under different boundary conditions and with system widths, indicating the presence of large finite size effect in the $t-t'-J$ model. We also have a careful analysis of the $d$-wave pairing correlations which also changes quantitatively with boundary conditions and widths of the system. However, the pairing correlations are enhanced when the system becomes wider for all dopings, suggesting the existence of possible long-ranged superconducting order in the thermodynamic limit. The width-8 results are found to be dependent on the starting state in the DMRG calculation for the kept states we can reach. For width-8 system only Neel (stripe) state can be stabilized in DMRG calculation for $1/12$ ($1/6$) doping, while both stripe and Neel states are stable in the DMRG sweep for $1/8$ doping, regardless of the boundary conditions. These results indicate that $1/8$ doping is likely to lie in the boundary of a phase transition between the Neel phase with lower doping and the stripe phase with higher doping, consistent with the previous study. The sensitivity of ground state on boundary conditions and size observed in this work is similar to that in the $t'$- Hubbard model. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.01979v1-abstract-full').style.display = 'none'; document.getElementById('2404.01979v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 5 figures and 1 table</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.07659">arXiv:2401.07659</a> <span> [<a href="https://arxiv.org/pdf/2401.07659">pdf</a>, <a href="https://arxiv.org/format/2401.07659">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.110.L121124">10.1103/PhysRevB.110.L121124 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Parent Hamiltonian for Fully-augmented Matrix Product States </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Qian%2C+X">Xiangjian Qian</a>, <a href="/search/quant-ph?searchtype=author&query=Qin%2C+M">Mingpu Qin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.07659v2-abstract-short" style="display: inline;"> Density matrix renormalization group (DMRG) or matrix product states (MPS) is the most effective and accurate method for studying one-dimensional quantum many-body systems. However, the application of DMRG to two-dimensional systems is not as successful because of the limited entanglement encoded in the wave-function ansatz. The fully augmented matrix product states (FAMPS), introduced recently in… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.07659v2-abstract-full').style.display = 'inline'; document.getElementById('2401.07659v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.07659v2-abstract-full" style="display: none;"> Density matrix renormalization group (DMRG) or matrix product states (MPS) is the most effective and accurate method for studying one-dimensional quantum many-body systems. However, the application of DMRG to two-dimensional systems is not as successful because of the limited entanglement encoded in the wave-function ansatz. The fully augmented matrix product states (FAMPS), introduced recently in [Chin. Phys. Lett. 40, 057102 (2023)], extends MPS formalism to two dimensions and increases the entanglement in the wave-function ansatz, representing a significant advance in the simulation of two-dimensional quantum many-body physics. In the study of one-dimensional systems, the concept of a parent Hamiltonian for MPS has proven pivotal in the understanding of quantum entanglement. In this work, we extend this framework to two-dimensional systems. We illustrate the procedure to construct a two-dimensional Hamiltonian with given FAMPS as its exact ground state (the parent Hamiltonian for FAMPS). Additionally, through numerical simulations, we demonstrate the effectiveness of the algorithm outlined in [Chin. Phys. Lett. 40, 057102 (2023)] in precisely identifying the FAMPS for the constructed parent Hamiltonian. The introduction of FAMPS and its associated parent Hamiltonian provides a useful framework for the future investigations of two-dimensional quantum many-body systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.07659v2-abstract-full').style.display = 'none'; document.getElementById('2401.07659v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 110, L121124 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.04360">arXiv:2312.04360</a> <span> [<a href="https://arxiv.org/pdf/2312.04360">pdf</a>, <a href="https://arxiv.org/format/2312.04360">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Complexity">cs.CC</span> </div> </div> <p class="title is-5 mathjax"> The Computational Advantage of MIP* Vanishes in the Presence of Noise </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Dong%2C+Y">Yangjing Dong</a>, <a href="/search/quant-ph?searchtype=author&query=Fu%2C+H">Honghao Fu</a>, <a href="/search/quant-ph?searchtype=author&query=Natarajan%2C+A">Anand Natarajan</a>, <a href="/search/quant-ph?searchtype=author&query=Qin%2C+M">Minglong Qin</a>, <a href="/search/quant-ph?searchtype=author&query=Xu%2C+H">Haochen Xu</a>, <a href="/search/quant-ph?searchtype=author&query=Yao%2C+P">Penghui Yao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.04360v2-abstract-short" style="display: inline;"> Quantum multiprover interactive proof systems with entanglement MIP* are much more powerful than its classical counterpart MIP (Babai et al. '91, Ji et al. '20): while MIP = NEXP, the quantum class MIP* is equal to RE, a class including the halting problem. This is because the provers in MIP* can share unbounded quantum entanglement. However, recent works of Qin and Yao '21 and '23 have shown that… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.04360v2-abstract-full').style.display = 'inline'; document.getElementById('2312.04360v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.04360v2-abstract-full" style="display: none;"> Quantum multiprover interactive proof systems with entanglement MIP* are much more powerful than its classical counterpart MIP (Babai et al. '91, Ji et al. '20): while MIP = NEXP, the quantum class MIP* is equal to RE, a class including the halting problem. This is because the provers in MIP* can share unbounded quantum entanglement. However, recent works of Qin and Yao '21 and '23 have shown that this advantage is significantly reduced if the provers' shared state contains noise. This paper attempts to exactly characterize the effect of noise on the computational power of quantum multiprover interactive proof systems. We investigate the quantum two-prover one-round interactive system MIP*[poly, O(1)], where the verifier sends polynomially many bits to the provers and the provers send back constantly many bits. We show noise completely destroys the computational advantage given by shared entanglement in this model. Specifically, we show that if the provers are allowed to share arbitrarily many noisy EPR states, where each EPR state is affected by an arbitrarily small constant amount of noise, the resulting complexity class is equivalent to NEXP = MIP. This improves significantly on the previous best-known bound of NEEEXP (nondeterministic triply exponential time) by Qin and Yao '21. We also show that this collapse in power is due to the noise, rather than the O(1) answer size, by showing that allowing for noiseless EPR states gives the class the full power of RE = MIP*[poly, poly]. Along the way, we develop two technical tools of independent interest. First, we give a new, deterministic tester for the positivity of an exponentially large matrix, provided it has a low-degree Fourier decomposition in terms of Pauli matrices. Secondly, we develop a new invariance principle for smooth matrix functions having bounded third-order Fr茅chet derivatives or which are Lipschitz continous. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.04360v2-abstract-full').style.display = 'none'; document.getElementById('2312.04360v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">V2, updated results. Comments are welcome!</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.11774">arXiv:2310.11774</a> <span> [<a href="https://arxiv.org/pdf/2310.11774">pdf</a>, <a href="https://arxiv.org/format/2310.11774">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1361-648X/ad21a8">10.1088/1361-648X/ad21a8 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> On the Magnetization of the $120^\circ$ order of the Spin-1/2 Triangular Lattice Heisenberg Model: a DMRG revisit </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Huang%2C+J">Jiale Huang</a>, <a href="/search/quant-ph?searchtype=author&query=Qian%2C+X">Xiangjian Qian</a>, <a href="/search/quant-ph?searchtype=author&query=Qin%2C+M">Mingpu Qin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.11774v1-abstract-short" style="display: inline;"> We revisit the issue about the magnetization of the $120^\circ$ order in the spin-1/2 triangular lattice Heisenberg model (TLHM) with Density Matrix Renormalization Group (DMRG). The accurate determination of the magnetization of this model is challenging for numerical methods and its value exhibits substantial disparities across various methods. We perform a large-scale DMRG calculation of this m… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.11774v1-abstract-full').style.display = 'inline'; document.getElementById('2310.11774v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.11774v1-abstract-full" style="display: none;"> We revisit the issue about the magnetization of the $120^\circ$ order in the spin-1/2 triangular lattice Heisenberg model (TLHM) with Density Matrix Renormalization Group (DMRG). The accurate determination of the magnetization of this model is challenging for numerical methods and its value exhibits substantial disparities across various methods. We perform a large-scale DMRG calculation of this model by employing bond dimension as large as $D = 24000$ and by studying the system with width as large as $L_\mathrm{y} = 12$. With careful extrapolation with truncation error and suitable finite size scaling, we give a conservative estimation of the magnetization as $M_0 = 0.208(8)$. The ground state energy per site we obtain is $E_g = -0.5503(8)$. Our results provide valuable benchmark values for the development of new methods in the future. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.11774v1-abstract-full').style.display = 'none'; document.getElementById('2310.11774v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. Phys.: Condens. Matter 36 185602 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.13630">arXiv:2309.13630</a> <span> [<a href="https://arxiv.org/pdf/2309.13630">pdf</a>, <a href="https://arxiv.org/format/2309.13630">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.109.L161103">10.1103/PhysRevB.109.L161103 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Absence of spin liquid phase in the $J_1-J_2$ Heisenberg model on the square lattice </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Qian%2C+X">Xiangjian Qian</a>, <a href="/search/quant-ph?searchtype=author&query=Qin%2C+M">Mingpu Qin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.13630v3-abstract-short" style="display: inline;"> We perform an in-depth investigation of the phase diagram of the $J_1-J_2$ Heisenberg model on the square lattice. We take advantage of Density Matrix Renormalization Group and Fully-Augmented Matrix Product States methods and reach unprecedented accuracy with large bond dimensions. We utilize excited-level crossing analysis to pinpoint the phase transition points. It was believed before that ther… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.13630v3-abstract-full').style.display = 'inline'; document.getElementById('2309.13630v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.13630v3-abstract-full" style="display: none;"> We perform an in-depth investigation of the phase diagram of the $J_1-J_2$ Heisenberg model on the square lattice. We take advantage of Density Matrix Renormalization Group and Fully-Augmented Matrix Product States methods and reach unprecedented accuracy with large bond dimensions. We utilize excited-level crossing analysis to pinpoint the phase transition points. It was believed before that there exists a narrow spin liquid phase sandwiched by the N茅el antiferromagnetic (AFM) and valence bond solid (VBS) phases. Through careful finite size scaling of the level crossing points, we find a direct phase transition between the N茅el AFM and VBS phases at $J_2/J_1 = 0.535(3)$, suggesting the absence of an intermediate spin liquid phase. We also provide accurate results for ground state energies for a variety of sizes, from which we find that the transition between the N茅el AFM and VBS phases is continuous. These results indicate the existence of a deconfined quantum critical point at $J_2/J_1 = 0.535(3)$ in the model. From the crossing of the first derivative of the energies with $J_2$ for different sizes, we also determine the precise location of the first order phase transition between the VBS and stripe AFM phases at $J_2/J_1=0.610(5)$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.13630v3-abstract-full').style.display = 'none'; document.getElementById('2309.13630v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">close to the published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 109, L161103 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.08941">arXiv:2309.08941</a> <span> [<a href="https://arxiv.org/pdf/2309.08941">pdf</a>, <a href="https://arxiv.org/ps/2309.08941">ps</a>, <a href="https://arxiv.org/format/2309.08941">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Complexity">cs.CC</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cryptography and Security">cs.CR</span> </div> </div> <p class="title is-5 mathjax"> Quantum Pseudorandom Scramblers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Lu%2C+C">Chuhan Lu</a>, <a href="/search/quant-ph?searchtype=author&query=Qin%2C+M">Minglong Qin</a>, <a href="/search/quant-ph?searchtype=author&query=Song%2C+F">Fang Song</a>, <a href="/search/quant-ph?searchtype=author&query=Yao%2C+P">Penghui Yao</a>, <a href="/search/quant-ph?searchtype=author&query=Zhao%2C+M">Mingnan Zhao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.08941v2-abstract-short" style="display: inline;"> Quantum pseudorandom state generators (PRSGs) have stimulated exciting developments in recent years. A PRSG, on a fixed initial (e.g., all-zero) state, produces an output state that is computationally indistinguishable from a Haar random state. However, pseudorandomness of the output state is not guaranteed on other initial states. In fact, known PRSG constructions provably fail on some initial st… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.08941v2-abstract-full').style.display = 'inline'; document.getElementById('2309.08941v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.08941v2-abstract-full" style="display: none;"> Quantum pseudorandom state generators (PRSGs) have stimulated exciting developments in recent years. A PRSG, on a fixed initial (e.g., all-zero) state, produces an output state that is computationally indistinguishable from a Haar random state. However, pseudorandomness of the output state is not guaranteed on other initial states. In fact, known PRSG constructions provably fail on some initial states. In this work, we propose and construct quantum Pseudorandom State Scramblers (PRSSs), which can produce a pseudorandom state on an arbitrary initial state. In the information-theoretical setting, we obtain a scrambler which maps an arbitrary initial state to a distribution of quantum states that is close to Haar random in total variation distance. As a result, our scrambler exhibits a dispersing property. Loosely, it can span an $蔚$-net of the state space. This significantly strengthens what standard PRSGs can induce, as they may only concentrate on a small region of the state space provided that average output state approximates a Haar random state. Our PRSS construction develops a parallel extension of the famous Kac's walk, and we show that it mixes exponentially faster than the standard Kac's walk. This constitutes the core of our proof. We also describe a few applications of PRSSs. While our PRSS construction assumes a post-quantum one-way function, PRSSs are potentially a weaker primitive and can be separated from one-way functions in a relativized world similar to standard PRSGs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.08941v2-abstract-full').style.display = 'none'; document.getElementById('2309.08941v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.13518">arXiv:2307.13518</a> <span> [<a href="https://arxiv.org/pdf/2307.13518">pdf</a>, <a href="https://arxiv.org/format/2307.13518">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.109.042202">10.1103/PhysRevA.109.042202 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Effective Hamiltonian approach to the quantum phase transitions in the extended Jaynes-Cummings model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Cui%2C+H+T">H. T. Cui</a>, <a href="/search/quant-ph?searchtype=author&query=Yan%2C+Y+A">Y. A. Yan</a>, <a href="/search/quant-ph?searchtype=author&query=Qin%2C+M">M. Qin</a>, <a href="/search/quant-ph?searchtype=author&query=Yi%2C+X+X">X. X. Yi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.13518v3-abstract-short" style="display: inline;"> The study of phase transitions in dissipative quantum systems based on the Liouvillian is often hindered by the difficulty of constructing a time-local master equation when the system-environment coupling is strong. To address this issue, the complex discretization approximation for the environment is proposed to study the quantum phase transition in the extended Jaynes-Cumming model with an infin… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.13518v3-abstract-full').style.display = 'inline'; document.getElementById('2307.13518v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.13518v3-abstract-full" style="display: none;"> The study of phase transitions in dissipative quantum systems based on the Liouvillian is often hindered by the difficulty of constructing a time-local master equation when the system-environment coupling is strong. To address this issue, the complex discretization approximation for the environment is proposed to study the quantum phase transition in the extended Jaynes-Cumming model with an infinite number of boson modes. This approach yields a non-Hermitian effective Hamiltonian that can be used to simulate the dynamics of the spin. It is found that the ground state of this effective Hamiltonian determines the spin dynamics in the single-excitation subspace. Depending on the opening of the energy gap and the maximum population of excitations on the spin degree of freedom, three distinct phases can be identified: fast decaying, localized, and stretched dynamics of the spin. This approach can be extended to multiple excitations, and similar dynamics were found in the double-excitation subspace, indicating the robustness of the single-excitation phase. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.13518v3-abstract-full').style.display = 'none'; document.getElementById('2307.13518v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12pages, published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. A 109.042202(2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.04851">arXiv:2306.04851</a> <span> [<a href="https://arxiv.org/pdf/2306.04851">pdf</a>, <a href="https://arxiv.org/format/2306.04851">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> The Performance of VQE across a phase transition point in the $J_1$-$J_2$ model on kagome lattice </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Guo%2C+Y">Yuheng Guo</a>, <a href="/search/quant-ph?searchtype=author&query=Qin%2C+M">Mingpu Qin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.04851v1-abstract-short" style="display: inline;"> Variational quantum eigensolver (VQE) is an efficient classical-quantum hybrid method to take advantage of quantum computers in the Noisy Intermediate-Scale Quantum (NISQ) era. In this work we test the performance of VQE by studying the $J_1$-$J_2$ anti-ferromagnetic Heisenberg model on the kagome lattice, which is found to display a first order phase transition at $J_2 / J_1 \approx 0.01$. By com… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.04851v1-abstract-full').style.display = 'inline'; document.getElementById('2306.04851v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.04851v1-abstract-full" style="display: none;"> Variational quantum eigensolver (VQE) is an efficient classical-quantum hybrid method to take advantage of quantum computers in the Noisy Intermediate-Scale Quantum (NISQ) era. In this