CINXE.COM
Search results for: ventilation
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: ventilation</title> <meta name="description" content="Search results for: ventilation"> <meta name="keywords" content="ventilation"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="ventilation" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="ventilation"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 358</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: ventilation</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">358</span> CFD Simulations to Examine Natural Ventilation of a Work Area in a Public Building</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=An-Shik%20Yang">An-Shik Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=Chiang-Ho%20Cheng"> Chiang-Ho Cheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Jen-Hao%20Wu"> Jen-Hao Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=Yu-Hsuan%20Juan"> Yu-Hsuan Juan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Natural ventilation has played an important role for many low energy-building designs. It has been also noticed as a essential subject to persistently bring the fresh cool air from the outside into a building. This study carried out the computational fluid dynamics (CFD)-based simulations to examine the natural ventilation development of a work area in a public building. The simulated results can be useful to better understand the indoor microclimate and the interaction of wind with buildings. Besides, this CFD simulation procedure can serve as an effective analysis tool to characterize the airing performance, and thereby optimize the building ventilation for strengthening the architects, planners and other decision makers on improving the natural ventilation design of public buildings. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CFD%20simulations" title="CFD simulations">CFD simulations</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20ventilation" title=" natural ventilation"> natural ventilation</a>, <a href="https://publications.waset.org/abstracts/search?q=microclimate" title=" microclimate"> microclimate</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20environment" title=" wind environment"> wind environment</a> </p> <a href="https://publications.waset.org/abstracts/7505/cfd-simulations-to-examine-natural-ventilation-of-a-work-area-in-a-public-building" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7505.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">574</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">357</span> Cross Ventilation in Waterfront Urban Canyons: The Case Study of Alexandria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bakr%20Gomaa">Bakr Gomaa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cross ventilation is an important and practical mean to achieve thermal comfort and conserve energy. This is especially true in the breezy waterfront settings. However, due to a number of factors, cross ventilation in buildings is usually studied by using oversimplified scenarios. It is then reasonable to study the impact of complex set of factors on the accuracy of predicting air flow rate because of wind driven cross ventilation. The objective of this paper is to provide architects with the tools necessary to achieve natural ventilation for cooling purposes in a waterfront urban canyon context. Also, urban canyons have not received much attention in terms of their impact on cross ventilation, and while we know how the wind flows between buildings in different urban canyon settings, the effect of the parallel-to-the-wind urban canyon on cross ventilation in buildings remains unclear. For this, we use detailed weather data, boundary layer correction factor, and CFD simulations to study the pressure patterns that form on the canyons surfaces in the case study of Alexandria. We found that the simplified numerical methods of calculating the cross ventilation in buildings can lead to inaccurate design decisions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cross%20ventilation" title="cross ventilation">cross ventilation</a>, <a href="https://publications.waset.org/abstracts/search?q=Alexandria" title=" Alexandria"> Alexandria</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD" title=" CFD"> CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20canyon" title=" urban canyon"> urban canyon</a> </p> <a href="https://publications.waset.org/abstracts/54913/cross-ventilation-in-waterfront-urban-canyons-the-case-study-of-alexandria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54913.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">255</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">356</span> The Enlightenment of the Ventilation System in Chinese Traditional Residence to Architecture Design</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wu%20Xingchun">Wu Xingchun</a>, <a href="https://publications.waset.org/abstracts/search?q=Chen%20Xi"> Chen Xi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nowadays, China's building energy consumption constitutes 25% of the total energy consumption, half of which was caused by air conditioning in both summer and winter. The ventilation system in Chinese traditional residence, which is totally passive and environmentally friendly, works effectively to create comfortable indoor environment. The research on the ventilation system in Chinese traditional residence can provide advancements to architecture design and energy savings to the society. Through field investigation, case analysis, strategy proposing and other methods, it comes out that the location and layout, the structure system and the design of atrium are the most important elements for a good ventilation system. Taking every factor into consideration, techniques are deployed extensively such as the organization of draught, the design of the thermal pressure ventilation system and the application of modern materials. With the enlightenment of the ventilation system in Chinese traditional residence, we can take effective measures to achieve low energy consumption and sustainable architecture. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ventilation%20system" title="ventilation system">ventilation system</a>, <a href="https://publications.waset.org/abstracts/search?q=chinese%20traditional%20residence" title=" chinese traditional residence"> chinese traditional residence</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20consumption" title=" energy consumption"> energy consumption</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20architecture" title=" sustainable architecture"> sustainable architecture</a> </p> <a href="https://publications.waset.org/abstracts/30328/the-enlightenment-of-the-ventilation-system-in-chinese-traditional-residence-to-architecture-design" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30328.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">707</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">355</span> Natural Ventilation around and through Building: A Numerical Study </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Kaddour">A. Kaddour</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20M.%20A.%20Bekkouche"> S. M. A. Bekkouche</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Limiting heat losses during ventilation of indoor building spaces has become a basic aim for architects. Much experience has been gained in terms of ventilation of indoor spaces. Nevertheless, due to the complex applications, attempts to create a theoretical base for solving the problems related to the issue are limited, especially determining the minimum ventilation period required within a designated space. In this paper we have approached this matter, both theoretically and computationally. The conclusion we reached was that controlled ventilation of spaces through vent holes that successively open and close at regular time intervals can limit the excessive circulation of air masses, which in turn limits heat losses. Air change rates through open and tilted windows in rooms of residential buildings driven by atmospheric motions are investigated to evaluate natural ventilation concepts. Model of thermal building simulations is used. A separated sample storey and a sample single room in larger scales were used to measure air transport through window openings under the influence of the external pressure distribution. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=natural%20ventilation" title="natural ventilation">natural ventilation</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature%20factor" title=" temperature factor"> temperature factor</a>, <a href="https://publications.waset.org/abstracts/search?q=air%20change%20rates" title=" air change rates"> air change rates</a>, <a href="https://publications.waset.org/abstracts/search?q=air%20circulation" title=" air circulation"> air circulation</a> </p> <a href="https://publications.waset.org/abstracts/23051/natural-ventilation-around-and-through-building-a-numerical-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23051.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">442</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">354</span> Prediction of CO2 Concentration in the Korea Train Express (KTX) Cabins</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yong-Il%20Lee">Yong-Il Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Do-Yeon%20Hwang"> Do-Yeon Hwang</a>, <a href="https://publications.waset.org/abstracts/search?q=Won-Seog%20Jeong"> Won-Seog Jeong</a>, <a href="https://publications.waset.org/abstracts/search?q=Duckshin%20Park"> Duckshin Park</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recently, because of the high-speed trains forced ventilation, it is important to control the ventilation. The ventilation is for controlling various contaminants, temperature, and humidity. The high-speed train route is straight to a destination having a high speed. And there are many mountainous areas in Korea. So, tunnel rate is higher then other country. KTX HVAC block off the outdoor air, when entering tunnel. So the high tunnel rate is an effect of ventilation in the KTX cabin. It is important to reduction rate in CO2 concentration prediction. To meet the air quality of the public transport vehicles recommend standards, the KTX cabin of CO2 concentration should be managed. In this study, the concentration change was predicted by CO2 prediction simulation in route to be opened. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CO2%20prediction" title="CO2 prediction">CO2 prediction</a>, <a href="https://publications.waset.org/abstracts/search?q=KTX" title=" KTX"> KTX</a>, <a href="https://publications.waset.org/abstracts/search?q=ventilation" title=" ventilation"> ventilation</a>, <a href="https://publications.waset.org/abstracts/search?q=infrastructure%20and%20transportation%20engineering" title=" infrastructure and transportation engineering"> infrastructure and transportation engineering</a> </p> <a href="https://publications.waset.org/abstracts/18283/prediction-of-co2-concentration-in-the-korea-train-express-ktx-cabins" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18283.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">544</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">353</span> Cross Ventilation Potential in an Array of Building Blocks: The Case Study of Alexandria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bakr%20Gomaa">Bakr Gomaa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Wind driven Cross ventilation is achieved when air moves indoors due to the pressure difference on the building envelope. This is especially important in breezy moderate to humid settings in which fast air flow can promote thermal comfort. Studies have shown that the use of simple building forms or ignoring the urban context when studying natural ventilation can lead to inaccurate results. In this paper, the impact of the urban form of a regular array of buildings is investigated to define the impact of this urban setting on cross ventilation potential. The objective of this paper is to provide the necessary tools to achieve natural ventilation for cooling purposes in an array of building blocks context. The array urban form has been studied before for natural ventilation purposes yet to the best of our knowledge no study has considered the relationship between the urban form and the pressure patterns that develop on the buildings envelope for cross ventilation. For this we use detailed weather data for a case study city of Alexandria (Egypt), as well as a validated CFD simulations to investigate the cross ventilation potential in terms of pressure patterns in waterfront as well as in-city wind flows perpendicular to the buildings array. it was found that for both waterfront and in-city wind speeds the windows needed for cross ventilation in rear raws of the array are significantly larger than those needed for front raw. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alexandria" title="Alexandria">Alexandria</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD" title=" CFD"> CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=cross%20ventilation" title=" cross ventilation"> cross ventilation</a>, <a href="https://publications.waset.org/abstracts/search?q=pressure%20coefficient" title=" pressure coefficient"> pressure coefficient</a> </p> <a href="https://publications.waset.org/abstracts/56728/cross-ventilation-potential-in-an-array-of-building-blocks-the-case-study-of-alexandria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56728.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">386</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">352</span> The Impact and Performances of Controlled Ventilation Strategy on Thermal Comfort and Indoor Atmosphere in Building</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Selma%20Bouasria">Selma Bouasria</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahi%20Abdelkader"> Mahi Abdelkader</a>, <a href="https://publications.waset.org/abstracts/search?q=Abb%C3%A8s%20Azzi"> Abbès Azzi</a>, <a href="https://publications.waset.org/abstracts/search?q=Herouz%20Keltoum"> Herouz Keltoum </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ventilation in buildings is a key element to provide high indoor air quality. Its efficiency appears as one of the most important factors in maintaining thermal comfort for occupants of buildings. Personal displacement ventilation is a new ventilation concept that combines the positive features of displacement ventilation with those of task conditioning or personalized ventilation. This work aims to study numerically the supply air flow in a room to optimize a comfortable microclimate for an occupant. The room is heated, and a dummy is designed to simulate the occupant. Two types of configurations were studied. The first consist of a room without windows; and the second one is a local equipped with a window. The influence of the blowing speed and the solar radiation coming from the window on the thermal comfort of the occupant is studied. To conduct this study we used the turbulence models, namely the high Reynolds k-e, the RNG and the SST models. The numerical tool used is based on the finite volume method. The numerical simulation of the supply air flow in a room can predict and provide a significant information about indoor comfort. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=local" title="local">local</a>, <a href="https://publications.waset.org/abstracts/search?q=comfort" title=" comfort"> comfort</a>, <a href="https://publications.waset.org/abstracts/search?q=thermique" title=" thermique"> thermique</a>, <a href="https://publications.waset.org/abstracts/search?q=ventilation" title=" ventilation"> ventilation</a>, <a href="https://publications.waset.org/abstracts/search?q=internal%20environment" title=" internal environment "> internal environment </a> </p> <a href="https://publications.waset.org/abstracts/25772/the-impact-and-performances-of-controlled-ventilation-strategy-on-thermal-comfort-and-indoor-atmosphere-in-building" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25772.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">412</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">351</span> Optimal Trajectory Finding of IDP Ventilation Control with Outdoor Air Information and Indoor Health Risk Index</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Minjeong%20Kim">Minjeong Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Seungchul%20Lee"> Seungchul Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Iman%20Janghorban%20Esfahani"> Iman Janghorban Esfahani</a>, <a href="https://publications.waset.org/abstracts/search?q=Jeong%20Tai%20Kim"> Jeong Tai Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=ChangKyoo%20Yoo"> ChangKyoo Yoo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A trajectory of set-point of ventilation control systems plays an important role for efficient ventilation inside subway stations since it affects the level of indoor air pollutants and ventilation energy consumption. To maintain indoor air quality (IAQ) at a comfortable range with lower ventilation energy consumption, the optimal trajectory of the ventilation control system needs to be determined. The concentration of air pollutants inside the station shows a diurnal variation in accordance with the variations in the number of passengers and subway frequency. To consider the diurnal variation of IAQ, an iterative dynamic programming (IDP) that searches for a piecewise control policy by separating whole duration into several stages is used. When outdoor air is contaminated by pollutants, it enters the subway station through the ventilation system, which results in the deteriorated IAQ and adverse effects on passenger health. In this study, to consider the influence of outdoor air quality (OAQ), a new performance index of the IDP with the passenger health risk and OAQ is proposed. This study was carried out for an underground subway station at Seoul Metro, Korea. The optimal set-points of the ventilation control system are determined every 3 hours, then, the ventilation controller adjusts the ventilation fan speed according to the optimal set-point changes. Compared to manual ventilation system which is operated irrespective of the OAQ, the IDP-based ventilation control system saves 3.7% of the energy consumption. Compared to the fixed set-point controller which is operated irrespective of the IAQ diurnal variation, the IDP-based controller shows better performance with a 2% decrease in energy consumption, maintaining the comfortable IAQ range inside the station. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=indoor%20air%20quality" title="indoor air quality">indoor air quality</a>, <a href="https://publications.waset.org/abstracts/search?q=iterative%20dynamic%20algorithm" title=" iterative dynamic algorithm"> iterative dynamic algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=outdoor%20air%20information" title=" outdoor air information"> outdoor air information</a>, <a href="https://publications.waset.org/abstracts/search?q=ventilation%20control%20system" title=" ventilation control system"> ventilation control system</a> </p> <a href="https://publications.waset.org/abstracts/26099/optimal-trajectory-finding-of-idp-ventilation-control-with-outdoor-air-information-and-indoor-health-risk-index" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26099.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">501</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">350</span> Role of Adaptive Support Ventilation in Weaning of COPD Patients</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Kamel%20Abd%20Elaziz%20Mohamed">A. Kamel Abd Elaziz Mohamed</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Sameh%20Kamal%20el%20Maraghi"> B. Sameh Kamal el Maraghi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Adaptive support ventilation (ASV) is an improved closed-loop ventilation mode that provides both pressure-controlled ventilation and PSV according to the patient’s needs. Aim of the work: To compare the short-term effects of Adaptive support ventilation (ASV), with conventional Pressure support ventilation (PSV) in weaning of intubated COPD patients. Patients and methods: Fifty patients admitted in the intensive care with acute exacerbation of COPD and needing intubation were included in the study. All patients were initially ventilated with control/assist control mode, in a stepwise manner and were receiving standard medical therapy. Patients were randomized into two groups to receive either ASV or PSV. Results: Out of fifty patients included in the study forty one patients in both studied groups were weaned successfully according to their ABG data and weaning indices. APACHE II score showed no significant difference in both groups. There were statistically significant differences between the groups in term of, duration of mechanical ventilation, weaning hours and length of ICU stay being shorter in (group 1) weaned by ASV. Re-intubation and mortality rate were higher in (group 11) weaned by conventional PSV, however the differences were not significant. Conclusion: ASV can provide automated weaning and achieve shorter weaning time for COPD patients hence leading to reduction in the total duration of MV, length of stay, and hospital costs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=COPD%20patients" title="COPD patients">COPD patients</a>, <a href="https://publications.waset.org/abstracts/search?q=ASV" title=" ASV"> ASV</a>, <a href="https://publications.waset.org/abstracts/search?q=PSV" title=" PSV"> PSV</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20ventilation%20%28MV%29" title=" mechanical ventilation (MV)"> mechanical ventilation (MV)</a> </p> <a href="https://publications.waset.org/abstracts/19550/role-of-adaptive-support-ventilation-in-weaning-of-copd-patients" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19550.