CINXE.COM
Gerrit Peters | Eindhoven University of Technology - Academia.edu
<!DOCTYPE html> <html lang="en" xmlns:fb="http://www.facebook.com/2008/fbml" class="wf-loading"> <head prefix="og: https://ogp.me/ns# fb: https://ogp.me/ns/fb# academia: https://ogp.me/ns/fb/academia#"> <meta charset="utf-8"> <meta name=viewport content="width=device-width, initial-scale=1"> <meta rel="search" type="application/opensearchdescription+xml" href="/open_search.xml" title="Academia.edu"> <title>Gerrit Peters | Eindhoven University of Technology - Academia.edu</title> <!-- _ _ _ | | (_) | | __ _ ___ __ _ __| | ___ _ __ ___ _ __ _ ___ __| |_ _ / _` |/ __/ _` |/ _` |/ _ \ '_ ` _ \| |/ _` | / _ \/ _` | | | | | (_| | (_| (_| | (_| | __/ | | | | | | (_| || __/ (_| | |_| | \__,_|\___\__,_|\__,_|\___|_| |_| |_|_|\__,_(_)___|\__,_|\__,_| We're hiring! See https://www.academia.edu/hiring --> <link href="//a.academia-assets.com/images/favicons/favicon-production.ico" rel="shortcut icon" type="image/vnd.microsoft.icon"> <link rel="apple-touch-icon" sizes="57x57" href="//a.academia-assets.com/images/favicons/apple-touch-icon-57x57.png"> <link rel="apple-touch-icon" sizes="60x60" href="//a.academia-assets.com/images/favicons/apple-touch-icon-60x60.png"> <link rel="apple-touch-icon" sizes="72x72" href="//a.academia-assets.com/images/favicons/apple-touch-icon-72x72.png"> <link rel="apple-touch-icon" sizes="76x76" href="//a.academia-assets.com/images/favicons/apple-touch-icon-76x76.png"> <link rel="apple-touch-icon" sizes="114x114" href="//a.academia-assets.com/images/favicons/apple-touch-icon-114x114.png"> <link rel="apple-touch-icon" sizes="120x120" href="//a.academia-assets.com/images/favicons/apple-touch-icon-120x120.png"> <link rel="apple-touch-icon" sizes="144x144" href="//a.academia-assets.com/images/favicons/apple-touch-icon-144x144.png"> <link rel="apple-touch-icon" sizes="152x152" href="//a.academia-assets.com/images/favicons/apple-touch-icon-152x152.png"> <link rel="apple-touch-icon" sizes="180x180" href="//a.academia-assets.com/images/favicons/apple-touch-icon-180x180.png"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-32x32.png" sizes="32x32"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-194x194.png" sizes="194x194"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-96x96.png" sizes="96x96"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/android-chrome-192x192.png" sizes="192x192"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-16x16.png" sizes="16x16"> <link rel="manifest" href="//a.academia-assets.com/images/favicons/manifest.json"> <meta name="msapplication-TileColor" content="#2b5797"> <meta name="msapplication-TileImage" content="//a.academia-assets.com/images/favicons/mstile-144x144.png"> <meta name="theme-color" content="#ffffff"> <script> window.performance && window.performance.measure && window.performance.measure("Time To First Byte", "requestStart", "responseStart"); </script> <script> (function() { if (!window.URLSearchParams || !window.history || !window.history.replaceState) { return; } var searchParams = new URLSearchParams(window.location.search); var paramsToDelete = [ 'fs', 'sm', 'swp', 'iid', 'nbs', 'rcc', // related content category 'rcpos', // related content carousel position 'rcpg', // related carousel page 'rchid', // related content hit id 'f_ri', // research interest id, for SEO tracking 'f_fri', // featured research interest, for SEO tracking (param key without value) 'f_rid', // from research interest directory for SEO tracking 'f_loswp', // from research interest pills on LOSWP sidebar for SEO tracking 'rhid', // referrring hit id ]; if (paramsToDelete.every((key) => searchParams.get(key) === null)) { return; } paramsToDelete.forEach((key) => { searchParams.delete(key); }); var cleanUrl = new URL(window.location.href); cleanUrl.search = searchParams.toString(); history.replaceState({}, document.title, cleanUrl); })(); </script> <script async src="https://www.googletagmanager.com/gtag/js?id=G-5VKX33P2DS"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-5VKX33P2DS', { cookie_domain: 'academia.edu', send_page_view: false, }); gtag('event', 'page_view', { 'controller': "profiles/works", 'action': "summary", 'controller_action': 'profiles/works#summary', 'logged_in': 'false', 'edge': 'unknown', // Send nil if there is no A/B test bucket, in case some records get logged // with missing data - that way we can distinguish between the two cases. // ab_test_bucket should be of the form <ab_test_name>:<bucket> 'ab_test_bucket': null, }) </script> <script type="text/javascript"> window.sendUserTiming = function(timingName) { if (!(window.performance && window.performance.measure)) return; var entries = window.performance.getEntriesByName(timingName, "measure"); if (entries.length !== 1) return; var timingValue = Math.round(entries[0].duration); gtag('event', 'timing_complete', { name: timingName, value: timingValue, event_category: 'User-centric', }); }; window.sendUserTiming("Time To First Byte"); </script> <meta name="csrf-param" content="authenticity_token" /> <meta name="csrf-token" content="MwMnYOw380v8_lIhj8_n5jFU7WQTt-XpvvH6uvBh2EIkYiPfBEmeLlQbhOnwSqTE7MIMX5RYC2TCK10laftSHg" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/wow-3d36c19b4875b226bfed0fcba1dcea3f2fe61148383d97c0465c016b8c969290.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/social/home-79e78ce59bef0a338eb6540ec3d93b4a7952115b56c57f1760943128f4544d42.css" /><script type="application/ld+json">{"@context":"https://schema.org","@type":"ProfilePage","mainEntity":{"@context":"https://schema.org","@type":"Person","name":"Gerrit Peters","url":"https://tue.academia.edu/httpwwwtuenl","sameAs":[]},"dateCreated":"2015-02-11T05:19:07-08:00","dateModified":"2024-11-29T07:36:42-08:00","name":"Gerrit Peters","description":"","sameAs":[],"relatedLink":"https://www.academia.edu/88630725/Concomitant_Crystallization_in_Propylene_Ethylene_Random_Copolymer_with_Strong_Flow_at_Elevated_Temperatures"}</script><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/heading-95367dc03b794f6737f30123738a886cf53b7a65cdef98a922a98591d60063e3.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/button-8c9ae4b5c8a2531640c354d92a1f3579c8ff103277ef74913e34c8a76d4e6c00.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/body-170d1319f0e354621e81ca17054bb147da2856ec0702fe440a99af314a6338c5.css" /><style type="text/css">@media(max-width: 567px){:root{--token-mode: Parity;--dropshadow: 0 2px 4px 0 #22223340;--primary-brand: #0645b1;--error-dark: #b60000;--success-dark: #05b01c;--inactive-fill: #ebebee;--hover: #0c3b8d;--pressed: #082f75;--button-primary-fill-inactive: #ebebee;--button-primary-fill: #0645b1;--button-primary-text: #ffffff;--button-primary-fill-hover: #0c3b8d;--button-primary-fill-press: #082f75;--button-primary-icon: #ffffff;--button-primary-fill-inverse: #ffffff;--button-primary-text-inverse: #082f75;--button-primary-icon-inverse: #0645b1;--button-primary-fill-inverse-hover: #cddaef;--button-primary-stroke-inverse-pressed: #0645b1;--button-secondary-stroke-inactive: #b1b1ba;--button-secondary-fill: #eef2f9;--button-secondary-text: #082f75;--button-secondary-fill-press: #cddaef;--button-secondary-fill-inactive: #ebebee;--button-secondary-stroke: #cddaef;--button-secondary-stroke-hover: #386ac1;--button-secondary-stroke-press: #0645b1;--button-secondary-text-inactive: #b1b1ba;--button-secondary-icon: #082f75;--button-secondary-fill-hover: #e6ecf7;--button-secondary-stroke-inverse: #ffffff;--button-secondary-fill-inverse: rgba(255, 255, 255, 0);--button-secondary-icon-inverse: #ffffff;--button-secondary-icon-hover: #082f75;--button-secondary-icon-press: #082f75;--button-secondary-text-inverse: #ffffff;--button-secondary-text-hover: #082f75;--button-secondary-text-press: #082f75;--button-secondary-fill-inverse-hover: #043059;--button-xs-stroke: #141413;--button-xs-stroke-hover: #0c3b8d;--button-xs-stroke-press: #082f75;--button-xs-stroke-inactive: #ebebee;--button-xs-text: #141413;--button-xs-text-hover: #0c3b8d;--button-xs-text-press: #082f75;--button-xs-text-inactive: #91919e;--button-xs-icon: #141413;--button-xs-icon-hover: #0c3b8d;--button-xs-icon-press: #082f75;--button-xs-icon-inactive: #91919e;--button-xs-fill: #ffffff;--button-xs-fill-hover: #f4f7fc;--button-xs-fill-press: #eef2f9;--buttons-button-text-inactive: #91919e;--buttons-button-focus: #0645b1;--buttons-button-icon-inactive: #91919e;--buttons-small-buttons-corner-radius: 8px;--buttons-small-buttons-l-r-padding: 12px;--buttons-small-buttons-height: 44px;--buttons-small-buttons-gap: 8px;--buttons-small-buttons-icon-only-width: 44px;--buttons-small-buttons-icon-size: 20px;--buttons-small-buttons-stroke-default: 1px;--buttons-small-buttons-stroke-thick: 2px;--buttons-large-buttons-l-r-padding: 20px;--buttons-large-buttons-height: 54px;--buttons-large-buttons-icon-only-width: 54px;--buttons-large-buttons-icon-size: 20px;--buttons-large-buttons-gap: 8px;--buttons-large-buttons-corner-radius: 8px;--buttons-large-buttons-stroke-default: 1px;--buttons-large-buttons-stroke-thick: 2px;--buttons-extra-small-buttons-l-r-padding: 8px;--buttons-extra-small-buttons-height: 32px;--buttons-extra-small-buttons-icon-size: 16px;--buttons-extra-small-buttons-gap: 4px;--buttons-extra-small-buttons-corner-radius: 8px;--buttons-stroke-default: 1px;--buttons-stroke-thick: 2px;--background-beige: #f9f7f4;--error-light: #fff2f2;--text-placeholder: #6d6d7d;--stroke-dark: #141413;--stroke-light: #dddde2;--stroke-medium: #535366;--accent-green: #ccffd4;--accent-turquoise: #ccf7ff;--accent-yellow: #f7ffcc;--accent-peach: #ffd4cc;--accent-violet: #f7ccff;--accent-purple: #f4f7fc;--text-primary: #141413;--secondary-brand: #141413;--text-hover: #0c3b8d;--text-white: #ffffff;--text-link: #0645b1;--text-press: #082f75;--success-light: #f0f8f1;--background-light-blue: #eef2f9;--background-white: #ffffff;--premium-dark: #877440;--premium-light: #f9f6ed;--stroke-white: #ffffff;--inactive-content: #b1b1ba;--annotate-light: #a35dff;--annotate-dark: #824acc;--grid: #eef2f9;--inactive-stroke: #ebebee;--shadow: rgba(34, 34, 51, 0.25);--text-inactive: #6d6d7d;--text-error: #b60000;--stroke-error: #b60000;--background-error: #fff2f2;--background-black: #141413;--icon-default: #141413;--icon-blue: #0645b1;--background-grey: #dddde2;--icon-grey: #b1b1ba;--text-focus: #082f75;--brand-colors-neutral-black: #141413;--brand-colors-neutral-900: #535366;--brand-colors-neutral-800: #6d6d7d;--brand-colors-neutral-700: #91919e;--brand-colors-neutral-600: #b1b1ba;--brand-colors-neutral-500: #c8c8cf;--brand-colors-neutral-400: #dddde2;--brand-colors-neutral-300: #ebebee;--brand-colors-neutral-200: #f8f8fb;--brand-colors-neutral-100: #fafafa;--brand-colors-neutral-white: #ffffff;--brand-colors-blue-900: #043059;--brand-colors-blue-800: #082f75;--brand-colors-blue-700: #0c3b8d;--brand-colors-blue-600: #0645b1;--brand-colors-blue-500: #386ac1;--brand-colors-blue-400: #cddaef;--brand-colors-blue-300: #e6ecf7;--brand-colors-blue-200: #eef2f9;--brand-colors-blue-100: #f4f7fc;--brand-colors-gold-500: #877440;--brand-colors-gold-400: #e9e3d4;--brand-colors-gold-300: #f2efe8;--brand-colors-gold-200: #f9f6ed;--brand-colors-gold-100: #f9f7f4;--brand-colors-error-900: #920000;--brand-colors-error-500: #b60000;--brand-colors-success-900: #035c0f;--brand-colors-green: #ccffd4;--brand-colors-turquoise: #ccf7ff;--brand-colors-yellow: #f7ffcc;--brand-colors-peach: #ffd4cc;--brand-colors-violet: #f7ccff;--brand-colors-error-100: #fff2f2;--brand-colors-success-500: #05b01c;--brand-colors-success-100: #f0f8f1;--text-secondary: #535366;--icon-white: #ffffff;--background-beige-darker: #f2efe8;--icon-dark-grey: #535366;--type-font-family-sans-serif: Roboto;--type-font-family-serif: Georgia;--type-font-family-mono: IBM Plex Mono;--type-weights-300: 300;--type-weights-400: 400;--type-weights-500: 500;--type-weights-700: 700;--type-sizes-12: 12px;--type-sizes-14: 14px;--type-sizes-16: 16px;--type-sizes-18: 18px;--type-sizes-20: 20px;--type-sizes-22: 22px;--type-sizes-24: 24px;--type-sizes-28: 28px;--type-sizes-30: 30px;--type-sizes-32: 32px;--type-sizes-40: 40px;--type-sizes-42: 42px;--type-sizes-48-2: 48px;--type-line-heights-16: 16px;--type-line-heights-20: 20px;--type-line-heights-23: 23px;--type-line-heights-24: 24px;--type-line-heights-25: 25px;--type-line-heights-26: 26px;--type-line-heights-29: 29px;--type-line-heights-30: 30px;--type-line-heights-32: 32px;--type-line-heights-34: 34px;--type-line-heights-35: 35px;--type-line-heights-36: 36px;--type-line-heights-38: 38px;--type-line-heights-40: 40px;--type-line-heights-46: 46px;--type-line-heights-48: 48px;--type-line-heights-52: 52px;--type-line-heights-58: 58px;--type-line-heights-68: 68px;--type-line-heights-74: 74px;--type-line-heights-82: 82px;--type-paragraph-spacings-0: 0px;--type-paragraph-spacings-4: 4px;--type-paragraph-spacings-8: 8px;--type-paragraph-spacings-16: 16px;--type-sans-serif-xl-font-weight: 400;--type-sans-serif-xl-size: 32px;--type-sans-serif-xl-line-height: 46px;--type-sans-serif-xl-paragraph-spacing: 16px;--type-sans-serif-lg-font-weight: 400;--type-sans-serif-lg-size: 30px;--type-sans-serif-lg-line-height: 36px;--type-sans-serif-lg-paragraph-spacing: 16px;--type-sans-serif-md-font-weight: 400;--type-sans-serif-md-line-height: 30px;--type-sans-serif-md-paragraph-spacing: 16px;--type-sans-serif-md-size: 24px;--type-sans-serif-xs-font-weight: 700;--type-sans-serif-xs-line-height: 24px;--type-sans-serif-xs-paragraph-spacing: 0px;--type-sans-serif-xs-size: 18px;--type-sans-serif-sm-font-weight: 400;--type-sans-serif-sm-line-height: 32px;--type-sans-serif-sm-paragraph-spacing: 16px;--type-sans-serif-sm-size: 20px;--type-body-xl-font-weight: 400;--type-body-xl-size: 24px;--type-body-xl-line-height: 36px;--type-body-xl-paragraph-spacing: 0px;--type-body-sm-font-weight: 400;--type-body-sm-size: 14px;--type-body-sm-line-height: 20px;--type-body-sm-paragraph-spacing: 8px;--type-body-xs-font-weight: 400;--type-body-xs-size: 12px;--type-body-xs-line-height: 16px;--type-body-xs-paragraph-spacing: 0px;--type-body-md-font-weight: 400;--type-body-md-size: 16px;--type-body-md-line-height: 20px;--type-body-md-paragraph-spacing: 4px;--type-body-lg-font-weight: 400;--type-body-lg-size: 20px;--type-body-lg-line-height: 26px;--type-body-lg-paragraph-spacing: 16px;--type-body-lg-medium-font-weight: 500;--type-body-lg-medium-size: 20px;--type-body-lg-medium-line-height: 32px;--type-body-lg-medium-paragraph-spacing: 16px;--type-body-md-medium-font-weight: 500;--type-body-md-medium-size: 16px;--type-body-md-medium-line-height: 20px;--type-body-md-medium-paragraph-spacing: 4px;--type-body-sm-bold-font-weight: 700;--type-body-sm-bold-size: 14px;--type-body-sm-bold-line-height: 20px;--type-body-sm-bold-paragraph-spacing: 8px;--type-body-sm-medium-font-weight: 500;--type-body-sm-medium-size: 14px;--type-body-sm-medium-line-height: 20px;--type-body-sm-medium-paragraph-spacing: 8px;--type-serif-md-font-weight: 400;--type-serif-md-size: 32px;--type-serif-md-paragraph-spacing: 0px;--type-serif-md-line-height: 40px;--type-serif-sm-font-weight: 400;--type-serif-sm-size: 24px;--type-serif-sm-paragraph-spacing: 0px;--type-serif-sm-line-height: 26px;--type-serif-lg-font-weight: 400;--type-serif-lg-size: 48px;--type-serif-lg-paragraph-spacing: 0px;--type-serif-lg-line-height: 52px;--type-serif-xs-font-weight: 400;--type-serif-xs-size: 18px;--type-serif-xs-line-height: 24px;--type-serif-xs-paragraph-spacing: 0px;--type-serif-xl-font-weight: 400;--type-serif-xl-size: 48px;--type-serif-xl-paragraph-spacing: 0px;--type-serif-xl-line-height: 58px;--type-mono-md-font-weight: 400;--type-mono-md-size: 22px;--type-mono-md-line-height: 24px;--type-mono-md-paragraph-spacing: 0px;--type-mono-lg-font-weight: 400;--type-mono-lg-size: 40px;--type-mono-lg-line-height: 40px;--type-mono-lg-paragraph-spacing: 0px;--type-mono-sm-font-weight: 400;--type-mono-sm-size: 14px;--type-mono-sm-line-height: 24px;--type-mono-sm-paragraph-spacing: 0px;--spacing-xs-4: 4px;--spacing-xs-8: 8px;--spacing-xs-16: 16px;--spacing-sm-24: 24px;--spacing-sm-32: 32px;--spacing-md-40: 40px;--spacing-md-48: 48px;--spacing-lg-64: 64px;--spacing-lg-80: 80px;--spacing-xlg-104: 104px;--spacing-xlg-152: 152px;--spacing-xs-12: 12px;--spacing-page-section: 80px;--spacing-card-list-spacing: 48px;--spacing-text-section-spacing: 64px;--spacing-md-xs-headings: 40px;--corner-radius-radius-lg: 16px;--corner-radius-radius-sm: 4px;--corner-radius-radius-md: 8px;--corner-radius-radius-round: 104px}}@media(min-width: 568px)and (max-width: 1279px){:root{--token-mode: Parity;--dropshadow: 0 2px 4px 0 #22223340;--primary-brand: #0645b1;--error-dark: #b60000;--success-dark: #05b01c;--inactive-fill: #ebebee;--hover: #0c3b8d;--pressed: #082f75;--button-primary-fill-inactive: #ebebee;--button-primary-fill: #0645b1;--button-primary-text: #ffffff;--button-primary-fill-hover: #0c3b8d;--button-primary-fill-press: #082f75;--button-primary-icon: #ffffff;--button-primary-fill-inverse: #ffffff;--button-primary-text-inverse: #082f75;--button-primary-icon-inverse: #0645b1;--button-primary-fill-inverse-hover: #cddaef;--button-primary-stroke-inverse-pressed: #0645b1;--button-secondary-stroke-inactive: #b1b1ba;--button-secondary-fill: #eef2f9;--button-secondary-text: #082f75;--button-secondary-fill-press: #cddaef;--button-secondary-fill-inactive: #ebebee;--button-secondary-stroke: #cddaef;--button-secondary-stroke-hover: #386ac1;--button-secondary-stroke-press: #0645b1;--button-secondary-text-inactive: #b1b1ba;--button-secondary-icon: #082f75;--button-secondary-fill-hover: #e6ecf7;--button-secondary-stroke-inverse: #ffffff;--button-secondary-fill-inverse: rgba(255, 255, 255, 0);--button-secondary-icon-inverse: #ffffff;--button-secondary-icon-hover: #082f75;--button-secondary-icon-press: #082f75;--button-secondary-text-inverse: #ffffff;--button-secondary-text-hover: #082f75;--button-secondary-text-press: #082f75;--button-secondary-fill-inverse-hover: #043059;--button-xs-stroke: #141413;--button-xs-stroke-hover: #0c3b8d;--button-xs-stroke-press: #082f75;--button-xs-stroke-inactive: #ebebee;--button-xs-text: #141413;--button-xs-text-hover: #0c3b8d;--button-xs-text-press: #082f75;--button-xs-text-inactive: #91919e;--button-xs-icon: #141413;--button-xs-icon-hover: #0c3b8d;--button-xs-icon-press: #082f75;--button-xs-icon-inactive: #91919e;--button-xs-fill: #ffffff;--button-xs-fill-hover: #f4f7fc;--button-xs-fill-press: #eef2f9;--buttons-button-text-inactive: #91919e;--buttons-button-focus: #0645b1;--buttons-button-icon-inactive: #91919e;--buttons-small-buttons-corner-radius: 8px;--buttons-small-buttons-l-r-padding: 12px;--buttons-small-buttons-height: 44px;--buttons-small-buttons-gap: 8px;--buttons-small-buttons-icon-only-width: 44px;--buttons-small-buttons-icon-size: 20px;--buttons-small-buttons-stroke-default: 1px;--buttons-small-buttons-stroke-thick: 2px;--buttons-large-buttons-l-r-padding: 20px;--buttons-large-buttons-height: 54px;--buttons-large-buttons-icon-only-width: 54px;--buttons-large-buttons-icon-size: 20px;--buttons-large-buttons-gap: 8px;--buttons-large-buttons-corner-radius: 8px;--buttons-large-buttons-stroke-default: 1px;--buttons-large-buttons-stroke-thick: 2px;--buttons-extra-small-buttons-l-r-padding: 8px;--buttons-extra-small-buttons-height: 32px;--buttons-extra-small-buttons-icon-size: 16px;--buttons-extra-small-buttons-gap: 4px;--buttons-extra-small-buttons-corner-radius: 8px;--buttons-stroke-default: 1px;--buttons-stroke-thick: 2px;--background-beige: #f9f7f4;--error-light: #fff2f2;--text-placeholder: #6d6d7d;--stroke-dark: #141413;--stroke-light: #dddde2;--stroke-medium: #535366;--accent-green: #ccffd4;--accent-turquoise: #ccf7ff;--accent-yellow: #f7ffcc;--accent-peach: #ffd4cc;--accent-violet: #f7ccff;--accent-purple: #f4f7fc;--text-primary: #141413;--secondary-brand: #141413;--text-hover: #0c3b8d;--text-white: #ffffff;--text-link: #0645b1;--text-press: #082f75;--success-light: #f0f8f1;--background-light-blue: #eef2f9;--background-white: #ffffff;--premium-dark: #877440;--premium-light: #f9f6ed;--stroke-white: #ffffff;--inactive-content: #b1b1ba;--annotate-light: #a35dff;--annotate-dark: #824acc;--grid: #eef2f9;--inactive-stroke: #ebebee;--shadow: rgba(34, 34, 51, 0.25);--text-inactive: #6d6d7d;--text-error: #b60000;--stroke-error: #b60000;--background-error: #fff2f2;--background-black: #141413;--icon-default: #141413;--icon-blue: #0645b1;--background-grey: #dddde2;--icon-grey: #b1b1ba;--text-focus: #082f75;--brand-colors-neutral-black: #141413;--brand-colors-neutral-900: #535366;--brand-colors-neutral-800: #6d6d7d;--brand-colors-neutral-700: #91919e;--brand-colors-neutral-600: #b1b1ba;--brand-colors-neutral-500: #c8c8cf;--brand-colors-neutral-400: #dddde2;--brand-colors-neutral-300: #ebebee;--brand-colors-neutral-200: #f8f8fb;--brand-colors-neutral-100: #fafafa;--brand-colors-neutral-white: #ffffff;--brand-colors-blue-900: #043059;--brand-colors-blue-800: #082f75;--brand-colors-blue-700: #0c3b8d;--brand-colors-blue-600: #0645b1;--brand-colors-blue-500: #386ac1;--brand-colors-blue-400: #cddaef;--brand-colors-blue-300: #e6ecf7;--brand-colors-blue-200: #eef2f9;--brand-colors-blue-100: #f4f7fc;--brand-colors-gold-500: #877440;--brand-colors-gold-400: #e9e3d4;--brand-colors-gold-300: #f2efe8;--brand-colors-gold-200: #f9f6ed;--brand-colors-gold-100: #f9f7f4;--brand-colors-error-900: #920000;--brand-colors-error-500: #b60000;--brand-colors-success-900: #035c0f;--brand-colors-green: #ccffd4;--brand-colors-turquoise: #ccf7ff;--brand-colors-yellow: #f7ffcc;--brand-colors-peach: #ffd4cc;--brand-colors-violet: #f7ccff;--brand-colors-error-100: #fff2f2;--brand-colors-success-500: #05b01c;--brand-colors-success-100: #f0f8f1;--text-secondary: #535366;--icon-white: #ffffff;--background-beige-darker: #f2efe8;--icon-dark-grey: #535366;--type-font-family-sans-serif: Roboto;--type-font-family-serif: Georgia;--type-font-family-mono: IBM Plex Mono;--type-weights-300: 300;--type-weights-400: 400;--type-weights-500: 500;--type-weights-700: 700;--type-sizes-12: 12px;--type-sizes-14: 14px;--type-sizes-16: 16px;--type-sizes-18: 18px;--type-sizes-20: 20px;--type-sizes-22: 22px;--type-sizes-24: 24px;--type-sizes-28: 28px;--type-sizes-30: 30px;--type-sizes-32: 32px;--type-sizes-40: 40px;--type-sizes-42: 42px;--type-sizes-48-2: 48px;--type-line-heights-16: 16px;--type-line-heights-20: 20px;--type-line-heights-23: 23px;--type-line-heights-24: 24px;--type-line-heights-25: 25px;--type-line-heights-26: 26px;--type-line-heights-29: 29px;--type-line-heights-30: 30px;--type-line-heights-32: 32px;--type-line-heights-34: 34px;--type-line-heights-35: 35px;--type-line-heights-36: 36px;--type-line-heights-38: 38px;--type-line-heights-40: 40px;--type-line-heights-46: 46px;--type-line-heights-48: 48px;--type-line-heights-52: 52px;--type-line-heights-58: 58px;--type-line-heights-68: 68px;--type-line-heights-74: 74px;--type-line-heights-82: 82px;--type-paragraph-spacings-0: 0px;--type-paragraph-spacings-4: 4px;--type-paragraph-spacings-8: 8px;--type-paragraph-spacings-16: 16px;--type-sans-serif-xl-font-weight: 400;--type-sans-serif-xl-size: 42px;--type-sans-serif-xl-line-height: 46px;--type-sans-serif-xl-paragraph-spacing: 16px;--type-sans-serif-lg-font-weight: 400;--type-sans-serif-lg-size: 32px;--type-sans-serif-lg-line-height: 36px;--type-sans-serif-lg-paragraph-spacing: 16px;--type-sans-serif-md-font-weight: 400;--type-sans-serif-md-line-height: 34px;--type-sans-serif-md-paragraph-spacing: 16px;--type-sans-serif-md-size: 28px;--type-sans-serif-xs-font-weight: 700;--type-sans-serif-xs-line-height: 25px;--type-sans-serif-xs-paragraph-spacing: 0px;--type-sans-serif-xs-size: 20px;--type-sans-serif-sm-font-weight: 400;--type-sans-serif-sm-line-height: 30px;--type-sans-serif-sm-paragraph-spacing: 16px;--type-sans-serif-sm-size: 24px;--type-body-xl-font-weight: 400;--type-body-xl-size: 24px;--type-body-xl-line-height: 36px;--type-body-xl-paragraph-spacing: 0px;--type-body-sm-font-weight: 400;--type-body-sm-size: 14px;--type-body-sm-line-height: 20px;--type-body-sm-paragraph-spacing: 8px;--type-body-xs-font-weight: 400;--type-body-xs-size: 12px;--type-body-xs-line-height: 16px;--type-body-xs-paragraph-spacing: 0px;--type-body-md-font-weight: 400;--type-body-md-size: 16px;--type-body-md-line-height: 20px;--type-body-md-paragraph-spacing: 4px;--type-body-lg-font-weight: 400;--type-body-lg-size: 20px;--type-body-lg-line-height: 26px;--type-body-lg-paragraph-spacing: 16px;--type-body-lg-medium-font-weight: 500;--type-body-lg-medium-size: 20px;--type-body-lg-medium-line-height: 32px;--type-body-lg-medium-paragraph-spacing: 16px;--type-body-md-medium-font-weight: 500;--type-body-md-medium-size: 16px;--type-body-md-medium-line-height: 20px;--type-body-md-medium-paragraph-spacing: 4px;--type-body-sm-bold-font-weight: 700;--type-body-sm-bold-size: 14px;--type-body-sm-bold-line-height: 20px;--type-body-sm-bold-paragraph-spacing: 8px;--type-body-sm-medium-font-weight: 500;--type-body-sm-medium-size: 14px;--type-body-sm-medium-line-height: 20px;--type-body-sm-medium-paragraph-spacing: 8px;--type-serif-md-font-weight: 400;--type-serif-md-size: 40px;--type-serif-md-paragraph-spacing: 0px;--type-serif-md-line-height: 48px;--type-serif-sm-font-weight: 400;--type-serif-sm-size: 28px;--type-serif-sm-paragraph-spacing: 0px;--type-serif-sm-line-height: 32px;--type-serif-lg-font-weight: 400;--type-serif-lg-size: 58px;--type-serif-lg-paragraph-spacing: 0px;--type-serif-lg-line-height: 68px;--type-serif-xs-font-weight: 400;--type-serif-xs-size: 18px;--type-serif-xs-line-height: 24px;--type-serif-xs-paragraph-spacing: 0px;--type-serif-xl-font-weight: 400;--type-serif-xl-size: 74px;--type-serif-xl-paragraph-spacing: 0px;--type-serif-xl-line-height: 82px;--type-mono-md-font-weight: 400;--type-mono-md-size: 22px;--type-mono-md-line-height: 24px;--type-mono-md-paragraph-spacing: 0px;--type-mono-lg-font-weight: 400;--type-mono-lg-size: 40px;--type-mono-lg-line-height: 40px;--type-mono-lg-paragraph-spacing: 0px;--type-mono-sm-font-weight: 400;--type-mono-sm-size: 14px;--type-mono-sm-line-height: 24px;--type-mono-sm-paragraph-spacing: 0px;--spacing-xs-4: 4px;--spacing-xs-8: 8px;--spacing-xs-16: 16px;--spacing-sm-24: 24px;--spacing-sm-32: 32px;--spacing-md-40: 40px;--spacing-md-48: 48px;--spacing-lg-64: 64px;--spacing-lg-80: 80px;--spacing-xlg-104: 104px;--spacing-xlg-152: 152px;--spacing-xs-12: 12px;--spacing-page-section: 104px;--spacing-card-list-spacing: 48px;--spacing-text-section-spacing: 80px;--spacing-md-xs-headings: 40px;--corner-radius-radius-lg: 16px;--corner-radius-radius-sm: 4px;--corner-radius-radius-md: 8px;--corner-radius-radius-round: 104px}}@media(min-width: 1280px){:root{--token-mode: Parity;--dropshadow: 0 2px 4px 0 #22223340;--primary-brand: #0645b1;--error-dark: #b60000;--success-dark: #05b01c;--inactive-fill: #ebebee;--hover: #0c3b8d;--pressed: #082f75;--button-primary-fill-inactive: #ebebee;--button-primary-fill: #0645b1;--button-primary-text: #ffffff;--button-primary-fill-hover: #0c3b8d;--button-primary-fill-press: #082f75;--button-primary-icon: #ffffff;--button-primary-fill-inverse: #ffffff;--button-primary-text-inverse: #082f75;--button-primary-icon-inverse: #0645b1;--button-primary-fill-inverse-hover: #cddaef;--button-primary-stroke-inverse-pressed: #0645b1;--button-secondary-stroke-inactive: #b1b1ba;--button-secondary-fill: #eef2f9;--button-secondary-text: #082f75;--button-secondary-fill-press: #cddaef;--button-secondary-fill-inactive: #ebebee;--button-secondary-stroke: #cddaef;--button-secondary-stroke-hover: #386ac1;--button-secondary-stroke-press: #0645b1;--button-secondary-text-inactive: #b1b1ba;--button-secondary-icon: #082f75;--button-secondary-fill-hover: #e6ecf7;--button-secondary-stroke-inverse: #ffffff;--button-secondary-fill-inverse: rgba(255, 255, 255, 0);--button-secondary-icon-inverse: #ffffff;--button-secondary-icon-hover: #082f75;--button-secondary-icon-press: #082f75;--button-secondary-text-inverse: #ffffff;--button-secondary-text-hover: #082f75;--button-secondary-text-press: #082f75;--button-secondary-fill-inverse-hover: #043059;--button-xs-stroke: #141413;--button-xs-stroke-hover: #0c3b8d;--button-xs-stroke-press: #082f75;--button-xs-stroke-inactive: #ebebee;--button-xs-text: #141413;--button-xs-text-hover: #0c3b8d;--button-xs-text-press: #082f75;--button-xs-text-inactive: #91919e;--button-xs-icon: #141413;--button-xs-icon-hover: #0c3b8d;--button-xs-icon-press: #082f75;--button-xs-icon-inactive: #91919e;--button-xs-fill: #ffffff;--button-xs-fill-hover: #f4f7fc;--button-xs-fill-press: #eef2f9;--buttons-button-text-inactive: #91919e;--buttons-button-focus: #0645b1;--buttons-button-icon-inactive: #91919e;--buttons-small-buttons-corner-radius: 8px;--buttons-small-buttons-l-r-padding: 12px;--buttons-small-buttons-height: 44px;--buttons-small-buttons-gap: 8px;--buttons-small-buttons-icon-only-width: 44px;--buttons-small-buttons-icon-size: 20px;--buttons-small-buttons-stroke-default: 1px;--buttons-small-buttons-stroke-thick: 2px;--buttons-large-buttons-l-r-padding: 20px;--buttons-large-buttons-height: 54px;--buttons-large-buttons-icon-only-width: 54px;--buttons-large-buttons-icon-size: 20px;--buttons-large-buttons-gap: 8px;--buttons-large-buttons-corner-radius: 8px;--buttons-large-buttons-stroke-default: 1px;--buttons-large-buttons-stroke-thick: 2px;--buttons-extra-small-buttons-l-r-padding: 8px;--buttons-extra-small-buttons-height: 32px;--buttons-extra-small-buttons-icon-size: 16px;--buttons-extra-small-buttons-gap: 4px;--buttons-extra-small-buttons-corner-radius: 8px;--buttons-stroke-default: 1px;--buttons-stroke-thick: 2px;--background-beige: #f9f7f4;--error-light: #fff2f2;--text-placeholder: #6d6d7d;--stroke-dark: #141413;--stroke-light: #dddde2;--stroke-medium: #535366;--accent-green: #ccffd4;--accent-turquoise: #ccf7ff;--accent-yellow: #f7ffcc;--accent-peach: #ffd4cc;--accent-violet: #f7ccff;--accent-purple: #f4f7fc;--text-primary: #141413;--secondary-brand: #141413;--text-hover: #0c3b8d;--text-white: #ffffff;--text-link: #0645b1;--text-press: #082f75;--success-light: #f0f8f1;--background-light-blue: #eef2f9;--background-white: #ffffff;--premium-dark: #877440;--premium-light: #f9f6ed;--stroke-white: #ffffff;--inactive-content: #b1b1ba;--annotate-light: #a35dff;--annotate-dark: #824acc;--grid: #eef2f9;--inactive-stroke: #ebebee;--shadow: rgba(34, 34, 51, 0.25);--text-inactive: #6d6d7d;--text-error: #b60000;--stroke-error: #b60000;--background-error: #fff2f2;--background-black: #141413;--icon-default: #141413;--icon-blue: #0645b1;--background-grey: #dddde2;--icon-grey: #b1b1ba;--text-focus: #082f75;--brand-colors-neutral-black: #141413;--brand-colors-neutral-900: #535366;--brand-colors-neutral-800: #6d6d7d;--brand-colors-neutral-700: #91919e;--brand-colors-neutral-600: #b1b1ba;--brand-colors-neutral-500: #c8c8cf;--brand-colors-neutral-400: #dddde2;--brand-colors-neutral-300: #ebebee;--brand-colors-neutral-200: #f8f8fb;--brand-colors-neutral-100: #fafafa;--brand-colors-neutral-white: #ffffff;--brand-colors-blue-900: #043059;--brand-colors-blue-800: #082f75;--brand-colors-blue-700: #0c3b8d;--brand-colors-blue-600: #0645b1;--brand-colors-blue-500: #386ac1;--brand-colors-blue-400: #cddaef;--brand-colors-blue-300: #e6ecf7;--brand-colors-blue-200: #eef2f9;--brand-colors-blue-100: #f4f7fc;--brand-colors-gold-500: #877440;--brand-colors-gold-400: #e9e3d4;--brand-colors-gold-300: #f2efe8;--brand-colors-gold-200: #f9f6ed;--brand-colors-gold-100: #f9f7f4;--brand-colors-error-900: #920000;--brand-colors-error-500: #b60000;--brand-colors-success-900: #035c0f;--brand-colors-green: #ccffd4;--brand-colors-turquoise: #ccf7ff;--brand-colors-yellow: #f7ffcc;--brand-colors-peach: #ffd4cc;--brand-colors-violet: #f7ccff;--brand-colors-error-100: #fff2f2;--brand-colors-success-500: #05b01c;--brand-colors-success-100: #f0f8f1;--text-secondary: #535366;--icon-white: #ffffff;--background-beige-darker: #f2efe8;--icon-dark-grey: #535366;--type-font-family-sans-serif: Roboto;--type-font-family-serif: Georgia;--type-font-family-mono: IBM Plex Mono;--type-weights-300: 300;--type-weights-400: 400;--type-weights-500: 500;--type-weights-700: 700;--type-sizes-12: 12px;--type-sizes-14: 14px;--type-sizes-16: 16px;--type-sizes-18: 18px;--type-sizes-20: 20px;--type-sizes-22: 22px;--type-sizes-24: 24px;--type-sizes-28: 28px;--type-sizes-30: 30px;--type-sizes-32: 32px;--type-sizes-40: 40px;--type-sizes-42: 42px;--type-sizes-48-2: 48px;--type-line-heights-16: 16px;--type-line-heights-20: 20px;--type-line-heights-23: 23px;--type-line-heights-24: 24px;--type-line-heights-25: 25px;--type-line-heights-26: 26px;--type-line-heights-29: 29px;--type-line-heights-30: 30px;--type-line-heights-32: 32px;--type-line-heights-34: 34px;--type-line-heights-35: 35px;--type-line-heights-36: 36px;--type-line-heights-38: 38px;--type-line-heights-40: 40px;--type-line-heights-46: 46px;--type-line-heights-48: 48px;--type-line-heights-52: 52px;--type-line-heights-58: 58px;--type-line-heights-68: 68px;--type-line-heights-74: 74px;--type-line-heights-82: 82px;--type-paragraph-spacings-0: 0px;--type-paragraph-spacings-4: 4px;--type-paragraph-spacings-8: 8px;--type-paragraph-spacings-16: 16px;--type-sans-serif-xl-font-weight: 400;--type-sans-serif-xl-size: 42px;--type-sans-serif-xl-line-height: 46px;--type-sans-serif-xl-paragraph-spacing: 16px;--type-sans-serif-lg-font-weight: 400;--type-sans-serif-lg-size: 32px;--type-sans-serif-lg-line-height: 38px;--type-sans-serif-lg-paragraph-spacing: 16px;--type-sans-serif-md-font-weight: 400;--type-sans-serif-md-line-height: 34px;--type-sans-serif-md-paragraph-spacing: 16px;--type-sans-serif-md-size: 28px;--type-sans-serif-xs-font-weight: 700;--type-sans-serif-xs-line-height: 25px;--type-sans-serif-xs-paragraph-spacing: 0px;--type-sans-serif-xs-size: 20px;--type-sans-serif-sm-font-weight: 400;--type-sans-serif-sm-line-height: 30px;--type-sans-serif-sm-paragraph-spacing: 16px;--type-sans-serif-sm-size: 24px;--type-body-xl-font-weight: 400;--type-body-xl-size: 24px;--type-body-xl-line-height: 36px;--type-body-xl-paragraph-spacing: 0px;--type-body-sm-font-weight: 400;--type-body-sm-size: 14px;--type-body-sm-line-height: 20px;--type-body-sm-paragraph-spacing: 8px;--type-body-xs-font-weight: 400;--type-body-xs-size: 12px;--type-body-xs-line-height: 16px;--type-body-xs-paragraph-spacing: 0px;--type-body-md-font-weight: 400;--type-body-md-size: 16px;--type-body-md-line-height: 20px;--type-body-md-paragraph-spacing: 4px;--type-body-lg-font-weight: 400;--type-body-lg-size: 20px;--type-body-lg-line-height: 26px;--type-body-lg-paragraph-spacing: 16px;--type-body-lg-medium-font-weight: 500;--type-body-lg-medium-size: 20px;--type-body-lg-medium-line-height: 32px;--type-body-lg-medium-paragraph-spacing: 16px;--type-body-md-medium-font-weight: 500;--type-body-md-medium-size: 16px;--type-body-md-medium-line-height: 20px;--type-body-md-medium-paragraph-spacing: 4px;--type-body-sm-bold-font-weight: 700;--type-body-sm-bold-size: 14px;--type-body-sm-bold-line-height: 20px;--type-body-sm-bold-paragraph-spacing: 8px;--type-body-sm-medium-font-weight: 500;--type-body-sm-medium-size: 14px;--type-body-sm-medium-line-height: 20px;--type-body-sm-medium-paragraph-spacing: 8px;--type-serif-md-font-weight: 400;--type-serif-md-size: 40px;--type-serif-md-paragraph-spacing: 0px;--type-serif-md-line-height: 48px;--type-serif-sm-font-weight: 400;--type-serif-sm-size: 28px;--type-serif-sm-paragraph-spacing: 0px;--type-serif-sm-line-height: 32px;--type-serif-lg-font-weight: 400;--type-serif-lg-size: 58px;--type-serif-lg-paragraph-spacing: 0px;--type-serif-lg-line-height: 68px;--type-serif-xs-font-weight: 400;--type-serif-xs-size: 18px;--type-serif-xs-line-height: 24px;--type-serif-xs-paragraph-spacing: 0px;--type-serif-xl-font-weight: 400;--type-serif-xl-size: 74px;--type-serif-xl-paragraph-spacing: 0px;--type-serif-xl-line-height: 82px;--type-mono-md-font-weight: 400;--type-mono-md-size: 22px;--type-mono-md-line-height: 24px;--type-mono-md-paragraph-spacing: 0px;--type-mono-lg-font-weight: 400;--type-mono-lg-size: 40px;--type-mono-lg-line-height: 40px;--type-mono-lg-paragraph-spacing: 0px;--type-mono-sm-font-weight: 400;--type-mono-sm-size: 14px;--type-mono-sm-line-height: 24px;--type-mono-sm-paragraph-spacing: 0px;--spacing-xs-4: 4px;--spacing-xs-8: 8px;--spacing-xs-16: 16px;--spacing-sm-24: 24px;--spacing-sm-32: 32px;--spacing-md-40: 40px;--spacing-md-48: 48px;--spacing-lg-64: 64px;--spacing-lg-80: 80px;--spacing-xlg-104: 104px;--spacing-xlg-152: 152px;--spacing-xs-12: 12px;--spacing-page-section: 152px;--spacing-card-list-spacing: 48px;--spacing-text-section-spacing: 80px;--spacing-md-xs-headings: 40px;--corner-radius-radius-lg: 16px;--corner-radius-radius-sm: 4px;--corner-radius-radius-md: 8px;--corner-radius-radius-round: 104px}}</style><link crossorigin="" href="https://fonts.gstatic.com/" rel="preconnect" /><link href="https://fonts.googleapis.com/css2?family=DM+Sans:ital,opsz,wght@0,9..40,100..1000;1,9..40,100..1000&family=Gupter:wght@400;500;700&family=IBM+Plex+Mono:wght@300;400&family=Material+Symbols+Outlined:opsz,wght,FILL,GRAD@20,400,0,0&display=swap" rel="stylesheet" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/common-57f9da13cef3fd4e2a8b655342c6488eded3e557e823fe67571f2ac77acd7b6f.css" /> <meta name="author" content="gerrit peters" /> <meta name="description" content="Gerrit Peters, Eindhoven University of Technology: 112 Followers, 17 Following, 576 Research papers. Research interests: Rheology, Soft Condensed Matter…" /> <meta name="google-site-verification" content="bKJMBZA7E43xhDOopFZkssMMkBRjvYERV-NaN4R6mrs" /> <script> var $controller_name = 'works'; var $action_name = "summary"; var $rails_env = 'production'; var $app_rev = 'b22bb4b4c659370e45f7093516d2fe164f182615'; var $domain = 'academia.edu'; var $app_host = "academia.edu"; var $asset_host = "academia-assets.com"; var $start_time = new Date().getTime(); var $recaptcha_key = "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB"; var $recaptcha_invisible_key = "6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj"; var $disableClientRecordHit = false; </script> <script> window.Aedu = { hit_data: null }; window.Aedu.SiteStats = {"premium_universities_count":13939,"monthly_visitors":"136 million","monthly_visitor_count":136579771,"monthly_visitor_count_in_millions":136,"user_count":285111371,"paper_count":55203019,"paper_count_in_millions":55,"page_count":432000000,"page_count_in_millions":432,"pdf_count":16500000,"pdf_count_in_millions":16}; window.Aedu.serverRenderTime = new Date(1742149892000); window.Aedu.timeDifference = new Date().getTime() - 1742149892000; window.Aedu.isUsingCssV1 = false; window.Aedu.enableLocalization = true; window.Aedu.activateFullstory = false; window.Aedu.serviceAvailability = { status: {"attention_db":"on","bibliography_db":"on","contacts_db":"on","email_db":"on","indexability_db":"on","mentions_db":"on","news_db":"on","notifications_db":"on","offsite_mentions_db":"on","redshift":"on","redshift_exports_db":"on","related_works_db":"on","ring_db":"on","user_tests_db":"on"}, serviceEnabled: function(service) { return this.status[service] === "on"; }, readEnabled: function(service) { return this.serviceEnabled(service) || this.status[service] === "read_only"; }, }; window.Aedu.viewApmTrace = function() { // Check if x-apm-trace-id meta tag is set, and open the trace in APM // in a new window if it is. var apmTraceId = document.head.querySelector('meta[name="x-apm-trace-id"]'); if (apmTraceId) { var traceId = apmTraceId.content; // Use trace ID to construct URL, an example URL looks like: // https://app.datadoghq.com/apm/traces?query=trace_id%31298410148923562634 var apmUrl = 'https://app.datadoghq.com/apm/traces?query=trace_id%3A' + traceId; window.open(apmUrl, '_blank'); } }; </script> <!--[if lt IE 9]> <script src="//cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.2/html5shiv.min.js"></script> <![endif]--> <link href="https://fonts.googleapis.com/css?family=Roboto:100,100i,300,300i,400,400i,500,500i,700,700i,900,900i" rel="stylesheet"> <link rel="preload" href="//maxcdn.bootstrapcdn.com/font-awesome/4.3.0/css/font-awesome.min.css" as="style" onload="this.rel='stylesheet'"> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/libraries-a9675dcb01ec4ef6aa807ba772c7a5a00c1820d3ff661c1038a20f80d06bb4e4.css" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/academia-9982828ed1de4777566441c35ccf7157c55ca779141fce69380d727ebdbbb926.css" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system_legacy-056a9113b9a0f5343d013b29ee1929d5a18be35fdcdceb616600b4db8bd20054.css" /> <script src="//a.academia-assets.com/assets/webpack_bundles/runtime-bundle-005434038af4252ca37c527588411a3d6a0eabb5f727fac83f8bbe7fd88d93bb.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/webpack_libraries_and_infrequently_changed.wjs-bundle-948be8fa2cdf77e0edc9d37d89e2ceac6298a9cec36b295126fe6066d89fe4f6.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/core_webpack.wjs-bundle-3f0732fc165186a3e70d3de1b749e1a47b279db87e2188a19da2a0c42b75cab9.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/sentry.wjs-bundle-5fe03fddca915c8ba0f7edbe64c194308e8ce5abaed7bffe1255ff37549c4808.js"></script> <script> jade = window.jade || {}; jade.helpers = window.$h; jade._ = window._; </script> <!-- Google Tag Manager --> <script id="tag-manager-head-root">(function(w,d,s,l,i){w[l]=w[l]||[];w[l].push({'gtm.start': new Date().getTime(),event:'gtm.js'});var f=d.getElementsByTagName(s)[0], j=d.createElement(s),dl=l!='dataLayer'?'&l='+l:'';j.async=true;j.src= 'https://www.googletagmanager.com/gtm.js?id='+i+dl;f.parentNode.insertBefore(j,f); })(window,document,'script','dataLayer_old','GTM-5G9JF7Z');</script> <!-- End Google Tag Manager --> <script> window.gptadslots = []; window.googletag = window.googletag || {}; window.googletag.cmd = window.googletag.cmd || []; </script> <script type="text/javascript"> // TODO(jacob): This should be defined, may be rare load order problem. // Checking if null is just a quick fix, will default to en if unset. // Better fix is to run this immedietely after I18n is set. if (window.I18n != null) { I18n.defaultLocale = "en"; I18n.locale = "en"; I18n.fallbacks = true; } </script> <link rel="canonical" href="https://tue.academia.edu/httpwwwtuenl" /> </head> <!--[if gte IE 9 ]> <body class='ie ie9 c-profiles/works a-summary logged_out'> <![endif]--> <!--[if !(IE) ]><!--> <body class='c-profiles/works a-summary logged_out'> <!--<![endif]--> <div id="fb-root"></div><script>window.fbAsyncInit = function() { FB.init({ appId: "2369844204", version: "v8.0", status: true, cookie: true, xfbml: true }); // Additional initialization code. if (window.InitFacebook) { // facebook.ts already loaded, set it up. window.InitFacebook(); } else { // Set a flag for facebook.ts to find when it loads. window.academiaAuthReadyFacebook = true; } };</script><script>window.fbAsyncLoad = function() { // Protection against double calling of this function if (window.FB) { return; } (function(d, s, id){ var js, fjs = d.getElementsByTagName(s)[0]; if (d.getElementById(id)) {return;} js = d.createElement(s); js.id = id; js.src = "//connect.facebook.net/en_US/sdk.js"; fjs.parentNode.insertBefore(js, fjs); }(document, 'script', 'facebook-jssdk')); } if (!window.defer_facebook) { // Autoload if not deferred window.fbAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.fbAsyncLoad(); }, 5000); }</script> <div id="google-root"></div><script>window.loadGoogle = function() { if (window.InitGoogle) { // google.ts already loaded, set it up. window.InitGoogle("331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"); } else { // Set a flag for google.ts to use when it loads. window.GoogleClientID = "331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"; } };</script><script>window.googleAsyncLoad = function() { // Protection against double calling of this function (function(d) { var js; var id = 'google-jssdk'; var ref = d.getElementsByTagName('script')[0]; if (d.getElementById(id)) { return; } js = d.createElement('script'); js.id = id; js.async = true; js.onload = loadGoogle; js.src = "https://accounts.google.com/gsi/client" ref.parentNode.insertBefore(js, ref); }(document)); } if (!window.defer_google) { // Autoload if not deferred window.googleAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.googleAsyncLoad(); }, 5000); }</script> <div id="tag-manager-body-root"> <!-- Google Tag Manager (noscript) --> <noscript><iframe src="https://www.googletagmanager.com/ns.html?id=GTM-5G9JF7Z" height="0" width="0" style="display:none;visibility:hidden"></iframe></noscript> <!-- End Google Tag Manager (noscript) --> <!-- Event listeners for analytics --> <script> window.addEventListener('load', function() { if (document.querySelector('input[name="commit"]')) { document.querySelector('input[name="commit"]').addEventListener('click', function() { gtag('event', 'click', { event_category: 'button', event_label: 'Log In' }) }) } }); </script> </div> <script>var _comscore = _comscore || []; _comscore.push({ c1: "2", c2: "26766707" }); (function() { var s = document.createElement("script"), el = document.getElementsByTagName("script")[0]; s.async = true; s.src = (document.location.protocol == "https:" ? "https://sb" : "http://b") + ".scorecardresearch.com/beacon.js"; el.parentNode.insertBefore(s, el); })();</script><img src="https://sb.scorecardresearch.com/p?c1=2&c2=26766707&cv=2.0&cj=1" style="position: absolute; visibility: hidden" /> <div id='react-modal'></div> <div class='DesignSystem'> <a class='u-showOnFocus' href='#site'> Skip to main content </a> </div> <div id="upgrade_ie_banner" style="display: none;"><p>Academia.edu no longer supports Internet Explorer.</p><p>To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to <a href="https://www.academia.edu/upgrade-browser">upgrade your browser</a>.</p></div><script>// Show this banner for all versions of IE if (!!window.MSInputMethodContext || /(MSIE)/.test(navigator.userAgent)) { document.getElementById('upgrade_ie_banner').style.display = 'block'; }</script> <div class="DesignSystem bootstrap ShrinkableNav"><div class="navbar navbar-default main-header"><div class="container-wrapper" id="main-header-container"><div class="container"><div class="navbar-header"><div class="nav-left-wrapper u-mt0x"><div class="nav-logo"><a data-main-header-link-target="logo_home" href="https://www.academia.edu/"><img class="visible-xs-inline-block" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015-A.svg" width="24" height="24" /><img width="145.2" height="18" class="hidden-xs" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015.svg" /></a></div><div class="nav-search"><div class="SiteSearch-wrapper select2-no-default-pills"><form class="js-SiteSearch-form DesignSystem" action="https://www.academia.edu/search" accept-charset="UTF-8" method="get"><i class="SiteSearch-icon fa fa-search u-fw700 u-positionAbsolute u-tcGrayDark"></i><input class="js-SiteSearch-form-input SiteSearch-form-input form-control" data-main-header-click-target="search_input" name="q" placeholder="Search" type="text" value="" /></form></div></div></div><div class="nav-right-wrapper pull-right"><ul class="NavLinks js-main-nav list-unstyled"><li class="NavLinks-link"><a class="js-header-login-url Button Button--inverseGray Button--sm u-mb4x" id="nav_log_in" rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="NavLinks-link u-p0x"><a class="Button Button--inverseGray Button--sm u-mb4x" rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li></ul><button class="hidden-lg hidden-md hidden-sm u-ml4x navbar-toggle collapsed" data-target=".js-mobile-header-links" data-toggle="collapse" type="button"><span class="icon-bar"></span><span class="icon-bar"></span><span class="icon-bar"></span></button></div></div><div class="collapse navbar-collapse js-mobile-header-links"><ul class="nav navbar-nav"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li><li class="u-borderColorGrayLight u-borderBottom1 js-mobile-nav-expand-trigger"><a href="#">more <span class="caret"></span></a></li><li><ul class="js-mobile-nav-expand-section nav navbar-nav u-m0x collapse"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/about">About</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/press">Press</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/documents">Papers</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/hiring"><i class="fa fa-briefcase"></i> We're Hiring!