work we test the performance of VQE by studying the $J_1$-$J_2$ anti-ferromagnetic Heisenberg model on the kagome lattice, which is found to display a first order phase transition at $J_2 / J_1 \approx 0.01$. By comparing the VQE states with the exact diagonalization results, we find VQE energies agree well with the exact values in most region of parameters for the 18-site system we studied. However, near the phase transition point, VQE tends to converge to the excited states when the number of variational parameters is not large enough. For the system studied in this work, this issue can be solved by either increasing the number of parameters or by initializing the parameters with converged values for $J_2/J_1$ away from the phase transition point. Our results provide useful guidance for the practical application of VQE on real quantum computers to study strongly correlated quantum many-body systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.04851v1-abstract-full').style.display = 'none'; document.getElementById('2306.04851v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.06584">arXiv:2303.06584</a> <span> [<a href="https://arxiv.org/pdf/2303.06584">pdf</a>, <a href="https://arxiv.org/format/2303.06584">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Effective Hamiltonian approach to the exact dynamics of open system by complex discretization approximation for environment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Cui%2C+H+T">H. T. Cui</a>, <a href="/search/quant-ph?searchtype=author&query=Yan%2C+Y+A">Y. A. Yan</a>, <a href="/search/quant-ph?searchtype=author&query=Qin%2C+M">M. Qin</a>, <a href="/search/quant-ph?searchtype=author&query=Yi%2C+X+X">X. X. Yi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.06584v4-abstract-short" style="display: inline;"> The discretization approximation method commonly used to simulate the open dynamics of system coupled to the environment in continuum often suffers from the recurrence. To address this issue, this paper proposes a noval generalization of the discretization approximation method in the complex plane using complex Gauss quadratures. The effective Hamiltonian can be constructed by this way, which is n… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.06584v4-abstract-full').style.display = 'inline'; document.getElementById('2303.06584v4-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.06584v4-abstract-full" style="display: none;"> The discretization approximation method commonly used to simulate the open dynamics of system coupled to the environment in continuum often suffers from the recurrence. To address this issue, this paper proposes a noval generalization of the discretization approximation method in the complex plane using complex Gauss quadratures. The effective Hamiltonian can be constructed by this way, which is non-Hermitian and demonstrates the complex energy modes with negative imaginary part, describing accurately the dissipative dynamics of the system. This method is applied to examine the dynamics in two exactly solvable models: the dephasing model and the single-excitation open dynamics in the Aubry-Andr茅-Harper model. This approach not only significantly reduces recurrence and improve the effectiveness of calculation, but also provide the microscopic viewpoint on the dynamics of system through the effective Hamiltonian. In addition, a simple relationship between the parameters in computation and the effectiveness of evaluation is also established. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.06584v4-abstract-full').style.display = 'none'; document.getElementById('2303.06584v4-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Title is changed. A significant improvement. The discussion about the open dynamics of AAH model is completely rewriteen</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.10613">arXiv:2211.10613</a> <span> [<a href="https://arxiv.org/pdf/2211.10613">pdf</a>, <a href="https://arxiv.org/format/2211.10613">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Decidability of fully quantum nonlocal games with noisy maximally entangled states </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Qin%2C+M">Minglong Qin</a>, <a href="/search/quant-ph?searchtype=author&query=Yao%2C+P">Penghui Yao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.10613v5-abstract-short" style="display: inline;"> This paper considers the decidability of fully quantum nonlocal games with noisy maximally entangled states. Fully quantum nonlocal games are a generalization of nonlocal games, where both questions and answers are quantum and the referee performs a binary POVM measurement to decide whether they win the game after receiving the quantum answers from the players. The quantum value of a fully quantum… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.10613v5-abstract-full').style.display = 'inline'; document.getElementById('2211.10613v5-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.10613v5-abstract-full" style="display: none;"> This paper considers the decidability of fully quantum nonlocal games with noisy maximally entangled states. Fully quantum nonlocal games are a generalization of nonlocal games, where both questions and answers are quantum and the referee performs a binary POVM measurement to decide whether they win the game after receiving the quantum answers from the players. The quantum value of a fully quantum nonlocal game is the supremum of the probability that they win the game, where the supremum is taken over all the possible entangled states shared between the players and all the valid quantum operations performed by the players. The seminal work $\mathrm{MIP}^*=\mathrm{RE}$ implies that it is undecidable to approximate the quantum value of a fully nonlocal game. This still holds even if the players are only allowed to share (arbitrarily many copies of) maximally entangled states. This paper investigates the case that the shared maximally entangled states are noisy. We prove that there is a computable upper bound on the copies of noisy maximally entangled states for the players to win a fully quantum nonlocal game with a probability arbitrarily close to the quantum value. This implies that it is decidable to approximate the quantum values of these games. Hence, the hardness of approximating the quantum value of a fully quantum nonlocal game is not robust against the noise in the shared states. This paper is built on the framework for the decidability of non-interactive simulations of joint distributions and generalizes the analogous result for nonlocal games. We extend the theory of Fourier analysis to the space of super-operators and prove several key results including an invariance principle and a dimension reduction for super-operators. These results are interesting in their own right and are believed to have further applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.10613v5-abstract-full').style.display = 'none'; document.getElementById('2211.10613v5-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">typos fixed</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2207.05313">arXiv:2207.05313</a> <span> [<a href="https://arxiv.org/pdf/2207.05313">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Quantum phase transition in magnetic nanographenes on a lead superconductor </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Liu%2C+Y">Yu Liu</a>, <a href="/search/quant-ph?searchtype=author&query=Li%2C+C">Can Li</a>, <a href="/search/quant-ph?searchtype=author&query=Xue%2C+F">Fu-Hua Xue</a>, <a href="/search/quant-ph?searchtype=author&query=Wang%2C+Y">Ying Wang</a>, <a href="/search/quant-ph?searchtype=author&query=Huang%2C+H">Haili Huang</a>, <a href="/search/quant-ph?searchtype=author&query=Yang%2C+H">Hao Yang</a>, <a href="/search/quant-ph?searchtype=author&query=Chen%2C+J">Jiayi Chen</a>, <a href="/search/quant-ph?searchtype=author&query=Guan%2C+D">Dan-Dan Guan</a>, <a href="/search/quant-ph?searchtype=author&query=Li%2C+Y">Yao-Yi Li</a>, <a href="/search/quant-ph?searchtype=author&query=Zheng%2C+H">Hao Zheng</a>, <a href="/search/quant-ph?searchtype=author&query=Liu%2C+C">Canhua Liu</a>, <a href="/search/quant-ph?searchtype=author&query=Qin%2C+M">Mingpu Qin</a>, <a href="/search/quant-ph?searchtype=author&query=Wang%2C+X">Xiaoqun Wang</a>, <a href="/search/quant-ph?searchtype=author&query=Li%2C+D">Deng-Yuan Li</a>, <a href="/search/quant-ph?searchtype=author&query=Liu%2C+P">Pei-Nian Liu</a>, <a href="/search/quant-ph?searchtype=author&query=Wang%2C+S">Shiyong Wang</a>, <a href="/search/quant-ph?searchtype=author&query=Jia%2C+J">Jinfeng Jia</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2207.05313v1-abstract-short" style="display: inline;"> Quantum spins, referred to the spin operator preserved by full SU(2) symmetry in the absence of the magnetic anistropy, have been proposed to host exotic interactions with superconductivity4. However, spin orbit coupling and crystal field splitting normally cause a significant magnetic anisotropy for d/f-shell spins on surfaces6,9, breaking SU(2) symmetry and fabricating the spins with Ising prope… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.05313v1-abstract-full').style.display = 'inline'; document.getElementById('2207.05313v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2207.05313v1-abstract-full" style="display: none;"> Quantum spins, referred to the spin operator preserved by full SU(2) symmetry in the absence of the magnetic anistropy, have been proposed to host exotic interactions with superconductivity4. However, spin orbit coupling and crystal field splitting normally cause a significant magnetic anisotropy for d/f-shell spins on surfaces6,9, breaking SU(2) symmetry and fabricating the spins with Ising properties10. Recently, magnetic nanographenes have been proven to host intrinsic quantum magnetism due to their negligible spin orbital coupling and crystal field splitting. Here, we fabricate three atomically precise nanographenes with the same magnetic ground state of spin S=1/2 on Pb(111) through engineering sublattice imbalance in graphene honeycomb lattice. Scanning tunneling spectroscopy reveals the coexistence of magnetic bound states and Kondo screening in such hybridized system. Through engineering the magnetic exchange strength between the unpaired spin in nanographenes and cooper pairs, quantum phase