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">390</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">349</span> The Assessment of Natural Ventilation Performance for Thermal Comfort in Educational Space: A Case Study of Design Studio in the Arab Academy for Science and Technology, Alexandria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alaa%20Sarhan">Alaa Sarhan</a>, <a href="https://publications.waset.org/abstracts/search?q=Rania%20Abd%20El%20Gelil"> Rania Abd El Gelil</a>, <a href="https://publications.waset.org/abstracts/search?q=Hana%20Awad"> Hana Awad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Through the last decades, the impact of thermal comfort on the working performance of users and occupants of an indoor space has been a concern. Research papers concluded that natural ventilation quality directly impacts the levels of thermal comfort. Natural ventilation must be put into account during the design process in order to improve the inhabitant's efficiency and productivity. One example of daily long-term occupancy spaces is educational facilities. Many individuals spend long times receiving a considerable amount of knowledge, and it takes additional time to apply this knowledge. Thus, this research is concerned with user's level of thermal comfort in design studios of educational facilities. The natural ventilation quality in spaces is affected by a number of parameters including orientation, opening design, and many other factors. This research aims to investigate the conscious manipulation of the physical parameters of the spaces and its impact on natural ventilation performance which subsequently affects thermal comfort of users. The current research uses inductive and deductive methods to define natural ventilation design considerations, which are used in a field study in a studio in the university building in Alexandria (AAST) to evaluate natural ventilation performance through analyzing and comparing the current case to the developed framework and conducting computational fluid dynamics simulation. Results have proved that natural ventilation performance is successful by only 50% of the natural ventilation design framework; these results are supported by CFD simulation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=educational%20buildings" title="educational buildings">educational buildings</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20ventilation" title=" natural ventilation"> natural ventilation</a>, <a href="https://publications.waset.org/abstracts/search?q=" title=" "> </a>, <a href="https://publications.waset.org/abstracts/search?q=mediterranean%20climate" title=" mediterranean climate"> mediterranean climate</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20comfort" title=" thermal comfort"> thermal comfort</a> </p> <a href="https://publications.waset.org/abstracts/104795/the-assessment-of-natural-ventilation-performance-for-thermal-comfort-in-educational-space-a-case-study-of-design-studio-in-the-arab-academy-for-science-and-technology-alexandria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/104795.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">221</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">348</span> Factors Associated with Commencement of Non-Invasive Ventilation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Manoj%20Kumar%20Reddy%20Pulim">Manoj Kumar Reddy Pulim</a>, <a href="https://publications.waset.org/abstracts/search?q=Lakshmi%20Muthukrishnan"> Lakshmi Muthukrishnan</a>, <a href="https://publications.waset.org/abstracts/search?q=Geetha%20Jayapathy"> Geetha Jayapathy</a>, <a href="https://publications.waset.org/abstracts/search?q=Radhika%20Raman"> Radhika Raman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: In the past two decades, noninvasive positive pressure ventilation (NIPPV) emerged as one of the most important advances in the management of both acute and chronic respiratory failure in children. In the acute setting, it is an alternative to intubation with a goal to preserve normal physiologic functions, decrease airway injury, and prevent respiratory tract infections. There is a need to determine the clinical profile and parameters which point towards the need for NIV in the pediatric emergency setting. Objectives: i) To study the clinical profile of children who required non invasive ventilation and invasive ventilation, ii) To study the clinical parameters common to children who required non invasive ventilation. Methods: All children between one month to 18 years, who were intubated in the pediatric emergency department and those for whom decision to commence Non Invasive Ventilation was made in Emergency Room were included in the study. Children were transferred to the Paediatric Intensive Care Unit and started on Non Invasive Ventilation as per our hospital policy and followed up in the Paediatric Intensive Care Unit. Clinical profile of all children which included age, gender, diagnosis and indication for intubation were documented. Clinical parameters such as respiratory rate, heart rate, saturation, grunting were documented. Parameters obtained were subject to statistical analysis. Observations: Airway disease (Bronchiolitis 25%, Viral induced wheeze 22%) was a common diagnosis in 32 children who required Non Invasive Ventilation. Neuromuscular disorder was the common diagnosis in 27 children (78%) who were Intubated. 17 children commenced on Non Invasive Ventilation who later needed invasive ventilation had Neuromuscular disease. High frequency nasal cannula was used in 32, and mask ventilation in 17 children. Clinical parameters common to the Non Invasive Ventilation group were age < 1 year (17), tachycardia n = 7 (22%), tachypnea n = 23 (72%) and severe respiratory distress n = 9 (28%), grunt n = 7 (22%), SPO2 (80% to 90%) n = 16. Children in the Non Invasive Ventilation + INTUBATION group were > 3 years (9), had tachycardia 7 (41%), tachypnea 9(53%) with a male predominance n = 9. In statistical comparison among 3 groups,'p' value was significant for pH, saturation, and use of Ionotrope. Conclusion: Invasive ventilation can be avoided in the paediatric Emergency Department in children with airway disease, by commencing Non Invasive Ventilation early. Intubation in the pediatric emergency department has a higher association with neuromuscular disorders. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=clinical%20parameters" title="clinical parameters">clinical parameters</a>, <a href="https://publications.waset.org/abstracts/search?q=indications" title=" indications"> indications</a>, <a href="https://publications.waset.org/abstracts/search?q=non%20invasive%20ventilation" title=" non invasive ventilation"> non invasive ventilation</a>, <a href="https://publications.waset.org/abstracts/search?q=paediatric%20emergency%20room" title=" paediatric emergency room"> paediatric emergency room</a> </p> <a href="https://publications.waset.org/abstracts/77078/factors-associated-with-commencement-of-non-invasive-ventilation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77078.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">336</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">347</span> Simulation of Natural Ventilation Strategies as a Comparison Method for Two Different Climates</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fulya%20Ozbey">Fulya Ozbey</a>, <a href="https://publications.waset.org/abstracts/search?q=Ecehan%20Ozmehmet"> Ecehan Ozmehmet</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Health and living in a healthy environment are important for all the living creatures. Healthy buildings are the part of the healthy environment and the ones that people and sometimes the animals spend most of their times in it. Therefore, healthy buildings are important subject for everybody. There are many elements of the healthy buildings from material choice to the thermal comfort including indoor air quality. The aim of this study is, to simulate two natural ventilation strategies which are used as a cooling method in Mediterranean climate, by applying to a residential building and compare the results for Asian climate. Fulltime natural and night-time ventilation strategies are simulated for three days during the summertime in Mediterranean climate. The results show that one of the chosen passive cooling strategies worked on both climates good enough without using additional shading element and cooling device, however, the other ventilation strategy did not provide comfortable indoor temperature enough. Finally, both of the ventilation strategies worked better on the Asian climate than the Mediterranean in terms of the total overheating hours during the chosen period of year. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Asian%20climate" title="Asian climate">Asian climate</a>, <a href="https://publications.waset.org/abstracts/search?q=indoor%20air%20quality" title=" indoor air quality"> indoor air quality</a>, <a href="https://publications.waset.org/abstracts/search?q=Mediterranean%20climate" title=" Mediterranean climate"> Mediterranean climate</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20ventilation%20simulation" title=" natural ventilation simulation"> natural ventilation simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20comfort" title=" thermal comfort"> thermal comfort</a> </p> <a href="https://publications.waset.org/abstracts/85415/simulation-of-natural-ventilation-strategies-as-a-comparison-method-for-two-different-climates" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/85415.