</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://support.academia.edu/hc/en-us"><i class="fa fa-question-circle"></i> Help Center</a></li><li class="js-mobile-nav-collapse-trigger u-borderColorGrayLight u-borderBottom1 dropup" style="display:none"><a href="#">less <span class="caret"></span></a></li></ul></li></ul></div></div></div><script>(function(){ var $moreLink = $(".js-mobile-nav-expand-trigger"); var $lessLink = $(".js-mobile-nav-collapse-trigger"); var $section = $('.js-mobile-nav-expand-section'); $moreLink.click(function(ev){ ev.preventDefault(); $moreLink.hide(); $lessLink.show(); $section.collapse('show'); }); $lessLink.click(function(ev){ ev.preventDefault(); $moreLink.show(); $lessLink.hide(); $section.collapse('hide'); }); })() if ($a.is_logged_in() || false) { new Aedu.NavigationController({ el: '.js-main-nav', showHighlightedNotification: false }); } else { $(".js-header-login-url").attr("href", $a.loginUrlWithRedirect()); } Aedu.autocompleteSearch = new AutocompleteSearch({el: '.js-SiteSearch-form'});</script></div></div> <div id='site' class='fixed'> <div id="content" class="clearfix"> <script>document.addEventListener('DOMContentLoaded', function(){ var $dismissible = $(".dismissible_banner"); $dismissible.click(function(ev) { $dismissible.hide(); }); });</script> <script src="//a.academia-assets.com/assets/webpack_bundles/profile.wjs-bundle-e1d575982904827f1397a4a8ee10c2382667df3df47448516361b995ce9464bd.js" defer="defer"></script><script>$viewedUser = Aedu.User.set_viewed( {"id":26113865,"first_name":"Gerrit","middle_initials":null,"last_name":"Peters","page_name":"httpwwwtuenl","domain_name":"tue","created_at":"2015-02-11T05:19:07.533-08:00","display_name":"Gerrit Peters","url":"https://tue.academia.edu/httpwwwtuenl","photo":"/images/s65_no_pic.png","has_photo":false,"department":{"id":57562,"name":"Mechanical Engineering","url":"https://tue.academia.edu/Departments/Mechanical_Engineering/Documents","university":{"id":1413,"name":"Eindhoven University of Technology","url":"https://tue.academia.edu/"}},"position":"Faculty Member","position_id":1,"is_analytics_public":false,"interests":[{"id":7598,"name":"Rheology","url":"https://www.academia.edu/Documents/in/Rheology"},{"id":2328,"name":"Soft Condensed Matter Physics","url":"https://www.academia.edu/Documents/in/Soft_Condensed_Matter_Physics"},{"id":2721,"name":"Microfluidics","url":"https://www.academia.edu/Documents/in/Microfluidics"},{"id":4512,"name":"Light Scattering","url":"https://www.academia.edu/Documents/in/Light_Scattering"},{"id":5481,"name":"Soft Matter","url":"https://www.academia.edu/Documents/in/Soft_Matter"}]} ); if ($a.is_logged_in() && $viewedUser.is_current_user()) { $('body').addClass('profile-viewed-by-owner'); } $socialProfiles = []</script><div id="js-react-on-rails-context" style="display:none" data-rails-context="{"inMailer":false,"i18nLocale":"en","i18nDefaultLocale":"en","href":"https://tue.academia.edu/httpwwwtuenl","location":"/httpwwwtuenl","scheme":"https","host":"tue.academia.edu","port":null,"pathname":"/httpwwwtuenl","search":null,"httpAcceptLanguage":null,"serverSide":false}"></div> <div class="js-react-on-rails-component" style="display:none" data-component-name="ProfileCheckPaperUpdate" data-props="{}" data-trace="false" data-dom-id="ProfileCheckPaperUpdate-react-component-10a086c6-2463-45d9-90fa-b5cf990e36f9"></div> <div id="ProfileCheckPaperUpdate-react-component-10a086c6-2463-45d9-90fa-b5cf990e36f9"></div> <div class="DesignSystem"><div class="onsite-ping" id="onsite-ping"></div></div><div class="profile-user-info DesignSystem"><div class="social-profile-container"><div class="left-panel-container"><div class="user-info-component-wrapper"><div class="user-summary-cta-container"><div class="user-summary-container"><div class="social-profile-avatar-container"><img class="profile-avatar u-positionAbsolute" border="0" alt="" src="//a.academia-assets.com/images/s200_no_pic.png" /></div><div class="title-container"><h1 class="ds2-5-heading-sans-serif-sm">Gerrit Peters</h1><div class="affiliations-container fake-truncate js-profile-affiliations"><div><a class="u-tcGrayDarker" href="https://tue.academia.edu/">Eindhoven University of Technology</a>, <a class="u-tcGrayDarker" href="https://tue.academia.edu/Departments/Mechanical_Engineering/Documents">Mechanical Engineering</a>, <span class="u-tcGrayDarker">Faculty Member</span></div></div></div></div><div class="sidebar-cta-container"><button class="ds2-5-button hidden profile-cta-button grow js-profile-follow-button" data-broccoli-component="user-info.follow-button" data-click-track="profile-user-info-follow-button" data-follow-user-fname="Gerrit" data-follow-user-id="26113865" data-follow-user-source="profile_button" data-has-google="false"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">add</span>Follow</button><button class="ds2-5-button hidden profile-cta-button grow js-profile-unfollow-button" data-broccoli-component="user-info.unfollow-button" data-click-track="profile-user-info-unfollow-button" data-unfollow-user-id="26113865"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">done</span>Following</button></div></div><div class="user-stats-container"><a><div class="stat-container js-profile-followers"><p class="label">Followers</p><p class="data">112</p></div></a><a><div class="stat-container js-profile-followees" data-broccoli-component="user-info.followees-count" data-click-track="profile-expand-user-info-following"><p class="label">Following</p><p class="data">17</p></div></a><a><div class="stat-container js-profile-coauthors" data-broccoli-component="user-info.coauthors-count" data-click-track="profile-expand-user-info-coauthors"><p class="label">Co-authors</p><p class="data">17</p></div></a><div class="js-mentions-count-container" style="display: none;"><a href="/httpwwwtuenl/mentions"><div class="stat-container"><p class="label">Mentions</p><p class="data"></p></div></a></div><span><div class="stat-container"><p class="label"><span class="js-profile-total-view-text">Public Views</span></p><p class="data"><span class="js-profile-view-count"></span></p></div></span></div><div class="suggested-academics-container"><div class="suggested-academics--header"><p class="ds2-5-body-md-bold">Related Authors</p></div><ul class="suggested-user-card-list"><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://saha.academia.edu/AlokmayDatta"><img class="profile-avatar u-positionAbsolute" alt="Alokmay Datta" border="0" onerror="if (this.src != '//a.academia-assets.com/images/s200_no_pic.png') this.src = '//a.academia-assets.com/images/s200_no_pic.png';" width="200" height="200" src="https://0.academia-photos.com/31102/10067/9506/s200_alokmay.datta.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://saha.academia.edu/AlokmayDatta">Alokmay Datta</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">Saha Institute of Nuclear Physics</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://gmu.academia.edu/EstelaBlaistenBarojas"><img class="profile-avatar u-positionAbsolute" alt="Estela Blaisten-Barojas" border="0" onerror="if (this.src != '//a.academia-assets.com/images/s200_no_pic.png') this.src = '//a.academia-assets.com/images/s200_no_pic.png';" width="200" height="200" src="https://0.academia-photos.com/49782/3973570/4642817/s200_estela.blaisten-barojas.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://gmu.academia.edu/EstelaBlaistenBarojas">Estela Blaisten-Barojas</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">George Mason University</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://amity.academia.edu/DROMPRAKASHSINHA"><img class="profile-avatar u-positionAbsolute" alt="PROF. OM PRAKASH SINHA" border="0" onerror="if (this.src != '//a.academia-assets.com/images/s200_no_pic.png') this.src = '//a.academia-assets.com/images/s200_no_pic.png';" width="200" height="200" src="https://0.academia-photos.com/53355/16018/132774887/s200_dr_om_prakash.sinha.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://amity.academia.edu/DROMPRAKASHSINHA">PROF. OM PRAKASH SINHA</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">Amity University</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://ksu.academia.edu/DavidSeamon"><img class="profile-avatar u-positionAbsolute" alt="David Seamon" border="0" onerror="if (this.src != '//a.academia-assets.com/images/s200_no_pic.png') this.src = '//a.academia-assets.com/images/s200_no_pic.png';" width="200" height="200" src="https://0.academia-photos.com/93547/25922/29662134/s200_david.seamon.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://ksu.academia.edu/DavidSeamon">David Seamon</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">Kansas State University</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://neu.academia.edu/Goluch"><img class="profile-avatar u-positionAbsolute" alt="Edgar Goluch" border="0" onerror="if (this.src != '//a.academia-assets.com/images/s200_no_pic.png') this.src = '//a.academia-assets.com/images/s200_no_pic.png';" width="200" height="200" src="https://0.academia-photos.com/155252/40332/37064/s200_edgar.goluch.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://neu.academia.edu/Goluch">Edgar Goluch</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">Northeastern University</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://deakin.academia.edu/MdShamsulArefin"><img class="profile-avatar u-positionAbsolute" alt="Md. Shamsul Arefin" border="0" onerror="if (this.src != '//a.academia-assets.com/images/s200_no_pic.png') this.src = '//a.academia-assets.com/images/s200_no_pic.png';" width="200" height="200" src="https://0.academia-photos.com/194135/46510/1396135/s200_md._shamsul.arefin.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://deakin.academia.edu/MdShamsulArefin">Md. Shamsul Arefin</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">Deakin University</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://tamu.academia.edu/AhmedAbdala"><img class="profile-avatar u-positionAbsolute" alt="Ahmed A Abdala" border="0" onerror="if (this.src != '//a.academia-assets.com/images/s200_no_pic.png') this.src = '//a.academia-assets.com/images/s200_no_pic.png';" width="200" height="200" src="https://0.academia-photos.com/208334/48327/35325090/s200_ahmed.abdala.jpeg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://tamu.academia.edu/AhmedAbdala">Ahmed A Abdala</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">Texas A&M University</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://twi.academia.edu/AmirKhamsehnezhad"><img class="profile-avatar u-positionAbsolute" alt="Amir Khamsehnezhad" border="0" onerror="if (this.src != '//a.academia-assets.com/images/s200_no_pic.png') this.src = '//a.academia-assets.com/images/s200_no_pic.png';" width="200" height="200" src="https://0.academia-photos.com/230019/51043/481037/s200_amir.khamsehnezhad.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://twi.academia.edu/AmirKhamsehnezhad">Amir Khamsehnezhad</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">TWI Ltd</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://csic.academia.edu/VirginieBoucher"><img class="profile-avatar u-positionAbsolute" alt="Virginie Boucher" border="0" onerror="if (this.src != '//a.academia-assets.com/images/s200_no_pic.png') this.src = '//a.academia-assets.com/images/s200_no_pic.png';" width="200" height="200" src="https://0.academia-photos.com/390275/121954/787816/s200_virginie.boucher.png" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://csic.academia.edu/VirginieBoucher">Virginie Boucher</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">CSIC (Consejo Superior de Investigaciones Científicas-Spanish National Research Council)</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://cogsci.academia.edu/NevraAkdemir"><img class="profile-avatar u-positionAbsolute" alt="Nevra Akdemir" border="0" onerror="if (this.src != '//a.academia-assets.com/images/s200_no_pic.png') this.src = '//a.academia-assets.com/images/s200_no_pic.png';" width="200" height="200" src="https://0.academia-photos.com/849738/301351/21452119/s200_nevra.akdemir.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://cogsci.academia.edu/NevraAkdemir">Nevra Akdemir</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">Universität Osnabrück</p></div></div></ul></div><div class="ri-section"><div class="ri-section-header"><span>Interests</span></div><div class="ri-tags-container"><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="26113865" href="https://www.academia.edu/Documents/in/Soft_Condensed_Matter_Physics"><div id="js-react-on-rails-context" style="display:none" data-rails-context="{"inMailer":false,"i18nLocale":"en","i18nDefaultLocale":"en","href":"https://tue.academia.edu/httpwwwtuenl","location":"/httpwwwtuenl","scheme":"https","host":"tue.academia.edu","port":null,"pathname":"/httpwwwtuenl","search":null,"httpAcceptLanguage":null,"serverSide":false}"></div> <div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{"color":"gray","children":["Soft Condensed Matter Physics"]}" data-trace="false" data-dom-id="Pill-react-component-57ab600d-988b-4981-9a7a-bffbfcd26967"></div> <div id="Pill-react-component-57ab600d-988b-4981-9a7a-bffbfcd26967"></div> </a></div></div></div></div><div class="right-panel-container"><div class="user-content-wrapper"><div class="uploads-container" id="social-redesign-work-container"><div class="upload-header"><h2 class="ds2-5-heading-sans-serif-xs">Uploads</h2></div><div class="documents-container backbone-social-profile-documents" style="width: 100%;"><div class="u-taCenter"></div><div class="profile--tab_content_container js-tab-pane tab-pane active" id="all"><div class="profile--tab_heading_container js-section-heading" data-section="Papers" id="Papers"><h3 class="profile--tab_heading_container">Papers by Gerrit Peters</h3></div><div class="js-work-strip profile--work_container" data-work-id="49869415"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/49869415/Continuous_Cooling_Curves_Diagrams_of_Propene_Ethylene_Random_Copolymers_The_Role_of_Ethylene_Counits_in_Mesophase_Development"><img alt="Research paper thumbnail of Continuous Cooling Curves Diagrams of Propene/Ethylene Random Copolymers. The Role of Ethylene Counits in Mesophase Development" class="work-thumbnail" src="https://attachments.academia-assets.com/68067517/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/49869415/Continuous_Cooling_Curves_Diagrams_of_Propene_Ethylene_Random_Copolymers_The_Role_of_Ethylene_Counits_in_Mesophase_Development">Continuous Cooling Curves Diagrams of Propene/Ethylene Random Copolymers. The Role of Ethylene Counits in Mesophase Development</a></div><div class="wp-workCard_item wp-workCard--coauthors"><span>by </span><span><a class="" data-click-track="profile-work-strip-authors" rel="nofollow" href="https://independent.academia.edu/GiancarloAlfonso">Giancarlo Alfonso</a> and <a class="" data-click-track="profile-work-strip-authors" href="https://tue.academia.edu/httpwwwtuenl">Gerrit Peters</a></span></div><div class="wp-workCard_item"><span>Macromolecules</span><span>, 2010</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">A simple method to investigate polymer crystallization during fast cooling, based on in situ temp...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">A simple method to investigate polymer crystallization during fast cooling, based on in situ temperature acquisition and ex-situ structural characterization, is proposed. The approach enables one to obtain the continuous cooling curve (CCC) diagrams, widely used in metallurgy but seldom adopted for semicrystalline polymers. This method is here exploited to gain new insights on polymorphic behavior of quenched polypropylene and its copolymers with ethylene. Experimental CCC diagrams, covering a wide range of crystallization temperatures in the domains of monoclinic structure and mesophase, are obtained for the first time. The role of counits in affecting the development of the mesophase upon fast cooling is assessed: the critical cooling rate above which a predominant fraction of mesomorphic form is generated significantly decreases with increasing comonomer concentration. This is due to the remarkable hindrance of ethylene counits on the crystallization kinetics of the R-form, which indirectly favors the development of the less affected mesophase. We expect that this concept can be extended to any kind of defects that disturbs the structuring of the monoclinic phase.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="234b4b5fc5aad5731fc1ffe0a13d16ab" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":68067517,"asset_id":49869415,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/68067517/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="49869415"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="49869415"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 49869415; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=49869415]").text(description); $(".js-view-count[data-work-id=49869415]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 49869415; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='49869415']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "234b4b5fc5aad5731fc1ffe0a13d16ab" } } $('.js-work-strip[data-work-id=49869415]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":49869415,"title":"Continuous Cooling Curves Diagrams of Propene/Ethylene Random Copolymers. The Role of Ethylene Counits in Mesophase Development","translated_title":"","metadata":{"publisher":"American Chemical Society (ACS)","grobid_abstract":"A simple method to investigate polymer crystallization during fast cooling, based on in situ temperature acquisition and ex-situ structural characterization, is proposed. The approach enables one to obtain the continuous cooling curve (CCC) diagrams, widely used in metallurgy but seldom adopted for semicrystalline polymers. This method is here exploited to gain new insights on polymorphic behavior of quenched polypropylene and its copolymers with ethylene. Experimental CCC diagrams, covering a wide range of crystallization temperatures in the domains of monoclinic structure and mesophase, are obtained for the first time. The role of counits in affecting the development of the mesophase upon fast cooling is assessed: the critical cooling rate above which a predominant fraction of mesomorphic form is generated significantly decreases with increasing comonomer concentration. This is due to the remarkable hindrance of ethylene counits on the crystallization kinetics of the R-form, which indirectly favors the development of the less affected mesophase. We expect that this concept can be extended to any kind of defects that disturbs the structuring of the monoclinic phase.","publication_date":{"day":null,"month":null,"year":2010,"errors":{}},"publication_name":"Macromolecules","grobid_abstract_attachment_id":68067517},"translated_abstract":null,"internal_url":"https://www.academia.edu/49869415/Continuous_Cooling_Curves_Diagrams_of_Propene_Ethylene_Random_Copolymers_The_Role_of_Ethylene_Counits_in_Mesophase_Development","translated_internal_url":"","created_at":"2021-07-13T11:39:43.403-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":25253637,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":39268454,"work_id":49869415,"tagging_user_id":25253637,"tagged_user_id":null,"co_author_invite_id":7735116,"email":"c***s@libero.it","display_order":0,"name":"Dario Cavallo","title":"Continuous Cooling Curves Diagrams of Propene/Ethylene Random Copolymers. The Role of Ethylene Counits in Mesophase Development"},{"id":39268455,"work_id":49869415,"tagging_user_id":25253637,"tagged_user_id":null,"co_author_invite_id":1320736,"email":"a***i@ge.ismac.cnr.it","display_order":4194304,"name":"Fiorenza Azzurri","title":"Continuous Cooling Curves Diagrams of Propene/Ethylene Random Copolymers. The Role of Ethylene Counits in Mesophase Development"},{"id":39268456,"work_id":49869415,"tagging_user_id":25253637,"tagged_user_id":26113865,"co_author_invite_id":null,"email":"g***s@tue.nl","affiliation":"Eindhoven University of Technology","display_order":6291456,"name":"Gerrit Peters","title":"Continuous Cooling Curves Diagrams of Propene/Ethylene Random Copolymers. The Role of Ethylene Counits in Mesophase Development"}],"downloadable_attachments":[{"id":68067517,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/68067517/thumbnails/1.jpg","file_name":"11380.pdf","download_url":"https://www.academia.edu/attachments/68067517/download_file","bulk_download_file_name":"Continuous_Cooling_Curves_Diagrams_of_Pr.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/68067517/11380-libre.pdf?1626216137=\u0026response-content-disposition=attachment%3B+filename%3DContinuous_Cooling_Curves_Diagrams_of_Pr.pdf\u0026Expires=1742128087\u0026Signature=Ch4dfoBfng7-kKUpgk6IXs2huLCqsjwYhDaF6XRD1dRF1y-JxZuJ8ugcdNl3ilj70g9VJ-PRSpbDdA05J9bR1QM7RlaNvehKAkfEMdNPrmekmBUsgeu9tVVvBcsOOGTnc3tJ3Cx8XFZTqzixpksiD3bVGQAR3mSMU0PtiilNvLuyQQs18b7a7AkEsTfXCjNnKrp6XPGmnkVgmjrpxNxSy1tWqICLOUoD0FGcaNr0E6CWeiK1Cv--w3bwLTM2pBrilF9UOp69O9usw9O7nl-qCSjXNJ9LE1vrDIA6TyMVn5PjIoSR73oQX1TI6hhfWP73oXQwN9bMGiO3o5MU-gk1Qw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Continuous_Cooling_Curves_Diagrams_of_Propene_Ethylene_Random_Copolymers_The_Role_of_Ethylene_Counits_in_Mesophase_Development","translated_slug":"","page_count":7,"language":"en","content_type":"Work","summary":"A simple method to investigate polymer crystallization during fast cooling, based on in situ temperature acquisition and ex-situ structural characterization, is proposed. The approach enables one to obtain the continuous cooling curve (CCC) diagrams, widely used in metallurgy but seldom adopted for semicrystalline polymers. This method is here exploited to gain new insights on polymorphic behavior of quenched polypropylene and its copolymers with ethylene. Experimental CCC diagrams, covering a wide range of crystallization temperatures in the domains of monoclinic structure and mesophase, are obtained for the first time. The role of counits in affecting the development of the mesophase upon fast cooling is assessed: the critical cooling rate above which a predominant fraction of mesomorphic form is generated significantly decreases with increasing comonomer concentration. This is due to the remarkable hindrance of ethylene counits on the crystallization kinetics of the R-form, which indirectly favors the development of the less affected mesophase. We expect that this concept can be extended to any kind of defects that disturbs the structuring of the monoclinic phase.","owner":{"id":25253637,"first_name":"Giancarlo","middle_initials":null,"last_name":"Alfonso","page_name":"GiancarloAlfonso","domain_name":"independent","created_at":"2015-01-23T19:30:05.665-08:00","display_name":"Giancarlo Alfonso","url":"https://independent.academia.edu/GiancarloAlfonso","email":"alN5MnVUY1ZPdCtWSEl1QSttajAxbW9lL1F2TFQ5OWpDUG9sTU00S0dIM0Y5RkhUSXVvVzlTNkdVd3h2K0s3OS0tSU1ETVYxSGVoZGJvbmdzMHlhRHB5QT09--a7ac0750528e5f14fe7232dadfac9236331d1202"},"attachments":[{"id":68067517,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/68067517/thumbnails/1.jpg","file_name":"11380.pdf","download_url":"https://www.academia.edu/attachments/68067517/download_file","bulk_download_file_name":"Continuous_Cooling_Curves_Diagrams_of_Pr.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/68067517/11380-libre.pdf?1626216137=\u0026response-content-disposition=attachment%3B+filename%3DContinuous_Cooling_Curves_Diagrams_of_Pr.pdf\u0026Expires=1742128087\u0026Signature=Ch4dfoBfng7-kKUpgk6IXs2huLCqsjwYhDaF6XRD1dRF1y-JxZuJ8ugcdNl3ilj70g9VJ-PRSpbDdA05J9bR1QM7RlaNvehKAkfEMdNPrmekmBUsgeu9tVVvBcsOOGTnc3tJ3Cx8XFZTqzixpksiD3bVGQAR3mSMU0PtiilNvLuyQQs18b7a7AkEsTfXCjNnKrp6XPGmnkVgmjrpxNxSy1tWqICLOUoD0FGcaNr0E6CWeiK1Cv--w3bwLTM2pBrilF9UOp69O9usw9O7nl-qCSjXNJ9LE1vrDIA6TyMVn5PjIoSR73oQX1TI6hhfWP73oXQwN9bMGiO3o5MU-gk1Qw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":3855,"name":"Polymorphism","url":"https://www.academia.edu/Documents/in/Polymorphism"},{"id":147636,"name":"Cooling Rate","url":"https://www.academia.edu/Documents/in/Cooling_Rate"},{"id":168695,"name":"Polypropylene","url":"https://www.academia.edu/Documents/in/Polypropylene"},{"id":168760,"name":"Macromolecules","url":"https://www.academia.edu/Documents/in/Macromolecules"},{"id":260118,"name":"CHEMICAL SCIENCES","url":"https://www.academia.edu/Documents/in/CHEMICAL_SCIENCES"},{"id":677739,"name":"Calorimetry","url":"https://www.academia.edu/Documents/in/Calorimetry"},{"id":837160,"name":"Crystallization Kinetics","url":"https://www.academia.edu/Documents/in/Crystallization_Kinetics"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="88495336"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/88495336/Design_and_numerical_implementation_of_a_3_D_non_linear_viscoelastic_constitutive_model_for_brain_tissue_during_impact"><img alt="Research paper thumbnail of Design and numerical implementation of a 3-D non-linear viscoelastic constitutive model for brain tissue during impact" class="work-thumbnail" src="https://attachments.academia-assets.com/92459307/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/88495336/Design_and_numerical_implementation_of_a_3_D_non_linear_viscoelastic_constitutive_model_for_brain_tissue_during_impact">Design and numerical implementation of a 3-D non-linear viscoelastic constitutive model for brain tissue during impact</a></div><div class="wp-workCard_item wp-workCard--coauthors"><span>by </span><span><a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/DaveBrands">Dave Brands</a> and <a class="" data-click-track="profile-work-strip-authors" href="https://tue.academia.edu/httpwwwtuenl">Gerrit Peters</a></span></div><div class="wp-workCard_item"><span>Journal of Biomechanics</span><span>, 2004</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Finite Element (FE) head models are often used to understand mechanical response of the head and ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Finite Element (FE) head models are often used to understand mechanical response of the head and its contents during impact loading in the head. Current FE models do not account for non-linear viscoelastic material behavior of brain tissue. We developed a new non-linear viscoelastic material model for brain tissue and implemented it in an explicit FE code. To obtain sufficient numerical accuracy for modeling the nearly incompressible brain tissue, deviatoric and volumetric stress contributions are separated. Deviatoric stress is modeled in a non-linear viscoelastic differential form. Volumetric behavior is assumed linearly elastic. Linear viscoelastic material parameters were derived from published data on oscillatory experiments, and from ultrasonic experiments. Additionally, non-linear parameters were derived from stress relaxation (SR) experiments at shear strains up to 20%. The model was tested by simulating the transient phase in the SR experiments not used in parameter determination (strains up to 20%, strain rates up to 8 s À1). Both time-and strain-dependent behavior were predicted accurately ðR 2 > 0:96Þ for strain and strain rates applied. However, the stress was overestimated systematically by approximately 31% independent of strain(rate) applied. This is probably caused by limitations of the experimental data at hand.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="9eb4d06b64c12189f4ac1358e90b8011" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":92459307,"asset_id":88495336,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/92459307/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="88495336"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="88495336"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 88495336; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=88495336]").text(description); $(".js-view-count[data-work-id=88495336]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 88495336; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='88495336']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "9eb4d06b64c12189f4ac1358e90b8011" } } $('.js-work-strip[data-work-id=88495336]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":88495336,"title":"Design and numerical implementation of a 3-D non-linear viscoelastic constitutive model for brain tissue during impact","translated_title":"","metadata":{"publisher":"Elsevier BV","grobid_abstract":"Finite Element (FE) head models are often used to understand mechanical response of the head and its contents during impact loading in the head. Current FE models do not account for non-linear viscoelastic material behavior of brain tissue. We developed a new non-linear viscoelastic material model for brain tissue and implemented it in an explicit FE code. To obtain sufficient numerical accuracy for modeling the nearly incompressible brain tissue, deviatoric and volumetric stress contributions are separated. Deviatoric stress is modeled in a non-linear viscoelastic differential form. Volumetric behavior is assumed linearly elastic. Linear viscoelastic material parameters were derived from published data on oscillatory experiments, and from ultrasonic experiments. Additionally, non-linear parameters were derived from stress relaxation (SR) experiments at shear strains up to 20%. The model was tested by simulating the transient phase in the SR experiments not used in parameter determination (strains up to 20%, strain rates up to 8 s À1). Both time-and strain-dependent behavior were predicted accurately ðR 2 \u003e 0:96Þ for strain and strain rates applied. However, the stress was overestimated systematically by approximately 31% independent of strain(rate) applied. This is probably caused by limitations of the experimental data at hand.","publication_date":{"day":null,"month":null,"year":2004,"errors":{}},"publication_name":"Journal of Biomechanics","grobid_abstract_attachment_id":92459307},"translated_abstract":null,"internal_url":"https://www.academia.edu/88495336/Design_and_numerical_implementation_of_a_3_D_non_linear_viscoelastic_constitutive_model_for_brain_tissue_during_impact","translated_internal_url":"","created_at":"2022-10-14T21:24:41.875-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":44719292,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":38991127,"work_id":88495336,"tagging_user_id":44719292,"tagged_user_id":38199334,"co_author_invite_id":null,"email":"p***d@tue.nl","display_order":0,"name":"P. Bovendeerd","title":"Design and numerical implementation of a 3-D non-linear viscoelastic constitutive model for brain tissue during impact"},{"id":38991128,"work_id":88495336,"tagging_user_id":44719292,"tagged_user_id":26113865,"co_author_invite_id":null,"email":"g***s@tue.nl","affiliation":"Eindhoven University of Technology","display_order":4194304,"name":"Gerrit Peters","title":"Design and numerical implementation of a 3-D non-linear viscoelastic constitutive model for brain tissue during impact"}],"downloadable_attachments":[{"id":92459307,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/92459307/thumbnails/1.jpg","file_name":"3124.pdf","download_url":"https://www.academia.edu/attachments/92459307/download_file","bulk_download_file_name":"Design_and_numerical_implementation_of_a.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/92459307/3124-libre.pdf?1665810039=\u0026response-content-disposition=attachment%3B+filename%3DDesign_and_numerical_implementation_of_a.pdf\u0026Expires=1742128088\u0026Signature=QzK3f2H~Wiz6Ufmrz6GgKXSXsjRBeyxp1HOytexZLMIFVtDz~pWhepkpraZyLJ-8f32gazIZ32wEYfBfY~lxBk2kAT5HGJkMQ~bSjpav~vFVIM0MgIj5IbvXDwkow0hp4SCNMX7PQyT3o5orX6VAWDl0D6cjbmfGJ5TMg1BycFKtHsiq13BBrdXGzRcyMOBTWiowN2RN2ZuHS8GWcvl8JeW6TS~vKjHGsHwK4xr8jBXED2KIZ~BFvMUm29CAm5K2IEFmywiHvlmqtz7pkuD3eUvOXYr21clO8xihTBdXG2ffu5ivI0lqjDViY172J4COias2lXDuQdoo-m4RmqOCVA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Design_and_numerical_implementation_of_a_3_D_non_linear_viscoelastic_constitutive_model_for_brain_tissue_during_impact","translated_slug":"","page_count":8,"language":"en","content_type":"Work","summary":"Finite Element (FE) head models are often used to understand mechanical response of the head and its contents during impact loading in the head. Current FE models do not account for non-linear viscoelastic material behavior of brain tissue. We developed a new non-linear viscoelastic material model for brain tissue and implemented it in an explicit FE code. To obtain sufficient numerical accuracy for modeling the nearly incompressible brain tissue, deviatoric and volumetric stress contributions are separated. Deviatoric stress is modeled in a non-linear viscoelastic differential form. Volumetric behavior is assumed linearly elastic. Linear viscoelastic material parameters were derived from published data on oscillatory experiments, and from ultrasonic experiments. Additionally, non-linear parameters were derived from stress relaxation (SR) experiments at shear strains up to 20%. The model was tested by simulating the transient phase in the SR experiments not used in parameter determination (strains up to 20%, strain rates up to 8 s À1). Both time-and strain-dependent behavior were predicted accurately ðR 2 \u003e 0:96Þ for strain and strain rates applied. However, the stress was overestimated systematically by approximately 31% independent of strain(rate) applied. This is probably caused by limitations of the experimental data at hand.","owner":{"id":44719292,"first_name":"Dave","middle_initials":null,"last_name":"Brands","page_name":"DaveBrands","domain_name":"independent","created_at":"2016-03-08T12:33:38.823-08:00","display_name":"Dave Brands","url":"https://independent.academia.edu/DaveBrands","email":"QmsreFhsNitLdGZVbEdrVGZDMXpESkFPSDUxUlhaZEs0WVhlbSs5MXNiVT0tLUNrelRDbEp4WG1oYjZNeWF4Q0tFaWc9PQ==--33e7f56966dae4cf09a0ff1a62a38d5d6393ab20"},"attachments":[{"id":92459307,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/92459307/thumbnails/1.jpg","file_name":"3124.pdf","download_url":"https://www.academia.edu/attachments/92459307/download_file","bulk_download_file_name":"Design_and_numerical_implementation_of_a.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/92459307/3124-libre.pdf?1665810039=\u0026response-content-disposition=attachment%3B+filename%3DDesign_and_numerical_implementation_of_a.pdf\u0026Expires=1742128088\u0026Signature=QzK3f2H~Wiz6Ufmrz6GgKXSXsjRBeyxp1HOytexZLMIFVtDz~pWhepkpraZyLJ-8f32gazIZ32wEYfBfY~lxBk2kAT5HGJkMQ~bSjpav~vFVIM0MgIj5IbvXDwkow0hp4SCNMX7PQyT3o5orX6VAWDl0D6cjbmfGJ5TMg1BycFKtHsiq13BBrdXGzRcyMOBTWiowN2RN2ZuHS8GWcvl8JeW6TS~vKjHGsHwK4xr8jBXED2KIZ~BFvMUm29CAm5K2IEFmywiHvlmqtz7pkuD3eUvOXYr21clO8xihTBdXG2ffu5ivI0lqjDViY172J4COias2lXDuQdoo-m4RmqOCVA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":60,"name":"Mechanical Engineering","url":"https://www.academia.edu/Documents/in/Mechanical_Engineering"},{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":512,"name":"Mechanics","url":"https://www.academia.edu/Documents/in/Mechanics"},{"id":1131,"name":"Biomedical Engineering","url":"https://www.academia.edu/Documents/in/Biomedical_Engineering"},{"id":3132,"name":"Biomechanics","url":"https://www.academia.edu/Documents/in/Biomechanics"},{"id":8183,"name":"Linear Elasticity","url":"https://www.academia.edu/Documents/in/Linear_Elasticity"},{"id":12147,"name":"Finite element method","url":"https://www.academia.edu/Documents/in/Finite_element_method"},{"id":23042,"name":"Finite Element","url":"https://www.academia.edu/Documents/in/Finite_Element"},{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"},{"id":48904,"name":"Elasticity","url":"https://www.academia.edu/Documents/in/Elasticity"},{"id":51590,"name":"Finite Element Modeling","url":"https://www.academia.edu/Documents/in/Finite_Element_Modeling"},{"id":61474,"name":"Brain","url":"https://www.academia.edu/Documents/in/Brain"},{"id":350931,"name":"Mechanical Stress","url":"https://www.academia.edu/Documents/in/Mechanical_Stress"},{"id":386557,"name":"Finite Element Model","url":"https://www.academia.edu/Documents/in/Finite_Element_Model"},{"id":593682,"name":"Constitutive model","url":"https://www.academia.edu/Documents/in/Constitutive_model"},{"id":1109955,"name":"Material Model","url":"https://www.academia.edu/Documents/in/Material_Model"},{"id":1120502,"name":"Experimental Data","url":"https://www.academia.edu/Documents/in/Experimental_Data"},{"id":1231330,"name":"Constitutive Equation","url":"https://www.academia.edu/Documents/in/Constitutive_Equation"},{"id":2450733,"name":"Brain injuries","url":"https://www.academia.edu/Documents/in/Brain_injuries"}],"urls":[{"id":24775629,"url":"https://api.elsevier.com/content/article/PII:S0021929003002434?httpAccept=text/xml"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="82787890"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/82787890/Comparison_of_the_dynamic_behaviour_of_brain_tissue_and_two_model_materials"><img alt="Research paper thumbnail of Comparison of the dynamic behaviour of brain tissue and two model materials" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/82787890/Comparison_of_the_dynamic_behaviour_of_brain_tissue_and_two_model_materials">Comparison of the dynamic behaviour of brain tissue and two model materials</a></div><div class="wp-workCard_item wp-workCard--coauthors"><span>by </span><span><a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/DaveBrands">Dave Brands</a> and <a class="" data-click-track="profile-work-strip-authors" href="https://tue.academia.edu/httpwwwtuenl">Gerrit Peters</a></span></div><div class="wp-workCard_item"><span>Stapp car crash : conference : proceedings, 43rd, San Diego, Cal., October 25-27, 1999</span><span>, Oct 1, 1999</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Linear viscoelastic material parameters of porcine brain tissue and two brain substitute material...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Linear viscoelastic material parameters of porcine brain tissue and two brain substitute materials for use in mechanical head models (edible bone gelatin and dielectric silicone gel) were determined in small deformation, oscillatory shear experiments. Frequencies to 1000 Hertz could be obtained using the Time/Temperature Superposition principle. Brain tissue material parameters (i.e. dynamic modulus (phase angle) of 500 (10 degrees) and 1250 Pa (27 degrees) at 0.1 and 260 Hz respectively) are within the range of data reported in literature. The gelatin behaves much stiffer (modulus on the order of 100 kPa) and does not show viscous behavior. Silicone gel resembles brain tissue at low frequencies but becomes more stiff and more viscous at higher frequencies (dynamic modulus (phase angle) 245 Pa (7 degrees) and 5100 Pa (56 degrees) at 0.1 and 260 Hz respectively). Furthermore, the silicone gel behaves linearly for strains up to at least 10%, whereas brain tissue exhibits non-linear behavior for strains larger than 1%.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="82787890"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="82787890"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 82787890; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=82787890]").text(description); $(".js-view-count[data-work-id=82787890]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 82787890; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='82787890']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=82787890]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":82787890,"title":"Comparison of the dynamic behaviour of brain tissue and two model materials","translated_title":"","metadata":{"abstract":"Linear viscoelastic material parameters of porcine brain tissue and two brain substitute materials for use in mechanical head models (edible bone gelatin and dielectric silicone gel) were determined in small deformation, oscillatory shear experiments. Frequencies to 1000 Hertz could be obtained using the Time/Temperature Superposition principle. Brain tissue material parameters (i.e. dynamic modulus (phase angle) of 500 (10 degrees) and 1250 Pa (27 degrees) at 0.1 and 260 Hz respectively) are within the range of data reported in literature. The gelatin behaves much stiffer (modulus on the order of 100 kPa) and does not show viscous behavior. Silicone gel resembles brain tissue at low frequencies but becomes more stiff and more viscous at higher frequencies (dynamic modulus (phase angle) 245 Pa (7 degrees) and 5100 Pa (56 degrees) at 0.1 and 260 Hz respectively). Furthermore, the silicone gel behaves linearly for strains up to at least 10%, whereas brain tissue exhibits non-linear behavior for strains larger than 1%.","publisher":"Society of Automotive Engineers (SAE)","publication_date":{"day":1,"month":10,"year":1999,"errors":{}},"publication_name":"Stapp car crash : conference : proceedings, 43rd, San Diego, Cal., October 25-27, 1999"},"translated_abstract":"Linear viscoelastic material parameters of porcine brain tissue and two brain substitute materials for use in mechanical head models (edible bone gelatin and dielectric silicone gel) were determined in small deformation, oscillatory shear experiments. Frequencies to 1000 Hertz could be obtained using the Time/Temperature Superposition principle. Brain tissue material parameters (i.e. dynamic modulus (phase angle) of 500 (10 degrees) and 1250 Pa (27 degrees) at 0.1 and 260 Hz respectively) are within the range of data reported in literature. The gelatin behaves much stiffer (modulus on the order of 100 kPa) and does not show viscous behavior. Silicone gel resembles brain tissue at low frequencies but becomes more stiff and more viscous at higher frequencies (dynamic modulus (phase angle) 245 Pa (7 degrees) and 5100 Pa (56 degrees) at 0.1 and 260 Hz respectively). Furthermore, the silicone gel behaves linearly for strains up to at least 10%, whereas brain tissue exhibits non-linear behavior for strains larger than 1%.","internal_url":"https://www.academia.edu/82787890/Comparison_of_the_dynamic_behaviour_of_brain_tissue_and_two_model_materials","translated_internal_url":"","created_at":"2022-07-08T03:06:28.157-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":44719292,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":38963891,"work_id":82787890,"tagging_user_id":44719292,"tagged_user_id":51964873,"co_author_invite_id":null,"email":"j***s@safeteq.com","display_order":0,"name":"Jac Wismans","title":"Comparison of the dynamic behaviour of brain tissue and two model materials"},{"id":38963894,"work_id":82787890,"tagging_user_id":44719292,"tagged_user_id":26113865,"co_author_invite_id":null,"email":"g***s@tue.nl","affiliation":"Eindhoven University of Technology","display_order":4194304,"name":"Gerrit Peters","title":"Comparison of the dynamic behaviour of brain tissue and two model materials"}],"downloadable_attachments":[],"slug":"Comparison_of_the_dynamic_behaviour_of_brain_tissue_and_two_model_materials","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"Linear viscoelastic material parameters of porcine brain tissue and two brain substitute materials for use in mechanical head models (edible bone gelatin and dielectric silicone gel) were determined in small deformation, oscillatory shear experiments. Frequencies to 1000 Hertz could be obtained using the Time/Temperature Superposition principle. Brain tissue material parameters (i.e. dynamic modulus (phase angle) of 500 (10 degrees) and 1250 Pa (27 degrees) at 0.1 and 260 Hz respectively) are within the range of data reported in literature. The gelatin behaves much stiffer (modulus on the order of 100 kPa) and does not show viscous behavior. Silicone gel resembles brain tissue at low frequencies but becomes more stiff and more viscous at higher frequencies (dynamic modulus (phase angle) 245 Pa (7 degrees) and 5100 Pa (56 degrees) at 0.1 and 260 Hz respectively). Furthermore, the silicone gel behaves linearly for strains up to at least 10%, whereas brain tissue exhibits non-linear behavior for strains larger than 1%.","owner":{"id":44719292,"first_name":"Dave","middle_initials":null,"last_name":"Brands","page_name":"DaveBrands","domain_name":"independent","created_at":"2016-03-08T12:33:38.823-08:00","display_name":"Dave Brands","url":"https://independent.academia.edu/DaveBrands","email":"d203MGtWbHIwOVAvcTJWVGFWdlJjNEc1MEFBRW1aS0xKdFY5OVN3eVNwST0tLUxuRDBlaHpISzRvdS9KZlpud3ZkU3c9PQ==--743b159d519811b8b1ec9bb36e228aac7882eda1"},"attachments":[],"research_interests":[],"urls":[{"id":22005863,"url":"https://www.narcis.nl/publication/RecordID/oai:pure.tue.nl:publications%2F27ef191b-25d0-46af-a96c-886565cec08f"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="88630725"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/88630725/Concomitant_Crystallization_in_Propylene_Ethylene_Random_Copolymer_with_Strong_Flow_at_Elevated_Temperatures"><img alt="Research paper thumbnail of Concomitant Crystallization in Propylene/Ethylene Random Copolymer with Strong Flow at Elevated Temperatures" class="work-thumbnail" src="https://attachments.academia-assets.com/92567678/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/88630725/Concomitant_Crystallization_in_Propylene_Ethylene_Random_Copolymer_with_Strong_Flow_at_Elevated_Temperatures">Concomitant Crystallization in Propylene/Ethylene Random Copolymer with Strong Flow at Elevated Temperatures</a></div><div class="wp-workCard_item"><span>Industrial &amp; Engineering Chemistry Research</span><span>, 2018</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">DOI to the publisher's website. • The final author version and the galley proof are versions of t...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">DOI to the publisher's website. • The final author version and the galley proof are versions of the publication after peer review. • The final published version features the final layout of the paper including the volume, issue and page numbers. Link to publication General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal. If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the "Taverne" license above, please follow below link for the End User Agreement:</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="f63ff5b6781dd83cbe6813158e547092" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":92567678,"asset_id":88630725,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/92567678/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="88630725"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="88630725"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 88630725; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=88630725]").text(description); $(".js-view-count[data-work-id=88630725]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 88630725; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='88630725']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "f63ff5b6781dd83cbe6813158e547092" } } $('.js-work-strip[data-work-id=88630725]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":88630725,"title":"Concomitant Crystallization in Propylene/Ethylene Random Copolymer with Strong Flow at Elevated Temperatures","translated_title":"","metadata":{"publisher":"American Chemical Society (ACS)","grobid_abstract":"DOI to the publisher's website. • The final author version and the galley proof are versions of the publication after peer review. • The final published version features the final layout of the paper including the volume, issue and page numbers. Link to publication General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal. If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the \"Taverne\" license above, please follow below link for the End User Agreement:","publication_date":{"day":null,"month":null,"year":2018,"errors":{}},"publication_name":"Industrial \u0026amp; Engineering Chemistry Research","grobid_abstract_attachment_id":92567678},"translated_abstract":null,"internal_url":"https://www.academia.edu/88630725/Concomitant_Crystallization_in_Propylene_Ethylene_Random_Copolymer_with_Strong_Flow_at_Elevated_Temperatures","translated_internal_url":"","created_at":"2022-10-17T01:27:32.300-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":26113865,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":92567678,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/92567678/thumbnails/1.jpg","file_name":"manuscript_last_author_version.pdf","download_url":"https://www.academia.edu/attachments/92567678/download_file","bulk_download_file_name":"Concomitant_Crystallization_in_Propylene.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/92567678/manuscript_last_author_version-libre.pdf?1666005844=\u0026response-content-disposition=attachment%3B+filename%3DConcomitant_Crystallization_in_Propylene.pdf\u0026Expires=1742128088\u0026Signature=NcsOkSi04V5ynblLPI7DDVp~rnBEWP7U5KuS~Wjmhp5T5TpeiZv7RmUvf3RI~PGnSFMTN9rjTJYYtCH6sgTMUNLiPskQAsm2NWNakwvNzxPxLIJ5A-BjEJ5xTu8G1tjtOUSB2CcuXl7Vcq4SgbBKOP867FE1~XCG6Qs3YveOAfL7lP-M75WYG74BEkfvOA0N6j7~zGaqqGJRwiDsHby9TWl8DSsL4dgsmptIWhZuxQQ~80xYyvR6fNouLcJHhogmu0xuygEEmfRCYFDbULGUR2~QjuS88SVJZY9jOUXhM4TTFsi3ITHs~UmEhmWqm7FfM3CDQ7~pLf8JiNf1wA5o5A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Concomitant_Crystallization_in_Propylene_Ethylene_Random_Copolymer_with_Strong_Flow_at_Elevated_Temperatures","translated_slug":"","page_count":21,"language":"en","content_type":"Work","summary":"DOI to the publisher's website. • The final author version and the galley proof are versions of the publication after peer review. • The final published version features the final layout of the paper including the volume, issue and page numbers. Link to publication General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal. If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the \"Taverne\" license above, please follow below link for the End User Agreement:","owner":{"id":26113865,"first_name":"Gerrit","middle_initials":null,"last_name":"Peters","page_name":"httpwwwtuenl","domain_name":"tue","created_at":"2015-02-11T05:19:07.533-08:00","display_name":"Gerrit Peters","url":"https://tue.academia.edu/httpwwwtuenl","email":"OXJJcXpLWkhTK2l2SWovWTFtUkl0RUNxQ2lmOGgyRzYyWUF0cWJCWkl0cz0tLU1EcVR4Tkt6anhQUXo5aFdnbWM0aFE9PQ==--bfe9a261b8e12a09d86c27a8c4c0a090840b6453"},"attachments":[{"id":92567678,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/92567678/thumbnails/1.jpg","file_name":"manuscript_last_author_version.pdf","download_url":"https://www.academia.edu/attachments/92567678/download_file","bulk_download_file_name":"Concomitant_Crystallization_in_Propylene.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/92567678/manuscript_last_author_version-libre.pdf?1666005844=\u0026response-content-disposition=attachment%3B+filename%3DConcomitant_Crystallization_in_Propylene.pdf\u0026Expires=1742128088\u0026Signature=NcsOkSi04V5ynblLPI7DDVp~rnBEWP7U5KuS~Wjmhp5T5TpeiZv7RmUvf3RI~PGnSFMTN9rjTJYYtCH6sgTMUNLiPskQAsm2NWNakwvNzxPxLIJ5A-BjEJ5xTu8G1tjtOUSB2CcuXl7Vcq4SgbBKOP867FE1~XCG6Qs3YveOAfL7lP-M75WYG74BEkfvOA0N6j7~zGaqqGJRwiDsHby9TWl8DSsL4dgsmptIWhZuxQQ~80xYyvR6fNouLcJHhogmu0xuygEEmfRCYFDbULGUR2~QjuS88SVJZY9jOUXhM4TTFsi3ITHs~UmEhmWqm7FfM3CDQ7~pLf8JiNf1wA5o5A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":60,"name":"Mechanical Engineering","url":"https://www.academia.edu/Documents/in/Mechanical_Engineering"},{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":12597,"name":"Crystallization","url":"https://www.academia.edu/Documents/in/Crystallization"},{"id":24002,"name":"Materials Science and Engineering","url":"https://www.academia.edu/Documents/in/Materials_Science_and_Engineering"},{"id":32984,"name":"Mechanics of Materials","url":"https://www.academia.edu/Documents/in/Mechanics_of_Materials"},{"id":125058,"name":"Nucleation","url":"https://www.academia.edu/Documents/in/Nucleation"},{"id":197566,"name":"Ethylene","url":"https://www.academia.edu/Documents/in/Ethylene"},{"id":260118,"name":"CHEMICAL SCIENCES","url":"https://www.academia.edu/Documents/in/CHEMICAL_SCIENCES"},{"id":1117546,"name":"Industrial Chemistry/Chemical Engineering","url":"https://www.academia.edu/Documents/in/Industrial_Chemistry_Chemical_Engineering"},{"id":1291661,"name":"Copolymer","url":"https://www.academia.edu/Documents/in/Copolymer"},{"id":1789645,"name":"Nanoscience and nanotechnology","url":"https://www.academia.edu/Documents/in/Nanoscience_and_nanotechnology-1"}],"urls":[{"id":24845638,"url":"https://pubs.acs.org/doi/pdf/10.1021/acs.iecr.8b00708"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="85296481"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/85296481/Towards_the_Development_of_a_Strategy_to_Characterize_and_Model_the_Rheological_Behavior_of_Filled_Uncured_Rubber_Compounds"><img alt="Research paper thumbnail of Towards the Development of a Strategy to Characterize and Model the Rheological Behavior of Filled, Uncured Rubber Compounds" class="work-thumbnail" src="https://attachments.academia-assets.com/90036883/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/85296481/Towards_the_Development_of_a_Strategy_to_Characterize_and_Model_the_Rheological_Behavior_of_Filled_Uncured_Rubber_Compounds">Towards the Development of a Strategy to Characterize and Model the Rheological Behavior of Filled, Uncured Rubber Compounds</a></div><div class="wp-workCard_item"><span>Polymers</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">In this paper, an experimental strategy is presented to characterize the rheological behavior of ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">In this paper, an experimental strategy is presented to characterize the rheological behavior of filled, uncured rubber compounds. Oscillatory shear experiments on a regular plate-plate rheometer are combined with a phenomenological thixotropy model to obtain model parameters that can be used to describe the steady shear behavior. We compare rate- and stress-controlled kinetic equations for a structure parameter that determines the deformation history-dependent spectrum and, thus, the dynamic thixotropic behavior of the material. We keep the models as simple as possible and the characterization straightforward to maximize applicability. The model can be implemented in a finite element framework as a tool to simulate realistic rubber processing. This will be the topic of another work, currently under preparation. In shaping processes, such as rubber- and polymer extrusion, with realistic processing conditions, the range of shear rates is far outside the range obtained during rheologi...