transition from the singlet to the doublet state has been observed, in consistent with quantum models of spins on superconductors. Our work demonstrates delocalized graphene magnetism host highly tunable magnetic bound states with cooper pairs, which can be further developed to study the Majorana bound states and other rich quantum physics of low-dimensional quantum spins on superconductors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.05313v1-abstract-full').style.display = 'none'; document.getElementById('2207.05313v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 4figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2110.08794">arXiv:2110.08794</a> <span> [<a href="https://arxiv.org/pdf/2110.08794">pdf</a>, <a href="https://arxiv.org/format/2110.08794">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.105.205102">10.1103/PhysRevB.105.205102 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> From Tree Tensor Network to Multiscale Entanglement Renormalization Ansatz </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Qian%2C+X">Xiangjian Qian</a>, <a href="/search/quant-ph?searchtype=author&query=Qin%2C+M">Mingpu Qin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2110.08794v2-abstract-short" style="display: inline;"> Tensor Network States (TNS) offer an efficient representation for the ground state of quantum many body systems and play an important role in the simulations of them. Numerous TNS are proposed in the past few decades. However, due to the high cost of TNS for two-dimensional systems, a balance between the encoded entanglement and computational complexity of TNS is yet to be reached. In this work we… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.08794v2-abstract-full').style.display = 'inline'; document.getElementById('2110.08794v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2110.08794v2-abstract-full" style="display: none;"> Tensor Network States (TNS) offer an efficient representation for the ground state of quantum many body systems and play an important role in the simulations of them. Numerous TNS are proposed in the past few decades. However, due to the high cost of TNS for two-dimensional systems, a balance between the encoded entanglement and computational complexity of TNS is yet to be reached. In this work we introduce a new Tree Tensor Network (TTN) based TNS dubbed as Fully- Augmented Tree Tensor Network (FATTN) by releasing the constraint in Augmented Tree Tensor Network (ATTN). When disentanglers are augmented in the physical layer of TTN, FATTN can provide more entanglement than TTN and ATTN. At the same time, FATTN maintains the scaling of computational cost with bond dimension in TTN and ATTN. Benchmark results on the ground state energy for the transverse Ising model are provided to demonstrate the improvement of accuracy of FATTN over TTN and ATTN. Moreover, FATTN is quite flexible which can be constructed as an interpolation between Tree Tensor Network and Multiscale Entanglement Renormalization Ansatz (MERA) to reach a balance between the encoded entanglement and the computational cost. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.08794v2-abstract-full').style.display = 'none'; document.getElementById('2110.08794v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 15 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 105, 205102 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2108.09140">arXiv:2108.09140</a> <span> [<a href="https://arxiv.org/pdf/2108.09140">pdf</a>, <a href="https://arxiv.org/format/2108.09140">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Nonlocal games with noisy maximally entangled states are decidable </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Qin%2C+M">Minglong Qin</a>, <a href="/search/quant-ph?searchtype=author&query=Yao%2C+P">Penghui Yao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2108.09140v1-abstract-short" style="display: inline;"> This paper considers a special class of nonlocal games $(G,蠄)$, where $G$ is a two-player one-round game, and $蠄$ is a bipartite state independent of $G$. In the game $(G,蠄)$, the players are allowed to share arbitrarily many copies of $蠄$. The value of the game $(G,蠄)$, denoted by $蠅^*(G,蠄)$, is the supremum of the winning probability that the players can achieve with arbitrarily many copies of p… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.09140v1-abstract-full').style.display = 'inline'; document.getElementById('2108.09140v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2108.09140v1-abstract-full" style="display: none;"> This paper considers a special class of nonlocal games $(G,蠄)$, where $G$ is a two-player one-round game, and $蠄$ is a bipartite state independent of $G$. In the game $(G,蠄)$, the players are allowed to share arbitrarily many copies of $蠄$. The value of the game $(G,蠄)$, denoted by $蠅^*(G,蠄)$, is the supremum of the winning probability that the players can achieve with arbitrarily many copies of preshared states $蠄$. For a noisy maximally entangled state $蠄$, a two-player one-round game $G$ and an arbitrarily small precision $蔚>0$, this paper proves an upper bound on the number of copies of $蠄$ for the players to win the game with a probability $蔚$ close to $蠅^*(G,蠄)$. Hence, it is feasible to approximately compute $蠅^*(G,蠄)$ to an arbitrarily precision. Recently, a breakthrough result by Ji, Natarajan, Vidick, Wright and Yuen showed that it is undecidable to approximate the values of nonlocal games to a constant precision when the players preshare arbitrarily many copies of perfect maximally entangled states, which implies that $\mathrm{MIP}^*=\mathrm{RE}$. In contrast, our result implies the hardness of approximating nonlocal games collapses when the preshared maximally entangled states are noisy. The paper develops a theory of Fourier analysis on matrix spaces by extending a number of techniques in Boolean analysis and Hermitian analysis to matrix spaces. We establish a series of new techniques, such as a quantum invariance principle and a hypercontractive inequality for random operators, which we believe have further applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.09140v1-abstract-full').style.display = 'none'; document.getElementById('2108.09140v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 August, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Supercedes arXiv:1904.08832, accepted by SIAM Journal of Computing</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2108.00265">arXiv:2108.00265</a> <span> [<a href="https://arxiv.org/pdf/2108.00265">pdf</a>, <a href="https://arxiv.org/format/2108.00265">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.physleta.2022.128314">10.1016/j.physleta.2022.128314 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Localization-enhanced dissipation in a generalized Aubry-Andr茅-Harper model coupled with Ohmic baths </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Cui%2C+H+T">H. T. Cui</a>, <a href="/search/quant-ph?searchtype=author&query=Qin%2C+M">M. Qin</a>, <a href="/search/quant-ph?searchtype=author&query=Tang%2C+L">L. Tang</a>, <a href="/search/quant-ph?searchtype=author&query=Shen%2C+H+Z">H. Z. Shen</a>, <a href="/search/quant-ph?searchtype=author&query=Yi%2C+X+X">X. X. Yi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2108.00265v4-abstract-short" style="display: inline;"> In this work, the exact dynamics of excitation in the generalized Aubry-Andr茅-Harper model coupled with an Ohmic-type environment is discussed by evaluating the survival probability and inverse participation ratio of the state of system. In contrast to the common belief that localization will preserve the information of the initial state in the system against dissipation into the environment, our… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.00265v4-abstract-full').style.display = 'inline'; document.getElementById('2108.00265v4-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2108.00265v4-abstract-full" style="display: none;"> In this work, the exact dynamics of excitation in the generalized Aubry-Andr茅-Harper model coupled with an Ohmic-type environment is discussed by evaluating the survival probability and inverse participation ratio of the state of system. In contrast to the common belief that localization will preserve the information of the initial state in the system against dissipation into the environment, our study found that strong localization can enhance the dissipation of quantum information instead. By a thorough examination of the dynamics, we show that the coherent transition between the energy state of system is crucial for understanding this unusual behavior. Under this circumstance, the coupling induced energy exchange between the system and its environment can induce the periodic population of excitation on the states of system. As a result, the stable or localization-enhanced decaying of excitation can be observed, dependent on the energy difference between the states of system. This point is verified in further by checking the varying of dynamics of excitation in the system when the coupling between the system and environment is more strong. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.00265v4-abstract-full').style.display = 'none'; document.getElementById('2108.00265v4-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 31 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physics Letters A 448(2022)128314 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2009.05988">arXiv:2009.05988</a> <span> [<a href="https://arxiv.org/pdf/2009.05988">pdf</a>, <a href="https://arxiv.org/format/2009.05988">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.physleta.2021.127778">10.1016/j.physleta.2021.127778 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Open dynamics in the Aubry-Andr茅-Harper model coupled to a finite bath: the influence of localization in the system and dimensionality of bath </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Cui%2C+H+T">H. T. Cui</a>, <a href="/search/quant-ph?searchtype=author&query=Qin%2C+M">M. Qin</a>, <a href="/search/quant-ph?searchtype=author&query=Tang%2C+L">L. Tang</a>, <a href="/search/quant-ph?searchtype=author&query=Shen%2C+H+Z">H. Z. Shen</a>, <a href="/search/quant-ph?searchtype=author&query=Yi%2C+X+X">X. X. Yi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2009.05988v3-abstract-short" style="display: inline;"> The population evolution of single excitation is studied in the Aubry- Andr茅- Harper (AAH) model coupled to a $d (=1,2,3)$-dimensional simple lattices bath with a focus on the effect of localization in the system and the dimensionality of bath. By performing a precise evaluation of time-independent Schr枚dinger equation, the reduced energy levels of the system can be determined. It is found that th… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.05988v3-abstract-full').style.display = 'inline'; document.getElementById('2009.05988v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2009.05988v3-abstract-full" style="display: none;"> The population evolution of single excitation is studied in the Aubry- Andr茅- Harper (AAH) model coupled to a $d (=1,2,3)$-dimensional simple lattices bath with a focus on the effect of localization in the system and the dimensionality of bath. By performing a precise evaluation of time-independent Schr枚dinger equation, the reduced energy levels of the system can be determined. It is found that the reduce energy levels show significant relevance for the bath dimensions. Subsequently, the time evolution of excitation is studied in both the system and bath. It is found that excitation in the system can decay super-exponentially when $d=1$ or exponentially when $d=2,3$. Regarding the finite nature of bath, the spreading of excitation in the lattices bath is also studied. We find that, depending on the dimensions of bath and the initial state, the spreading of excitation in the bath is diffusive or behaves localization. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.05988v3-abstract-full').style.display = 'none'; document.getElementById('2009.05988v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 September, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 11 figures. Substantial revivison. Title is changed</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physics LettersA 421(2022)127778 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2004.02201">arXiv:2004.02201</a> <span> [<a href="https://arxiv.org/pdf/2004.02201">pdf</a>, <a href="https://arxiv.org/format/2004.02201">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.102.032209">10.1103/PhysRevA.102.032209 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Edge state, bound state and anomalous dynamics in the Aubry-Andr茅-Haper system coupled to non-Markovian baths </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Cui%2C+H+T">H. T. Cui</a>, <a href="/search/quant-ph?searchtype=author&query=Shen%2C+H+Z">H. Z. Shen</a>, <a href="/search/quant-ph?searchtype=author&query=Qin%2C+M">M. Qin</a>, <a href="/search/quant-ph?searchtype=author&query=Yi%2C+X+X">X. X. Yi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2004.02201v1-abstract-short" style="display: inline;"> Bound states and their influence on the dynamics of an one-dimensional tight-binding system subject to environments are studied in this paper. We identify specifically three kinds of bound states. The first is a discrete bound state (DBS), of which the energy level exhibits a gap from the continuum. The DBS exhibits the similar features of localization as the edge states in the system and thus can… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.02201v1-abstract-full').style.display = 'inline'; document.getElementById('2004.02201v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2004.02201v1-abstract-full" style="display: none;"> Bound states and their influence on the dynamics of an one-dimensional tight-binding system subject to environments are studied in this paper. We identify specifically three kinds of bound states. The first is a discrete bound state (DBS), of which the energy level exhibits a gap from the continuum. The DBS exhibits the similar features of localization as the edge states in the system and thus can suppress the decay of system. The second is a bound state in the continuum (BIC), which can suppress the system decay too. It is found that the BIC is intimately connected to the edge mode of the system since both of them show almost the same features of localization and energy. The third one displays a large gap from the continuum and behaves extendible (not localized). Moreover the population of the system on this state decays partly but not all of them does. This is different from the two former bound states. The time evolution of a single excitation in the system is studied in order to illustrate the influence of the bound states. We found that both DBS and BIC play an important role in the time evolution, for example, the excitation becomes localized and not decay depending on the overlap between the initial state and the DBS or BIC. Furthermore we observe that the single excitation takes a long-range hopping when the system falls into the regime of strong localizations. This feature can be understood as the interplay of system localizations and the bath-induced long-range correlation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.02201v1-abstract-full').style.display = 'none'; document.getElementById('2004.02201v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 April, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. A 102, 032209 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2001.10714">arXiv:2001.10714</a> <span> [<a href="https://arxiv.org/pdf/2001.10714">pdf</a>, <a href="https://arxiv.org/ps/2001.10714">ps</a>, <a href="https://arxiv.org/format/2001.10714">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.physa.2020.125176">10.1016/j.physa.2020.125176 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Distribution of quantum coherence and quantum phase transition in the Ising system </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Qin%2C+M">Meng Qin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2001.10714v1-abstract-short" style="display: inline;"> Quantifying of quantum coherence of a given system not only plays an important role in quantum information science but also promote our understanding on some basic problems, such as quantum phase transition. Conventional quantum coherence measurements, such as $l_1$ norm of coherence and relative entropy of coherence, has been widely used to study quantum phase transition, which usually are basis-… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2001.10714v1-abstract-full').style.display = 'inline'; document.getElementById('2001.10714v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2001.10714v1-abstract-full" style="display: none;"> Quantifying of quantum coherence of a given system not only plays an important role in quantum information science but also promote our understanding on some basic problems, such as quantum phase transition. Conventional quantum coherence measurements, such as $l_1$ norm of coherence and relative entropy of coherence, has been widely used to study quantum phase transition, which usually are basis-dependent. The recent quantum version of the Jensen-Shannon divergence meet all the requirements of a good coherence measure. It is not only a metric but also can be basis-independent. Here, based on the quantum renormalization group method we propose an analysis on the critical behavior of two types Ising systems when distribution of quantum coherence. We directly obtain the trade-off relation, critical phenomena, singular behavior, and scaling behavior for both quantum block spin system. Furthermore, the monogamy relation in the multipartite system is also studied in detail. These new result expand the result that quantum coherence can decompose into various contributions as well as enlarge the applications in using basis-independent quantum coherence to reflect quantum critical phenomena. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2001.10714v1-abstract-full').style.display = 'none'; document.getElementById('2001.10714v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 January, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 11 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1710.06152">arXiv:1710.06152</a> <span> [<a href="https://arxiv.org/pdf/1710.06152">pdf</a>, <a href="https://arxiv.org/ps/1710.06152">ps</a>, <a href="https://arxiv.org/format/1710.06152">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.96.043815">10.1103/PhysRevA.96.043815 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Enhanced exciton transmission by quantum-jump-based feedback </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Ji%2C+Y+Q">Y. Q. Ji</a>, <a href="/search/quant-ph?searchtype=author&query=Qin%2C+M">M. Qin</a>, <a href="/search/quant-ph?searchtype=author&query=Shao%2C+X+Q">X. Q. Shao</a>, <a href="/search/quant-ph?searchtype=author&query=Yi%2C+X+X">X. X. Yi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1710.06152v1-abstract-short" style="display: inline;"> With rotating-wave approximation (RWA), we show in this paper that exciton transmission in a one-dimensional two-level molecule chain embedded in a cavity can be enhanced or suppressed by strong cavity-chain couplings. This exciton transmission is closely related to the number of molecules and the distribution of molecular exciton energy. In addition, we propose a proposal to enhance the exciton t… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1710.06152v1-abstract-full').style.display = 'inline'; document.getElementById('1710.06152v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1710.06152v1-abstract-full" style="display: none;"> With rotating-wave approximation (RWA), we show in this paper that exciton transmission in a one-dimensional two-level molecule chain embedded in a cavity can be enhanced or suppressed by strong cavity-chain couplings. This exciton transmission is closely related to the number of molecules and the distribution of molecular exciton energy. In addition, we propose a proposal to enhance the exciton transmission by quantum-jump-based feedback. These results may find applications in experiments of exciton transmission in organic materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1710.06152v1-abstract-full').style.display = 'none'; document.getElementById('1710.06152v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 October, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 8 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. A, 96, 043815 