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">236</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">346</span> Natural Ventilation for the Sustainable Tall Office Buildings of the Future</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ay%C5%9Fin%20Sev">Ayşin Sev</a>, <a href="https://publications.waset.org/abstracts/search?q=G%C3%B6rkem%20Aslan"> Görkem Aslan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sustainable tall buildings that provide comfortable, healthy and efficient indoor environments are clearly desirable as the densification of living and working space for the world’s increasing population proceeds. For environmental concerns, these buildings must also be energy efficient. One component of these tasks is the provision of indoor air quality and thermal comfort, which can be enhanced with natural ventilation by the supply of fresh air. Working spaces can only be naturally ventilated with connections to the outdoors utilizing operable windows, double facades, ventilation stacks, balconies, patios, terraces and skygardens. Large amounts of fresh air can be provided to the indoor spaces without mechanical air-conditioning systems, which are widely employed in contemporary tall buildings. This paper tends to present the concept of natural ventilation for sustainable tall office buildings in order to achieve healthy and comfortable working spaces, as well as energy efficient environments. Initially the historical evolution of ventilation strategies for tall buildings is presented, beginning with natural ventilation and continuing with the introduction of mechanical air-conditioning systems. Then the emergence of natural ventilation due to the health and environmental concerns in tall buildings is handled, and the strategies for implementing this strategy are revealed. In the next section, a number of case studies that utilize this strategy are investigated. Finally, how tall office buildings can benefit from this strategy is discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tall%20office%20building" title="tall office building">tall office building</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20efficiency" title=" energy efficiency"> energy efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=double-skin%20fa%C3%A7ade" title=" double-skin façade"> double-skin façade</a>, <a href="https://publications.waset.org/abstracts/search?q=stack%20ventilation" title=" stack ventilation"> stack ventilation</a>, <a href="https://publications.waset.org/abstracts/search?q=air%20conditioning" title=" air conditioning"> air conditioning</a> </p> <a href="https://publications.waset.org/abstracts/12589/natural-ventilation-for-the-sustainable-tall-office-buildings-of-the-future" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12589.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">513</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">345</span> Numerical Simulation of a Combined Impact of Cooling and Ventilation on the Indoor Environmental Quality</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Matjaz%20Prek">Matjaz Prek</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Impact of three different combinations of cooling and ventilation systems on the indoor environmental quality (IEQ) has been studied. Comparison of chilled ceiling cooling in combination with displacement ventilation, cooling with fan coil unit and cooling with flat wall displacement outlets was performed. All three combinations were evaluated from the standpoint of whole-body and local thermal comfort criteria as well as from the standpoint of ventilation effectiveness. The comparison was made on the basis of numerical simulation with DesignBuilder and Fluent. Numerical simulations were carried out in two steps. Firstly the DesignBuilder software environment was used to model the buildings thermal performance and evaluation of the interaction between the environment and the building. Heat gains of the building and of the individual space, as well as the heat loss on the boundary surfaces in the room, were calculated. In the second step Fluent software environment was used to simulate the response of the indoor environment, evaluating the interaction between building and human, using the simulation results obtained in the first step. Among the systems presented, the ceiling cooling system in combination with displacement ventilation was found to be the most suitable as it offers a high level of thermal comfort with adequate ventilation efficiency. Fan coil cooling has proved inadequate from the standpoint of thermal comfort whereas flat wall displacement outlets were inadequate from the standpoint of ventilation effectiveness. The study showed the need in evaluating indoor environment not solely from the energy use point of view, but from the point of view of indoor environmental quality as well. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cooling" title="cooling">cooling</a>, <a href="https://publications.waset.org/abstracts/search?q=ventilation" title=" ventilation"> ventilation</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20comfort" title=" thermal comfort"> thermal comfort</a>, <a href="https://publications.waset.org/abstracts/search?q=ventilation%20effectiveness" title=" ventilation effectiveness"> ventilation effectiveness</a>, <a href="https://publications.waset.org/abstracts/search?q=indoor%20environmental%20quality" title=" indoor environmental quality"> indoor environmental quality</a>, <a href="https://publications.waset.org/abstracts/search?q=IEQ" title=" IEQ"> IEQ</a>, <a href="https://publications.waset.org/abstracts/search?q=computational%20fluid%20dynamics" title=" computational fluid dynamics"> computational fluid dynamics</a> </p> <a href="https://publications.waset.org/abstracts/97567/numerical-simulation-of-a-combined-impact-of-cooling-and-ventilation-on-the-indoor-environmental-quality" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/97567.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">187</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">344</span> Using Manipulating Urban Layouts to Enhance Ventilation and Thermal Comfort in Street Canyons</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Su%20Ying-Ming">Su Ying-Ming</a> </p> <p class="card-text"><strong>Abstract:</strong></p> High density of high rise buildings in urban areas lead to a deteriorative Urban Heat Island Effect, gradually. This study focuses on discussing the relationship between urban layout and ventilation comfort in street canyons. This study takes Songjiang Nanjing Rd. area of Taipei, Taiwan as an example to evaluate the wind environment comfort index by field measurement and Computational Fluid Dynamics (CFD) to improve both the quality and quantity of the environment. In this study, different factors including street blocks size, the width of buildings, street width ratio and the direction of the wind were used to discuss the potential of ventilation. The environmental wind field was measured by the environmental testing equipment, Testo 480. Evaluation of blocks sizes, the width of buildings, street width ratio and the direction of the wind was made under the condition of constant floor area with the help of Stimulation CFD to adjust research methods for optimizing regional wind environment. The results of this study showed the width of buildings influences the efficiency of outdoor ventilation; improvement of the efficiency of ventilation with large street width was also shown. The study found that Block width and H/D value and PR value has a close relationship. Furthermore, this study showed a significant relationship between the alteration of street block geometry and outdoor comfortableness. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=urban%20ventilation%20path" title="urban ventilation path">urban ventilation path</a>, <a href="https://publications.waset.org/abstracts/search?q=ventilation%20efficiency%20indices" title=" ventilation efficiency indices"> ventilation efficiency indices</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD" title=" CFD"> CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=building%20layout" title=" building layout"> building layout</a> </p> <a href="https://publications.waset.org/abstracts/67206/using-manipulating-urban-layouts-to-enhance-ventilation-and-thermal-comfort-in-street-canyons" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67206.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">385</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">343</span> Effect of Porous Multi-Layer Envelope System on Effective Wind Pressure of Building Ventilation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ying-Chang%20Yu">Ying-Chang Yu</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuan-Lung%20Lo"> Yuan-Lung Lo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Building ventilation performance is an important indicator of indoor comfort. However, in addition to the geometry of the building or the proportion of the opening, the ventilation performance is also very much related to the actual wind pressure of the building. There are more and more contemporary building designs built with multi-layer exterior envelope. Due to ventilation and view observatory requirement, the porous outer layer of the building is commonly adopted and has a significant wind damping effect, causing the phenomenon of actual wind pressure loss. However, the relationship between the wind damping effect and the actual wind pressure is not linear. This effect can make the indoor ventilation of the building rationalized to reasonable range under the condition of high wind pressure, and also maintain a good amount of ventilation performance under the condition of low wind pressure. In this study, wind tunnel experiments were carried out to simulate the different wind pressures flow through the porous outer layer, and observe the actual wind pressure strength engage with the window layer to find the decreasing relationship between the damping effect of the porous shell and the wind pressure. Experiment specimen scale was designed to be 1:50 for testing real-world building conditions; the study found that the porous enclosure has protective shielding without affecting low-pressure ventilation. Current study observed the porous skin may damp more wind energy to ease the wind pressure under high-speed wind. Differential wind speed may drop the pressure into similar pressure level by using porous skin. The actual mechanism and value of this phenomenon will need further study in the future. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=multi-layer%20facade" title="multi-layer facade">multi-layer facade</a>, <a href="https://publications.waset.org/abstracts/search?q=porous%20media" title=" porous media"> porous media</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20damping" title=" wind damping"> wind damping</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20tunnel%20test" title=" wind tunnel test"> wind tunnel test</a>, <a href="https://publications.waset.org/abstracts/search?q=building%20ventilation" title=" building ventilation "> building ventilation </a> </p> <a href="https://publications.waset.org/abstracts/111397/effect-of-porous-multi-layer-envelope-system-on-effective-wind-pressure-of-building-ventilation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/111397.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">148</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">342</span> Windphil Poetic in Architecture: Energy Efficient Strategies in Modern Buildings of Iran</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sepideh%20Samadzadehyazdi">Sepideh Samadzadehyazdi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Javad%20Khalili"> Mohammad Javad Khalili</a>, <a href="https://publications.waset.org/abstracts/search?q=Sarvenaz%20Samadzadehyazdi"> Sarvenaz Samadzadehyazdi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Javad%20Mahdavinejad"> Mohammad Javad Mahdavinejad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The term ‘Windphil Architecture’ refers to the building that facilitates natural ventilation by architectural elements. Natural ventilation uses the natural forces of wind pressure and stacks effect to direct the movement of air through buildings. Natural ventilation is increasingly being used in contemporary buildings to minimize the consumption of non-renewable energy and it is an effective way to improve indoor air quality. The main objective of this paper is to identify the strategies of using natural ventilation in Iranian modern buildings. In this regard, the research method is ‘descriptive-analytical’ that is based on comparative techniques. To simulate wind flow in the interior spaces of case studies, FLUENT software has been used. Research achievements show that it is possible to use natural ventilation to create a thermally comfortable indoor environment. The natural ventilation strategies could be classified into two groups of environmental characteristics such as public space structure, and architectural characteristics including building form and orientation, openings, central courtyards, wind catchers, roof, wall wings, semi-open spaces and the heat capacity of materials. Having investigated modern buildings of Iran, innovative elements like wind catchers and wall wings are less used than the traditional architecture. Instead, passive ventilation strategies have been more considered in the building design as for the roof structure and openings. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=natural%20ventilation%20strategies" title="natural ventilation strategies">natural ventilation strategies</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20catchers" title=" wind catchers"> wind catchers</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20flow" title=" wind flow"> wind flow</a>, <a href="https://publications.waset.org/abstracts/search?q=Iranian%20modern%20buildings" title=" Iranian modern buildings"> Iranian modern buildings</a> </p> <a href="https://publications.waset.org/abstracts/80724/windphil-poetic-in-architecture-energy-efficient-strategies-in-modern-buildings-of-iran" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80724.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">348</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">341</span> CFD Analysis of a Two-Sided Windcatcher Inlet/Outlet Ducts’ Height in Ventilation Flow through a Three Dimensional Room</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amirreza%20Niktash">Amirreza Niktash</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20P.%20Huynh"> B. P. Huynh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A windcatcher is a structure fitted on the roof of a building for providing natural ventilation by using wind power; it exhausts the inside stale air to the outside and supplies the outside fresh air into the interior space of the building working by pressure difference between outside and inside of the building and using ventilation principles of passive stacks and wind tower, respectively. In this paper, the effect of different heights of inlet/outlets’ ducts of a two-sided windcatcher on the flow rate, flow velocity and flow pattern through a three-dimensional room fitted with the windcatcher are investigated and analysed by using RANS CFD technique and applying standard K-ε turbulence model via a commercial computational fluid dynamics (CFD) software package. The achieved results show that the inlet/outlet ducts height strongly affects flow rate, flow velocity and flow pattern especially in the living area of the room when the wind velocity is not too low. The results are confirmed by the experimental test for constructed scaled model in the laboratory and it develops the two-sided windcatcher’s performance in ventilation applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CFD" title="CFD">CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=RANS" title=" RANS"> RANS</a>, <a href="https://publications.waset.org/abstracts/search?q=ventilation" title=" ventilation"> ventilation</a>, <a href="https://publications.waset.org/abstracts/search?q=windcatcher" title=" windcatcher"> windcatcher</a> </p> <a href="https://publications.waset.org/abstracts/18751/cfd-analysis-of-a-two-sided-windcatcher-inletoutlet-ducts-height-in-ventilation-flow-through-a-three-dimensional-room" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18751.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">429</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">340</span> Characterisation of Wind-Driven Ventilation in Complex Terrain Conditions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Daniel%20Micallef">Daniel Micallef</a>, <a href="https://publications.waset.org/abstracts/search?q=Damien%20Bounaudet"> Damien Bounaudet</a>, <a href="https://publications.waset.org/abstracts/search?q=Robert%20N.%20Farrugia"> Robert N. Farrugia</a>, <a href="https://publications.waset.org/abstracts/search?q=Simon%20P.%20Borg"> Simon P. Borg</a>, <a href="https://publications.waset.org/abstracts/search?q=Vincent%20Buhagiar"> Vincent Buhagiar</a>, <a href="https://publications.waset.org/abstracts/search?q=Tonio%20Sant"> Tonio Sant</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The physical effects of upstream flow obstructions such as vegetation on cross-ventilation phenomena of a building are important for issues such as indoor thermal comfort. Modelling such effects in Computational Fluid Dynamics simulations may also be challenging. The aim of this work is to establish the cross-ventilation jet behaviour in such complex terrain conditions as well as to provide guidelines on the implementation of CFD numerical simulations in order to model complex terrain features such as vegetation in an efficient manner. The methodology consists of onsite measurements on a test cell coupled with numerical simulations. It was found that the cross-ventilation flow is highly turbulent despite the very low velocities encountered internally within the test cells. While no direct measurement of the jet direction was made, the measurements indicate that flow tends to be reversed from the leeward to the windward side. Modelling such a phenomenon proves challenging and is strongly influenced by how vegetation is modelled. A solid vegetation tends to predict better the direction and magnitude of the flow than a porous vegetation approach. A simplified terrain model was also shown to provide good comparisons with observation. The findings have important implications on the study of cross-ventilation in complex terrain conditions since the flow direction does not remain trivial, as with the traditional isolated building case. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=complex%20terrain" title="complex terrain">complex terrain</a>, <a href="https://publications.waset.org/abstracts/search?q=cross-ventilation" title=" cross-ventilation"> cross-ventilation</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20driven%20ventilation" title=" wind driven ventilation"> wind driven ventilation</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20resource" title=" wind resource"> wind resource</a>, <a href="https://publications.waset.org/abstracts/search?q=computational%20fluid%20dynamics" title=" computational fluid dynamics"> computational fluid dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD" title=" CFD"> CFD</a> </p> <a href="https://publications.waset.org/abstracts/91489/characterisation-of-wind-driven-ventilation-in-complex-terrain-conditions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/91489.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">395</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">339</span> Electrical and Thermal Characteristics of a Photovoltaic Solar Wall with Passive and Active Ventilation through a Room</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Himanshu%20Dehra">Himanshu Dehra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An experimental study was conducted for ascertaining electrical and thermal characteristics of a pair of photovoltaic (PV) modules integrated with solar wall of an outdoor room. A pre-fabricated outdoor room was setup for conducting outdoor experiments on a PV solar wall with passive and active ventilation through the outdoor room. The selective operating conditions for glass coated PV modules were utilized for establishing their electrical and thermal characteristics. The PV solar wall was made up of glass coated PV modules, a ventilated air column, and an insulating layer of polystyrene filled plywood board. The measurements collected were currents, voltages, electric power, air velocities, temperatures, solar intensities, and thermal time constant. The results have demonstrated that: i) a PV solar wall installed on a wooden frame was of more heat generating capacity in comparison to a window glass or a standalone PV module; ii) generation of electric power was affected with operation of vertical PV solar wall; iii) electrical and thermal characteristics were not significantly affected by heat and thermal storage losses; and iv) combined heat and electricity generation were function of volume of thermal and electrical resistances developed across PV solar wall. Finally, a comparison of temperature plots of passive and active ventilation envisaged that fan pressure was necessary to avoid overheating of the PV solar wall. The active ventilation was necessary to avoid over-heating of the PV solar wall and to maintain adequate ventilation of room under mild climate conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=photovoltaic%20solar%20wall" title="photovoltaic solar wall">photovoltaic solar wall</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20energy" title=" solar energy"> solar energy</a>, <a href="https://publications.waset.org/abstracts/search?q=passive%20ventilation" title=" passive ventilation"> passive ventilation</a>, <a href="https://publications.waset.org/abstracts/search?q=active%20ventilation" title=" active ventilation"> active ventilation</a> </p> <a href="https://publications.waset.org/abstracts/68746/electrical-and-thermal-characteristics-of-a-photovoltaic-solar-wall-with-passive-and-active-ventilation-through-a-room" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68746.