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="7ce763a8f927cdbc74a30eeea2101963" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":90036883,"asset_id":85296481,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/90036883/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="85296481"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="85296481"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 85296481; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=85296481]").text(description); $(".js-view-count[data-work-id=85296481]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 85296481; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='85296481']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "7ce763a8f927cdbc74a30eeea2101963" } } $('.js-work-strip[data-work-id=85296481]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":85296481,"title":"Towards the Development of a Strategy to Characterize and Model the Rheological Behavior of Filled, Uncured Rubber Compounds","translated_title":"","metadata":{"abstract":"In this paper, an experimental strategy is presented to characterize the rheological behavior of filled, uncured rubber compounds. Oscillatory shear experiments on a regular plate-plate rheometer are combined with a phenomenological thixotropy model to obtain model parameters that can be used to describe the steady shear behavior. We compare rate- and stress-controlled kinetic equations for a structure parameter that determines the deformation history-dependent spectrum and, thus, the dynamic thixotropic behavior of the material. We keep the models as simple as possible and the characterization straightforward to maximize applicability. The model can be implemented in a finite element framework as a tool to simulate realistic rubber processing. This will be the topic of another work, currently under preparation. In shaping processes, such as rubber- and polymer extrusion, with realistic processing conditions, the range of shear rates is far outside the range obtained during rheologi...","publisher":"MDPI AG","ai_title_tag":"Modeling Rheological Behavior of Rubber Compounds","publication_name":"Polymers"},"translated_abstract":"In this paper, an experimental strategy is presented to characterize the rheological behavior of filled, uncured rubber compounds. Oscillatory shear experiments on a regular plate-plate rheometer are combined with a phenomenological thixotropy model to obtain model parameters that can be used to describe the steady shear behavior. We compare rate- and stress-controlled kinetic equations for a structure parameter that determines the deformation history-dependent spectrum and, thus, the dynamic thixotropic behavior of the material. We keep the models as simple as possible and the characterization straightforward to maximize applicability. The model can be implemented in a finite element framework as a tool to simulate realistic rubber processing. This will be the topic of another work, currently under preparation. In shaping processes, such as rubber- and polymer extrusion, with realistic processing conditions, the range of shear rates is far outside the range obtained during rheologi...","internal_url":"https://www.academia.edu/85296481/Towards_the_Development_of_a_Strategy_to_Characterize_and_Model_the_Rheological_Behavior_of_Filled_Uncured_Rubber_Compounds","translated_internal_url":"","created_at":"2022-08-21T12:41:40.994-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":26113865,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":90036883,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90036883/thumbnails/1.jpg","file_name":"pdf.pdf","download_url":"https://www.academia.edu/attachments/90036883/download_file","bulk_download_file_name":"Towards_the_Development_of_a_Strategy_to.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90036883/pdf-libre.pdf?1661113562=\u0026response-content-disposition=attachment%3B+filename%3DTowards_the_Development_of_a_Strategy_to.pdf\u0026Expires=1742128088\u0026Signature=FhHKvDDCSiaMinw8vZP-zGmxYatrka2bF-g0kxRcSPmesREnmL0jaO2iF-oUABCZjBxYqDYwHyUzf99PCYjo69lhmMzVQCrsSzQZhRQ1-UOKycBpYLPRNVDWSKMZkSv6OSOvceDcx5ulCoFdxM~0XpLctoxJjY6drkeYtt7Dmbrhp9-O5Kuh5BTd-JeEXoygKZ5mgSuS7Ea6~VisCV0U4yENkA-wMMqa7XxHOR3GZEow3l3o7DZLOAqC4rfSXkP9BRtKbaHyOj4A6-prbytdRq6Gru64jCeBAlAvkvySjybIpUz-adTX--DTl7-ctR2bsGoc~pMGxQCe9j05zWpYtg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Towards_the_Development_of_a_Strategy_to_Characterize_and_Model_the_Rheological_Behavior_of_Filled_Uncured_Rubber_Compounds","translated_slug":"","page_count":24,"language":"en","content_type":"Work","summary":"In this paper, an experimental strategy is presented to characterize the rheological behavior of filled, uncured rubber compounds. Oscillatory shear experiments on a regular plate-plate rheometer are combined with a phenomenological thixotropy model to obtain model parameters that can be used to describe the steady shear behavior. We compare rate- and stress-controlled kinetic equations for a structure parameter that determines the deformation history-dependent spectrum and, thus, the dynamic thixotropic behavior of the material. We keep the models as simple as possible and the characterization straightforward to maximize applicability. The model can be implemented in a finite element framework as a tool to simulate realistic rubber processing. This will be the topic of another work, currently under preparation. In shaping processes, such as rubber- and polymer extrusion, with realistic processing conditions, the range of shear rates is far outside the range obtained during rheologi...","owner":{"id":26113865,"first_name":"Gerrit","middle_initials":null,"last_name":"Peters","page_name":"httpwwwtuenl","domain_name":"tue","created_at":"2015-02-11T05:19:07.533-08:00","display_name":"Gerrit Peters","url":"https://tue.academia.edu/httpwwwtuenl","email":"RWp3clViNnFXUVArY3VIcnFXWmJzUUR4QThYL2ZidlVBQTFoby9ua1Zqdz0tLU43Y3F0WVZkNzlsUHNHTXBqZnMxbEE9PQ==--14edbc6b2eec26478cec96695066eb07debef561"},"attachments":[{"id":90036883,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90036883/thumbnails/1.jpg","file_name":"pdf.pdf","download_url":"https://www.academia.edu/attachments/90036883/download_file","bulk_download_file_name":"Towards_the_Development_of_a_Strategy_to.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90036883/pdf-libre.pdf?1661113562=\u0026response-content-disposition=attachment%3B+filename%3DTowards_the_Development_of_a_Strategy_to.pdf\u0026Expires=1742128088\u0026Signature=FhHKvDDCSiaMinw8vZP-zGmxYatrka2bF-g0kxRcSPmesREnmL0jaO2iF-oUABCZjBxYqDYwHyUzf99PCYjo69lhmMzVQCrsSzQZhRQ1-UOKycBpYLPRNVDWSKMZkSv6OSOvceDcx5ulCoFdxM~0XpLctoxJjY6drkeYtt7Dmbrhp9-O5Kuh5BTd-JeEXoygKZ5mgSuS7Ea6~VisCV0U4yENkA-wMMqa7XxHOR3GZEow3l3o7DZLOAqC4rfSXkP9BRtKbaHyOj4A6-prbytdRq6Gru64jCeBAlAvkvySjybIpUz-adTX--DTl7-ctR2bsGoc~pMGxQCe9j05zWpYtg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":21466,"name":"Polymers","url":"https://www.academia.edu/Documents/in/Polymers"},{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"}],"urls":[{"id":23198463,"url":"https://www.mdpi.com/2073-4360/13/23/4068/pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="59391567"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/59391567/Influence_of_Shear_Flow_on_the_Specific_Volume_and_the_Crystalline_Morphology_of_Isotactic_Polypropylene"><img alt="Research paper thumbnail of Influence of Shear Flow on the Specific Volume and the Crystalline Morphology of Isotactic Polypropylene" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/59391567/Influence_of_Shear_Flow_on_the_Specific_Volume_and_the_Crystalline_Morphology_of_Isotactic_Polypropylene">Influence of Shear Flow on the Specific Volume and the Crystalline Morphology of Isotactic Polypropylene</a></div><div class="wp-workCard_item wp-workCard--coauthors"><span>by </span><span><a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/mauricevanderbeek">maurice van der beek</a> and <a class="" data-click-track="profile-work-strip-authors" href="https://tue.academia.edu/httpwwwtuenl">Gerrit Peters</a></span></div><div class="wp-workCard_item"><span>Macromolecules</span><span>, 2006</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">ABSTRACT</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="59391567"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="59391567"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 59391567; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=59391567]").text(description); $(".js-view-count[data-work-id=59391567]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 59391567; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='59391567']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=59391567]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":59391567,"title":"Influence of Shear Flow on the Specific Volume and the Crystalline Morphology of Isotactic Polypropylene","translated_title":"","metadata":{"abstract":"ABSTRACT","publisher":"American Chemical Society (ACS)","publication_date":{"day":null,"month":null,"year":2006,"errors":{}},"publication_name":"Macromolecules"},"translated_abstract":"ABSTRACT","internal_url":"https://www.academia.edu/59391567/Influence_of_Shear_Flow_on_the_Specific_Volume_and_the_Crystalline_Morphology_of_Isotactic_Polypropylene","translated_internal_url":"","created_at":"2021-10-21T15:57:35.421-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":143704920,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":38686069,"work_id":59391567,"tagging_user_id":143704920,"tagged_user_id":26113865,"co_author_invite_id":null,"email":"g***s@tue.nl","affiliation":"Eindhoven University of Technology","display_order":0,"name":"Gerrit Peters","title":"Influence of Shear Flow on the Specific Volume and the Crystalline Morphology of Isotactic Polypropylene"},{"id":38686078,"work_id":59391567,"tagging_user_id":143704920,"tagged_user_id":49806984,"co_author_invite_id":null,"email":"h***r@tue.nl","affiliation":"Technical University of Eindhoven","display_order":4194304,"name":"Han Meijer","title":"Influence of Shear Flow on the Specific Volume and the Crystalline Morphology of Isotactic Polypropylene"}],"downloadable_attachments":[],"slug":"Influence_of_Shear_Flow_on_the_Specific_Volume_and_the_Crystalline_Morphology_of_Isotactic_Polypropylene","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"ABSTRACT","owner":{"id":143704920,"first_name":"maurice","middle_initials":null,"last_name":"van der beek","page_name":"mauricevanderbeek","domain_name":"independent","created_at":"2020-01-28T06:51:27.452-08:00","display_name":"maurice van der beek","url":"https://independent.academia.edu/mauricevanderbeek"},"attachments":[],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":4107,"name":"High Pressure","url":"https://www.academia.edu/Documents/in/High_Pressure"},{"id":10866,"name":"Morphology","url":"https://www.academia.edu/Documents/in/Morphology"},{"id":168760,"name":"Macromolecules","url":"https://www.academia.edu/Documents/in/Macromolecules"},{"id":188736,"name":"Shear Flow","url":"https://www.academia.edu/Documents/in/Shear_Flow"},{"id":192323,"name":"Crystallinity","url":"https://www.academia.edu/Documents/in/Crystallinity"},{"id":260118,"name":"CHEMICAL SCIENCES","url":"https://www.academia.edu/Documents/in/CHEMICAL_SCIENCES"},{"id":1277589,"name":"Specific Volume","url":"https://www.academia.edu/Documents/in/Specific_Volume"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="81036995"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/81036995/Mixing_behaviour_in_a_cavity_flow"><img alt="Research paper thumbnail of Mixing behaviour in a cavity flow" class="work-thumbnail" src="https://attachments.academia-assets.com/87220119/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/81036995/Mixing_behaviour_in_a_cavity_flow">Mixing behaviour in a cavity flow</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="7c2e517004d71dade86c90c145f7d338" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":87220119,"asset_id":81036995,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/87220119/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="81036995"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="81036995"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 81036995; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=81036995]").text(description); $(".js-view-count[data-work-id=81036995]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 81036995; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='81036995']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "7c2e517004d71dade86c90c145f7d338" } } $('.js-work-strip[data-work-id=81036995]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":81036995,"title":"Mixing behaviour in a cavity flow","translated_title":"","metadata":{"ai_abstract":"This research investigates the mixing behavior in cavity flows through experimental observations and numerical simulations, aiming to enhance existing setups for better reproducibility and extend experiments to include a cylinder within the cavity. The experimental apparatus is designed to manipulate fluid velocity and visualize flow patterns using tracer dyes, providing insights into the mechanisms of mixing in a controlled environment. Preliminary results demonstrate the significance of the cylinder's placement on flow behavior, illustrating the emergence of vortices and variances in streamlines, thus contributing to the understanding of mixing in creeping flows.","publication_date":{"day":null,"month":null,"year":1993,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/81036995/Mixing_behaviour_in_a_cavity_flow","translated_internal_url":"","created_at":"2022-06-08T13:46:55.325-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":26113865,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":87220119,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/87220119/thumbnails/1.jpg","file_name":"667931.pdf","download_url":"https://www.academia.edu/attachments/87220119/download_file","bulk_download_file_name":"Mixing_behaviour_in_a_cavity_flow.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/87220119/667931-libre.pdf?1654722012=\u0026response-content-disposition=attachment%3B+filename%3DMixing_behaviour_in_a_cavity_flow.pdf\u0026Expires=1742128088\u0026Signature=GbrVz-X0umzNSENM6SjULyEd2SXGMnAykPrDaUq6q3pr~EhGlyXYaxeNyX8FemsZU2TEqILlZoCp16KUSEd2btmn1lW-PqBhesWXq1NwZc5ue8oZtZ4MSrZwE2VYjrqm9JZQAljsJDUyp5jt9xFou8wHVNuPEqUXTaA3G6sRuGy046aIFSnQHdTsc3Z27dIERCyPh2aeUykGGKnxy0PcrKI7y0NA9dZ~MHDY8d3jVelGvOo0HkLnMKVl0vAcZiIuYnoOlzXXPmDrTvItyIAs9Kwe3FFpmHv1Ne9No3wyjiuknvmXs8xVYtQzHxSDlvZNd6sSz4ZxtlHxRITqaJxIeA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Mixing_behaviour_in_a_cavity_flow","translated_slug":"","page_count":19,"language":"en","content_type":"Work","summary":null,"owner":{"id":26113865,"first_name":"Gerrit","middle_initials":null,"last_name":"Peters","page_name":"httpwwwtuenl","domain_name":"tue","created_at":"2015-02-11T05:19:07.533-08:00","display_name":"Gerrit Peters","url":"https://tue.academia.edu/httpwwwtuenl","email":"eDU4b2hNYkVlMnY1ZVFzSlliYXIxOVB0b3p2MmtWczFWUExZZUhDQmFXbz0tLUdaVUQzU1ZOdi9OVWZTYVZ4ZGNGQlE9PQ==--7b06287c7c0f6c7fc0c5ff6e10fd7cdfcdde9748"},"attachments":[{"id":87220119,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/87220119/thumbnails/1.jpg","file_name":"667931.pdf","download_url":"https://www.academia.edu/attachments/87220119/download_file","bulk_download_file_name":"Mixing_behaviour_in_a_cavity_flow.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/87220119/667931-libre.pdf?1654722012=\u0026response-content-disposition=attachment%3B+filename%3DMixing_behaviour_in_a_cavity_flow.pdf\u0026Expires=1742128088\u0026Signature=GbrVz-X0umzNSENM6SjULyEd2SXGMnAykPrDaUq6q3pr~EhGlyXYaxeNyX8FemsZU2TEqILlZoCp16KUSEd2btmn1lW-PqBhesWXq1NwZc5ue8oZtZ4MSrZwE2VYjrqm9JZQAljsJDUyp5jt9xFou8wHVNuPEqUXTaA3G6sRuGy046aIFSnQHdTsc3Z27dIERCyPh2aeUykGGKnxy0PcrKI7y0NA9dZ~MHDY8d3jVelGvOo0HkLnMKVl0vAcZiIuYnoOlzXXPmDrTvItyIAs9Kwe3FFpmHv1Ne9No3wyjiuknvmXs8xVYtQzHxSDlvZNd6sSz4ZxtlHxRITqaJxIeA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":60,"name":"Mechanical Engineering","url":"https://www.academia.edu/Documents/in/Mechanical_Engineering"},{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":512,"name":"Mechanics","url":"https://www.academia.edu/Documents/in/Mechanics"},{"id":113221,"name":"Chapter","url":"https://www.academia.edu/Documents/in/Chapter"}],"urls":[{"id":21238253,"url":"http://alexandria.tue.nl/repository/books/667931.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="81036920"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/81036920/Structure_evolution_during_film_blowing_An_experimental_study_using_in_situ_small_angle_X_ray_scattering"><img alt="Research paper thumbnail of Structure evolution during film blowing: An experimental study using in-situ small angle X-ray scattering" class="work-thumbnail" src="https://attachments.academia-assets.com/87220112/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/81036920/Structure_evolution_during_film_blowing_An_experimental_study_using_in_situ_small_angle_X_ray_scattering">Structure evolution during film blowing: An experimental study using in-situ small angle X-ray scattering</a></div><div class="wp-workCard_item"><span>European Polymer Journal</span><span>, 2016</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The on-line morphological development during film blowing of 2 different linear low density polye...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The on-line morphological development during film blowing of 2 different linear low density polyethylenes (LLDPE) and a blend of LLDPE with low density polyethylene (LDPE) has been investigated, for the first time, using synchrotron Small Angle X-Ray Scattering (SAXS). The processing conditions, blow-up ratio and takeup ratio, have been varied and the resulting lamellar thickness, linear crystallinity and orientation evolution in machine direction is obtained from a detailed analysis of SAXS data. Ex-situ SAXS and wide angle Xray Diffraction (WAXD) confirmed the effect of molecular structure and composition on structure evolution observed in the on-line experiments. The results obtained provide a valuable set of data for the understanding of the film blowing process and can be used to extend and improve numerical model.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="6232b8f54805afe9dbc0214ee5fe2fed" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":87220112,"asset_id":81036920,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/87220112/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="81036920"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="81036920"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 81036920; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=81036920]").text(description); $(".js-view-count[data-work-id=81036920]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 81036920; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='81036920']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "6232b8f54805afe9dbc0214ee5fe2fed" } } $('.js-work-strip[data-work-id=81036920]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":81036920,"title":"Structure evolution during film blowing: An experimental study using in-situ small angle X-ray scattering","translated_title":"","metadata":{"publisher":"Elsevier BV","grobid_abstract":"The on-line morphological development during film blowing of 2 different linear low density polyethylenes (LLDPE) and a blend of LLDPE with low density polyethylene (LDPE) has been investigated, for the first time, using synchrotron Small Angle X-Ray Scattering (SAXS). The processing conditions, blow-up ratio and takeup ratio, have been varied and the resulting lamellar thickness, linear crystallinity and orientation evolution in machine direction is obtained from a detailed analysis of SAXS data. Ex-situ SAXS and wide angle Xray Diffraction (WAXD) confirmed the effect of molecular structure and composition on structure evolution observed in the on-line experiments. The results obtained provide a valuable set of data for the understanding of the film blowing process and can be used to extend and improve numerical model.","publication_date":{"day":null,"month":null,"year":2016,"errors":{}},"publication_name":"European Polymer Journal","grobid_abstract_attachment_id":87220112},"translated_abstract":null,"internal_url":"https://www.academia.edu/81036920/Structure_evolution_during_film_blowing_An_experimental_study_using_in_situ_small_angle_X_ray_scattering","translated_internal_url":"","created_at":"2022-06-08T13:46:12.819-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":26113865,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":87220112,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/87220112/thumbnails/1.jpg","file_name":"Troisi_Et_Al_EPJ_2015.pdf","download_url":"https://www.academia.edu/attachments/87220112/download_file","bulk_download_file_name":"Structure_evolution_during_film_blowing.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/87220112/Troisi_Et_Al_EPJ_2015-libre.pdf?1654722024=\u0026response-content-disposition=attachment%3B+filename%3DStructure_evolution_during_film_blowing.pdf\u0026Expires=1742128088\u0026Signature=XUgxWRwO8cyZUhL2~GVxJRWtctAqdudHk5bhq4n8TZ1wvMchUuP0AIyMeNI5hVFzFRRcCT5oJnYLLAMKLm9JsLJI3gbwQvrvncsuOGGq0yJE0Cs-DpP0SN~OizqfoehydyVNF5alFnLZXCLnM~fTY4SdO-4KLB~YFgIBUNPHRxrYLg0dtwzoNpfuXnHlMMBXEVHHxCIH2gCLtAHkvvMvjEt~U2rFw6Ixv6P0u4km6W0JU~s6JC2oGr3aY1yyDsk7-f2wzDN7WKqm3sJcw1oKt868SOElVElu-DST1KO29laY5qcirLiQELLPNBk3Klr6G5rkhRuHj5psZfTMnzZ8qQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Structure_evolution_during_film_blowing_An_experimental_study_using_in_situ_small_angle_X_ray_scattering","translated_slug":"","page_count":33,"language":"en","content_type":"Work","summary":"The on-line morphological development during film blowing of 2 different linear low density polyethylenes (LLDPE) and a blend of LLDPE with low density polyethylene (LDPE) has been investigated, for the first time, using synchrotron Small Angle X-Ray Scattering (SAXS). The processing conditions, blow-up ratio and takeup ratio, have been varied and the resulting lamellar thickness, linear crystallinity and orientation evolution in machine direction is obtained from a detailed analysis of SAXS data. Ex-situ SAXS and wide angle Xray Diffraction (WAXD) confirmed the effect of molecular structure and composition on structure evolution observed in the on-line experiments. The results obtained provide a valuable set of data for the understanding of the film blowing process and can be used to extend and improve numerical model.","owner":{"id":26113865,"first_name":"Gerrit","middle_initials":null,"last_name":"Peters","page_name":"httpwwwtuenl","domain_name":"tue","created_at":"2015-02-11T05:19:07.533-08:00","display_name":"Gerrit Peters","url":"https://tue.academia.edu/httpwwwtuenl","email":"TXFWR2lnTFlwK2oyRGtUb1YrSElhNk5VeGVRaGRNRi9OUWw0VXgzL21Sdz0tLXpkcXZ0eUdLcUlxRjgvb0lTajUwYXc9PQ==--b44a58d5db44655bf466b590e0d97c628d8e9d50"},"attachments":[{"id":87220112,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/87220112/thumbnails/1.jpg","file_name":"Troisi_Et_Al_EPJ_2015.pdf","download_url":"https://www.academia.edu/attachments/87220112/download_file","bulk_download_file_name":"Structure_evolution_during_film_blowing.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/87220112/Troisi_Et_Al_EPJ_2015-libre.pdf?1654722024=\u0026response-content-disposition=attachment%3B+filename%3DStructure_evolution_during_film_blowing.pdf\u0026Expires=1742128088\u0026Signature=XUgxWRwO8cyZUhL2~GVxJRWtctAqdudHk5bhq4n8TZ1wvMchUuP0AIyMeNI5hVFzFRRcCT5oJnYLLAMKLm9JsLJI3gbwQvrvncsuOGGq0yJE0Cs-DpP0SN~OizqfoehydyVNF5alFnLZXCLnM~fTY4SdO-4KLB~YFgIBUNPHRxrYLg0dtwzoNpfuXnHlMMBXEVHHxCIH2gCLtAHkvvMvjEt~U2rFw6Ixv6P0u4km6W0JU~s6JC2oGr3aY1yyDsk7-f2wzDN7WKqm3sJcw1oKt868SOElVElu-DST1KO29laY5qcirLiQELLPNBk3Klr6G5rkhRuHj5psZfTMnzZ8qQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":56,"name":"Materials Engineering","url":"https://www.academia.edu/Documents/in/Materials_Engineering"},{"id":72,"name":"Chemical Engineering","url":"https://www.academia.edu/Documents/in/Chemical_Engineering"},{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":10636,"name":"Small Angle X Ray Scattering","url":"https://www.academia.edu/Documents/in/Small_Angle_X_Ray_Scattering"},{"id":159937,"name":"In situ","url":"https://www.academia.edu/Documents/in/In_situ"},{"id":441926,"name":"Scattering","url":"https://www.academia.edu/Documents/in/Scattering"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="81036906"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/81036906/The_prediction_of_mechanical_performance_of_isotactic_polypropylene_on_the_basis_of_processing_conditions"><img alt="Research paper thumbnail of The prediction of mechanical performance of isotactic polypropylene on the basis of processing conditions" class="work-thumbnail" src="https://attachments.academia-assets.com/87220098/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/81036906/The_prediction_of_mechanical_performance_of_isotactic_polypropylene_on_the_basis_of_processing_conditions">The prediction of mechanical performance of isotactic polypropylene on the basis of processing conditions</a></div><div class="wp-workCard_item"><span>Polymer</span><span>, 2016</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">DOI to the publisher's website. • The final author version and the galley proof are versions of t...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">DOI to the publisher's website. • The final author version and the galley proof are versions of the publication after peer review. • The final published version features the final layout of the paper including the volume, issue and page numbers. Link to publication General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal. If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the "Taverne" license above, please follow below link for the End User Agreement:</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="e7e9ccb1101d0a2c1f053b2c12217058" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":87220098,"asset_id":81036906,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/87220098/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="81036906"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="81036906"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 81036906; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=81036906]").text(description); $(".js-view-count[data-work-id=81036906]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 81036906; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='81036906']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "e7e9ccb1101d0a2c1f053b2c12217058" } } $('.js-work-strip[data-work-id=81036906]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":81036906,"title":"The prediction of mechanical performance of isotactic polypropylene on the basis of processing conditions","translated_title":"","metadata":{"publisher":"Elsevier BV","grobid_abstract":"DOI to the publisher's website. • The final author version and the galley proof are versions of the publication after peer review. • The final published version features the final layout of the paper including the volume, issue and page numbers. Link to publication General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal. If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the \"Taverne\" license above, please follow below link for the End User Agreement:","publication_date":{"day":null,"month":null,"year":2016,"errors":{}},"publication_name":"Polymer","grobid_abstract_attachment_id":87220098},"translated_abstract":null,"internal_url":"https://www.academia.edu/81036906/The_prediction_of_mechanical_performance_of_isotactic_polypropylene_on_the_basis_of_processing_conditions","translated_internal_url":"","created_at":"2022-06-08T13:45:37.082-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":26113865,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":87220098,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/87220098/thumbnails/1.jpg","file_name":"1_s2.0_S0032386115304158_main.pdf","download_url":"https://www.academia.edu/attachments/87220098/download_file","bulk_download_file_name":"The_prediction_of_mechanical_performance.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/87220098/1_s2.0_S0032386115304158_main-libre.pdf?1654722017=\u0026response-content-disposition=attachment%3B+filename%3DThe_prediction_of_mechanical_performance.pdf\u0026Expires=1742128088\u0026Signature=SQDFjvHYTs8h36a2sr3NGHx37BkWWtnLtMKXaIw-6c7lZm36X~d~RlwaMEyYYBfuGfvmIrfiLqs4woxGD64nr7BD1w9SDPOJxqhK~ejCw0OzLVHo~Bu8Wy-9DwU-oJdn4cBTVstSjW~X1UZP92dbSxMzTY1c8PIImukGx~mS7udH6NQ-aMX7tVCte3YatXqXyqe5s9fErEmUxztgxdVXv2VzX3QIynL4w9YWvTbpUiekt7kT4qHSVvyZftjOmWKvhb43Fp9BOrLXU06AM5F8WxM-VItGeMuLFsgo6NNH9se0vyFsaB2NopHQ4MBgxvRMn~K-EYkvY7X76gMsx9PEXw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"The_prediction_of_mechanical_performance_of_isotactic_polypropylene_on_the_basis_of_processing_conditions","translated_slug":"","page_count":14,"language":"en","content_type":"Work","summary":"DOI to the publisher's website. • The final author version and the galley proof are versions of the publication after peer review. • The final published version features the final layout of the paper including the volume, issue and page numbers. Link to publication General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal. If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the \"Taverne\" license above, please follow below link for the End User Agreement:","owner":{"id":26113865,"first_name":"Gerrit","middle_initials":null,"last_name":"Peters","page_name":"httpwwwtuenl","domain_name":"tue","created_at":"2015-02-11T05:19:07.533-08:00","display_name":"Gerrit Peters","url":"https://tue.academia.edu/httpwwwtuenl","email":"SUZSWUk2WlZYZjBsQ0Z0MDgrMDJlbzIyR0t6OStPSzYwT3BGaDlyV0ViWT0tLVVMb1ZBbnMxVE9oZEhHNmFiQzZnSVE9PQ==--8e1a4a3ff0bf2f599fa5d46b254fdc0dbf9ec269"},"attachments":[{"id":87220098,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/87220098/thumbnails/1.jpg","file_name":"1_s2.0_S0032386115304158_main.pdf","download_url":"https://www.academia.edu/attachments/87220098/download_file","bulk_download_file_name":"The_prediction_of_mechanical_performance.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/87220098/1_s2.0_S0032386115304158_main-libre.pdf?1654722017=\u0026response-content-disposition=attachment%3B+filename%3DThe_prediction_of_mechanical_performance.pdf\u0026Expires=1742128088\u0026Signature=SQDFjvHYTs8h36a2sr3NGHx37BkWWtnLtMKXaIw-6c7lZm36X~d~RlwaMEyYYBfuGfvmIrfiLqs4woxGD64nr7BD1w9SDPOJxqhK~ejCw0OzLVHo~Bu8Wy-9DwU-oJdn4cBTVstSjW~X1UZP92dbSxMzTY1c8PIImukGx~mS7udH6NQ-aMX7tVCte3YatXqXyqe5s9fErEmUxztgxdVXv2VzX3QIynL4w9YWvTbpUiekt7kT4qHSVvyZftjOmWKvhb43Fp9BOrLXU06AM5F8WxM-VItGeMuLFsgo6NNH9se0vyFsaB2NopHQ4MBgxvRMn~K-EYkvY7X76gMsx9PEXw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":58527,"name":"Polymer","url":"https://www.academia.edu/Documents/in/Polymer"},{"id":260118,"name":"CHEMICAL SCIENCES","url":"https://www.academia.edu/Documents/in/CHEMICAL_SCIENCES"},{"id":3702108,"name":" tacticity","url":"https://www.academia.edu/Documents/in/tacticity"}],"urls":[{"id":21238222,"url":"https://api.elsevier.com/content/article/PII:S0032386115304158?httpAccept=text/xml"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="81036888"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/81036888/Linear_viscoelastic_fluid_characterization_of_ultra_high_viscosity_fluids_for_high_frequency_damper_design"><img alt="Research paper thumbnail of Linear viscoelastic fluid characterization of ultra-high-viscosity fluids for high-frequency damper design" class="work-thumbnail" src="https://attachments.academia-assets.com/87220090/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/81036888/Linear_viscoelastic_fluid_characterization_of_ultra_high_viscosity_fluids_for_high_frequency_damper_design">Linear viscoelastic fluid characterization of ultra-high-viscosity fluids for high-frequency damper design</a></div><div class="wp-workCard_item"><span>Rheologica Acta</span><span>, 2015</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">This paper presents the use of a state of the art damper for high-precision motion stages as a sl...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">This paper presents the use of a state of the art damper for high-precision motion stages as a sliding plate rheometer for measuring linear viscoelastic properties in the frequency range of 10 Hz-10 kHz. This device is relatively cheap and enables to obtain linear viscoelastic (LVE) fluid models for practical use in precision mechanics applications. This is an example of reversed engineering, i.e., turning a machine part into a material characterization device. Results are shown for a high-viscosity fluid. The first part of this paper describes the damper design that is based on a high-viscosity fluid. This design is flexure-based to minimize parasitic nonlinear forces such as hysteresis and stick-slip. In the second part of the paper, LVE fluid characterization by means of the damper setup is presented. Measurements are performed and model parameters are fitted by a non-convex optimization algorithm in order to obtain the frequency-dependent behavior of the fluid. The resulting fluid model is validated by comparison with a second measurement with a different damper geometry. This paper shows that LVE fluid characterization between 10 Hz and 10 kHz for elastic high-viscosity fluids is possible with a motion stage damper for which the undamped behavior is known.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="1747aa053e6d83621a34399a2e392c10" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":87220090,"asset_id":81036888,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/87220090/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="81036888"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="81036888"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 81036888; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=81036888]").text(description); $(".js-view-count[data-work-id=81036888]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 81036888; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='81036888']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "1747aa053e6d83621a34399a2e392c10" } } $('.js-work-strip[data-work-id=81036888]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":81036888,"title":"Linear viscoelastic fluid characterization of ultra-high-viscosity fluids for high-frequency damper design","translated_title":"","metadata":{"publisher":"Springer Nature","grobid_abstract":"This paper presents the use of a state of the art damper for high-precision motion stages as a sliding plate rheometer for measuring linear viscoelastic properties in the frequency range of 10 Hz-10 kHz. This device is relatively cheap and enables to obtain linear viscoelastic (LVE) fluid models for practical use in precision mechanics applications. This is an example of reversed engineering, i.e., turning a machine part into a material characterization device. Results are shown for a high-viscosity fluid. The first part of this paper describes the damper design that is based on a high-viscosity fluid. This design is flexure-based to minimize parasitic nonlinear forces such as hysteresis and stick-slip. In the second part of the paper, LVE fluid characterization by means of the damper setup is presented. Measurements are performed and model parameters are fitted by a non-convex optimization algorithm in order to obtain the frequency-dependent behavior of the fluid. The resulting fluid model is validated by comparison with a second measurement with a different damper geometry. This paper shows that LVE fluid characterization between 10 Hz and 10 kHz for elastic high-viscosity fluids is possible with a motion stage damper for which the undamped behavior is known.","publication_date":{"day":null,"month":null,"year":2015,"errors":{}},"publication_name":"Rheologica Acta","grobid_abstract_attachment_id":87220090},"translated_abstract":null,"internal_url":"https://www.academia.edu/81036888/Linear_viscoelastic_fluid_characterization_of_ultra_high_viscosity_fluids_for_high_frequency_damper_design","translated_internal_url":"","created_at":"2022-06-08T13:45:20.738-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":26113865,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":87220090,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/87220090/thumbnails/1.jpg","file_name":"10.1007_2Fs00397-015-0862-y.pdf","download_url":"https://www.academia.edu/attachments/87220090/download_file","bulk_download_file_name":"Linear_viscoelastic_fluid_characterizati.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/87220090/10.1007_2Fs00397-015-0862-y-libre.pdf?1654722011=\u0026response-content-disposition=attachment%3B+filename%3DLinear_viscoelastic_fluid_characterizati.pdf\u0026Expires=1742128088\u0026Signature=HH36gZPDvA7kUTta9LuvlShpHvYv5iqzPNP3iRuFO~YrQmdoXV8I1YHGWrDhTSvMwuxvmCiJ~ZJnBbJuCIELzrqJwH7iHKb7RghtS6Tji1G1catJFeBqLuMqOQMYustXhwsnwsZNKRaLGK4H0Ff47AvDCOunLbeWJ~l6gPsK5F~TyvykQHKy102d~FphA2KVdZtk2VCtEOODYF4Uo5wRrkaIzqSZVZTBy2lTKjBl0IAErI7nvl8vC55M20IPQXVaIk51Cc-t-Y-AS0QQRMacdMqx65xIlsrxfc99Xrk3piIbJ8KZPB8QihaAMbe3sKbPfMWDUUXzOb3G2LI5To01eQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Linear_viscoelastic_fluid_characterization_of_ultra_high_viscosity_fluids_for_high_frequency_damper_design","translated_slug":"","page_count":11,"language":"en","content_type":"Work","summary":"This paper presents the use of a state of the art damper for high-precision motion stages as a sliding plate rheometer for measuring linear viscoelastic properties in the frequency range of 10 Hz-10 kHz. This device is relatively cheap and enables to obtain linear viscoelastic (LVE) fluid models for practical use in precision mechanics applications. This is an example of reversed engineering, i.e., turning a machine part into a material characterization device. Results are shown for a high-viscosity fluid. The first part of this paper describes the damper design that is based on a high-viscosity fluid. This design is flexure-based to minimize parasitic nonlinear forces such as hysteresis and stick-slip. In the second part of the paper, LVE fluid characterization by means of the damper setup is presented. Measurements are performed and model parameters are fitted by a non-convex optimization algorithm in order to obtain the frequency-dependent behavior of the fluid. The resulting fluid model is validated by comparison with a second measurement with a different damper geometry. This paper shows that LVE fluid characterization between 10 Hz and 10 kHz for elastic high-viscosity fluids is possible with a motion stage damper for which the undamped behavior is known.","owner":{"id":26113865,"first_name":"Gerrit","middle_initials":null,"last_name":"Peters","page_name":"httpwwwtuenl","domain_name":"tue","created_at":"2015-02-11T05:19:07.533-08:00","display_name":"Gerrit Peters","url":"https://tue.academia.edu/httpwwwtuenl","email":"TWRrTFZadjl4YXlyMjEyNXJxRzB6dzZlVldMSWNFYzhFMVgxQlZNdithZz0tLThwZXFUNSsvcXpCMVJmdm1BZm9qZXc9PQ==--c43459b92d7e36f50a0a7d99a2fb7d0e2132690e"},"attachments":[{"id":87220090,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/87220090/thumbnails/1.jpg","file_name":"10.1007_2Fs00397-015-0862-y.pdf","download_url":"https://www.academia.edu/attachments/87220090/download_file","bulk_download_file_name":"Linear_viscoelastic_fluid_characterizati.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/87220090/10.1007_2Fs00397-015-0862-y-libre.pdf?1654722011=\u0026response-content-disposition=attachment%3B+filename%3DLinear_viscoelastic_fluid_characterizati.pdf\u0026Expires=1742128088\u0026Signature=HH36gZPDvA7kUTta9LuvlShpHvYv5iqzPNP3iRuFO~YrQmdoXV8I1YHGWrDhTSvMwuxvmCiJ~ZJnBbJuCIELzrqJwH7iHKb7RghtS6Tji1G1catJFeBqLuMqOQMYustXhwsnwsZNKRaLGK4H0Ff47AvDCOunLbeWJ~l6gPsK5F~TyvykQHKy102d~FphA2KVdZtk2VCtEOODYF4Uo5wRrkaIzqSZVZTBy2lTKjBl0IAErI7nvl8vC55M20IPQXVaIk51Cc-t-Y-AS0QQRMacdMqx65xIlsrxfc99Xrk3piIbJ8KZPB8QihaAMbe3sKbPfMWDUUXzOb3G2LI5To01eQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":60,"name":"Mechanical Engineering","url":"https://www.academia.edu/Documents/in/Mechanical_Engineering"},{"id":72,"name":"Chemical Engineering","url":"https://www.academia.edu/Documents/in/Chemical_Engineering"},{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":2383,"name":"Viscoelasticity","url":"https://www.academia.edu/Documents/in/Viscoelasticity"},{"id":7598,"name":"Rheology","url":"https://www.academia.edu/Documents/in/Rheology"},{"id":109384,"name":"Viscosity","url":"https://www.academia.edu/Documents/in/Viscosity"},{"id":554780,"name":"Interdisciplinary Engineering","url":"https://www.academia.edu/Documents/in/Interdisciplinary_Engineering"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="81036842"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/81036842/A_new_approach_for_calculating_the_true_stress_response_from_large_amplitude_oscillatory_shear_LAOS_measurements_using_parallel_plates"><img alt="Research paper thumbnail of A new approach for calculating the true stress response from large amplitude oscillatory shear (LAOS) measurements using parallel plates" class="work-thumbnail" src="https://attachments.academia-assets.com/87220066/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/81036842/A_new_approach_for_calculating_the_true_stress_response_from_large_amplitude_oscillatory_shear_LAOS_measurements_using_parallel_plates">A new approach for calculating the true stress response from large amplitude oscillatory shear (LAOS) measurements using parallel plates</a></div><div class="wp-workCard_item"><span>Rheologica Acta</span><span>, 2013</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The parallel plates geometry is often deemed unsuitable for nonlinear viscoelasticity measurement...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The parallel plates geometry is often deemed unsuitable for nonlinear viscoelasticity measurements because the strain field, and thus the nonlinear response, varies across the sample. Although cone-plate and Couette geometries are designed to circumvent this problem by ensuring a uniform strain field, it is not always easy to shape the material to the complex shapes that is required for these geometries. This has motivated the development of techniques to accurately determine the nonlinear stress response using the more convenient plate-plate geometry. Here, we introduce a new approach to obtain this true material response in large amplitude oscillatory shear (LAOS) experiments using the plate-plate geometry. By tracing the Fourier components of the torque response and their derivatives with respect to the maximum applied deformation, we accurately obtain the material's true stress-strain response from parallel plate measurements. The approach does not require any assumptions about the material's viscoelastic behavior. We test our approach experimentally</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="036fe2ba7d7511d002353c0d7f230876" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":87220066,"asset_id":81036842,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/87220066/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="81036842"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="81036842"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 81036842; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=81036842]").text(description); $(".js-view-count[data-work-id=81036842]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 81036842; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='81036842']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "036fe2ba7d7511d002353c0d7f230876" } } $('.js-work-strip[data-work-id=81036842]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":81036842,"title":"A new approach for calculating the true stress response from large amplitude oscillatory shear (LAOS) measurements using parallel plates","translated_title":"","metadata":{"publisher":"Springer Nature","grobid_abstract":"The parallel plates geometry is often deemed unsuitable for nonlinear viscoelasticity measurements because the strain field, and thus the nonlinear response, varies across the sample. Although cone-plate and Couette geometries are designed to circumvent this problem by ensuring a uniform strain field, it is not always easy to shape the material to the complex shapes that is required for these geometries. This has motivated the development of techniques to accurately determine the nonlinear stress response using the more convenient plate-plate geometry. Here, we introduce a new approach to obtain this true material response in large amplitude oscillatory shear (LAOS) experiments using the plate-plate geometry. By tracing the Fourier components of the torque response and their derivatives with respect to the maximum applied deformation, we accurately obtain the material's true stress-strain response from parallel plate measurements. The approach does not require any assumptions about the material's viscoelastic behavior. We test our approach experimentally","publication_date":{"day":null,"month":null,"year":2013,"errors":{}},"publication_name":"Rheologica Acta","grobid_abstract_attachment_id":87220066},"translated_abstract":null,"internal_url":"https://www.academia.edu/81036842/A_new_approach_for_calculating_the_true_stress_response_from_large_amplitude_oscillatory_shear_LAOS_measurements_using_parallel_plates","translated_internal_url":"","created_at":"2022-06-08T13:44:54.863-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":26113865,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":87220066,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/87220066/thumbnails/1.jpg","file_name":"s00397-013-0738-y20220608-1-1w4eaae.pdf","download_url":"https://www.academia.edu/attachments/87220066/download_file","bulk_download_file_name":"A_new_approach_for_calculating_the_true.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/87220066/s00397-013-0738-y20220608-1-1w4eaae-libre.pdf?1654722012=\u0026response-content-disposition=attachment%3B+filename%3DA_new_approach_for_calculating_the_true.pdf\u0026Expires=1742128088\u0026Signature=fTCnaHougkMYKil9DbofEv8LvFSc69J6hVGemPigjsxH9F01nwL2Rd3qpc8Ps7pDfGXag1L8cv0nETn3aSuG8i3jrQ683XYweugxjDgffKofgr9Egg-b6OF7bfcaMrajjB9U25f8gSP0zao3BffRq2NCYNyt77Yc1D1whn~OC0xpd42ElUanQgDAcRBTBJFRDGEH7fsqblFu-f3vB3J1bItG5fiygHl0C67~XFOnCaf4kmJvy3dcZVAABrmwhzcpuOlKKYkv6Mnu7rApDEV2xiZnhKrjimVu25aynNxHhLC6XeUl8GCY8JkDNstSoXFv4f0quLx3KI8cTMHqyvrL~Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"A_new_approach_for_calculating_the_true_stress_response_from_large_amplitude_oscillatory_shear_LAOS_measurements_using_parallel_plates","translated_slug":"","page_count":9,"language":"en","content_type":"Work","summary":"The parallel plates geometry is often deemed unsuitable for nonlinear viscoelasticity measurements because the strain field, and thus the nonlinear response, varies across the sample. Although cone-plate and Couette geometries are designed to circumvent this problem by ensuring a uniform strain field, it is not always easy to shape the material to the complex shapes that is required for these geometries. This has motivated the development of techniques to accurately determine the nonlinear stress response using the more convenient plate-plate geometry. Here, we introduce a new approach to obtain this true material response in large amplitude oscillatory shear (LAOS) experiments using the plate-plate geometry. By tracing the Fourier components of the torque response and their derivatives with respect to the maximum applied deformation, we accurately obtain the material's true stress-strain response from parallel plate measurements. The approach does not require any assumptions about the material's viscoelastic behavior. We test our approach experimentally","owner":{"id":26113865,"first_name":"Gerrit","middle_initials":null,"last_name":"Peters","page_name":"httpwwwtuenl","domain_name":"tue","created_at":"2015-02-11T05:19:07.533-08:00","display_name":"Gerrit Peters","url":"https://tue.academia.edu/httpwwwtuenl","email":"cTBxcHA3ajJNanBZZEw4NFEzRW9oNnJtY01TT1dzUUhneHQ5YlcvTzhTRT0tLTR3NE5iMmhQSVdqOXM5RGc0a29MUkE9PQ==--0af3558b6e7bef08770f55ddf0288160cc60da6d"},"attachments":[{"id":87220066,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/87220066/thumbnails/1.jpg","file_name":"s00397-013-0738-y20220608-1-1w4eaae.pdf","download_url":"https://www.academia.edu/attachments/87220066/download_file","bulk_download_file_name":"A_new_approach_for_calculating_the_true.