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1611.08146">arXiv:1611.08146</a> <span> [<a href="https://arxiv.org/pdf/1611.08146">pdf</a>, <a href="https://arxiv.org/format/1611.08146">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.96.013824">10.1103/PhysRevA.96.013824 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Optical Schr枚dinger Cat States in One Mode and two Coupled-Modes Subject to Environments </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Zhao%2C+X+L">X. L. Zhao</a>, <a href="/search/quant-ph?searchtype=author&query=Shi%2C+Z+C">Z. C. Shi</a>, <a href="/search/quant-ph?searchtype=author&query=Qin%2C+M">M. Qin</a>, <a href="/search/quant-ph?searchtype=author&query=Yi%2C+X+X">X. X. Yi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1611.08146v2-abstract-short" style="display: inline;"> Taking the decoherence into account, we investigate nonclassical features of the optical Schr枚dinger cat states in one mode and two coupled-modes systems with two-photon driving. In the one mode system, the relationship between the Schr枚dinger cat states and the system parameters is derived. We observe that in the presence of single-photon decay the steady states would be a mixture of Schr枚dinger… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1611.08146v2-abstract-full').style.display = 'inline'; document.getElementById('1611.08146v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1611.08146v2-abstract-full" style="display: none;"> Taking the decoherence into account, we investigate nonclassical features of the optical Schr枚dinger cat states in one mode and two coupled-modes systems with two-photon driving. In the one mode system, the relationship between the Schr枚dinger cat states and the system parameters is derived. We observe that in the presence of single-photon decay the steady states would be a mixture of Schr枚dinger cats. The dynamics and steady states of such a cat versus single-photon decay are examined. In the two coupled-modes cases with linear and nonlinear couplings, the dynamics of entanglement and mutual information are examined with two different initial states and single-photon decay. Compared to the linear coupling case, more complicated structure appears in the Wigner function in the nonlinear coupling case. The joint quadrature distributions are also explored. Such nonclassical states can be used not only in exploring the boundary between the classical and the quantum worlds but also in quantum metrology and quantum information processing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1611.08146v2-abstract-full').style.display = 'none'; document.getElementById('1611.08146v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 June, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 November, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. A 96, 013824 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1611.00612">arXiv:1611.00612</a> <span> [<a href="https://arxiv.org/pdf/1611.00612">pdf</a>, <a href="https://arxiv.org/format/1611.00612">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.96.012125">10.1103/PhysRevA.96.012125 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Effects of system-bath coupling on Photosynthetic heat engine: A polaron master equation approach </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Qin%2C+M">M Qin</a>, <a href="/search/quant-ph?searchtype=author&query=Shen%2C+H+Z">H Z Shen</a>, <a href="/search/quant-ph?searchtype=author&query=Zhao%2C+X+L">X L Zhao</a>, <a href="/search/quant-ph?searchtype=author&query=Yi%2C+X+X">X X Yi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1611.00612v2-abstract-short" style="display: inline;"> In this paper, we apply the polaron master equation, which offers the possibilities to interpolate between weak and strong system-bath coupling, to study how system-bath couplings affect charge transfer processes in Photosystem II reaction center (PSII RC) inspired quantum heat engine (QHE) model in a wide parameter range. The effects of bath correlation and temperature, together with the combined… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1611.00612v2-abstract-full').style.display = 'inline'; document.getElementById('1611.00612v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1611.00612v2-abstract-full" style="display: none;"> In this paper, we apply the polaron master equation, which offers the possibilities to interpolate between weak and strong system-bath coupling, to study how system-bath couplings affect charge transfer processes in Photosystem II reaction center (PSII RC) inspired quantum heat engine (QHE) model in a wide parameter range. The effects of bath correlation and temperature, together with the combined effects of these factors are also discussed in details. The results show a variety of dynamical behaviours. We interpret these results in terms of noise-assisted transport effect and dynamical localization which correspond to two mechanisms underpinning the transfer process in photosynthetic complexes: One is resonance energy transfer and the other is dynamical localization effect captured by the polaron master equation. The effects of system-bath coupling and bath correlation are incorporated in the effective system-bath coupling strength determining whether noise-assisted transport effect or dynamical localization dominates the dynamics and temperature modulates the balance of the two mechanisms. Furthermore, these two mechanisms can be attributed to one physical origin: bath-induced fluctuations. The two mechanisms is manifestations of dual role played by bath-induced fluctuations within respective parameter range. In addition, we find that the effec- tive voltage of QHE exhibits superior robustness with respect to the bath noise as long as the system-coupling strength is not too large. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1611.00612v2-abstract-full').style.display = 'none'; document.getElementById('1611.00612v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 November, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 November, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. A 96, 012125 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1609.09190">arXiv:1609.09190</a> <span> [<a href="https://arxiv.org/pdf/1609.09190">pdf</a>, <a href="https://arxiv.org/ps/1609.09190">ps</a>, <a href="https://arxiv.org/format/1609.09190">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Scaling of quantum correlation and monogamy relation near a quantum phase transitions in two-dimensional XY spin system </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Qin%2C+M">Meng Qin</a>, <a href="/search/quant-ph?searchtype=author&query=Ren%2C+Z">Zhong-Zhou Ren</a>, <a href="/search/quant-ph?searchtype=author&query=Zhang%2C+X">Xin Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1609.09190v2-abstract-short" style="display: inline;"> The purpose of the paper is mainly to investigate the quantum critical behavior of two-dimensional XY spin system by calculating quantum correlation and monogamy relation through implementation of quantum renormalization group theory. Numerical analysis indicates that quantum correlation as well as quantum nonlocality can be used to efficiently detect the quantum critical property in two-dimension… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1609.09190v2-abstract-full').style.display = 'inline'; document.getElementById('1609.09190v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1609.09190v2-abstract-full" style="display: none;"> The purpose of the paper is mainly to investigate the quantum critical behavior of two-dimensional XY spin system by calculating quantum correlation and monogamy relation through implementation of quantum renormalization group theory. Numerical analysis indicates that quantum correlation as well as quantum nonlocality can be used to efficiently detect the quantum critical property in two-dimensional XY spin system. The nonanalytic behavior of the first derivative of quantum correlation approaches infinity and the critical point is reached as the size of the model increases. Furthermore, we discuss the quantum correlation distribution in this model based on square of concurrence (SC) and square of quantum discord (SQD). The monogamous properties of SC and SQD are obtained for the present system. We finally reveal that the monogamy score can be used to capture the quantum critical point. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1609.09190v2-abstract-full').style.display = 'none'; document.getElementById('1609.09190v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 October, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 September, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1509.04812">arXiv:1509.04812</a> <span> [<a href="https://arxiv.org/pdf/1509.04812">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/srep26042">10.1038/srep26042 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Universal quantum correlation close to quantum critical phenomena </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Qin%2C+M">Meng Qin</a>, <a href="/search/quant-ph?searchtype=author&query=Ren%2C+Z">Zhong-zhou Ren</a>, <a href="/search/quant-ph?searchtype=author&query=Zhang%2C+X">Xin Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1509.04812v2-abstract-short" style="display: inline;"> We study the ground state quantum correlation of Ising model in a transverse field (ITF) by implementing the quantum renormalization group (QRG) theory. It is shown that various quantum correlation measures and the Clauser-Horne-Shimony-Holt inequality will highlight the critical point related with quantum phase transitions, and demonstrate nonanalytic phenomena and scaling behavior when the size… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1509.04812v2-abstract-full').style.display = 'inline'; document.getElementById('1509.04812v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1509.04812v2-abstract-full" style="display: none;"> We study the ground state quantum correlation of Ising model in a transverse field (ITF) by implementing the quantum renormalization group (QRG) theory. It is shown that various quantum correlation measures and the Clauser-Horne-Shimony-Holt inequality will highlight the critical point related with quantum phase transitions, and demonstrate nonanalytic phenomena and scaling behavior when the size of the systems becomes large. Our results also indicate a universal behavior of the critical exponent of ITF under QRG theory that the critical exponent of different measures is identical, even when the quantities vary from entanglement measures to quantum correlation measures. This means that the two kinds of quantum correlation criterion including the entanglement-separability paradigm and the information-theoretic paradigm have some connections between them. These remarkable behaviors may have important implications on condensed matter physics because the critical exponent directly associates with the correlation length exponent. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1509.04812v2-abstract-full').style.display = 'none'; document.getElementById('1509.04812v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 April, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 September, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1507.00001">arXiv:1507.00001</a> <span> [<a href="https://arxiv.org/pdf/1507.00001">pdf</a>, <a href="https://arxiv.org/ps/1507.00001">ps</a>, <a href="https://arxiv.org/format/1507.00001">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/1.4944730">10.1063/1.4944730 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A multi-pathway model for Photosynthetic reaction center </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Qin%2C+M">M. Qin</a>, <a href="/search/quant-ph?searchtype=author&query=Shen%2C+H+Z">H. Z Shen</a>, <a href="/search/quant-ph?searchtype=author&query=Yi%2C+X+X">X. X. Yi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1507.00001v1-abstract-short" style="display: inline;"> Charge separation in light-harvesting complexes occurs in a pair of tightly coupled chlorophylls at the heart of photosynthetic reaction centers of both plants and bacteria. Recently it has been shown that quantum coherence can, in principle, enhance the efficiency of a solar cell, working like a quantum heat engine (QHE). Here, we propose a biological quantum heat engine (BQHE) motivated by Photo… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1507.00001v1-abstract-full').style.display = 'inline'; document.getElementById('1507.00001v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1507.00001v1-abstract-full" style="display: none;"> Charge separation in light-harvesting complexes occurs in a pair of tightly coupled chlorophylls at the heart of photosynthetic reaction centers of both plants and bacteria. Recently it has been shown that quantum coherence can, in principle, enhance the efficiency of a solar cell, working like a quantum heat engine (QHE). Here, we propose a biological quantum heat engine (BQHE) motivated by Photosystem {\rm II} reaction center (PS{\rm II} RC) to describe the charge separation. Our model mainly considers two charge-separation pathways more than that in the published literature. The two pathways can interfere via cross-couplings and work together to enhance the charge-separation yields. We explore how these cross-couplings increase the current and voltage of the charge separation and discuss the advantages of multiple pathways in terms of current and power. The robustness of the BQHE against the charge recombination in natural PS{\rm II} RC and dephasing induced by environments is also explored, and extension from two pathways to multiple pathways is made. These results suggest that nature-mimicking architectures with engineered multiple pathways for charge separations might be better for artificial solar energy devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1507.00001v1-abstract-full').style.display = 'none'; document.getElementById('1507.00001v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 June, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 10 figures, 1 table</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. Chem. Phys. 144, 125103 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1505.02130">arXiv:1505.02130</a> <span> [<a href="https://arxiv.org/pdf/1505.02130">pdf</a>, <a href="https://arxiv.org/ps/1505.02130">ps</a>, <a href="https://arxiv.org/format/1505.02130">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevE.90.042140">10.1103/PhysRevE.90.042140 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Dynamics and quantumness of excitation energy transfer through a complex quantum network </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Qin%2C+M">M. Qin</a>, <a href="/search/quant-ph?searchtype=author&query=Shen%2C+H+Z">H. Z. Shen</a>, <a href="/search/quant-ph?searchtype=author&query=Zhao%2C+X+L">X. L. Zhao</a>, <a href="/search/quant-ph?searchtype=author&query=Yi%2C+X+X">X. X. Yi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1505.02130v1-abstract-short" style="display: inline;"> Understanding the mechanisms of efficient and robust energy transfer in organic systems provides us with new insights for the optimal design of artificial systems. In this paper, we explore the dynamics of excitation energy transfer (EET) through a complex quantum network by a toy model consisting of three sites coupled to environments. We study how the coherent evolution and the noise-induced dec… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1505.02130v1-abstract-full').style.display = 'inline'; document.getElementById('1505.02130v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1505.02130v1-abstract-full" style="display: none;"> Understanding the mechanisms of efficient and robust energy transfer in organic systems provides us with new insights for the optimal design of artificial systems. In this paper, we explore the dynamics of excitation energy transfer (EET) through a complex quantum network by a toy model consisting of three sites coupled to environments. We study how the coherent evolution and the noise-induced decoherence work together to reach efficient EET and illustrate the role of the phase factor attached to the coupling constant in the EET. By comparing the differences between the Markovian and non-Markovian dynamics, we discuss the effect of environment and the spatial structure of system on the dynamics and the efficiency of EET. A intuitive picture is given to show how the exciton is transferred through the system. Employing the simple model, we show the robustness of EET efficiency under the influence of the environment and elucidate the important role of quantum coherence in EET. We go further to study the quantum feature of the EET dynamics by {\it quantumness} and show the importance of quantum coherence from a new respect. We calculate the energy current in the EET and its quantumness, results for different system parameters are presented and discussed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1505.02130v1-abstract-full').style.display = 'none'; document.getElementById('1505.02130v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 May, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 7 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review E 90, 042140 (2014) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1505.01556">arXiv:1505.01556</a> <span> [<a href="https://arxiv.org/pdf/1505.01556">pdf</a>, <a href="https://arxiv.org/ps/1505.01556">ps</a>, <a href="https://arxiv.org/format/1505.01556">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevE.92.052122">10.1103/PhysRevE.92.052122 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Quantum response theory for open systems and its application to Hall conductance </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Shen%2C+H+Z">H. Z. Shen</a>, <a href="/search/quant-ph?searchtype=author&query=Qin%2C+M">M. Qin</a>, <a href="/search/quant-ph?searchtype=author&query=Zhou%2C+Y+H">Y. H. Zhou</a>, <a href="/search/quant-ph?searchtype=author&query=Shao%2C+X+Q">X. Q. Shao</a>, <a href="/search/quant-ph?searchtype=author&query=Yi%2C+X+X">X. X. Yi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1505.01556v1-abstract-short" style="display: inline;"> Quantum linear response theory considers only the response of a closed quantum system to a perturbation up to first order in the perturbation. This theory breaks down when the system subjects to environments and the response up to second order in perturbation is not negligible. In this paper, we develop a quantum nonlinear response theory for open systems. We first formulate this theory in terms o… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1505.01556v1-abstract-full').style.display = 'inline'; document.getElementById('1505.01556v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1505.01556v1-abstract-full" style="display: none;"> Quantum linear response theory considers only the response of a closed quantum system to a perturbation up to first order in the perturbation. This theory breaks down when the system subjects to environments and the response up to second order in perturbation is not negligible. In this paper, we develop a quantum nonlinear response theory for open systems. We first formulate this theory in terms of general susceptibility, then apply it to deriving the Hall conductance for the open system at finite temperature. Taking the two-band model as an example, we derive the Hall conductance for the two-band model. We calculate the Hall conductance for a two-dimensional ferromagnetic electron gas and a two-dimensional lattice model via different expressions for $d_伪(\vec p), \ 伪=x,y,z$. The results show that the transition points of topological phase almost remain unchanged in the presence of environments. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1505.01556v1-abstract-full').style.display = 'none'; document.getElementById('1505.01556v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 May, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review E 92, 052122 (2015) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1411.0480">arXiv:1411.0480</a> <span> [<a href="https://arxiv.org/pdf/1411.0480">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Influence of intrinsic decoherence on entanglement teleportation via a Heisenberg XYZ model with different Dzyaloshinskii-Moriya interaction </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Qin%2C+M">Meng Qin</a>, <a href="/search/quant-ph?searchtype=author&query=Ren%2C+Z">Zhong-Zhou Ren</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1411.0480v1-abstract-short" style="display: inline;"> We investigate the characteristics of entanglement teleportation of a two-qubit Heisenberg XYZ model under different Dzyaloshinskii-Moriya interaction with intrinsic decoherence taken into account. The comparison of the two different Dzyaloshinskii-Moriya interaction, the effects of the initial state and the inputting state on the entanglement teleportation are presented. The results reveal that t… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1411.0480v1-abstract-full').style.display = 'inline'; document.getElementById('1411.0480v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1411.0480v1-abstract-full" style="display: none;"> We investigate the characteristics of entanglement teleportation of a two-qubit Heisenberg XYZ model under different Dzyaloshinskii-Moriya interaction with intrinsic decoherence taken into account. The comparison of the two different Dzyaloshinskii-Moriya interaction, the effects of the initial state and the inputting state on the entanglement teleportation are presented. The results reveal that the dynamics of entanglement is a symmetry function about for the system, whereas it is not for the system. The ferromagnetic case is superior to the antiferromagnetic case for restrain decoherence when using the system. The dependence of entanglement, output entanglement, fidelity on initial state angle all demonstrate periodic. Moreover, we find that seemingly some system are not suitable for teleportation, but they can acquire some best exhibition if we take the proper initial state and inputting state. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1411.0480v1-abstract-full').style.display = 'none'; document.getElementById('1411.0480v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 November, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 11 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Quantum Information Processing, 14 (2015) 2055 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1406.7374">arXiv:1406.7374</a> <span> [<a href="https://arxiv.org/pdf/1406.7374">pdf</a>, <a href="https://arxiv.org/ps/1406.7374">ps</a>, <a href="https://arxiv.org/format/1406.7374">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.89.062113">10.1103/PhysRevA.89.062113 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Exact non-Markovian master equation for a driven damped two-level system </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Shen%2C+H+Z">H. Z. Shen</a>, <a href="/search/quant-ph?searchtype=author&query=Qin%2C+M">M. Qin</a>, <a href="/search/quant-ph?searchtype=author&query=Xiu%2C+X">Xiao-Ming Xiu</a>, <a href="/search/quant-ph?searchtype=author&query=Yi%2C+X+X">X. X. Yi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1406.7374v1-abstract-short" style="display: inline;"> Driven two-level system is a useful model to describe many quantum objects, particularly in quantum information processing. However, the exact master equation for such a system is barely explored. Making use of the Feynman-Vernon influence functional theory, we derive an exact non-Markovian master equation for the driven two-level system and show the lost feature in the perturbative treatment for… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1406.7374v1-abstract-full').style.display = 'inline'; document.getElementById('1406.7374v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1406.7374v1-abstract-full" style="display: none;"> Driven two-level system is a useful model to describe many quantum objects, particularly in quantum information processing. However, the exact master equation for such a system is barely explored. Making use of the Feynman-Vernon influence functional theory, we derive an exact non-Markovian master equation for the driven two-level system and show the lost feature in the perturbative treatment for this system. The perturbative treatment leads to the time-convolutionless (TCL) and the Nakajima-Zwanzig (NZ) master equations. So to this end, we derive the time-convolutionless (TCL) and the Nakajima-Zwanzig (NZ) master equations for the system and compare the dynamics given by the three master equations. We find the validity condition for the TCL and NZ master equations. Based on the exact non-Markovian master equation, we analyze the regime of validity for the secular approximation in the time-convolutionless master equation and discuss the leading corrections of the nonsecular terms to the quantum dynamics, significant effects are found in the dynamics of the driven system. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1406.7374v1-abstract-full').style.display = 'none'; document.getElementById('1406.7374v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 June, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 9 figures. arXiv admin note: text overlap with arXiv:0907.4629 by other authors</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> PhysRevA 89, 062113 (2014) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1402.2624">arXiv:1402.2624</a> <span> [<a href="https://arxiv.org/pdf/1402.2624">pdf</a>, <a href="https://arxiv.org/format/1402.2624">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.88.033835">10.1103/PhysRevA.88.033835 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Single-Photon Storing in Coupled Non-Markovian Atom-Cavity System </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Shen%2C+H+Z">H. Z. Shen</a>, <a href="/search/quant-ph?searchtype=author&query=Qin%2C+M">M. Qin</a>, <a href="/search/quant-ph?searchtype=author&query=Yi%2C+X+X">X. X. Yi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1402.2624v1-abstract-short" style="display: inline;"> Taking the non-Markovian effect into account, we study how to store a single photon of arbitrary temporal shape in a single atom coupled to an optical cavity. Our model applies to Raman transitions in three-level atoms with one branch of the transition controlled by a driving pulse, and the other coupled to the cavity. For any couplings of input field to the optical cavity and detunings of the ato… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1402.2624v1-abstract-full').style.display = 'inline'; document.getElementById('1402.2624v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1402.2624v1-abstract-full" style="display: none;"> Taking the non-Markovian effect into account, we study how to store a single photon of arbitrary temporal shape in a single atom coupled to an optical cavity. Our model applies to Raman transitions in three-level atoms with one branch of the transition controlled by a driving pulse, and the other coupled to the cavity. For any couplings of input field to the optical cavity and detunings of the atom from the driving pulse and cavity, we extend the input-output relation from Markovian dynamics to non-Markovian one. For most possible photon shapes, we derive an analytic expression for the driving pulse in order to completely map the input photon into the atom. We find that, the amplitude of the driving pulse depends only on the detuning of the atom from the frequency of the cavity, i.e., the detuning of the atom to the driving pulse has no effect on the strength of the driving pulse. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1402.2624v1-abstract-full').style.display = 'none'; document.getElementById('1402.2624v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 February, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 8 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. A 88, 033835 (2013) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1201.1144">arXiv:1201.1144</a> <span> [<a href="https://arxiv.org/pdf/1201.1144">pdf</a>, <a href="https://arxiv.org/ps/1201.1144">ps</a>, <a href="https://arxiv.org/format/1201.1144">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.86.045139">10.1103/PhysRevB.86.045139 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Coarse-graining renormalization by higher-order singular value decomposition </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Xie%2C+Z+Y">Z. Y. Xie</a>, <a href="/search/quant-ph?searchtype=author&query=Chen%2C+J">J. Chen</a>, <a href="/search/quant-ph?searchtype=author&query=Qin%2C+M+P">M. P. Qin</a>, <a href="/search/quant-ph?searchtype=author&query=Zhu%2C+J+W">J. W. Zhu</a>, <a href="/search/quant-ph?searchtype=author&query=Yang%2C+L+P">L. P. Yang</a>, <a href="/search/quant-ph?searchtype=author&query=Xiang%2C+T">T. Xiang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1201.1144v4-abstract-short" style="display: inline;"> We propose a novel coarse graining tensor renormalization group method based on the higher-order singular value decomposition. This method provides an accurate but low computational cost technique for studying both classical and quantum lattice models in two- or three-dimensions. We have demonstrated this method using the Ising model on the square and cubic lattices. By keeping up to 16 bond basis… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1201.1144v4-abstract-full').style.display = 'inline'; document.getElementById('1201.1144v4-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1201.1144v4-abstract-full" style="display: none;"> We propose a novel coarse graining tensor renormalization group method based on the higher-order singular value decomposition. This method provides an accurate but low computational cost technique for studying both classical and quantum lattice models in two- or three-dimensions. We have demonstrated this method using the Ising model on the square and cubic lattices. By keeping up to 16 bond basis states, we obtain by far the most accurate numerical renormalization group results for the 3D Ising model. We have also applied the method to study the ground state as well as finite temperature properties for the two-dimensional quantum transverse Ising model and obtain the results which are consistent with published data. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1201.1144v4-abstract-full').style.display = 'none'; document.getElementById('1201.1144v4-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 August, 2012; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 January, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2012. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 16 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 86, 045139 (2012) </p> </li> </ol> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>