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">395</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">338</span> Limited Ventilation Efficacy of Prehospital I-Gel Insertion in Out-of-Hospital Cardiac Arrest Patients </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eunhye%20Cho">Eunhye Cho</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyuk-Hoon%20Kim"> Hyuk-Hoon Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Sieun%20Lee"> Sieun Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Minjung%20Kathy%20Chae"> Minjung Kathy Chae</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: I-gel is a commonly used supraglottic advanced airway device in prehospital out-of-hospital cardiac arrest (OHCA) allowing for minimal interruption of continuous chest compression. However, previous studies have shown that prehospital supraglottic airway had inferior neurologic outcomes and survival compared to no advanced prehospital airway with conventional bag mask ventilation. We hypothesize that continuous compression with i-gel as an advanced airway may cause insufficient ventilation compared to 30:2 chest compression with conventional BVM. Therefore, we investigated the ventilation efficacy of i-gel with the initial arterial blood gas analysis in OHCA patients visiting our ER. Material and Method: Demographics, arrest parameters including i-gel insertion, initial arterial blood gas analysis was retrospectively analysed for 119 transported OHCA patients that visited our ER. Linear regression was done to investigate the association with i-gel insertion and initial pCO2 as a surrogate of prehospital ventilation. Result: A total of 52 patients were analysed for the study. Of the patients who visited the ER during OHCA, 24 patients had i-gel insertion and 28 patients had BVM as airway management in the prehospital phase. Prehospital i-gel insertion was associated with the initial pCO2 level (B coefficient 29.9, SE 10.1, p<0.01) after adjusting for bystander CPR, cardiogenic cause of arrest, EMS call to arrival. Conclusion: Despite many limitations to the study, prehospital insertion of i-gel was associated with high initial pCO2 values in OHCA patients visiting our ER, possibly indicating insufficient ventilation with prehospital i-gel as an advanced airway and continuous chest compressions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=arrest" title="arrest">arrest</a>, <a href="https://publications.waset.org/abstracts/search?q=I-gel" title=" I-gel"> I-gel</a>, <a href="https://publications.waset.org/abstracts/search?q=prehospital" title=" prehospital"> prehospital</a>, <a href="https://publications.waset.org/abstracts/search?q=ventilation" title=" ventilation"> ventilation</a> </p> <a href="https://publications.waset.org/abstracts/59465/limited-ventilation-efficacy-of-prehospital-i-gel-insertion-in-out-of-hospital-cardiac-arrest-patients" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59465.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">335</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">337</span> Measuring the Effect of Ventilation on Cooking in Indoor Air Quality by Low-Cost Air Sensors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Andres%20Gonzalez">Andres Gonzalez</a>, <a href="https://publications.waset.org/abstracts/search?q=Adam%20Boies"> Adam Boies</a>, <a href="https://publications.waset.org/abstracts/search?q=Jacob%20Swanson"> Jacob Swanson</a>, <a href="https://publications.waset.org/abstracts/search?q=David%20Kittelson"> David Kittelson</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The concern of the indoor air quality (IAQ) has been increasing due to its risk to human health. The smoking, sweeping, and stove and stovetop use are the activities that have a major contribution to the indoor air pollution. Outdoor air pollution also affects IAQ. The most important factors over IAQ from cooking activities are the materials, fuels, foods, and ventilation. The low-cost, mobile air quality monitoring (LCMAQM) sensors, is reachable technology to assess the IAQ. This is because of the lower cost of LCMAQM compared to conventional instruments. The IAQ was assessed, using LCMAQM, during cooking activities in a University of Minnesota graduate-housing evaluating different ventilation systems. The gases measured are carbon monoxide (CO) and carbon dioxide (CO<sub>2</sub>). The particles measured are particle matter (PM) <sub>2.5</sub> micrometer (µm) and lung deposited surface area (LDSA). The measurements are being conducted during April 2019 in Como Student Community Cooperative (CSCC) that is a graduate housing at the University of Minnesota. The measurements are conducted using an electric stove for cooking. The amount and type of food and oil using for cooking are the same for each measurement. There are six measurements: two experiments measure air quality without any ventilation, two using an extractor as mechanical ventilation, and two using the extractor and windows open as mechanical and natural ventilation.<strong> 3</strong>The results of experiments show that natural ventilation is most efficient system to control particles and CO<sub>2</sub>. The natural ventilation reduces the concentration in 79% for LDSA and 55% for PM<sub>2.5</sub>, compared to the no ventilation. In the same way, CO<sub>2</sub> reduces its concentration in 35%. A well-mixed vessel model was implemented to assess particle the formation and decay rates. Removal rates by the extractor were significantly higher for LDSA, which is dominated by smaller particles, than for PM<sub>2.5</sub>, but in both cases much lower compared to the natural ventilation. There was significant day to day variation in particle concentrations under nominally identical conditions. This may be related to the fat content of the food. Further research is needed to assess the impact of the fat in food on particle generations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cooking" title="cooking">cooking</a>, <a href="https://publications.waset.org/abstracts/search?q=indoor%20air%20quality" title=" indoor air quality"> indoor air quality</a>, <a href="https://publications.waset.org/abstracts/search?q=low-cost%20sensor" title=" low-cost sensor"> low-cost sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=ventilation" title=" ventilation"> ventilation</a> </p> <a href="https://publications.waset.org/abstracts/108035/measuring-the-effect-of-ventilation-on-cooking-in-indoor-air-quality-by-low-cost-air-sensors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/108035.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">113</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">336</span> Impact of Ventilation Systems on Indoor Air Quality in Swedish Primary School Classrooms</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sarka%20Langer">Sarka Langer</a>, <a href="https://publications.waset.org/abstracts/search?q=Despoina%20Teli"> Despoina Teli</a>, <a href="https://publications.waset.org/abstracts/search?q=Blanka%20Cabovska"> Blanka Cabovska</a>, <a href="https://publications.waset.org/abstracts/search?q=Jan-Olof%20Dalenb%C3%A4ck"> Jan-Olof Dalenbäck</a>, <a href="https://publications.waset.org/abstracts/search?q=Lars%20Ekberg"> Lars Ekberg</a>, <a href="https://publications.waset.org/abstracts/search?q=Gabriel%20Bek%C3%B6"> Gabriel Bekö</a>, <a href="https://publications.waset.org/abstracts/search?q=Pawel%20Wargocki"> Pawel Wargocki</a>, <a href="https://publications.waset.org/abstracts/search?q=Natalia%20Giraldo%20Vasquez"> Natalia Giraldo Vasquez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of the study was to investigate the impact of various ventilation systems on indoor climate, air pollution, chemistry, and perception. Measurements of thermal environment and indoor air quality were performed in 45 primary school classrooms in Gothenburg, Sweden. The classrooms were grouped into three categories according to their ventilation system: category A) natural or exhaust ventilation or automated window opening; category B) balanced mechanical ventilation systems with constant air volume (CAV); and category C) balanced mechanical ventilation systems with variable air volume (VAV). A questionnaire survey about indoor air quality, perception of temperature, odour, noise and light, and sensation of well-being, alertness focus, etc., was distributed among the 10-12 years old children attending the classrooms. The results (medians) showed statistically significant differences between ventilation category A and categories B and C, but not between categories B and C in air change rates, median concentrations of carbon dioxide, individual volatile organic compounds formaldehyde and isoprene, in-door-to-outdoor ozone ratios and products of ozonolysis of squalene, a constituent of human skin oils, 6-methyl-5-hepten-2-one and decanal. Median ozone concentration, ozone loss -a difference between outdoor and indoor ozone concentrations- were different only between categories A and C. Median concentration of total VOCs and a perception index based on survey responses on perceptions and sensations indoors were not significantly different. In conclusion, ventilation systems have an impact on air change rates, indoor air quality, and chemistry, but the Swedish primary school children’s perception did not differ with the ventilation systems of the classrooms. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=indoor%20air%20pollutants" title="indoor air pollutants">indoor air pollutants</a>, <a href="https://publications.waset.org/abstracts/search?q=indoor%20climate" title=" indoor climate"> indoor climate</a>, <a href="https://publications.waset.org/abstracts/search?q=indoor%20chemistry" title=" indoor chemistry"> indoor chemistry</a>, <a href="https://publications.waset.org/abstracts/search?q=air%20change%20rate" title=" air change rate"> air change rate</a>, <a href="https://publications.waset.org/abstracts/search?q=perception" title=" perception"> perception</a> </p> <a href="https://publications.waset.org/abstracts/177851/impact-of-ventilation-systems-on-indoor-air-quality-in-swedish-primary-school-classrooms" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/177851.