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/87220066/s00397-013-0738-y20220608-1-1w4eaae-libre.pdf?1654722012=\u0026response-content-disposition=attachment%3B+filename%3DA_new_approach_for_calculating_the_true.pdf\u0026Expires=1742128088\u0026Signature=fTCnaHougkMYKil9DbofEv8LvFSc69J6hVGemPigjsxH9F01nwL2Rd3qpc8Ps7pDfGXag1L8cv0nETn3aSuG8i3jrQ683XYweugxjDgffKofgr9Egg-b6OF7bfcaMrajjB9U25f8gSP0zao3BffRq2NCYNyt77Yc1D1whn~OC0xpd42ElUanQgDAcRBTBJFRDGEH7fsqblFu-f3vB3J1bItG5fiygHl0C67~XFOnCaf4kmJvy3dcZVAABrmwhzcpuOlKKYkv6Mnu7rApDEV2xiZnhKrjimVu25aynNxHhLC6XeUl8GCY8JkDNstSoXFv4f0quLx3KI8cTMHqyvrL~Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":60,"name":"Mechanical Engineering","url":"https://www.academia.edu/Documents/in/Mechanical_Engineering"},{"id":72,"name":"Chemical Engineering","url":"https://www.academia.edu/Documents/in/Chemical_Engineering"},{"id":554780,"name":"Interdisciplinary Engineering","url":"https://www.academia.edu/Documents/in/Interdisciplinary_Engineering"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="81036821"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/81036821/Analysis_of_mixing_in_three_dimensional_time_periodic_cavity_flows"><img alt="Research paper thumbnail of Analysis of mixing in three-dimensional time-periodic cavity flows" class="work-thumbnail" src="https://attachments.academia-assets.com/87220060/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/81036821/Analysis_of_mixing_in_three_dimensional_time_periodic_cavity_flows">Analysis of mixing in three-dimensional time-periodic cavity flows</a></div><div class="wp-workCard_item"><span>Journal of Fluid Mechanics</span><span>, 1999</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">A method to locate periodic structures in general three-dimensional Stokes flows with time-period...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">A method to locate periodic structures in general three-dimensional Stokes flows with time-periodic boundary conditions is presented and applied to mixing cavity flows. Numerically obtained velocity fields and particle tracking schemes are used to provide displacement and stretching fields. From these the location and identification of periodic points can be derived. The presence or absence of these periodic points allows a judgement on the quality of the mixing process. The technique is general and efficient, and applicable to mixing flows for which no analytical velocity field is available (the case for all three-dimensional flows considered in this paper). Results are presented for three different mixing protocols in a three-dimensional time-periodic cavity flow, serving as an accessible test case for the methods developed. A major result is that periodic lines are obtained for these three-dimensional flows. These lines can be complex in geometry and their nature can change along...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="4b72e64a4bacc0f3660aa9f90db5b74e" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":87220060,"asset_id":81036821,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/87220060/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="81036821"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="81036821"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 81036821; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=81036821]").text(description); $(".js-view-count[data-work-id=81036821]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 81036821; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='81036821']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "4b72e64a4bacc0f3660aa9f90db5b74e" } } $('.js-work-strip[data-work-id=81036821]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":81036821,"title":"Analysis of mixing in three-dimensional time-periodic cavity flows","translated_title":"","metadata":{"abstract":"A method to locate periodic structures in general three-dimensional Stokes flows with time-periodic boundary conditions is presented and applied to mixing cavity flows. Numerically obtained velocity fields and particle tracking schemes are used to provide displacement and stretching fields. From these the location and identification of periodic points can be derived. The presence or absence of these periodic points allows a judgement on the quality of the mixing process. The technique is general and efficient, and applicable to mixing flows for which no analytical velocity field is available (the case for all three-dimensional flows considered in this paper). Results are presented for three different mixing protocols in a three-dimensional time-periodic cavity flow, serving as an accessible test case for the methods developed. A major result is that periodic lines are obtained for these three-dimensional flows. These lines can be complex in geometry and their nature can change along...","publisher":"Cambridge University Press (CUP)","publication_date":{"day":null,"month":null,"year":1999,"errors":{}},"publication_name":"Journal of Fluid Mechanics"},"translated_abstract":"A method to locate periodic structures in general three-dimensional Stokes flows with time-periodic boundary conditions is presented and applied to mixing cavity flows. Numerically obtained velocity fields and particle tracking schemes are used to provide displacement and stretching fields. From these the location and identification of periodic points can be derived. The presence or absence of these periodic points allows a judgement on the quality of the mixing process. The technique is general and efficient, and applicable to mixing flows for which no analytical velocity field is available (the case for all three-dimensional flows considered in this paper). Results are presented for three different mixing protocols in a three-dimensional time-periodic cavity flow, serving as an accessible test case for the methods developed. A major result is that periodic lines are obtained for these three-dimensional flows. These lines can be complex in geometry and their nature can change along...","internal_url":"https://www.academia.edu/81036821/Analysis_of_mixing_in_three_dimensional_time_periodic_cavity_flows","translated_internal_url":"","created_at":"2022-06-08T13:44:41.317-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":26113865,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":87220060,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/87220060/thumbnails/1.jpg","file_name":"6.pdf","download_url":"https://www.academia.edu/attachments/87220060/download_file","bulk_download_file_name":"Analysis_of_mixing_in_three_dimensional.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/87220060/6-libre.pdf?1654722014=\u0026response-content-disposition=attachment%3B+filename%3DAnalysis_of_mixing_in_three_dimensional.pdf\u0026Expires=1742128089\u0026Signature=CT~5FxDCuQnfRPQ2hzMfge70-PfU0jw5iwKLl89NDs63hVG~VzfXwkkjyLLCe-grWb8B3h6i2pKZWk-KaDAqOWo6zppY9pD-Dzt6o5GtK~XGWhHps7ccaQDyW3ayU0D8nTtoL1ShQVQO3LovobHDf1LGRalEKBNvP7aRu3mReVsGsp--k~h827Vc8NtvudaVLjzTiNBoj0Fsd-s1EOjRDqt4RJaMbNfzEdq~r7XEnqpzmV5Z9hY3orhJu2y-rmGa1YAbIV6YDHs9E713tN3REbOJxgEWNhT1KwP78dKlM~wGhXhi1wwfMygj15SP0pCCS6pfSuFPJJ1HSzTFpK1DKQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Analysis_of_mixing_in_three_dimensional_time_periodic_cavity_flows","translated_slug":"","page_count":18,"language":"en","content_type":"Work","summary":"A method to locate periodic structures in general three-dimensional Stokes flows with time-periodic boundary conditions is presented and applied to mixing cavity flows. Numerically obtained velocity fields and particle tracking schemes are used to provide displacement and stretching fields. From these the location and identification of periodic points can be derived. The presence or absence of these periodic points allows a judgement on the quality of the mixing process. The technique is general and efficient, and applicable to mixing flows for which no analytical velocity field is available (the case for all three-dimensional flows considered in this paper). Results are presented for three different mixing protocols in a three-dimensional time-periodic cavity flow, serving as an accessible test case for the methods developed. A major result is that periodic lines are obtained for these three-dimensional flows. These lines can be complex in geometry and their nature can change along...","owner":{"id":26113865,"first_name":"Gerrit","middle_initials":null,"last_name":"Peters","page_name":"httpwwwtuenl","domain_name":"tue","created_at":"2015-02-11T05:19:07.533-08:00","display_name":"Gerrit Peters","url":"https://tue.academia.edu/httpwwwtuenl","email":"QlR4a2x6d1Fma01FVTBKYzVUdGdwTGtqUldHdWxKT3JvV0hMZC9qQ3BuTT0tLU11R01pWVJKZWNRNnUyOHdlbmNwT2c9PQ==--9faba60c3d00c98c2ea3234b460204c85850ac4e"},"attachments":[{"id":87220060,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/87220060/thumbnails/1.jpg","file_name":"6.pdf","download_url":"https://www.academia.edu/attachments/87220060/download_file","bulk_download_file_name":"Analysis_of_mixing_in_three_dimensional.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/87220060/6-libre.pdf?1654722014=\u0026response-content-disposition=attachment%3B+filename%3DAnalysis_of_mixing_in_three_dimensional.pdf\u0026Expires=1742128089\u0026Signature=CT~5FxDCuQnfRPQ2hzMfge70-PfU0jw5iwKLl89NDs63hVG~VzfXwkkjyLLCe-grWb8B3h6i2pKZWk-KaDAqOWo6zppY9pD-Dzt6o5GtK~XGWhHps7ccaQDyW3ayU0D8nTtoL1ShQVQO3LovobHDf1LGRalEKBNvP7aRu3mReVsGsp--k~h827Vc8NtvudaVLjzTiNBoj0Fsd-s1EOjRDqt4RJaMbNfzEdq~r7XEnqpzmV5Z9hY3orhJu2y-rmGa1YAbIV6YDHs9E713tN3REbOJxgEWNhT1KwP78dKlM~wGhXhi1wwfMygj15SP0pCCS6pfSuFPJJ1HSzTFpK1DKQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics"},{"id":512,"name":"Mechanics","url":"https://www.academia.edu/Documents/in/Mechanics"},{"id":2435,"name":"Fluid Mechanics","url":"https://www.academia.edu/Documents/in/Fluid_Mechanics"},{"id":16522,"name":"Stokes flow","url":"https://www.academia.edu/Documents/in/Stokes_flow"},{"id":80414,"name":"Mathematical Sciences","url":"https://www.academia.edu/Documents/in/Mathematical_Sciences"},{"id":177906,"name":"Single Particle Tracking","url":"https://www.academia.edu/Documents/in/Single_Particle_Tracking"},{"id":504035,"name":"Three Dimensional","url":"https://www.academia.edu/Documents/in/Three_Dimensional"},{"id":2842096,"name":"periodic boundary condition","url":"https://www.academia.edu/Documents/in/periodic_boundary_condition"},{"id":3195720,"name":"Periodic Structure","url":"https://www.academia.edu/Documents/in/Periodic_Structure"},{"id":3363168,"name":"Mixing Process","url":"https://www.academia.edu/Documents/in/Mixing_Process"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="81036779"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/81036779/Axisymmetric_boundary_integral_simulations_of_film_drainage_between_two_viscous_drops"><img alt="Research paper thumbnail of Axisymmetric boundary integral simulations of film drainage between two viscous drops" class="work-thumbnail" src="https://attachments.academia-assets.com/87220046/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/81036779/Axisymmetric_boundary_integral_simulations_of_film_drainage_between_two_viscous_drops">Axisymmetric boundary integral simulations of film drainage between two viscous drops</a></div><div class="wp-workCard_item"><span>Journal of Fluid Mechanics</span><span>, 2006</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Film drainage between two drops with viscosity equal to that of the matrix fluid is studied using...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Film drainage between two drops with viscosity equal to that of the matrix fluid is studied using a numerical method that can capture both the external problem of two touching drops and the inner problem of pressure-driven local film drainage, without assumptions about the dimensions of the film or the use of lubrication approximations. We use a non-singular boundary integral method that has sufficient stability and accuracy to simulate film thicknesses down to and smaller than 10 −4 times the undeformed drop radius. After validation of the method we investigate the validity of various results obtained from simple film-drainage models and asymptotic theories. Our results for buoyancy-driven collisions are in agreement with a recently developed asymptotic theory. External-flow-driven collisions are different from buoyancy-driven collisions, which means that the internal circulation inside the drop plays a significant role in film drainage, even for small capillary numbers, as has been recently shown (Nemer et al., Phys. Rev. Lett., vol. 92, 2004, 114501). Despite that, we find excellent correspondence with simple drainage models when considering the drainage time only.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="e6e4b6928bf2a52a4c040b2367722a35" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":87220046,"asset_id":81036779,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/87220046/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="81036779"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="81036779"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 81036779; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=81036779]").text(description); $(".js-view-count[data-work-id=81036779]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 81036779; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='81036779']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "e6e4b6928bf2a52a4c040b2367722a35" } } $('.js-work-strip[data-work-id=81036779]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":81036779,"title":"Axisymmetric boundary integral simulations of film drainage between two viscous drops","translated_title":"","metadata":{"publisher":"Cambridge University Press (CUP)","grobid_abstract":"Film drainage between two drops with viscosity equal to that of the matrix fluid is studied using a numerical method that can capture both the external problem of two touching drops and the inner problem of pressure-driven local film drainage, without assumptions about the dimensions of the film or the use of lubrication approximations. We use a non-singular boundary integral method that has sufficient stability and accuracy to simulate film thicknesses down to and smaller than 10 −4 times the undeformed drop radius. After validation of the method we investigate the validity of various results obtained from simple film-drainage models and asymptotic theories. Our results for buoyancy-driven collisions are in agreement with a recently developed asymptotic theory. External-flow-driven collisions are different from buoyancy-driven collisions, which means that the internal circulation inside the drop plays a significant role in film drainage, even for small capillary numbers, as has been recently shown (Nemer et al., Phys. Rev. Lett., vol. 92, 2004, 114501). Despite that, we find excellent correspondence with simple drainage models when considering the drainage time only.","publication_date":{"day":null,"month":null,"year":2006,"errors":{}},"publication_name":"Journal of Fluid Mechanics","grobid_abstract_attachment_id":87220046},"translated_abstract":null,"internal_url":"https://www.academia.edu/81036779/Axisymmetric_boundary_integral_simulations_of_film_drainage_between_two_viscous_drops","translated_internal_url":"","created_at":"2022-06-08T13:43:56.357-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":26113865,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":87220046,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/87220046/thumbnails/1.jpg","file_name":"S002211200600208420220608-1-183v24y.pdf","download_url":"https://www.academia.edu/attachments/87220046/download_file","bulk_download_file_name":"Axisymmetric_boundary_integral_simulatio.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/87220046/S002211200600208420220608-1-183v24y-libre.pdf?1654722010=\u0026response-content-disposition=attachment%3B+filename%3DAxisymmetric_boundary_integral_simulatio.pdf\u0026Expires=1742128089\u0026Signature=WP1cPQOK7U82t06J4auI05xZV8Orw5yIMUTuoyxlzjZ~e-pUf1m~Ibuc2pptxbX1LZUZFB1kUD2paSW1dw-EBOR95sf~zz~rhqcMq1IzA-iTD114f95WQwtd8bNvUZwx7atjlEvcXLeBrdN953QbaK2-sYOHJKKylisduZLEs-EUELPqromJatKfg~E7QArPshuFoK8ib7u33IMOrIzp83G6mM-lRtyfmCmjdHLj~YLrKPXKFZUloIsk24zSB4Xur9KnB5kKFs4HQtCpLX7rAi6eKdPTb~Dmq3eSVRxYZolSjde7~kh9M0cvqWa9fhHVm3JzRDmN2MqrpSUWcoWDZQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Axisymmetric_boundary_integral_simulations_of_film_drainage_between_two_viscous_drops","translated_slug":"","page_count":26,"language":"en","content_type":"Work","summary":"Film drainage between two drops with viscosity equal to that of the matrix fluid is studied using a numerical method that can capture both the external problem of two touching drops and the inner problem of pressure-driven local film drainage, without assumptions about the dimensions of the film or the use of lubrication approximations. We use a non-singular boundary integral method that has sufficient stability and accuracy to simulate film thicknesses down to and smaller than 10 −4 times the undeformed drop radius. After validation of the method we investigate the validity of various results obtained from simple film-drainage models and asymptotic theories. Our results for buoyancy-driven collisions are in agreement with a recently developed asymptotic theory. External-flow-driven collisions are different from buoyancy-driven collisions, which means that the internal circulation inside the drop plays a significant role in film drainage, even for small capillary numbers, as has been recently shown (Nemer et al., Phys. Rev. Lett., vol. 92, 2004, 114501). Despite that, we find excellent correspondence with simple drainage models when considering the drainage time only.","owner":{"id":26113865,"first_name":"Gerrit","middle_initials":null,"last_name":"Peters","page_name":"httpwwwtuenl","domain_name":"tue","created_at":"2015-02-11T05:19:07.533-08:00","display_name":"Gerrit Peters","url":"https://tue.academia.edu/httpwwwtuenl","email":"ZGNkR3E3SUx5d0RkN3VaZ1lFT0RqRE5uZVRrRmc4VEdndlJXeVV2cVBSRT0tLWdreGtMZURCUGxlbkdCQUJUMlkrU0E9PQ==--ef3848642d8654cdfddf40cb9baa819206a7ed3f"},"attachments":[{"id":87220046,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/87220046/thumbnails/1.jpg","file_name":"S002211200600208420220608-1-183v24y.pdf","download_url":"https://www.academia.edu/attachments/87220046/download_file","bulk_download_file_name":"Axisymmetric_boundary_integral_simulatio.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/87220046/S002211200600208420220608-1-183v24y-libre.pdf?1654722010=\u0026response-content-disposition=attachment%3B+filename%3DAxisymmetric_boundary_integral_simulatio.pdf\u0026Expires=1742128089\u0026Signature=WP1cPQOK7U82t06J4auI05xZV8Orw5yIMUTuoyxlzjZ~e-pUf1m~Ibuc2pptxbX1LZUZFB1kUD2paSW1dw-EBOR95sf~zz~rhqcMq1IzA-iTD114f95WQwtd8bNvUZwx7atjlEvcXLeBrdN953QbaK2-sYOHJKKylisduZLEs-EUELPqromJatKfg~E7QArPshuFoK8ib7u33IMOrIzp83G6mM-lRtyfmCmjdHLj~YLrKPXKFZUloIsk24zSB4Xur9KnB5kKFs4HQtCpLX7rAi6eKdPTb~Dmq3eSVRxYZolSjde7~kh9M0cvqWa9fhHVm3JzRDmN2MqrpSUWcoWDZQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics"},{"id":2435,"name":"Fluid Mechanics","url":"https://www.academia.edu/Documents/in/Fluid_Mechanics"},{"id":32149,"name":"Numerical Method","url":"https://www.academia.edu/Documents/in/Numerical_Method"},{"id":80414,"name":"Mathematical Sciences","url":"https://www.academia.edu/Documents/in/Mathematical_Sciences"}],"urls":[{"id":21238189,"url":"https://www.cambridge.org/core/services/aop-cambridge-core/content/view/S0022112006002084"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="81036794"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/81036794/Numerical_Study_of_the_Effect_of_Thixotropy_on_Extrudate_Swell"><img alt="Research paper thumbnail of Numerical Study of the Effect of Thixotropy on Extrudate Swell" class="work-thumbnail" src="https://attachments.academia-assets.com/87219981/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/81036794/Numerical_Study_of_the_Effect_of_Thixotropy_on_Extrudate_Swell">Numerical Study of the Effect of Thixotropy on Extrudate Swell</a></div><div class="wp-workCard_item"><span>Polymers</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The extrusion of highly filled elastomers is widely used in the automotive industry. In this pape...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The extrusion of highly filled elastomers is widely used in the automotive industry. In this paper, we numerically study the effect of thixotropy on 2D planar extrudate swell for constant and fluctuating flow rates, as well as the effect of thixotropy on the swell behavior of a 3D rectangular extrudate for a constant flowrate. To this end, we used the Finite Element Method. The state of the network structure in the material is described using a kinetic equation for a structure parameter. Rate and stress-controlled models for this kinetic equation are compared. The effect of thixotropy on extrudate swell is studied by varying the damage and recovery parameters in these models. It was found that thixotropy in general decreases extrudate swell. The stress-controlled approach always predicts a larger swell ratio compared to the rate-controlled approach for the Weissenberg numbers studied in this work. When the damage parameter in the models is increased, a less viscous fluid layer appea...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="46faebeab5c1d2fea2fe44eeef5a354c" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":87219981,"asset_id":81036794,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/87219981/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="81036794"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="81036794"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 81036794; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=81036794]").text(description); $(".js-view-count[data-work-id=81036794]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 81036794; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='81036794']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "46faebeab5c1d2fea2fe44eeef5a354c" } } $('.js-work-strip[data-work-id=81036794]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":81036794,"title":"Numerical Study of the Effect of Thixotropy on Extrudate Swell","translated_title":"","metadata":{"abstract":"The extrusion of highly filled elastomers is widely used in the automotive industry. In this paper, we numerically study the effect of thixotropy on 2D planar extrudate swell for constant and fluctuating flow rates, as well as the effect of thixotropy on the swell behavior of a 3D rectangular extrudate for a constant flowrate. To this end, we used the Finite Element Method. The state of the network structure in the material is described using a kinetic equation for a structure parameter. Rate and stress-controlled models for this kinetic equation are compared. The effect of thixotropy on extrudate swell is studied by varying the damage and recovery parameters in these models. It was found that thixotropy in general decreases extrudate swell. The stress-controlled approach always predicts a larger swell ratio compared to the rate-controlled approach for the Weissenberg numbers studied in this work. When the damage parameter in the models is increased, a less viscous fluid layer appea...","publisher":"MDPI AG","publication_name":"Polymers"},"translated_abstract":"The extrusion of highly filled elastomers is widely used in the automotive industry. In this paper, we numerically study the effect of thixotropy on 2D planar extrudate swell for constant and fluctuating flow rates, as well as the effect of thixotropy on the swell behavior of a 3D rectangular extrudate for a constant flowrate. To this end, we used the Finite Element Method. The state of the network structure in the material is described using a kinetic equation for a structure parameter. Rate and stress-controlled models for this kinetic equation are compared. The effect of thixotropy on extrudate swell is studied by varying the damage and recovery parameters in these models. It was found that thixotropy in general decreases extrudate swell. The stress-controlled approach always predicts a larger swell ratio compared to the rate-controlled approach for the Weissenberg numbers studied in this work. When the damage parameter in the models is increased, a less viscous fluid layer appea...","internal_url":"https://www.academia.edu/81036794/Numerical_Study_of_the_Effect_of_Thixotropy_on_Extrudate_Swell","translated_internal_url":"","created_at":"2022-06-08T13:43:59.405-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":26113865,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":87219981,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/87219981/thumbnails/1.jpg","file_name":"pdf.pdf","download_url":"https://www.academia.edu/attachments/87219981/download_file","bulk_download_file_name":"Numerical_Study_of_the_Effect_of_Thixotr.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/87219981/pdf.pdf?1738507371=\u0026response-content-disposition=attachment%3B+filename%3DNumerical_Study_of_the_Effect_of_Thixotr.pdf\u0026Expires=1742128089\u0026Signature=Dy3pGhN5Pup4qoeM6jtKOM-b7OMh8j55HSTNNva6mOhWgRJqo5qig456WeNm1lOBEmM-ZvYGITZ-HAtg-4NwDPur7NdUTi869O~uVyjrKRKm-qhR7DA0HQ6DbU0FAK0yzIWdydWqnOXd3hi3WBzkElSRYEZf9axd2sZat3dZtYeMM-~~x9CaISTMlt1hI-TLjKCHrbL7NWsnM1mSjmVr9jQ8JmH1~BwUnJ-yTzT-ayY5otdMS5k7VUz0U4UxG~DJvQnNfk-FotV-RibN65J6GByPxUqNCiB7cCaQNfo~SUYywSh-DkIdJiRuC9ugY6tBPkl0jaDaicnyvFa1AP8kZw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Numerical_Study_of_the_Effect_of_Thixotropy_on_Extrudate_Swell","translated_slug":"","page_count":24,"language":"en","content_type":"Work","summary":"The extrusion of highly filled elastomers is widely used in the automotive industry. In this paper, we numerically study the effect of thixotropy on 2D planar extrudate swell for constant and fluctuating flow rates, as well as the effect of thixotropy on the swell behavior of a 3D rectangular extrudate for a constant flowrate. To this end, we used the Finite Element Method. The state of the network structure in the material is described using a kinetic equation for a structure parameter. Rate and stress-controlled models for this kinetic equation are compared. The effect of thixotropy on extrudate swell is studied by varying the damage and recovery parameters in these models. It was found that thixotropy in general decreases extrudate swell. The stress-controlled approach always predicts a larger swell ratio compared to the rate-controlled approach for the Weissenberg numbers studied in this work. When the damage parameter in the models is increased, a less viscous fluid layer appea...","owner":{"id":26113865,"first_name":"Gerrit","middle_initials":null,"last_name":"Peters","page_name":"httpwwwtuenl","domain_name":"tue","created_at":"2015-02-11T05:19:07.533-08:00","display_name":"Gerrit Peters","url":"https://tue.academia.edu/httpwwwtuenl","email":"Z290UXVpSHBxenZENnNLSDVOV0lRdysxakNBOWZUcnhRYzIzcm1VVjdzMD0tLWtOOWVCeTl6aUoyOVF2bUhCWkw5SEE9PQ==--a74c418211a5014672454542f267bf66762f11c1"},"attachments":[{"id":87219981,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/87219981/thumbnails/1.jpg","file_name":"pdf.pdf","download_url":"https://www.academia.edu/attachments/87219981/download_file","bulk_download_file_name":"Numerical_Study_of_the_Effect_of_Thixotr.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/87219981/pdf.pdf?1738507371=\u0026response-content-disposition=attachment%3B+filename%3DNumerical_Study_of_the_Effect_of_Thixotr.pdf\u0026Expires=1742128089\u0026Signature=Dy3pGhN5Pup4qoeM6jtKOM-b7OMh8j55HSTNNva6mOhWgRJqo5qig456WeNm1lOBEmM-ZvYGITZ-HAtg-4NwDPur7NdUTi869O~uVyjrKRKm-qhR7DA0HQ6DbU0FAK0yzIWdydWqnOXd3hi3WBzkElSRYEZf9axd2sZat3dZtYeMM-~~x9CaISTMlt1hI-TLjKCHrbL7NWsnM1mSjmVr9jQ8JmH1~BwUnJ-yTzT-ayY5otdMS5k7VUz0U4UxG~DJvQnNfk-FotV-RibN65J6GByPxUqNCiB7cCaQNfo~SUYywSh-DkIdJiRuC9ugY6tBPkl0jaDaicnyvFa1AP8kZw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":7598,"name":"Rheology","url":"https://www.academia.edu/Documents/in/Rheology"},{"id":21466,"name":"Polymers","url":"https://www.academia.edu/Documents/in/Polymers"},{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"}],"urls":[{"id":21238180,"url":"https://www.mdpi.com/2073-4360/13/24/4383/pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="81036793"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/81036793/Effect_of_shear_rate_and_pressure_on_the_crystallization_of_PP_nanocomposites_and_PP_PET_polymer_blend_nanocomposites"><img alt="Research paper thumbnail of Effect of shear rate and pressure on the crystallization of PP nanocomposites and PP/PET polymer blend nanocomposites" class="work-thumbnail" src="https://attachments.academia-assets.com/87220032/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/81036793/Effect_of_shear_rate_and_pressure_on_the_crystallization_of_PP_nanocomposites_and_PP_PET_polymer_blend_nanocomposites">Effect of shear rate and pressure on the crystallization of PP nanocomposites and PP/PET polymer blend nanocomposites</a></div><div class="wp-workCard_item"><span>Polymer</span><span>, 2019</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">DOI to the publisher's website. • The final author version and the galley proof are versions of t...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">DOI to the publisher's website. • The final author version and the galley proof are versions of the publication after peer review. • The final published version features the final layout of the paper including the volume, issue and page numbers. Link to publication General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal. If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the "Taverne" license above, please follow below link for the End User Agreement:</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="a264b2369562ae89c8437d373ad07688" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":87220032,"asset_id":81036793,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/87220032/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="81036793"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="81036793"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 81036793; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=81036793]").text(description); $(".js-view-count[data-work-id=81036793]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 81036793; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='81036793']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "a264b2369562ae89c8437d373ad07688" } } $('.js-work-strip[data-work-id=81036793]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":81036793,"title":"Effect of shear rate and pressure on the crystallization of PP nanocomposites and PP/PET polymer blend nanocomposites","translated_title":"","metadata":{"publisher":"Elsevier BV","ai_title_tag":"Shear Rate and Pressure Effects on PP Nanocomposites Crystallization","grobid_abstract":"DOI to the publisher's website. • The final author version and the galley proof are versions of the publication after peer review. • The final published version features the final layout of the paper including the volume, issue and page numbers. Link to publication General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal. If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the \"Taverne\" license above, please follow below link for the End User Agreement:","publication_date":{"day":null,"month":null,"year":2019,"errors":{}},"publication_name":"Polymer","grobid_abstract_attachment_id":87220032},"translated_abstract":null,"internal_url":"https://www.academia.edu/81036793/Effect_of_shear_rate_and_pressure_on_the_crystallization_of_PP_nanocomposites_and_PP_PET_polymer_blend_nanocomposites","translated_internal_url":"","created_at":"2022-06-08T13:43:59.204-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":26113865,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":87220032,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/87220032/thumbnails/1.jpg","file_name":"1_s2.0_S0032386119309565_main.pdf","download_url":"https://www.academia.edu/attachments/87220032/download_file","bulk_download_file_name":"Effect_of_shear_rate_and_pressure_on_the.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/87220032/1_s2.0_S0032386119309565_main-libre.pdf?1654722023=\u0026response-content-disposition=attachment%3B+filename%3DEffect_of_shear_rate_and_pressure_on_the.pdf\u0026Expires=1742128089\u0026Signature=GvEbfbJUzk5ghINNfn2P18EnJ~P7zXVAXG7Ua3Xj1iLbp66eziZbD8JDRStnA2Dz4QBQHFmrp6zguqyWv-h-VnwfhQVYkbyilMIAQfHfWaK2kfPki3BFR2tnnssIoxWruo7muWudAudtKFWtc8zSzgRvuNJpBGMamvOFPklPbVeUlqfRHC1vz0nY2YLIGFNMiodYC4JURtXiJm9mMU3OxF4qjAVfK6LEN4gruwI4q3Dp5wJGHweraTQpwG4uNzwz5W1K9~VT0c~CkQ2RDJMKUe74ZTQ3ZUnZ-eAEErjv0itmCQHGZaI0mo0r1IMt2Rcf158SSmA~DTTNknDqnowQRg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Effect_of_shear_rate_and_pressure_on_the_crystallization_of_PP_nanocomposites_and_PP_PET_polymer_blend_nanocomposites","translated_slug":"","page_count":15,"language":"en","content_type":"Work","summary":"DOI to the publisher's website. • The final author version and the galley proof are versions of the publication after peer review. • The final published version features the final layout of the paper including the volume, issue and page numbers. Link to publication General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal. If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the \"Taverne\" license above, please follow below link for the End User Agreement:","owner":{"id":26113865,"first_name":"Gerrit","middle_initials":null,"last_name":"Peters","page_name":"httpwwwtuenl","domain_name":"tue","created_at":"2015-02-11T05:19:07.533-08:00","display_name":"Gerrit Peters","url":"https://tue.academia.edu/httpwwwtuenl","email":"Kzd1MlZFMzVuWktueXptVWlMdkJyWktWdFdZb1Q3UmJVMlR4Rmpmb2VMbz0tLTNQd2krVFhlYStOZkZJcXhOWko5eWc9PQ==--21ad6bf0f3bf99a97315d3714e7bb1d979728d7b"},"attachments":[{"id":87220032,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/87220032/thumbnails/1.jpg","file_name":"1_s2.0_S0032386119309565_main.pdf","download_url":"https://www.academia.edu/attachments/87220032/download_file","bulk_download_file_name":"Effect_of_shear_rate_and_pressure_on_the.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/87220032/1_s2.0_S0032386119309565_main-libre.pdf?1654722023=\u0026response-content-disposition=attachment%3B+filename%3DEffect_of_shear_rate_and_pressure_on_the.pdf\u0026Expires=1742128089\u0026Signature=GvEbfbJUzk5ghINNfn2P18EnJ~P7zXVAXG7Ua3Xj1iLbp66eziZbD8JDRStnA2Dz4QBQHFmrp6zguqyWv-h-VnwfhQVYkbyilMIAQfHfWaK2kfPki3BFR2tnnssIoxWruo7muWudAudtKFWtc8zSzgRvuNJpBGMamvOFPklPbVeUlqfRHC1vz0nY2YLIGFNMiodYC4JURtXiJm9mMU3OxF4qjAVfK6LEN4gruwI4q3Dp5wJGHweraTQpwG4uNzwz5W1K9~VT0c~CkQ2RDJMKUe74ZTQ3ZUnZ-eAEErjv0itmCQHGZaI0mo0r1IMt2Rcf158SSmA~DTTNknDqnowQRg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":58527,"name":"Polymer","url":"https://www.academia.edu/Documents/in/Polymer"},{"id":99017,"name":"Nanocomposite","url":"https://www.academia.edu/Documents/in/Nanocomposite"},{"id":169323,"name":"Composite Material","url":"https://www.academia.edu/Documents/in/Composite_Material"},{"id":260118,"name":"CHEMICAL SCIENCES","url":"https://www.academia.edu/Documents/in/CHEMICAL_SCIENCES"},{"id":1244314,"name":"Polymer Nanocomposite","url":"https://www.academia.edu/Documents/in/Polymer_Nanocomposite"}],"urls":[{"id":21238179,"url":"https://api.elsevier.com/content/article/PII:S0032386119309565?httpAccept=text/xml"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="81036792"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/81036792/Effect_of_Thermal_History_and_Shear_on_the_Viscoelastic_Response_of_iPP_Containing_an_Oxalamide_Based_Organic_Compound"><img alt="Research paper thumbnail of Effect of Thermal History and Shear on the Viscoelastic Response of iPP Containing an Oxalamide-Based Organic Compound" class="work-thumbnail" src="https://attachments.academia-assets.com/87219978/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/81036792/Effect_of_Thermal_History_and_Shear_on_the_Viscoelastic_Response_of_iPP_Containing_an_Oxalamide_Based_Organic_Compound">Effect of Thermal History and Shear on the Viscoelastic Response of iPP Containing an Oxalamide-Based Organic Compound</a></div><div class="wp-workCard_item"><span>Macromolecules</span><span>, 2019</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We report on the role of temperature and shear on the melt behavior of iPP in the presence of the...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We report on the role of temperature and shear on the melt behavior of iPP in the presence of the organic compound N1,N1′-(propane-1,3-diyl)bis(N2-hexyloxalamide) (OXA3,6). It is demonstrated that OXA3,6 facilitates a viscosity suppression when it resides in the molten state. The viscosity suppression is attributed to the interaction of iPP chains/ subchains with molten OXA3,6 nanoclusters. The exact molecular mechanism has not been identified; nevertheless, a tentative explanation is proposed. The observed viscosity suppression appears similar to that encountered in polymer melts filled with solid nanoparticles, with the difference that the OXA3,6 compound reported in this study facilitates the viscosity suppression in the molten state. Upon cooling, as crystal growth of OXA3,6 progresses, the decrease in viscosity is suppressed. Retrospectively, segmental absorption of iPP chains on the surface of micrometer-sized OXA3,6 crystallites favors the formation of dangling arms, yielding OXA3,6 crystallites decorated with partially absorbed iPP chains. In other words, the resulting OXA3,6 particle morphology resembles that of a hairy particle or a starlike polymer chain. Such hairy particles effectively facilitate a viscosity enhancement, similar to branched polymer chains. This hypothesis and its implications for the shear behavior of iPP are discussed and supported using plate−plate rheometry and slit-flow experiments combined with smallangle X-ray scattering analysis.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="c0408bef947d4c8f6ac62ca6d91fed28" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":87219978,"asset_id":81036792,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/87219978/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="81036792"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="81036792"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 81036792; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=81036792]").text(description); $(".js-view-count[data-work-id=81036792]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 81036792; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='81036792']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "c0408bef947d4c8f6ac62ca6d91fed28" } } $('.js-work-strip[data-work-id=81036792]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":81036792,"title":"Effect of Thermal History and Shear on the Viscoelastic Response of iPP Containing an Oxalamide-Based Organic Compound","translated_title":"","metadata":{"publisher":"American Chemical Society (ACS)","ai_title_tag":"Thermal and Shear Effects on iPP and OXA3,6","grobid_abstract":"We report on the role of temperature and shear on the melt behavior of iPP in the presence of the organic compound N1,N1′-(propane-1,3-diyl)bis(N2-hexyloxalamide) (OXA3,6). It is demonstrated that OXA3,6 facilitates a viscosity suppression when it resides in the molten state. The viscosity suppression is attributed to the interaction of iPP chains/ subchains with molten OXA3,6 nanoclusters. The exact molecular mechanism has not been identified; nevertheless, a tentative explanation is proposed. The observed viscosity suppression appears similar to that encountered in polymer melts filled with solid nanoparticles, with the difference that the OXA3,6 compound reported in this study facilitates the viscosity suppression in the molten state. Upon cooling, as crystal growth of OXA3,6 progresses, the decrease in viscosity is suppressed. Retrospectively, segmental absorption of iPP chains on the surface of micrometer-sized OXA3,6 crystallites favors the formation of dangling arms, yielding OXA3,6 crystallites decorated with partially absorbed iPP chains. In other words, the resulting OXA3,6 particle morphology resembles that of a hairy particle or a starlike polymer chain. Such hairy particles effectively facilitate a viscosity enhancement, similar to branched polymer chains. This hypothesis and its implications for the shear behavior of iPP are discussed and supported using plate−plate rheometry and slit-flow experiments combined with smallangle X-ray scattering analysis.","publication_date":{"day":null,"month":null,"year":2019,"errors":{}},"publication_name":"Macromolecules","grobid_abstract_attachment_id":87219978},"translated_abstract":null,"internal_url":"https://www.academia.edu/81036792/Effect_of_Thermal_History_and_Shear_on_the_Viscoelastic_Response_of_iPP_Containing_an_Oxalamide_Based_Organic_Compound","translated_internal_url":"","created_at":"2022-06-08T13:43:58.986-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":26113865,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":87219978,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/87219978/thumbnails/1.jpg","file_name":"acs.macromol.pdf","download_url":"https://www.academia.edu/attachments/87219978/download_file","bulk_download_file_name":"Effect_of_Thermal_History_and_Shear_on_t.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/87219978/acs.macromol-libre.pdf?1654722023=\u0026response-content-disposition=attachment%3B+filename%3DEffect_of_Thermal_History_and_Shear_on_t.pdf\u0026Expires=1742128089\u0026Signature=EeJqdvySjKCPy6Do6t5dlsAld67ofBFOf8~E1JyXh7TFd9U9GiKSAKuiTpYtA05T7~G31IlCaoXKchuc~D-gvyuZzGmBnt3Ql-Dy3Bdd559qjGWz3iYWBycgGR5p1Rc~dA3cp6H6u13VHvLvguOWKWMy7ksNQ8favolAFJkyNu2MO3HDM68Ws~chflu70NzyHTpVxlziPIY6WYiBKKhaJV3e4xCkYlDIpmq~5QusG3RbxfN6Jrk33razJQ0mx6kod5CGnouLJ2Gtzd25Yr--8X-k4QzbBPIpr~~dNRekU~EF1Kv9jgB0hCTp~CYFfS0Wz3r1ENz2ur~3KFvNdADgYw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Effect_of_Thermal_History_and_Shear_on_the_Viscoelastic_Response_of_iPP_Containing_an_Oxalamide_Based_Organic_Compound","translated_slug":"","page_count":14,"language":"en","content_type":"Work","summary":"We report on the role of temperature and shear on the melt behavior of iPP in the presence of the organic compound N1,N1′-(propane-1,3-diyl)bis(N2-hexyloxalamide) (OXA3,6). It is demonstrated that OXA3,6 facilitates a viscosity suppression when it resides in the molten state. The viscosity suppression is attributed to the interaction of iPP chains/ subchains with molten OXA3,6 nanoclusters. The exact molecular mechanism has not been identified; nevertheless, a tentative explanation is proposed. The observed viscosity suppression appears similar to that encountered in polymer melts filled with solid nanoparticles, with the difference that the OXA3,6 compound reported in this study facilitates the viscosity suppression in the molten state. Upon cooling, as crystal growth of OXA3,6 progresses, the decrease in viscosity is suppressed. Retrospectively, segmental absorption of iPP chains on the surface of micrometer-sized OXA3,6 crystallites favors the formation of dangling arms, yielding OXA3,6 crystallites decorated with partially absorbed iPP chains. In other words, the resulting OXA3,6 particle morphology resembles that of a hairy particle or a starlike polymer chain. Such hairy particles effectively facilitate a viscosity enhancement, similar to branched polymer chains. This hypothesis and its implications for the shear behavior of iPP are discussed and supported using plate−plate rheometry and slit-flow experiments combined with smallangle X-ray scattering analysis.","owner":{"id":26113865,"first_name":"Gerrit","middle_initials":null,"last_name":"Peters","page_name":"httpwwwtuenl","domain_name":"tue","created_at":"2015-02-11T05:19:07.533-08:00","display_name":"Gerrit Peters","url":"https://tue.academia.edu/httpwwwtuenl","email":"MEdFdzdhVzcxMW0vc3RhbWVFSVkzRFRWL096RnFxb1RmRXdpNmJPM0ptbz0tLXdwWGNGcmJIOFpRN2RqU0ZzRnEwTGc9PQ==--25beee9c65e79646b925ba4d8320f331c28570a3"},"attachments":[{"id":87219978,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/87219978/thumbnails/1.jpg","file_name":"acs.macromol.pdf","download_url":"https://www.academia.edu/attachments/87219978/download_file","bulk_download_file_name":"Effect_of_Thermal_History_and_Shear_on_t.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/87219978/acs.macromol-libre.pdf?1654722023=\u0026response-content-disposition=attachment%3B+filename%3DEffect_of_Thermal_History_and_Shear_on_t.pdf\u0026Expires=1742128089\u0026Signature=EeJqdvySjKCPy6Do6t5dlsAld67ofBFOf8~E1JyXh7TFd9U9GiKSAKuiTpYtA05T7~G31IlCaoXKchuc~D-gvyuZzGmBnt3Ql-Dy3Bdd559qjGWz3iYWBycgGR5p1Rc~dA3cp6H6u13VHvLvguOWKWMy7ksNQ8favolAFJkyNu2MO3HDM68Ws~chflu70NzyHTpVxlziPIY6WYiBKKhaJV3e4xCkYlDIpmq~5QusG3RbxfN6Jrk33razJQ0mx6kod5CGnouLJ2Gtzd25Yr--8X-k4QzbBPIpr~~dNRekU~EF1Kv9jgB0hCTp~CYFfS0Wz3r1ENz2ur~3KFvNdADgYw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":87219980,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/87219980/thumbnails/1.jpg","file_name":"acs.macromol.pdf","download_url":"https://www.academia.edu/attachments/87219980/download_file","bulk_download_file_name":"Effect_of_Thermal_History_and_Shear_on_t.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/87219980/acs.macromol-libre.pdf?1654722033=\u0026response-content-disposition=attachment%3B+filename%3DEffect_of_Thermal_History_and_Shear_on_t.pdf\u0026Expires=1742128089\u0026Signature=XXQxy3hCbFBRqoE6ieLHMwoQNIugzuVHuZy8W0YDQF16-bkCI98mNZzs42ztRSRTG6hLmvNErZ5rUZJGyizPU85ZhYcYo7ggguXE0iAsh8~lQ-FV3P9fRJPLgxWW12qBZVAR2U7b~S7BbyEzSzqdmsjZZSynnUHs~XyFdsPhOk8sMUtAG5b-hC~riF6e9gqWi0lktFcD5Kt4CcMcYYOFhnGuXgelKI6AeDj~MfbHNiD8CjPBDi4XaObrxafdXwolUS-tPC6sDRYMeJ1isBVrFywkhcn3HNIUS9OQPGwGrqy7ymUmQZWCIetcmoHdJhWteoZBjzO8nOCp87YA7XBGmA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":2383,"name":"Viscoelasticity","url":"https://www.academia.edu/Documents/in/Viscoelasticity"},{"id":168760,"name":"Macromolecules","url":"https://www.academia.edu/Documents/in/Macromolecules"},{"id":260118,"name":"CHEMICAL SCIENCES","url":"https://www.academia.edu/Documents/in/CHEMICAL_SCIENCES"}],"urls":[{"id":21238178,"url":"http://pubs.acs.org/doi/pdf/10.1021/acs.macromol.8b02612"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="81036791"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/81036791/Comparison_of_the_Dynamic_Behavior_of_Brain_Tissue_and_Two_Model_Materials"><img alt="Research paper thumbnail of Comparison of the Dynamic Behavior of Brain Tissue and Two Model Materials" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/81036791/Comparison_of_the_Dynamic_Behavior_of_Brain_Tissue_and_Two_Model_Materials">Comparison of the Dynamic Behavior of Brain Tissue and Two Model Materials</a></div><div class="wp-workCard_item"><span>SAE Technical Paper Series</span><span>, 1999</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">... Subject Areas: Highways; Research; Safety and Human Factors; I84: Personal Injuries. Last Mod...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">... Subject Areas: Highways; Research; Safety and Human Factors; I84: Personal Injuries. Last Modified: Nov 1 2000 12:00AM. ...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="81036791"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="81036791"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 81036791; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=81036791]").text(description); $(".js-view-count[data-work-id=81036791]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 81036791; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='81036791']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=81036791]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":81036791,"title":"Comparison of the Dynamic Behavior of Brain Tissue and Two Model Materials","translated_title":"","metadata":{"abstract":"... Subject Areas: Highways; Research; Safety and Human Factors; I84: Personal Injuries. Last Modified: Nov 1 2000 12:00AM. ...","publisher":"SAE International","publication_date":{"day":null,"month":null,"year":1999,"errors":{}},"publication_name":"SAE Technical Paper Series"},"translated_abstract":"... Subject Areas: Highways; Research; Safety and Human Factors; I84: Personal Injuries. Last Modified: Nov 1 2000 12:00AM. ...","internal_url":"https://www.academia.edu/81036791/Comparison_of_the_Dynamic_Behavior_of_Brain_Tissue_and_Two_Model_Materials","translated_internal_url":"","created_at":"2022-06-08T13:43:58.777-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":26113865,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Comparison_of_the_Dynamic_Behavior_of_Brain_Tissue_and_Two_Model_Materials","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"... Subject Areas: Highways; Research; Safety and Human Factors; I84: Personal Injuries. Last Modified: Nov 1 2000 12:00AM. ...","owner":{"id":26113865,"first_name":"Gerrit","middle_initials":null,"last_name":"Peters","page_name":"httpwwwtuenl","domain_name":"tue","created_at":"2015-02-11T05:19:07.533-08:00","display_name":"Gerrit Peters","url":"https://tue.academia.edu/httpwwwtuenl","email":"Z3lXTWRla2Q3cnI2ZHlBblc3YzBhZktyeFRtVUFqdmxCUjI4ZWhFZTZzVT0tLU9VWVV0dHlIMVlFRnNHYWQxQzlPK0E9PQ==--497923bfc070c71978df693f7e1fd6716ce3f65f"},"attachments":[],"research_interests":[],"urls":[{"id":21238177,"url":"https://www.sae.org/gsdownload/?prodCd=99SC21"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="81036790"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/81036790/Glass_transition_temperature_versus_structure_of_polyamide_6_A_flash_DSC_study"><img alt="Research paper thumbnail of Glass transition temperature versus structure of polyamide 6: A flash-DSC study" class="work-thumbnail" src="https://attachments.academia-assets.com/87220025/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/81036790/Glass_transition_temperature_versus_structure_of_polyamide_6_A_flash_DSC_study">Glass transition temperature versus structure of polyamide 6: A flash-DSC study</a></div><div class="wp-workCard_item"><span>Thermochimica Acta</span><span>, 2017</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">DOI to the publisher's website. • The final author version and the galley proof are versions of t...