CINXE.COM
Search | arXiv e-print repository
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1–45 of 45 results for author: <span class="mathjax">Muramatsu, A</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> <div class="content"> <form method="GET" action="/search/cond-mat" aria-role="search"> Searching in archive <strong>cond-mat</strong>. <a href="/search/?searchtype=author&query=Muramatsu%2C+A">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Muramatsu, A"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Muramatsu%2C+A&terms-0-field=author&size=50&order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Muramatsu, A"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1911.01666">arXiv:1911.01666</a> <span> [<a href="https://arxiv.org/pdf/1911.01666">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/jmicro/dfz014">10.1093/jmicro/dfz014 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Self-assembled structure of dendronized CdS nanoparticles </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Nakajima%2C+H">Hiroshi Nakajima</a>, <a href="/search/cond-mat?searchtype=author&query=Matsuki%2C+D">Daichi Matsuki</a>, <a href="/search/cond-mat?searchtype=author&query=Fukunaga%2C+Y">Yumi Fukunaga</a>, <a href="/search/cond-mat?searchtype=author&query=Toriyama%2C+T">Takaaki Toriyama</a>, <a href="/search/cond-mat?searchtype=author&query=Shigematsu%2C+K">Koji Shigematsu</a>, <a href="/search/cond-mat?searchtype=author&query=Matsubara%2C+M">Masaki Matsubara</a>, <a href="/search/cond-mat?searchtype=author&query=Kanie%2C+K">Kiyoshi Kanie</a>, <a href="/search/cond-mat?searchtype=author&query=Muramatsu%2C+A">Atsushi Muramatsu</a>, <a href="/search/cond-mat?searchtype=author&query=Murakami%2C+Y">Yasukazu Murakami</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1911.01666v1-abstract-short" style="display: inline;"> Self-assembled dendronized CdS nanoparticles have been attracting considerable attention because of their photoluminescence properties depending on annealing treatments. In this study, their annealing-induced self-assembled structure was investigated via scanning transmission electron microscopy (STEM); thin foil specimens of self-assembled dendronized CdS nanoparticles were prepared by ultramicro… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1911.01666v1-abstract-full').style.display = 'inline'; document.getElementById('1911.01666v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1911.01666v1-abstract-full" style="display: none;"> Self-assembled dendronized CdS nanoparticles have been attracting considerable attention because of their photoluminescence properties depending on annealing treatments. In this study, their annealing-induced self-assembled structure was investigated via scanning transmission electron microscopy (STEM); thin foil specimens of self-assembled dendronized CdS nanoparticles were prepared by ultramicrotomy and the STEM images revealed their ordered structure and the effect of the annealing treatment. In addition, a structural order belonging to the P213 space group was identified via an autocorrelation analysis. The results indicated that this structural order could be achieved only over a few tens of nanometers. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1911.01666v1-abstract-full').style.display = 'none'; document.getElementById('1911.01666v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 November, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Microscopy 68, 342 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1611.07893">arXiv:1611.07893</a> <span> [<a href="https://arxiv.org/pdf/1611.07893">pdf</a>, <a href="https://arxiv.org/format/1611.07893">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.118.167202">10.1103/PhysRevLett.118.167202 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Translation-Invariant Parent Hamiltonians of Valence Bond Crystals </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Huerga%2C+D">Daniel Huerga</a>, <a href="/search/cond-mat?searchtype=author&query=Greco%2C+A">Andres Greco</a>, <a href="/search/cond-mat?searchtype=author&query=Gazza%2C+C">Claudio Gazza</a>, <a href="/search/cond-mat?searchtype=author&query=Muramatsu%2C+A">Alejandro Muramatsu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1611.07893v2-abstract-short" style="display: inline;"> We present a general method to construct translation-invariant and SU(2) symmetric antiferromagnetic parent Hamiltonians of valence bond crystals (VBC). The method is based on a canonical mapping transforming S=1/2 spin operators into a bilinear form of a new set of dimer fermion operators. We construct parent Hamltonians of the columnar- and the staggered-VBC on the square lattice, for which the… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1611.07893v2-abstract-full').style.display = 'inline'; document.getElementById('1611.07893v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1611.07893v2-abstract-full" style="display: none;"> We present a general method to construct translation-invariant and SU(2) symmetric antiferromagnetic parent Hamiltonians of valence bond crystals (VBC). The method is based on a canonical mapping transforming S=1/2 spin operators into a bilinear form of a new set of dimer fermion operators. We construct parent Hamltonians of the columnar- and the staggered-VBC on the square lattice, for which the VBC is an eigenstate in all regimes and the exact ground state in some region of the phase diagram. We study the depart from the exact VBC regime upon tuning the anisotropy by means of the hierarchical mean field theory and exact diagonalization on finite clusters. In both Hamiltonians, the VBC phase extends over the exact regime and transits to a columnar antiferromagnet (CAFM) through a window of intermediate phases, revealing an intriguing competition of correlation lengths at the VBC-CAFM transition. The method can be readily applied to construct other VBC parent Hamiltonians in different lattices and dimensions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1611.07893v2-abstract-full').style.display = 'none'; document.getElementById('1611.07893v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 April, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 November, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 118, 167202 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1306.3258">arXiv:1306.3258</a> <span> [<a href="https://arxiv.org/pdf/1306.3258">pdf</a>, <a href="https://arxiv.org/ps/1306.3258">ps</a>, <a href="https://arxiv.org/format/1306.3258">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.111.066401">10.1103/PhysRevLett.111.066401 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Dimerized Solids and Resonating Plaquette Order in SU(N)-Dirac Fermions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Lang%2C+T+C">Thomas C. Lang</a>, <a href="/search/cond-mat?searchtype=author&query=Meng%2C+Z+Y">Zi Yang Meng</a>, <a href="/search/cond-mat?searchtype=author&query=Muramatsu%2C+A">Alejandro Muramatsu</a>, <a href="/search/cond-mat?searchtype=author&query=Wessel%2C+S">Stefan Wessel</a>, <a href="/search/cond-mat?searchtype=author&query=Assaad%2C+F+F">Fakher F. Assaad</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1306.3258v3-abstract-short" style="display: inline;"> We study the quantum phases of fermions with an explicit SU(N)-symmetric, Heisenberg-like nearest-neighbor flavor exchange interaction on the honeycomb lattice at half-filling. Employing projective (zero temperature) quantum Monte Carlo simulations for even values of N, we explore the evolution from a weak-coupling semimetal into the strong-coupling, insulating regime. Furthermore, we compare our… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1306.3258v3-abstract-full').style.display = 'inline'; document.getElementById('1306.3258v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1306.3258v3-abstract-full" style="display: none;"> We study the quantum phases of fermions with an explicit SU(N)-symmetric, Heisenberg-like nearest-neighbor flavor exchange interaction on the honeycomb lattice at half-filling. Employing projective (zero temperature) quantum Monte Carlo simulations for even values of N, we explore the evolution from a weak-coupling semimetal into the strong-coupling, insulating regime. Furthermore, we compare our numerical results to a saddle-point approximation in the large-N limit. From the large-N regime down to the SU(6) case, the insulating state is found to be a columnar valence bond crystal, with a direct transition to the semimetal at weak, finite coupling, in agreement with the mean-field result in the large-N limit. At SU(4) however, the insulator exhibits a subtly different valence bond crystal structure, stabilized by resonating valence bond plaquettes. In the SU(2) limit, our results support a direct transition between the semimetal and an antiferromagnetic insulator. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1306.3258v3-abstract-full').style.display = 'none'; document.getElementById('1306.3258v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 August, 2013; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 June, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 111, 066401 (2013) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1301.7683">arXiv:1301.7683</a> <span> [<a href="https://arxiv.org/pdf/1301.7683">pdf</a>, <a href="https://arxiv.org/ps/1301.7683">ps</a>, <a href="https://arxiv.org/format/1301.7683">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.88.245105">10.1103/PhysRevB.88.245105 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Transport through two interacting resonant levels connected by a Fermi sea </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Canovi%2C+E">Elena Canovi</a>, <a href="/search/cond-mat?searchtype=author&query=Moreno%2C+A">Alexander Moreno</a>, <a href="/search/cond-mat?searchtype=author&query=Muramatsu%2C+A">Alejandro Muramatsu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1301.7683v2-abstract-short" style="display: inline;"> We study transport at finite bias, i.e. beyond the linear regime, through two interacting resonant levels connected by a Fermi sea, by means of time-dependent density matrix renormalization group. We first consider methodological issues, like the protocol that leads to a current-currying state and the characterization of the steady state. At finite sizes both the current and the occupations of the… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1301.7683v2-abstract-full').style.display = 'inline'; document.getElementById('1301.7683v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1301.7683v2-abstract-full" style="display: none;"> We study transport at finite bias, i.e. beyond the linear regime, through two interacting resonant levels connected by a Fermi sea, by means of time-dependent density matrix renormalization group. We first consider methodological issues, like the protocol that leads to a current-currying state and the characterization of the steady state. At finite sizes both the current and the occupations of the interacting levels oscillate as a function of time. We determine the amplitude and period of such oscillations as a function of bias. We find that the occupations on the two dots oscillate with a relative phase which depends on the distance between the impurities and on the Fermi momentum of the Fermi sea, as expected for RKKY interactions. Also the approximant to the steady-state current displays oscillations as a function of the distance between the impurities. Such a behavior can be explained by resonances in the free case. We then discuss the incidence of interaction on such a behavior. We conclude by showing the effect of the bias on the current, making connection with the one-impurity case. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1301.7683v2-abstract-full').style.display = 'none'; document.getElementById('1301.7683v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 November, 2013; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 31 January, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 17 figures, revised version, accepted for publication in Phys. Rev. B</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 88, 245105 (2013) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1210.1398">arXiv:1210.1398</a> <span> [<a href="https://arxiv.org/pdf/1210.1398">pdf</a>, <a href="https://arxiv.org/format/1210.1398">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.87.075101">10.1103/PhysRevB.87.075101 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Charge and Spin Fractionalization Beyond the Luttinger Liquid Paradigm </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Moreno%2C+A">A. Moreno</a>, <a href="/search/cond-mat?searchtype=author&query=Muramatsu%2C+A">A. Muramatsu</a>, <a href="/search/cond-mat?searchtype=author&query=Carmelo%2C+J+M+P">J. M. P. Carmelo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1210.1398v2-abstract-short" style="display: inline;"> It is well established that at low energies one-dimensional (1D) fermionic systems are described by the Luttinger liquid (LL) theory, that predicts phenomena like spin-charge separation, and charge fractionalization into chiral modes. Here we show through the time evolution of an electron injected into a 1D t-J model, obtained with time-dependent density matrix renormalization group, that a furthe… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1210.1398v2-abstract-full').style.display = 'inline'; document.getElementById('1210.1398v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1210.1398v2-abstract-full" style="display: none;"> It is well established that at low energies one-dimensional (1D) fermionic systems are described by the Luttinger liquid (LL) theory, that predicts phenomena like spin-charge separation, and charge fractionalization into chiral modes. Here we show through the time evolution of an electron injected into a 1D t-J model, obtained with time-dependent density matrix renormalization group, that a further fractionalization of both charge and spin takes place beyond the hydrodynamic limit. Its dynamics can be understood at the supersymmetric point (J=2t) in terms of the excitations of the Bethe-Ansatz solution. Furthermore we show that fractionalization with similar characteristics extends to the whole region corresponding to a repulsive LL. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1210.1398v2-abstract-full').style.display = 'none'; document.getElementById('1210.1398v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 February, 2013; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 October, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2012. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 11 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 87, 075101 (2013) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1207.3783">arXiv:1207.3783</a> <span> [<a href="https://arxiv.org/pdf/1207.3783">pdf</a>, <a href="https://arxiv.org/ps/1207.3783">ps</a>, <a href="https://arxiv.org/format/1207.3783">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.109.126402">10.1103/PhysRevLett.109.126402 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Antiferromagnetism in the Hubbard Model on the Bernal-stacked Honeycomb Bilayer </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Lang%2C+T+C">Thomas C. Lang</a>, <a href="/search/cond-mat?searchtype=author&query=Meng%2C+Z+Y">Zi Yang Meng</a>, <a href="/search/cond-mat?searchtype=author&query=Scherer%2C+M+M">Michael M. Scherer</a>, <a href="/search/cond-mat?searchtype=author&query=Uebelacker%2C+S">Stefan Uebelacker</a>, <a href="/search/cond-mat?searchtype=author&query=Assaad%2C+F+F">Fakher F. Assaad</a>, <a href="/search/cond-mat?searchtype=author&query=Muramatsu%2C+A">Alejandro Muramatsu</a>, <a href="/search/cond-mat?searchtype=author&query=Honerkamp%2C+C">Carsten Honerkamp</a>, <a href="/search/cond-mat?searchtype=author&query=Wessel%2C+S">Stefan Wessel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1207.3783v2-abstract-short" style="display: inline;"> Using a combination of quantum Monte Carlo simulations, functional renormalization group calculations and mean-field theory, we study the Hubbard model on the Bernal-stacked honeycomb bilayer at half-filling as a model system for bilayer graphene. The free bands consisting of two Fermi points with quadratic dispersions lead to a finite density of states at the Fermi level, which triggers an antife… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1207.3783v2-abstract-full').style.display = 'inline'; document.getElementById('1207.3783v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1207.3783v2-abstract-full" style="display: none;"> Using a combination of quantum Monte Carlo simulations, functional renormalization group calculations and mean-field theory, we study the Hubbard model on the Bernal-stacked honeycomb bilayer at half-filling as a model system for bilayer graphene. The free bands consisting of two Fermi points with quadratic dispersions lead to a finite density of states at the Fermi level, which triggers an antiferromagnetic instability that spontaneously breaks sublattice and spin rotational symmetry once local Coulomb repulsions are introduced. Our results reveal an inhomogeneous participation of the spin moments in the ordered ground state, with enhanced moments at the three-fold coordinated sites. Furthermore, we find the antiferromagnetic ground state to be robust with respect to enhanced interlayer couplings and extended Coulomb interactions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1207.3783v2-abstract-full').style.display = 'none'; document.getElementById('1207.3783v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 September, 2012; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 July, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2012. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4+ pages, 4 figures; final version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 109, 126402 (2012) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1111.3949">arXiv:1111.3949</a> <span> [<a href="https://arxiv.org/pdf/1111.3949">pdf</a>, <a href="https://arxiv.org/ps/1111.3949">ps</a>, <a href="https://arxiv.org/format/1111.3949">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.85.115132">10.1103/PhysRevB.85.115132 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Quantum phase transitions in the Kane-Mele-Hubbard model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Hohenadler%2C+M">M. Hohenadler</a>, <a href="/search/cond-mat?searchtype=author&query=Meng%2C+Z+Y">Z. Y. Meng</a>, <a href="/search/cond-mat?searchtype=author&query=Lang%2C+T+C">T. C. Lang</a>, <a href="/search/cond-mat?searchtype=author&query=Wessel%2C+S">S. Wessel</a>, <a href="/search/cond-mat?searchtype=author&query=Muramatsu%2C+A">A. Muramatsu</a>, <a href="/search/cond-mat?searchtype=author&query=Assaad%2C+F+F">F. F. Assaad</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1111.3949v2-abstract-short" style="display: inline;"> We study the two-dimensional Kane-Mele-Hubbard model at half filling by means of quantum Monte Carlo simulations. We present a refined phase boundary for the quantum spin liquid. The topological insulator at finite Hubbard interaction strength is adiabatically connected to the groundstate of the Kane-Mele model. In the presence of spin-orbit coupling, magnetic order at large Hubbard U is restricte… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1111.3949v2-abstract-full').style.display = 'inline'; document.getElementById('1111.3949v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1111.3949v2-abstract-full" style="display: none;"> We study the two-dimensional Kane-Mele-Hubbard model at half filling by means of quantum Monte Carlo simulations. We present a refined phase boundary for the quantum spin liquid. The topological insulator at finite Hubbard interaction strength is adiabatically connected to the groundstate of the Kane-Mele model. In the presence of spin-orbit coupling, magnetic order at large Hubbard U is restricted to the transverse direction. The transition from the topological band insulator to the antiferromagnetic Mott insulator is in the universality class of the three-dimensional XY model. The numerical data suggest that the spin liquid to topological insulator and spin liquid to Mott insulator transitions are both continuous. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1111.3949v2-abstract-full').style.display = 'none'; document.getElementById('1111.3949v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 March, 2012; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 November, 2011; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2011. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 10 figures; final version; new Figs. 4(b) and 8(b)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 85, 115132 (2012) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1012.4028">arXiv:1012.4028</a> <span> [<a href="https://arxiv.org/pdf/1012.4028">pdf</a>, <a href="https://arxiv.org/format/1012.4028">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.83.205113">10.1103/PhysRevB.83.205113 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Ground-State Phase Diagram of the 1D t-J model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Moreno%2C+A">Alexander Moreno</a>, <a href="/search/cond-mat?searchtype=author&query=Muramatsu%2C+A">Alejandro Muramatsu</a>, <a href="/search/cond-mat?searchtype=author&query=Manmana%2C+S+R">Salvatore R. Manmana</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1012.4028v2-abstract-short" style="display: inline;"> We examine the ground-state phase diagram of the t-J model in one dimension by means of the Density Matrix Renormalization Group. This model is characterized by a rich phase diagram as a function of the exchange interaction J and the density n, displaying Luttinger-liquid (LL) behavior both of repulsive and attractive (i.e. superconducting) nature, a spin-gap phase, and phase-separation. The phase… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1012.4028v2-abstract-full').style.display = 'inline'; document.getElementById('1012.4028v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1012.4028v2-abstract-full" style="display: none;"> We examine the ground-state phase diagram of the t-J model in one dimension by means of the Density Matrix Renormalization Group. This model is characterized by a rich phase diagram as a function of the exchange interaction J and the density n, displaying Luttinger-liquid (LL) behavior both of repulsive and attractive (i.e. superconducting) nature, a spin-gap phase, and phase-separation. The phase boundaries separating the repulsive from the attractive LL phase as J is increased, and also the boundaries of the spin-gap region at low densities, and phase-separation at even larger J, are determined on the basis of correlation functions and energy-gaps. In particular, we shed light on a contradiction between variational and renormalization-group (RG) results about the extent of the spin-gap phase, that results larger than the variational but smaller than the RG one. Furthermore, we show that the spin gap can reach a sizable value (~ 0.1 t) at low enough filling, such that preformed pairs should be observable at temperatures below these energy scales. No evidence for a phase with clustering of more than two particles is found on approaching phase separation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1012.4028v2-abstract-full').style.display = 'none'; document.getElementById('1012.4028v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 May, 2011; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 December, 2010; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2010. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> NSF-KITP-10-162 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 83, 205113 (2011) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1003.5833">arXiv:1003.5833</a> <span> [<a href="https://arxiv.org/pdf/1003.5833">pdf</a>, <a href="https://arxiv.org/ps/1003.5833">ps</a>, <a href="https://arxiv.org/format/1003.5833">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nuclphysb.2010.09.001">10.1016/j.nuclphysb.2010.09.001 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Path integrals for dimerized quantum spin systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Foussats%2C+A">Adriana Foussats</a>, <a href="/search/cond-mat?searchtype=author&query=Greco%2C+A">Andres Greco</a>, <a href="/search/cond-mat?searchtype=author&query=Muramatsu%2C+A">Alejandro Muramatsu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1003.5833v3-abstract-short" style="display: inline;"> Dimerized quantum spin systems may appear under several circumstances, e.g\ by a modulation of the antiferromagnetic exchange coupling in space, or in frustrated quantum antiferromagnets. In general, such systems display a quantum phase transition to a N茅el state as a function of a suitable coupling constant. We present here two path-integral formulations appropriate for spin $S=1/2$ dimerized sys… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1003.5833v3-abstract-full').style.display = 'inline'; document.getElementById('1003.5833v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1003.5833v3-abstract-full" style="display: none;"> Dimerized quantum spin systems may appear under several circumstances, e.g\ by a modulation of the antiferromagnetic exchange coupling in space, or in frustrated quantum antiferromagnets. In general, such systems display a quantum phase transition to a N茅el state as a function of a suitable coupling constant. We present here two path-integral formulations appropriate for spin $S=1/2$ dimerized systems. The first one deals with a description of the dimers degrees of freedom in an SO(4) manifold, while the second one provides a path-integral for the bond-operators introduced by Sachdev and Bhatt. The path-integral quantization is performed using the Faddeev-Jackiw symplectic formalism for constrained systems, such that the measures and constraints that result from the algebra of the operators is provided in both cases. As an example we consider a spin-Peierls chain, and show how to arrive at the corresponding field-theory, starting with both a SO(4) formulation and bond-operators. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1003.5833v3-abstract-full').style.display = 'none'; document.getElementById('1003.5833v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 October, 2010; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 March, 2010; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2010. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, no figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nuclear Phys. B 842, 225 (2011) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1003.5809">arXiv:1003.5809</a> <span> [<a href="https://arxiv.org/pdf/1003.5809">pdf</a>, <a href="https://arxiv.org/ps/1003.5809">ps</a>, <a href="https://arxiv.org/format/1003.5809">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/nature08942">10.1038/nature08942 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Quantum spin-liquid emerging in two-dimensional correlated Dirac fermions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Meng%2C+Z+Y">Z. Y. Meng</a>, <a href="/search/cond-mat?searchtype=author&query=Lang%2C+T+C">T. C. Lang</a>, <a href="/search/cond-mat?searchtype=author&query=Wessel%2C+S">S. Wessel</a>, <a href="/search/cond-mat?searchtype=author&query=Assaad%2C+F+F">F. F. Assaad</a>, <a href="/search/cond-mat?searchtype=author&query=Muramatsu%2C+A">A. Muramatsu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1003.5809v1-abstract-short" style="display: inline;"> At sufficiently low temperatures, condensed-matter systems tend to develop order. An exception are quantum spin-liquids, where fluctuations prevent a transition to an ordered state down to the lowest temperatures. While such states are possibly realized in two-dimensional organic compounds, they have remained elusive in experimentally relevant microscopic two-dimensional models. Here, we show by m… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1003.5809v1-abstract-full').style.display = 'inline'; document.getElementById('1003.5809v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1003.5809v1-abstract-full" style="display: none;"> At sufficiently low temperatures, condensed-matter systems tend to develop order. An exception are quantum spin-liquids, where fluctuations prevent a transition to an ordered state down to the lowest temperatures. While such states are possibly realized in two-dimensional organic compounds, they have remained elusive in experimentally relevant microscopic two-dimensional models. Here, we show by means of large-scale quantum Monte Carlo simulations of correlated fermions on the honeycomb lattice, a structure realized in graphene, that a quantum spin-liquid emerges between the state described by massless Dirac fermions and an antiferromagnetically ordered Mott insulator. This unexpected quantum-disordered state is found to be a short-range resonating valence bond liquid, akin to the one proposed for high temperature superconductors. Therefore, the possibility of unconventional superconductivity through doping arises. We foresee its realization with ultra-cold atoms or with honeycomb lattices made with group IV elements. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1003.5809v1-abstract-full').style.display = 'none'; document.getElementById('1003.5809v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 March, 2010; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2010. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">42 pages, 4 figures in the main text, 11 figures in the Supplementary Information</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature 464, 847 (2010) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/0903.2017">arXiv:0903.2017</a> <span> [<a href="https://arxiv.org/pdf/0903.2017">pdf</a>, <a href="https://arxiv.org/ps/0903.2017">ps</a>, <a href="https://arxiv.org/format/0903.2017">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.80.041603">10.1103/PhysRevA.80.041603 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Quantum distillation: dynamical generation of low-entropy states of strongly correlated fermions in an optical lattice </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Heidrich-Meisner%2C+F">F. Heidrich-Meisner</a>, <a href="/search/cond-mat?searchtype=author&query=Manmana%2C+S+R">S. R. Manmana</a>, <a href="/search/cond-mat?searchtype=author&query=Rigol%2C+M">M. Rigol</a>, <a href="/search/cond-mat?searchtype=author&query=Muramatsu%2C+A">A. Muramatsu</a>, <a href="/search/cond-mat?searchtype=author&query=Feiguin%2C+A+E">A. E. Feiguin</a>, <a href="/search/cond-mat?searchtype=author&query=Dagotto%2C+E">E. Dagotto</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="0903.2017v2-abstract-short" style="display: inline;"> Correlations between particles can lead to subtle and sometimes counterintuitive phenomena. We analyze one such case, occurring during the sudden expansion of fermions in a lattice when the initial state has a strong admixture of double occupancies. We promote the notion of quantum distillation: during the expansion, and in the presence of strongly repulsive interactions, doublons group together… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0903.2017v2-abstract-full').style.display = 'inline'; document.getElementById('0903.2017v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="0903.2017v2-abstract-full" style="display: none;"> Correlations between particles can lead to subtle and sometimes counterintuitive phenomena. We analyze one such case, occurring during the sudden expansion of fermions in a lattice when the initial state has a strong admixture of double occupancies. We promote the notion of quantum distillation: during the expansion, and in the presence of strongly repulsive interactions, doublons group together, forming a nearly ideal band insulator, which is metastable with a low entropy. We propose that this effect could be used for cooling purposes in experiments with two-component Fermi gases. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0903.2017v2-abstract-full').style.display = 'none'; document.getElementById('0903.2017v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 October, 2009; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 March, 2009; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2009. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Final version as published, minor revisions, more discussion on the cooling proposal, includes auxiliary material (EPAPS), 7 pages Revtex 4, 12 eps figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. A 80, 041603(R) (2009) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/0812.0561">arXiv:0812.0561</a> <span> [<a href="https://arxiv.org/pdf/0812.0561">pdf</a>, <a href="https://arxiv.org/ps/0812.0561">ps</a>, <a href="https://arxiv.org/format/0812.0561">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.79.155104">10.1103/PhysRevB.79.155104 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Time evolution of correlations in strongly interacting fermions after a quantum quench </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Manmana%2C+S+R">Salvatore R. Manmana</a>, <a href="/search/cond-mat?searchtype=author&query=Wessel%2C+S">Stefan Wessel</a>, <a href="/search/cond-mat?searchtype=author&query=Noack%2C+R+M">Reinhard M. Noack</a>, <a href="/search/cond-mat?searchtype=author&query=Muramatsu%2C+A">Alejandro Muramatsu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="0812.0561v2-abstract-short" style="display: inline;"> Using the adaptive time-dependent density matrix renormalization group, we study the time evolution of density correlations of interacting spinless fermions on a one-dimensional lattice after a sudden change in the interaction strength. Over a broad range of model parameters, the correlation function exhibits a characteristic light-cone-like time evolution representative of a ballistic transport… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0812.0561v2-abstract-full').style.display = 'inline'; document.getElementById('0812.0561v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="0812.0561v2-abstract-full" style="display: none;"> Using the adaptive time-dependent density matrix renormalization group, we study the time evolution of density correlations of interacting spinless fermions on a one-dimensional lattice after a sudden change in the interaction strength. Over a broad range of model parameters, the correlation function exhibits a characteristic light-cone-like time evolution representative of a ballistic transport of information. Such behavior is observed both when quenching an insulator into the metallic region and also when quenching within the insulating region. However, when a metallic state beyond the quantum critical point is quenched deep into the insulating regime, no indication for ballistic transport is observed. Instead, stable domain walls in the density correlations emerge during the time evolution, consistent with the predictions of the Kibble-Zurek mechanism. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0812.0561v2-abstract-full').style.display = 'none'; document.getElementById('0812.0561v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 April, 2009; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 December, 2008; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2008. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Published version; minor changes, references added</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 79, 155104 (2009) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/0802.0430">arXiv:0802.0430</a> <span> [<a href="https://arxiv.org/pdf/0802.0430">pdf</a>, <a href="https://arxiv.org/ps/0802.0430">ps</a>, <a href="https://arxiv.org/format/0802.0430">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.77.075131">10.1103/PhysRevB.77.075131 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> One-particle spectral properties of the t-J-$V$ model on the triangular lattice near charge order </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Bejas%2C+M">M. Bejas</a>, <a href="/search/cond-mat?searchtype=author&query=Greco%2C+A">A. Greco</a>, <a href="/search/cond-mat?searchtype=author&query=Muramatsu%2C+A">A. Muramatsu</a>, <a href="/search/cond-mat?searchtype=author&query=Foussats%2C+A">A. Foussats</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="0802.0430v1-abstract-short" style="display: inline;"> We study the t-J-$V$ model beyond mean field level at finite doping on the triangular lattice. The Coulomb repulsion $V$ between nearest neighbors brings the system to a charge ordered state for $V$ larger than a critical value $V_c$. One-particle spectral properties as self-energy, spectral functions and the quasiparticle weight are studied near and far from the charge ordered phase. When the s… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0802.0430v1-abstract-full').style.display = 'inline'; document.getElementById('0802.0430v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="0802.0430v1-abstract-full" style="display: none;"> We study the t-J-$V$ model beyond mean field level at finite doping on the triangular lattice. The Coulomb repulsion $V$ between nearest neighbors brings the system to a charge ordered state for $V$ larger than a critical value $V_c$. One-particle spectral properties as self-energy, spectral functions and the quasiparticle weight are studied near and far from the charge ordered phase. When the system approaches the charge ordered state, charge fluctuations become soft and they strongly influence the system leading to incoherent one-particle excitations. Possible implications for cobaltates are given. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0802.0430v1-abstract-full').style.display = 'none'; document.getElementById('0802.0430v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 February, 2008; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2008. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 11 figures. accepted in Phys. Rev. B (Phys. Rev. B77, (2008))</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/0801.4454">arXiv:0801.4454</a> <span> [<a href="https://arxiv.org/pdf/0801.4454">pdf</a>, <a href="https://arxiv.org/ps/0801.4454">ps</a>, <a href="https://arxiv.org/format/0801.4454">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.78.013620">10.1103/PhysRevA.78.013620 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Ground-state reference systems for expanding correlated fermions in one dimension </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Heidrich-Meisner%2C+F">F. Heidrich-Meisner</a>, <a href="/search/cond-mat?searchtype=author&query=Rigol%2C+M">M. Rigol</a>, <a href="/search/cond-mat?searchtype=author&query=Muramatsu%2C+A">A. Muramatsu</a>, <a href="/search/cond-mat?searchtype=author&query=Feiguin%2C+A+E">A. E. Feiguin</a>, <a href="/search/cond-mat?searchtype=author&query=Dagotto%2C+E">E. Dagotto</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="0801.4454v3-abstract-short" style="display: inline;"> We study the sudden expansion of strongly correlated fermions in a one-dimensional lattice, utilizing the time-dependent density-matrix renormalization group method. Our focus is on the behavior of experimental observables such as the density, the momentum distribution function, and the density and spin structure factors. As our main result, we show that correlations in the transient regime can… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0801.4454v3-abstract-full').style.display = 'inline'; document.getElementById('0801.4454v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="0801.4454v3-abstract-full" style="display: none;"> We study the sudden expansion of strongly correlated fermions in a one-dimensional lattice, utilizing the time-dependent density-matrix renormalization group method. Our focus is on the behavior of experimental observables such as the density, the momentum distribution function, and the density and spin structure factors. As our main result, we show that correlations in the transient regime can be accurately described by equilibrium reference systems. In addition, we find that the expansion from a Mott insulator produces distinctive peaks in the momentum distribution function at |k| ~ pi/2, accompanied by the onset of power-law correlations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0801.4454v3-abstract-full').style.display = 'none'; document.getElementById('0801.4454v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 July, 2008; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 January, 2008; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2008. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages Revtex4, 7 eps-figures, minor changes, additional references, as published</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. A 78, 013620 (2008) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/0705.1918">arXiv:0705.1918</a> <span> [<a href="https://arxiv.org/pdf/0705.1918">pdf</a>, <a href="https://arxiv.org/ps/0705.1918">ps</a>, <a href="https://arxiv.org/format/0705.1918">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nuclphysb.2007.10.025">10.1016/j.nuclphysb.2007.10.025 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Massive CP$^1$ theory from a microscopic model for doped antiferromagnets </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Falb%2C+J">J. Falb</a>, <a href="/search/cond-mat?searchtype=author&query=Muramatsu%2C+A">A. Muramatsu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="0705.1918v1-abstract-short" style="display: inline;"> A path-integral for the t-J model in two dimensions is constructed based on Dirac quantization, with an action found originally by Wiegmann (Phys. Rev. Lett. {\bf 60}, 821 (1988); Nucl. Phys. B323, 311 (1989)). Concentrating on the low doping limit, we assume short range antiferromagnetic order of the spin degrees of freedom. Going over to a local spin quantization axis of the dopant fermions, t… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0705.1918v1-abstract-full').style.display = 'inline'; document.getElementById('0705.1918v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="0705.1918v1-abstract-full" style="display: none;"> A path-integral for the t-J model in two dimensions is constructed based on Dirac quantization, with an action found originally by Wiegmann (Phys. Rev. Lett. {\bf 60}, 821 (1988); Nucl. Phys. B323, 311 (1989)). Concentrating on the low doping limit, we assume short range antiferromagnetic order of the spin degrees of freedom. Going over to a local spin quantization axis of the dopant fermions, that follows the spin degree of freedom, staggered CP$^1$ fields result and the constraint against double occupancy can be resolved. The staggered CP$^1$ fields are split into slow and fast modes, such that after a gradient expansion, and after integrating out the fast modes and the dopant fermions, a CP$^1$ field-theory with a massive gauge field is obtained that describes generically incommensurate coplanar magnetic structures, as discussed previously in the context of frustrated quantum antiferromagnets. Hence, the possibility of deconfined spinons is opened by doping a colinear antiferromagnet. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0705.1918v1-abstract-full').style.display = 'none'; document.getElementById('0705.1918v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 May, 2007; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2007. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">24 pages, no figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nuclear Physics B Vol 795/3 pp 519-548 2008 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/cond-mat/0612415">arXiv:cond-mat/0612415</a> <span> [<a href="https://arxiv.org/pdf/cond-mat/0612415">pdf</a>, <a href="https://arxiv.org/ps/cond-mat/0612415">ps</a>, <a href="https://arxiv.org/format/cond-mat/0612415">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.74.053616">10.1103/PhysRevA.74.053616 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Hard-core bosons on optical superlattices: Dynamics and relaxation in the superfluid and insulating regimes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Rigol%2C+M">Marcos Rigol</a>, <a href="/search/cond-mat?searchtype=author&query=Muramatsu%2C+A">Alejandro Muramatsu</a>, <a href="/search/cond-mat?searchtype=author&query=Olshanii%2C+M">Maxim Olshanii</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="cond-mat/0612415v1-abstract-short" style="display: inline;"> We study the ground-state properties and nonequilibrium dynamics of hard-core bosons confined in one-dimensional lattices in the presence of an additional periodic potential (superlattice) and a harmonic trap. The dynamics is analyzed after a sudden switch-on or switch-off of the superlattice potential, which can bring the system into insulating or superfluid phases, respectively. A collapse and… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/0612415v1-abstract-full').style.display = 'inline'; document.getElementById('cond-mat/0612415v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="cond-mat/0612415v1-abstract-full" style="display: none;"> We study the ground-state properties and nonequilibrium dynamics of hard-core bosons confined in one-dimensional lattices in the presence of an additional periodic potential (superlattice) and a harmonic trap. The dynamics is analyzed after a sudden switch-on or switch-off of the superlattice potential, which can bring the system into insulating or superfluid phases, respectively. A collapse and revival of the zero-momentum peak can be seen in the first case. We study in detail the relaxation of these integrable systems towards equilibrium. We show how after relaxation time averages of physical observables, like the momentum distribution function, can be predicted by means of a generalization of the Gibbs distribution. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/0612415v1-abstract-full').style.display = 'none'; document.getElementById('cond-mat/0612415v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 December, 2006; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2006. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 17 figures, published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. A 74, 053616 (2006) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/cond-mat/0612030">arXiv:cond-mat/0612030</a> <span> [<a href="https://arxiv.org/pdf/cond-mat/0612030">pdf</a>, <a href="https://arxiv.org/ps/cond-mat/0612030">ps</a>, <a href="https://arxiv.org/format/cond-mat/0612030">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.98.210405">10.1103/PhysRevLett.98.210405 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Strongly correlated fermions after a quantum quench </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Manmana%2C+S+R">S. R. Manmana</a>, <a href="/search/cond-mat?searchtype=author&query=Wessel%2C+S">S. Wessel</a>, <a href="/search/cond-mat?searchtype=author&query=Noack%2C+R+M">R. M. Noack</a>, <a href="/search/cond-mat?searchtype=author&query=Muramatsu%2C+A">A. Muramatsu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="cond-mat/0612030v2-abstract-short" style="display: inline;"> Using the adaptive time-dependent density-matrix renormalization group method, we study the time evolution of strongly correlated spinless fermions on a one-dimensional lattice after a sudden change of the interaction strength. For certain parameter values, two different initial states (e.g., metallic and insulating), lead to observables which become indistinguishable after relaxation. We find t… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/0612030v2-abstract-full').style.display = 'inline'; document.getElementById('cond-mat/0612030v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="cond-mat/0612030v2-abstract-full" style="display: none;"> Using the adaptive time-dependent density-matrix renormalization group method, we study the time evolution of strongly correlated spinless fermions on a one-dimensional lattice after a sudden change of the interaction strength. For certain parameter values, two different initial states (e.g., metallic and insulating), lead to observables which become indistinguishable after relaxation. We find that the resulting quasi-stationary state is non-thermal. This result holds for both integrable and non-integrable variants of the system. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/0612030v2-abstract-full').style.display = 'none'; document.getElementById('cond-mat/0612030v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 May, 2007; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 December, 2006; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2006. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 pages, 5 figures, published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 98, 210405 (2007) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/cond-mat/0608491">arXiv:cond-mat/0608491</a> <span> [<a href="https://arxiv.org/pdf/cond-mat/0608491">pdf</a>, <a href="https://arxiv.org/ps/cond-mat/0608491">ps</a>, <a href="https://arxiv.org/format/cond-mat/0608491">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.75.161104">10.1103/PhysRevB.75.161104 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Supersolids in confined fermions on one-dimensional optical lattices </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Pour%2C+F+K">F. Karim Pour</a>, <a href="/search/cond-mat?searchtype=author&query=Rigol%2C+M">M. Rigol</a>, <a href="/search/cond-mat?searchtype=author&query=Wessel%2C+S">S. Wessel</a>, <a href="/search/cond-mat?searchtype=author&query=Muramatsu%2C+A">A. Muramatsu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="cond-mat/0608491v2-abstract-short" style="display: inline;"> Using quantum Monte Carlo simulations, we show that density-density and pairing correlation functions of the one-dimensional attractive fermionic Hubbard model in a harmonic confinement potential are characterized by the anomalous dimension $K_蟻$ of a corresponding periodic system, and hence display quantum critical behavior. The corresponding fluctuations render the SU(2) symmetry breaking by t… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/0608491v2-abstract-full').style.display = 'inline'; document.getElementById('cond-mat/0608491v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="cond-mat/0608491v2-abstract-full" style="display: none;"> Using quantum Monte Carlo simulations, we show that density-density and pairing correlation functions of the one-dimensional attractive fermionic Hubbard model in a harmonic confinement potential are characterized by the anomalous dimension $K_蟻$ of a corresponding periodic system, and hence display quantum critical behavior. The corresponding fluctuations render the SU(2) symmetry breaking by the confining potential irrelevant, leading to structure form factors for both correlation functions that scale with the same exponent upon increasing the system size, thus giving rise to a (quasi)supersolid. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/0608491v2-abstract-full').style.display = 'none'; document.getElementById('cond-mat/0608491v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 April, 2007; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 August, 2006; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2006. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 pages, 5 figures, published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 75, 161104(R) (2007) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/cond-mat/0608428">arXiv:cond-mat/0608428</a> <span> [<a href="https://arxiv.org/pdf/cond-mat/0608428">pdf</a>, <a href="https://arxiv.org/ps/cond-mat/0608428">ps</a>, <a href="https://arxiv.org/format/cond-mat/0608428">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/0953-8984/18/50/002">10.1088/0953-8984/18/50/002 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Electron-phonon interaction dressed by electronic correlations near charge ordering as the origin for superconductivity in cobaltates </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Foussats%2C+A">A. Foussats</a>, <a href="/search/cond-mat?searchtype=author&query=Greco%2C+A">A. Greco</a>, <a href="/search/cond-mat?searchtype=author&query=Bejas%2C+M">M. Bejas</a>, <a href="/search/cond-mat?searchtype=author&query=Muramatsu%2C+A">A. Muramatsu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="cond-mat/0608428v1-abstract-short" style="display: inline;"> We consider possible routes to superconductivity in hydrated cobaltates Na_xCoO_2.yH_2O on the basis of the t-J-V model plus phonons on the triangular lattice. We studied the stability conditions for the homogeneous Fermi liquid (HFL) phase against different broken symmetry phases. Besides the sqrt(3)xsqrt(3)-CDW phase, triggered by the nearest-neighbour Coulomb interaction V, we have found that… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/0608428v1-abstract-full').style.display = 'inline'; document.getElementById('cond-mat/0608428v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="cond-mat/0608428v1-abstract-full" style="display: none;"> We consider possible routes to superconductivity in hydrated cobaltates Na_xCoO_2.yH_2O on the basis of the t-J-V model plus phonons on the triangular lattice. We studied the stability conditions for the homogeneous Fermi liquid (HFL) phase against different broken symmetry phases. Besides the sqrt(3)xsqrt(3)-CDW phase, triggered by the nearest-neighbour Coulomb interaction V, we have found that the HFL is unstable, at very low doping, against a bond-ordered phase due to J. We also discuss the occurrence of phase separation at low doping and V. The interplay between the electron-phonon interaction and correlations near the sqrt(3)xsqrt(3)-CDW leads to superconductivity in the unconventional next-nearest neighbour f-wave (NNN-f) channel with a dome shape for Tc around x ~ 0.35, and with values of a few Kelvin as seen in experiments. Near the bond-ordered phase at low doping we found tendencies to superconductivity with d-wave symmetry for finite J and x<0.15. Contact with experiments is given along the paper. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/0608428v1-abstract-full').style.display = 'none'; document.getElementById('cond-mat/0608428v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 August, 2006; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2006. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/cond-mat/0606155">arXiv:cond-mat/0606155</a> <span> [<a href="https://arxiv.org/pdf/cond-mat/0606155">pdf</a>, <a href="https://arxiv.org/ps/cond-mat/0606155">ps</a>, <a href="https://arxiv.org/format/cond-mat/0606155">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1367-2630/8/8/169">10.1088/1367-2630/8/8/169 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Coherent matter waves emerging from Mott-insulators </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Rodriguez%2C+K">K. Rodriguez</a>, <a href="/search/cond-mat?searchtype=author&query=Manmana%2C+S+R">S. R. Manmana</a>, <a href="/search/cond-mat?searchtype=author&query=Rigol%2C+M">M. Rigol</a>, <a href="/search/cond-mat?searchtype=author&query=Noack%2C+R+M">R. M. Noack</a>, <a href="/search/cond-mat?searchtype=author&query=Muramatsu%2C+A">A. Muramatsu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="cond-mat/0606155v2-abstract-short" style="display: inline;"> We study the formation of (quasi-)coherent matter waves emerging from a Mott insulator for strongly interacting bosons on a one-dimensional lattice. It has been shown previously that a quasi-condensate emerges at momentum k=蟺/2a, where a is the lattice constant, in the limit of infinitely strong repulsion (hard-core bosons). Here we show that this phenomenon persists for all values of the repuls… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/0606155v2-abstract-full').style.display = 'inline'; document.getElementById('cond-mat/0606155v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="cond-mat/0606155v2-abstract-full" style="display: none;"> We study the formation of (quasi-)coherent matter waves emerging from a Mott insulator for strongly interacting bosons on a one-dimensional lattice. It has been shown previously that a quasi-condensate emerges at momentum k=蟺/2a, where a is the lattice constant, in the limit of infinitely strong repulsion (hard-core bosons). Here we show that this phenomenon persists for all values of the repulsive interaction that lead to a Mott insulator at a commensurate filling. The non-equilibrium dynamics of hard-core bosons is treated exactly by means of a Jordan-Wigner transformation, and the generic case is studied using a time-dependent density matrix renormalization group technique. Different methods for controlling the emerging matter wave are discussed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/0606155v2-abstract-full').style.display = 'none'; document.getElementById('cond-mat/0606155v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 September, 2006; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 June, 2006; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2006. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 11 figures. Published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> New J. Phys. 8, 169 (2006) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/cond-mat/0507351">arXiv:cond-mat/0507351</a> <span> [<a href="https://arxiv.org/pdf/cond-mat/0507351">pdf</a>, <a href="https://arxiv.org/ps/cond-mat/0507351">ps</a>, <a href="https://arxiv.org/format/cond-mat/0507351">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1142/S0217984905008876">10.1142/S0217984905008876 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Free expansion of impenetrable bosons on one-dimensional optical lattices </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Rigol%2C+M">Marcos Rigol</a>, <a href="/search/cond-mat?searchtype=author&query=Muramatsu%2C+A">Alejandro Muramatsu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="cond-mat/0507351v2-abstract-short" style="display: inline;"> We review recent exact results for the free expansion of impenetrable bosons on one-dimensional lattices, after switching off a confining potential. When the system is initially in a superfluid state, far from the regime in which the Mott-insulator appears in the middle of the trap, the momentum distribution of the expanding bosons rapidly approaches the momentum distribution of noninteracting f… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/0507351v2-abstract-full').style.display = 'inline'; document.getElementById('cond-mat/0507351v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="cond-mat/0507351v2-abstract-full" style="display: none;"> We review recent exact results for the free expansion of impenetrable bosons on one-dimensional lattices, after switching off a confining potential. When the system is initially in a superfluid state, far from the regime in which the Mott-insulator appears in the middle of the trap, the momentum distribution of the expanding bosons rapidly approaches the momentum distribution of noninteracting fermions. Remarkably, no loss in coherence is observed in the system as reflected by a large occupation of the lowest eigenstate of the one-particle density matrix. In the opposite limit, when the initial system is a pure Mott insulator with one particle per lattice site, the expansion leads to the emergence of quasicondensates at finite momentum. In this case, one-particle correlations like the ones shown to be universal in the equilibrium case develop in the system. We show that the out-of-equilibrium behavior of the Shannon information entropy in momentum space, and its contrast with the one of noninteracting fermions, allows to differentiate the two different regimes of interest. It also helps in understanding the crossover between them. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/0507351v2-abstract-full').style.display = 'none'; document.getElementById('cond-mat/0507351v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 October, 2005; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 July, 2005; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2005. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 14 figures, invited brief review</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Mod. Phys. Lett. B 19, 861 (2005) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/cond-mat/0502599">arXiv:cond-mat/0502599</a> <span> [<a href="https://arxiv.org/pdf/cond-mat/0502599">pdf</a>, <a href="https://arxiv.org/ps/cond-mat/0502599">ps</a>, <a href="https://arxiv.org/format/cond-mat/0502599">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.95.218901">10.1103/PhysRevLett.95.218901 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Comment on "Novel Superfluidity in a Trapped Gas of Fermi Atoms with Repulsive Interaction Loaded on an Optical Lattice" </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Rigol%2C+M">M. Rigol</a>, <a href="/search/cond-mat?searchtype=author&query=Manmana%2C+S+R">S. R. Manmana</a>, <a href="/search/cond-mat?searchtype=author&query=Muramatsu%2C+A">A. Muramatsu</a>, <a href="/search/cond-mat?searchtype=author&query=Scalettar%2C+R+T">R. T. Scalettar</a>, <a href="/search/cond-mat?searchtype=author&query=Singh%2C+R+R+P">R. R. P. Singh</a>, <a href="/search/cond-mat?searchtype=author&query=Wessel%2C+S">S. Wessel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="cond-mat/0502599v2-abstract-short" style="display: inline;"> In a recent letter Machida et al. [Phys. Rev. Lett. 93, 200402 (2004)] concluded that in a trapped gas of fermions with repulsive interactions a superfluid phase appears around the Mott-insulator at the center of the trap. They base their conclusion on a negative binding energy, and a large weight for a singlet formed by particles located at opposite sides of the Mott-insulator. We show here tha… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/0502599v2-abstract-full').style.display = 'inline'; document.getElementById('cond-mat/0502599v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="cond-mat/0502599v2-abstract-full" style="display: none;"> In a recent letter Machida et al. [Phys. Rev. Lett. 93, 200402 (2004)] concluded that in a trapped gas of fermions with repulsive interactions a superfluid phase appears around the Mott-insulator at the center of the trap. They base their conclusion on a negative binding energy, and a large weight for a singlet formed by particles located at opposite sides of the Mott-insulator. We show here that the observed effects are not related to superfluidity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/0502599v2-abstract-full').style.display = 'none'; document.getElementById('cond-mat/0502599v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 November, 2005; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 February, 2005; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2005. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Revtex file, 1 page, 1 figure, published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 95, 218901 (2005) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/cond-mat/0502396">arXiv:cond-mat/0502396</a> <span> [<a href="https://arxiv.org/pdf/cond-mat/0502396">pdf</a>, <a href="https://arxiv.org/ps/cond-mat/0502396">ps</a>, <a href="https://arxiv.org/format/cond-mat/0502396">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/1.2080353">10.1063/1.2080353 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Time evolution of one-dimensional Quantum Many Body Systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Manmana%2C+S+R">Salvatore R. Manmana</a>, <a href="/search/cond-mat?searchtype=author&query=Muramatsu%2C+A">Alejandro Muramatsu</a>, <a href="/search/cond-mat?searchtype=author&query=Noack%2C+R+M">Reinhard M. Noack</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="cond-mat/0502396v1-abstract-short" style="display: inline;"> The level of current understanding of the physics of time-dependent strongly correlated quantum systems is far from complete, principally due to the lack of effective controlled approaches. Recently, there has been progress in the development of approaches for one-dimensional systems. We describe recent developments in the construction of numerical schemes for general (one-dimensional) Hamiltoni… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/0502396v1-abstract-full').style.display = 'inline'; document.getElementById('cond-mat/0502396v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="cond-mat/0502396v1-abstract-full" style="display: none;"> The level of current understanding of the physics of time-dependent strongly correlated quantum systems is far from complete, principally due to the lack of effective controlled approaches. Recently, there has been progress in the development of approaches for one-dimensional systems. We describe recent developments in the construction of numerical schemes for general (one-dimensional) Hamiltonians: in particular, schemes based on exact diagonalization techniques and on the density matrix renormalization group method (DMRG). We present preliminary results for spinless fermions with nearest-neighbor-interaction and investigate their accuracy by comparing with exact results. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/0502396v1-abstract-full').style.display = 'none'; document.getElementById('cond-mat/0502396v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 February, 2005; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2005. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Contribution for the conference proceedings of the "IX. Training Course in the Physics of Correlated Electron Systems and High-Tc Superconductors" held in Vietri sul Mare (Salerno, Italy) in October 2004</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> AIP Conf. Proc. 789, 269-278 (2005) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/cond-mat/0412543">arXiv:cond-mat/0412543</a> <span> [<a href="https://arxiv.org/pdf/cond-mat/0412543">pdf</a>, <a href="https://arxiv.org/ps/cond-mat/0412543">ps</a>, <a href="https://arxiv.org/format/cond-mat/0412543">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.optcom.2004.10.040">10.1016/j.optcom.2004.10.040 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Numerical simulations of strongly correlated fermions confined in 1D optical lattices </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Rigol%2C+M">Marcos Rigol</a>, <a href="/search/cond-mat?searchtype=author&query=Muramatsu%2C+A">Alejandro Muramatsu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="cond-mat/0412543v1-abstract-short" style="display: inline;"> On the basis of quantum Monte Carlo (QMC) simulations we study the formation of Mott domains in the one-dimensional Hubbard model with an additional confining potential. We find evidences of quantum critical behavior at the boundaries of the Mott-insulating regions. A local compressibility defined to characterize the local phases exhibits a non-trivial critical exponent on entering the Mott-insu… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/0412543v1-abstract-full').style.display = 'inline'; document.getElementById('cond-mat/0412543v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="cond-mat/0412543v1-abstract-full" style="display: none;"> On the basis of quantum Monte Carlo (QMC) simulations we study the formation of Mott domains in the one-dimensional Hubbard model with an additional confining potential. We find evidences of quantum critical behavior at the boundaries of the Mott-insulating regions. A local compressibility defined to characterize the local phases exhibits a non-trivial critical exponent on entering the Mott-insulating domains. Both the local compressibility and the variance of the local density show universality with respect to the confining potential. We also study the momentum distribution function of the trapped system, and determine its phase diagram. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/0412543v1-abstract-full').style.display = 'none'; document.getElementById('cond-mat/0412543v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 December, 2004; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2004. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 11 figures. Published in a special issue on Ultracold Atoms and Degenerate Quantum Gases</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Opt. Commun. 243, 33 (2004) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/cond-mat/0410683">arXiv:cond-mat/0410683</a> <span> [<a href="https://arxiv.org/pdf/cond-mat/0410683">pdf</a>, <a href="https://arxiv.org/ps/cond-mat/0410683">ps</a>, <a href="https://arxiv.org/format/cond-mat/0410683">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.94.240403">10.1103/PhysRevLett.94.240403 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Fermionization in an expanding 1D gas of hard-core bosons </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Rigol%2C+M">Marcos Rigol</a>, <a href="/search/cond-mat?searchtype=author&query=Muramatsu%2C+A">Alejandro Muramatsu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="cond-mat/0410683v2-abstract-short" style="display: inline;"> We show by means of an exact numerical approach that the momentum distribution of a free expanding gas of hard-core bosons on a one-dimensional lattice approaches to the one of noninteracting fermions, acquiring a Fermi edge. Yet there is a power-law decay of the one-particle density matrix $蟻_x\sim 1/\sqrt{x}$, as usual for hard-core bosons in the ground state, which accounts for a large occupa… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/0410683v2-abstract-full').style.display = 'inline'; document.getElementById('cond-mat/0410683v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="cond-mat/0410683v2-abstract-full" style="display: none;"> We show by means of an exact numerical approach that the momentum distribution of a free expanding gas of hard-core bosons on a one-dimensional lattice approaches to the one of noninteracting fermions, acquiring a Fermi edge. Yet there is a power-law decay of the one-particle density matrix $蟻_x\sim 1/\sqrt{x}$, as usual for hard-core bosons in the ground state, which accounts for a large occupation of the lowest natural orbitals for all expansion times. The fermionization of the momentum distribution function, which is not observed in equilibrium, is analyzed in detail. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/0410683v2-abstract-full').style.display = 'none'; document.getElementById('cond-mat/0410683v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 July, 2005; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 October, 2004; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2004. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Revtex file, 4 pages, 6 figures, published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 94, 240403 (2005) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/cond-mat/0410290">arXiv:cond-mat/0410290</a> <span> [<a href="https://arxiv.org/pdf/cond-mat/0410290">pdf</a>, <a href="https://arxiv.org/ps/cond-mat/0410290">ps</a>, <a href="https://arxiv.org/format/cond-mat/0410290">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.72.020504">10.1103/PhysRevB.72.020504 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Cooperative effect of phonons and electronic correlations for superconductivity in cobaltates </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Foussats%2C+A">A. Foussats</a>, <a href="/search/cond-mat?searchtype=author&query=Greco%2C+A">A. Greco</a>, <a href="/search/cond-mat?searchtype=author&query=Bejas%2C+M">M. Bejas</a>, <a href="/search/cond-mat?searchtype=author&query=Muramatsu%2C+A">A. Muramatsu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="cond-mat/0410290v2-abstract-short" style="display: inline;"> We propose that unconventional superconductivity in hydrated sodium cobaltate $Na_xCoO_2$ results from an interplay of electronic correlations and electron-phonon interactions. On the basis of the $t-V$ model plus phonons we found evidences for a) unconventional superconductivity, b) realistic values of $T_c$ and c) the dome shape existing near $x \sim 0.35$. This picture is obtained for $V$ clo… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/0410290v2-abstract-full').style.display = 'inline'; document.getElementById('cond-mat/0410290v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="cond-mat/0410290v2-abstract-full" style="display: none;"> We propose that unconventional superconductivity in hydrated sodium cobaltate $Na_xCoO_2$ results from an interplay of electronic correlations and electron-phonon interactions. On the basis of the $t-V$ model plus phonons we found evidences for a) unconventional superconductivity, b) realistic values of $T_c$ and c) the dome shape existing near $x \sim 0.35$. This picture is obtained for $V$ close to the critical Coulomb repulsion $V_c$ which separates the uniform Fermi liquid from $\sqrt{3} \times \sqrt{3}$ CDW ordered phase. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/0410290v2-abstract-full').style.display = 'none'; document.getElementById('cond-mat/0410290v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 July, 2005; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 October, 2004; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2004. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 pages, 3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys.Rev.B72,020504(R)(2005) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/cond-mat/0409132">arXiv:cond-mat/0409132</a> <span> [<a href="https://arxiv.org/pdf/cond-mat/0409132">pdf</a>, <a href="https://arxiv.org/ps/cond-mat/0409132">ps</a>, <a href="https://arxiv.org/format/cond-mat/0409132">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.72.013604">10.1103/PhysRevA.72.013604 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Ground-state properties of hard-core bosons confined on one-dimensional optical lattices </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Rigol%2C+M">Marcos Rigol</a>, <a href="/search/cond-mat?searchtype=author&query=Muramatsu%2C+A">Alejandro Muramatsu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="cond-mat/0409132v2-abstract-short" style="display: inline;"> We study the ground-state properties of hard-core bosons trapped by arbitrary confining potentials on one-dimensional optical lattices. A recently developed exact approach based on the Jordan-Wigner transformation is used. We analyze the large distance behavior of the one-particle density matrix, the momentum distribution function, and the lowest natural orbitals. In addition, the low-density li… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/0409132v2-abstract-full').style.display = 'inline'; document.getElementById('cond-mat/0409132v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="cond-mat/0409132v2-abstract-full" style="display: none;"> We study the ground-state properties of hard-core bosons trapped by arbitrary confining potentials on one-dimensional optical lattices. A recently developed exact approach based on the Jordan-Wigner transformation is used. We analyze the large distance behavior of the one-particle density matrix, the momentum distribution function, and the lowest natural orbitals. In addition, the low-density limit in the lattice is studied systematically, and the results obtained compared with the ones known for the hard-core boson gas without the lattice. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/0409132v2-abstract-full').style.display = 'none'; document.getElementById('cond-mat/0409132v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 July, 2005; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 September, 2004; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2004. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">RevTex file, 14 pages, 22 figures, published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. A 72, 013604 (2005) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/cond-mat/0403387">arXiv:cond-mat/0403387</a> <span> [<a href="https://arxiv.org/pdf/cond-mat/0403387">pdf</a>, <a href="https://arxiv.org/ps/cond-mat/0403387">ps</a>, <a href="https://arxiv.org/format/cond-mat/0403387">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.93.230404">10.1103/PhysRevLett.93.230404 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Emergence of quasi-condensates of hard-core bosons at finite momentum </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Rigol%2C+M">Marcos Rigol</a>, <a href="/search/cond-mat?searchtype=author&query=Muramatsu%2C+A">Alejandro Muramatsu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="cond-mat/0403387v2-abstract-short" style="display: inline;"> An exact treatment of the non-equilibrium dynamics of hard-core bosons on one-dimensional lattices shows that, starting from a pure Fock state, quasi-long-range correlations develop dynamically, and that they lead to the formation of quasi-condensates at finite momenta. Scaling relations characterizing the quasi-condensate and the dynamics of its formation are obtained. The relevance of our find… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/0403387v2-abstract-full').style.display = 'inline'; document.getElementById('cond-mat/0403387v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="cond-mat/0403387v2-abstract-full" style="display: none;"> An exact treatment of the non-equilibrium dynamics of hard-core bosons on one-dimensional lattices shows that, starting from a pure Fock state, quasi-long-range correlations develop dynamically, and that they lead to the formation of quasi-condensates at finite momenta. Scaling relations characterizing the quasi-condensate and the dynamics of its formation are obtained. The relevance of our findings for atom lasers with full control of the wave-length by means of a lattice is discussed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/0403387v2-abstract-full').style.display = 'none'; document.getElementById('cond-mat/0403387v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 December, 2004; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 March, 2004; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2004. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Revtex file, 4 pages, 4 figures. Published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 93, 230404 (2004) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/cond-mat/0403078">arXiv:cond-mat/0403078</a> <span> [<a href="https://arxiv.org/pdf/cond-mat/0403078">pdf</a>, <a href="https://arxiv.org/ps/cond-mat/0403078">ps</a>, <a href="https://arxiv.org/format/cond-mat/0403078">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.70.031603">10.1103/PhysRevA.70.031603 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Universal properties of hard-core bosons confined on one-dimensional lattices </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Rigol%2C+M">Marcos Rigol</a>, <a href="/search/cond-mat?searchtype=author&query=Muramatsu%2C+A">Alejandro Muramatsu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="cond-mat/0403078v2-abstract-short" style="display: inline;"> Based on an exact treatment of hard-core bosons confined on one-dimensional lattices, we obtain the large distance behavior of the one-particle density matrix, and show how it determines the occupation of the lowest natural orbital in the thermodynamic limit. We also study the occupation $位_畏$ of the natural orbitals for large-$畏$ at low densities. Both quantities show universal behavior indepen… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/0403078v2-abstract-full').style.display = 'inline'; document.getElementById('cond-mat/0403078v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="cond-mat/0403078v2-abstract-full" style="display: none;"> Based on an exact treatment of hard-core bosons confined on one-dimensional lattices, we obtain the large distance behavior of the one-particle density matrix, and show how it determines the occupation of the lowest natural orbital in the thermodynamic limit. We also study the occupation $位_畏$ of the natural orbitals for large-$畏$ at low densities. Both quantities show universal behavior independently of the confining potential. Finite-size corrections and the momentum distribution function for finite systems are also analyzed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/0403078v2-abstract-full').style.display = 'none'; document.getElementById('cond-mat/0403078v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 September, 2004; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 March, 2004; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2004. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Revtex file, 5 pages, 5 figures. Content and references added. Published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. A 70, 031603(R) (2004) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/cond-mat/0311444">arXiv:cond-mat/0311444</a> <span> [<a href="https://arxiv.org/pdf/cond-mat/0311444">pdf</a>, <a href="https://arxiv.org/ps/cond-mat/0311444">ps</a>, <a href="https://arxiv.org/format/cond-mat/0311444">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.70.043627">10.1103/PhysRevA.70.043627 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Confinement control by optical lattices </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Rigol%2C+M">Marcos Rigol</a>, <a href="/search/cond-mat?searchtype=author&query=Muramatsu%2C+A">Alejandro Muramatsu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="cond-mat/0311444v3-abstract-short" style="display: inline;"> It is shown that the interplay of a confining potential with a periodic potential leads for free particles to states spatially confined on a fraction of the total extension of the system. A more complex `slicing' of the system can be achieved by increasing the period of the lattice potential. These results are especially relevant for fermionic systems, where interaction effects are in general st… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/0311444v3-abstract-full').style.display = 'inline'; document.getElementById('cond-mat/0311444v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="cond-mat/0311444v3-abstract-full" style="display: none;"> It is shown that the interplay of a confining potential with a periodic potential leads for free particles to states spatially confined on a fraction of the total extension of the system. A more complex `slicing' of the system can be achieved by increasing the period of the lattice potential. These results are especially relevant for fermionic systems, where interaction effects are in general strongly reduced for a single species at low temperatures. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/0311444v3-abstract-full').style.display = 'none'; document.getElementById('cond-mat/0311444v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 October, 2004; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 November, 2003; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2003. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Revtex file, 13 pages, 18 figures. References added. Published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. A 70, 043627 (2004) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/cond-mat/0309670">arXiv:cond-mat/0309670</a> <span> [<a href="https://arxiv.org/pdf/cond-mat/0309670">pdf</a>, <a href="https://arxiv.org/ps/cond-mat/0309670">ps</a>, <a href="https://arxiv.org/format/cond-mat/0309670">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.69.053612">10.1103/PhysRevA.69.053612 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Quantum Monte Carlo study of confined fermions in one-dimensional optical lattices </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Rigol%2C+M">Marcos Rigol</a>, <a href="/search/cond-mat?searchtype=author&query=Muramatsu%2C+A">Alejandro Muramatsu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="cond-mat/0309670v2-abstract-short" style="display: inline;"> Using quantum Monte Carlo (QMC) simulations we study the ground-state properties of the one-dimensional fermionic Hubbard model in traps with an underlying lattice. Since due to the confining potential the density is space dependent, Mott-insulating domains always coexist with metallic regions, such that global quantities are not appropriate to describe the system. We define a local compressibil… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/0309670v2-abstract-full').style.display = 'inline'; document.getElementById('cond-mat/0309670v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="cond-mat/0309670v2-abstract-full" style="display: none;"> Using quantum Monte Carlo (QMC) simulations we study the ground-state properties of the one-dimensional fermionic Hubbard model in traps with an underlying lattice. Since due to the confining potential the density is space dependent, Mott-insulating domains always coexist with metallic regions, such that global quantities are not appropriate to describe the system. We define a local compressibility that characterizes the Mott-insulating regions and analyze other local quantities. It is shown that the momentum distribution function, a quantity that is commonly considered in experiments, fails in giving a clear signal of the Mott-insulator transition. Furthermore, we analyze a mean-field approach to these systems and compare it with the numerically exact QMC results. Finally, we determine a generic form for the phase diagram that allows us to predict the phases to be observed in the experiments. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/0309670v2-abstract-full').style.display = 'none'; document.getElementById('cond-mat/0309670v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 May, 2004; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 September, 2003; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2003. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">RevTex file, 13 pages, 19 figures, published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. A 69, 053612 (2004) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/cond-mat/0304028">arXiv:cond-mat/0304028</a> <span> [<a href="https://arxiv.org/pdf/cond-mat/0304028">pdf</a>, <a href="https://arxiv.org/ps/cond-mat/0304028">ps</a>, <a href="https://arxiv.org/format/cond-mat/0304028">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.91.130403">10.1103/PhysRevLett.91.130403 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Local quantum criticality in confined fermions on optical lattices </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Rigol%2C+M">M. Rigol</a>, <a href="/search/cond-mat?searchtype=author&query=Muramatsu%2C+A">A. Muramatsu</a>, <a href="/search/cond-mat?searchtype=author&query=Batrouni%2C+G+G">G. G. Batrouni</a>, <a href="/search/cond-mat?searchtype=author&query=Scalettar%2C+R+T">R. T. Scalettar</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="cond-mat/0304028v2-abstract-short" style="display: inline;"> Using quantum Monte Carlo simulations, we show that the one-dimensional fermionic Hubbard model in a harmonic potential displays quantum critical behavior at the boundaries of a Mott-insulating region. A local compressibility defined to characterize the Mott-insulating phase has a non-trivial critical exponent. Both the local compressibility and the variance of the local density show universalit… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/0304028v2-abstract-full').style.display = 'inline'; document.getElementById('cond-mat/0304028v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="cond-mat/0304028v2-abstract-full" style="display: none;"> Using quantum Monte Carlo simulations, we show that the one-dimensional fermionic Hubbard model in a harmonic potential displays quantum critical behavior at the boundaries of a Mott-insulating region. A local compressibility defined to characterize the Mott-insulating phase has a non-trivial critical exponent. Both the local compressibility and the variance of the local density show universality with respect to the confining potential. We determine a generic phase diagram, that allows the prediction of the phases to be observed in experiments with ultracold fermionic atoms trapped on optical lattices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/0304028v2-abstract-full').style.display = 'none'; document.getElementById('cond-mat/0304028v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 September, 2003; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 April, 2003; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2003. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Revtex file, 4 pages, 5 figures, published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 91, 130403 (2003) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/cond-mat/0211054">arXiv:cond-mat/0211054</a> <span> [<a href="https://arxiv.org/pdf/cond-mat/0211054">pdf</a>, <a href="https://arxiv.org/ps/cond-mat/0211054">ps</a>, <a href="https://arxiv.org/format/cond-mat/0211054">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.90.216401">10.1103/PhysRevLett.90.216401 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Antiholons in one-dimensional t-J models </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Lavalle%2C+C">C. Lavalle</a>, <a href="/search/cond-mat?searchtype=author&query=Arikawa%2C+M">M. Arikawa</a>, <a href="/search/cond-mat?searchtype=author&query=Capponi%2C+S">S. Capponi</a>, <a href="/search/cond-mat?searchtype=author&query=Assaad%2C+F+F">F. F. Assaad</a>, <a href="/search/cond-mat?searchtype=author&query=Muramatsu%2C+A">A. Muramatsu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="cond-mat/0211054v2-abstract-short" style="display: inline;"> Using a newly developed hybrid Monte Carlo algorithm for the nearest-neighbor (n.n.) t-J model, we show that antiholons identified in the supersymmetric inverse squared (IS) t-J model are clearly visible in the electron addition spectrum of the n.n. t-J model at J=2t and also for J=0.5t, a value of experimental relevance. </span> <span class="abstract-full has-text-grey-dark mathjax" id="cond-mat/0211054v2-abstract-full" style="display: none;"> Using a newly developed hybrid Monte Carlo algorithm for the nearest-neighbor (n.n.) t-J model, we show that antiholons identified in the supersymmetric inverse squared (IS) t-J model are clearly visible in the electron addition spectrum of the n.n. t-J model at J=2t and also for J=0.5t, a value of experimental relevance. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/0211054v2-abstract-full').style.display = 'none'; document.getElementById('cond-mat/0211054v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 June, 2003; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 November, 2002; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2002. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 90, 216401 (2003) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/cond-mat/0207038">arXiv:cond-mat/0207038</a> <span> [<a href="https://arxiv.org/pdf/cond-mat/0207038">pdf</a>, <a href="https://arxiv.org/ps/cond-mat/0207038">ps</a>, <a href="https://arxiv.org/format/cond-mat/0207038">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.66.184510">10.1103/PhysRevB.66.184510 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Doping dependence of the spin gap in a 2-leg ladder </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Venuti%2C+L+C">L. Campos Venuti</a>, <a href="/search/cond-mat?searchtype=author&query=Muramatsu%2C+A">A. Muramatsu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="cond-mat/0207038v1-abstract-short" style="display: inline;"> A spin-fermion model relevant for the description of cuprates ladders is studied in a path integral formalism, where, after integrating out the fermions, an effective action for the spins in term of a Fermi-determinant results. The determinant can be evaluated in the long-wavelength, low-frequency limit to all orders in the coupling constant, leading to a non-linear sigma model with doping depen… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/0207038v1-abstract-full').style.display = 'inline'; document.getElementById('cond-mat/0207038v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="cond-mat/0207038v1-abstract-full" style="display: none;"> A spin-fermion model relevant for the description of cuprates ladders is studied in a path integral formalism, where, after integrating out the fermions, an effective action for the spins in term of a Fermi-determinant results. The determinant can be evaluated in the long-wavelength, low-frequency limit to all orders in the coupling constant, leading to a non-linear sigma model with doping dependent coupling constants. An explicit evaluation shows, that the spin-gap diminishes upon doping as opposed to previous mean-field treatments. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/0207038v1-abstract-full').style.display = 'none'; document.getElementById('cond-mat/0207038v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 July, 2002; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2002. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 7 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 66, 184510 (2002) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/cond-mat/0203082">arXiv:cond-mat/0203082</a> <span> [<a href="https://arxiv.org/pdf/cond-mat/0203082">pdf</a>, <a href="https://arxiv.org/ps/cond-mat/0203082">ps</a>, <a href="https://arxiv.org/format/cond-mat/0203082">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.89.117203">10.1103/PhysRevLett.89.117203 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Mott Domains of Bosons Confined on Optical Lattices </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Batrouni%2C+G+G">G. G. Batrouni</a>, <a href="/search/cond-mat?searchtype=author&query=Rousseau%2C+V">V. Rousseau</a>, <a href="/search/cond-mat?searchtype=author&query=Scalettar%2C+R+T">R. T. Scalettar</a>, <a href="/search/cond-mat?searchtype=author&query=Rigol%2C+M">M. Rigol</a>, <a href="/search/cond-mat?searchtype=author&query=Muramatsu%2C+A">A. Muramatsu</a>, <a href="/search/cond-mat?searchtype=author&query=Denteneer%2C+P+J+H">P. J. H. Denteneer</a>, <a href="/search/cond-mat?searchtype=author&query=Troyer%2C+M">M. Troyer</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="cond-mat/0203082v1-abstract-short" style="display: inline;"> In the absence of a confining potential, the boson Hubbard model in its ground state is known to exhibit a superfluid to Mott insulator quantum phase transition at commensurate fillings and strong on-site repulsion. In this paper, we use quantum Monte Carlo simulations to study the ground state of the one dimensional bosonic Hubbard model in a trap. We show that some, but not all, aspects of the… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/0203082v1-abstract-full').style.display = 'inline'; document.getElementById('cond-mat/0203082v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="cond-mat/0203082v1-abstract-full" style="display: none;"> In the absence of a confining potential, the boson Hubbard model in its ground state is known to exhibit a superfluid to Mott insulator quantum phase transition at commensurate fillings and strong on-site repulsion. In this paper, we use quantum Monte Carlo simulations to study the ground state of the one dimensional bosonic Hubbard model in a trap. We show that some, but not all, aspects of the Mott insulating phase persist when a confining potential is present. The Mott behavior is present for a continuous range of incommensurate fillings, a very different situation from the unconfined case. Furthermore the establishment of the Mott phase does not proceed via a quantum phase transition in the traditional sense. These observations have important implications for the interpretation of experimental results for atoms trapped on optical lattices. Initial results show that, qualitatively, the same results persist in higher dimensions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/0203082v1-abstract-full').style.display = 'none'; document.getElementById('cond-mat/0203082v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 March, 2002; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2002. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Revtex file, five figures, included</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 89, 117203 (2002) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/cond-mat/0101462">arXiv:cond-mat/0101462</a> <span> [<a href="https://arxiv.org/pdf/cond-mat/0101462">pdf</a>, <a href="https://arxiv.org/ps/cond-mat/0101462">ps</a>, <a href="https://arxiv.org/format/cond-mat/0101462">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.63.180511">10.1103/PhysRevB.63.180511 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Single hole dynamics in the t-J model on two- and three-leg ladders </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Brunner%2C+M">Michael Brunner</a>, <a href="/search/cond-mat?searchtype=author&query=Capponi%2C+S">Sylvain Capponi</a>, <a href="/search/cond-mat?searchtype=author&query=Assaad%2C+F+F">Fakher F. Assaad</a>, <a href="/search/cond-mat?searchtype=author&query=Muramatsu%2C+A">Alejandro Muramatsu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="cond-mat/0101462v1-abstract-short" style="display: inline;"> The dynamics of a single hole in the t-J model on two- (2LL) and three- (3LL) leg ladders is studied using a recently developed quantum Monte Carlo algorithm. For the 2LL it is shown that in addition to the most pronounced features of the spectral function, well described by the limit of strong coupling along the rungs, a clear shadow band appears in the antibonding channel. Moreover, both the b… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/0101462v1-abstract-full').style.display = 'inline'; document.getElementById('cond-mat/0101462v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="cond-mat/0101462v1-abstract-full" style="display: none;"> The dynamics of a single hole in the t-J model on two- (2LL) and three- (3LL) leg ladders is studied using a recently developed quantum Monte Carlo algorithm. For the 2LL it is shown that in addition to the most pronounced features of the spectral function, well described by the limit of strong coupling along the rungs, a clear shadow band appears in the antibonding channel. Moreover, both the bonding band and its shadow have a finite quasiparticle (QP) weight in the thermodynamic limit. For strong coupling along the rungs of the 3LL, the low-energy spectrum in the antisymmetric channel is similar to a one-dimensional chain, whereas in the two symmetric channels it resembles the 2LL. The QP weight vanishes in the antisymmetric channel, but is finite in the symmetric one. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/0101462v1-abstract-full').style.display = 'none'; document.getElementById('cond-mat/0101462v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 January, 2001; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2001. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 63, 180511 (R) (2001) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/cond-mat/0007042">arXiv:cond-mat/0007042</a> <span> [<a href="https://arxiv.org/pdf/cond-mat/0007042">pdf</a>, <a href="https://arxiv.org/ps/cond-mat/0007042">ps</a>, <a href="https://arxiv.org/format/cond-mat/0007042">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/s100510070120">10.1007/s100510070120 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Phase diagram of the three-dimensional Hubbard model at half filling </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Staudt%2C+R">R. Staudt</a>, <a href="/search/cond-mat?searchtype=author&query=Dzierzawa%2C+M">M. Dzierzawa</a>, <a href="/search/cond-mat?searchtype=author&query=Muramatsu%2C+A">A. Muramatsu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="cond-mat/0007042v1-abstract-short" style="display: inline;"> We investigate the phase diagram of the three-dimensional Hubbard model at half filling using quantum Monte Carlo (QMC) simulations. The antiferromagnetic Neel temperature T_N is determined from the specific heat maximum in combination with finite-size scaling of the magnetic structure factor. Our results interpolate smoothly between the asymptotic solutions for weak and strong coupling, respect… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/0007042v1-abstract-full').style.display = 'inline'; document.getElementById('cond-mat/0007042v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="cond-mat/0007042v1-abstract-full" style="display: none;"> We investigate the phase diagram of the three-dimensional Hubbard model at half filling using quantum Monte Carlo (QMC) simulations. The antiferromagnetic Neel temperature T_N is determined from the specific heat maximum in combination with finite-size scaling of the magnetic structure factor. Our results interpolate smoothly between the asymptotic solutions for weak and strong coupling, respectively, in contrast to previous QMC simulations. The location of the metal-insulator transition in the paramagnetic phase above T_N is determined using the electronic compressibility as criterion. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/0007042v1-abstract-full').style.display = 'none'; document.getElementById('cond-mat/0007042v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 July, 2000; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2000. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 6 figures, to be published in Eur. Phys. J. B (2000)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Eur. Phys. J. B 17, 411 (2000) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/cond-mat/0002321">arXiv:cond-mat/0002321</a> <span> [<a href="https://arxiv.org/pdf/cond-mat/0002321">pdf</a>, <a href="https://arxiv.org/ps/cond-mat/0002321">ps</a>, <a href="https://arxiv.org/format/cond-mat/0002321">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.62.15480">10.1103/PhysRevB.62.15480 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Single hole dynamics in the t-J model on a square lattice </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Brunner%2C+M">Michael Brunner</a>, <a href="/search/cond-mat?searchtype=author&query=Assaad%2C+F+F">Fakher F. Assaad</a>, <a href="/search/cond-mat?searchtype=author&query=Muramatsu%2C+A">Alejandro Muramatsu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="cond-mat/0002321v1-abstract-short" style="display: inline;"> We present quantum Monte Carlo (QMC) simulations for a single hole in a t-J model from J=0.4t to J=4t on square lattices with up to 24 x 24 sites. The lower edge of the spectrum is directly extracted from the imaginary time Green's function. In agreement with earlier calculations, we find flat bands around $(0,\pm蟺)$, $(\pm蟺,0)$ and the minimum of the dispersion at $(\pm蟺/2,\pm蟺/2)$. For small J… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/0002321v1-abstract-full').style.display = 'inline'; document.getElementById('cond-mat/0002321v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="cond-mat/0002321v1-abstract-full" style="display: none;"> We present quantum Monte Carlo (QMC) simulations for a single hole in a t-J model from J=0.4t to J=4t on square lattices with up to 24 x 24 sites. The lower edge of the spectrum is directly extracted from the imaginary time Green's function. In agreement with earlier calculations, we find flat bands around $(0,\pm蟺)$, $(\pm蟺,0)$ and the minimum of the dispersion at $(\pm蟺/2,\pm蟺/2)$. For small J both self-consistent Born approximation and series expansions give a bandwidth for the lower edge of the spectrum in agreement with the simulations, whereas for J/t > 1, only series expansions agree quantitatively with our QMC results. This band corresponds to a coherent quasiparticle. This is shown by a finite size scaling of the quasiparticle weight $Z(\vec k)$ that leads to a finite result in the thermodynamic limit for the considered values of $J/t$. The spectral function $A(\vec k, 蠅)$ is obtained from the imaginary time Green's function via the maximum entropy method. Resonances above the lowest edge of the spectrum are identified, whose J-dependence is quantitatively described by string excitations up to J/t=2. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/0002321v1-abstract-full').style.display = 'none'; document.getElementById('cond-mat/0002321v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 February, 2000; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2000. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 62, 15480 (2000) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/cond-mat/9904150">arXiv:cond-mat/9904150</a> <span> [<a href="https://arxiv.org/pdf/cond-mat/9904150">pdf</a>, <a href="https://arxiv.org/ps/cond-mat/9904150">ps</a>, <a href="https://arxiv.org/format/cond-mat/9904150">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/s100510070220">10.1007/s100510070220 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Single hole dynamics in the one dimensional t-J model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Brunner%2C+M">Michael Brunner</a>, <a href="/search/cond-mat?searchtype=author&query=Assaad%2C+F+F">Fakher F. Assaad</a>, <a href="/search/cond-mat?searchtype=author&query=Muramatsu%2C+A">Alejandro Muramatsu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="cond-mat/9904150v1-abstract-short" style="display: inline;"> We present a new finite-temperature quantum Monte Carlo algorithm to compute imaginary-time Green functions for a single hole in the t-J model on non-frustrated lattices. Spectral functions are then obtained with the Maximum Entropy method. Simulations of the one-dimensional case show that a simple charge-spin separation Ansatz is able to describe the overall features of the spectral function ov… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/9904150v1-abstract-full').style.display = 'inline'; document.getElementById('cond-mat/9904150v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="cond-mat/9904150v1-abstract-full" style="display: none;"> We present a new finite-temperature quantum Monte Carlo algorithm to compute imaginary-time Green functions for a single hole in the t-J model on non-frustrated lattices. Spectral functions are then obtained with the Maximum Entropy method. Simulations of the one-dimensional case show that a simple charge-spin separation Ansatz is able to describe the overall features of the spectral function over the whole energy range for values of J/t from 1/3 to 4. This includes the bandwidth W \sim 4t + J and the compact support of the spectral function. The quasiparticle weight Z_k is computed on lattices up to L=96 sites, and scales as Z_k\propto L^{-1/2}. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/9904150v1-abstract-full').style.display = 'none'; document.getElementById('cond-mat/9904150v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 April, 1999; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 1999. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Eur. Phys. J B 16, 209-212 (2000) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/cond-mat/9707108">arXiv:cond-mat/9707108</a> <span> [<a href="https://arxiv.org/pdf/cond-mat/9707108">pdf</a>, <a href="https://arxiv.org/ps/cond-mat/9707108">ps</a>, <a href="https://arxiv.org/format/cond-mat/9707108">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.58.R10100">10.1103/PhysRevB.58.R10100 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Quantum Monte Carlo simulations of infinitely strongly correlated fermions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Brunner%2C+M">Michael Brunner</a>, <a href="/search/cond-mat?searchtype=author&query=Muramatsu%2C+A">Alejandro Muramatsu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="cond-mat/9707108v1-abstract-short" style="display: inline;"> Numerical simulations of the two-dimensional t-J model in the limit $J/t \ll 1$ are performed for rather large systems (up to $N = 12 \times 12$) using a world-line loop-algorithm. It is shown that in the one-hole case with J=0, where no minus signs appear, very low temperatures ($尾t \sim 3000$) are necessary in order to reach Nagaoka's state. $J/t \ltsim 0.05$ leads to the formation of partiall… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/9707108v1-abstract-full').style.display = 'inline'; document.getElementById('cond-mat/9707108v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="cond-mat/9707108v1-abstract-full" style="display: none;"> Numerical simulations of the two-dimensional t-J model in the limit $J/t \ll 1$ are performed for rather large systems (up to $N = 12 \times 12$) using a world-line loop-algorithm. It is shown that in the one-hole case with J=0, where no minus signs appear, very low temperatures ($尾t \sim 3000$) are necessary in order to reach Nagaoka's state. $J/t \ltsim 0.05$ leads to the formation of partially polarized systems, whereas $J/t \gtsim 0.05 $ corresponds to minimal spin. The two-hole case shows enhanced total spin up to the lowest attainable temperatures ($尾t = 150$). <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/9707108v1-abstract-full').style.display = 'none'; document.getElementById('cond-mat/9707108v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 July, 1997; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 1997. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 58, R10100 (1998) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/cond-mat/9604158">arXiv:cond-mat/9604158</a> <span> [<a href="https://arxiv.org/pdf/cond-mat/9604158">pdf</a>, <a href="https://arxiv.org/ps/cond-mat/9604158">ps</a>, <a href="https://arxiv.org/format/cond-mat/9604158">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Condensed Matter">cond-mat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/0550-3213(96)00232-5">10.1016/0550-3213(96)00232-5 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> SO(3) nonlinear $蟽$ model for a doped quantum helimagnet </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Klee%2C+S">Susanne Klee</a>, <a href="/search/cond-mat?searchtype=author&query=Muramatsu%2C+A">Alejandro Muramatsu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="cond-mat/9604158v1-abstract-short" style="display: inline;"> A field theory describing the low-energy, long-wavelength sector of an incommensurate, spiral magnetic phase is derived from a spin-fermion model that is commonly used as a microscopic model for high-temperature superconductors. After integrating out the fermions in a path-integral representation, a gradient expansion of the fermionic determinant is performed. This leads to an O(3)$\otimes$O(2)-… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/9604158v1-abstract-full').style.display = 'inline'; document.getElementById('cond-mat/9604158v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="cond-mat/9604158v1-abstract-full" style="display: none;"> A field theory describing the low-energy, long-wavelength sector of an incommensurate, spiral magnetic phase is derived from a spin-fermion model that is commonly used as a microscopic model for high-temperature superconductors. After integrating out the fermions in a path-integral representation, a gradient expansion of the fermionic determinant is performed. This leads to an O(3)$\otimes$O(2)-symmetric quantum nonlinear $蟽$ model, where the doping dependence is explicitly given by generalized fermionic susceptibilities which enter into the coupling constants of the $蟽$ model and contain the fermionic band-structure that results from the spiral background. A stability condition of the field theory self-consistently determines the spiral wavevector as a function of the doping concentration. Furthermore, terms of topological nature like the $胃$-vacuum term in (1+1)-dimensional nonlinear $蟽$ models are obtained for the plane of the spiral. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/9604158v1-abstract-full').style.display = 'none'; document.getElementById('cond-mat/9604158v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 April, 1996; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 1996. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">43 pages, RevTex, amsfonts, no figures, available at ftp://ftp.physik.uni-wuerzburg.de/pub/preprint/1996/WUE-ITP-96-004.ps.gz, to be published in Nuclear Physics B</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> WUE-ITP-96.004 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/cond-mat/9505105">arXiv:cond-mat/9505105</a> <span> [<a href="https://arxiv.org/pdf/cond-mat/9505105">pdf</a>, <a href="https://arxiv.org/ps/cond-mat/9505105">ps</a>, <a href="https://arxiv.org/format/cond-mat/9505105">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Condensed Matter">cond-mat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1142/S0217979296002075">10.1142/S0217979296002075 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Gauge Theory for a Doped Antiferromagnet in a Rotating Reference-Frame </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=K%C3%BCbert%2C+C">C. K眉bert</a>, <a href="/search/cond-mat?searchtype=author&query=Muramatsu%2C+A">A. Muramatsu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="cond-mat/9505105v1-abstract-short" style="display: inline;"> We study a doped antiferromagnet (AF) using a rotating reference-frame. Whereas in the laboratory reference-frame with a globally fixed spin-quantization axis (SQA) the long-wavelength, low-energy physics is given by the O(3) non-linear $蟽$-model with current-current interactions between the fermionic degrees of freedom and the order-parameter field for the spin-background, an alternative descri… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/9505105v1-abstract-full').style.display = 'inline'; document.getElementById('cond-mat/9505105v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="cond-mat/9505105v1-abstract-full" style="display: none;"> We study a doped antiferromagnet (AF) using a rotating reference-frame. Whereas in the laboratory reference-frame with a globally fixed spin-quantization axis (SQA) the long-wavelength, low-energy physics is given by the O(3) non-linear $蟽$-model with current-current interactions between the fermionic degrees of freedom and the order-parameter field for the spin-background, an alternative description in form of an U(1) gauge theory can be derived by choosing the SQA defined by the local direction of the order-parameter field via a SU(2) rotation of the fermionic spinor. Within a large-$N$ expansion of this U(1) gauge theory we obtain the phase diagram for the doped AF and identify the relevant terms due to doping that lead to a quantum phase transition at $T=0$ from the antiferromagnetically ordered N茅el phase to the quantum-disordered (QD) spin-liquid phase. Furthermore, we calculate the propagator of the corresponding U(1) gauge field, which mediates a long-range transverse interaction between the bosonic and fermionic fields. It is found that the strength of the propagator is proportional to the gap of the spin-excitations. Therefore, we expect as a consequence of this long-range interaction the formation of bound states when the spin-gap opens, i.e.\ in the QD spin-liquid phase. The possible bound states are spin-waves with a (spin-) gap in the excitation spectrum, spinless fermions and pairs of fermions. Thus, an alternative picture for charge-spin separation emerges, with composite charge-separated excitations. Moreover, the present treatment shows an intimate connection between the opening of the spin-gap and charge-spin separation as well as pairing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/9505105v1-abstract-full').style.display = 'none'; document.getElementById('cond-mat/9505105v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 May, 1995; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 1995. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, also available at http://www.physik.uni-augsburg.de/theo2/Publications/</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> TP2-5/5/95 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/cond-mat/9410039">arXiv:cond-mat/9410039</a> <span> [<a href="https://arxiv.org/pdf/cond-mat/9410039">pdf</a>, <a href="https://arxiv.org/ps/cond-mat/9410039">ps</a>, <a href="https://arxiv.org/format/cond-mat/9410039">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Condensed Matter">cond-mat</span> </div> </div> <p class="title is-5 mathjax"> Conserving approximation for the three-band Hubbard model: flat quasiparticle dispersion </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Putz%2C+R">R. Putz</a>, <a href="/search/cond-mat?searchtype=author&query=Preuss%2C+R">R. Preuss</a>, <a href="/search/cond-mat?searchtype=author&query=Muramatsu%2C+A">A. Muramatsu</a>, <a href="/search/cond-mat?searchtype=author&query=Hanke%2C+W">W. Hanke</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="cond-mat/9410039v3-abstract-short" style="display: inline;"> It is shown that the low-energy single-particle excitation-spectrum of the three-band Hubbard model at hole-dopings away from half-filling agrees remarkably well with Quantum Monte Carlo data and spectroscopic experiments within the framework of a conserving approximation that includes self-consistently the interaction with charge, spin, and two-particle fluctuations. The dispersion of the quasi… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/9410039v3-abstract-full').style.display = 'inline'; document.getElementById('cond-mat/9410039v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="cond-mat/9410039v3-abstract-full" style="display: none;"> It is shown that the low-energy single-particle excitation-spectrum of the three-band Hubbard model at hole-dopings away from half-filling agrees remarkably well with Quantum Monte Carlo data and spectroscopic experiments within the framework of a conserving approximation that includes self-consistently the interaction with charge, spin, and two-particle fluctuations. The dispersion of the quasiparticle-peak obtained from the spectral-weight function is flat around the $(蟺,0)$ and $(0,蟺)$ points as has been observed in recent angle-resolved photoemission measurement. The significant reduction of the quasiparticle-dispersion near the Fermi-energy is due to spin-fluctuations, rather than being induced by band effects. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/9410039v3-abstract-full').style.display = 'none'; document.getElementById('cond-mat/9410039v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 October, 1994; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 October, 1994; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 1994. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">REVtex, 10 pages, 4 figures (in uuencoded postscript format) appended at the end of the file</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/cond-mat/9407112">arXiv:cond-mat/9407112</a> <span> [<a href="https://arxiv.org/pdf/cond-mat/9407112">pdf</a>, <a href="https://arxiv.org/ps/cond-mat/9407112">ps</a>, <a href="https://arxiv.org/format/cond-mat/9407112">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Condensed Matter">cond-mat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/0921-4534(94)92346-9">10.1016/0921-4534(94)92346-9 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Quantum disordered phase in a doped antiferromagnet </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Kuebert%2C+C">C. Kuebert</a>, <a href="/search/cond-mat?searchtype=author&query=Muramatsu%2C+A">A. Muramatsu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="cond-mat/9407112v1-abstract-short" style="display: inline;"> A quantitative description of the transition to a quantum disordered phase in a doped antiferromagnet is obtained with a U(1) gauge-theory, where the gap in the spin-wave spectrum determines the strength of the gauge-fields. They mediate an attractive long-range interaction whose possible bound-states correspond to charge-spin separation and pairing. </span> <span class="abstract-full has-text-grey-dark mathjax" id="cond-mat/9407112v1-abstract-full" style="display: none;"> A quantitative description of the transition to a quantum disordered phase in a doped antiferromagnet is obtained with a U(1) gauge-theory, where the gap in the spin-wave spectrum determines the strength of the gauge-fields. They mediate an attractive long-range interaction whose possible bound-states correspond to charge-spin separation and pairing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/9407112v1-abstract-full').style.display = 'none'; document.getElementById('cond-mat/9407112v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 July, 1994; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 1994. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, LaTex, chris-preprint-1994-1</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/cond-mat/9312049">arXiv:cond-mat/9312049</a> <span> [<a href="https://arxiv.org/pdf/cond-mat/9312049">pdf</a>, <a href="https://arxiv.org/ps/cond-mat/9312049">ps</a>, <a href="https://arxiv.org/format/cond-mat/9312049">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Condensed Matter">cond-mat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.73.732">10.1103/PhysRevLett.73.732 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Spectral properties of the one-dimensional Hubbard model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Preuss%2C+R">R. Preuss</a>, <a href="/search/cond-mat?searchtype=author&query=Muramatsu%2C+A">A. Muramatsu</a>, <a href="/search/cond-mat?searchtype=author&query=von+der+Linden%2C+W">W. von der Linden</a>, <a href="/search/cond-mat?searchtype=author&query=Assaad%2C+F+F">F. F. Assaad</a>, <a href="/search/cond-mat?searchtype=author&query=Hanke%2C+W">W. Hanke</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="cond-mat/9312049v1-abstract-short" style="display: inline;"> The spectral properties of the 1-D Hubbard model are obtained from quantum Monte Carlo simulations using the maximum entropy method. The one-particle excitations are characterized by dispersive cosine-like bands. Velocities for spin- and charge excitations are obtained that lead to a conformal charge c=0.98 +/- 0.05 for the largest system simulated (N=84). An exact sum-rule for the spin-excitati… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/9312049v1-abstract-full').style.display = 'inline'; document.getElementById('cond-mat/9312049v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="cond-mat/9312049v1-abstract-full" style="display: none;"> The spectral properties of the 1-D Hubbard model are obtained from quantum Monte Carlo simulations using the maximum entropy method. The one-particle excitations are characterized by dispersive cosine-like bands. Velocities for spin- and charge excitations are obtained that lead to a conformal charge c=0.98 +/- 0.05 for the largest system simulated (N=84). An exact sum-rule for the spin-excitations is fulfilled accurately with deviations of at most 10% only around 2 kF. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/9312049v1-abstract-full').style.display = 'none'; document.getElementById('cond-mat/9312049v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 December, 1993; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 1993. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">uuencoded file containing 10 pages text and 6 figures in PostScript format</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 73 (1994) 732 </p> </li> </ol> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>