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">62</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">335</span> Dutch Schools: Their Ventilation Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Milad%20Golshan">Milad Golshan</a>, <a href="https://publications.waset.org/abstracts/search?q=Wim%20Zeiler"> Wim Zeiler</a> </p> <p class="card-text"><strong>Abstract:</strong></p> During the last decade research was done to clarify the importance of good Indoor Air Quality in schools. As a result, measurements were undertaken in different types of schools to see whether naturally ventilated schools could provide adequate indoor conditions. Also, a comparison was made between schools with hybrid ventilation and those with complete mechanical ventilation systems. Recently a large survey was undertaken at 60 schools to establish the average current situation of schools in the Netherlands. The results of the questionnaires were compared with those of earlier measured schools. This allowed us to compare different types of schools as well as schools of different periods. Overall it leads to insights about the actual current perceived quality by the teachers as well as the pupils and enables to draw some conclusions about the typical performances of specific types of school ventilation systems. Also, the perceived thermal comfort and controllability were researched. It proved that in around 50% of the schools there were major complains about the indoor air quality causing concentration problems and headaches by the pupils at the end of class. Although the main focus of the latest research was focused more on the quality of recently finished nearly Zero Energy schools, this research showed that especially the main focus school be on the renovation and upgrading of the existing 10.000 schools in the Netherlands. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=school%20ventilation" title="school ventilation">school ventilation</a>, <a href="https://publications.waset.org/abstracts/search?q=indoor%20air%20quality" title=" indoor air quality"> indoor air quality</a>, <a href="https://publications.waset.org/abstracts/search?q=perceiver%20thermal%20comfort" title=" perceiver thermal comfort"> perceiver thermal comfort</a>, <a href="https://publications.waset.org/abstracts/search?q=comparison%20different%20types" title=" comparison different types"> comparison different types</a> </p> <a href="https://publications.waset.org/abstracts/88536/dutch-schools-their-ventilation-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/88536.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">221</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">334</span> The IVAIRE Study: Relative Performance of Energy and Heat Recovery Ventilators in Cold Climates</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=D.%20Aubin">D. Aubin</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Won"> D. Won</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Schleibinger"> H. Schleibinger</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Lajoie"> P. Lajoie</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Gauvin"> D. Gauvin</a>, <a href="https://publications.waset.org/abstracts/search?q=J.-M.%20Leclerc"> J.-M. Leclerc</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper describes the results obtained in a two-year randomized intervention field study investigating the impact of ventilation rates on indoor air quality (IAQ) and the respiratory health of asthmatic children in Québec City, Canada. The focus of this article is on the comparative effectiveness of heat recovery ventilators (HRVs) and energy recovery ventilators (ERVs) at increasing ventilation rates, improving IAQ, and maintaining an acceptable indoor relative humidity (RH). In 14% of the homes, the RH was found to be too low in winter. Providing more cold and dry outside air to under-ventilated homes in winter further reduces indoor RH. Thus, low-RH homes in the intervention group were chosen to receive ERVs (instead of HRVs) to increase the ventilation rate. The installation of HRVs or ERVs led to a near doubling of the ventilation rates in the intervention group homes which led to a significant reduction in the concentration of several key of pollutants. The ERVs were also effective in maintaining an acceptable indoor RH since they avoided excessive dehumidification of the home by recovering moisture from the exhaust airstream through the enthalpy core, otherwise associated with increased cold supply air rates. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=asthma" title="asthma">asthma</a>, <a href="https://publications.waset.org/abstracts/search?q=field%20study" title=" field study"> field study</a>, <a href="https://publications.waset.org/abstracts/search?q=indoor%20air%20quality" title=" indoor air quality"> indoor air quality</a>, <a href="https://publications.waset.org/abstracts/search?q=ventilation" title=" ventilation"> ventilation</a> </p> <a href="https://publications.waset.org/abstracts/94355/the-ivaire-study-relative-performance-of-energy-and-heat-recovery-ventilators-in-cold-climates" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/94355.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">274</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">333</span> Training Isolated Respiration in Rehabilitation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Marketa%20Kotova">Marketa Kotova</a>, <a href="https://publications.waset.org/abstracts/search?q=Jana%20Kolarova"> Jana Kolarova</a>, <a href="https://publications.waset.org/abstracts/search?q=Ludek%20Zalud"> Ludek Zalud</a>, <a href="https://publications.waset.org/abstracts/search?q=Petr%20Dobsak"> Petr Dobsak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A game for training of breath (TRABR) for continuous monitoring of pulmonary ventilation during the patients’ therapy focuses especially on monitoring of their ventilation processes. It is necessary to detect, monitor and differentiate abdominal and thoracic breathing during the therapy. It is a fun form of rehabilitation where the patient plays and also practicing isolated breathing. Finally the game to practice breath was designed to evaluate whether the patient uses two types of breathing or not. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pulmonary%20ventilation" title="pulmonary ventilation">pulmonary ventilation</a>, <a href="https://publications.waset.org/abstracts/search?q=thoracic%20breathing" title=" thoracic breathing"> thoracic breathing</a>, <a href="https://publications.waset.org/abstracts/search?q=abdominal%20breathing" title=" abdominal breathing"> abdominal breathing</a>, <a href="https://publications.waset.org/abstracts/search?q=breath%20monitoring%20using%20pressure%20sensors" title=" breath monitoring using pressure sensors"> breath monitoring using pressure sensors</a>, <a href="https://publications.waset.org/abstracts/search?q=game%20TRABR%20TRAining%20of%20BReath%29" title=" game TRABR TRAining of BReath)"> game TRABR TRAining of BReath)</a> </p> <a href="https://publications.waset.org/abstracts/14061/training-isolated-respiration-in-rehabilitation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14061.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">491</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">332</span> Numerical Investigation of Indoor Environmental Quality in a Room Heated with Impinging Jet Ventilation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mathias%20Cehlin">Mathias Cehlin</a>, <a href="https://publications.waset.org/abstracts/search?q=Arman%20Ameen"> Arman Ameen</a>, <a href="https://publications.waset.org/abstracts/search?q=Ulf%20Larsson"> Ulf Larsson</a>, <a href="https://publications.waset.org/abstracts/search?q=Taghi%20Karimipanah"> Taghi Karimipanah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The indoor environmental quality (IEQ) is increasingly recognized as a significant factor influencing the overall level of building occupants’ health, comfort and productivity. An air-conditioning and ventilation system is normally used to create and maintain good thermal comfort and indoor air quality. Providing occupant thermal comfort and well-being with minimized use of energy is the main purpose of heating, ventilating and air conditioning system. Among different types of ventilation systems, the most widely known and used ventilation systems are mixing ventilation (MV) and displacement ventilation (DV). Impinging jet ventilation (IJV) is a promising ventilation strategy developed in the beginning of 2000s. IJV has the advantage of supplying air downwards close to the floor with high momentum and thereby delivering fresh air further out in the room compare to DV. Operating in cooling mode, IJV systems can have higher ventilation effectiveness and heat removal effectiveness compared to MV, and therefore a higher energy efficiency. However, how is the performance of IJV when operating in heating mode? This paper presents the function of IJV in a typical office room for winter conditions (heating mode). In this paper, a validated CFD model, which uses the v2-f model is used for the prediction of air flow pattern, thermal comfort and air change effectiveness. The office room under consideration has the dimensions 4.2×3.6×2.5m, which can be designed like a single-person or two-person office. A number of important factors influencing in the room with IJV are studied. The considered parameters are: heating demand, number of occupants and supplied air conditions. A total of 6 simulation cases are carried out to investigate the effects of the considered parameters. Heat load in the room is contributed by occupants, computer and lighting. The model consists of one external wall including a window. The interaction effects of heat sources, supply air flow and down draught from the window result in a complex flow phenomenon. Preliminary results indicate that IJV can be used for heating of a typical office room. The IEQ seems to be suitable in the occupied region for the studied cases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=computation%20fluid%20dynamics" title="computation fluid dynamics">computation fluid dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=impinging%20jet%20ventilation" title=" impinging jet ventilation"> impinging jet ventilation</a>, <a href="https://publications.waset.org/abstracts/search?q=indoor%20environmental%20quality" title=" indoor environmental quality"> indoor environmental quality</a>, <a href="https://publications.waset.org/abstracts/search?q=ventilation%20strategy" title=" ventilation strategy"> ventilation strategy</a> </p> <a href="https://publications.waset.org/abstracts/96370/numerical-investigation-of-indoor-environmental-quality-in-a-room-heated-with-impinging-jet-ventilation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/96370.