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">DOI to the publisher's website. • The final author version and the galley proof are versions of the publication after peer review. • The final published version features the final layout of the paper including the volume, issue and page numbers. Link to publication General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal. If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the "Taverne" license above, please follow below link for the End User Agreement:</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="426ea1326db42cdc54ae860ef7736952" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":87220025,"asset_id":81036790,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/87220025/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="81036790"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="81036790"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 81036790; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=81036790]").text(description); $(".js-view-count[data-work-id=81036790]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 81036790; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='81036790']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "426ea1326db42cdc54ae860ef7736952" } } $('.js-work-strip[data-work-id=81036790]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":81036790,"title":"Glass transition temperature versus structure of polyamide 6: A flash-DSC study","translated_title":"","metadata":{"publisher":"Elsevier BV","ai_title_tag":"Glass Transition Temperature and Structure of Polyamide 6","grobid_abstract":"DOI to the publisher's website. • The final author version and the galley proof are versions of the publication after peer review. • The final published version features the final layout of the paper including the volume, issue and page numbers. Link to publication General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal. If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the \"Taverne\" license above, please follow below link for the End User Agreement:","publication_date":{"day":null,"month":null,"year":2017,"errors":{}},"publication_name":"Thermochimica Acta","grobid_abstract_attachment_id":87220025},"translated_abstract":null,"internal_url":"https://www.academia.edu/81036790/Glass_transition_temperature_versus_structure_of_polyamide_6_A_flash_DSC_study","translated_internal_url":"","created_at":"2022-06-08T13:43:58.584-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":26113865,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":87220025,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/87220025/thumbnails/1.jpg","file_name":"1_s2.0_S0040603117302423_main.pdf","download_url":"https://www.academia.edu/attachments/87220025/download_file","bulk_download_file_name":"Glass_transition_temperature_versus_stru.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/87220025/1_s2.0_S0040603117302423_main-libre.pdf?1654722013=\u0026response-content-disposition=attachment%3B+filename%3DGlass_transition_temperature_versus_stru.pdf\u0026Expires=1742128089\u0026Signature=exgVC1VDTyKZ3cMe2nKo0wtC6gUXelMmdlVLxcvGKzeBOnrwc2qwp7fiLlqXThrh6Kx55O5ZjDZTfP18rVmuROmao-QXNwKzs-WQiIBvUpgz5KgoEsuVUdNqXC~HpV~PiCx87D9-WRN4AG1wR5iVcAYxXlbr4irHulb1S-7QhcEw29dPBngbNk82axHS5Azs6VpjdTIhq4N09HqAA-M3iROCSVHh~PHOUXXEBHd35a35TiOPkKSoS4EjN-ZtTP1dYYRlAIMHeu6S~A7OCgqnAmUcyZW7XTMCGyuUlr4QeFwXebFqLbJa4eiIs4SJmE5ERHizczXdQUEeqZJVaTtG1g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Glass_transition_temperature_versus_structure_of_polyamide_6_A_flash_DSC_study","translated_slug":"","page_count":14,"language":"en","content_type":"Work","summary":"DOI to the publisher's website. • The final author version and the galley proof are versions of the publication after peer review. • The final published version features the final layout of the paper including the volume, issue and page numbers. Link to publication General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal. If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the \"Taverne\" license above, please follow below link for the End User Agreement:","owner":{"id":26113865,"first_name":"Gerrit","middle_initials":null,"last_name":"Peters","page_name":"httpwwwtuenl","domain_name":"tue","created_at":"2015-02-11T05:19:07.533-08:00","display_name":"Gerrit Peters","url":"https://tue.academia.edu/httpwwwtuenl","email":"SHBHU1VuY0hlYXRiWG02Q0pIbEo2aE9kT3lpeEVQWTExWVU3V2NjckJ1cz0tLVZ4cjZtMUltQmZFa1BVS211VUFiekE9PQ==--371d7e9c60128cc3d842c551937927d349236779"},"attachments":[{"id":87220025,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/87220025/thumbnails/1.jpg","file_name":"1_s2.0_S0040603117302423_main.pdf","download_url":"https://www.academia.edu/attachments/87220025/download_file","bulk_download_file_name":"Glass_transition_temperature_versus_stru.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/87220025/1_s2.0_S0040603117302423_main-libre.pdf?1654722013=\u0026response-content-disposition=attachment%3B+filename%3DGlass_transition_temperature_versus_stru.pdf\u0026Expires=1742128089\u0026Signature=exgVC1VDTyKZ3cMe2nKo0wtC6gUXelMmdlVLxcvGKzeBOnrwc2qwp7fiLlqXThrh6Kx55O5ZjDZTfP18rVmuROmao-QXNwKzs-WQiIBvUpgz5KgoEsuVUdNqXC~HpV~PiCx87D9-WRN4AG1wR5iVcAYxXlbr4irHulb1S-7QhcEw29dPBngbNk82axHS5Azs6VpjdTIhq4N09HqAA-M3iROCSVHh~PHOUXXEBHd35a35TiOPkKSoS4EjN-ZtTP1dYYRlAIMHeu6S~A7OCgqnAmUcyZW7XTMCGyuUlr4QeFwXebFqLbJa4eiIs4SJmE5ERHizczXdQUEeqZJVaTtG1g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":524,"name":"Analytical Chemistry","url":"https://www.academia.edu/Documents/in/Analytical_Chemistry"},{"id":897823,"name":"Elsevier","url":"https://www.academia.edu/Documents/in/Elsevier"}],"urls":[{"id":21238176,"url":"https://api.elsevier.com/content/article/PII:S0040603117302423?httpAccept=text/xml"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="81036789"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/81036789/Modeling_Flow_Induced_Crystallization"><img alt="Research paper thumbnail of Modeling Flow-Induced Crystallization" class="work-thumbnail" src="https://attachments.academia-assets.com/87220027/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/81036789/Modeling_Flow_Induced_Crystallization">Modeling Flow-Induced Crystallization</a></div><div class="wp-workCard_item"><span>Advances in Polymer Science</span><span>, 2016</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">A numerical model is presented that describes all aspects of flow-induced crystallization of isot...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">A numerical model is presented that describes all aspects of flow-induced crystallization of isotactic polypropylene at high shear rates and elevated pressures. It incorporates nonlinear viscoelasticity, including viscosity change as a result of formation of oriented fibrillar crystals (shish), compressibility, and nonisothermal process conditions caused by shear heating and heat release as a result of crystallization. In the first part of this chapter, the model is validated with experimental data obtained in a channel flow geometry. Quantitative agreement between experimental results and the numerical model is observed in terms of pressure drop, apparent crystallinity, parent/daughter ratio, Hermans' orientation, and shear layer thickness. In the second part, the focus is on flow-induced crystallization of isotactic polypropylene at elevated pressures, resulting in multiple crystal phases and morphologies. All parameters but one are fixed a priori from the first part of the chapter. One additional parameter, determining the portion of β-crystal spherulites nucleated by flow, is introduced. By doing so, an accurate description of the fraction of β-phase crystals is obtained. The model accurately captures experimental data for fractions of all crystal phases over a wide range of flow conditions (shear rates from 0 to 200 s À1 , pressures from 100 to 1,200 bar, shear temperatures from 130 C to 180 C). Moreover, it is shown that, for high shear rates and pressures, the measured γ-phase fractions can only be matched if γ-crystals can nucleate directly on shish.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="1b1219e2c9d68b78a50284c863fe3ae8" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":87220027,"asset_id":81036789,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/87220027/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="81036789"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="81036789"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 81036789; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=81036789]").text(description); $(".js-view-count[data-work-id=81036789]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 81036789; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='81036789']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "1b1219e2c9d68b78a50284c863fe3ae8" } } $('.js-work-strip[data-work-id=81036789]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":81036789,"title":"Modeling Flow-Induced Crystallization","translated_title":"","metadata":{"publisher":"Springer International Publishing","grobid_abstract":"A numerical model is presented that describes all aspects of flow-induced crystallization of isotactic polypropylene at high shear rates and elevated pressures. It incorporates nonlinear viscoelasticity, including viscosity change as a result of formation of oriented fibrillar crystals (shish), compressibility, and nonisothermal process conditions caused by shear heating and heat release as a result of crystallization. In the first part of this chapter, the model is validated with experimental data obtained in a channel flow geometry. Quantitative agreement between experimental results and the numerical model is observed in terms of pressure drop, apparent crystallinity, parent/daughter ratio, Hermans' orientation, and shear layer thickness. In the second part, the focus is on flow-induced crystallization of isotactic polypropylene at elevated pressures, resulting in multiple crystal phases and morphologies. All parameters but one are fixed a priori from the first part of the chapter. One additional parameter, determining the portion of β-crystal spherulites nucleated by flow, is introduced. By doing so, an accurate description of the fraction of β-phase crystals is obtained. The model accurately captures experimental data for fractions of all crystal phases over a wide range of flow conditions (shear rates from 0 to 200 s À1 , pressures from 100 to 1,200 bar, shear temperatures from 130 C to 180 C). Moreover, it is shown that, for high shear rates and pressures, the measured γ-phase fractions can only be matched if γ-crystals can nucleate directly on shish.","publication_date":{"day":null,"month":null,"year":2016,"errors":{}},"publication_name":"Advances in Polymer Science","grobid_abstract_attachment_id":87220027},"translated_abstract":null,"internal_url":"https://www.academia.edu/81036789/Modeling_Flow_Induced_Crystallization","translated_internal_url":"","created_at":"2022-06-08T13:43:58.413-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":26113865,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":87220027,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/87220027/thumbnails/1.jpg","file_name":"Roozemond_Chapter_APS2016.pdf","download_url":"https://www.academia.edu/attachments/87220027/download_file","bulk_download_file_name":"Modeling_Flow_Induced_Crystallization.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/87220027/Roozemond_Chapter_APS2016-libre.pdf?1654722018=\u0026response-content-disposition=attachment%3B+filename%3DModeling_Flow_Induced_Crystallization.pdf\u0026Expires=1742128089\u0026Signature=Ttc3YWAOponrxAbierRQArAgnq~aO~WdNVyj9WNKYcRRwvUKRvMIISylkujEHq6SH3u5hXZIgjSt-SWJ6I7xRBGJ59KXI1OyTUy9TVUtSTgUD7DIUgdrKjvDhVsziOI9f-krXWUxKHZ5l0xL2kWv1WuK-PNMFaSJo-sGZUluGAAUcBO47l3O-3d0UyoEmvo5138gjTRelFfYE9-BrzMIaPFkh2jSknOk25xM7bc~CFLZuSloWL~gGHDoXTYaBagzhY7KxUTgjVroWQoMjL9RSe3KmXzN9pasAt18lfIQ8vwYKZhslXuFl4pAwMujBFuunzMEk9DjLfeXMMetX79B8Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Modeling_Flow_Induced_Crystallization","translated_slug":"","page_count":53,"language":"en","content_type":"Work","summary":"A numerical model is presented that describes all aspects of flow-induced crystallization of isotactic polypropylene at high shear rates and elevated pressures. It incorporates nonlinear viscoelasticity, including viscosity change as a result of formation of oriented fibrillar crystals (shish), compressibility, and nonisothermal process conditions caused by shear heating and heat release as a result of crystallization. In the first part of this chapter, the model is validated with experimental data obtained in a channel flow geometry. Quantitative agreement between experimental results and the numerical model is observed in terms of pressure drop, apparent crystallinity, parent/daughter ratio, Hermans' orientation, and shear layer thickness. In the second part, the focus is on flow-induced crystallization of isotactic polypropylene at elevated pressures, resulting in multiple crystal phases and morphologies. All parameters but one are fixed a priori from the first part of the chapter. One additional parameter, determining the portion of β-crystal spherulites nucleated by flow, is introduced. By doing so, an accurate description of the fraction of β-phase crystals is obtained. The model accurately captures experimental data for fractions of all crystal phases over a wide range of flow conditions (shear rates from 0 to 200 s À1 , pressures from 100 to 1,200 bar, shear temperatures from 130 C to 180 C). Moreover, it is shown that, for high shear rates and pressures, the measured γ-phase fractions can only be matched if γ-crystals can nucleate directly on shish.","owner":{"id":26113865,"first_name":"Gerrit","middle_initials":null,"last_name":"Peters","page_name":"httpwwwtuenl","domain_name":"tue","created_at":"2015-02-11T05:19:07.533-08:00","display_name":"Gerrit Peters","url":"https://tue.academia.edu/httpwwwtuenl","email":"emlObkU5OUFjcThhV1pkN0dSMmxZcTcwVHo1WHhZaEJUV09JcWM4VXJtdz0tLVFUL0xNcEJkWktJNDVrbnU2dnBQMFE9PQ==--5efe7ca63f41e2d7f1e918ea47ec2db5863fdd75"},"attachments":[{"id":87220027,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/87220027/thumbnails/1.jpg","file_name":"Roozemond_Chapter_APS2016.pdf","download_url":"https://www.academia.edu/attachments/87220027/download_file","bulk_download_file_name":"Modeling_Flow_Induced_Crystallization.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/87220027/Roozemond_Chapter_APS2016-libre.pdf?1654722018=\u0026response-content-disposition=attachment%3B+filename%3DModeling_Flow_Induced_Crystallization.pdf\u0026Expires=1742128089\u0026Signature=Ttc3YWAOponrxAbierRQArAgnq~aO~WdNVyj9WNKYcRRwvUKRvMIISylkujEHq6SH3u5hXZIgjSt-SWJ6I7xRBGJ59KXI1OyTUy9TVUtSTgUD7DIUgdrKjvDhVsziOI9f-krXWUxKHZ5l0xL2kWv1WuK-PNMFaSJo-sGZUluGAAUcBO47l3O-3d0UyoEmvo5138gjTRelFfYE9-BrzMIaPFkh2jSknOk25xM7bc~CFLZuSloWL~gGHDoXTYaBagzhY7KxUTgjVroWQoMjL9RSe3KmXzN9pasAt18lfIQ8vwYKZhslXuFl4pAwMujBFuunzMEk9DjLfeXMMetX79B8Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":56,"name":"Materials Engineering","url":"https://www.academia.edu/Documents/in/Materials_Engineering"},{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":531,"name":"Organic Chemistry","url":"https://www.academia.edu/Documents/in/Organic_Chemistry"},{"id":2720,"name":"Polymer science","url":"https://www.academia.edu/Documents/in/Polymer_science"},{"id":12597,"name":"Crystallization","url":"https://www.academia.edu/Documents/in/Crystallization"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="81036788"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/81036788/Nucleation_Induced_by_Short_Term_Pressurization_of_an_Undercooled_Isotactic_Polypropylene_Melt"><img alt="Research paper thumbnail of Nucleation Induced by ”Short-Term Pressurization” of an Undercooled Isotactic Polypropylene Melt" class="work-thumbnail" src="https://attachments.academia-assets.com/87220026/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/81036788/Nucleation_Induced_by_Short_Term_Pressurization_of_an_Undercooled_Isotactic_Polypropylene_Melt">Nucleation Induced by ”Short-Term Pressurization” of an Undercooled Isotactic Polypropylene Melt</a></div><div class="wp-workCard_item"><span>European Polymer Journal</span><span>, 2016</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Nucleation of semi-crystalline polymers is very sensitive to perturbations of the melt state. In ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Nucleation of semi-crystalline polymers is very sensitive to perturbations of the melt state. In contrast to the case of flow, the influence of pressure changes on nucleation has been almost neglected so far. In this work we explore the effect of the pressure history on isotactic polypropylene crystallization by applying a brief step-like increase of pressure to the undercooled melt. Using dilatometry and synchrotron X-ray diffraction, an enhancement of crystallization kinetics proportional to the magnitude of the pressure pulse is revealed. This acceleration is linked to an increase of the number of active nuclei after the short term pressurization, as confirmed by ex-situ optical microscopy observations. Up to an order of magnitude increase in nucleation density is found, for pressure pulses around 600-700 bar. The pressure-induced nucleating effect is interpreted in the light of classical nucleation theory; although a non-classical "barrier-less" nucleation mechanism is also envisaged.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="b1569ecd488a63b51817b64dcf01113c" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":87220026,"asset_id":81036788,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/87220026/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="81036788"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="81036788"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 81036788; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=81036788]").text(description); $(".js-view-count[data-work-id=81036788]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 81036788; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='81036788']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "b1569ecd488a63b51817b64dcf01113c" } } $('.js-work-strip[data-work-id=81036788]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":81036788,"title":"Nucleation Induced by ”Short-Term Pressurization” of an Undercooled Isotactic Polypropylene Melt","translated_title":"","metadata":{"publisher":"Elsevier BV","ai_title_tag":"Pressure-Induced Nucleation in Isotactic Polypropylene","grobid_abstract":"Nucleation of semi-crystalline polymers is very sensitive to perturbations of the melt state. In contrast to the case of flow, the influence of pressure changes on nucleation has been almost neglected so far. In this work we explore the effect of the pressure history on isotactic polypropylene crystallization by applying a brief step-like increase of pressure to the undercooled melt. Using dilatometry and synchrotron X-ray diffraction, an enhancement of crystallization kinetics proportional to the magnitude of the pressure pulse is revealed. This acceleration is linked to an increase of the number of active nuclei after the short term pressurization, as confirmed by ex-situ optical microscopy observations. Up to an order of magnitude increase in nucleation density is found, for pressure pulses around 600-700 bar. The pressure-induced nucleating effect is interpreted in the light of classical nucleation theory; although a non-classical \"barrier-less\" nucleation mechanism is also envisaged.","publication_date":{"day":null,"month":null,"year":2016,"errors":{}},"publication_name":"European Polymer Journal","grobid_abstract_attachment_id":87220026},"translated_abstract":null,"internal_url":"https://www.academia.edu/81036788/Nucleation_Induced_by_Short_Term_Pressurization_of_an_Undercooled_Isotactic_Polypropylene_Melt","translated_internal_url":"","created_at":"2022-06-08T13:43:58.271-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":26113865,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":87220026,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/87220026/thumbnails/1.jpg","file_name":"pagination_EPJ_7592-proof.pdf","download_url":"https://www.academia.edu/attachments/87220026/download_file","bulk_download_file_name":"Nucleation_Induced_by_Short_Term_Pressur.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/87220026/pagination_EPJ_7592-proof-libre.pdf?1654722013=\u0026response-content-disposition=attachment%3B+filename%3DNucleation_Induced_by_Short_Term_Pressur.pdf\u0026Expires=1742128089\u0026Signature=f7V9ytzR0Io1l9abtknkQNjks7bmyLSN3hqoqzP7WylEIRx9SX48iDvovqOUefZYauGQqC9xjFGc9JEo4d0IdeztP5CCPQC1NA76eTEOB~0VbnX~cCUCdFHN2tnhV0Ag899OmDEM5wuDsMoynew4pJ8I5DafKOYUO0VHZUMVu2bd8yyBCdDVB5uO9nZCgq5Ckjva9WhSJ~1-vh3prcyjPKF5BclnnfIjYCRLsPJNJDUpYdXqNI7IkizVVRfftDeCJLaphe~U6N18WmAIUjXRv8EJ0r78q7gbFRWmG~Vp4MTvIpuhQ0lA7pffE5CulRjV7p7TfmrZcYpHEm-c7O8bIw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Nucleation_Induced_by_Short_Term_Pressurization_of_an_Undercooled_Isotactic_Polypropylene_Melt","translated_slug":"","page_count":11,"language":"en","content_type":"Work","summary":"Nucleation of semi-crystalline polymers is very sensitive to perturbations of the melt state. In contrast to the case of flow, the influence of pressure changes on nucleation has been almost neglected so far. In this work we explore the effect of the pressure history on isotactic polypropylene crystallization by applying a brief step-like increase of pressure to the undercooled melt. Using dilatometry and synchrotron X-ray diffraction, an enhancement of crystallization kinetics proportional to the magnitude of the pressure pulse is revealed. This acceleration is linked to an increase of the number of active nuclei after the short term pressurization, as confirmed by ex-situ optical microscopy observations. Up to an order of magnitude increase in nucleation density is found, for pressure pulses around 600-700 bar. The pressure-induced nucleating effect is interpreted in the light of classical nucleation theory; although a non-classical \"barrier-less\" nucleation mechanism is also envisaged.","owner":{"id":26113865,"first_name":"Gerrit","middle_initials":null,"last_name":"Peters","page_name":"httpwwwtuenl","domain_name":"tue","created_at":"2015-02-11T05:19:07.533-08:00","display_name":"Gerrit Peters","url":"https://tue.academia.edu/httpwwwtuenl","email":"R0RGNzlIOU1YZjgvMEtJK0xnN25PN054UVpQQ1lYN1dTeVI1R3RTOWtacz0tLUhjWDRSTWJSNkZjK3FJYVhtdXNKU2c9PQ==--c7fe6748175034fe1b6a9050e69e758ca419a3c9"},"attachments":[{"id":87220026,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/87220026/thumbnails/1.jpg","file_name":"pagination_EPJ_7592-proof.pdf","download_url":"https://www.academia.edu/attachments/87220026/download_file","bulk_download_file_name":"Nucleation_Induced_by_Short_Term_Pressur.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/87220026/pagination_EPJ_7592-proof-libre.pdf?1654722013=\u0026response-content-disposition=attachment%3B+filename%3DNucleation_Induced_by_Short_Term_Pressur.pdf\u0026Expires=1742128089\u0026Signature=f7V9ytzR0Io1l9abtknkQNjks7bmyLSN3hqoqzP7WylEIRx9SX48iDvovqOUefZYauGQqC9xjFGc9JEo4d0IdeztP5CCPQC1NA76eTEOB~0VbnX~cCUCdFHN2tnhV0Ag899OmDEM5wuDsMoynew4pJ8I5DafKOYUO0VHZUMVu2bd8yyBCdDVB5uO9nZCgq5Ckjva9WhSJ~1-vh3prcyjPKF5BclnnfIjYCRLsPJNJDUpYdXqNI7IkizVVRfftDeCJLaphe~U6N18WmAIUjXRv8EJ0r78q7gbFRWmG~Vp4MTvIpuhQ0lA7pffE5CulRjV7p7TfmrZcYpHEm-c7O8bIw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":56,"name":"Materials Engineering","url":"https://www.academia.edu/Documents/in/Materials_Engineering"},{"id":72,"name":"Chemical Engineering","url":"https://www.academia.edu/Documents/in/Chemical_Engineering"},{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":531,"name":"Organic Chemistry","url":"https://www.academia.edu/Documents/in/Organic_Chemistry"},{"id":51531,"name":"Pergamon","url":"https://www.academia.edu/Documents/in/Pergamon"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> </div><div class="profile--tab_content_container js-tab-pane tab-pane" data-section-id="2550982" id="papers"><div class="js-work-strip profile--work_container" data-work-id="49869415"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/49869415/Continuous_Cooling_Curves_Diagrams_of_Propene_Ethylene_Random_Copolymers_The_Role_of_Ethylene_Counits_in_Mesophase_Development"><img alt="Research paper thumbnail of Continuous Cooling Curves Diagrams of Propene/Ethylene Random Copolymers. The Role of Ethylene Counits in Mesophase Development" class="work-thumbnail" src="https://attachments.academia-assets.com/68067517/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/49869415/Continuous_Cooling_Curves_Diagrams_of_Propene_Ethylene_Random_Copolymers_The_Role_of_Ethylene_Counits_in_Mesophase_Development">Continuous Cooling Curves Diagrams of Propene/Ethylene Random Copolymers. The Role of Ethylene Counits in Mesophase Development</a></div><div class="wp-workCard_item wp-workCard--coauthors"><span>by </span><span><a class="" data-click-track="profile-work-strip-authors" rel="nofollow" href="https://independent.academia.edu/GiancarloAlfonso">Giancarlo Alfonso</a> and <a class="" data-click-track="profile-work-strip-authors" href="https://tue.academia.edu/httpwwwtuenl">Gerrit Peters</a></span></div><div class="wp-workCard_item"><span>Macromolecules</span><span>, 2010</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">A simple method to investigate polymer crystallization during fast cooling, based on in situ temp...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">A simple method to investigate polymer crystallization during fast cooling, based on in situ temperature acquisition and ex-situ structural characterization, is proposed. The approach enables one to obtain the continuous cooling curve (CCC) diagrams, widely used in metallurgy but seldom adopted for semicrystalline polymers. This method is here exploited to gain new insights on polymorphic behavior of quenched polypropylene and its copolymers with ethylene. Experimental CCC diagrams, covering a wide range of crystallization temperatures in the domains of monoclinic structure and mesophase, are obtained for the first time. The role of counits in affecting the development of the mesophase upon fast cooling is assessed: the critical cooling rate above which a predominant fraction of mesomorphic form is generated significantly decreases with increasing comonomer concentration. This is due to the remarkable hindrance of ethylene counits on the crystallization kinetics of the R-form, which indirectly favors the development of the less affected mesophase. We expect that this concept can be extended to any kind of defects that disturbs the structuring of the monoclinic phase.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="234b4b5fc5aad5731fc1ffe0a13d16ab" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":68067517,"asset_id":49869415,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/68067517/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="49869415"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="49869415"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 49869415; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=49869415]").text(description); $(".js-view-count[data-work-id=49869415]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 49869415; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='49869415']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "234b4b5fc5aad5731fc1ffe0a13d16ab" } } $('.js-work-strip[data-work-id=49869415]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":49869415,"title":"Continuous Cooling Curves Diagrams of Propene/Ethylene Random Copolymers. The Role of Ethylene Counits in Mesophase Development","translated_title":"","metadata":{"publisher":"American Chemical Society (ACS)","grobid_abstract":"A simple method to investigate polymer crystallization during fast cooling, based on in situ temperature acquisition and ex-situ structural characterization, is proposed. The approach enables one to obtain the continuous cooling curve (CCC) diagrams, widely used in metallurgy but seldom adopted for semicrystalline polymers. This method is here exploited to gain new insights on polymorphic behavior of quenched polypropylene and its copolymers with ethylene. Experimental CCC diagrams, covering a wide range of crystallization temperatures in the domains of monoclinic structure and mesophase, are obtained for the first time. The role of counits in affecting the development of the mesophase upon fast cooling is assessed: the critical cooling rate above which a predominant fraction of mesomorphic form is generated significantly decreases with increasing comonomer concentration. This is due to the remarkable hindrance of ethylene counits on the crystallization kinetics of the R-form, which indirectly favors the development of the less affected mesophase. We expect that this concept can be extended to any kind of defects that disturbs the structuring of the monoclinic phase.","publication_date":{"day":null,"month":null,"year":2010,"errors":{}},"publication_name":"Macromolecules","grobid_abstract_attachment_id":68067517},"translated_abstract":null,"internal_url":"https://www.academia.edu/49869415/Continuous_Cooling_Curves_Diagrams_of_Propene_Ethylene_Random_Copolymers_The_Role_of_Ethylene_Counits_in_Mesophase_Development","translated_internal_url":"","created_at":"2021-07-13T11:39:43.403-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":25253637,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":39268454,"work_id":49869415,"tagging_user_id":25253637,"tagged_user_id":null,"co_author_invite_id":7735116,"email":"c***s@libero.it","display_order":0,"name":"Dario Cavallo","title":"Continuous Cooling Curves Diagrams of Propene/Ethylene Random Copolymers. The Role of Ethylene Counits in Mesophase Development"},{"id":39268455,"work_id":49869415,"tagging_user_id":25253637,"tagged_user_id":null,"co_author_invite_id":1320736,"email":"a***i@ge.ismac.cnr.it","display_order":4194304,"name":"Fiorenza Azzurri","title":"Continuous Cooling Curves Diagrams of Propene/Ethylene Random Copolymers. The Role of Ethylene Counits in Mesophase Development"},{"id":39268456,"work_id":49869415,"tagging_user_id":25253637,"tagged_user_id":26113865,"co_author_invite_id":null,"email":"g***s@tue.nl","affiliation":"Eindhoven University of Technology","display_order":6291456,"name":"Gerrit Peters","title":"Continuous Cooling Curves Diagrams of Propene/Ethylene Random Copolymers. The Role of Ethylene Counits in Mesophase Development"}],"downloadable_attachments":[{"id":68067517,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/68067517/thumbnails/1.jpg","file_name":"11380.pdf","download_url":"https://www.academia.edu/attachments/68067517/download_file","bulk_download_file_name":"Continuous_Cooling_Curves_Diagrams_of_Pr.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/68067517/11380-libre.pdf?1626216137=\u0026response-content-disposition=attachment%3B+filename%3DContinuous_Cooling_Curves_Diagrams_of_Pr.pdf\u0026Expires=1742128087\u0026Signature=Ch4dfoBfng7-kKUpgk6IXs2huLCqsjwYhDaF6XRD1dRF1y-JxZuJ8ugcdNl3ilj70g9VJ-PRSpbDdA05J9bR1QM7RlaNvehKAkfEMdNPrmekmBUsgeu9tVVvBcsOOGTnc3tJ3Cx8XFZTqzixpksiD3bVGQAR3mSMU0PtiilNvLuyQQs18b7a7AkEsTfXCjNnKrp6XPGmnkVgmjrpxNxSy1tWqICLOUoD0FGcaNr0E6CWeiK1Cv--w3bwLTM2pBrilF9UOp69O9usw9O7nl-qCSjXNJ9LE1vrDIA6TyMVn5PjIoSR73oQX1TI6hhfWP73oXQwN9bMGiO3o5MU-gk1Qw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Continuous_Cooling_Curves_Diagrams_of_Propene_Ethylene_Random_Copolymers_The_Role_of_Ethylene_Counits_in_Mesophase_Development","translated_slug":"","page_count":7,"language":"en","content_type":"Work","summary":"A simple method to investigate polymer crystallization during fast cooling, based on in situ temperature acquisition and ex-situ structural characterization, is proposed. The approach enables one to obtain the continuous cooling curve (CCC) diagrams, widely used in metallurgy but seldom adopted for semicrystalline polymers. This method is here exploited to gain new insights on polymorphic behavior of quenched polypropylene and its copolymers with ethylene. Experimental CCC diagrams, covering a wide range of crystallization temperatures in the domains of monoclinic structure and mesophase, are obtained for the first time. The role of counits in affecting the development of the mesophase upon fast cooling is assessed: the critical cooling rate above which a predominant fraction of mesomorphic form is generated significantly decreases with increasing comonomer concentration. This is due to the remarkable hindrance of ethylene counits on the crystallization kinetics of the R-form, which indirectly favors the development of the less affected mesophase. We expect that this concept can be extended to any kind of defects that disturbs the structuring of the monoclinic phase.","owner":{"id":25253637,"first_name":"Giancarlo","middle_initials":null,"last_name":"Alfonso","page_name":"GiancarloAlfonso","domain_name":"independent","created_at":"2015-01-23T19:30:05.665-08:00","display_name":"Giancarlo Alfonso","url":"https://independent.academia.edu/GiancarloAlfonso","email":"alN5MnVUY1ZPdCtWSEl1QSttajAxbW9lL1F2TFQ5OWpDUG9sTU00S0dIM0Y5RkhUSXVvVzlTNkdVd3h2K0s3OS0tSU1ETVYxSGVoZGJvbmdzMHlhRHB5QT09--a7ac0750528e5f14fe7232dadfac9236331d1202"},"attachments":[{"id":68067517,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/68067517/thumbnails/1.jpg","file_name":"11380.pdf","download_url":"https://www.academia.edu/attachments/68067517/download_file","bulk_download_file_name":"Continuous_Cooling_Curves_Diagrams_of_Pr.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/68067517/11380-libre.pdf?1626216137=\u0026response-content-disposition=attachment%3B+filename%3DContinuous_Cooling_Curves_Diagrams_of_Pr.pdf\u0026Expires=1742128087\u0026Signature=Ch4dfoBfng7-kKUpgk6IXs2huLCqsjwYhDaF6XRD1dRF1y-JxZuJ8ugcdNl3ilj70g9VJ-PRSpbDdA05J9bR1QM7RlaNvehKAkfEMdNPrmekmBUsgeu9tVVvBcsOOGTnc3tJ3Cx8XFZTqzixpksiD3bVGQAR3mSMU0PtiilNvLuyQQs18b7a7AkEsTfXCjNnKrp6XPGmnkVgmjrpxNxSy1tWqICLOUoD0FGcaNr0E6CWeiK1Cv--w3bwLTM2pBrilF9UOp69O9usw9O7nl-qCSjXNJ9LE1vrDIA6TyMVn5PjIoSR73oQX1TI6hhfWP73oXQwN9bMGiO3o5MU-gk1Qw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":3855,"name":"Polymorphism","url":"https://www.academia.edu/Documents/in/Polymorphism"},{"id":147636,"name":"Cooling Rate","url":"https://www.academia.edu/Documents/in/Cooling_Rate"},{"id":168695,"name":"Polypropylene","url":"https://www.academia.edu/Documents/in/Polypropylene"},{"id":168760,"name":"Macromolecules","url":"https://www.academia.edu/Documents/in/Macromolecules"},{"id":260118,"name":"CHEMICAL SCIENCES","url":"https://www.academia.edu/Documents/in/CHEMICAL_SCIENCES"},{"id":677739,"name":"Calorimetry","url":"https://www.academia.edu/Documents/in/Calorimetry"},{"id":837160,"name":"Crystallization Kinetics","url":"https://www.academia.edu/Documents/in/Crystallization_Kinetics"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="88495336"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/88495336/Design_and_numerical_implementation_of_a_3_D_non_linear_viscoelastic_constitutive_model_for_brain_tissue_during_impact"><img alt="Research paper thumbnail of Design and numerical implementation of a 3-D non-linear viscoelastic constitutive model for brain tissue during impact" class="work-thumbnail" src="https://attachments.academia-assets.com/92459307/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/88495336/Design_and_numerical_implementation_of_a_3_D_non_linear_viscoelastic_constitutive_model_for_brain_tissue_during_impact">Design and numerical implementation of a 3-D non-linear viscoelastic constitutive model for brain tissue during impact</a></div><div class="wp-workCard_item wp-workCard--coauthors"><span>by </span><span><a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/DaveBrands">Dave Brands</a> and <a class="" data-click-track="profile-work-strip-authors" href="https://tue.academia.edu/httpwwwtuenl">Gerrit Peters</a></span></div><div class="wp-workCard_item"><span>Journal of Biomechanics</span><span>, 2004</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Finite Element (FE) head models are often used to understand mechanical response of the head and ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Finite Element (FE) head models are often used to understand mechanical response of the head and its contents during impact loading in the head. Current FE models do not account for non-linear viscoelastic material behavior of brain tissue. We developed a new non-linear viscoelastic material model for brain tissue and implemented it in an explicit FE code. To obtain sufficient numerical accuracy for modeling the nearly incompressible brain tissue, deviatoric and volumetric stress contributions are separated. Deviatoric stress is modeled in a non-linear viscoelastic differential form. Volumetric behavior is assumed linearly elastic. Linear viscoelastic material parameters were derived from published data on oscillatory experiments, and from ultrasonic experiments. Additionally, non-linear parameters were derived from stress relaxation (SR) experiments at shear strains up to 20%. The model was tested by simulating the transient phase in the SR experiments not used in parameter determination (strains up to 20%, strain rates up to 8 s À1). Both time-and strain-dependent behavior were predicted accurately ðR 2 > 0:96Þ for strain and strain rates applied. However, the stress was overestimated systematically by approximately 31% independent of strain(rate) applied. This is probably caused by limitations of the experimental data at hand.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="9eb4d06b64c12189f4ac1358e90b8011" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":92459307,"asset_id":88495336,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/92459307/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="88495336"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="88495336"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 88495336; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=88495336]").text(description); $(".js-view-count[data-work-id=88495336]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 88495336; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='88495336']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "9eb4d06b64c12189f4ac1358e90b8011" } } $('.js-work-strip[data-work-id=88495336]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":88495336,"title":"Design and numerical implementation of a 3-D non-linear viscoelastic constitutive model for brain tissue during impact","translated_title":"","metadata":{"publisher":"Elsevier BV","grobid_abstract":"Finite Element (FE) head models are often used to understand mechanical response of the head and its contents during impact loading in the head. Current FE models do not account for non-linear viscoelastic material behavior of brain tissue. We developed a new non-linear viscoelastic material model for brain tissue and implemented it in an explicit FE code. To obtain sufficient numerical accuracy for modeling the nearly incompressible brain tissue, deviatoric and volumetric stress contributions are separated. Deviatoric stress is modeled in a non-linear viscoelastic differential form. Volumetric behavior is assumed linearly elastic. Linear viscoelastic material parameters were derived from published data on oscillatory experiments, and from ultrasonic experiments. Additionally, non-linear parameters were derived from stress relaxation (SR) experiments at shear strains up to 20%. The model was tested by simulating the transient phase in the SR experiments not used in parameter determination (strains up to 20%, strain rates up to 8 s À1). Both time-and strain-dependent behavior were predicted accurately ðR 2 \u003e 0:96Þ for strain and strain rates applied. However, the stress was overestimated systematically by approximately 31% independent of strain(rate) applied. This is probably caused by limitations of the experimental data at hand.","publication_date":{"day":null,"month":null,"year":2004,"errors":{}},"publication_name":"Journal of Biomechanics","grobid_abstract_attachment_id":92459307},"translated_abstract":null,"internal_url":"https://www.academia.edu/88495336/Design_and_numerical_implementation_of_a_3_D_non_linear_viscoelastic_constitutive_model_for_brain_tissue_during_impact","translated_internal_url":"","created_at":"2022-10-14T21:24:41.875-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":44719292,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":38991127,"work_id":88495336,"tagging_user_id":44719292,"tagged_user_id":38199334,"co_author_invite_id":null,"email":"p***d@tue.nl","display_order":0,"name":"P. Bovendeerd","title":"Design and numerical implementation of a 3-D non-linear viscoelastic constitutive model for brain tissue during impact"},{"id":38991128,"work_id":88495336,"tagging_user_id":44719292,"tagged_user_id":26113865,"co_author_invite_id":null,"email":"g***s@tue.nl","affiliation":"Eindhoven University of Technology","display_order":4194304,"name":"Gerrit Peters","title":"Design and numerical implementation of a 3-D non-linear viscoelastic constitutive model for brain tissue during impact"}],"downloadable_attachments":[{"id":92459307,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/92459307/thumbnails/1.jpg","file_name":"3124.pdf","download_url":"https://www.academia.edu/attachments/92459307/download_file","bulk_download_file_name":"Design_and_numerical_implementation_of_a.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/92459307/3124-libre.pdf?1665810039=\u0026response-content-disposition=attachment%3B+filename%3DDesign_and_numerical_implementation_of_a.pdf\u0026Expires=1742128088\u0026Signature=QzK3f2H~Wiz6Ufmrz6GgKXSXsjRBeyxp1HOytexZLMIFVtDz~pWhepkpraZyLJ-8f32gazIZ32wEYfBfY~lxBk2kAT5HGJkMQ~bSjpav~vFVIM0MgIj5IbvXDwkow0hp4SCNMX7PQyT3o5orX6VAWDl0D6cjbmfGJ5TMg1BycFKtHsiq13BBrdXGzRcyMOBTWiowN2RN2ZuHS8GWcvl8JeW6TS~vKjHGsHwK4xr8jBXED2KIZ~BFvMUm29CAm5K2IEFmywiHvlmqtz7pkuD3eUvOXYr21clO8xihTBdXG2ffu5ivI0lqjDViY172J4COias2lXDuQdoo-m4RmqOCVA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Design_and_numerical_implementation_of_a_3_D_non_linear_viscoelastic_constitutive_model_for_brain_tissue_during_impact","translated_slug":"","page_count":8,"language":"en","content_type":"Work","summary":"Finite Element (FE) head models are often used to understand mechanical response of the head and its contents during impact loading in the head. Current FE models do not account for non-linear viscoelastic material behavior of brain tissue. We developed a new non-linear viscoelastic material model for brain tissue and implemented it in an explicit FE code. To obtain sufficient numerical accuracy for modeling the nearly incompressible brain tissue, deviatoric and volumetric stress contributions are separated. Deviatoric stress is modeled in a non-linear viscoelastic differential form. Volumetric behavior is assumed linearly elastic. Linear viscoelastic material parameters were derived from published data on oscillatory experiments, and from ultrasonic experiments. Additionally, non-linear parameters were derived from stress relaxation (SR) experiments at shear strains up to 20%. The model was tested by simulating the transient phase in the SR experiments not used in parameter determination (strains up to 20%, strain rates up to 8 s À1). Both time-and strain-dependent behavior were predicted accurately ðR 2 \u003e 0:96Þ for strain and strain rates applied. However, the stress was overestimated systematically by approximately 31% independent of strain(rate) applied. This is probably caused by limitations of the experimental data at hand.","owner":{"id":44719292,"first_name":"Dave","middle_initials":null,"last_name":"Brands","page_name":"DaveBrands","domain_name":"independent","created_at":"2016-03-08T12:33:38.823-08:00","display_name":"Dave Brands","url":"https://independent.academia.edu/DaveBrands","email":"QmsreFhsNitLdGZVbEdrVGZDMXpESkFPSDUxUlhaZEs0WVhlbSs5MXNiVT0tLUNrelRDbEp4WG1oYjZNeWF4Q0tFaWc9PQ==--33e7f56966dae4cf09a0ff1a62a38d5d6393ab20"},"attachments":[{"id":92459307,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/92459307/thumbnails/1.jpg","file_name":"3124.pdf","download_url":"https://www.academia.edu/attachments/92459307/download_file","bulk_download_file_name":"Design_and_numerical_implementation_of_a.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/92459307/3124-libre.pdf?1665810039=\u0026response-content-disposition=attachment%3B+filename%3DDesign_and_numerical_implementation_of_a.pdf\u0026Expires=1742128088\u0026Signature=QzK3f2H~Wiz6Ufmrz6GgKXSXsjRBeyxp1HOytexZLMIFVtDz~pWhepkpraZyLJ-8f32gazIZ32wEYfBfY~lxBk2kAT5HGJkMQ~bSjpav~vFVIM0MgIj5IbvXDwkow0hp4SCNMX7PQyT3o5orX6VAWDl0D6cjbmfGJ5TMg1BycFKtHsiq13BBrdXGzRcyMOBTWiowN2RN2ZuHS8GWcvl8JeW6TS~vKjHGsHwK4xr8jBXED2KIZ~BFvMUm29CAm5K2IEFmywiHvlmqtz7pkuD3eUvOXYr21clO8xihTBdXG2ffu5ivI0lqjDViY172J4COias2lXDuQdoo-m4RmqOCVA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":60,"name":"Mechanical Engineering","url":"https://www.academia.edu/Documents/in/Mechanical_Engineering"},{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":512,"name":"Mechanics","url":"https://www.academia.edu/Documents/in/Mechanics"},{"id":1131,"name":"Biomedical Engineering","url":"https://www.academia.edu/Documents/in/Biomedical_Engineering"},{"id":3132,"name":"Biomechanics","url":"https://www.academia.edu/Documents/in/Biomechanics"},{"id":8183,"name":"Linear Elasticity","url":"https://www.academia.edu/Documents/in/Linear_Elasticity"},{"id":12147,"name":"Finite element method","url":"https://www.academia.edu/Documents/in/Finite_element_method"},{"id":23042,"name":"Finite Element","url":"https://www.academia.edu/Documents/in/Finite_Element"},{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"},{"id":48904,"name":"Elasticity","url":"https://www.academia.edu/Documents/in/Elasticity"},{"id":51590,"name":"Finite Element Modeling","url":"https://www.academia.edu/Documents/in/Finite_Element_Modeling"},{"id":61474,"name":"Brain","url":"https://www.academia.edu/Documents/in/Brain"},{"id":350931,"name":"Mechanical Stress","url":"https://www.academia.edu/Documents/in/Mechanical_Stress"},{"id":386557,"name":"Finite Element Model","url":"https://www.academia.edu/Documents/in/Finite_Element_Model"},{"id":593682,"name":"Constitutive model","url":"https://www.academia.edu/Documents/in/Constitutive_model"},{"id":1109955,"name":"Material Model","url":"https://www.academia.edu/Documents/in/Material_Model"},{"id":1120502,"name":"Experimental Data","url":"https://www.academia.edu/Documents/in/Experimental_Data"},{"id":1231330,"name":"Constitutive Equation","url":"https://www.academia.edu/Documents/in/Constitutive_Equation"},{"id":2450733,"name":"Brain injuries","url":"https://www.academia.edu/Documents/in/Brain_injuries"}],"urls":[{"id":24775629,"url":"https://api.elsevier.com/content/article/PII:S0021929003002434?httpAccept=text/xml"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="82787890"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/82787890/Comparison_of_the_dynamic_behaviour_of_brain_tissue_and_two_model_materials"><img alt="Research paper thumbnail of Comparison of the dynamic behaviour of brain tissue and two model materials" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/82787890/Comparison_of_the_dynamic_behaviour_of_brain_tissue_and_two_model_materials">Comparison of the dynamic behaviour of brain tissue and two model materials</a></div><div class="wp-workCard_item wp-workCard--coauthors"><span>by </span><span><a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/DaveBrands">Dave Brands</a> and <a class="" data-click-track="profile-work-strip-authors" href="https://tue.academia.edu/httpwwwtuenl">Gerrit Peters</a></span></div><div class="wp-workCard_item"><span>Stapp car crash : conference : proceedings, 43rd, San Diego, Cal., October 25-27, 1999</span><span>, Oct 1, 1999</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Linear viscoelastic material parameters of porcine brain tissue and two brain substitute material...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Linear viscoelastic material parameters of porcine brain tissue and two brain substitute materials for use in mechanical head models (edible bone gelatin and dielectric silicone gel) were determined in small deformation, oscillatory shear experiments. Frequencies to 1000 Hertz could be obtained using the Time/Temperature Superposition principle. Brain tissue material parameters (i.e. dynamic modulus (phase angle) of 500 (10 degrees) and 1250 Pa (27 degrees) at 0.1 and 260 Hz respectively) are within the range of data reported in literature. The gelatin behaves much stiffer (modulus on the order of 100 kPa) and does not show viscous behavior. Silicone gel resembles brain tissue at low frequencies but becomes more stiff and more viscous at higher frequencies (dynamic modulus (phase angle) 245 Pa (7 degrees) and 5100 Pa (56 degrees) at 0.1 and 260 Hz respectively). Furthermore, the silicone gel behaves linearly for strains up to at least 10%, whereas brain tissue exhibits non-linear behavior for strains larger than 1%.