CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 87 results for author: <span class="mathjax">Greco, A</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/cond-mat" aria-role="search"> Searching in archive <strong>cond-mat</strong>. <a href="/search/?searchtype=author&amp;query=Greco%2C+A">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Greco, A"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Greco%2C+A&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Greco, A"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Greco%2C+A&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Greco%2C+A&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Greco%2C+A&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.00269">arXiv:2411.00269</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.00269">pdf</a>, <a href="https://arxiv.org/ps/2411.00269">ps</a>, <a href="https://arxiv.org/format/2411.00269">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Out-of-plane bond order phase, superconductivity, and their competition in the $t$-$J_\parallel$-$J_\perp$ model for pressurized nickelates </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Bejas%2C+M">Mat铆as Bejas</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+X">Xianxin Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chakraborty%2C+D">Debmalya Chakraborty</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schnyder%2C+A+P">Andreas P. Schnyder</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Greco%2C+A">Andr茅s Greco</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.00269v1-abstract-short" style="display: inline;"> Almost four decades of intense research have been invested to study the physics of high-T$_c$ cuprate superconductors. The recent discovery of high-T$_c$ superconductivity in pressurized bilayer nickelates and its potential similarities with cuprate superconductors may open a new window to understand this long standing problem. Motivated by this we have assumed that nickelates belong to the catego&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.00269v1-abstract-full').style.display = 'inline'; document.getElementById('2411.00269v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.00269v1-abstract-full" style="display: none;"> Almost four decades of intense research have been invested to study the physics of high-T$_c$ cuprate superconductors. The recent discovery of high-T$_c$ superconductivity in pressurized bilayer nickelates and its potential similarities with cuprate superconductors may open a new window to understand this long standing problem. Motivated by this we have assumed that nickelates belong to the category of strongly correlated systems, and considered the bilayer $t$-$J_\parallel$-$J_\perp$ model as a minimal model, where $J_\parallel$ and $J_\perp$ are the in-plane and out-of-plane magnetic exchange, respectively. We have studied the $t$-$J_\parallel$-$J_\perp$ model in a large-$N$ approach on the basis of the path integral representation for Hubbard operators, which allows to obtain results at mean-field and beyond mean-field level. We find that $J_\perp$ is a promising candidate for triggering high superconducting $T_c$ values at quarter filling (hole doping $未=0.5$) of the $d_{x^2-y^2}$ orbitals. Beyond mean-field level, we remarkably find a new phase, an out-of-plane bond-order phase (z-BOP), triggered also by $J_\perp$. z-BOP develops below a critical temperature which decreases with increasing doping and vanishes at a quantum critical point below quarter filling. The occurrence of this phase and its competition with superconductivity leads to a superconducting dome shaped behavior as a function of doping and as a function of $J_\perp$. Comparisons with the physics of cuprates and the recent literature on the new pressurized nickelates are given along the paper. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.00269v1-abstract-full').style.display = 'none'; document.getElementById('2411.00269v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages (main text) + 8 pages (references + appendices), 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.15692">arXiv:2407.15692</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.15692">pdf</a>, <a href="https://arxiv.org/format/2407.15692">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Impact of electron correlations on two-particle charge response in electron- and hole-doped cuprates </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Nag%2C+A">Abhishek Nag</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zinni%2C+L">Luciano Zinni</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Choi%2C+J">Jaewon Choi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+J">J. Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tu%2C+S">Sijia Tu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Walters%2C+A+C">A. C. Walters</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Agrestini%2C+S">S. Agrestini</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hayden%2C+S+M">S. M. Hayden</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bejas%2C+M">Mat铆as Bejas</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+Z">Zefeng Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yamase%2C+H">H. Yamase</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+K">Kui Jin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Garc%C3%ADa-Fern%C3%A1ndez%2C+M">M. Garc铆a-Fern谩ndez</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fink%2C+J">J. Fink</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Greco%2C+A">Andr茅s Greco</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+K">Ke-Jin Zhou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.15692v1-abstract-short" style="display: inline;"> Estimating many-body effects that deviate from an independent particle approach, has long been a key research interest in condensed matter physics. Layered cuprates are prototypical systems, where electron-electron interactions are found to strongly affect the dynamics of single-particle excitations. It is however, still unclear how the electron correlations influence charge excitations, such as p&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.15692v1-abstract-full').style.display = 'inline'; document.getElementById('2407.15692v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.15692v1-abstract-full" style="display: none;"> Estimating many-body effects that deviate from an independent particle approach, has long been a key research interest in condensed matter physics. Layered cuprates are prototypical systems, where electron-electron interactions are found to strongly affect the dynamics of single-particle excitations. It is however, still unclear how the electron correlations influence charge excitations, such as plasmons, which have been variously treated with either weak or strong correlation models. In this work, we demonstrate the hybridised nature of collective valence charge fluctuations leading to dispersing acoustic-like plasmons in hole-doped La$_{1.84}$Sr$_{0.16}$CuO$_{4}$ and electron-doped La$_{1.84}$Ce$_{0.16}$CuO$_{4}$ using the two-particle probe, resonant inelastic x-ray scattering. We then describe the plasmon dispersions in both systems, within both the weak mean-field Random Phase Approximation (RPA) and strong coupling $t$-$J$-$V$ models. The $t$-$J$-$V$ model, which includes the correlation effects implicitly, accurately describes the plasmon dispersions as resonant excitations outside the single-particle intra-band continuum. In comparison, a quantitative description of the plasmon dispersion in the RPA approach is obtained only upon explicit consideration of re-normalized electronic band parameters. Our comparative analysis shows that electron correlations significantly impact the low-energy plasmon excitations across the cuprate doping phase diagram, even at long wavelengths. Thus, complementary information on the evolution of electron correlations, influenced by the rich electronic phases in condensed matter systems, can be extracted through the study of two-particle charge response. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.15692v1-abstract-full').style.display = 'none'; document.getElementById('2407.15692v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 Figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.05521">arXiv:2404.05521</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.05521">pdf</a>, <a href="https://arxiv.org/format/2404.05521">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0211021">10.1063/5.0211021 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Double loop dc-SQUID as a tunable Josephson diode </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Greco%2C+A">A. Greco</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pichard%2C+Q">Q. Pichard</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Strambini%2C+E">E. Strambini</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Giazotto%2C+F">F. Giazotto</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.05521v1-abstract-short" style="display: inline;"> The development of superconducting electronics requires careful characterization of the components that make up electronic circuits. Superconducting weak links are the building blocks of most superconducting electronics components and are characterized by highly nonlinear current-to-phase relations (CPR), which are often not perfectly known. Recent research has found that the Josephson diode effec&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.05521v1-abstract-full').style.display = 'inline'; document.getElementById('2404.05521v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.05521v1-abstract-full" style="display: none;"> The development of superconducting electronics requires careful characterization of the components that make up electronic circuits. Superconducting weak links are the building blocks of most superconducting electronics components and are characterized by highly nonlinear current-to-phase relations (CPR), which are often not perfectly known. Recent research has found that the Josephson diode effect (JDE) can be related to the high harmonic content of the current-to-phase relation of the weak links embedded in superconducting interferometers. This makes the JDE a natural tool for exploring the harmonic content of weak links beyond single-harmonic CPR. In this study, we present the theoretical model and experimental characterization of a double-loop superconducting quantum interference device (DL-SQUID) that embeds all-metallic superconductor-normal metal-superconductor junctions. The proposed device exhibits the JDE due to the interference of the supercurrents of three weak links in parallel, and this feature can be adjusted through two magnetic fluxes, which act as experimental knobs. We carry out a theoretical study of the device in terms of the relative weight of the interferometer arms and the experimental characterization concerning flux tunability and temperature. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.05521v1-abstract-full').style.display = 'none'; document.getElementById('2404.05521v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Appl. Phys. Lett. 125, 072601 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.02200">arXiv:2404.02200</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.02200">pdf</a>, <a href="https://arxiv.org/ps/2404.02200">ps</a>, <a href="https://arxiv.org/format/2404.02200">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.109.104515">10.1103/PhysRevB.109.104515 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Retaining Landau quasiparticles in the presence of realistic charge fluctuations in cuprates </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Yamase%2C+H">Hiroyuki Yamase</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bejas%2C+M">Matias Bejas</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Greco%2C+A">Andres Greco</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.02200v2-abstract-short" style="display: inline;"> Charge excitation spectra are getting clear in cuprate superconductors in momentum-energy space especially around a small momentum region, where plasmon excitations become dominant. Here, we study whether Landau quasiparticles survive in the presence of charge fluctuations observed in experiments. We employ the layered t-J model with the long-range Coulomb interaction, which can reproduce the real&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.02200v2-abstract-full').style.display = 'inline'; document.getElementById('2404.02200v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.02200v2-abstract-full" style="display: none;"> Charge excitation spectra are getting clear in cuprate superconductors in momentum-energy space especially around a small momentum region, where plasmon excitations become dominant. Here, we study whether Landau quasiparticles survive in the presence of charge fluctuations observed in experiments. We employ the layered t-J model with the long-range Coulomb interaction, which can reproduce the realistic charge fluctuations. We find that Landau quasiparticles are retained in a realistic temperature and doping region, although the quasiparticle spectral weight is strongly reduced to 0.08-0.24. Counterintuitively, the presence of this small quasiparticle weight does not work favorably to generate a pseudogap. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.02200v2-abstract-full').style.display = 'none'; document.getElementById('2404.02200v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 7 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 109, 104515 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.01413">arXiv:2311.01413</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2311.01413">pdf</a>, <a href="https://arxiv.org/ps/2311.01413">ps</a>, <a href="https://arxiv.org/format/2311.01413">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.109.144516">10.1103/PhysRevB.109.144516 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Plasmon dispersion in bilayer cuprate superconductors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Bejas%2C+M">M. Bejas</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zimmermann%2C+V">V. Zimmermann</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Betto%2C+D">D. Betto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Boyko%2C+T+D">T. D. Boyko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Green%2C+R+J">R. J. Green</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Loew%2C+T">T. Loew</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Brookes%2C+N+B">N. B. Brookes</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cristiani%2C+G">G. Cristiani</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Logvenov%2C+G">G. Logvenov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Minola%2C+M">M. Minola</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Keimer%2C+B">B. Keimer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yamase%2C+H">H. Yamase</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Greco%2C+A">A. Greco</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hepting%2C+M">M. Hepting</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.01413v2-abstract-short" style="display: inline;"> The essential building blocks of cuprate superconductors are two-dimensional CuO$_2$ sheets interspersed with charge reservoir layers. In bilayer cuprates, two closely spaced CuO$_2$ sheets are separated by a larger distance from the subsequent pair in the next unit cell. In contrast to single-layer cuprates, prior theoretical work on bilayer systems has predicted two distinct acoustic plasmon ban&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.01413v2-abstract-full').style.display = 'inline'; document.getElementById('2311.01413v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.01413v2-abstract-full" style="display: none;"> The essential building blocks of cuprate superconductors are two-dimensional CuO$_2$ sheets interspersed with charge reservoir layers. In bilayer cuprates, two closely spaced CuO$_2$ sheets are separated by a larger distance from the subsequent pair in the next unit cell. In contrast to single-layer cuprates, prior theoretical work on bilayer systems has predicted two distinct acoustic plasmon bands for a given out-of-plane momentum transfer. Here we report random phase approximation (RPA) calculations for bilayer systems which corroborate the existence of two distinct plasmons bands. We find that the intensity of the lower-energy band is negligibly small, whereas the higher-energy band carries significant spectral weight. We also present resonant inelastic x-ray scattering (RIXS) experiments at the O $K$-edge on the bilayer cuprate Y$_{0.85}$Ca$_{0.15}$Ba$_2$Cu$_3$O$_7$ (Ca-YBCO), which show only one dispersive plasmon branch, in agreement with the RPA calculations. In addition, the RPA results indicate that the dispersion of the higher-energy plasmon band in Ca-YBCO is not strictly acoustic, but exhibits a substantial energy gap of approximately 250 meV at the two-dimensional Brillouin zone center. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.01413v2-abstract-full').style.display = 'none'; document.getElementById('2311.01413v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 7 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 109, 144516 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.05364">arXiv:2307.05364</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2307.05364">pdf</a>, <a href="https://arxiv.org/format/2307.05364">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Signal Processing">eess.SP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Data Analysis, Statistics and Probability">physics.data-an</span> </div> </div> <p class="title is-5 mathjax"> Neural network analysis of neutron and X-ray reflectivity data: Incorporating prior knowledge for tackling the phase problem </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Munteanu%2C+V">Valentin Munteanu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Starostin%2C+V">Vladimir Starostin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Greco%2C+A">Alessandro Greco</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pithan%2C+L">Linus Pithan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gerlach%2C+A">Alexander Gerlach</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hinderhofer%2C+A">Alexander Hinderhofer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kowarik%2C+S">Stefan Kowarik</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schreiber%2C+F">Frank Schreiber</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.05364v1-abstract-short" style="display: inline;"> Due to the lack of phase information, determining the physical parameters of multilayer thin films from measured neutron and X-ray reflectivity curves is, on a fundamental level, an underdetermined inverse problem. This so-called phase problem poses limitations on standard neural networks, constraining the range and number of considered parameters in previous machine learning solutions. To overcom&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.05364v1-abstract-full').style.display = 'inline'; document.getElementById('2307.05364v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.05364v1-abstract-full" style="display: none;"> Due to the lack of phase information, determining the physical parameters of multilayer thin films from measured neutron and X-ray reflectivity curves is, on a fundamental level, an underdetermined inverse problem. This so-called phase problem poses limitations on standard neural networks, constraining the range and number of considered parameters in previous machine learning solutions. To overcome this, we present an approach that utilizes prior knowledge to regularize the training process over larger parameter spaces. We demonstrate the effectiveness of our method in various scenarios, including multilayer structures with box model parameterization and a physics-inspired special parameterization of the scattering length density profile for a multilayer structure. By leveraging the input of prior knowledge, we can improve the training dynamics and address the underdetermined (&#34;ill-posed&#34;) nature of the problem. In contrast to previous methods, our approach scales favorably when increasing the complexity of the inverse problem, working properly even for a 5-layer multilayer model and an N-layer periodic multilayer model with up to 17 open parameters. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.05364v1-abstract-full').style.display = 'none'; document.getElementById('2307.05364v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.15650">arXiv:2306.15650</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2306.15650">pdf</a>, <a href="https://arxiv.org/format/2306.15650">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.107.214516">10.1103/PhysRevB.107.214516 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Evolution of plasmon excitations across the phase diagram of the cuprate superconductor La$_{2-x}$Sr$_{x}$CuO$_4$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Hepting%2C+M">M. Hepting</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Boyko%2C+T+D">T. D. Boyko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zimmermann%2C+V">V. Zimmermann</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bejas%2C+M">M. Bejas</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Suyolcu%2C+Y+E">Y. E. Suyolcu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Puphal%2C+P">P. Puphal</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Green%2C+R+J">R. J. Green</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zinni%2C+L">L. Zinni</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+J">J. Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Casa%2C+D">D. Casa</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Upton%2C+M+H">M. H. Upton</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wong%2C+D">D. Wong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schulz%2C+C">C. Schulz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bartkowiak%2C+M">M. Bartkowiak</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Habicht%2C+K">K. Habicht</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pomjakushina%2C+E">E. Pomjakushina</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cristiani%2C+G">G. Cristiani</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Logvenov%2C+G">G. Logvenov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Minola%2C+M">M. Minola</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yamase%2C+H">H. Yamase</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Greco%2C+A">A. Greco</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Keimer%2C+B">B. Keimer</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.15650v1-abstract-short" style="display: inline;"> We use resonant inelastic x-ray scattering (RIXS) at the O $K$- and Cu $K$-edges to investigate the doping- and temperature dependence of low-energy plasmon excitations in La$_{2-x}$Sr$_{x}$CuO$_4$. We observe a monotonic increase of the energy scale of the plasmons with increasing doping $x$ in the underdoped regime, whereas a saturation occurs above optimal doping $x \gtrsim 0.16$ and persists a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.15650v1-abstract-full').style.display = 'inline'; document.getElementById('2306.15650v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.15650v1-abstract-full" style="display: none;"> We use resonant inelastic x-ray scattering (RIXS) at the O $K$- and Cu $K$-edges to investigate the doping- and temperature dependence of low-energy plasmon excitations in La$_{2-x}$Sr$_{x}$CuO$_4$. We observe a monotonic increase of the energy scale of the plasmons with increasing doping $x$ in the underdoped regime, whereas a saturation occurs above optimal doping $x \gtrsim 0.16$ and persists at least up to $x = 0.4$. Furthermore, we find that the plasmon excitations show only a marginal temperature dependence, and possible effects due to the superconducting transition and the onset of strange metal behavior are either absent or below the detection limit of our experiment. Taking into account the strongly correlated character of the cuprates, we show that layered $t$-$J$-$V$ model calculations accurately capture the increase of the plasmon energy in the underdoped regime. However, the computed plasmon energy continues to increase even for doping levels above $x \gtrsim 0.16$, which is distinct from the experimentally observed saturation, and reaches a broad maximum around $x = 0.55$. We discuss whether possible lattice disorder in overdoped samples, a renormalization of the electronic correlation strength at high dopings, or an increasing relevance of non-planar Cu and O orbitals could be responsible for the discrepancy between experiment and theory for doping levels above $x = 0.16$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.15650v1-abstract-full').style.display = 'none'; document.getElementById('2306.15650v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 11 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 107, 214516 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.12765">arXiv:2306.12765</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2306.12765">pdf</a>, <a href="https://arxiv.org/format/2306.12765">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0165259">10.1063/5.0165259 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Josephson diode effect in monolithic dc-SQUIDs based on 3D Dayem nanobridges </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Greco%2C+A">Angelo Greco</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pichard%2C+Q">Quentin Pichard</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Giazotto%2C+F">Francesco Giazotto</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.12765v1-abstract-short" style="display: inline;"> It was recently experimentally proved that the superconducting counterpart of a diode, i.e., a device that realizes nonreciprocal Cooper pairs transport, can be realized by breaking the spatial and time-reversal symmetry of a system simultaneously. Here we report the theory, fabrication, and operation of a monolithic dc superconducting quantum interference device (dc-SQUID) that embedding three-di&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.12765v1-abstract-full').style.display = 'inline'; document.getElementById('2306.12765v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.12765v1-abstract-full" style="display: none;"> It was recently experimentally proved that the superconducting counterpart of a diode, i.e., a device that realizes nonreciprocal Cooper pairs transport, can be realized by breaking the spatial and time-reversal symmetry of a system simultaneously. Here we report the theory, fabrication, and operation of a monolithic dc superconducting quantum interference device (dc-SQUID) that embedding three-dimensional (3D) Dayem nanobridges as weak links realizes an efficient and magnetic flux-tunable supercurrent diode. The device is entirely realized in Al and achieves a maximum rectification efficiency of $\sim 20\%$, which stems from the high harmonic content of its current-to-phase relation only without the need of any sizable screening current caused by a finite loop inductance. Our interferometer can be easily integrated with state-of-the-art superconducting electronics, and since it does not require a finite loop inductance to provide large rectification its downsizing is not limited by the geometrical constraints of the superconducting ring. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.12765v1-abstract-full').style.display = 'none'; document.getElementById('2306.12765v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Appl. Phys. Lett. 123, 092601 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.08794">arXiv:2212.08794</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2212.08794">pdf</a>, <a href="https://arxiv.org/ps/2212.08794">ps</a>, <a href="https://arxiv.org/format/2212.08794">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.106.224512">10.1103/PhysRevB.106.224512 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Ring-like shaped charge modulations in the t-J model with long-range Coulomb interaction </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Bejas%2C+M">Mat铆as Bejas</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zeyher%2C+R">Roland Zeyher</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Greco%2C+A">Andr茅s Greco</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.08794v1-abstract-short" style="display: inline;"> The study of the charge excitations in cuprates is presently an interesting topic because of the development of new and precise x-ray experiments. Based on a large-$N$ formulation of the two-dimensional $t$-$J$ model, which allows us to consider all possible charge excitations on an equal footing, we investigate the charge spectrum for both electron- and hole-doped cases. In both cases, the instab&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.08794v1-abstract-full').style.display = 'inline'; document.getElementById('2212.08794v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.08794v1-abstract-full" style="display: none;"> The study of the charge excitations in cuprates is presently an interesting topic because of the development of new and precise x-ray experiments. Based on a large-$N$ formulation of the two-dimensional $t$-$J$ model, which allows us to consider all possible charge excitations on an equal footing, we investigate the charge spectrum for both electron- and hole-doped cases. In both cases, the instability toward phase separation, which has momentum modulation ${\bf q}=(0,0)$, is found to be robust in a large region of the doping-temperature phase diagram. If a short-range Coulomb repulsion is included the phase separation region shrinks, but the instability remains at ${\bf q}=(0,0)$. If on the other hand a two-dimensional long-range Coulomb interaction is included the instability sets in at ${\bf q}$ momenta forming a ring around ${\bf q}=(0,0)$. The computed charge spectrum in the translation-invariant phase shows well-formed rings. We discuss our results in the light of recent x-ray experiments in electron- and hole-doped cuprates, where ring-like shaped charge modulations have been reported. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.08794v1-abstract-full').style.display = 'none'; document.getElementById('2212.08794v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 8 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 106, 224512 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.02351">arXiv:2209.02351</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2209.02351">pdf</a>, <a href="https://arxiv.org/format/2209.02351">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.109.014517">10.1103/PhysRevB.109.014517 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Crossover between electron-electron and electron-phonon mediated pairing on the Kagome lattice </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+X">Xianxin Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chakraborty%2C+D">Debmalya Chakraborty</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schnyder%2C+A+P">Andreas P. Schnyder</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Greco%2C+A">Andr茅s Greco</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.02351v2-abstract-short" style="display: inline;"> We study electron-electron and electron-phonon mediated pairing in the Holstein extended Hubbard model on the Kagome lattice near the van Hove fillings, and investigate their combined effects on electron pairing states. We find that their combination can promote exotic pairings in a crossover region, where the filling is close to a van Hove singularity. In particular, at the $p$-type van Hove fill&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.02351v2-abstract-full').style.display = 'inline'; document.getElementById('2209.02351v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.02351v2-abstract-full" style="display: none;"> We study electron-electron and electron-phonon mediated pairing in the Holstein extended Hubbard model on the Kagome lattice near the van Hove fillings, and investigate their combined effects on electron pairing states. We find that their combination can promote exotic pairings in a crossover region, where the filling is close to a van Hove singularity. In particular, at the $p$-type van Hove filling the $E_{1u}$ ($p$-wave) and $B_{2u}$ ($f_{y^3-3yx^2}$-wave) pairings become leading, and at the $m$-type van Hove filling the $E_{1u}$ and $A_{2g}$ ($i$-wave) pairings get promoted. Moreover, we show that the electron-phonon interaction acquires a significant momentum dependence, due to the sublattice texture of the Fermi surfaces, which can promote non $s$-wave pairing. We present a detailed analysis of these pairing propensities and discuss implications for the vanadium-based kagome superconductors AV$_3$Sb$_5$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.02351v2-abstract-full').style.display = 'none'; document.getElementById('2209.02351v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 16 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 109, 014517 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2208.11421">arXiv:2208.11421</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2208.11421">pdf</a>, <a href="https://arxiv.org/ps/2208.11421">ps</a>, <a href="https://arxiv.org/format/2208.11421">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s42005-023-01276-z">10.1038/s42005-023-01276-z <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Plasmarons in high-temperature cuprate superconductors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Yamase%2C+H">Hiroyuki Yamase</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bejas%2C+M">Matias Bejas</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Greco%2C+A">Andres Greco</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2208.11421v2-abstract-short" style="display: inline;"> Metallic systems exhibit plasmons as elementary charge excitations. This fundamental concept was reinforced also in high-temperature cuprate superconductors recently, although cuprates are not only layered systems but also strongly correlated electron systems. Here, we study how such ubiquitous plasmons leave their marks on the electron dispersion in cuprates. In contrast to phonons and magnetic f&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.11421v2-abstract-full').style.display = 'inline'; document.getElementById('2208.11421v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2208.11421v2-abstract-full" style="display: none;"> Metallic systems exhibit plasmons as elementary charge excitations. This fundamental concept was reinforced also in high-temperature cuprate superconductors recently, although cuprates are not only layered systems but also strongly correlated electron systems. Here, we study how such ubiquitous plasmons leave their marks on the electron dispersion in cuprates. In contrast to phonons and magnetic fluctuations, plasmons do not yield a kink in the electron dispersion. Instead, we find that the optical plasmon accounts for an emergent band -- plasmarons -- in the one-particle excitation spectrum; acoustic-like plasmons typical to a layered system are far less effective. Because of strong electron correlations, the plasmarons are generated by bosonic fluctuations associated with the local constraint, not by the usual charge-density fluctuations. Apart from this physical mechanism, the plasmarons are similar to those discussed in alkali metals, Bi, graphene, monolayer transition-metal dichalcogenides, semiconductors, diamond, two-dimensional electron systems, and SrIrO3 films, establishing a concept of plasmarons in metallic systems in general. Plasmarons are realized below (above) the quasiparticle band in electron-doped (hole-doped) cuprates, including a region around (pi,0) and (0,pi) where the superconducting gap and the pseudogap are most enhanced. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.11421v2-abstract-full').style.display = 'none'; document.getElementById('2208.11421v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">27 pages, 9 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Commun. Phys. 6, 168 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2208.10101">arXiv:2208.10101</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2208.10101">pdf</a>, <a href="https://arxiv.org/format/2208.10101">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nima.2022.167745">10.1016/j.nima.2022.167745 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Progress in the development of a KITWPA for the DARTWARS project </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Borghesi%2C+M">M. Borghesi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Barone%2C+C">C. Barone</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Capelli%2C+S">S. Capelli</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Carapella%2C+G">G. Carapella</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Caricato%2C+A+P">A. P. Caricato</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Carusotto%2C+I">I. Carusotto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cian%2C+A">A. Cian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Di+Gioacchino%2C+D">D. Di Gioacchino</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Enrico%2C+E">E. Enrico</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Falferi%2C+P">P. Falferi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fasolo%2C+L">L. Fasolo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Faverzani%2C+M">M. Faverzani</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ferri%2C+E">E. Ferri</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Filatrella%2C+G">G. Filatrella</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gatti%2C+C">C. Gatti</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Giachero%2C+A">A. Giachero</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Giubertoni%2C+D">D. Giubertoni</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Granata%2C+V">V. Granata</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Greco%2C+A">A. Greco</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guarcello%2C+C">C. Guarcello</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Labranca%2C+D">D. Labranca</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Leo%2C+A">A. Leo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ligi%2C+C">C. Ligi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Maccarrone%2C+G">G. Maccarrone</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mantegazzini%2C+F">F. Mantegazzini</a> , et al. (16 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2208.10101v2-abstract-short" style="display: inline;"> DARTWARS (Detector Array Readout with Traveling Wave AmplifieRS) is a three years project that aims to develop high-performing innovative Traveling Wave Parametric Amplifiers (TWPAs) for low temperature detectors and qubit readout (C-band). The practical development follows two different promising approaches, one based on the Josephson junctions (TWJPA) and the other one based on the kinetic induc&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.10101v2-abstract-full').style.display = 'inline'; document.getElementById('2208.10101v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2208.10101v2-abstract-full" style="display: none;"> DARTWARS (Detector Array Readout with Traveling Wave AmplifieRS) is a three years project that aims to develop high-performing innovative Traveling Wave Parametric Amplifiers (TWPAs) for low temperature detectors and qubit readout (C-band). The practical development follows two different promising approaches, one based on the Josephson junctions (TWJPA) and the other one based on the kinetic inductance of a high-resistivity superconductor (KITWPA). This paper presents the advancements made by the DARTWARS collaboration to produce a first working prototype of a KITWPA. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.10101v2-abstract-full').style.display = 'none'; document.getElementById('2208.10101v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">3 pages, 4 figures. Proceeding of Pisa15th Meeting conference</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2207.14359">arXiv:2207.14359</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2207.14359">pdf</a>, <a href="https://arxiv.org/ps/2207.14359">ps</a>, <a href="https://arxiv.org/format/2207.14359">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.107.014503">10.1103/PhysRevB.107.014503 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Low-energy plasmon excitations in infinite-layer nickelates </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zinni%2C+L">Luciano Zinni</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bejas%2C+M">Mat铆as Bejas</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yamase%2C+H">Hiroyuki Yamase</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Greco%2C+A">Andr茅s Greco</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2207.14359v2-abstract-short" style="display: inline;"> The discovery of superconductivity in infinite-layer nickelates is presently an important topic in condensed-matter physics, and potential similarities to and differences from cuprates are under intense debate. We determine general features of the charge excitation spectrum in nickelates from two opposite viewpoints: (i) Nickelates are regarded as strongly correlated electron systems like cuprate&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.14359v2-abstract-full').style.display = 'inline'; document.getElementById('2207.14359v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2207.14359v2-abstract-full" style="display: none;"> The discovery of superconductivity in infinite-layer nickelates is presently an important topic in condensed-matter physics, and potential similarities to and differences from cuprates are under intense debate. We determine general features of the charge excitation spectrum in nickelates from two opposite viewpoints: (i) Nickelates are regarded as strongly correlated electron systems like cuprate superconductors and thus can be described by the $t$-$J$ model, and (ii) electron correlation effects are not as strong as in cuprates, and thus, random-phase approximation (RPA) calculations may capture the essential physics. We find that in both cases, plasmon excitations are realized around the momentum transfer $\vq=(0,0,q_z)$, although they tend to be damped more strongly in the RPA. In particular, this damping is enhanced by the relatively large interlayer hopping expected in nickelates. Besides reproducing the optical plasmon at $\vq=(0,0,0)$ observed in Nd$_{0.8}$Sr$_{0.2}$NiO$_2$, we obtain low-energy plasmons with gaps of $\sim 360$ and $\sim 560$ meV at $\vq=(0,0,q_z)$ for finite $q_z$ in cases (i) and (ii), respectively. The present work offers a possible theoretical hint to answer whether nickelates are cupratelike or not and contributes to the general understanding of the charge dynamics in nickelates. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.14359v2-abstract-full').style.display = 'none'; document.getElementById('2207.14359v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 107, 014503 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2206.14083">arXiv:2206.14083</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2206.14083">pdf</a>, <a href="https://arxiv.org/format/2206.14083">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.129.047001">10.1103/PhysRevLett.129.047001 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Gapped collective charge excitations and interlayer hopping in cuprate superconductors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Hepting%2C+M">M. Hepting</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bejas%2C+M">M. Bejas</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nag%2C+A">A. Nag</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yamase%2C+H">H. Yamase</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Coppola%2C+N">N. Coppola</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Betto%2C+D">D. Betto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Falter%2C+C">C. Falter</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Garcia-Fernandez%2C+M">M. Garcia-Fernandez</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Agrestini%2C+S">S. Agrestini</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+K+-">K. -J. Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Minola%2C+M">M. Minola</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sacco%2C+C">C. Sacco</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Maritato%2C+L">L. Maritato</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Orgiani%2C+P">P. Orgiani</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wei%2C+H+I">H. I. Wei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+K+M">K. M. Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schlom%2C+D+G">D. G. Schlom</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Galdi%2C+A">A. Galdi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Greco%2C+A">A. Greco</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Keimer%2C+B">B. Keimer</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2206.14083v1-abstract-short" style="display: inline;"> We use resonant inelastic x-ray scattering (RIXS) to probe the propagation of plasmons in the electron-doped cuprate superconductor Sr$_{0.9}$La$_{0.1}$CuO$_2$ (SLCO). We detect a plasmon gap of $\sim$~120 meV at the two-dimensional Brillouin zone center, indicating that low-energy plasmons in SLCO are not strictly acoustic. The plasmon dispersion, including the gap, is accurately captured by laye&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.14083v1-abstract-full').style.display = 'inline'; document.getElementById('2206.14083v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2206.14083v1-abstract-full" style="display: none;"> We use resonant inelastic x-ray scattering (RIXS) to probe the propagation of plasmons in the electron-doped cuprate superconductor Sr$_{0.9}$La$_{0.1}$CuO$_2$ (SLCO). We detect a plasmon gap of $\sim$~120 meV at the two-dimensional Brillouin zone center, indicating that low-energy plasmons in SLCO are not strictly acoustic. The plasmon dispersion, including the gap, is accurately captured by layered $t$-$J$-$V$ model calculations. A similar analysis performed on recent RIXS data from other cuprates suggests that the plasmon gap is generic and its size is related to the magnitude of the interlayer hopping $t_z$. Our work signifies the three-dimensionality of the charge dynamics in layered cuprates and provides a new method to determine $t_z$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.14083v1-abstract-full').style.display = 'none'; document.getElementById('2206.14083v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 10 figures, includes Supplemental Material. Accepted for publication in Physical Review Letters</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 129, 047001 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2202.11609">arXiv:2202.11609</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2202.11609">pdf</a>, <a href="https://arxiv.org/format/2202.11609">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Data Analysis, Statistics and Probability">physics.data-an</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> </div> </div> <p class="title is-5 mathjax"> Neural network analysis of neutron and X-ray reflectivity data: automated analysis using mlreflect, experimental errors and feature engineering </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Greco%2C+A">Alessandro Greco</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Starostin%2C+V">Vladimir Starostin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Edel%2C+E">Evelyn Edel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Munteanu%2C+V">Valentin Munteanu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Russegger%2C+N">Nadine Russegger</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dax%2C+I">Ingrid Dax</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+C">Chen Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bertram%2C+F">Florian Bertram</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hinderhofer%2C+A">Alexander Hinderhofer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gerlach%2C+A">Alexander Gerlach</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schreiber%2C+F">Frank Schreiber</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2202.11609v1-abstract-short" style="display: inline;"> This work demonstrates the Python package mlreflect which implements an optimized pipeline for the automized analysis of reflectometry data using machine learning. The package combines several training and data treatment techniques discussed in previous publications. The predictions made by the neural network are accurate and robust enough to serve as good starting parameters for an optional subse&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.11609v1-abstract-full').style.display = 'inline'; document.getElementById('2202.11609v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2202.11609v1-abstract-full" style="display: none;"> This work demonstrates the Python package mlreflect which implements an optimized pipeline for the automized analysis of reflectometry data using machine learning. The package combines several training and data treatment techniques discussed in previous publications. The predictions made by the neural network are accurate and robust enough to serve as good starting parameters for an optional subsequent least mean squares (LMS) fit of the data. It is shown that for a large dataset of 242 reflectivity curves of various thin films on silicon substrates, the pipeline reliably finds an LMS minimum very close to a fit produced by a human researcher with the application of physical knowledge and carefully chosen boundary conditions. Furthermore, the differences between simulated and experimental data and their implications for the training and performance of neural networks are discussed. The experimental test set is used to determine the optimal noise level during training. Furthermore, the extremely fast prediction times of the neural network are leveraged to compensate for systematic errors by sampling slight variations of the data. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.11609v1-abstract-full').style.display = 'none'; document.getElementById('2202.11609v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">pre-print</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2202.10983">arXiv:2202.10983</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2202.10983">pdf</a>, <a href="https://arxiv.org/ps/2202.10983">ps</a>, <a href="https://arxiv.org/format/2202.10983">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41524-022-00778-8">10.1038/s41524-022-00778-8 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Tracking perovskite crystallization via deep learning-based feature detection on 2D X-ray scattering data </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Starostin%2C+V">Vladimir Starostin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Munteanu%2C+V">Valentin Munteanu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Greco%2C+A">Alessandro Greco</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kneschaurek%2C+E">Ekaterina Kneschaurek</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pleli%2C+A">Alina Pleli</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bertram%2C+F">Florian Bertram</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gerlach%2C+A">Alexander Gerlach</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hinderhofer%2C+A">Alexander Hinderhofer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schreiber%2C+F">Frank Schreiber</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2202.10983v1-abstract-short" style="display: inline;"> Understanding the processes of perovskite crystallization is essential for improving the properties of organic solar cells. In situ real-time grazing-incidence X-ray diffraction (GIXD) is a key technique for this task, but it produces large amounts of data, frequently exceeding the capabilities of traditional data processing methods. We propose an automated pipeline for the analysis of GIXD images&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.10983v1-abstract-full').style.display = 'inline'; document.getElementById('2202.10983v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2202.10983v1-abstract-full" style="display: none;"> Understanding the processes of perovskite crystallization is essential for improving the properties of organic solar cells. In situ real-time grazing-incidence X-ray diffraction (GIXD) is a key technique for this task, but it produces large amounts of data, frequently exceeding the capabilities of traditional data processing methods. We propose an automated pipeline for the analysis of GIXD images, based on the Faster R-CNN deep learning architecture for object detection, modified to conform to the specifics of the scattering data. The model exhibits high accuracy in detecting diffraction features on noisy patterns with various experimental artifacts. We demonstrate our method on real-time tracking of organic-inorganic perovskite structure crystallization and test it on two applications: 1. the automated phase identification and unit-cell determination of two coexisting phases of Ruddlesden-Popper 2D perovskites, and 2. the fast tracking of MAPbI$_3$ perovskite formation. By design, our approach is equally suitable for other crystalline thin-film materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.10983v1-abstract-full').style.display = 'none'; document.getElementById('2202.10983v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2111.03409">arXiv:2111.03409</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2111.03409">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Microwave Quantum Radar using a Josephson Traveling Wave Parametric Amplifier </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Livreri%2C+P">Patrizia Livreri</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Enrico%2C+E">Emanuele Enrico</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fasolo%2C+L">Luca Fasolo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Greco%2C+A">Angelo Greco</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rettaroli%2C+A">Alessio Rettaroli</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vitali%2C+D">David Vitali</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Farina%2C+A">Alfonso Farina</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Marchetti%2C+F">Francesco Marchetti</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Giacomin%2C+D">Dario Giacomin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2111.03409v1-abstract-short" style="display: inline;"> Detection of low-reflectivity objects can be improved by the so-called quantum illumination procedure. However, quantum detection probability exponentially decays with the source bandwidth. The Josephson Parametric Amplifiers (JPAs) technology utilized as a source, generating a pair of entangled signals called two-mode squeezed vacuum states, shows a very narrow bandwidth limiting the operation of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.03409v1-abstract-full').style.display = 'inline'; document.getElementById('2111.03409v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2111.03409v1-abstract-full" style="display: none;"> Detection of low-reflectivity objects can be improved by the so-called quantum illumination procedure. However, quantum detection probability exponentially decays with the source bandwidth. The Josephson Parametric Amplifiers (JPAs) technology utilized as a source, generating a pair of entangled signals called two-mode squeezed vacuum states, shows a very narrow bandwidth limiting the operation of the microwave quantum radar (MQR). In this paper, for the first time, a microwave quantum radar setup based on quantum illumination protocol and using a Josephson Traveling Wave Parametric Amplifier (JTWPA) is proposed. Measurement results of the developed JTWPA, pumped at 12 GHz, show an ultrawide bandwidth equal to 10 GHz at X-band making our MQR a promising candidate for the detection of stealth objects. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.03409v1-abstract-full').style.display = 'none'; document.getElementById('2111.03409v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2111.01512">arXiv:2111.01512</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2111.01512">pdf</a>, <a href="https://arxiv.org/format/2111.01512">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/s10909-022-02809-6">10.1007/s10909-022-02809-6 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Detector Array Readout with Traveling Wave Amplifiers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Giachero%2C+A">A. Giachero</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Barone%2C+C">C. Barone</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Borghesi%2C+M">M. Borghesi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Carapella%2C+G">G. Carapella</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Caricato%2C+A+P">A. P. Caricato</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Carusotto%2C+I">I. Carusotto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chang%2C+W">W. Chang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cian%2C+A">A. Cian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Di+Gioacchino%2C+D">D. Di Gioacchino</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Enrico%2C+E">E. Enrico</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Falferi%2C+P">P. Falferi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fasolo%2C+L">L. Fasolo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Faverzani%2C+M">M. Faverzani</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ferri%2C+E">E. Ferri</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Filatrella%2C+G">G. Filatrella</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gatti%2C+C">C. Gatti</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Giubertoni%2C+D">D. Giubertoni</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Greco%2C+A">A. Greco</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kutlu%2C+C">C. Kutlu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Leo%2C+A">A. Leo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ligi%2C+C">C. Ligi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Maccarrone%2C+G">G. Maccarrone</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Margesin%2C+B">B. Margesin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Maruccio%2C+G">G. Maruccio</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Matlashov%2C+A">A. Matlashov</a> , et al. (13 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2111.01512v1-abstract-short" style="display: inline;"> Noise at the quantum limit over a large bandwidth is a fundamental requirement for future applications operating at millikelvin temperatures, such as the neutrino mass measurement, the next-generation x-ray observatory, the CMB measurement, the dark matter and axion detection, and the rapid high-fidelity readout of superconducting qubits. The read out sensitivity of arrays of microcalorimeter dete&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.01512v1-abstract-full').style.display = 'inline'; document.getElementById('2111.01512v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2111.01512v1-abstract-full" style="display: none;"> Noise at the quantum limit over a large bandwidth is a fundamental requirement for future applications operating at millikelvin temperatures, such as the neutrino mass measurement, the next-generation x-ray observatory, the CMB measurement, the dark matter and axion detection, and the rapid high-fidelity readout of superconducting qubits. The read out sensitivity of arrays of microcalorimeter detectors, resonant axion-detectors, and qubits, is currently limited by the noise temperature and bandwidth of the cryogenic amplifiers. The DARTWARS (Detector Array Readout with Traveling Wave AmplifieRS) project has the goal of developing high-performing innovative traveling wave parametric amplifiers (TWPAs) with a high gain, a high saturation power, and a quantum-limited or nearly quantum-limited noise. The practical development follows two different promising approaches, one based on the Josephson junctions and the other one based on the kinetic inductance of a high-resistivity superconductor. In this contribution we present the aims of the project, the adopted design solutions and preliminary results from simulations and measurements. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.01512v1-abstract-full').style.display = 'none'; document.getElementById('2111.01512v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2109.14924">arXiv:2109.14924</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2109.14924">pdf</a>, <a href="https://arxiv.org/format/2109.14924">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1109/TASC.2022.3148692">10.1109/TASC.2022.3148692 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Bimodal Approach for Noise Figures of Merit Evaluation in Quantum-Limited Josephson Traveling Wave Parametric Amplifiers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Fasolo%2C+L">L. Fasolo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Barone%2C+C">C. Barone</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Borghesi%2C+M">M. Borghesi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Carapella%2C+G">G. Carapella</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Caricato%2C+A+P">A. P. Caricato</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Carusotto%2C+I">I. Carusotto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chung%2C+W">W. Chung</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cian%2C+A">A. Cian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Di+Gioacchino%2C+D">D. Di Gioacchino</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Enrico%2C+E">E. Enrico</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Falferi%2C+P">P. Falferi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Faverzani%2C+M">M. Faverzani</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ferri%2C+E">E. Ferri</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Filatrella%2C+G">G. Filatrella</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gatti%2C+C">C. Gatti</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Giachero%2C+A">A. Giachero</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Giubertoni%2C+D">D. Giubertoni</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Greco%2C+A">A. Greco</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kutlu%2C+C">C. Kutlu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Leo%2C+A">A. Leo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ligi%2C+C">C. Ligi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Livreri%2C+P">P. Livreri</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Maccarrone%2C+G">G. Maccarrone</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Margesin%2C+B">B. Margesin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Maruccio%2C+G">G. Maruccio</a> , et al. (15 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2109.14924v2-abstract-short" style="display: inline;"> The advent of ultra-low noise microwave amplifiers revolutionized several research fields demanding quantum-limited technologies. Exploiting a theoretical bimodal description of a linear phase-preserving amplifier, in this contribution we analyze some of the intrinsic properties of a model architecture (i.e., an rf-SQUID based Josephson Traveling Wave Parametric Amplifier) in terms of amplificatio&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.14924v2-abstract-full').style.display = 'inline'; document.getElementById('2109.14924v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2109.14924v2-abstract-full" style="display: none;"> The advent of ultra-low noise microwave amplifiers revolutionized several research fields demanding quantum-limited technologies. Exploiting a theoretical bimodal description of a linear phase-preserving amplifier, in this contribution we analyze some of the intrinsic properties of a model architecture (i.e., an rf-SQUID based Josephson Traveling Wave Parametric Amplifier) in terms of amplification and noise generation for key case study input states (Fock and coherents). Furthermore, we present an analysis of the output signals generated by the parametric amplification mechanism when thermal noise fluctuations feed the device. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.14924v2-abstract-full').style.display = 'none'; document.getElementById('2109.14924v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2109.13758">arXiv:2109.13758</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2109.13758">pdf</a>, <a href="https://arxiv.org/format/2109.13758">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1109/TASC.2021.3135231">10.1109/TASC.2021.3135231 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Flux pumping of Cooper pairs through a Josephson Energy-Suppression Pump </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Greco%2C+A">Angelo Greco</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fasolo%2C+L">Luca Fasolo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Marino%2C+V">Vito Marino</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Enrico%2C+E">Emanuele Enrico</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2109.13758v1-abstract-short" style="display: inline;"> In this paper, we propose a novel kind of Josephson-Energy Suppression Pump (JESP) controlled by a fully magnetic flux drive. The device presented here is composed of two superconducting loops interrupted at one side by superconducting nanowires which are joined together by a superconducting island. The phase difference developed at the edges of the nanowires by means of the magnetic flux threadin&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.13758v1-abstract-full').style.display = 'inline'; document.getElementById('2109.13758v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2109.13758v1-abstract-full" style="display: none;"> In this paper, we propose a novel kind of Josephson-Energy Suppression Pump (JESP) controlled by a fully magnetic flux drive. The device presented here is composed of two superconducting loops interrupted at one side by superconducting nanowires which are joined together by a superconducting island. The phase difference developed at the edges of the nanowires by means of the magnetic flux threading the loops can collapse their Cooper condensates, leading to complete suppression of the Josephson energies. This mechanism allows to greatly reduce the leakage current when performing Cooper pair pumping by a pure magnetic pumping cycle without involving any gate modulation. The pumping capability of the JESP is studied through a master equation approach in the non-adiabatic case. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.13758v1-abstract-full').style.display = 'none'; document.getElementById('2109.13758v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2106.00522">arXiv:2106.00522</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2106.00522">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Josephson Traveling Wave Parametric Amplifiers as Non-Classical Light Source for Microwave Quantum Illumination </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Fasolo%2C+L">Luca Fasolo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Greco%2C+A">Angelo Greco</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Enrico%2C+E">Emanuele Enrico</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Illuminati%2C+F">Fabrizio Illuminati</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Franco%2C+R+L">Rosario Lo Franco</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vitali%2C+D">David Vitali</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Livreri%2C+P">Patrizia Livreri</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2106.00522v2-abstract-short" style="display: inline;"> Detection of low-reflectivity objects can be enriched via the so-called quantum illumination procedure. In order that this quantum procedure outperforms classical detection protocols, entangled states of microwave radiation are initially required. In this paper, we discuss the role of Josephson Traveling Wave Parametric Amplifiers (JTWPAs), based on circuit-QED components, as suitable sources of a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.00522v2-abstract-full').style.display = 'inline'; document.getElementById('2106.00522v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2106.00522v2-abstract-full" style="display: none;"> Detection of low-reflectivity objects can be enriched via the so-called quantum illumination procedure. In order that this quantum procedure outperforms classical detection protocols, entangled states of microwave radiation are initially required. In this paper, we discuss the role of Josephson Traveling Wave Parametric Amplifiers (JTWPAs), based on circuit-QED components, as suitable sources of a two-mode squeezed vacuum state, a special signal-idler entangled state. The obtained wide bandwidth makes the JTWPA an ideal candidate for generating quantum radiation in quantum metrology and information processing applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.00522v2-abstract-full').style.display = 'none'; document.getElementById('2106.00522v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2104.02288">arXiv:2104.02288</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2104.02288">pdf</a>, <a href="https://arxiv.org/ps/2104.02288">ps</a>, <a href="https://arxiv.org/format/2104.02288">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.103.134504">10.1103/PhysRevB.103.134504 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Superconductivity with and without glue and the role of the double-occupancy forbidding constraint in the t-J-V model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zinni%2C+L">Luciano Zinni</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bejas%2C+M">Mat铆as Bejas</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Greco%2C+A">Andr茅s Greco</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2104.02288v1-abstract-short" style="display: inline;"> The occurrence of retarded (with glue) and unretarded (without glue) pairing is thoroughly discussed in cuprates. We analyze some aspects of this problem in the context of the t-J-V model in a large-N approximation. When 1/N renormalizations are neglected the mean-field result is recovered, where the unretarded d-wave superconducting pairing triggered by the spin-exchange interaction J is obtained&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.02288v1-abstract-full').style.display = 'inline'; document.getElementById('2104.02288v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2104.02288v1-abstract-full" style="display: none;"> The occurrence of retarded (with glue) and unretarded (without glue) pairing is thoroughly discussed in cuprates. We analyze some aspects of this problem in the context of the t-J-V model in a large-N approximation. When 1/N renormalizations are neglected the mean-field result is recovered, where the unretarded d-wave superconducting pairing triggered by the spin-exchange interaction J is obtained. However, the presence of a non-negligible nearest-neighbors Coulomb interaction V(q) kills superconductivity. If the non-double-occupancy constraint and its fluctuations are considered, the situation changes drastically. In this case, V(q) is screened making d-wave superconductivity very robust. In addition, we show that the early proposal for the presence of an unretarded pairing contribution triggered by the spin-exchange interaction J can be discussed in this context. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.02288v1-abstract-full').style.display = 'none'; document.getElementById('2104.02288v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 April, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 103, 134504 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2011.00193">arXiv:2011.00193</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2011.00193">pdf</a>, <a href="https://arxiv.org/ps/2011.00193">ps</a>, <a href="https://arxiv.org/format/2011.00193">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.104.045141">10.1103/PhysRevB.104.045141 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Electron self-energy from quantum charge fluctuations in the layered t-J model with long-range Coulomb interaction </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Yamase%2C+H">Hiroyuki Yamase</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bejas%2C+M">Mat铆as Bejas</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Greco%2C+A">Andr茅s Greco</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2011.00193v2-abstract-short" style="display: inline;"> Employing a large-N scheme of the layered t-J model with the long-range Coulomb interaction, which captures fine details of the charge excitation spectra recently observed in cuprate superconductors, we explore the role of the charge fluctuations on the electron self-energy. We fix temperature at zero and focus on quantum charge fluctuations. We find a pronounced asymmetry of the imaginary part of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.00193v2-abstract-full').style.display = 'inline'; document.getElementById('2011.00193v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2011.00193v2-abstract-full" style="display: none;"> Employing a large-N scheme of the layered t-J model with the long-range Coulomb interaction, which captures fine details of the charge excitation spectra recently observed in cuprate superconductors, we explore the role of the charge fluctuations on the electron self-energy. We fix temperature at zero and focus on quantum charge fluctuations. We find a pronounced asymmetry of the imaginary part of the self-energy Im$危({\bf k}, 蠅)$ with respect to $蠅= 0$, which is driven by strong electron correlation effects. The quasiparticle weight is reduced dramatically, which occurs almost isotropically along the Fermi surface. Concomitantly an incoherent band and a sharp side band are newly generated and acquire sizable spectral weight. All these features are driven by usual on-site charge fluctuations, which are realized in a rather high-energy region and yield plasmon excitations. On the other hand, the low-energy region with the scale of the superexchange interaction J is dominated by bond-charge fluctuations. Surprisingly, compared with the effect of the on-site charge fluctuations, their effect on the electron self-energy is much weaker even if the system approaches close to bond-charge instabilities. Furthermore, quantum charge dynamics does not produce a clear kink nor a pseudogap in the electron dispersion. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.00193v2-abstract-full').style.display = 'none'; document.getElementById('2011.00193v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 31 October, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">49 pages, 17 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 104, 045141 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2009.01002">arXiv:2009.01002</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2009.01002">pdf</a>, <a href="https://arxiv.org/format/2009.01002">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.104.184517">10.1103/PhysRevB.104.184517 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A quantum model for rf-SQUIDs based metamaterials enabling 3WM and 4WM Travelling Wave Parametric Amplification </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Greco%2C+A">Angelo Greco</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fasolo%2C+L">Luca Fasolo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Meda%2C+A">Alice Meda</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Callegaro%2C+L">Luca Callegaro</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Enrico%2C+E">Emanuele Enrico</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2009.01002v6-abstract-short" style="display: inline;"> A quantum model for Josephson-based metamaterials working in the Three-Wave Mixing (3WM) and Four-Wave Mixing (4WM) regimes at the single-photon level is presented. The transmission line taken into account, namely Traveling Wave Josephson Parametric Amplifier (TWJPA), is a bipole composed by a chain of rf-SQUIDs which can be biased by a DC current or a magnetic field in order to activate the 3WM o&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.01002v6-abstract-full').style.display = 'inline'; document.getElementById('2009.01002v6-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2009.01002v6-abstract-full" style="display: none;"> A quantum model for Josephson-based metamaterials working in the Three-Wave Mixing (3WM) and Four-Wave Mixing (4WM) regimes at the single-photon level is presented. The transmission line taken into account, namely Traveling Wave Josephson Parametric Amplifier (TWJPA), is a bipole composed by a chain of rf-SQUIDs which can be biased by a DC current or a magnetic field in order to activate the 3WM or 4WM nonlinearities. The model exploits a Hamiltonian approach to analytically determine the time evolution of the system both in the Heisenberg and interaction pictures. The former returns the analytic form of the gain of the amplifier, while the latter allows recovering the probability distributions vs. time of the photonic populations, for multimodal Fock and coherent input states. The dependence of the metamaterial&#39;s nonlinearities is presented in terms of circuit parameters in a lumped model framework while evaluating the effects of the experimental conditions on the model validity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.01002v6-abstract-full').style.display = 'none'; document.getElementById('2009.01002v6-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 September, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2020. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2007.07313">arXiv:2007.07313</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2007.07313">pdf</a>, <a href="https://arxiv.org/format/2007.07313">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.125.257002">10.1103/PhysRevLett.125.257002 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Detection of Acoustic Plasmons in Hole-Doped Lanthanum and Bismuth Cuprate Superconductors Using Resonant Inelastic X-Ray Scattering </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Nag%2C+A">Abhishek Nag</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+M">M. Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bejas%2C+M">Matias Bejas</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+J">J. Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Robarts%2C+H+C">H. C. Robarts</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yamase%2C+H">Hiroyuki Yamase</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Petsch%2C+A+N">A. N. Petsch</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+D">D. Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Eisaki%2C+H">H. Eisaki</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Walters%2C+A+C">A. C. Walters</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Garcia-Fernandez%2C+M">M. Garcia-Fernandez</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Greco%2C+A">Andres Greco</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hayden%2C+S+M">S. M. Hayden</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+K">Ke-Jin Zhou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2007.07313v2-abstract-short" style="display: inline;"> High Tc superconductors show a rich variety of phases associated with their charge degrees of freedom. Valence charges can give rise to charge ordering or acoustic plasmons in these layered cuprate superconductors. While charge ordering has been observed for both hole- and electron-doped cuprates, acoustic plasmons have only been found in electron-doped materials. Here, we use resonant inelastic X&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.07313v2-abstract-full').style.display = 'inline'; document.getElementById('2007.07313v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2007.07313v2-abstract-full" style="display: none;"> High Tc superconductors show a rich variety of phases associated with their charge degrees of freedom. Valence charges can give rise to charge ordering or acoustic plasmons in these layered cuprate superconductors. While charge ordering has been observed for both hole- and electron-doped cuprates, acoustic plasmons have only been found in electron-doped materials. Here, we use resonant inelastic X-ray scattering (RIXS) to observe the presence of acoustic plasmons in two families of hole-doped cuprate superconductors [La2-xSrxCuO4 (LSCO) and Bi2Sr1.6La0.4CuO6+d (Bi2201)], crucially completing the picture. Interestingly, in contrast to the quasi-static charge ordering which manifests at both Cu and O sites, the observed acoustic plasmons are predominantly associated with the O sites, revealing a unique dichotomy in the behaviour of valence charges in hole-doped cuprates. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.07313v2-abstract-full').style.display = 'none'; document.getElementById('2007.07313v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 July, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 7 figures + Supplementary Information</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 125, 257002 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2001.08009">arXiv:2001.08009</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2001.08009">pdf</a>, <a href="https://arxiv.org/ps/2001.08009">ps</a>, <a href="https://arxiv.org/format/2001.08009">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.102.024509">10.1103/PhysRevB.102.024509 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Close inspection of plasmon excitations in cuprate superconductors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Greco%2C+A">Andr茅s Greco</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yamase%2C+H">Hiroyuki Yamase</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bejas%2C+M">Mat铆as Bejas</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2001.08009v2-abstract-short" style="display: inline;"> Recently resonant inelastic x-ray scattering experiments reported fine details of the charge excitations around the in-plane momentum ${\bf q}_{\parallel}=(0,0)$ for various doping rates in electron-doped cuprates ${\rm La_{2-x}Ce_xCuO_4}$. We find that those new experimental data are well captured by acoustic-like plasmon excitations in a microscopic study of the layered $t$-$J$ model with the lo&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2001.08009v2-abstract-full').style.display = 'inline'; document.getElementById('2001.08009v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2001.08009v2-abstract-full" style="display: none;"> Recently resonant inelastic x-ray scattering experiments reported fine details of the charge excitations around the in-plane momentum ${\bf q}_{\parallel}=(0,0)$ for various doping rates in electron-doped cuprates ${\rm La_{2-x}Ce_xCuO_4}$. We find that those new experimental data are well captured by acoustic-like plasmon excitations in a microscopic study of the layered $t$-$J$ model with the long-range Coulomb interaction. The acoustic-like plasmon is not a usual plasmon typical to the two-dimensional system, but has a small gap proportional to the interlayer hopping $t_z$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2001.08009v2-abstract-full').style.display = 'none'; document.getElementById('2001.08009v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 July, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 January, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 102, 024509 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1910.14621">arXiv:1910.14621</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1910.14621">pdf</a>, <a href="https://arxiv.org/format/1910.14621">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.101.174420">10.1103/PhysRevB.101.174420 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Ferromagnetic fluctuations in the Rashba-Hubbard model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Greco%2C+A">Andr茅s Greco</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bejas%2C+M">Mat铆as Bejas</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schnyder%2C+A+P">Andreas P. Schnyder</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1910.14621v2-abstract-short" style="display: inline;"> We study the occurrence and the origin of ferromagnetic fluctuations in the longitudinal spin susceptibility of the $t$-$t&#39;$-Rashba-Hubbard model on the square lattice. The combined effect of the second-neighbor hopping $t&#39;$ and the spin-orbit coupling leads to ferromagnetic fluctuations in a broad filling region. The spin-orbit coupling splits the energy bands, leading to two van Hove fillings, w&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1910.14621v2-abstract-full').style.display = 'inline'; document.getElementById('1910.14621v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1910.14621v2-abstract-full" style="display: none;"> We study the occurrence and the origin of ferromagnetic fluctuations in the longitudinal spin susceptibility of the $t$-$t&#39;$-Rashba-Hubbard model on the square lattice. The combined effect of the second-neighbor hopping $t&#39;$ and the spin-orbit coupling leads to ferromagnetic fluctuations in a broad filling region. The spin-orbit coupling splits the energy bands, leading to two van Hove fillings, where the sheets of the Fermi surface change their topology. Between these two van Hove fillings the model shows ferromagnetic fluctuations. We find that these ferromagnetic fluctuations originate from interband contributions to the spin susceptibility. These interband contributions only arise if there is one holelike and one electronlike Fermi surface, which is the case for fillings in between the two van Hove fillings. We discuss implications for experimental systems and propose a test on how to identify these types of ferromagnetic fluctuations in experiments. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1910.14621v2-abstract-full').style.display = 'none'; document.getElementById('1910.14621v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 March, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 31 October, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 101, 174420 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1910.02898">arXiv:1910.02898</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1910.02898">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> Fast Fitting of Reflectivity Data of Growing Thin Films Using Neural Networks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Greco%2C+A">Alessandro Greco</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Starostin%2C+V">Vladimir Starostin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Karapanagiotis%2C+C">Christos Karapanagiotis</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hinderhofer%2C+A">Alexander Hinderhofer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gerlach%2C+A">Alexander Gerlach</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pithan%2C+L">Linus Pithan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liehr%2C+S">Sascha Liehr</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schreiber%2C+F">Frank Schreiber</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kowarik%2C+S">Stefan Kowarik</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1910.02898v1-abstract-short" style="display: inline;"> X-ray reflectivity (XRR) is a powerful and popular scattering technique that can give valuable insight into the growth behavior of thin films. In this study, we show how a simple artificial neural network model can be used to predict the thickness, roughness and density of thin films of different organic semiconductors (diindenoperylene, copper(II) phthalocyanine and $伪$-sexithiophene) on silica f&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1910.02898v1-abstract-full').style.display = 'inline'; document.getElementById('1910.02898v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1910.02898v1-abstract-full" style="display: none;"> X-ray reflectivity (XRR) is a powerful and popular scattering technique that can give valuable insight into the growth behavior of thin films. In this study, we show how a simple artificial neural network model can be used to predict the thickness, roughness and density of thin films of different organic semiconductors (diindenoperylene, copper(II) phthalocyanine and $伪$-sexithiophene) on silica from their XRR data with millisecond computation time and with minimal user input or a priori knowledge. For a large experimental dataset of 372 XRR curves, we show that a simple fully connected model can already provide good predictions with a mean absolute percentage error of 8-18 % when compared to the results obtained by a genetic least mean squares fit using the classical Parratt formalism. Furthermore, current drawbacks and prospects for improvement are discussed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1910.02898v1-abstract-full').style.display = 'none'; document.getElementById('1910.02898v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 October, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">including supporting information</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1908.06889">arXiv:1908.06889</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1908.06889">pdf</a>, <a href="https://arxiv.org/format/1908.06889">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Superconducting Josephson-based metamaterials for quantum-limited parametric amplification: a review </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Fasolo%2C+L">Luca Fasolo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Greco%2C+A">Angelo Greco</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Enrico%2C+E">Emanuele Enrico</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1908.06889v1-abstract-short" style="display: inline;"> In the last few years, several groups have proposed and developed their own platforms demonstrating quantum-limited linear parametric amplification, with evident applications in quantum information and computation, electrical and optical metrology, radio astronomy and basic physics concerning axion detection. Here we propose a short review on the physics behind parametric amplification via metamat&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1908.06889v1-abstract-full').style.display = 'inline'; document.getElementById('1908.06889v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1908.06889v1-abstract-full" style="display: none;"> In the last few years, several groups have proposed and developed their own platforms demonstrating quantum-limited linear parametric amplification, with evident applications in quantum information and computation, electrical and optical metrology, radio astronomy and basic physics concerning axion detection. Here we propose a short review on the physics behind parametric amplification via metamaterials composed by coplanar wave-guides embedding several Josephson junctions. We present and compare different schemes that exploit the nonlinearity of the Josephson current-phase relation to mix the so-called signal, idler and pump tones. The chapter then presents and compares three different theoretical models, developed in the last few years, to predict the dynamics of these nonlinear systems in the particular case of a 4-Wave Mixing process and under the degenerate undepleted pump assumption. We will demonstrate that, under the same assumption, all the results are comparable in terms of amplification of the output fields. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1908.06889v1-abstract-full').style.display = 'none'; document.getElementById('1908.06889v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 August, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2019. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1812.03891">arXiv:1812.03891</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1812.03891">pdf</a>, <a href="https://arxiv.org/ps/1812.03891">ps</a>, <a href="https://arxiv.org/format/1812.03891">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.98.224504">10.1103/PhysRevB.98.224504 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Competition between spin-induced charge instabilities in underdoped cuprates </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zeyher%2C+R">Roland Zeyher</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Greco%2C+A">Andres Greco</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1812.03891v1-abstract-short" style="display: inline;"> We study the static charge correlation function in an one-band model on a square lattice. The Hamiltonian consist of effective hoppings of the electrons between the lattice sites and the Heisenberg Hamiltonian. Approximating the irreducible charge correlation function by a single bubble yields the ladder approximation for the charge correlation function. In this approximation one finds in general&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1812.03891v1-abstract-full').style.display = 'inline'; document.getElementById('1812.03891v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1812.03891v1-abstract-full" style="display: none;"> We study the static charge correlation function in an one-band model on a square lattice. The Hamiltonian consist of effective hoppings of the electrons between the lattice sites and the Heisenberg Hamiltonian. Approximating the irreducible charge correlation function by a single bubble yields the ladder approximation for the charge correlation function. In this approximation one finds in general three charge instabilities, two of them are due to nesting, the third one is the flux phase instability. Since these instabilities cannot explain the experiments in hole-doped cuprates we have included in the irreducible charge correlation function also Aslamasov-Larkin (AL) diagrams where charge fluctuations interact with products of spin fluctuations. We then find at high temperatures a nematic or $d$-wave Pomeranchuk instability with a very small momentum. Its transition temperature decreases roughly linearly with doping in the underdoped region and vanishes near optimal doping. Decreasing the temperature further a secondary axial charge-density wave (CDW) instability appears with mainly $d$-wave symmetry and a wave vector somewhat larger than the distance between nearest neighbor hot spots. At still lower temperatures the diagonal flux phase instability emerges. A closer look shows that the AL diagrams enhance mainly axial and not diagonal charge fluctuations in our one-band model. This is the main reason why axial and not diagonal instabilities are the leading ones in agreement with experiment. The two instabilities due to nesting vanish already at very low temperatures and do not play any major role in the phase diagram. Remarkable is that the nematic and the axial CDW instabilities show a large reentrant behavior. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1812.03891v1-abstract-full').style.display = 'none'; document.getElementById('1812.03891v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 December, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 9 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 98, 224504 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1811.00496">arXiv:1811.00496</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1811.00496">pdf</a>, <a href="https://arxiv.org/ps/1811.00496">ps</a>, <a href="https://arxiv.org/format/1811.00496">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s42005-018-0099-z">10.1038/s42005-018-0099-z <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Origin of the high-energy charge excitations observed by resonant inelastic x-ray scattering in cuprate superconductors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Greco%2C+A">Andr茅s Greco</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yamase%2C+H">Hiroyuki Yamase</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bejas%2C+M">Mat铆as Bejas</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1811.00496v1-abstract-short" style="display: inline;"> The recent development of x-ray scattering techniques revealed the charge-excitation spectrum in high-$T_c$ cuprate superconductors. While the presence of a dispersive signal in the high-energy charge-excitation spectrum is well accepted in the electron-doped cuprates, its interpretation and universality are controversial. Since charge fluctuations are observed ubiquitously in cuprate superconduct&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1811.00496v1-abstract-full').style.display = 'inline'; document.getElementById('1811.00496v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1811.00496v1-abstract-full" style="display: none;"> The recent development of x-ray scattering techniques revealed the charge-excitation spectrum in high-$T_c$ cuprate superconductors. While the presence of a dispersive signal in the high-energy charge-excitation spectrum is well accepted in the electron-doped cuprates, its interpretation and universality are controversial. Since charge fluctuations are observed ubiquitously in cuprate superconductors, the understanding of its origin is a pivotal issue. Here, we employ the layered $t$-$J$ model with the long-range Coulomb interaction and show that an acoustic-like plasmon mode with a gap at in-plane momentum (0,0) captures the major features of the high-energy charge excitations. The high-energy charge excitations, therefore, should be a universal feature in cuprate superconductors and are expected also in the hole-doped cuprates. Acoustic-like plasmons in cuprates have not been recognized yet in experiments. We propose several experimental tests to distinguish different interpretations of the high-energy charge excitations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1811.00496v1-abstract-full').style.display = 'none'; document.getElementById('1811.00496v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 November, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 5 figures; Supplemental material included; to appear in Communications Physics</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Communications Physics, volume 2, Article number: 3 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1808.03618">arXiv:1808.03618</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1808.03618">pdf</a>, <a href="https://arxiv.org/ps/1808.03618">ps</a>, <a href="https://arxiv.org/format/1808.03618">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.99.014513">10.1103/PhysRevB.99.014513 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Doping dependence of d-wave bond-charge excitations in electron-doped cuprates </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Yamase%2C+H">Hiroyuki Yamase</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bejas%2C+M">Mat铆as Bejas</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Greco%2C+A">Andr茅s Greco</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1808.03618v3-abstract-short" style="display: inline;"> Motivated by the recent experiments reporting the doping dependence of the short-range charge order (CO) in electron-doped cuprates, we study the resonant x-ray scattering spectrum from d-wave bond-charge fluctuations obtained in the two-dimensional t-J model. We find that (i) the CO is short-range, (ii) the CO peak is pronounced at low temperature, (iii) the peak intensity increases with decreasi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1808.03618v3-abstract-full').style.display = 'inline'; document.getElementById('1808.03618v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1808.03618v3-abstract-full" style="display: none;"> Motivated by the recent experiments reporting the doping dependence of the short-range charge order (CO) in electron-doped cuprates, we study the resonant x-ray scattering spectrum from d-wave bond-charge fluctuations obtained in the two-dimensional t-J model. We find that (i) the CO is short-range, (ii) the CO peak is pronounced at low temperature, (iii) the peak intensity increases with decreasing carrier doping $未$ down to $未\approx$ 0.10 and is substantially suppressed below $未\approx$ 0.10 due to strong damping, and (iv) the momentum of the CO decreases monotonically down to $未\approx$ 0.10 and goes up below $未\approx$ 0.10. These results reasonably capture the major features of the experimental data, and the observed short-range CO can be consistently explained in terms of bond-charge fluctuations with an internal d-wave symmetry. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1808.03618v3-abstract-full').style.display = 'none'; document.getElementById('1808.03618v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 January, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 August, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 6 figures; some sections rewritten, appendix added, author name corrected; minor changes</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 99, 014513 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1709.09468">arXiv:1709.09468</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1709.09468">pdf</a>, <a href="https://arxiv.org/ps/1709.09468">ps</a>, <a href="https://arxiv.org/format/1709.09468">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.96.214513">10.1103/PhysRevB.96.214513 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Dual structure in the charge excitation spectrum of electron-doped cuprates </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Bejas%2C+M">Matias Bejas</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yamase%2C+H">Hiroyuki Yamase</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Greco%2C+A">Andres Greco</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1709.09468v3-abstract-short" style="display: inline;"> Motivated by the recent resonant x-ray scattering (RXS) and resonant inelastic x-ray scattering (RIXS) experiments in electron-doped cuprates, we study the charge excitation spectrum in a layered t-J model with the long-range Coulomb interaction. We show that the spectrum is not dominated by a specific type of charge excitations, but by different kinds of charge fluctuations, and is characterized&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1709.09468v3-abstract-full').style.display = 'inline'; document.getElementById('1709.09468v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1709.09468v3-abstract-full" style="display: none;"> Motivated by the recent resonant x-ray scattering (RXS) and resonant inelastic x-ray scattering (RIXS) experiments in electron-doped cuprates, we study the charge excitation spectrum in a layered t-J model with the long-range Coulomb interaction. We show that the spectrum is not dominated by a specific type of charge excitations, but by different kinds of charge fluctuations, and is characterized by a dual structure in the energy space. Low-energy charge excitations correspond to various types of bond-charge fluctuations driven by the exchange term (J-term) whereas high-energy charge excitations are due to usual on-site charge fluctuations and correspond to plasmon excitations above the particle-hole continuum. The interlayer coupling, which is frequently neglected in many theoretical studies, is particularly important to the high-energy charge excitations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1709.09468v3-abstract-full').style.display = 'none'; document.getElementById('1709.09468v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 January, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 September, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">28 pages, 9 figures; [v3] slight change in title to match published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 96, 214513 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1705.01904">arXiv:1705.01904</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1705.01904">pdf</a>, <a href="https://arxiv.org/ps/1705.01904">ps</a>, <a href="https://arxiv.org/format/1705.01904">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.120.177002">10.1103/PhysRevLett.120.177002 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Mechanism for unconventional superconductivity in the hole-doped Rashba-Hubbard model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Greco%2C+A">Andr茅s Greco</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schnyder%2C+A+P">Andreas P. Schnyder</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1705.01904v2-abstract-short" style="display: inline;"> Motivated by the recent resurgence of interest in topological superconductivity, we study in this paper superconducting pairing instabilities of the hole-doped Rashba-Hubbard model on the square lattice with first- and second-neighbor hopping. Within a weak-coupling approach based on the random phase approximation, we compute the spin-fluctuation mediated paring interactions as a function of spin-&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1705.01904v2-abstract-full').style.display = 'inline'; document.getElementById('1705.01904v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1705.01904v2-abstract-full" style="display: none;"> Motivated by the recent resurgence of interest in topological superconductivity, we study in this paper superconducting pairing instabilities of the hole-doped Rashba-Hubbard model on the square lattice with first- and second-neighbor hopping. Within a weak-coupling approach based on the random phase approximation, we compute the spin-fluctuation mediated paring interactions as a function of spin-orbit coupling and hole doping. Rashba spin-orbit coupling splits the spin degeneracies of the bands, which leads to two van Hove singularities at two different fillings. We find that for a broad doping region in between these two van Hove fillings the spin fluctuations exhibit a strong ferromagnetic contribution. Because of these ferromagnetic fluctuations, the triplet $f$-wave pairing channel is dominant within this filling region, resulting in a topologically nontrival phase. We discuss possible experimental realizations of this phase in heavy-fermion hybrid structures. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1705.01904v2-abstract-full').style.display = 'none'; document.getElementById('1705.01904v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 April, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 May, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4+ pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 120, 177002 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1611.07893">arXiv:1611.07893</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1611.07893">pdf</a>, <a href="https://arxiv.org/format/1611.07893">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.118.167202">10.1103/PhysRevLett.118.167202 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Translation-Invariant Parent Hamiltonians of Valence Bond Crystals </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Huerga%2C+D">Daniel Huerga</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Greco%2C+A">Andres Greco</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gazza%2C+C">Claudio Gazza</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Muramatsu%2C+A">Alejandro Muramatsu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1611.07893v2-abstract-short" style="display: inline;"> We present a general method to construct translation-invariant and SU(2) symmetric antiferromagnetic parent Hamiltonians of valence bond crystals (VBC). The method is based on a canonical mapping transforming S=1/2 spin operators into a bilinear form of a new set of dimer fermion operators. We construct parent Hamltonians of the columnar- and the staggered-VBC on the square lattice, for which the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1611.07893v2-abstract-full').style.display = 'inline'; document.getElementById('1611.07893v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1611.07893v2-abstract-full" style="display: none;"> We present a general method to construct translation-invariant and SU(2) symmetric antiferromagnetic parent Hamiltonians of valence bond crystals (VBC). The method is based on a canonical mapping transforming S=1/2 spin operators into a bilinear form of a new set of dimer fermion operators. We construct parent Hamltonians of the columnar- and the staggered-VBC on the square lattice, for which the VBC is an eigenstate in all regimes and the exact ground state in some region of the phase diagram. We study the depart from the exact VBC regime upon tuning the anisotropy by means of the hierarchical mean field theory and exact diagonalization on finite clusters. In both Hamiltonians, the VBC phase extends over the exact regime and transits to a columnar antiferromagnet (CAFM) through a window of intermediate phases, revealing an intriguing competition of correlation lengths at the VBC-CAFM transition. The method can be readily applied to construct other VBC parent Hamiltonians in different lattices and dimensions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1611.07893v2-abstract-full').style.display = 'none'; document.getElementById('1611.07893v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 April, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 November, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 118, 167202 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1608.08018">arXiv:1608.08018</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1608.08018">pdf</a>, <a href="https://arxiv.org/ps/1608.08018">ps</a>, <a href="https://arxiv.org/format/1608.08018">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.7566/JPSJ.86.034706">10.7566/JPSJ.86.034706 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Charge-Density-Excitation Spectrum in the t-t&#39;-J-V Model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Greco%2C+A">Andres Greco</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yamase%2C+H">Hiroyuki Yamase</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bejas%2C+M">Matias Bejas</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1608.08018v2-abstract-short" style="display: inline;"> We study the density-density correlation function in a large-N scheme of the t-t&#39;-J-V model. When the nearest-neighbor Coulomb interaction V is zero, our model exhibits phase separation in a wide doping region and we obtain large spectral weight near momentum q=(0,0) at low energy, which originates from the proximity to phase separation. These features are much stronger for electron doping than fo&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1608.08018v2-abstract-full').style.display = 'inline'; document.getElementById('1608.08018v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1608.08018v2-abstract-full" style="display: none;"> We study the density-density correlation function in a large-N scheme of the t-t&#39;-J-V model. When the nearest-neighbor Coulomb interaction V is zero, our model exhibits phase separation in a wide doping region and we obtain large spectral weight near momentum q=(0,0) at low energy, which originates from the proximity to phase separation. These features are much stronger for electron doping than for hole doping. However, once phase separation is suppressed by including a finite V, the low-energy spectral weight around q=(0,0) is substantially suppressed. Instead a sharp zero-sound mode is stabilized above the particle-hole continuum. We discuss that the presence of a moderate value of V, which is frequently neglected in the t-J model, is important to understand low-energy charge excitations especially close to q=(0,0) for electron doping. This insight should be taken into account in a future study of x-ray scattering measurements. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1608.08018v2-abstract-full').style.display = 'none'; document.getElementById('1608.08018v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 January, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 August, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. Phys. Soc. Jpn 86, 034706 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1602.01311">arXiv:1602.01311</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1602.01311">pdf</a>, <a href="https://arxiv.org/ps/1602.01311">ps</a>, <a href="https://arxiv.org/format/1602.01311">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> </div> <p class="title is-5 mathjax"> A note on the path integral representation for Majorana fermions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Greco%2C+A">Andres Greco</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1602.01311v1-abstract-short" style="display: inline;"> Majorana fermions are currently of huge interest in the context of nanoscience and condensed matter physics. Different to usual fermions, Majorana fermions have the property that the particle is its own anti-particle thus, they must be described by real fields. Mathematically, this property makes nontrivial the quantization of the problem due, for instance, to the absence of a Wick-like theorem. I&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1602.01311v1-abstract-full').style.display = 'inline'; document.getElementById('1602.01311v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1602.01311v1-abstract-full" style="display: none;"> Majorana fermions are currently of huge interest in the context of nanoscience and condensed matter physics. Different to usual fermions, Majorana fermions have the property that the particle is its own anti-particle thus, they must be described by real fields. Mathematically, this property makes nontrivial the quantization of the problem due, for instance, to the absence of a Wick-like theorem. In view of the present interest on the subject, it is important to develop different theoretical approaches in order to study problems where Majorana fermions are involved. In this note we show that Majorana fermions can be studied in the context of field theories for constrained systems. Using the Faddeev-Jackiw formalism for quantum field theories with constraints, we derived the path integral representation for Majorana fermions. In order to show the validity of the path integral we apply it to an exactly solvable problem. This application also shows that it is rather simple to perform systematic calculations on the basis of the present framework. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1602.01311v1-abstract-full').style.display = 'none'; document.getElementById('1602.01311v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 February, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, to be published in Journal of Physics A: Mathematical and Theoretical</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1601.08249">arXiv:1601.08249</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1601.08249">pdf</a>, <a href="https://arxiv.org/ps/1601.08249">ps</a>, <a href="https://arxiv.org/format/1601.08249">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.94.075139">10.1103/PhysRevB.94.075139 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Plasmon excitations in layered high-Tc cuprates </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Greco%2C+A">Andres Greco</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yamase%2C+H">Hiroyuki Yamase</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bejas%2C+M">Matias Bejas</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1601.08249v3-abstract-short" style="display: inline;"> Motivated by the recent resonant inelastic x-ray scattering (RIXS) experiment for the electron-doped cuprates Nd_{2-x}Ce_{x}CuO_{4} with x around 0.15, we compute the density-density correlation function in the t-J model on a square lattice by including interlayer hopping and the long-range Coulomb interaction. We find that collective charge excitations are realized not inside the particle-hole co&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1601.08249v3-abstract-full').style.display = 'inline'; document.getElementById('1601.08249v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1601.08249v3-abstract-full" style="display: none;"> Motivated by the recent resonant inelastic x-ray scattering (RIXS) experiment for the electron-doped cuprates Nd_{2-x}Ce_{x}CuO_{4} with x around 0.15, we compute the density-density correlation function in the t-J model on a square lattice by including interlayer hopping and the long-range Coulomb interaction. We find that collective charge excitations are realized not inside the particle-hole continuum, but above the continuum as plasmons. The plasmon mode has a rather flat dispersion near the in-plane momentum q=(0,0) with a typical excitation energy of the order of the intralayer hopping t when the out-of-plane momentum qz is zero. However, when qz becomes finite, the plasmon dispersion changes drastically near q=(0,0), leading to a strong dispersive feature with an excitation gap scaled by the interlayer hopping tz. We discuss that the mode recently observed by RIXS near q=(0,0) can be associated with the plasmon mode with a finite qz. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1601.08249v3-abstract-full').style.display = 'none'; document.getElementById('1601.08249v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 August, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 January, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 7 figures; Authors names corrected in arXiv&#39;s metadata; Added one figure</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 94, 075139 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1511.05096">arXiv:1511.05096</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1511.05096">pdf</a>, <a href="https://arxiv.org/ps/1511.05096">ps</a>, <a href="https://arxiv.org/format/1511.05096">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/0953-2048/29/1/015002">10.1088/0953-2048/29/1/015002 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Isotope effect on the superconducting critical temperature of cuprates in the presence of charge order </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Greco%2C+A">Andr茅s Greco</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zeyher%2C+R">Roland Zeyher</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1511.05096v1-abstract-short" style="display: inline;"> Using the large-$N$ limit of the $t$-$J$ model and allowing also for phonons and the electron-phonon interaction we study the isotope effect $伪$ for coupling constants appropriate for YBCO. We find that $伪$ has a minimum at optimal doping and increases strongly (slightly) towards the underdoped (overdoped) region. Using values for the electron phonon interaction from the local density approximatio&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1511.05096v1-abstract-full').style.display = 'inline'; document.getElementById('1511.05096v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1511.05096v1-abstract-full" style="display: none;"> Using the large-$N$ limit of the $t$-$J$ model and allowing also for phonons and the electron-phonon interaction we study the isotope effect $伪$ for coupling constants appropriate for YBCO. We find that $伪$ has a minimum at optimal doping and increases strongly (slightly) towards the underdoped (overdoped) region. Using values for the electron phonon interaction from the local density approximation we get good agreement for $伪$ as a function of $T_c$ and doping $未$ with recent experimental data in YBCO. Our results strongly suggest that the large increase of $伪$ in the underdoped region is (a) caused by the shift of electronic spectral density from low to high energies associated with a competing phase (in our case a charge density wave) and the formation of a gap, and (b) compatible with the small electron phonon coupling constants obtained from the local density approximation. We propose a similar explanation for the anomalous behavior of $伪$ in Sr doped La$_2$CuO$_4$ near the doping 1/8. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1511.05096v1-abstract-full').style.display = 'none'; document.getElementById('1511.05096v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 November, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Supercond. Sci. Technol. 29, 015002 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1506.06853">arXiv:1506.06853</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1506.06853">pdf</a>, <a href="https://arxiv.org/ps/1506.06853">ps</a>, <a href="https://arxiv.org/format/1506.06853">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1209/0295-5075/111/57005">10.1209/0295-5075/111/57005 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> $d$-wave bond-order charge excitations in electron-doped cuprates </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Yamase%2C+H">Hiroyuki Yamase</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bejas%2C+M">Mat铆as Bejas</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Greco%2C+A">Andr茅s Greco</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1506.06853v3-abstract-short" style="display: inline;"> We study charge excitation spectra in the two-dimensional $t$-$J$ model on a square lattice to explore a charge-order tendency recently found in electron-doped cuprates around the carrier density 0.15. The static susceptibility of $d$-wave charge density, which corresponds to the nematic susceptibility at the momentum transfer ${\bf q}=(0,0)$, shows two characteristic peaks at momenta of the form&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1506.06853v3-abstract-full').style.display = 'inline'; document.getElementById('1506.06853v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1506.06853v3-abstract-full" style="display: none;"> We study charge excitation spectra in the two-dimensional $t$-$J$ model on a square lattice to explore a charge-order tendency recently found in electron-doped cuprates around the carrier density 0.15. The static susceptibility of $d$-wave charge density, which corresponds to the nematic susceptibility at the momentum transfer ${\bf q}=(0,0)$, shows two characteristic peaks at momenta of the form ${\bf q}_{1}=(q&#39;,q&#39;)$ and ${\bf q}_{2}=(q,0)$. These two peaks originate from the so-called $2k_{F}$ scattering processes enhanced by the $d$-wave character of the bond-charge density. The peak at ${\bf q}_{1}$ is much broader, but develop to be very sharp in the vicinity of its instability, whereas the peak at ${\bf q}_{2}$ becomes sharper with decreasing temperature, but does not diverge. The equal-time correlation function, which is measured by resonant x-ray scattering, exhibits a momentum dependence similar to the static susceptibility. We also present energy-resolved charge excitation spectra. The spectra show a V-shaped structure around ${\bf q}=(0,0)$ and bend back toward close to zero energy due to the charge-order tendency at ${\bf q}_{1}$ and ${\bf q}_{2}$. The resulting spectra form gap-like features with a maximal gap at ${\bf q} \approx {\bf q}_{1}/2$ and ${\bf q}_{2}/2$. We discuss implications for the recent experiments in electron-doped cuprates. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1506.06853v3-abstract-full').style.display = 'none'; document.getElementById('1506.06853v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 September, 2015; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 June, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures, panel b of figure 1 corrected, added references, corrected typos, added a paragraph before summary</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> EPL, 111 (2015) 57005 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1411.2421">arXiv:1411.2421</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1411.2421">pdf</a>, <a href="https://arxiv.org/ps/1411.2421">ps</a>, <a href="https://arxiv.org/format/1411.2421">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/0953-8984/26/48/485701">10.1088/0953-8984/26/48/485701 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Pseudogap in cuprates driven by d-wave flux-phase order proximity effects: A theoretical analysis from Raman and ARPES experiments </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Greco%2C+A">Andres Greco</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bejas%2C+M">Matias Bejas</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1411.2421v1-abstract-short" style="display: inline;"> One of the puzzling characteristics of the pseudogap phase of high-$T_c$ cuprates is the nodal-antinodal dichotomy. While the nodal quasiparticles have a Fermi liquid behaviour, the antinodal ones show non-Fermi liquid features and an associated pseudogap. Angle-resolved photoemission spectroscopy and electronic Raman scattering are two valuable tools which have shown universal features which are&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1411.2421v1-abstract-full').style.display = 'inline'; document.getElementById('1411.2421v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1411.2421v1-abstract-full" style="display: none;"> One of the puzzling characteristics of the pseudogap phase of high-$T_c$ cuprates is the nodal-antinodal dichotomy. While the nodal quasiparticles have a Fermi liquid behaviour, the antinodal ones show non-Fermi liquid features and an associated pseudogap. Angle-resolved photoemission spectroscopy and electronic Raman scattering are two valuable tools which have shown universal features which are rather material-independent, and presumably intrinsic to the pseudogap phase. The doping and temperature dependence of the Fermi arcs and the pseudogap observed by photoemission near the antinode correlates with the non-Fermi liquid behaviour observed by Raman for the B$_{1g}$ mode. In contrast, and similar to the nodal quasiparticles detected by photoemission, the Raman B$_{2g}$ mode shows Fermi liquid features. We show that these two experiments can be analysed, in the context of the $t$-$J$ model, by self-energy effects in the proximity to a d-wave flux-phase order instability. This approach supports a crossover origin for the pseudogap, and a scenario of two competing phases. The B$_{2g}$ mode shows, in an underdoped case, a depletion at intermediate energy which has attracted a renewed interest. We study this depletion and discuss its origin and relation with the pseudogap. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1411.2421v1-abstract-full').style.display = 'none'; document.getElementById('1411.2421v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 November, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. Phys.: Condens. Matter 26, 485701 (2014) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1401.6586">arXiv:1401.6586</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1401.6586">pdf</a>, <a href="https://arxiv.org/ps/1401.6586">ps</a>, <a href="https://arxiv.org/format/1401.6586">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1367-2630/16/12/123002">10.1088/1367-2630/16/12/123002 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Strong particle-hole asymmetry of charge instabilities in doped Mott insulators </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Bejas%2C+M">Matias Bejas</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Greco%2C+A">Andres Greco</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yamase%2C+H">Hiroyuki Yamase</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1401.6586v2-abstract-short" style="display: inline;"> We study possible charge instabilities in doped Mott insulators by employing the two-dimensional t-J model with a positive value of the next nearest-neighbor hopping integral t&#39; on a square lattice, which is applicable to electron-doped cuprates. Although the d-wave charge density wave (flux phase) and d-wave Pomeranchuk instability (nematic order) are dominant instabilities for a negative t&#39; that&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1401.6586v2-abstract-full').style.display = 'inline'; document.getElementById('1401.6586v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1401.6586v2-abstract-full" style="display: none;"> We study possible charge instabilities in doped Mott insulators by employing the two-dimensional t-J model with a positive value of the next nearest-neighbor hopping integral t&#39; on a square lattice, which is applicable to electron-doped cuprates. Although the d-wave charge density wave (flux phase) and d-wave Pomeranchuk instability (nematic order) are dominant instabilities for a negative t&#39; that corresponds to hole-doped cuprates, we find that those instabilities are strongly suppressed and become relevant only rather close to half filling. Instead, various types of bond orders with modulation vectors close to (pi,pi) are dominant in a moderate doping region. Phase separation is also enhanced, but it can be suppressed substantially by the nearest-neighbor Coulomb repulsion without affecting the aforementioned charge instabilities. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1401.6586v2-abstract-full').style.display = 'none'; document.getElementById('1401.6586v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 December, 2014; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 January, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 7 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> New J. Phys. 16, 123002 (2014) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1401.3196">arXiv:1401.3196</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1401.3196">pdf</a>, <a href="https://arxiv.org/ps/1401.3196">ps</a>, <a href="https://arxiv.org/format/1401.3196">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.89.024516">10.1103/PhysRevB.89.024516 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Self-energy effects in cuprates and the dome-shaped behavior of the superconducting critical temperature </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Buzon%2C+G">Guillermo Buzon</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Foussats%2C+A">Adriana Foussats</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bejas%2C+M">Mat铆as Bejas</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Greco%2C+A">Andr茅s Greco</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1401.3196v1-abstract-short" style="display: inline;"> Hole doped cuprates show a superconducting critical temperature $T_c$ which follows an universal dome-shaped behavior as function of doping. It is believed that the origin of superconductivity in cuprates is entangled with the physics of the pseudogap phase. An open discussion is whether the source of superconductivity is the same that causes the pseudogap properties. The $t$-$J$ model treated in&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1401.3196v1-abstract-full').style.display = 'inline'; document.getElementById('1401.3196v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1401.3196v1-abstract-full" style="display: none;"> Hole doped cuprates show a superconducting critical temperature $T_c$ which follows an universal dome-shaped behavior as function of doping. It is believed that the origin of superconductivity in cuprates is entangled with the physics of the pseudogap phase. An open discussion is whether the source of superconductivity is the same that causes the pseudogap properties. The $t$-$J$ model treated in large-N expansion shows $d$-wave superconductivity triggered by non-retarded interactions, and an instability of the paramagnetic state to a flux phase or $d$-wave charge density wave ($d$-CDW) state. In this paper we show that self-energy effects near $d$-CDW instability may lead to a dome-shaped behavior of $T_c$. In addition, it is also shown that these self-energy contributions may describe several properties observed in the pseudogap phase. In this picture, although fluctuations responsible for the pseudogap properties leads to a dome-shaped behavior, they are not involved in pairing which is mainly non-retarded. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1401.3196v1-abstract-full').style.display = 'none'; document.getElementById('1401.3196v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 January, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 7 figures, accepted for publication in Phys. Rev. B</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1305.5862">arXiv:1305.5862</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1305.5862">pdf</a>, <a href="https://arxiv.org/ps/1305.5862">ps</a>, <a href="https://arxiv.org/format/1305.5862">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/1.4819132">10.1063/1.4819132 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Simulations of Nanocrystals Under Pressure: Combining Electronic Enthalpy and Linear-Scaling Density-Functional Theory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Corsini%2C+N+R+C">Niccol貌 R. C. Corsini</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Greco%2C+A">Andrea Greco</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hine%2C+N+D+M">Nicholas D. M. Hine</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Molteni%2C+C">Carla Molteni</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Haynes%2C+P+D">Peter D. Haynes</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1305.5862v2-abstract-short" style="display: inline;"> We present an implementation in a linear-scaling density-functional theory code of an electronic enthalpy method, which has been found to be natural and efficient for the ab initio calculation of finite systems under hydrostatic pressure. Based on a definition of the system volume as that enclosed within an electronic density isosurface [Phys. Rev. Lett., 94, 145501 (2005)], it supports both geome&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1305.5862v2-abstract-full').style.display = 'inline'; document.getElementById('1305.5862v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1305.5862v2-abstract-full" style="display: none;"> We present an implementation in a linear-scaling density-functional theory code of an electronic enthalpy method, which has been found to be natural and efficient for the ab initio calculation of finite systems under hydrostatic pressure. Based on a definition of the system volume as that enclosed within an electronic density isosurface [Phys. Rev. Lett., 94, 145501 (2005)], it supports both geometry optimizations and molecular dynamics simulations. We introduce an approach for calibrating the parameters defining the volume in the context of geometry optimizations and discuss their significance. Results in good agreement with simulations using explicit solvents are obtained, validating our approach. Size-dependent pressure-induced structural transformations and variations in the energy gap of hydrogenated silicon nanocrystals are investigated, including one comparable in size to recent experiments. A detailed analysis of the polyamorphic transformations reveals three types of amorphous structures and their persistence on depressurization is assessed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1305.5862v2-abstract-full').style.display = 'none'; document.getElementById('1305.5862v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 July, 2013; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 May, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages and 13 figures (accepted for publication by The Journal of Chemical Physics on the 29th of July 2013)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1303.5975">arXiv:1303.5975</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1303.5975">pdf</a>, <a href="https://arxiv.org/ps/1303.5975">ps</a>, <a href="https://arxiv.org/format/1303.5975">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.87.224511">10.1103/PhysRevB.87.224511 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Self-energy effects in electronic Raman spectra of doped cuprates due to magnetic fluctuations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zeyher%2C+R">Roland Zeyher</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Greco%2C+A">Andr茅s Greco</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1303.5975v1-abstract-short" style="display: inline;"> We present results for magnetic excitations in doped copper oxides using the random phase approximation and itinerant electrons. In the [1,0] direction the observed excitations resemble dispersive quasi-particles both in the normal and superconducting state similar as in recent resonant inelastic X-ray scattering (RIXS) experiments. In the [1,1] direction the excitations form, except for the criti&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1303.5975v1-abstract-full').style.display = 'inline'; document.getElementById('1303.5975v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1303.5975v1-abstract-full" style="display: none;"> We present results for magnetic excitations in doped copper oxides using the random phase approximation and itinerant electrons. In the [1,0] direction the observed excitations resemble dispersive quasi-particles both in the normal and superconducting state similar as in recent resonant inelastic X-ray scattering (RIXS) experiments. In the [1,1] direction the excitations form, except for the critical region near the antiferromagnetic wave vector ${\bf Q}=(蟺,蟺)$, only very broad continua. Using the obtained spin propagators we calculate electron self-energies and their effects on electronic Raman spectra. We show that the recently observed additional peak at about twice the pair breaking in B$_{1g}$ symmetry below T$_c$ in HgBa$_2$CuO$_{4+未}$ can be explained as a self-energy effect where a broken Cooper pair and a magnetic excitation appear as final states. The absence of this peak in B$_{2g}$ symmetry, which probes mainly electrons near the nodal direction, is explained by their small self-energies compared to those in the antinodal direction. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1303.5975v1-abstract-full').style.display = 'none'; document.getElementById('1303.5975v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 March, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B87, 224511 (2013) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1207.3212">arXiv:1207.3212</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1207.3212">pdf</a>, <a href="https://arxiv.org/ps/1207.3212">ps</a>, <a href="https://arxiv.org/format/1207.3212">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.86.224509">10.1103/PhysRevB.86.224509 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Possible charge instabilities in two-dimensional doped Mott insulators </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Bejas%2C+M">Matias Bejas</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Greco%2C+A">Andres Greco</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yamase%2C+H">Hiroyuki Yamase</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1207.3212v1-abstract-short" style="display: inline;"> Motivated by the growing evidence of the importance of charge fluctuations in the pseudogap phase in high-temperature cuprate superconductors, we apply a large-N expansion formulated in a path integral representation of the two-dimensional t-J model on a square lattice. We study all possible charge instabilities of the paramagnetic state in leading order of the 1/N expansion. While the d-wave char&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1207.3212v1-abstract-full').style.display = 'inline'; document.getElementById('1207.3212v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1207.3212v1-abstract-full" style="display: none;"> Motivated by the growing evidence of the importance of charge fluctuations in the pseudogap phase in high-temperature cuprate superconductors, we apply a large-N expansion formulated in a path integral representation of the two-dimensional t-J model on a square lattice. We study all possible charge instabilities of the paramagnetic state in leading order of the 1/N expansion. While the d-wave charge density wave (flux phase) becomes the leading instability for various choices of model parameters, we find that a d-wave Pomeranchuk (electronic nematic phase) instability occurs as a next leading one. In particular, the nematic state has a strong tendency to become inhomogeneous. In the presence of a large second nearest-neighbor hopping integral, the flux phase is suppressed and the electronic nematic instability becomes leading in a high doping region. Besides these two major instabilities, bond-order phases occur as weaker instabilities close to half-filling. Phase separation is also detected in a finite temperature region near half-filling. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1207.3212v1-abstract-full').style.display = 'none'; document.getElementById('1207.3212v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 July, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2012. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">28 pages, 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 86, 224509 (2012) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1106.3290">arXiv:1106.3290</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1106.3290">pdf</a>, <a href="https://arxiv.org/ps/1106.3290">ps</a>, <a href="https://arxiv.org/format/1106.3290">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.83.212503">10.1103/PhysRevB.83.212503 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Short-ranged and short-lived charge-density-wave order and pseudogap features in underdoped cuprates superconductors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Greco%2C+A">Andr茅s Greco</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bejas%2C+M">Mat铆as Bejas</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1106.3290v1-abstract-short" style="display: inline;"> The pseudogap phase of high-$T_c$ cuprates is controversially attributed to preformed pairs or to a phase which coexists and competes with superconductivity. One of the challenges is to develop theoretical and experimental studies in order to distinguish between both proposals. Very recently, researchers at Stanford have reported [M. Hashimoto {\it et al.}, Nat. Phys. {\bf 6}, 414 (2010); R.-H. He&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1106.3290v1-abstract-full').style.display = 'inline'; document.getElementById('1106.3290v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1106.3290v1-abstract-full" style="display: none;"> The pseudogap phase of high-$T_c$ cuprates is controversially attributed to preformed pairs or to a phase which coexists and competes with superconductivity. One of the challenges is to develop theoretical and experimental studies in order to distinguish between both proposals. Very recently, researchers at Stanford have reported [M. Hashimoto {\it et al.}, Nat. Phys. {\bf 6}, 414 (2010); R.-H. He {\it et al.}, Science {\bf 331}, 1579 (2011)] angle-resolved photoemission spectroscopy experiments on Pb-Bi2201 supporting the point of view that the pseudogap is distinct from superconductivity and associated to a spacial symmetry breaking without long-range order. In this paper we show that many features reported by these experiments can be described in the framework of the t-J model considering self-energy effects in the proximity to a d charge-density-wave instability. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1106.3290v1-abstract-full').style.display = 'none'; document.getElementById('1106.3290v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 June, 2011; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2011. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4.1 pages, 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 83, 212503 (2011) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1102.3864">arXiv:1102.3864</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1102.3864">pdf</a>, <a href="https://arxiv.org/ps/1102.3864">ps</a>, <a href="https://arxiv.org/format/1102.3864">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1209/0295-5075/93/67002">10.1209/0295-5075/93/67002 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Fermi arcs and isotope effect of the magnetic penetration depth in underdoped cuprates </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zeyher%2C+R">Roland Zeyher</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Greco%2C+A">Andr茅s Greco</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1102.3864v1-abstract-short" style="display: inline;"> The isotope coefficient $尾$ of the magnetic penetration depth in the superconducting state is studied at T=0 for a $d$-CDW and a nodal metal model. Disregarding superconductivity the Fermi surface of the first model possesses arcs whereas the second model has no arcs. We show that a large increase of $尾$ in the pseudogap region is generically incompatible with Fermi arcs in the pseudogap state. Th&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1102.3864v1-abstract-full').style.display = 'inline'; document.getElementById('1102.3864v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1102.3864v1-abstract-full" style="display: none;"> The isotope coefficient $尾$ of the magnetic penetration depth in the superconducting state is studied at T=0 for a $d$-CDW and a nodal metal model. Disregarding superconductivity the Fermi surface of the first model possesses arcs whereas the second model has no arcs. We show that a large increase of $尾$ in the pseudogap region is generically incompatible with Fermi arcs in the pseudogap state. Thus only the second model shows a large increase of $尾$ with decreasing doping. The required electron-phonon coupling is small and compatible with first-principles calculations based on the local density approximation (LDA). <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1102.3864v1-abstract-full').style.display = 'none'; document.getElementById('1102.3864v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 February, 2011; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2011. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 3 figures, will appear as epl</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> EPL, 93 (2011) 67002 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1102.1596">arXiv:1102.1596</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1102.1596">pdf</a>, <a href="https://arxiv.org/ps/1102.1596">ps</a>, <a href="https://arxiv.org/format/1102.1596">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.83.014514">10.1103/PhysRevB.83.014514 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Doping and temperature dependence of the pseudogap and Fermi arcs in cuprates from $d$-CDW short-range fluctuations in the context of the t-J model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Bejas%2C+M">Mat铆as Bejas</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Buzon%2C+G">Guillermo Buzon</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Greco%2C+A">Andr茅s Greco</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Foussats%2C+A">Adriana Foussats</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1102.1596v1-abstract-short" style="display: inline;"> At mean-field level the t-J model shows a phase diagram with close analogies to the phase diagram of hole doped cuprates. An order parameter associated with the flux or $d$ charge-density wave ($d$-CDW) phase competes and coexists with superconductivity at low doping showing characteristics identified with the observed pseudogap in underdoped cuprates. In addition, in the $d$-CDW state the Fermi s&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1102.1596v1-abstract-full').style.display = 'inline'; document.getElementById('1102.1596v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1102.1596v1-abstract-full" style="display: none;"> At mean-field level the t-J model shows a phase diagram with close analogies to the phase diagram of hole doped cuprates. An order parameter associated with the flux or $d$ charge-density wave ($d$-CDW) phase competes and coexists with superconductivity at low doping showing characteristics identified with the observed pseudogap in underdoped cuprates. In addition, in the $d$-CDW state the Fermi surface is reconstructed toward pockets with low spectral weight in the outer part, resembling the arcs observed in angle-resolved photoemission spectroscopy experiments. However, the $d$-CDW requires broken translational symmetry, a fact that is not completely accepted. Including self-energy corrections beyond the mean, field we found that the self-energy can be written as two distinct contributions. One of these (called $危_{flux}$) dominates at low energy and originates from the scattering between carriers and $d$-CDW fluctuations in proximity to the $d$-CDW instability. The second contribution (called $危_{R位}$) dominates at large energy and originates from the scattering between charge fluctuations under the constraint of non double occupancy. In this paper it is shown that $危_{flux}$ is responsible for the origin of low-energy features in the spectral function as a pseudogap and Fermi arcs. The obtained doping and temperature dependence of the pseudogap and Fermi arcs is similar to that observed in experiments. At low energy, $危_{R 位}$ gives an additional contribution to the closure of the pseudogap. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1102.1596v1-abstract-full').style.display = 'none'; document.getElementById('1102.1596v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 February, 2011; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2011. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 13 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 83, 014514 (2011) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1009.0158">arXiv:1009.0158</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1009.0158">pdf</a>, <a href="https://arxiv.org/ps/1009.0158">ps</a>, <a href="https://arxiv.org/format/1009.0158">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.82.054526">10.1103/PhysRevB.82.054526 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Two distinct quasiparticle inelastic scattering rates in the $t-J$ model and their relevance for high-$T_c$ cuprates superconductors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Buzon%2C+G">Guillermo Buzon</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Greco%2C+A">Andr茅s Greco</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1009.0158v1-abstract-short" style="display: inline;"> The recent findings about two distinct quasiparticle inelastic scattering rates in angle-dependent magnetoresistance (ADMR) experiments in overdoped high-$T_c$ cuprates superconductors have motivated many discussions related to the link between superconductivity, pseudogap, and transport properties in these materials. After computing dynamical self-energy corrections in the framework of the $t-J$&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1009.0158v1-abstract-full').style.display = 'inline'; document.getElementById('1009.0158v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1009.0158v1-abstract-full" style="display: none;"> The recent findings about two distinct quasiparticle inelastic scattering rates in angle-dependent magnetoresistance (ADMR) experiments in overdoped high-$T_c$ cuprates superconductors have motivated many discussions related to the link between superconductivity, pseudogap, and transport properties in these materials. After computing dynamical self-energy corrections in the framework of the $t-J$ model the inelastic scattering rate was introduced as usual. Two distinct scattering rates were obtained showing the main features observed in ADMR experiments. Predictions for underdoped cuprates are discussed. The implicances of these two scattering rates on the resistivity were also studied as a function of doping and temperature and confronted with experimental measurements. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1009.0158v1-abstract-full').style.display = 'none'; document.getElementById('1009.0158v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 September, 2010; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2010. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 82, 054526 (2010) </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Greco%2C+A&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Greco%2C+A&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Greco%2C+A&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10