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">180</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">331</span> Research on the Impact on Building Temperature and Ventilation by Outdoor Shading Devices in Hot-Humid Area: Through Measurement and Simulation on an Office Building in Guangzhou</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hankun%20Lin">Hankun Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Yiqiang%20Xiao"> Yiqiang Xiao</a>, <a href="https://publications.waset.org/abstracts/search?q=Qiaosheng%20Zhan"> Qiaosheng Zhan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Shading devices (SDs) are widely used in buildings in the hot-humid climate areas for reducing cooling energy consumption for interior temperature, as the result of reducing the solar radiation directly. Contrasting the surface temperature of materials of SDs to the glass on the building façade could give more analysis for the shading effect. On the other side, SDs are much more used as the independence system on building façade in hot-humid area. This typical construction could have some impacts on building ventilation as well. This paper discusses the outdoor SDs’ effects on the building thermal environment and ventilation, through a set of measurements on a 2-floors office building in Guangzhou, China, which install a dynamic aluminum SD-system around the façade on 2<sup>nd</sup>-floor. The measurements recorded the in/outdoor temperature, relative humidity, velocity, and the surface temperature of the aluminum panel and the glaze. After that, a CFD simulation was conducted for deeper discussion of ventilation. In conclusion, this paper reveals the temperature differences on the different material of the façade, and finds that the velocity of indoor environment could be reduced by the outdoor SDs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=outdoor%20shading%20devices" title="outdoor shading devices">outdoor shading devices</a>, <a href="https://publications.waset.org/abstracts/search?q=hot-humid%20area" title=" hot-humid area"> hot-humid area</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature" title=" temperature"> temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=ventilation" title=" ventilation"> ventilation</a>, <a href="https://publications.waset.org/abstracts/search?q=measurement" title=" measurement"> measurement</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD" title=" CFD"> CFD</a> </p> <a href="https://publications.waset.org/abstracts/71054/research-on-the-impact-on-building-temperature-and-ventilation-by-outdoor-shading-devices-in-hot-humid-area-through-measurement-and-simulation-on-an-office-building-in-guangzhou" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71054.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">448</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">330</span> A BIM-Based Approach to Assess COVID-19 Risk Management Regarding Indoor Air Ventilation and Pedestrian Dynamics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=T.%20Delval">T. Delval</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Sauvage"> C. Sauvage</a>, <a href="https://publications.waset.org/abstracts/search?q=Q.%20Jullien"> Q. Jullien</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Viano"> R. Viano</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Diallo"> T. Diallo</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Collignan"> B. Collignan</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Picinbono"> G. Picinbono</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the context of the international spread of COVID-19, the Centre Scientifique et Technique du Bâtiment (CSTB) has led a joint research with the French government authorities Hauts-de-Seine department, to analyse the risk in school spaces according to their configuration, ventilation system and spatial segmentation strategy. This paper describes the main results of this joint research. A multidisciplinary team involving experts in indoor air quality/ventilation, pedestrian movements and IT domains was established to develop a COVID risk analysis tool based on Building Information Model. The work started with specific analysis on two pilot schools in order to provide for the local administration specifications to minimize the spread of the virus. Different recommendations were published to optimize/validate the use of ventilation systems and the strategy of student occupancy and student flow segmentation within the building. This COVID expertise has been digitized in order to manage a quick risk analysis on the entire building that could be used by the public administration through an easy user interface implemented in a free BIM Management software. One of the most interesting results is to enable a dynamic comparison of different ventilation system scenarios and space occupation strategy inside the BIM model. This concurrent engineering approach provides users with the optimal solution according to both ventilation and pedestrian flow expertise. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=BIM" title="BIM">BIM</a>, <a href="https://publications.waset.org/abstracts/search?q=knowledge%20management" title=" knowledge management"> knowledge management</a>, <a href="https://publications.waset.org/abstracts/search?q=system%20expert" title=" system expert"> system expert</a>, <a href="https://publications.waset.org/abstracts/search?q=risk%20management" title=" risk management"> risk management</a>, <a href="https://publications.waset.org/abstracts/search?q=indoor%20ventilation" title=" indoor ventilation"> indoor ventilation</a>, <a href="https://publications.waset.org/abstracts/search?q=pedestrian%20movement" title=" pedestrian movement"> pedestrian movement</a>, <a href="https://publications.waset.org/abstracts/search?q=integrated%20design" title=" integrated design"> integrated design</a> </p> <a href="https://publications.waset.org/abstracts/132449/a-bim-based-approach-to-assess-covid-19-risk-management-regarding-indoor-air-ventilation-and-pedestrian-dynamics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/132449.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">107</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">329</span> Effects of Lung Protection Ventilation Strategies on Postoperative Pulmonary Complications After Noncardiac Surgery: A Network Meta-Analysis of Randomized Controlled Trials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ran%20An">Ran An</a>, <a href="https://publications.waset.org/abstracts/search?q=Dang%20Wang"> Dang Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Mechanical ventilation has been confirmed to increase the incidence of postoperative pulmonary complications (PPCs), and several studies have shown that low tidal volumes combined with positive end-expiratory pressure (PEEP) and recruitment manoeuvres (RM) reduce the incidence of PPCs. However, the optimal lung-protective ventilatory strategy remains unclear. Methods: Multiple databases were searched for randomized controlled trials (RCTs) published prior to October 2023. The association between individual PEEP (iPEEP) or other forms of lung-protective ventilation and the incidence of PPCs was evaluated by Bayesian network meta-analysis. Results: We included 58 studies (11610 patients) in this meta-analysis. The network meta-analysis showed that low ventilation (LVt) combined with iPEEP and RM was associated with significantly lower incidences of PPCs [HVt: OR=0.38 95CrI (0.19, 0.75), LVt: OR=0.33, 95% CrI (0.12, 0.82)], postoperative atelectasis, and pneumonia than was HVt or LVt. In abdominal surgery, LVT combined with iPEEP or medium-to-high PEEP and RM were associated with significantly lower incidences of PPCs, postoperative atelectasis, and pneumonia. LVt combined with iPEEP and RM was ranked the highest, which was based on SUCRA scores. Conclusion: LVt combined with iPEEP and RM decreased the incidences of PPCs, postoperative atelectasis, and pneumonia in noncardiac surgery patients. iPEEP-guided ventilation was the optimal lung protection ventilation strategy. The quality of evidence was moderate. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=protection%20ventilation%20strategies" title="protection ventilation strategies">protection ventilation strategies</a>, <a href="https://publications.waset.org/abstracts/search?q=postoperative%20pulmonary%20complications" title=" postoperative pulmonary complications"> postoperative pulmonary complications</a>, <a href="https://publications.waset.org/abstracts/search?q=network%20meta-analysis" title=" network meta-analysis"> network meta-analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=noncardiac%20surgery" title=" noncardiac surgery"> noncardiac surgery</a> </p> <a href="https://publications.waset.org/abstracts/186731/effects-of-lung-protection-ventilation-strategies-on-postoperative-pulmonary-complications-after-noncardiac-surgery-a-network-meta-analysis-of-randomized-controlled-trials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/186731.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">35</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ventilation&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ventilation&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ventilation&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ventilation&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ventilation&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ventilation&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ventilation&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ventilation&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ventilation&page=10">10</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ventilation&page=11">11</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ventilation&page=12">12</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ventilation&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>