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="82787890"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="82787890"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 82787890; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=82787890]").text(description); $(".js-view-count[data-work-id=82787890]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 82787890; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='82787890']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=82787890]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":82787890,"title":"Comparison of the dynamic behaviour of brain tissue and two model materials","translated_title":"","metadata":{"abstract":"Linear viscoelastic material parameters of porcine brain tissue and two brain substitute materials for use in mechanical head models (edible bone gelatin and dielectric silicone gel) were determined in small deformation, oscillatory shear experiments. Frequencies to 1000 Hertz could be obtained using the Time/Temperature Superposition principle. Brain tissue material parameters (i.e. dynamic modulus (phase angle) of 500 (10 degrees) and 1250 Pa (27 degrees) at 0.1 and 260 Hz respectively) are within the range of data reported in literature. The gelatin behaves much stiffer (modulus on the order of 100 kPa) and does not show viscous behavior. Silicone gel resembles brain tissue at low frequencies but becomes more stiff and more viscous at higher frequencies (dynamic modulus (phase angle) 245 Pa (7 degrees) and 5100 Pa (56 degrees) at 0.1 and 260 Hz respectively). Furthermore, the silicone gel behaves linearly for strains up to at least 10%, whereas brain tissue exhibits non-linear behavior for strains larger than 1%.","publisher":"Society of Automotive Engineers (SAE)","publication_date":{"day":1,"month":10,"year":1999,"errors":{}},"publication_name":"Stapp car crash : conference : proceedings, 43rd, San Diego, Cal., October 25-27, 1999"},"translated_abstract":"Linear viscoelastic material parameters of porcine brain tissue and two brain substitute materials for use in mechanical head models (edible bone gelatin and dielectric silicone gel) were determined in small deformation, oscillatory shear experiments. Frequencies to 1000 Hertz could be obtained using the Time/Temperature Superposition principle. Brain tissue material parameters (i.e. dynamic modulus (phase angle) of 500 (10 degrees) and 1250 Pa (27 degrees) at 0.1 and 260 Hz respectively) are within the range of data reported in literature. The gelatin behaves much stiffer (modulus on the order of 100 kPa) and does not show viscous behavior. Silicone gel resembles brain tissue at low frequencies but becomes more stiff and more viscous at higher frequencies (dynamic modulus (phase angle) 245 Pa (7 degrees) and 5100 Pa (56 degrees) at 0.1 and 260 Hz respectively). Furthermore, the silicone gel behaves linearly for strains up to at least 10%, whereas brain tissue exhibits non-linear behavior for strains larger than 1%.","internal_url":"https://www.academia.edu/82787890/Comparison_of_the_dynamic_behaviour_of_brain_tissue_and_two_model_materials","translated_internal_url":"","created_at":"2022-07-08T03:06:28.157-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":44719292,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":38963891,"work_id":82787890,"tagging_user_id":44719292,"tagged_user_id":51964873,"co_author_invite_id":null,"email":"j***s@safeteq.com","display_order":0,"name":"Jac Wismans","title":"Comparison of the dynamic behaviour of brain tissue and two model materials"},{"id":38963894,"work_id":82787890,"tagging_user_id":44719292,"tagged_user_id":26113865,"co_author_invite_id":null,"email":"g***s@tue.nl","affiliation":"Eindhoven University of Technology","display_order":4194304,"name":"Gerrit Peters","title":"Comparison of the dynamic behaviour of brain tissue and two model materials"}],"downloadable_attachments":[],"slug":"Comparison_of_the_dynamic_behaviour_of_brain_tissue_and_two_model_materials","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"Linear viscoelastic material parameters of porcine brain tissue and two brain substitute materials for use in mechanical head models (edible bone gelatin and dielectric silicone gel) were determined in small deformation, oscillatory shear experiments. Frequencies to 1000 Hertz could be obtained using the Time/Temperature Superposition principle. Brain tissue material parameters (i.e. dynamic modulus (phase angle) of 500 (10 degrees) and 1250 Pa (27 degrees) at 0.1 and 260 Hz respectively) are within the range of data reported in literature. The gelatin behaves much stiffer (modulus on the order of 100 kPa) and does not show viscous behavior. Silicone gel resembles brain tissue at low frequencies but becomes more stiff and more viscous at higher frequencies (dynamic modulus (phase angle) 245 Pa (7 degrees) and 5100 Pa (56 degrees) at 0.1 and 260 Hz respectively). Furthermore, the silicone gel behaves linearly for strains up to at least 10%, whereas brain tissue exhibits non-linear behavior for strains larger than 1%.","owner":{"id":44719292,"first_name":"Dave","middle_initials":null,"last_name":"Brands","page_name":"DaveBrands","domain_name":"independent","created_at":"2016-03-08T12:33:38.823-08:00","display_name":"Dave Brands","url":"https://independent.academia.edu/DaveBrands","email":"d203MGtWbHIwOVAvcTJWVGFWdlJjNEc1MEFBRW1aS0xKdFY5OVN3eVNwST0tLUxuRDBlaHpISzRvdS9KZlpud3ZkU3c9PQ==--743b159d519811b8b1ec9bb36e228aac7882eda1"},"attachments":[],"research_interests":[],"urls":[{"id":22005863,"url":"https://www.narcis.nl/publication/RecordID/oai:pure.tue.nl:publications%2F27ef191b-25d0-46af-a96c-886565cec08f"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="88630725"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/88630725/Concomitant_Crystallization_in_Propylene_Ethylene_Random_Copolymer_with_Strong_Flow_at_Elevated_Temperatures"><img alt="Research paper thumbnail of Concomitant Crystallization in Propylene/Ethylene Random Copolymer with Strong Flow at Elevated Temperatures" class="work-thumbnail" src="https://attachments.academia-assets.com/92567678/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/88630725/Concomitant_Crystallization_in_Propylene_Ethylene_Random_Copolymer_with_Strong_Flow_at_Elevated_Temperatures">Concomitant Crystallization in Propylene/Ethylene Random Copolymer with Strong Flow at Elevated Temperatures</a></div><div class="wp-workCard_item"><span>Industrial &amp; Engineering Chemistry Research</span><span>, 2018</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">DOI to the publisher's website. • The final author version and the galley proof are versions of t...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">DOI to the publisher's website. • The final author version and the galley proof are versions of the publication after peer review. • The final published version features the final layout of the paper including the volume, issue and page numbers. Link to publication General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal. If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the "Taverne" license above, please follow below link for the End User Agreement:</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="f63ff5b6781dd83cbe6813158e547092" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":92567678,"asset_id":88630725,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/92567678/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="88630725"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="88630725"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 88630725; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=88630725]").text(description); $(".js-view-count[data-work-id=88630725]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 88630725; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='88630725']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "f63ff5b6781dd83cbe6813158e547092" } } $('.js-work-strip[data-work-id=88630725]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":88630725,"title":"Concomitant Crystallization in Propylene/Ethylene Random Copolymer with Strong Flow at Elevated Temperatures","translated_title":"","metadata":{"publisher":"American Chemical Society (ACS)","grobid_abstract":"DOI to the publisher's website. • The final author version and the galley proof are versions of the publication after peer review. • The final published version features the final layout of the paper including the volume, issue and page numbers. Link to publication General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal. If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the \"Taverne\" license above, please follow below link for the End User Agreement:","publication_date":{"day":null,"month":null,"year":2018,"errors":{}},"publication_name":"Industrial \u0026amp; Engineering Chemistry Research","grobid_abstract_attachment_id":92567678},"translated_abstract":null,"internal_url":"https://www.academia.edu/88630725/Concomitant_Crystallization_in_Propylene_Ethylene_Random_Copolymer_with_Strong_Flow_at_Elevated_Temperatures","translated_internal_url":"","created_at":"2022-10-17T01:27:32.300-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":26113865,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":92567678,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/92567678/thumbnails/1.jpg","file_name":"manuscript_last_author_version.pdf","download_url":"https://www.academia.edu/attachments/92567678/download_file","bulk_download_file_name":"Concomitant_Crystallization_in_Propylene.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/92567678/manuscript_last_author_version-libre.pdf?1666005844=\u0026response-content-disposition=attachment%3B+filename%3DConcomitant_Crystallization_in_Propylene.pdf\u0026Expires=1742128088\u0026Signature=NcsOkSi04V5ynblLPI7DDVp~rnBEWP7U5KuS~Wjmhp5T5TpeiZv7RmUvf3RI~PGnSFMTN9rjTJYYtCH6sgTMUNLiPskQAsm2NWNakwvNzxPxLIJ5A-BjEJ5xTu8G1tjtOUSB2CcuXl7Vcq4SgbBKOP867FE1~XCG6Qs3YveOAfL7lP-M75WYG74BEkfvOA0N6j7~zGaqqGJRwiDsHby9TWl8DSsL4dgsmptIWhZuxQQ~80xYyvR6fNouLcJHhogmu0xuygEEmfRCYFDbULGUR2~QjuS88SVJZY9jOUXhM4TTFsi3ITHs~UmEhmWqm7FfM3CDQ7~pLf8JiNf1wA5o5A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Concomitant_Crystallization_in_Propylene_Ethylene_Random_Copolymer_with_Strong_Flow_at_Elevated_Temperatures","translated_slug":"","page_count":21,"language":"en","content_type":"Work","summary":"DOI to the publisher's website. • The final author version and the galley proof are versions of the publication after peer review. • The final published version features the final layout of the paper including the volume, issue and page numbers. Link to publication General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal. If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the \"Taverne\" license above, please follow below link for the End User Agreement:","owner":{"id":26113865,"first_name":"Gerrit","middle_initials":null,"last_name":"Peters","page_name":"httpwwwtuenl","domain_name":"tue","created_at":"2015-02-11T05:19:07.533-08:00","display_name":"Gerrit Peters","url":"https://tue.academia.edu/httpwwwtuenl","email":"OXJJcXpLWkhTK2l2SWovWTFtUkl0RUNxQ2lmOGgyRzYyWUF0cWJCWkl0cz0tLU1EcVR4Tkt6anhQUXo5aFdnbWM0aFE9PQ==--bfe9a261b8e12a09d86c27a8c4c0a090840b6453"},"attachments":[{"id":92567678,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/92567678/thumbnails/1.jpg","file_name":"manuscript_last_author_version.pdf","download_url":"https://www.academia.edu/attachments/92567678/download_file","bulk_download_file_name":"Concomitant_Crystallization_in_Propylene.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/92567678/manuscript_last_author_version-libre.pdf?1666005844=\u0026response-content-disposition=attachment%3B+filename%3DConcomitant_Crystallization_in_Propylene.pdf\u0026Expires=1742128088\u0026Signature=NcsOkSi04V5ynblLPI7DDVp~rnBEWP7U5KuS~Wjmhp5T5TpeiZv7RmUvf3RI~PGnSFMTN9rjTJYYtCH6sgTMUNLiPskQAsm2NWNakwvNzxPxLIJ5A-BjEJ5xTu8G1tjtOUSB2CcuXl7Vcq4SgbBKOP867FE1~XCG6Qs3YveOAfL7lP-M75WYG74BEkfvOA0N6j7~zGaqqGJRwiDsHby9TWl8DSsL4dgsmptIWhZuxQQ~80xYyvR6fNouLcJHhogmu0xuygEEmfRCYFDbULGUR2~QjuS88SVJZY9jOUXhM4TTFsi3ITHs~UmEhmWqm7FfM3CDQ7~pLf8JiNf1wA5o5A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":60,"name":"Mechanical Engineering","url":"https://www.academia.edu/Documents/in/Mechanical_Engineering"},{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":12597,"name":"Crystallization","url":"https://www.academia.edu/Documents/in/Crystallization"},{"id":24002,"name":"Materials Science and Engineering","url":"https://www.academia.edu/Documents/in/Materials_Science_and_Engineering"},{"id":32984,"name":"Mechanics of Materials","url":"https://www.academia.edu/Documents/in/Mechanics_of_Materials"},{"id":125058,"name":"Nucleation","url":"https://www.academia.edu/Documents/in/Nucleation"},{"id":197566,"name":"Ethylene","url":"https://www.academia.edu/Documents/in/Ethylene"},{"id":260118,"name":"CHEMICAL SCIENCES","url":"https://www.academia.edu/Documents/in/CHEMICAL_SCIENCES"},{"id":1117546,"name":"Industrial Chemistry/Chemical Engineering","url":"https://www.academia.edu/Documents/in/Industrial_Chemistry_Chemical_Engineering"},{"id":1291661,"name":"Copolymer","url":"https://www.academia.edu/Documents/in/Copolymer"},{"id":1789645,"name":"Nanoscience and nanotechnology","url":"https://www.academia.edu/Documents/in/Nanoscience_and_nanotechnology-1"}],"urls":[{"id":24845638,"url":"https://pubs.acs.org/doi/pdf/10.1021/acs.iecr.8b00708"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="85296481"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/85296481/Towards_the_Development_of_a_Strategy_to_Characterize_and_Model_the_Rheological_Behavior_of_Filled_Uncured_Rubber_Compounds"><img alt="Research paper thumbnail of Towards the Development of a Strategy to Characterize and Model the Rheological Behavior of Filled, Uncured Rubber Compounds" class="work-thumbnail" src="https://attachments.academia-assets.com/90036883/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/85296481/Towards_the_Development_of_a_Strategy_to_Characterize_and_Model_the_Rheological_Behavior_of_Filled_Uncured_Rubber_Compounds">Towards the Development of a Strategy to Characterize and Model the Rheological Behavior of Filled, Uncured Rubber Compounds</a></div><div class="wp-workCard_item"><span>Polymers</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">In this paper, an experimental strategy is presented to characterize the rheological behavior of ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">In this paper, an experimental strategy is presented to characterize the rheological behavior of filled, uncured rubber compounds. Oscillatory shear experiments on a regular plate-plate rheometer are combined with a phenomenological thixotropy model to obtain model parameters that can be used to describe the steady shear behavior. We compare rate- and stress-controlled kinetic equations for a structure parameter that determines the deformation history-dependent spectrum and, thus, the dynamic thixotropic behavior of the material. We keep the models as simple as possible and the characterization straightforward to maximize applicability. The model can be implemented in a finite element framework as a tool to simulate realistic rubber processing. This will be the topic of another work, currently under preparation. In shaping processes, such as rubber- and polymer extrusion, with realistic processing conditions, the range of shear rates is far outside the range obtained during rheologi...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="7ce763a8f927cdbc74a30eeea2101963" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":90036883,"asset_id":85296481,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/90036883/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="85296481"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="85296481"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 85296481; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=85296481]").text(description); $(".js-view-count[data-work-id=85296481]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 85296481; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='85296481']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "7ce763a8f927cdbc74a30eeea2101963" } } $('.js-work-strip[data-work-id=85296481]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":85296481,"title":"Towards the Development of a Strategy to Characterize and Model the Rheological Behavior of Filled, Uncured Rubber Compounds","translated_title":"","metadata":{"abstract":"In this paper, an experimental strategy is presented to characterize the rheological behavior of filled, uncured rubber compounds. Oscillatory shear experiments on a regular plate-plate rheometer are combined with a phenomenological thixotropy model to obtain model parameters that can be used to describe the steady shear behavior. We compare rate- and stress-controlled kinetic equations for a structure parameter that determines the deformation history-dependent spectrum and, thus, the dynamic thixotropic behavior of the material. We keep the models as simple as possible and the characterization straightforward to maximize applicability. The model can be implemented in a finite element framework as a tool to simulate realistic rubber processing. This will be the topic of another work, currently under preparation. In shaping processes, such as rubber- and polymer extrusion, with realistic processing conditions, the range of shear rates is far outside the range obtained during rheologi...","publisher":"MDPI AG","ai_title_tag":"Modeling Rheological Behavior of Rubber Compounds","publication_name":"Polymers"},"translated_abstract":"In this paper, an experimental strategy is presented to characterize the rheological behavior of filled, uncured rubber compounds. Oscillatory shear experiments on a regular plate-plate rheometer are combined with a phenomenological thixotropy model to obtain model parameters that can be used to describe the steady shear behavior. We compare rate- and stress-controlled kinetic equations for a structure parameter that determines the deformation history-dependent spectrum and, thus, the dynamic thixotropic behavior of the material. We keep the models as simple as possible and the characterization straightforward to maximize applicability. The model can be implemented in a finite element framework as a tool to simulate realistic rubber processing. This will be the topic of another work, currently under preparation. In shaping processes, such as rubber- and polymer extrusion, with realistic processing conditions, the range of shear rates is far outside the range obtained during rheologi...","internal_url":"https://www.academia.edu/85296481/Towards_the_Development_of_a_Strategy_to_Characterize_and_Model_the_Rheological_Behavior_of_Filled_Uncured_Rubber_Compounds","translated_internal_url":"","created_at":"2022-08-21T12:41:40.994-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":26113865,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":90036883,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90036883/thumbnails/1.jpg","file_name":"pdf.pdf","download_url":"https://www.academia.edu/attachments/90036883/download_file","bulk_download_file_name":"Towards_the_Development_of_a_Strategy_to.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90036883/pdf-libre.pdf?1661113562=\u0026response-content-disposition=attachment%3B+filename%3DTowards_the_Development_of_a_Strategy_to.pdf\u0026Expires=1742128088\u0026Signature=FhHKvDDCSiaMinw8vZP-zGmxYatrka2bF-g0kxRcSPmesREnmL0jaO2iF-oUABCZjBxYqDYwHyUzf99PCYjo69lhmMzVQCrsSzQZhRQ1-UOKycBpYLPRNVDWSKMZkSv6OSOvceDcx5ulCoFdxM~0XpLctoxJjY6drkeYtt7Dmbrhp9-O5Kuh5BTd-JeEXoygKZ5mgSuS7Ea6~VisCV0U4yENkA-wMMqa7XxHOR3GZEow3l3o7DZLOAqC4rfSXkP9BRtKbaHyOj4A6-prbytdRq6Gru64jCeBAlAvkvySjybIpUz-adTX--DTl7-ctR2bsGoc~pMGxQCe9j05zWpYtg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Towards_the_Development_of_a_Strategy_to_Characterize_and_Model_the_Rheological_Behavior_of_Filled_Uncured_Rubber_Compounds","translated_slug":"","page_count":24,"language":"en","content_type":"Work","summary":"In this paper, an experimental strategy is presented to characterize the rheological behavior of filled, uncured rubber compounds. Oscillatory shear experiments on a regular plate-plate rheometer are combined with a phenomenological thixotropy model to obtain model parameters that can be used to describe the steady shear behavior. We compare rate- and stress-controlled kinetic equations for a structure parameter that determines the deformation history-dependent spectrum and, thus, the dynamic thixotropic behavior of the material. We keep the models as simple as possible and the characterization straightforward to maximize applicability. The model can be implemented in a finite element framework as a tool to simulate realistic rubber processing. This will be the topic of another work, currently under preparation. In shaping processes, such as rubber- and polymer extrusion, with realistic processing conditions, the range of shear rates is far outside the range obtained during rheologi...","owner":{"id":26113865,"first_name":"Gerrit","middle_initials":null,"last_name":"Peters","page_name":"httpwwwtuenl","domain_name":"tue","created_at":"2015-02-11T05:19:07.533-08:00","display_name":"Gerrit Peters","url":"https://tue.academia.edu/httpwwwtuenl","email":"RWp3clViNnFXUVArY3VIcnFXWmJzUUR4QThYL2ZidlVBQTFoby9ua1Zqdz0tLU43Y3F0WVZkNzlsUHNHTXBqZnMxbEE9PQ==--14edbc6b2eec26478cec96695066eb07debef561"},"attachments":[{"id":90036883,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90036883/thumbnails/1.jpg","file_name":"pdf.pdf","download_url":"https://www.academia.edu/attachments/90036883/download_file","bulk_download_file_name":"Towards_the_Development_of_a_Strategy_to.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90036883/pdf-libre.pdf?1661113562=\u0026response-content-disposition=attachment%3B+filename%3DTowards_the_Development_of_a_Strategy_to.pdf\u0026Expires=1742128088\u0026Signature=FhHKvDDCSiaMinw8vZP-zGmxYatrka2bF-g0kxRcSPmesREnmL0jaO2iF-oUABCZjBxYqDYwHyUzf99PCYjo69lhmMzVQCrsSzQZhRQ1-UOKycBpYLPRNVDWSKMZkSv6OSOvceDcx5ulCoFdxM~0XpLctoxJjY6drkeYtt7Dmbrhp9-O5Kuh5BTd-JeEXoygKZ5mgSuS7Ea6~VisCV0U4yENkA-wMMqa7XxHOR3GZEow3l3o7DZLOAqC4rfSXkP9BRtKbaHyOj4A6-prbytdRq6Gru64jCeBAlAvkvySjybIpUz-adTX--DTl7-ctR2bsGoc~pMGxQCe9j05zWpYtg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":21466,"name":"Polymers","url":"https://www.academia.edu/Documents/in/Polymers"},{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"}],"urls":[{"id":23198463,"url":"https://www.mdpi.com/2073-4360/13/23/4068/pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="59391567"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/59391567/Influence_of_Shear_Flow_on_the_Specific_Volume_and_the_Crystalline_Morphology_of_Isotactic_Polypropylene"><img alt="Research paper thumbnail of Influence of Shear Flow on the Specific Volume and the Crystalline Morphology of Isotactic Polypropylene" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/59391567/Influence_of_Shear_Flow_on_the_Specific_Volume_and_the_Crystalline_Morphology_of_Isotactic_Polypropylene">Influence of Shear Flow on the Specific Volume and the Crystalline Morphology of Isotactic Polypropylene</a></div><div class="wp-workCard_item wp-workCard--coauthors"><span>by </span><span><a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/mauricevanderbeek">maurice van der beek</a> and <a class="" data-click-track="profile-work-strip-authors" href="https://tue.academia.edu/httpwwwtuenl">Gerrit Peters</a></span></div><div class="wp-workCard_item"><span>Macromolecules</span><span>, 2006</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">ABSTRACT</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="59391567"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="59391567"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 59391567; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=59391567]").text(description); $(".js-view-count[data-work-id=59391567]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 59391567; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='59391567']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=59391567]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":59391567,"title":"Influence of Shear Flow on the Specific Volume and the Crystalline Morphology of Isotactic Polypropylene","translated_title":"","metadata":{"abstract":"ABSTRACT","publisher":"American Chemical Society (ACS)","publication_date":{"day":null,"month":null,"year":2006,"errors":{}},"publication_name":"Macromolecules"},"translated_abstract":"ABSTRACT","internal_url":"https://www.academia.edu/59391567/Influence_of_Shear_Flow_on_the_Specific_Volume_and_the_Crystalline_Morphology_of_Isotactic_Polypropylene","translated_internal_url":"","created_at":"2021-10-21T15:57:35.421-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":143704920,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":38686069,"work_id":59391567,"tagging_user_id":143704920,"tagged_user_id":26113865,"co_author_invite_id":null,"email":"g***s@tue.nl","affiliation":"Eindhoven University of Technology","display_order":0,"name":"Gerrit Peters","title":"Influence of Shear Flow on the Specific Volume and the Crystalline Morphology of Isotactic Polypropylene"},{"id":38686078,"work_id":59391567,"tagging_user_id":143704920,"tagged_user_id":49806984,"co_author_invite_id":null,"email":"h***r@tue.nl","affiliation":"Technical University of Eindhoven","display_order":4194304,"name":"Han Meijer","title":"Influence of Shear Flow on the Specific Volume and the Crystalline Morphology of Isotactic Polypropylene"}],"downloadable_attachments":[],"slug":"Influence_of_Shear_Flow_on_the_Specific_Volume_and_the_Crystalline_Morphology_of_Isotactic_Polypropylene","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"ABSTRACT","owner":{"id":143704920,"first_name":"maurice","middle_initials":null,"last_name":"van der beek","page_name":"mauricevanderbeek","domain_name":"independent","created_at":"2020-01-28T06:51:27.452-08:00","display_name":"maurice van der beek","url":"https://independent.academia.edu/mauricevanderbeek"},"attachments":[],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":4107,"name":"High Pressure","url":"https://www.academia.edu/Documents/in/High_Pressure"},{"id":10866,"name":"Morphology","url":"https://www.academia.edu/Documents/in/Morphology"},{"id":168760,"name":"Macromolecules","url":"https://www.academia.edu/Documents/in/Macromolecules"},{"id":188736,"name":"Shear Flow","url":"https://www.academia.edu/Documents/in/Shear_Flow"},{"id":192323,"name":"Crystallinity","url":"https://www.academia.edu/Documents/in/Crystallinity"},{"id":260118,"name":"CHEMICAL SCIENCES","url":"https://www.academia.edu/Documents/in/CHEMICAL_SCIENCES"},{"id":1277589,"name":"Specific Volume","url":"https://www.academia.edu/Documents/in/Specific_Volume"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="81036995"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/81036995/Mixing_behaviour_in_a_cavity_flow"><img alt="Research paper thumbnail of Mixing behaviour in a cavity flow" class="work-thumbnail" src="https://attachments.academia-assets.com/87220119/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/81036995/Mixing_behaviour_in_a_cavity_flow">Mixing behaviour in a cavity flow</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="7c2e517004d71dade86c90c145f7d338" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":87220119,"asset_id":81036995,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/87220119/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="81036995"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="81036995"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 81036995; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=81036995]").text(description); $(".js-view-count[data-work-id=81036995]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 81036995; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='81036995']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "7c2e517004d71dade86c90c145f7d338" } } $('.js-work-strip[data-work-id=81036995]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":81036995,"title":"Mixing behaviour in a cavity flow","translated_title":"","metadata":{"ai_abstract":"This research investigates the mixing behavior in cavity flows through experimental observations and numerical simulations, aiming to enhance existing setups for better reproducibility and extend experiments to include a cylinder within the cavity. The experimental apparatus is designed to manipulate fluid velocity and visualize flow patterns using tracer dyes, providing insights into the mechanisms of mixing in a controlled environment. Preliminary results demonstrate the significance of the cylinder's placement on flow behavior, illustrating the emergence of vortices and variances in streamlines, thus contributing to the understanding of mixing in creeping flows.","publication_date":{"day":null,"month":null,"year":1993,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/81036995/Mixing_behaviour_in_a_cavity_flow","translated_internal_url":"","created_at":"2022-06-08T13:46:55.325-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":26113865,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":87220119,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/87220119/thumbnails/1.jpg","file_name":"667931.pdf","download_url":"https://www.academia.edu/attachments/87220119/download_file","bulk_download_file_name":"Mixing_behaviour_in_a_cavity_flow.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/87220119/667931-libre.pdf?1654722012=\u0026response-content-disposition=attachment%3B+filename%3DMixing_behaviour_in_a_cavity_flow.pdf\u0026Expires=1742128088\u0026Signature=GbrVz-X0umzNSENM6SjULyEd2SXGMnAykPrDaUq6q3pr~EhGlyXYaxeNyX8FemsZU2TEqILlZoCp16KUSEd2btmn1lW-PqBhesWXq1NwZc5ue8oZtZ4MSrZwE2VYjrqm9JZQAljsJDUyp5jt9xFou8wHVNuPEqUXTaA3G6sRuGy046aIFSnQHdTsc3Z27dIERCyPh2aeUykGGKnxy0PcrKI7y0NA9dZ~MHDY8d3jVelGvOo0HkLnMKVl0vAcZiIuYnoOlzXXPmDrTvItyIAs9Kwe3FFpmHv1Ne9No3wyjiuknvmXs8xVYtQzHxSDlvZNd6sSz4ZxtlHxRITqaJxIeA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Mixing_behaviour_in_a_cavity_flow","translated_slug":"","page_count":19,"language":"en","content_type":"Work","summary":null,"owner":{"id":26113865,"first_name":"Gerrit","middle_initials":null,"last_name":"Peters","page_name":"httpwwwtuenl","domain_name":"tue","created_at":"2015-02-11T05:19:07.533-08:00","display_name":"Gerrit Peters","url":"https://tue.academia.edu/httpwwwtuenl","email":"eDU4b2hNYkVlMnY1ZVFzSlliYXIxOVB0b3p2MmtWczFWUExZZUhDQmFXbz0tLUdaVUQzU1ZOdi9OVWZTYVZ4ZGNGQlE9PQ==--7b06287c7c0f6c7fc0c5ff6e10fd7cdfcdde9748"},"attachments":[{"id":87220119,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/87220119/thumbnails/1.jpg","file_name":"667931.pdf","download_url":"https://www.academia.edu/attachments/87220119/download_file","bulk_download_file_name":"Mixing_behaviour_in_a_cavity_flow.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/87220119/667931-libre.pdf?1654722012=\u0026response-content-disposition=attachment%3B+filename%3DMixing_behaviour_in_a_cavity_flow.pdf\u0026Expires=1742128088\u0026Signature=GbrVz-X0umzNSENM6SjULyEd2SXGMnAykPrDaUq6q3pr~EhGlyXYaxeNyX8FemsZU2TEqILlZoCp16KUSEd2btmn1lW-PqBhesWXq1NwZc5ue8oZtZ4MSrZwE2VYjrqm9JZQAljsJDUyp5jt9xFou8wHVNuPEqUXTaA3G6sRuGy046aIFSnQHdTsc3Z27dIERCyPh2aeUykGGKnxy0PcrKI7y0NA9dZ~MHDY8d3jVelGvOo0HkLnMKVl0vAcZiIuYnoOlzXXPmDrTvItyIAs9Kwe3FFpmHv1Ne9No3wyjiuknvmXs8xVYtQzHxSDlvZNd6sSz4ZxtlHxRITqaJxIeA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":60,"name":"Mechanical Engineering","url":"https://www.academia.edu/Documents/in/Mechanical_Engineering"},{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":512,"name":"Mechanics","url":"https://www.academia.edu/Documents/in/Mechanics"},{"id":113221,"name":"Chapter","url":"https://www.academia.edu/Documents/in/Chapter"}],"urls":[{"id":21238253,"url":"http://alexandria.tue.nl/repository/books/667931.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="81036920"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/81036920/Structure_evolution_during_film_blowing_An_experimental_study_using_in_situ_small_angle_X_ray_scattering"><img alt="Research paper thumbnail of Structure evolution during film blowing: An experimental study using in-situ small angle X-ray scattering" class="work-thumbnail" src="https://attachments.academia-assets.com/87220112/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/81036920/Structure_evolution_during_film_blowing_An_experimental_study_using_in_situ_small_angle_X_ray_scattering">Structure evolution during film blowing: An experimental study using in-situ small angle X-ray scattering</a></div><div class="wp-workCard_item"><span>European Polymer Journal</span><span>, 2016</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The on-line morphological development during film blowing of 2 different linear low density polye...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The on-line morphological development during film blowing of 2 different linear low density polyethylenes (LLDPE) and a blend of LLDPE with low density polyethylene (LDPE) has been investigated, for the first time, using synchrotron Small Angle X-Ray Scattering (SAXS). The processing conditions, blow-up ratio and takeup ratio, have been varied and the resulting lamellar thickness, linear crystallinity and orientation evolution in machine direction is obtained from a detailed analysis of SAXS data. Ex-situ SAXS and wide angle Xray Diffraction (WAXD) confirmed the effect of molecular structure and composition on structure evolution observed in the on-line experiments. The results obtained provide a valuable set of data for the understanding of the film blowing process and can be used to extend and improve numerical model.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="6232b8f54805afe9dbc0214ee5fe2fed" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":87220112,"asset_id":81036920,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/87220112/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="81036920"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="81036920"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 81036920; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=81036920]").text(description); $(".js-view-count[data-work-id=81036920]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 81036920; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='81036920']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "6232b8f54805afe9dbc0214ee5fe2fed" } } $('.js-work-strip[data-work-id=81036920]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":81036920,"title":"Structure evolution during film blowing: An experimental study using in-situ small angle X-ray scattering","translated_title":"","metadata":{"publisher":"Elsevier BV","grobid_abstract":"The on-line morphological development during film blowing of 2 different linear low density polyethylenes (LLDPE) and a blend of LLDPE with low density polyethylene (LDPE) has been investigated, for the first time, using synchrotron Small Angle X-Ray Scattering (SAXS). The processing conditions, blow-up ratio and takeup ratio, have been varied and the resulting lamellar thickness, linear crystallinity and orientation evolution in machine direction is obtained from a detailed analysis of SAXS data. Ex-situ SAXS and wide angle Xray Diffraction (WAXD) confirmed the effect of molecular structure and composition on structure evolution observed in the on-line experiments. The results obtained provide a valuable set of data for the understanding of the film blowing process and can be used to extend and improve numerical model.","publication_date":{"day":null,"month":null,"year":2016,"errors":{}},"publication_name":"European Polymer Journal","grobid_abstract_attachment_id":87220112},"translated_abstract":null,"internal_url":"https://www.academia.edu/81036920/Structure_evolution_during_film_blowing_An_experimental_study_using_in_situ_small_angle_X_ray_scattering","translated_internal_url":"","created_at":"2022-06-08T13:46:12.819-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":26113865,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":87220112,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/87220112/thumbnails/1.jpg","file_name":"Troisi_Et_Al_EPJ_2015.pdf","download_url":"https://www.academia.edu/attachments/87220112/download_file","bulk_download_file_name":"Structure_evolution_during_film_blowing.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/87220112/Troisi_Et_Al_EPJ_2015-libre.pdf?1654722024=\u0026response-content-disposition=attachment%3B+filename%3DStructure_evolution_during_film_blowing.pdf\u0026Expires=1742128088\u0026Signature=XUgxWRwO8cyZUhL2~GVxJRWtctAqdudHk5bhq4n8TZ1wvMchUuP0AIyMeNI5hVFzFRRcCT5oJnYLLAMKLm9JsLJI3gbwQvrvncsuOGGq0yJE0Cs-DpP0SN~OizqfoehydyVNF5alFnLZXCLnM~fTY4SdO-4KLB~YFgIBUNPHRxrYLg0dtwzoNpfuXnHlMMBXEVHHxCIH2gCLtAHkvvMvjEt~U2rFw6Ixv6P0u4km6W0JU~s6JC2oGr3aY1yyDsk7-f2wzDN7WKqm3sJcw1oKt868SOElVElu-DST1KO29laY5qcirLiQELLPNBk3Klr6G5rkhRuHj5psZfTMnzZ8qQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Structure_evolution_during_film_blowing_An_experimental_study_using_in_situ_small_angle_X_ray_scattering","translated_slug":"","page_count":33,"language":"en","content_type":"Work","summary":"The on-line morphological development during film blowing of 2 different linear low density polyethylenes (LLDPE) and a blend of LLDPE with low density polyethylene (LDPE) has been investigated, for the first time, using synchrotron Small Angle X-Ray Scattering (SAXS). The processing conditions, blow-up ratio and takeup ratio, have been varied and the resulting lamellar thickness, linear crystallinity and orientation evolution in machine direction is obtained from a detailed analysis of SAXS data. Ex-situ SAXS and wide angle Xray Diffraction (WAXD) confirmed the effect of molecular structure and composition on structure evolution observed in the on-line experiments. The results obtained provide a valuable set of data for the understanding of the film blowing process and can be used to extend and improve numerical model.","owner":{"id":26113865,"first_name":"Gerrit","middle_initials":null,"last_name":"Peters","page_name":"httpwwwtuenl","domain_name":"tue","created_at":"2015-02-11T05:19:07.533-08:00","display_name":"Gerrit Peters","url":"https://tue.academia.edu/httpwwwtuenl","email":"TXFWR2lnTFlwK2oyRGtUb1YrSElhNk5VeGVRaGRNRi9OUWw0VXgzL21Sdz0tLXpkcXZ0eUdLcUlxRjgvb0lTajUwYXc9PQ==--b44a58d5db44655bf466b590e0d97c628d8e9d50"},"attachments":[{"id":87220112,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/87220112/thumbnails/1.jpg","file_name":"Troisi_Et_Al_EPJ_2015.pdf","download_url":"https://www.academia.edu/attachments/87220112/download_file","bulk_download_file_name":"Structure_evolution_during_film_blowing.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/87220112/Troisi_Et_Al_EPJ_2015-libre.pdf?1654722024=\u0026response-content-disposition=attachment%3B+filename%3DStructure_evolution_during_film_blowing.pdf\u0026Expires=1742128088\u0026Signature=XUgxWRwO8cyZUhL2~GVxJRWtctAqdudHk5bhq4n8TZ1wvMchUuP0AIyMeNI5hVFzFRRcCT5oJnYLLAMKLm9JsLJI3gbwQvrvncsuOGGq0yJE0Cs-DpP0SN~OizqfoehydyVNF5alFnLZXCLnM~fTY4SdO-4KLB~YFgIBUNPHRxrYLg0dtwzoNpfuXnHlMMBXEVHHxCIH2gCLtAHkvvMvjEt~U2rFw6Ixv6P0u4km6W0JU~s6JC2oGr3aY1yyDsk7-f2wzDN7WKqm3sJcw1oKt868SOElVElu-DST1KO29laY5qcirLiQELLPNBk3Klr6G5rkhRuHj5psZfTMnzZ8qQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":56,"name":"Materials Engineering","url":"https://www.academia.edu/Documents/in/Materials_Engineering"},{"id":72,"name":"Chemical Engineering","url":"https://www.academia.edu/Documents/in/Chemical_Engineering"},{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":10636,"name":"Small Angle X Ray Scattering","url":"https://www.academia.edu/Documents/in/Small_Angle_X_Ray_Scattering"},{"id":159937,"name":"In situ","url":"https://www.academia.edu/Documents/in/In_situ"},{"id":441926,"name":"Scattering","url":"https://www.academia.edu/Documents/in/Scattering"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="81036906"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/81036906/The_prediction_of_mechanical_performance_of_isotactic_polypropylene_on_the_basis_of_processing_conditions"><img alt="Research paper thumbnail of The prediction of mechanical performance of isotactic polypropylene on the basis of processing conditions" class="work-thumbnail" src="https://attachments.academia-assets.com/87220098/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/81036906/The_prediction_of_mechanical_performance_of_isotactic_polypropylene_on_the_basis_of_processing_conditions">The prediction of mechanical performance of isotactic polypropylene on the basis of processing conditions</a></div><div class="wp-workCard_item"><span>Polymer</span><span>, 2016</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">DOI to the publisher's website. • The final author version and the galley proof are versions of t...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">DOI to the publisher's website. • The final author version and the galley proof are versions of the publication after peer review. • The final published version features the final layout of the paper including the volume, issue and page numbers. Link to publication General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal. If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the "Taverne" license above, please follow below link for the End User Agreement:</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="e7e9ccb1101d0a2c1f053b2c12217058" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":87220098,"asset_id":81036906,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/87220098/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="81036906"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="81036906"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 81036906; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=81036906]").text(description); $(".js-view-count[data-work-id=81036906]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 81036906; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='81036906']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "e7e9ccb1101d0a2c1f053b2c12217058" } } $('.js-work-strip[data-work-id=81036906]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":81036906,"title":"The prediction of mechanical performance of isotactic polypropylene on the basis of processing conditions","translated_title":"","metadata":{"publisher":"Elsevier BV","grobid_abstract":"DOI to the publisher's website. • The final author version and the galley proof are versions of the publication after peer review. • The final published version features the final layout of the paper including the volume, issue and page numbers. Link to publication General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal. If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the \"Taverne\" license above, please follow below link for the End User Agreement:","publication_date":{"day":null,"month":null,"year":2016,"errors":{}},"publication_name":"Polymer","grobid_abstract_attachment_id":87220098},"translated_abstract":null,"internal_url":"https://www.academia.edu/81036906/The_prediction_of_mechanical_performance_of_isotactic_polypropylene_on_the_basis_of_processing_conditions","translated_internal_url":"","created_at":"2022-06-08T13:45:37.082-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":26113865,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":87220098,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/87220098/thumbnails/1.jpg","file_name":"1_s2.0_S0032386115304158_main.pdf","download_url":"https://www.academia.edu/attachments/87220098/download_file","bulk_download_file_name":"The_prediction_of_mechanical_performance.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/87220098/1_s2.0_S0032386115304158_main-libre.pdf?1654722017=\u0026response-content-disposition=attachment%3B+filename%3DThe_prediction_of_mechanical_performance.pdf\u0026Expires=1742128088\u0026Signature=SQDFjvHYTs8h36a2sr3NGHx37BkWWtnLtMKXaIw-6c7lZm36X~d~RlwaMEyYYBfuGfvmIrfiLqs4woxGD64nr7BD1w9SDPOJxqhK~ejCw0OzLVHo~Bu8Wy-9DwU-oJdn4cBTVstSjW~X1UZP92dbSxMzTY1c8PIImukGx~mS7udH6NQ-aMX7tVCte3YatXqXyqe5s9fErEmUxztgxdVXv2VzX3QIynL4w9YWvTbpUiekt7kT4qHSVvyZftjOmWKvhb43Fp9BOrLXU06AM5F8WxM-VItGeMuLFsgo6NNH9se0vyFsaB2NopHQ4MBgxvRMn~K-EYkvY7X76gMsx9PEXw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"The_prediction_of_mechanical_performance_of_isotactic_polypropylene_on_the_basis_of_processing_conditions","translated_slug":"","page_count":14,"language":"en","content_type":"Work","summary":"DOI to the publisher's website. • The final author version and the galley proof are versions of the publication after peer review. • The final published version features the final layout of the paper including the volume, issue and page numbers. Link to publication General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal. If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the \"Taverne\" license above, please follow below link for the End User Agreement:","owner":{"id":26113865,"first_name":"Gerrit","middle_initials":null,"last_name":"Peters","page_name":"httpwwwtuenl","domain_name":"tue","created_at":"2015-02-11T05:19:07.533-08:00","display_name":"Gerrit Peters","url":"https://tue.academia.edu/httpwwwtuenl","email":"SUZSWUk2WlZYZjBsQ0Z0MDgrMDJlbzIyR0t6OStPSzYwT3BGaDlyV0ViWT0tLVVMb1ZBbnMxVE9oZEhHNmFiQzZnSVE9PQ==--8e1a4a3ff0bf2f599fa5d46b254fdc0dbf9ec269"},"attachments":[{"id":87220098,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/87220098/thumbnails/1.jpg","file_name":"1_s2.0_S0032386115304158_main.pdf","download_url":"https://www.academia.edu/attachments/87220098/download_file","bulk_download_file_name":"The_prediction_of_mechanical_performance.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/87220098/1_s2.0_S0032386115304158_main-libre.pdf?1654722017=\u0026response-content-disposition=attachment%3B+filename%3DThe_prediction_of_mechanical_performance.pdf\u0026Expires=1742128088\u0026Signature=SQDFjvHYTs8h36a2sr3NGHx37BkWWtnLtMKXaIw-6c7lZm36X~d~RlwaMEyYYBfuGfvmIrfiLqs4woxGD64nr7BD1w9SDPOJxqhK~ejCw0OzLVHo~Bu8Wy-9DwU-oJdn4cBTVstSjW~X1UZP92dbSxMzTY1c8PIImukGx~mS7udH6NQ-aMX7tVCte3YatXqXyqe5s9fErEmUxztgxdVXv2VzX3QIynL4w9YWvTbpUiekt7kT4qHSVvyZftjOmWKvhb43Fp9BOrLXU06AM5F8WxM-VItGeMuLFsgo6NNH9se0vyFsaB2NopHQ4MBgxvRMn~K-EYkvY7X76gMsx9PEXw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":58527,"name":"Polymer","url":"https://www.academia.edu/Documents/in/Polymer"},{"id":260118,"name":"CHEMICAL SCIENCES","url":"https://www.academia.edu/Documents/in/CHEMICAL_SCIENCES"},{"id":3702108,"name":" tacticity","url":"https://www.academia.edu/Documents/in/tacticity"}],"urls":[{"id":21238222,"url":"https://api.elsevier.com/content/article/PII:S0032386115304158?httpAccept=text/xml"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="81036888"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/81036888/Linear_viscoelastic_fluid_characterization_of_ultra_high_viscosity_fluids_for_high_frequency_damper_design"><img alt="Research paper thumbnail of Linear viscoelastic fluid characterization of ultra-high-viscosity fluids for high-frequency damper design" class="work-thumbnail" src="https://attachments.academia-assets.com/87220090/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/81036888/Linear_viscoelastic_fluid_characterization_of_ultra_high_viscosity_fluids_for_high_frequency_damper_design">Linear viscoelastic fluid characterization of ultra-high-viscosity fluids for high-frequency damper design</a></div><div class="wp-workCard_item"><span>Rheologica Acta</span><span>, 2015</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">This paper presents the use of a state of the art damper for high-precision motion stages as a sl...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">This paper presents the use of a state of the art damper for high-precision motion stages as a sliding plate rheometer for measuring linear viscoelastic properties in the frequency range of 10 Hz-10 kHz. This device is relatively cheap and enables to obtain linear viscoelastic (LVE) fluid models for practical use in precision mechanics applications. This is an example of reversed engineering, i.e., turning a machine part into a material characterization device. Results are shown for a high-viscosity fluid. The first part of this paper describes the damper design that is based on a high-viscosity fluid. This design is flexure-based to minimize parasitic nonlinear forces such as hysteresis and stick-slip. In the second part of the paper, LVE fluid characterization by means of the damper setup is presented. Measurements are performed and model parameters are fitted by a non-convex optimization algorithm in order to obtain the frequency-dependent behavior of the fluid. The resulting fluid model is validated by comparison with a second measurement with a different damper geometry. This paper shows that LVE fluid characterization between 10 Hz and 10 kHz for elastic high-viscosity fluids is possible with a motion stage damper for which the undamped behavior is known.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="1747aa053e6d83621a34399a2e392c10" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":87220090,"asset_id":81036888,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/87220090/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="81036888"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="81036888"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 81036888; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=81036888]").text(description); $(".js-view-count[data-work-id=81036888]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 81036888; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='81036888']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "1747aa053e6d83621a34399a2e392c10" } } $('.js-work-strip[data-work-id=81036888]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":81036888,"title":"Linear viscoelastic fluid characterization of ultra-high-viscosity fluids for high-frequency damper design","translated_title":"","metadata":{"publisher":"Springer Nature","grobid_abstract":"This paper presents the use of a state of the art damper for high-precision motion stages as a sliding plate rheometer for measuring linear viscoelastic properties in the frequency range of 10 Hz-10 kHz. This device is relatively cheap and enables to obtain linear viscoelastic (LVE) fluid models for practical use in precision mechanics applications. This is an example of reversed engineering, i.e., turning a machine part into a material characterization device. Results are shown for a high-viscosity fluid. The first part of this paper describes the damper design that is based on a high-viscosity fluid. This design is flexure-based to minimize parasitic nonlinear forces such as hysteresis and stick-slip. In the second part of the paper, LVE fluid characterization by means of the damper setup is presented. Measurements are performed and model parameters are fitted by a non-convex optimization algorithm in order to obtain the frequency-dependent behavior of the fluid. The resulting fluid model is validated by comparison with a second measurement with a different damper geometry. This paper shows that LVE fluid characterization between 10 Hz and 10 kHz for elastic high-viscosity fluids is possible with a motion stage damper for which the undamped behavior is known.","publication_date":{"day":null,"month":null,"year":2015,"errors":{}},"publication_name":"Rheologica Acta","grobid_abstract_attachment_id":87220090},"translated_abstract":null,"internal_url":"https://www.academia.edu/81036888/Linear_viscoelastic_fluid_characterization_of_ultra_high_viscosity_fluids_for_high_frequency_damper_design","translated_internal_url":"","created_at":"2022-06-08T13:45:20.738-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":26113865,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":87220090,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/87220090/thumbnails/1.jpg","file_name":"10.1007_2Fs00397-015-0862-y.pdf","download_url":"https://www.academia.edu/attachments/87220090/download_file","bulk_download_file_name":"Linear_viscoelastic_fluid_characterizati.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/87220090/10.1007_2Fs00397-015-0862-y-libre.pdf?1654722011=\u0026response-content-disposition=attachment%3B+filename%3DLinear_viscoelastic_fluid_characterizati.pdf\u0026Expires=1742128088\u0026Signature=HH36gZPDvA7kUTta9LuvlShpHvYv5iqzPNP3iRuFO~YrQmdoXV8I1YHGWrDhTSvMwuxvmCiJ~ZJnBbJuCIELzrqJwH7iHKb7RghtS6Tji1G1catJFeBqLuMqOQMYustXhwsnwsZNKRaLGK4H0Ff47AvDCOunLbeWJ~l6gPsK5F~TyvykQHKy102d~FphA2KVdZtk2VCtEOODYF4Uo5wRrkaIzqSZVZTBy2lTKjBl0IAErI7nvl8vC55M20IPQXVaIk51Cc-t-Y-AS0QQRMacdMqx65xIlsrxfc99Xrk3piIbJ8KZPB8QihaAMbe3sKbPfMWDUUXzOb3G2LI5To01eQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Linear_viscoelastic_fluid_characterization_of_ultra_high_viscosity_fluids_for_high_frequency_damper_design","translated_slug":"","page_count":11,"language":"en","content_type":"Work","summary":"This paper presents the use of a state of the art damper for high-precision motion stages as a sliding plate rheometer for measuring linear viscoelastic properties in the frequency range of 10 Hz-10 kHz. This device is relatively cheap and enables to obtain linear viscoelastic (LVE) fluid models for practical use in precision mechanics applications. This is an example of reversed engineering, i.e., turning a machine part into a material characterization device. Results are shown for a high-viscosity fluid. The first part of this paper describes the damper design that is based on a high-viscosity fluid. This design is flexure-based to minimize parasitic nonlinear forces such as hysteresis and stick-slip. In the second part of the paper, LVE fluid characterization by means of the damper setup is presented. Measurements are performed and model parameters are fitted by a non-convex optimization algorithm in order to obtain the frequency-dependent behavior of the fluid. The resulting fluid model is validated by comparison with a second measurement with a different damper geometry. This paper shows that LVE fluid characterization between 10 Hz and 10 kHz for elastic high-viscosity fluids is possible with a motion stage damper for which the undamped behavior is known.","owner":{"id":26113865,"first_name":"Gerrit","middle_initials":null,"last_name":"Peters","page_name":"httpwwwtuenl","domain_name":"tue","created_at":"2015-02-11T05:19:07.533-08:00","display_name":"Gerrit Peters","url":"https://tue.academia.edu/httpwwwtuenl","email":"TWRrTFZadjl4YXlyMjEyNXJxRzB6dzZlVldMSWNFYzhFMVgxQlZNdithZz0tLThwZXFUNSsvcXpCMVJmdm1BZm9qZXc9PQ==--c43459b92d7e36f50a0a7d99a2fb7d0e2132690e"},"attachments":[{"id":87220090,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/87220090/thumbnails/1.jpg","file_name":"10.1007_2Fs00397-015-0862-y.pdf","download_url":"https://www.academia.edu/attachments/87220090/download_file","bulk_download_file_name":"Linear_viscoelastic_fluid_characterizati.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/87220090/10.1007_2Fs00397-015-0862-y-libre.pdf?1654722011=\u0026response-content-disposition=attachment%3B+filename%3DLinear_viscoelastic_fluid_characterizati.pdf\u0026Expires=1742128088\u0026Signature=HH36gZPDvA7kUTta9LuvlShpHvYv5iqzPNP3iRuFO~YrQmdoXV8I1YHGWrDhTSvMwuxvmCiJ~ZJnBbJuCIELzrqJwH7iHKb7RghtS6Tji1G1catJFeBqLuMqOQMYustXhwsnwsZNKRaLGK4H0Ff47AvDCOunLbeWJ~l6gPsK5F~TyvykQHKy102d~FphA2KVdZtk2VCtEOODYF4Uo5wRrkaIzqSZVZTBy2lTKjBl0IAErI7nvl8vC55M20IPQXVaIk51Cc-t-Y-AS0QQRMacdMqx65xIlsrxfc99Xrk3piIbJ8KZPB8QihaAMbe3sKbPfMWDUUXzOb3G2LI5To01eQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":60,"name":"Mechanical Engineering","url":"https://www.academia.edu/Documents/in/Mechanical_Engineering"},{"id":72,"name":"Chemical Engineering","url":"https://www.academia.edu/Documents/in/Chemical_Engineering"},{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":2383,"name":"Viscoelasticity","url":"https://www.academia.edu/Documents/in/Viscoelasticity"},{"id":7598,"name":"Rheology","url":"https://www.academia.edu/Documents/in/Rheology"},{"id":109384,"name":"Viscosity","url":"https://www.academia.edu/Documents/in/Viscosity"},{"id":554780,"name":"Interdisciplinary Engineering","url":"https://www.academia.edu/Documents/in/Interdisciplinary_Engineering"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="81036842"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/81036842/A_new_approach_for_calculating_the_true_stress_response_from_large_amplitude_oscillatory_shear_LAOS_measurements_using_parallel_plates"><img alt="Research paper thumbnail of A new approach for calculating the true stress response from large amplitude oscillatory shear (LAOS) measurements using parallel plates" class="work-thumbnail" src="https://attachments.academia-assets.com/87220066/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/81036842/A_new_approach_for_calculating_the_true_stress_response_from_large_amplitude_oscillatory_shear_LAOS_measurements_using_parallel_plates">A new approach for calculating the true stress response from large amplitude oscillatory shear (LAOS) measurements using parallel plates</a></div><div class="wp-workCard_item"><span>Rheologica Acta</span><span>, 2013</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The parallel plates geometry is often deemed unsuitable for nonlinear viscoelasticity measurement...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The parallel plates geometry is often deemed unsuitable for nonlinear viscoelasticity measurements because the strain field, and thus the nonlinear response, varies across the sample. Although cone-plate and Couette geometries are designed to circumvent this problem by ensuring a uniform strain field, it is not always easy to shape the material to the complex shapes that is required for these geometries. This has motivated the development of techniques to accurately determine the nonlinear stress response using the more convenient plate-plate geometry. Here, we introduce a new approach to obtain this true material response in large amplitude oscillatory shear (LAOS) experiments using the plate-plate geometry. By tracing the Fourier components of the torque response and their derivatives with respect to the maximum applied deformation, we accurately obtain the material's true stress-strain response from parallel plate measurements. The approach does not require any assumptions about the material's viscoelastic behavior. We test our approach experimentally</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="036fe2ba7d7511d002353c0d7f230876" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":87220066,"asset_id":81036842,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/87220066/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="81036842"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="81036842"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 81036842; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=81036842]").text(description); $(".js-view-count[data-work-id=81036842]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 81036842; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='81036842']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "036fe2ba7d7511d002353c0d7f230876" } } $('.js-work-strip[data-work-id=81036842]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":81036842,"title":"A new approach for calculating the true stress response from large amplitude oscillatory shear (LAOS) measurements using parallel plates","translated_title":"","metadata":{"publisher":"Springer Nature","grobid_abstract":"The parallel plates geometry is often deemed unsuitable for nonlinear viscoelasticity measurements because the strain field, and thus the nonlinear response, varies across the sample. Although cone-plate and Couette geometries are designed to circumvent this problem by ensuring a uniform strain field, it is not always easy to shape the material to the complex shapes that is required for these geometries. This has motivated the development of techniques to accurately determine the nonlinear stress response using the more convenient plate-plate geometry. Here, we introduce a new approach to obtain this true material response in large amplitude oscillatory shear (LAOS) experiments using the plate-plate geometry. By tracing the Fourier components of the torque response and their derivatives with respect to the maximum applied deformation, we accurately obtain the material's true stress-strain response from parallel plate measurements. The approach does not require any assumptions about the material's viscoelastic behavior. We test our approach experimentally","publication_date":{"day":null,"month":null,"year":2013,"errors":{}},"publication_name":"Rheologica Acta","grobid_abstract_attachment_id":87220066},"translated_abstract":null,"internal_url":"https://www.academia.edu/81036842/A_new_approach_for_calculating_the_true_stress_response_from_large_amplitude_oscillatory_shear_LAOS_measurements_using_parallel_plates","translated_internal_url":"","created_at":"2022-06-08T13:44:54.863-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":26113865,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":87220066,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/87220066/thumbnails/1.jpg","file_name":"s00397-013-0738-y20220608-1-1w4eaae.pdf","download_url":"https://www.academia.edu/attachments/87220066/download_file","bulk_download_file_name":"A_new_approach_for_calculating_the_true.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/87220066/s00397-013-0738-y20220608-1-1w4eaae-libre.pdf?1654722012=\u0026response-content-disposition=attachment%3B+filename%3DA_new_approach_for_calculating_the_true.pdf\u0026Expires=1742128088\u0026Signature=fTCnaHougkMYKil9DbofEv8LvFSc69J6hVGemPigjsxH9F01nwL2Rd3qpc8Ps7pDfGXag1L8cv0nETn3aSuG8i3jrQ683XYweugxjDgffKofgr9Egg-b6OF7bfcaMrajjB9U25f8gSP0zao3BffRq2NCYNyt77Yc1D1whn~OC0xpd42ElUanQgDAcRBTBJFRDGEH7fsqblFu-f3vB3J1bItG5fiygHl0C67~XFOnCaf4kmJvy3dcZVAABrmwhzcpuOlKKYkv6Mnu7rApDEV2xiZnhKrjimVu25aynNxHhLC6XeUl8GCY8JkDNstSoXFv4f0quLx3KI8cTMHqyvrL~Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"A_new_approach_for_calculating_the_true_stress_response_from_large_amplitude_oscillatory_shear_LAOS_measurements_using_parallel_plates","translated_slug":"","page_count":9,"language":"en","content_type":"Work","summary":"The parallel plates geometry is often deemed unsuitable for nonlinear viscoelasticity measurements because the strain field, and thus the nonlinear response, varies across the sample. Although cone-plate and Couette geometries are designed to circumvent this problem by ensuring a uniform strain field, it is not always easy to shape the material to the complex shapes that is required for these geometries. This has motivated the development of techniques to accurately determine the nonlinear stress response using the more convenient plate-plate geometry. Here, we introduce a new approach to obtain this true material response in large amplitude oscillatory shear (LAOS) experiments using the plate-plate geometry. By tracing the Fourier components of the torque response and their derivatives with respect to the maximum applied deformation, we accurately obtain the material's true stress-strain response from parallel plate measurements. The approach does not require any assumptions about the material's viscoelastic behavior. We test our approach experimentally","owner":{"id":26113865,"first_name":"Gerrit","middle_initials":null,"last_name":"Peters","page_name":"httpwwwtuenl","domain_name":"tue","created_at":"2015-02-11T05:19:07.533-08:00","display_name":"Gerrit Peters","url":"https://tue.academia.edu/httpwwwtuenl","email":"cTBxcHA3ajJNanBZZEw4NFEzRW9oNnJtY01TT1dzUUhneHQ5YlcvTzhTRT0tLTR3NE5iMmhQSVdqOXM5RGc0a29MUkE9PQ==--0af3558b6e7bef08770f55ddf0288160cc60da6d"},"attachments":[{"id":87220066,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/87220066/thumbnails/1.jpg","file_name":"s00397-013-0738-y20220608-1-1w4eaae.pdf","download_url":"https://www.academia.edu/attachments/87220066/download_file","bulk_download_file_name":"A_new_approach_for_calculating_the_true.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/87220066/s00397-013-0738-y20220608-1-1w4eaae-libre.pdf?1654722012=\u0026response-content-disposition=attachment%3B+filename%3DA_new_approach_for_calculating_the_true.pdf\u0026Expires=1742128088\u0026Signature=fTCnaHougkMYKil9DbofEv8LvFSc69J6hVGemPigjsxH9F01nwL2Rd3qpc8Ps7pDfGXag1L8cv0nETn3aSuG8i3jrQ683XYweugxjDgffKofgr9Egg-b6OF7bfcaMrajjB9U25f8gSP0zao3BffRq2NCYNyt77Yc1D1whn~OC0xpd42ElUanQgDAcRBTBJFRDGEH7fsqblFu-f3vB3J1bItG5fiygHl0C67~XFOnCaf4kmJvy3dcZVAABrmwhzcpuOlKKYkv6Mnu7rApDEV2xiZnhKrjimVu25aynNxHhLC6XeUl8GCY8JkDNstSoXFv4f0quLx3KI8cTMHqyvrL~Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":60,"name":"Mechanical Engineering","url":"https://www.academia.edu/Documents/in/Mechanical_Engineering"},{"id":72,"name":"Chemical Engineering","url":"https://www.academia.edu/Documents/in/Chemical_Engineering"},{"id":554780,"name":"Interdisciplinary Engineering","url":"https://www.academia.edu/Documents/in/Interdisciplinary_Engineering"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="81036821"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/81036821/Analysis_of_mixing_in_three_dimensional_time_periodic_cavity_flows"><img alt="Research paper thumbnail of Analysis of mixing in three-dimensional time-periodic cavity flows" class="work-thumbnail" src="https://attachments.academia-assets.com/87220060/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/81036821/Analysis_of_mixing_in_three_dimensional_time_periodic_cavity_flows">Analysis of mixing in three-dimensional time-periodic cavity flows</a></div><div class="wp-workCard_item"><span>Journal of Fluid Mechanics</span><span>, 1999</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">A method to locate periodic structures in general three-dimensional Stokes flows with time-period...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">A method to locate periodic structures in general three-dimensional Stokes flows with time-periodic boundary conditions is presented and applied to mixing cavity flows. Numerically obtained velocity fields and particle tracking schemes are used to provide displacement and stretching fields. From these the location and identification of periodic points can be derived. The presence or absence of these periodic points allows a judgement on the quality of the mixing process. The technique is general and efficient, and applicable to mixing flows for which no analytical velocity field is available (the case for all three-dimensional flows considered in this paper). Results are presented for three different mixing protocols in a three-dimensional time-periodic cavity flow, serving as an accessible test case for the methods developed. A major result is that periodic lines are obtained for these three-dimensional flows. These lines can be complex in geometry and their nature can change along...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="4b72e64a4bacc0f3660aa9f90db5b74e" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":87220060,"asset_id":81036821,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/87220060/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="81036821"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="81036821"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 81036821; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=81036821]").text(description); $(".js-view-count[data-work-id=81036821]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 81036821; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='81036821']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "4b72e64a4bacc0f3660aa9f90db5b74e" } } $('.js-work-strip[data-work-id=81036821]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":81036821,"title":"Analysis of mixing in three-dimensional time-periodic cavity flows","translated_title":"","metadata":{"abstract":"A method to locate periodic structures in general three-dimensional Stokes flows with time-periodic boundary conditions is presented and applied to mixing cavity flows. Numerically obtained velocity fields and particle tracking schemes are used to provide displacement and stretching fields. From these the location and identification of periodic points can be derived. The presence or absence of these periodic points allows a judgement on the quality of the mixing process. The technique is general and efficient, and applicable to mixing flows for which no analytical velocity field is available (the case for all three-dimensional flows considered in this paper). Results are presented for three different mixing protocols in a three-dimensional time-periodic cavity flow, serving as an accessible test case for the methods developed. A major result is that periodic lines are obtained for these three-dimensional flows. These lines can be complex in geometry and their nature can change along...","publisher":"Cambridge University Press (CUP)","publication_date":{"day":null,"month":null,"year":1999,"errors":{}},"publication_name":"Journal of Fluid Mechanics"},"translated_abstract":"A method to locate periodic structures in general three-dimensional Stokes flows with time-periodic boundary conditions is presented and applied to mixing cavity flows. Numerically obtained velocity fields and particle tracking schemes are used to provide displacement and stretching fields. From these the location and identification of periodic points can be derived. The presence or absence of these periodic points allows a judgement on the quality of the mixing process. The technique is general and efficient, and applicable to mixing flows for which no analytical velocity field is available (the case for all three-dimensional flows considered in this paper). Results are presented for three different mixing protocols in a three-dimensional time-periodic cavity flow, serving as an accessible test case for the methods developed. A major result is that periodic lines are obtained for these three-dimensional flows. These lines can be complex in geometry and their nature can change along...","internal_url":"https://www.academia.edu/81036821/Analysis_of_mixing_in_three_dimensional_time_periodic_cavity_flows","translated_internal_url":"","created_at":"2022-06-08T13:44:41.317-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":26113865,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":87220060,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/87220060/thumbnails/1.jpg","file_name":"6.pdf","download_url":"https://www.academia.edu/attachments/87220060/download_file","bulk_download_file_name":"Analysis_of_mixing_in_three_dimensional.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/87220060/6-libre.pdf?1654722014=\u0026response-content-disposition=attachment%3B+filename%3DAnalysis_of_mixing_in_three_dimensional.pdf\u0026Expires=1742128089\u0026Signature=CT~5FxDCuQnfRPQ2hzMfge70-PfU0jw5iwKLl89NDs63hVG~VzfXwkkjyLLCe-grWb8B3h6i2pKZWk-KaDAqOWo6zppY9pD-Dzt6o5GtK~XGWhHps7ccaQDyW3ayU0D8nTtoL1ShQVQO3LovobHDf1LGRalEKBNvP7aRu3mReVsGsp--k~h827Vc8NtvudaVLjzTiNBoj0Fsd-s1EOjRDqt4RJaMbNfzEdq~r7XEnqpzmV5Z9hY3orhJu2y-rmGa1YAbIV6YDHs9E713tN3REbOJxgEWNhT1KwP78dKlM~wGhXhi1wwfMygj15SP0pCCS6pfSuFPJJ1HSzTFpK1DKQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Analysis_of_mixing_in_three_dimensional_time_periodic_cavity_flows","translated_slug":"","page_count":18,"language":"en","content_type":"Work","summary":"A method to locate periodic structures in general three-dimensional Stokes flows with time-periodic boundary conditions is presented and applied to mixing cavity flows. Numerically obtained velocity fields and particle tracking schemes are used to provide displacement and stretching fields. From these the location and identification of periodic points can be derived. The presence or absence of these periodic points allows a judgement on the quality of the mixing process. The technique is general and efficient, and applicable to mixing flows for which no analytical velocity field is available (the case for all three-dimensional flows considered in this paper). Results are presented for three different mixing protocols in a three-dimensional time-periodic cavity flow, serving as an accessible test case for the methods developed. A major result is that periodic lines are obtained for these three-dimensional flows. These lines can be complex in geometry and their nature can change along...","owner":{"id":26113865,"first_name":"Gerrit","middle_initials":null,"last_name":"Peters","page_name":"httpwwwtuenl","domain_name":"tue","created_at":"2015-02-11T05:19:07.533-08:00","display_name":"Gerrit Peters","url":"https://tue.academia.edu/httpwwwtuenl","email":"QlR4a2x6d1Fma01FVTBKYzVUdGdwTGtqUldHdWxKT3JvV0hMZC9qQ3BuTT0tLU11R01pWVJKZWNRNnUyOHdlbmNwT2c9PQ==--9faba60c3d00c98c2ea3234b460204c85850ac4e"},"attachments":[{"id":87220060,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/87220060/thumbnails/1.jpg","file_name":"6.pdf","download_url":"https://www.academia.edu/attachments/87220060/download_file","bulk_download_file_name":"Analysis_of_mixing_in_three_dimensional.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/87220060/6-libre.pdf?1654722014=\u0026response-content-disposition=attachment%3B+filename%3DAnalysis_of_mixing_in_three_dimensional.pdf\u0026Expires=1742128089\u0026Signature=CT~5FxDCuQnfRPQ2hzMfge70-PfU0jw5iwKLl89NDs63hVG~VzfXwkkjyLLCe-grWb8B3h6i2pKZWk-KaDAqOWo6zppY9pD-Dzt6o5GtK~XGWhHps7ccaQDyW3ayU0D8nTtoL1ShQVQO3LovobHDf1LGRalEKBNvP7aRu3mReVsGsp--k~h827Vc8NtvudaVLjzTiNBoj0Fsd-s1EOjRDqt4RJaMbNfzEdq~r7XEnqpzmV5Z9hY3orhJu2y-rmGa1YAbIV6YDHs9E713tN3REbOJxgEWNhT1KwP78dKlM~wGhXhi1wwfMygj15SP0pCCS6pfSuFPJJ1HSzTFpK1DKQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics"},{"id":512,"name":"Mechanics","url":"https://www.academia.edu/Documents/in/Mechanics"},{"id":2435,"name":"Fluid Mechanics","url":"https://www.academia.edu/Documents/in/Fluid_Mechanics"},{"id":16522,"name":"Stokes flow","url":"https://www.academia.edu/Documents/in/Stokes_flow"},{"id":80414,"name":"Mathematical Sciences","url":"https://www.academia.edu/Documents/in/Mathematical_Sciences"},{"id":177906,"name":"Single Particle Tracking","url":"https://www.academia.edu/Documents/in/Single_Particle_Tracking"},{"id":504035,"name":"Three Dimensional","url":"https://www.academia.edu/Documents/in/Three_Dimensional"},{"id":2842096,"name":"periodic boundary condition","url":"https://www.academia.edu/Documents/in/periodic_boundary_condition"},{"id":3195720,"name":"Periodic Structure","url":"https://www.academia.edu/Documents/in/Periodic_Structure"},{"id":3363168,"name":"Mixing Process","url":"https://www.academia.edu/Documents/in/Mixing_Process"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="81036779"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/81036779/Axisymmetric_boundary_integral_simulations_of_film_drainage_between_two_viscous_drops"><img alt="Research paper thumbnail of Axisymmetric boundary integral simulations of film drainage between two viscous drops" class="work-thumbnail" src="https://attachments.academia-assets.com/87220046/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/81036779/Axisymmetric_boundary_integral_simulations_of_film_drainage_between_two_viscous_drops">Axisymmetric boundary integral simulations of film drainage between two viscous drops</a></div><div class="wp-workCard_item"><span>Journal of Fluid Mechanics</span><span>, 2006</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Film drainage between two drops with viscosity equal to that of the matrix fluid is studied using...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Film drainage between two drops with viscosity equal to that of the matrix fluid is studied using a numerical method that can capture both the external problem of two touching drops and the inner problem of pressure-driven local film drainage, without assumptions about the dimensions of the film or the use of lubrication approximations. We use a non-singular boundary integral method that has sufficient stability and accuracy to simulate film thicknesses down to and smaller than 10 −4 times the undeformed drop radius. After validation of the method we investigate the validity of various results obtained from simple film-drainage models and asymptotic theories. Our results for buoyancy-driven collisions are in agreement with a recently developed asymptotic theory. External-flow-driven collisions are different from buoyancy-driven collisions, which means that the internal circulation inside the drop plays a significant role in film drainage, even for small capillary numbers, as has been recently shown (Nemer et al., Phys. Rev. Lett., vol. 92, 2004, 114501). Despite that, we find excellent correspondence with simple drainage models when considering the drainage time only.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="e6e4b6928bf2a52a4c040b2367722a35" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":87220046,"asset_id":81036779,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/87220046/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="81036779"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="81036779"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 81036779; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=81036779]").text(description); $(".js-view-count[data-work-id=81036779]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 81036779; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='81036779']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "e6e4b6928bf2a52a4c040b2367722a35" } } $('.js-work-strip[data-work-id=81036779]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":81036779,"title":"Axisymmetric boundary integral simulations of film drainage between two viscous drops","translated_title":"","metadata":{"publisher":"Cambridge University Press (CUP)","grobid_abstract":"Film drainage between two drops with viscosity equal to that of the matrix fluid is studied using a numerical method that can capture both the external problem of two touching drops and the inner problem of pressure-driven local film drainage, without assumptions about the dimensions of the film or the use of lubrication approximations. We use a non-singular boundary integral method that has sufficient stability and accuracy to simulate film thicknesses down to and smaller than 10 −4 times the undeformed drop radius. After validation of the method we investigate the validity of various results obtained from simple film-drainage models and asymptotic theories. Our results for buoyancy-driven collisions are in agreement with a recently developed asymptotic theory. External-flow-driven collisions are different from buoyancy-driven collisions, which means that the internal circulation inside the drop plays a significant role in film drainage, even for small capillary numbers, as has been recently shown (Nemer et al., Phys. Rev. Lett., vol. 92, 2004, 114501). Despite that, we find excellent correspondence with simple drainage models when considering the drainage time only.","publication_date":{"day":null,"month":null,"year":2006,"errors":{}},"publication_name":"Journal of Fluid Mechanics","grobid_abstract_attachment_id":87220046},"translated_abstract":null,"internal_url":"https://www.academia.edu/81036779/Axisymmetric_boundary_integral_simulations_of_film_drainage_between_two_viscous_drops","translated_internal_url":"","created_at":"2022-06-08T13:43:56.357-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":26113865,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":87220046,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/87220046/thumbnails/1.jpg","file_name":"S002211200600208420220608-1-183v24y.pdf","download_url":"https://www.academia.edu/attachments/87220046/download_file","bulk_download_file_name":"Axisymmetric_boundary_integral_simulatio.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/87220046/S002211200600208420220608-1-183v24y-libre.pdf?1654722010=\u0026response-content-disposition=attachment%3B+filename%3DAxisymmetric_boundary_integral_simulatio.pdf\u0026Expires=1742128089\u0026Signature=WP1cPQOK7U82t06J4auI05xZV8Orw5yIMUTuoyxlzjZ~e-pUf1m~Ibuc2pptxbX1LZUZFB1kUD2paSW1dw-EBOR95sf~zz~rhqcMq1IzA-iTD114f95WQwtd8bNvUZwx7atjlEvcXLeBrdN953QbaK2-sYOHJKKylisduZLEs-EUELPqromJatKfg~E7QArPshuFoK8ib7u33IMOrIzp83G6mM-lRtyfmCmjdHLj~YLrKPXKFZUloIsk24zSB4Xur9KnB5kKFs4HQtCpLX7rAi6eKdPTb~Dmq3eSVRxYZolSjde7~kh9M0cvqWa9fhHVm3JzRDmN2MqrpSUWcoWDZQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Axisymmetric_boundary_integral_simulations_of_film_drainage_between_two_viscous_drops","translated_slug":"","page_count":26,"language":"en","content_type":"Work","summary":"Film drainage between two drops with viscosity equal to that of the matrix fluid is studied using a numerical method that can capture both the external problem of two touching drops and the inner problem of pressure-driven local film drainage, without assumptions about the dimensions of the film or the use of lubrication approximations. We use a non-singular boundary integral method that has sufficient stability and accuracy to simulate film thicknesses down to and smaller than 10 −4 times the undeformed drop radius. After validation of the method we investigate the validity of various results obtained from simple film-drainage models and asymptotic theories. Our results for buoyancy-driven collisions are in agreement with a recently developed asymptotic theory. External-flow-driven collisions are different from buoyancy-driven collisions, which means that the internal circulation inside the drop plays a significant role in film drainage, even for small capillary numbers, as has been recently shown (Nemer et al., Phys. Rev. Lett., vol. 92, 2004, 114501). Despite that, we find excellent correspondence with simple drainage models when considering the drainage time only.","owner":{"id":26113865,"first_name":"Gerrit","middle_initials":null,"last_name":"Peters","page_name":"httpwwwtuenl","domain_name":"tue","created_at":"2015-02-11T05:19:07.533-08:00","display_name":"Gerrit Peters","url":"https://tue.academia.edu/httpwwwtuenl","email":"ZGNkR3E3SUx5d0RkN3VaZ1lFT0RqRE5uZVRrRmc4VEdndlJXeVV2cVBSRT0tLWdreGtMZURCUGxlbkdCQUJUMlkrU0E9PQ==--ef3848642d8654cdfddf40cb9baa819206a7ed3f"},"attachments":[{"id":87220046,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/87220046/thumbnails/1.jpg","file_name":"S002211200600208420220608-1-183v24y.pdf","download_url":"https://www.academia.edu/attachments/87220046/download_file","bulk_download_file_name":"Axisymmetric_boundary_integral_simulatio.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/87220046/S002211200600208420220608-1-183v24y-libre.pdf?1654722010=\u0026response-content-disposition=attachment%3B+filename%3DAxisymmetric_boundary_integral_simulatio.pdf\u0026Expires=1742128089\u0026Signature=WP1cPQOK7U82t06J4auI05xZV8Orw5yIMUTuoyxlzjZ~e-pUf1m~Ibuc2pptxbX1LZUZFB1kUD2paSW1dw-EBOR95sf~zz~rhqcMq1IzA-iTD114f95WQwtd8bNvUZwx7atjlEvcXLeBrdN953QbaK2-sYOHJKKylisduZLEs-EUELPqromJatKfg~E7QArPshuFoK8ib7u33IMOrIzp83G6mM-lRtyfmCmjdHLj~YLrKPXKFZUloIsk24zSB4Xur9KnB5kKFs4HQtCpLX7rAi6eKdPTb~Dmq3eSVRxYZolSjde7~kh9M0cvqWa9fhHVm3JzRDmN2MqrpSUWcoWDZQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics"},{"id":2435,"name":"Fluid Mechanics","url":"https://www.academia.edu/Documents/in/Fluid_Mechanics"},{"id":32149,"name":"Numerical Method","url":"https://www.academia.edu/Documents/in/Numerical_Method"},{"id":80414,"name":"Mathematical Sciences","url":"https://www.academia.edu/Documents/in/Mathematical_Sciences"}],"urls":[{"id":21238189,"url":"https://www.cambridge.org/core/services/aop-cambridge-core/content/view/S0022112006002084"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="81036794"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/81036794/Numerical_Study_of_the_Effect_of_Thixotropy_on_Extrudate_Swell"><img alt="Research paper thumbnail of Numerical Study of the Effect of Thixotropy on Extrudate Swell" class="work-thumbnail" src="https://attachments.academia-assets.com/87219981/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/81036794/Numerical_Study_of_the_Effect_of_Thixotropy_on_Extrudate_Swell">Numerical Study of the Effect of Thixotropy on Extrudate Swell</a></div><div class="wp-workCard_item"><span>Polymers</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The extrusion of highly filled elastomers is widely used in the automotive industry. In this pape...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The extrusion of highly filled elastomers is widely used in the automotive industry. In this paper, we numerically study the effect of thixotropy on 2D planar extrudate swell for constant and fluctuating flow rates, as well as the effect of thixotropy on the swell behavior of a 3D rectangular extrudate for a constant flowrate. To this end, we used the Finite Element Method. The state of the network structure in the material is described using a kinetic equation for a structure parameter. Rate and stress-controlled models for this kinetic equation are compared. The effect of thixotropy on extrudate swell is studied by varying the damage and recovery parameters in these models. It was found that thixotropy in general decreases extrudate swell. The stress-controlled approach always predicts a larger swell ratio compared to the rate-controlled approach for the Weissenberg numbers studied in this work. When the damage parameter in the models is increased, a less viscous fluid layer appea...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="46faebeab5c1d2fea2fe44eeef5a354c" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":87219981,"asset_id":81036794,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/87219981/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="81036794"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="81036794"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 81036794; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=81036794]").text(description); $(".js-view-count[data-work-id=81036794]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 81036794; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='81036794']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "46faebeab5c1d2fea2fe44eeef5a354c" } } $('.js-work-strip[data-work-id=81036794]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":81036794,"title":"Numerical Study of the Effect of Thixotropy on Extrudate Swell","translated_title":"","metadata":{"abstract":"The extrusion of highly filled elastomers is widely used in the automotive industry. In this paper, we numerically study the effect of thixotropy on 2D planar extrudate swell for constant and fluctuating flow rates, as well as the effect of thixotropy on the swell behavior of a 3D rectangular extrudate for a constant flowrate. To this end, we used the Finite Element Method. The state of the network structure in the material is described using a kinetic equation for a structure parameter. Rate and stress-controlled models for this kinetic equation are compared. The effect of thixotropy on extrudate swell is studied by varying the damage and recovery parameters in these models. It was found that thixotropy in general decreases extrudate swell. The stress-controlled approach always predicts a larger swell ratio compared to the rate-controlled approach for the Weissenberg numbers studied in this work. When the damage parameter in the models is increased, a less viscous fluid layer appea...","publisher":"MDPI AG","publication_name":"Polymers"},"translated_abstract":"The extrusion of highly filled elastomers is widely used in the automotive industry. In this paper, we numerically study the effect of thixotropy on 2D planar extrudate swell for constant and fluctuating flow rates, as well as the effect of thixotropy on the swell behavior of a 3D rectangular extrudate for a constant flowrate. To this end, we used the Finite Element Method. The state of the network structure in the material is described using a kinetic equation for a structure parameter. Rate and stress-controlled models for this kinetic equation are compared. The effect of thixotropy on extrudate swell is studied by varying the damage and recovery parameters in these models. It was found that thixotropy in general decreases extrudate swell. The stress-controlled approach always predicts a larger swell ratio compared to the rate-controlled approach for the Weissenberg numbers studied in this work. When the damage parameter in the models is increased, a less viscous fluid layer appea...","internal_url":"https://www.academia.edu/81036794/Numerical_Study_of_the_Effect_of_Thixotropy_on_Extrudate_Swell","translated_internal_url":"","created_at":"2022-06-08T13:43:59.405-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":26113865,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":87219981,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/87219981/thumbnails/1.jpg","file_name":"pdf.pdf","download_url":"https://www.academia.edu/attachments/87219981/download_file","bulk_download_file_name":"Numerical_Study_of_the_Effect_of_Thixotr.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/87219981/pdf.pdf?1738507371=\u0026response-content-disposition=attachment%3B+filename%3DNumerical_Study_of_the_Effect_of_Thixotr.pdf\u0026Expires=1742128089\u0026Signature=Dy3pGhN5Pup4qoeM6jtKOM-b7OMh8j55HSTNNva6mOhWgRJqo5qig456WeNm1lOBEmM-ZvYGITZ-HAtg-4NwDPur7NdUTi869O~uVyjrKRKm-qhR7DA0HQ6DbU0FAK0yzIWdydWqnOXd3hi3WBzkElSRYEZf9axd2sZat3dZtYeMM-~~x9CaISTMlt1hI-TLjKCHrbL7NWsnM1mSjmVr9jQ8JmH1~BwUnJ-yTzT-ayY5otdMS5k7VUz0U4UxG~DJvQnNfk-FotV-RibN65J6GByPxUqNCiB7cCaQNfo~SUYywSh-DkIdJiRuC9ugY6tBPkl0jaDaicnyvFa1AP8kZw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Numerical_Study_of_the_Effect_of_Thixotropy_on_Extrudate_Swell","translated_slug":"","page_count":24,"language":"en","content_type":"Work","summary":"The extrusion of highly filled elastomers is widely used in the automotive industry. In this paper, we numerically study the effect of thixotropy on 2D planar extrudate swell for constant and fluctuating flow rates, as well as the effect of thixotropy on the swell behavior of a 3D rectangular extrudate for a constant flowrate. To this end, we used the Finite Element Method. The state of the network structure in the material is described using a kinetic equation for a structure parameter. Rate and stress-controlled models for this kinetic equation are compared. The effect of thixotropy on extrudate swell is studied by varying the damage and recovery parameters in these models. It was found that thixotropy in general decreases extrudate swell. The stress-controlled approach always predicts a larger swell ratio compared to the rate-controlled approach for the Weissenberg numbers studied in this work. When the damage parameter in the models is increased, a less viscous fluid layer appea...","owner":{"id":26113865,"first_name":"Gerrit","middle_initials":null,"last_name":"Peters","page_name":"httpwwwtuenl","domain_name":"tue","created_at":"2015-02-11T05:19:07.533-08:00","display_name":"Gerrit Peters","url":"https://tue.academia.edu/httpwwwtuenl","email":"Z290UXVpSHBxenZENnNLSDVOV0lRdysxakNBOWZUcnhRYzIzcm1VVjdzMD0tLWtOOWVCeTl6aUoyOVF2bUhCWkw5SEE9PQ==--a74c418211a5014672454542f267bf66762f11c1"},"attachments":[{"id":87219981,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/87219981/thumbnails/1.jpg","file_name":"pdf.pdf","download_url":"https://www.academia.edu/attachments/87219981/download_file","bulk_download_file_name":"Numerical_Study_of_the_Effect_of_Thixotr.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/87219981/pdf.pdf?1738507371=\u0026response-content-disposition=attachment%3B+filename%3DNumerical_Study_of_the_Effect_of_Thixotr.pdf\u0026Expires=1742128089\u0026Signature=Dy3pGhN5Pup4qoeM6jtKOM-b7OMh8j55HSTNNva6mOhWgRJqo5qig456WeNm1lOBEmM-ZvYGITZ-HAtg-4NwDPur7NdUTi869O~uVyjrKRKm-qhR7DA0HQ6DbU0FAK0yzIWdydWqnOXd3hi3WBzkElSRYEZf9axd2sZat3dZtYeMM-~~x9CaISTMlt1hI-TLjKCHrbL7NWsnM1mSjmVr9jQ8JmH1~BwUnJ-yTzT-ayY5otdMS5k7VUz0U4UxG~DJvQnNfk-FotV-RibN65J6GByPxUqNCiB7cCaQNfo~SUYywSh-DkIdJiRuC9ugY6tBPkl0jaDaicnyvFa1AP8kZw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":7598,"name":"Rheology","url":"https://www.academia.edu/Documents/in/Rheology"},{"id":21466,"name":"Polymers","url":"https://www.academia.edu/Documents/in/Polymers"},{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"}],"urls":[{"id":21238180,"url":"https://www.mdpi.com/2073-4360/13/24/4383/pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="81036793"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/81036793/Effect_of_shear_rate_and_pressure_on_the_crystallization_of_PP_nanocomposites_and_PP_PET_polymer_blend_nanocomposites"><img alt="Research paper thumbnail of Effect of shear rate and pressure on the crystallization of PP nanocomposites and PP/PET polymer blend nanocomposites" class="work-thumbnail" src="https://attachments.academia-assets.com/87220032/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/81036793/Effect_of_shear_rate_and_pressure_on_the_crystallization_of_PP_nanocomposites_and_PP_PET_polymer_blend_nanocomposites">Effect of shear rate and pressure on the crystallization of PP nanocomposites and PP/PET polymer blend nanocomposites</a></div><div class="wp-workCard_item"><span>Polymer</span><span>, 2019</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">DOI to the publisher's website. • The final author version and the galley proof are versions of t...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">DOI to the publisher's website. • The final author version and the galley proof are versions of the publication after peer review. • The final published version features the final layout of the paper including the volume, issue and page numbers. Link to publication General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal. If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the "Taverne" license above, please follow below link for the End User Agreement:</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="a264b2369562ae89c8437d373ad07688" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":87220032,"asset_id":81036793,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/87220032/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="81036793"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="81036793"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 81036793; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=81036793]").text(description); $(".js-view-count[data-work-id=81036793]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 81036793; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='81036793']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "a264b2369562ae89c8437d373ad07688" } } $('.js-work-strip[data-work-id=81036793]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":81036793,"title":"Effect of shear rate and pressure on the crystallization of PP nanocomposites and PP/PET polymer blend nanocomposites","translated_title":"","metadata":{"publisher":"Elsevier BV","ai_title_tag":"Shear Rate and Pressure Effects on PP Nanocomposites Crystallization","grobid_abstract":"DOI to the publisher's website. • The final author version and the galley proof are versions of the publication after peer review. • The final published version features the final layout of the paper including the volume, issue and page numbers. Link to publication General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal. If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the \"Taverne\" license above, please follow below link for the End User Agreement:","publication_date":{"day":null,"month":null,"year":2019,"errors":{}},"publication_name":"Polymer","grobid_abstract_attachment_id":87220032},"translated_abstract":null,"internal_url":"https://www.academia.edu/81036793/Effect_of_shear_rate_and_pressure_on_the_crystallization_of_PP_nanocomposites_and_PP_PET_polymer_blend_nanocomposites","translated_internal_url":"","created_at":"2022-06-08T13:43:59.204-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":26113865,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":87220032,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/87220032/thumbnails/1.jpg","file_name":"1_s2.0_S0032386119309565_main.pdf","download_url":"https://www.academia.edu/attachments/87220032/download_file","bulk_download_file_name":"Effect_of_shear_rate_and_pressure_on_the.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/87220032/1_s2.0_S0032386119309565_main-libre.pdf?1654722023=\u0026response-content-disposition=attachment%3B+filename%3DEffect_of_shear_rate_and_pressure_on_the.pdf\u0026Expires=1742128089\u0026Signature=GvEbfbJUzk5ghINNfn2P18EnJ~P7zXVAXG7Ua3Xj1iLbp66eziZbD8JDRStnA2Dz4QBQHFmrp6zguqyWv-h-VnwfhQVYkbyilMIAQfHfWaK2kfPki3BFR2tnnssIoxWruo7muWudAudtKFWtc8zSzgRvuNJpBGMamvOFPklPbVeUlqfRHC1vz0nY2YLIGFNMiodYC4JURtXiJm9mMU3OxF4qjAVfK6LEN4gruwI4q3Dp5wJGHweraTQpwG4uNzwz5W1K9~VT0c~CkQ2RDJMKUe74ZTQ3ZUnZ-eAEErjv0itmCQHGZaI0mo0r1IMt2Rcf158SSmA~DTTNknDqnowQRg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Effect_of_shear_rate_and_pressure_on_the_crystallization_of_PP_nanocomposites_and_PP_PET_polymer_blend_nanocomposites","translated_slug":"","page_count":15,"language":"en","content_type":"Work","summary":"DOI to the publisher's website. • The final author version and the galley proof are versions of the publication after peer review. • The final published version features the final layout of the paper including the volume, issue and page numbers. Link to publication General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal. If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the \"Taverne\" license above, please follow below link for the End User Agreement:","owner":{"id":26113865,"first_name":"Gerrit","middle_initials":null,"last_name":"Peters","page_name":"httpwwwtuenl","domain_name":"tue","created_at":"2015-02-11T05:19:07.533-08:00","display_name":"Gerrit Peters","url":"https://tue.academia.edu/httpwwwtuenl","email":"Kzd1MlZFMzVuWktueXptVWlMdkJyWktWdFdZb1Q3UmJVMlR4Rmpmb2VMbz0tLTNQd2krVFhlYStOZkZJcXhOWko5eWc9PQ==--21ad6bf0f3bf99a97315d3714e7bb1d979728d7b"},"attachments":[{"id":87220032,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/87220032/thumbnails/1.jpg","file_name":"1_s2.0_S0032386119309565_main.pdf","download_url":"https://www.academia.edu/attachments/87220032/download_file","bulk_download_file_name":"Effect_of_shear_rate_and_pressure_on_the.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/87220032/1_s2.0_S0032386119309565_main-libre.pdf?1654722023=\u0026response-content-disposition=attachment%3B+filename%3DEffect_of_shear_rate_and_pressure_on_the.pdf\u0026Expires=1742128089\u0026Signature=GvEbfbJUzk5ghINNfn2P18EnJ~P7zXVAXG7Ua3Xj1iLbp66eziZbD8JDRStnA2Dz4QBQHFmrp6zguqyWv-h-VnwfhQVYkbyilMIAQfHfWaK2kfPki3BFR2tnnssIoxWruo7muWudAudtKFWtc8zSzgRvuNJpBGMamvOFPklPbVeUlqfRHC1vz0nY2YLIGFNMiodYC4JURtXiJm9mMU3OxF4qjAVfK6LEN4gruwI4q3Dp5wJGHweraTQpwG4uNzwz5W1K9~VT0c~CkQ2RDJMKUe74ZTQ3ZUnZ-eAEErjv0itmCQHGZaI0mo0r1IMt2Rcf158SSmA~DTTNknDqnowQRg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":58527,"name":"Polymer","url":"https://www.academia.edu/Documents/in/Polymer"},{"id":99017,"name":"Nanocomposite","url":"https://www.academia.edu/Documents/in/Nanocomposite"},{"id":169323,"name":"Composite Material","url":"https://www.academia.edu/Documents/in/Composite_Material"},{"id":260118,"name":"CHEMICAL SCIENCES","url":"https://www.academia.edu/Documents/in/CHEMICAL_SCIENCES"},{"id":1244314,"name":"Polymer Nanocomposite","url":"https://www.academia.edu/Documents/in/Polymer_Nanocomposite"}],"urls":[{"id":21238179,"url":"https://api.elsevier.com/content/article/PII:S0032386119309565?httpAccept=text/xml"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="81036792"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/81036792/Effect_of_Thermal_History_and_Shear_on_the_Viscoelastic_Response_of_iPP_Containing_an_Oxalamide_Based_Organic_Compound"><img alt="Research paper thumbnail of Effect of Thermal History and Shear on the Viscoelastic Response of iPP Containing an Oxalamide-Based Organic Compound" class="work-thumbnail" src="https://attachments.academia-assets.com/87219978/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/81036792/Effect_of_Thermal_History_and_Shear_on_the_Viscoelastic_Response_of_iPP_Containing_an_Oxalamide_Based_Organic_Compound">Effect of Thermal History and Shear on the Viscoelastic Response of iPP Containing an Oxalamide-Based Organic Compound</a></div><div class="wp-workCard_item"><span>Macromolecules</span><span>, 2019</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We report on the role of temperature and shear on the melt behavior of iPP in the presence of the...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We report on the role of temperature and shear on the melt behavior of iPP in the presence of the organic compound N1,N1′-(propane-1,3-diyl)bis(N2-hexyloxalamide) (OXA3,6). It is demonstrated that OXA3,6 facilitates a viscosity suppression when it resides in the molten state. The viscosity suppression is attributed to the interaction of iPP chains/ subchains with molten OXA3,6 nanoclusters. The exact molecular mechanism has not been identified; nevertheless, a tentative explanation is proposed. The observed viscosity suppression appears similar to that encountered in polymer melts filled with solid nanoparticles, with the difference that the OXA3,6 compound reported in this study facilitates the viscosity suppression in the molten state. Upon cooling, as crystal growth of OXA3,6 progresses, the decrease in viscosity is suppressed. Retrospectively, segmental absorption of iPP chains on the surface of micrometer-sized OXA3,6 crystallites favors the formation of dangling arms, yielding OXA3,6 crystallites decorated with partially absorbed iPP chains. In other words, the resulting OXA3,6 particle morphology resembles that of a hairy particle or a starlike polymer chain. Such hairy particles effectively facilitate a viscosity enhancement, similar to branched polymer chains. This hypothesis and its implications for the shear behavior of iPP are discussed and supported using plate−plate rheometry and slit-flow experiments combined with smallangle X-ray scattering analysis.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="c0408bef947d4c8f6ac62ca6d91fed28" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":87219978,"asset_id":81036792,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/87219978/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="81036792"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="81036792"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 81036792; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=81036792]").text(description); $(".js-view-count[data-work-id=81036792]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 81036792; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='81036792']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "c0408bef947d4c8f6ac62ca6d91fed28" } } $('.js-work-strip[data-work-id=81036792]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":81036792,"title":"Effect of Thermal History and Shear on the Viscoelastic Response of iPP Containing an Oxalamide-Based Organic Compound","translated_title":"","metadata":{"publisher":"American Chemical Society (ACS)","ai_title_tag":"Thermal and Shear Effects on iPP and OXA3,6","grobid_abstract":"We report on the role of temperature and shear on the melt behavior of iPP in the presence of the organic compound N1,N1′-(propane-1,3-diyl)bis(N2-hexyloxalamide) (OXA3,6). It is demonstrated that OXA3,6 facilitates a viscosity suppression when it resides in the molten state. The viscosity suppression is attributed to the interaction of iPP chains/ subchains with molten OXA3,6 nanoclusters. The exact molecular mechanism has not been identified; nevertheless, a tentative explanation is proposed. The observed viscosity suppression appears similar to that encountered in polymer melts filled with solid nanoparticles, with the difference that the OXA3,6 compound reported in this study facilitates the viscosity suppression in the molten state. Upon cooling, as crystal growth of OXA3,6 progresses, the decrease in viscosity is suppressed. Retrospectively, segmental absorption of iPP chains on the surface of micrometer-sized OXA3,6 crystallites favors the formation of dangling arms, yielding OXA3,6 crystallites decorated with partially absorbed iPP chains. In other words, the resulting OXA3,6 particle morphology resembles that of a hairy particle or a starlike polymer chain. Such hairy particles effectively facilitate a viscosity enhancement, similar to branched polymer chains. This hypothesis and its implications for the shear behavior of iPP are discussed and supported using plate−plate rheometry and slit-flow experiments combined with smallangle X-ray scattering analysis.","publication_date":{"day":null,"month":null,"year":2019,"errors":{}},"publication_name":"Macromolecules","grobid_abstract_attachment_id":87219978},"translated_abstract":null,"internal_url":"https://www.academia.edu/81036792/Effect_of_Thermal_History_and_Shear_on_the_Viscoelastic_Response_of_iPP_Containing_an_Oxalamide_Based_Organic_Compound","translated_internal_url":"","created_at":"2022-06-08T13:43:58.986-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":26113865,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":87219978,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/87219978/thumbnails/1.jpg","file_name":"acs.macromol.pdf","download_url":"https://www.academia.edu/attachments/87219978/download_file","bulk_download_file_name":"Effect_of_Thermal_History_and_Shear_on_t.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/87219978/acs.macromol-libre.pdf?1654722023=\u0026response-content-disposition=attachment%3B+filename%3DEffect_of_Thermal_History_and_Shear_on_t.pdf\u0026Expires=1742128089\u0026Signature=EeJqdvySjKCPy6Do6t5dlsAld67ofBFOf8~E1JyXh7TFd9U9GiKSAKuiTpYtA05T7~G31IlCaoXKchuc~D-gvyuZzGmBnt3Ql-Dy3Bdd559qjGWz3iYWBycgGR5p1Rc~dA3cp6H6u13VHvLvguOWKWMy7ksNQ8favolAFJkyNu2MO3HDM68Ws~chflu70NzyHTpVxlziPIY6WYiBKKhaJV3e4xCkYlDIpmq~5QusG3RbxfN6Jrk33razJQ0mx6kod5CGnouLJ2Gtzd25Yr--8X-k4QzbBPIpr~~dNRekU~EF1Kv9jgB0hCTp~CYFfS0Wz3r1ENz2ur~3KFvNdADgYw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Effect_of_Thermal_History_and_Shear_on_the_Viscoelastic_Response_of_iPP_Containing_an_Oxalamide_Based_Organic_Compound","translated_slug":"","page_count":14,"language":"en","content_type":"Work","summary":"We report on the role of temperature and shear on the melt behavior of iPP in the presence of the organic compound N1,N1′-(propane-1,3-diyl)bis(N2-hexyloxalamide) (OXA3,6). It is demonstrated that OXA3,6 facilitates a viscosity suppression when it resides in the molten state. The viscosity suppression is attributed to the interaction of iPP chains/ subchains with molten OXA3,6 nanoclusters. The exact molecular mechanism has not been identified; nevertheless, a tentative explanation is proposed. The observed viscosity suppression appears similar to that encountered in polymer melts filled with solid nanoparticles, with the difference that the OXA3,6 compound reported in this study facilitates the viscosity suppression in the molten state. Upon cooling, as crystal growth of OXA3,6 progresses, the decrease in viscosity is suppressed. Retrospectively, segmental absorption of iPP chains on the surface of micrometer-sized OXA3,6 crystallites favors the formation of dangling arms, yielding OXA3,6 crystallites decorated with partially absorbed iPP chains. In other words, the resulting OXA3,6 particle morphology resembles that of a hairy particle or a starlike polymer chain. Such hairy particles effectively facilitate a viscosity enhancement, similar to branched polymer chains. This hypothesis and its implications for the shear behavior of iPP are discussed and supported using plate−plate rheometry and slit-flow experiments combined with smallangle X-ray scattering analysis.","owner":{"id":26113865,"first_name":"Gerrit","middle_initials":null,"last_name":"Peters","page_name":"httpwwwtuenl","domain_name":"tue","created_at":"2015-02-11T05:19:07.533-08:00","display_name":"Gerrit Peters","url":"https://tue.academia.edu/httpwwwtuenl","email":"MEdFdzdhVzcxMW0vc3RhbWVFSVkzRFRWL096RnFxb1RmRXdpNmJPM0ptbz0tLXdwWGNGcmJIOFpRN2RqU0ZzRnEwTGc9PQ==--25beee9c65e79646b925ba4d8320f331c28570a3"},"attachments":[{"id":87219978,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/87219978/thumbnails/1.jpg","file_name":"acs.macromol.pdf","download_url":"https://www.academia.edu/attachments/87219978/download_file","bulk_download_file_name":"Effect_of_Thermal_History_and_Shear_on_t.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/87219978/acs.macromol-libre.pdf?1654722023=\u0026response-content-disposition=attachment%3B+filename%3DEffect_of_Thermal_History_and_Shear_on_t.pdf\u0026Expires=1742128089\u0026Signature=EeJqdvySjKCPy6Do6t5dlsAld67ofBFOf8~E1JyXh7TFd9U9GiKSAKuiTpYtA05T7~G31IlCaoXKchuc~D-gvyuZzGmBnt3Ql-Dy3Bdd559qjGWz3iYWBycgGR5p1Rc~dA3cp6H6u13VHvLvguOWKWMy7ksNQ8favolAFJkyNu2MO3HDM68Ws~chflu70NzyHTpVxlziPIY6WYiBKKhaJV3e4xCkYlDIpmq~5QusG3RbxfN6Jrk33razJQ0mx6kod5CGnouLJ2Gtzd25Yr--8X-k4QzbBPIpr~~dNRekU~EF1Kv9jgB0hCTp~CYFfS0Wz3r1ENz2ur~3KFvNdADgYw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":87219980,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/87219980/thumbnails/1.jpg","file_name":"acs.macromol.pdf","download_url":"https://www.academia.edu/attachments/87219980/download_file","bulk_download_file_name":"Effect_of_Thermal_History_and_Shear_on_t.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/87219980/acs.macromol-libre.pdf?1654722033=\u0026response-content-disposition=attachment%3B+filename%3DEffect_of_Thermal_History_and_Shear_on_t.pdf\u0026Expires=1742128089\u0026Signature=XXQxy3hCbFBRqoE6ieLHMwoQNIugzuVHuZy8W0YDQF16-bkCI98mNZzs42ztRSRTG6hLmvNErZ5rUZJGyizPU85ZhYcYo7ggguXE0iAsh8~lQ-FV3P9fRJPLgxWW12qBZVAR2U7b~S7BbyEzSzqdmsjZZSynnUHs~XyFdsPhOk8sMUtAG5b-hC~riF6e9gqWi0lktFcD5Kt4CcMcYYOFhnGuXgelKI6AeDj~MfbHNiD8CjPBDi4XaObrxafdXwolUS-tPC6sDRYMeJ1isBVrFywkhcn3HNIUS9OQPGwGrqy7ymUmQZWCIetcmoHdJhWteoZBjzO8nOCp87YA7XBGmA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":2383,"name":"Viscoelasticity","url":"https://www.academia.edu/Documents/in/Viscoelasticity"},{"id":168760,"name":"Macromolecules","url":"https://www.academia.edu/Documents/in/Macromolecules"},{"id":260118,"name":"CHEMICAL SCIENCES","url":"https://www.academia.edu/Documents/in/CHEMICAL_SCIENCES"}],"urls":[{"id":21238178,"url":"http://pubs.acs.org/doi/pdf/10.1021/acs.macromol.8b02612"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="81036791"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/81036791/Comparison_of_the_Dynamic_Behavior_of_Brain_Tissue_and_Two_Model_Materials"><img alt="Research paper thumbnail of Comparison of the Dynamic Behavior of Brain Tissue and Two Model Materials" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/81036791/Comparison_of_the_Dynamic_Behavior_of_Brain_Tissue_and_Two_Model_Materials">Comparison of the Dynamic Behavior of Brain Tissue and Two Model Materials</a></div><div class="wp-workCard_item"><span>SAE Technical Paper Series</span><span>, 1999</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">... Subject Areas: Highways; Research; Safety and Human Factors; I84: Personal Injuries. Last Mod...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">... Subject Areas: Highways; Research; Safety and Human Factors; I84: Personal Injuries. Last Modified: Nov 1 2000 12:00AM. ...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="81036791"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="81036791"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 81036791; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=81036791]").text(description); $(".js-view-count[data-work-id=81036791]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 81036791; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='81036791']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=81036791]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":81036791,"title":"Comparison of the Dynamic Behavior of Brain Tissue and Two Model Materials","translated_title":"","metadata":{"abstract":"... Subject Areas: Highways; Research; Safety and Human Factors; I84: Personal Injuries. Last Modified: Nov 1 2000 12:00AM. ...","publisher":"SAE International","publication_date":{"day":null,"month":null,"year":1999,"errors":{}},"publication_name":"SAE Technical Paper Series"},"translated_abstract":"... Subject Areas: Highways; Research; Safety and Human Factors; I84: Personal Injuries. Last Modified: Nov 1 2000 12:00AM. ...","internal_url":"https://www.academia.edu/81036791/Comparison_of_the_Dynamic_Behavior_of_Brain_Tissue_and_Two_Model_Materials","translated_internal_url":"","created_at":"2022-06-08T13:43:58.777-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":26113865,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Comparison_of_the_Dynamic_Behavior_of_Brain_Tissue_and_Two_Model_Materials","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"... Subject Areas: Highways; Research; Safety and Human Factors; I84: Personal Injuries. Last Modified: Nov 1 2000 12:00AM. ...","owner":{"id":26113865,"first_name":"Gerrit","middle_initials":null,"last_name":"Peters","page_name":"httpwwwtuenl","domain_name":"tue","created_at":"2015-02-11T05:19:07.533-08:00","display_name":"Gerrit Peters","url":"https://tue.academia.edu/httpwwwtuenl","email":"Z3lXTWRla2Q3cnI2ZHlBblc3YzBhZktyeFRtVUFqdmxCUjI4ZWhFZTZzVT0tLU9VWVV0dHlIMVlFRnNHYWQxQzlPK0E9PQ==--497923bfc070c71978df693f7e1fd6716ce3f65f"},"attachments":[],"research_interests":[],"urls":[{"id":21238177,"url":"https://www.sae.org/gsdownload/?prodCd=99SC21"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="81036790"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/81036790/Glass_transition_temperature_versus_structure_of_polyamide_6_A_flash_DSC_study"><img alt="Research paper thumbnail of Glass transition temperature versus structure of polyamide 6: A flash-DSC study" class="work-thumbnail" src="https://attachments.academia-assets.com/87220025/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/81036790/Glass_transition_temperature_versus_structure_of_polyamide_6_A_flash_DSC_study">Glass transition temperature versus structure of polyamide 6: A flash-DSC study</a></div><div class="wp-workCard_item"><span>Thermochimica Acta</span><span>, 2017</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">DOI to the publisher's website. • The final author version and the galley proof are versions of t...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">DOI to the publisher's website. • The final author version and the galley proof are versions of the publication after peer review. • The final published version features the final layout of the paper including the volume, issue and page numbers. Link to publication General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal. If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the "Taverne" license above, please follow below link for the End User Agreement:</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="426ea1326db42cdc54ae860ef7736952" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":87220025,"asset_id":81036790,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/87220025/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="81036790"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="81036790"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 81036790; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=81036790]").text(description); $(".js-view-count[data-work-id=81036790]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 81036790; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='81036790']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "426ea1326db42cdc54ae860ef7736952" } } $('.js-work-strip[data-work-id=81036790]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":81036790,"title":"Glass transition temperature versus structure of polyamide 6: A flash-DSC study","translated_title":"","metadata":{"publisher":"Elsevier BV","ai_title_tag":"Glass Transition Temperature and Structure of Polyamide 6","grobid_abstract":"DOI to the publisher's website. • The final author version and the galley proof are versions of the publication after peer review. • The final published version features the final layout of the paper including the volume, issue and page numbers. Link to publication General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal. If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the \"Taverne\" license above, please follow below link for the End User Agreement:","publication_date":{"day":null,"month":null,"year":2017,"errors":{}},"publication_name":"Thermochimica Acta","grobid_abstract_attachment_id":87220025},"translated_abstract":null,"internal_url":"https://www.academia.edu/81036790/Glass_transition_temperature_versus_structure_of_polyamide_6_A_flash_DSC_study","translated_internal_url":"","created_at":"2022-06-08T13:43:58.584-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":26113865,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":87220025,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/87220025/thumbnails/1.jpg","file_name":"1_s2.0_S0040603117302423_main.pdf","download_url":"https://www.academia.edu/attachments/87220025/download_file","bulk_download_file_name":"Glass_transition_temperature_versus_stru.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/87220025/1_s2.0_S0040603117302423_main-libre.pdf?1654722013=\u0026response-content-disposition=attachment%3B+filename%3DGlass_transition_temperature_versus_stru.pdf\u0026Expires=1742128089\u0026Signature=exgVC1VDTyKZ3cMe2nKo0wtC6gUXelMmdlVLxcvGKzeBOnrwc2qwp7fiLlqXThrh6Kx55O5ZjDZTfP18rVmuROmao-QXNwKzs-WQiIBvUpgz5KgoEsuVUdNqXC~HpV~PiCx87D9-WRN4AG1wR5iVcAYxXlbr4irHulb1S-7QhcEw29dPBngbNk82axHS5Azs6VpjdTIhq4N09HqAA-M3iROCSVHh~PHOUXXEBHd35a35TiOPkKSoS4EjN-ZtTP1dYYRlAIMHeu6S~A7OCgqnAmUcyZW7XTMCGyuUlr4QeFwXebFqLbJa4eiIs4SJmE5ERHizczXdQUEeqZJVaTtG1g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Glass_transition_temperature_versus_structure_of_polyamide_6_A_flash_DSC_study","translated_slug":"","page_count":14,"language":"en","content_type":"Work","summary":"DOI to the publisher's website. • The final author version and the galley proof are versions of the publication after peer review. • The final published version features the final layout of the paper including the volume, issue and page numbers. Link to publication General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal. If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the \"Taverne\" license above, please follow below link for the End User Agreement:","owner":{"id":26113865,"first_name":"Gerrit","middle_initials":null,"last_name":"Peters","page_name":"httpwwwtuenl","domain_name":"tue","created_at":"2015-02-11T05:19:07.533-08:00","display_name":"Gerrit Peters","url":"https://tue.academia.edu/httpwwwtuenl","email":"SHBHU1VuY0hlYXRiWG02Q0pIbEo2aE9kT3lpeEVQWTExWVU3V2NjckJ1cz0tLVZ4cjZtMUltQmZFa1BVS211VUFiekE9PQ==--371d7e9c60128cc3d842c551937927d349236779"},"attachments":[{"id":87220025,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/87220025/thumbnails/1.jpg","file_name":"1_s2.0_S0040603117302423_main.pdf","download_url":"https://www.academia.edu/attachments/87220025/download_file","bulk_download_file_name":"Glass_transition_temperature_versus_stru.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/87220025/1_s2.0_S0040603117302423_main-libre.pdf?1654722013=\u0026response-content-disposition=attachment%3B+filename%3DGlass_transition_temperature_versus_stru.pdf\u0026Expires=1742128089\u0026Signature=exgVC1VDTyKZ3cMe2nKo0wtC6gUXelMmdlVLxcvGKzeBOnrwc2qwp7fiLlqXThrh6Kx55O5ZjDZTfP18rVmuROmao-QXNwKzs-WQiIBvUpgz5KgoEsuVUdNqXC~HpV~PiCx87D9-WRN4AG1wR5iVcAYxXlbr4irHulb1S-7QhcEw29dPBngbNk82axHS5Azs6VpjdTIhq4N09HqAA-M3iROCSVHh~PHOUXXEBHd35a35TiOPkKSoS4EjN-ZtTP1dYYRlAIMHeu6S~A7OCgqnAmUcyZW7XTMCGyuUlr4QeFwXebFqLbJa4eiIs4SJmE5ERHizczXdQUEeqZJVaTtG1g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":524,"name":"Analytical Chemistry","url":"https://www.academia.edu/Documents/in/Analytical_Chemistry"},{"id":897823,"name":"Elsevier","url":"https://www.academia.edu/Documents/in/Elsevier"}],"urls":[{"id":21238176,"url":"https://api.elsevier.com/content/article/PII:S0040603117302423?httpAccept=text/xml"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="81036789"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/81036789/Modeling_Flow_Induced_Crystallization"><img alt="Research paper thumbnail of Modeling Flow-Induced Crystallization" class="work-thumbnail" src="https://attachments.academia-assets.com/87220027/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/81036789/Modeling_Flow_Induced_Crystallization">Modeling Flow-Induced Crystallization</a></div><div class="wp-workCard_item"><span>Advances in Polymer Science</span><span>, 2016</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">A numerical model is presented that describes all aspects of flow-induced crystallization of isot...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">A numerical model is presented that describes all aspects of flow-induced crystallization of isotactic polypropylene at high shear rates and elevated pressures. It incorporates nonlinear viscoelasticity, including viscosity change as a result of formation of oriented fibrillar crystals (shish), compressibility, and nonisothermal process conditions caused by shear heating and heat release as a result of crystallization. In the first part of this chapter, the model is validated with experimental data obtained in a channel flow geometry. Quantitative agreement between experimental results and the numerical model is observed in terms of pressure drop, apparent crystallinity, parent/daughter ratio, Hermans' orientation, and shear layer thickness. In the second part, the focus is on flow-induced crystallization of isotactic polypropylene at elevated pressures, resulting in multiple crystal phases and morphologies. All parameters but one are fixed a priori from the first part of the chapter. One additional parameter, determining the portion of β-crystal spherulites nucleated by flow, is introduced. By doing so, an accurate description of the fraction of β-phase crystals is obtained. The model accurately captures experimental data for fractions of all crystal phases over a wide range of flow conditions (shear rates from 0 to 200 s À1 , pressures from 100 to 1,200 bar, shear temperatures from 130 C to 180 C). Moreover, it is shown that, for high shear rates and pressures, the measured γ-phase fractions can only be matched if γ-crystals can nucleate directly on shish.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="1b1219e2c9d68b78a50284c863fe3ae8" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":87220027,"asset_id":81036789,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/87220027/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="81036789"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="81036789"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 81036789; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=81036789]").text(description); $(".js-view-count[data-work-id=81036789]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 81036789; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='81036789']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "1b1219e2c9d68b78a50284c863fe3ae8" } } $('.js-work-strip[data-work-id=81036789]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":81036789,"title":"Modeling Flow-Induced Crystallization","translated_title":"","metadata":{"publisher":"Springer International Publishing","grobid_abstract":"A numerical model is presented that describes all aspects of flow-induced crystallization of isotactic polypropylene at high shear rates and elevated pressures. It incorporates nonlinear viscoelasticity, including viscosity change as a result of formation of oriented fibrillar crystals (shish), compressibility, and nonisothermal process conditions caused by shear heating and heat release as a result of crystallization. In the first part of this chapter, the model is validated with experimental data obtained in a channel flow geometry. Quantitative agreement between experimental results and the numerical model is observed in terms of pressure drop, apparent crystallinity, parent/daughter ratio, Hermans' orientation, and shear layer thickness. In the second part, the focus is on flow-induced crystallization of isotactic polypropylene at elevated pressures, resulting in multiple crystal phases and morphologies. All parameters but one are fixed a priori from the first part of the chapter. One additional parameter, determining the portion of β-crystal spherulites nucleated by flow, is introduced. By doing so, an accurate description of the fraction of β-phase crystals is obtained. The model accurately captures experimental data for fractions of all crystal phases over a wide range of flow conditions (shear rates from 0 to 200 s À1 , pressures from 100 to 1,200 bar, shear temperatures from 130 C to 180 C). Moreover, it is shown that, for high shear rates and pressures, the measured γ-phase fractions can only be matched if γ-crystals can nucleate directly on shish.","publication_date":{"day":null,"month":null,"year":2016,"errors":{}},"publication_name":"Advances in Polymer Science","grobid_abstract_attachment_id":87220027},"translated_abstract":null,"internal_url":"https://www.academia.edu/81036789/Modeling_Flow_Induced_Crystallization","translated_internal_url":"","created_at":"2022-06-08T13:43:58.413-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":26113865,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":87220027,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/87220027/thumbnails/1.jpg","file_name":"Roozemond_Chapter_APS2016.pdf","download_url":"https://www.academia.edu/attachments/87220027/download_file","bulk_download_file_name":"Modeling_Flow_Induced_Crystallization.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/87220027/Roozemond_Chapter_APS2016-libre.pdf?1654722018=\u0026response-content-disposition=attachment%3B+filename%3DModeling_Flow_Induced_Crystallization.pdf\u0026Expires=1742128089\u0026Signature=Ttc3YWAOponrxAbierRQArAgnq~aO~WdNVyj9WNKYcRRwvUKRvMIISylkujEHq6SH3u5hXZIgjSt-SWJ6I7xRBGJ59KXI1OyTUy9TVUtSTgUD7DIUgdrKjvDhVsziOI9f-krXWUxKHZ5l0xL2kWv1WuK-PNMFaSJo-sGZUluGAAUcBO47l3O-3d0UyoEmvo5138gjTRelFfYE9-BrzMIaPFkh2jSknOk25xM7bc~CFLZuSloWL~gGHDoXTYaBagzhY7KxUTgjVroWQoMjL9RSe3KmXzN9pasAt18lfIQ8vwYKZhslXuFl4pAwMujBFuunzMEk9DjLfeXMMetX79B8Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Modeling_Flow_Induced_Crystallization","translated_slug":"","page_count":53,"language":"en","content_type":"Work","summary":"A numerical model is presented that describes all aspects of flow-induced crystallization of isotactic polypropylene at high shear rates and elevated pressures. It incorporates nonlinear viscoelasticity, including viscosity change as a result of formation of oriented fibrillar crystals (shish), compressibility, and nonisothermal process conditions caused by shear heating and heat release as a result of crystallization. In the first part of this chapter, the model is validated with experimental data obtained in a channel flow geometry. Quantitative agreement between experimental results and the numerical model is observed in terms of pressure drop, apparent crystallinity, parent/daughter ratio, Hermans' orientation, and shear layer thickness. In the second part, the focus is on flow-induced crystallization of isotactic polypropylene at elevated pressures, resulting in multiple crystal phases and morphologies. All parameters but one are fixed a priori from the first part of the chapter. One additional parameter, determining the portion of β-crystal spherulites nucleated by flow, is introduced. By doing so, an accurate description of the fraction of β-phase crystals is obtained. The model accurately captures experimental data for fractions of all crystal phases over a wide range of flow conditions (shear rates from 0 to 200 s À1 , pressures from 100 to 1,200 bar, shear temperatures from 130 C to 180 C). Moreover, it is shown that, for high shear rates and pressures, the measured γ-phase fractions can only be matched if γ-crystals can nucleate directly on shish.","owner":{"id":26113865,"first_name":"Gerrit","middle_initials":null,"last_name":"Peters","page_name":"httpwwwtuenl","domain_name":"tue","created_at":"2015-02-11T05:19:07.533-08:00","display_name":"Gerrit Peters","url":"https://tue.academia.edu/httpwwwtuenl","email":"emlObkU5OUFjcThhV1pkN0dSMmxZcTcwVHo1WHhZaEJUV09JcWM4VXJtdz0tLVFUL0xNcEJkWktJNDVrbnU2dnBQMFE9PQ==--5efe7ca63f41e2d7f1e918ea47ec2db5863fdd75"},"attachments":[{"id":87220027,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/87220027/thumbnails/1.jpg","file_name":"Roozemond_Chapter_APS2016.pdf","download_url":"https://www.academia.edu/attachments/87220027/download_file","bulk_download_file_name":"Modeling_Flow_Induced_Crystallization.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/87220027/Roozemond_Chapter_APS2016-libre.pdf?1654722018=\u0026response-content-disposition=attachment%3B+filename%3DModeling_Flow_Induced_Crystallization.pdf\u0026Expires=1742128089\u0026Signature=Ttc3YWAOponrxAbierRQArAgnq~aO~WdNVyj9WNKYcRRwvUKRvMIISylkujEHq6SH3u5hXZIgjSt-SWJ6I7xRBGJ59KXI1OyTUy9TVUtSTgUD7DIUgdrKjvDhVsziOI9f-krXWUxKHZ5l0xL2kWv1WuK-PNMFaSJo-sGZUluGAAUcBO47l3O-3d0UyoEmvo5138gjTRelFfYE9-BrzMIaPFkh2jSknOk25xM7bc~CFLZuSloWL~gGHDoXTYaBagzhY7KxUTgjVroWQoMjL9RSe3KmXzN9pasAt18lfIQ8vwYKZhslXuFl4pAwMujBFuunzMEk9DjLfeXMMetX79B8Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":56,"name":"Materials Engineering","url":"https://www.academia.edu/Documents/in/Materials_Engineering"},{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":531,"name":"Organic Chemistry","url":"https://www.academia.edu/Documents/in/Organic_Chemistry"},{"id":2720,"name":"Polymer science","url":"https://www.academia.edu/Documents/in/Polymer_science"},{"id":12597,"name":"Crystallization","url":"https://www.academia.edu/Documents/in/Crystallization"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="81036788"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/81036788/Nucleation_Induced_by_Short_Term_Pressurization_of_an_Undercooled_Isotactic_Polypropylene_Melt"><img alt="Research paper thumbnail of Nucleation Induced by ”Short-Term Pressurization” of an Undercooled Isotactic Polypropylene Melt" class="work-thumbnail" src="https://attachments.academia-assets.com/87220026/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/81036788/Nucleation_Induced_by_Short_Term_Pressurization_of_an_Undercooled_Isotactic_Polypropylene_Melt">Nucleation Induced by ”Short-Term Pressurization” of an Undercooled Isotactic Polypropylene Melt</a></div><div class="wp-workCard_item"><span>European Polymer Journal</span><span>, 2016</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Nucleation of semi-crystalline polymers is very sensitive to perturbations of the melt state. In ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Nucleation of semi-crystalline polymers is very sensitive to perturbations of the melt state. In contrast to the case of flow, the influence of pressure changes on nucleation has been almost neglected so far. In this work we explore the effect of the pressure history on isotactic polypropylene crystallization by applying a brief step-like increase of pressure to the undercooled melt. Using dilatometry and synchrotron X-ray diffraction, an enhancement of crystallization kinetics proportional to the magnitude of the pressure pulse is revealed. This acceleration is linked to an increase of the number of active nuclei after the short term pressurization, as confirmed by ex-situ optical microscopy observations. Up to an order of magnitude increase in nucleation density is found, for pressure pulses around 600-700 bar. The pressure-induced nucleating effect is interpreted in the light of classical nucleation theory; although a non-classical "barrier-less" nucleation mechanism is also envisaged.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="b1569ecd488a63b51817b64dcf01113c" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":87220026,"asset_id":81036788,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/87220026/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="81036788"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="81036788"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 81036788; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=81036788]").text(description); $(".js-view-count[data-work-id=81036788]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 81036788; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='81036788']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "b1569ecd488a63b51817b64dcf01113c" } } $('.js-work-strip[data-work-id=81036788]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":81036788,"title":"Nucleation Induced by ”Short-Term Pressurization” of an Undercooled Isotactic Polypropylene Melt","translated_title":"","metadata":{"publisher":"Elsevier BV","ai_title_tag":"Pressure-Induced Nucleation in Isotactic Polypropylene","grobid_abstract":"Nucleation of semi-crystalline polymers is very sensitive to perturbations of the melt state. In contrast to the case of flow, the influence of pressure changes on nucleation has been almost neglected so far. In this work we explore the effect of the pressure history on isotactic polypropylene crystallization by applying a brief step-like increase of pressure to the undercooled melt. Using dilatometry and synchrotron X-ray diffraction, an enhancement of crystallization kinetics proportional to the magnitude of the pressure pulse is revealed. This acceleration is linked to an increase of the number of active nuclei after the short term pressurization, as confirmed by ex-situ optical microscopy observations. Up to an order of magnitude increase in nucleation density is found, for pressure pulses around 600-700 bar. The pressure-induced nucleating effect is interpreted in the light of classical nucleation theory; although a non-classical \"barrier-less\" nucleation mechanism is also envisaged.","publication_date":{"day":null,"month":null,"year":2016,"errors":{}},"publication_name":"European Polymer Journal","grobid_abstract_attachment_id":87220026},"translated_abstract":null,"internal_url":"https://www.academia.edu/81036788/Nucleation_Induced_by_Short_Term_Pressurization_of_an_Undercooled_Isotactic_Polypropylene_Melt","translated_internal_url":"","created_at":"2022-06-08T13:43:58.271-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":26113865,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":87220026,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/87220026/thumbnails/1.jpg","file_name":"pagination_EPJ_7592-proof.pdf","download_url":"https://www.academia.edu/attachments/87220026/download_file","bulk_download_file_name":"Nucleation_Induced_by_Short_Term_Pressur.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/87220026/pagination_EPJ_7592-proof-libre.pdf?1654722013=\u0026response-content-disposition=attachment%3B+filename%3DNucleation_Induced_by_Short_Term_Pressur.pdf\u0026Expires=1742128089\u0026Signature=f7V9ytzR0Io1l9abtknkQNjks7bmyLSN3hqoqzP7WylEIRx9SX48iDvovqOUefZYauGQqC9xjFGc9JEo4d0IdeztP5CCPQC1NA76eTEOB~0VbnX~cCUCdFHN2tnhV0Ag899OmDEM5wuDsMoynew4pJ8I5DafKOYUO0VHZUMVu2bd8yyBCdDVB5uO9nZCgq5Ckjva9WhSJ~1-vh3prcyjPKF5BclnnfIjYCRLsPJNJDUpYdXqNI7IkizVVRfftDeCJLaphe~U6N18WmAIUjXRv8EJ0r78q7gbFRWmG~Vp4MTvIpuhQ0lA7pffE5CulRjV7p7TfmrZcYpHEm-c7O8bIw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Nucleation_Induced_by_Short_Term_Pressurization_of_an_Undercooled_Isotactic_Polypropylene_Melt","translated_slug":"","page_count":11,"language":"en","content_type":"Work","summary":"Nucleation of semi-crystalline polymers is very sensitive to perturbations of the melt state. In contrast to the case of flow, the influence of pressure changes on nucleation has been almost neglected so far. In this work we explore the effect of the pressure history on isotactic polypropylene crystallization by applying a brief step-like increase of pressure to the undercooled melt. Using dilatometry and synchrotron X-ray diffraction, an enhancement of crystallization kinetics proportional to the magnitude of the pressure pulse is revealed. This acceleration is linked to an increase of the number of active nuclei after the short term pressurization, as confirmed by ex-situ optical microscopy observations. Up to an order of magnitude increase in nucleation density is found, for pressure pulses around 600-700 bar. The pressure-induced nucleating effect is interpreted in the light of classical nucleation theory; although a non-classical \"barrier-less\" nucleation mechanism is also envisaged.","owner":{"id":26113865,"first_name":"Gerrit","middle_initials":null,"last_name":"Peters","page_name":"httpwwwtuenl","domain_name":"tue","created_at":"2015-02-11T05:19:07.533-08:00","display_name":"Gerrit Peters","url":"https://tue.academia.edu/httpwwwtuenl","email":"R0RGNzlIOU1YZjgvMEtJK0xnN25PN054UVpQQ1lYN1dTeVI1R3RTOWtacz0tLUhjWDRSTWJSNkZjK3FJYVhtdXNKU2c9PQ==--c7fe6748175034fe1b6a9050e69e758ca419a3c9"},"attachments":[{"id":87220026,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/87220026/thumbnails/1.jpg","file_name":"pagination_EPJ_7592-proof.pdf","download_url":"https://www.academia.edu/attachments/87220026/download_file","bulk_download_file_name":"Nucleation_Induced_by_Short_Term_Pressur.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/87220026/pagination_EPJ_7592-proof-libre.pdf?1654722013=\u0026response-content-disposition=attachment%3B+filename%3DNucleation_Induced_by_Short_Term_Pressur.pdf\u0026Expires=1742128089\u0026Signature=f7V9ytzR0Io1l9abtknkQNjks7bmyLSN3hqoqzP7WylEIRx9SX48iDvovqOUefZYauGQqC9xjFGc9JEo4d0IdeztP5CCPQC1NA76eTEOB~0VbnX~cCUCdFHN2tnhV0Ag899OmDEM5wuDsMoynew4pJ8I5DafKOYUO0VHZUMVu2bd8yyBCdDVB5uO9nZCgq5Ckjva9WhSJ~1-vh3prcyjPKF5BclnnfIjYCRLsPJNJDUpYdXqNI7IkizVVRfftDeCJLaphe~U6N18WmAIUjXRv8EJ0r78q7gbFRWmG~Vp4MTvIpuhQ0lA7pffE5CulRjV7p7TfmrZcYpHEm-c7O8bIw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":56,"name":"Materials Engineering","url":"https://www.academia.edu/Documents/in/Materials_Engineering"},{"id":72,"name":"Chemical Engineering","url":"https://www.academia.edu/Documents/in/Chemical_Engineering"},{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":531,"name":"Organic Chemistry","url":"https://www.academia.edu/Documents/in/Organic_Chemistry"},{"id":51531,"name":"Pergamon","url":"https://www.academia.edu/Documents/in/Pergamon"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> </div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/google_contacts-0dfb882d836b94dbcb4a2d123d6933fc9533eda5be911641f20b4eb428429600.js"], function() { // from javascript_helper.rb $('.js-google-connect-button').click(function(e) { e.preventDefault(); GoogleContacts.authorize_and_show_contacts(); Aedu.Dismissibles.recordClickthrough("WowProfileImportContactsPrompt"); }); $('.js-update-biography-button').click(function(e) { e.preventDefault(); Aedu.Dismissibles.recordClickthrough("UpdateUserBiographyPrompt"); $.ajax({ url: $r.api_v0_profiles_update_about_path({ subdomain_param: 'api', about: "", }), type: 'PUT', success: function(response) { location.reload(); } }); }); $('.js-work-creator-button').click(function (e) { e.preventDefault(); window.location = $r.upload_funnel_document_path({ source: encodeURIComponent(""), }); }); $('.js-video-upload-button').click(function (e) { e.preventDefault(); window.location = $r.upload_funnel_video_path({ source: encodeURIComponent(""), }); }); $('.js-do-this-later-button').click(function() { $(this).closest('.js-profile-nag-panel').remove(); Aedu.Dismissibles.recordDismissal("WowProfileImportContactsPrompt"); }); $('.js-update-biography-do-this-later-button').click(function(){ $(this).closest('.js-profile-nag-panel').remove(); Aedu.Dismissibles.recordDismissal("UpdateUserBiographyPrompt"); }); $('.wow-profile-mentions-upsell--close').click(function(){ $('.wow-profile-mentions-upsell--panel').hide(); Aedu.Dismissibles.recordDismissal("WowProfileMentionsUpsell"); }); $('.wow-profile-mentions-upsell--button').click(function(){ Aedu.Dismissibles.recordClickthrough("WowProfileMentionsUpsell"); }); new WowProfile.SocialRedesignUserWorks({ initialWorksOffset: 20, allWorksOffset: 20, maxSections: 1 }) }); </script> </div></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile_edit-5ea339ee107c863779f560dd7275595239fed73f1a13d279d2b599a28c0ecd33.js","https://a.academia-assets.com/assets/add_coauthor-22174b608f9cb871d03443cafa7feac496fb50d7df2d66a53f5ee3c04ba67f53.js","https://a.academia-assets.com/assets/tab-dcac0130902f0cc2d8cb403714dd47454f11fc6fb0e99ae6a0827b06613abc20.js","https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js"], function() { // from javascript_helper.rb window.ae = window.ae || {}; window.ae.WowProfile = window.ae.WowProfile || {}; if(Aedu.User.current && Aedu.User.current.id === $viewedUser.id) { window.ae.WowProfile.current_user_edit = {}; new WowProfileEdit.EditUploadView({ el: '.js-edit-upload-button-wrapper', model: window.$current_user, }); new AddCoauthor.AddCoauthorsController(); } var userInfoView = new WowProfile.SocialRedesignUserInfo({ recaptcha_key: "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB" }); WowProfile.router = new WowProfile.Router({ userInfoView: userInfoView }); Backbone.history.start({ pushState: true, root: "/" + $viewedUser.page_name }); new WowProfile.UserWorksNav() }); </script> </div> <div class="bootstrap login"><div class="modal fade login-modal" id="login-modal"><div class="login-modal-dialog modal-dialog"><div class="modal-content"><div class="modal-header"><button class="close close" data-dismiss="modal" type="button"><span aria-hidden="true">×</span><span class="sr-only">Close</span></button><h4 class="modal-title text-center"><strong>Log In</strong></h4></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><button class="btn btn-fb btn-lg btn-block btn-v-center-content" id="login-facebook-oauth-button"><svg style="float: left; width: 19px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="facebook-square" class="svg-inline--fa fa-facebook-square fa-w-14" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512"><path fill="currentColor" d="M400 32H48A48 48 0 0 0 0 80v352a48 48 0 0 0 48 48h137.25V327.69h-63V256h63v-54.64c0-62.15 37-96.48 93.67-96.48 27.14 0 55.52 4.84 55.52 4.84v61h-31.27c-30.81 0-40.42 19.12-40.42 38.73V256h68.78l-11 71.69h-57.78V480H400a48 48 0 0 0 48-48V80a48 48 0 0 0-48-48z"></path></svg><small><strong>Log in</strong> with <strong>Facebook</strong></small></button><br /><button class="btn btn-google btn-lg btn-block btn-v-center-content" id="login-google-oauth-button"><svg style="float: left; width: 22px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="google-plus" class="svg-inline--fa fa-google-plus fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M256,8C119.1,8,8,119.1,8,256S119.1,504,256,504,504,392.9,504,256,392.9,8,256,8ZM185.3,380a124,124,0,0,1,0-248c31.3,0,60.1,11,83,32.3l-33.6,32.6c-13.2-12.9-31.3-19.1-49.4-19.1-42.9,0-77.2,35.5-77.2,78.1S142.3,334,185.3,334c32.6,0,64.9-19.1,70.1-53.3H185.3V238.1H302.2a109.2,109.2,0,0,1,1.9,20.7c0,70.8-47.5,121.2-118.8,121.2ZM415.5,273.8v35.5H380V273.8H344.5V238.3H380V202.8h35.5v35.5h35.2v35.5Z"></path></svg><small><strong>Log in</strong> with <strong>Google</strong></small></button><br /><style type="text/css">.sign-in-with-apple-button { width: 100%; height: 52px; border-radius: 3px; border: 1px solid black; cursor: pointer; } .sign-in-with-apple-button > div { margin: 0 auto; / This centers the Apple-rendered button horizontally }</style><script src="https://appleid.cdn-apple.com/appleauth/static/jsapi/appleid/1/en_US/appleid.auth.js" type="text/javascript"></script><div class="sign-in-with-apple-button" data-border="false" data-color="white" id="appleid-signin"><span ="Sign Up with Apple" class="u-fs11"></span></div><script>AppleID.auth.init({ clientId: 'edu.academia.applesignon', scope: 'name email', redirectURI: 'https://www.academia.edu/sessions', state: "97670a88bcd9d054c789abac276e03aba32d50406fc9e3774e1e044530c56874", });</script><script>// Hacky way of checking if on fast loswp if (window.loswp == null) { (function() { const Google = window?.Aedu?.Auth?.OauthButton?.Login?.Google; const Facebook = window?.Aedu?.Auth?.OauthButton?.Login?.Facebook; if (Google) { new Google({ el: '#login-google-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } if (Facebook) { new Facebook({ el: '#login-facebook-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } })(); }</script></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><div class="hr-heading login-hr-heading"><span class="hr-heading-text">or</span></div></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><form class="js-login-form" action="https://www.academia.edu/sessions" accept-charset="UTF-8" method="post"><input type="hidden" name="authenticity_token" value="fEENHM2Ec0Fs1qh_KB8djTzVolDgQU9mZL8IdXdHE09rIAmjJfoeJMQzfrdXml6v4UNDa2euoesYZa_q7t2ZEw" autocomplete="off" /><div class="form-group"><label class="control-label" for="login-modal-email-input" style="font-size: 14px;">Email</label><input class="form-control" id="login-modal-email-input" name="login" type="email" /></div><div class="form-group"><label class="control-label" for="login-modal-password-input" style="font-size: 14px;">Password</label><input class="form-control" id="login-modal-password-input" name="password" type="password" /></div><input type="hidden" name="post_login_redirect_url" id="post_login_redirect_url" value="https://tue.academia.edu/httpwwwtuenl" autocomplete="off" /><div class="checkbox"><label><input type="checkbox" name="remember_me" id="remember_me" value="1" checked="checked" /><small style="font-size: 12px; margin-top: 2px; display: inline-block;">Remember me on this computer</small></label></div><br><input type="submit" name="commit" value="Log In" class="btn btn-primary btn-block btn-lg js-login-submit" data-disable-with="Log In" /></br></form><script>typeof window?.Aedu?.recaptchaManagedForm === 'function' && window.Aedu.recaptchaManagedForm( document.querySelector('.js-login-form'), document.querySelector('.js-login-submit') );</script><small style="font-size: 12px;"><br />or <a data-target="#login-modal-reset-password-container" data-toggle="collapse" href="javascript:void(0)">reset password</a></small><div class="collapse" id="login-modal-reset-password-container"><br /><div class="well margin-0x"><form class="js-password-reset-form" action="https://www.academia.edu/reset_password" accept-charset="UTF-8" method="post"><input type="hidden" name="authenticity_token" value="MTwyAfQjaFeDzqTjL0AtS6Tm1fjxDLAe32DS79-2F2EmXTa-HF0FMisrcitQxW5peXA0w3bjXpOjunVwRiydPQ" autocomplete="off" /><p>Enter the email address you signed up with and we'll email you a reset link.</p><div class="form-group"><input class="form-control" name="email" type="email" /></div><script src="https://recaptcha.net/recaptcha/api.js" async defer></script> <script> var invisibleRecaptchaSubmit = function () { var closestForm = function (ele) { var curEle = ele.parentNode; while (curEle.nodeName !== 'FORM' && curEle.nodeName !== 'BODY'){ curEle = curEle.parentNode; } return curEle.nodeName === 'FORM' ? curEle : null }; var eles = document.getElementsByClassName('g-recaptcha'); if (eles.length > 0) { var form = closestForm(eles[0]); if (form) { form.submit(); } } }; </script> <input type="submit" data-sitekey="6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj" data-callback="invisibleRecaptchaSubmit" class="g-recaptcha btn btn-primary btn-block" value="Email me a link" value=""/> </form></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/collapse-45805421cf446ca5adf7aaa1935b08a3a8d1d9a6cc5d91a62a2a3a00b20b3e6a.js"], function() { // from javascript_helper.rb $("#login-modal-reset-password-container").on("shown.bs.collapse", function() { $(this).find("input[type=email]").focus(); }); }); </script> </div></div></div><div class="modal-footer"><div class="text-center"><small style="font-size: 12px;">Need an account? <a rel="nofollow" href="https://www.academia.edu/signup">Click here to sign up</a></small></div></div></div></div></div></div><script>// If we are on subdomain or non-bootstrapped page, redirect to login page instead of showing modal (function(){ if (typeof $ === 'undefined') return; var host = window.location.hostname; if ((host === $domain || host === "www."+$domain) && (typeof $().modal === 'function')) { $("#nav_log_in").click(function(e) { // Don't follow the link and open the modal e.preventDefault(); $("#login-modal").on('shown.bs.modal', function() { $(this).find("#login-modal-email-input").focus() }).modal('show'); }); } })()</script> <div class="bootstrap" id="footer"><div class="footer-content clearfix text-center padding-top-7x" style="width:100%;"><ul class="footer-links-secondary footer-links-wide list-inline margin-bottom-1x"><li><a href="https://www.academia.edu/about">About</a></li><li><a href="https://www.academia.edu/press">Press</a></li><li><a href="https://www.academia.edu/documents">Papers</a></li><li><a href="https://www.academia.edu/topics">Topics</a></li><li><a href="https://www.academia.edu/journals">Academia.edu Journals</a></li><li><a rel="nofollow" href="https://www.academia.edu/hiring"><svg style="width: 13px; height: 13px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="briefcase" class="svg-inline--fa fa-briefcase fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M320 336c0 8.84-7.16 16-16 16h-96c-8.84 0-16-7.16-16-16v-48H0v144c0 25.6 22.4 48 48 48h416c25.6 0 48-22.4 48-48V288H320v48zm144-208h-80V80c0-25.6-22.4-48-48-48H176c-25.6 0-48 22.4-48 48v48H48c-25.6 0-48 22.4-48 48v80h512v-80c0-25.6-22.4-48-48-48zm-144 0H192V96h128v32z"></path></svg> <strong>We're Hiring!</strong></a></li><li><a rel="nofollow" href="https://support.academia.edu/hc/en-us"><svg style="width: 12px; height: 12px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="question-circle" class="svg-inline--fa fa-question-circle fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M504 256c0 136.997-111.043 248-248 248S8 392.997 8 256C8 119.083 119.043 8 256 8s248 111.083 248 248zM262.655 90c-54.497 0-89.255 22.957-116.549 63.758-3.536 5.286-2.353 12.415 2.715 16.258l34.699 26.31c5.205 3.947 12.621 3.008 16.665-2.122 17.864-22.658 30.113-35.797 57.303-35.797 20.429 0 45.698 13.148 45.698 32.958 0 14.976-12.363 22.667-32.534 33.976C247.128 238.528 216 254.941 216 296v4c0 6.627 5.373 12 12 12h56c6.627 0 12-5.373 12-12v-1.333c0-28.462 83.186-29.647 83.186-106.667 0-58.002-60.165-102-116.531-102zM256 338c-25.365 0-46 20.635-46 46 0 25.364 20.635 46 46 46s46-20.636 46-46c0-25.365-20.635-46-46-46z"></path></svg> <strong>Help Center</strong></a></li></ul><ul class="footer-links-tertiary list-inline margin-bottom-1x"><li class="small">Find new research papers in:</li><li class="small"><a href="https://www.academia.edu/Documents/in/Physics">Physics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Chemistry">Chemistry</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Biology">Biology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Health_Sciences">Health Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Ecology">Ecology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Earth_Sciences">Earth Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Cognitive_Science">Cognitive Science</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Mathematics">Mathematics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Computer_Science">Computer Science</a></li></ul></div></div><div class="DesignSystem" id="credit" style="width:100%;"><ul class="u-pl0x footer-links-legal list-inline"><li><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li>Academia ©2025</li></ul></div><script> //<![CDATA[ window.detect_gmtoffset = true; window.Academia && window.Academia.set_gmtoffset && Academia.set_gmtoffset('/gmtoffset'); //]]> </script> <div id='overlay_background'></div> <div id='bootstrap-modal-container' class='bootstrap'></div> <div id='ds-modal-container' class='bootstrap DesignSystem'></div> <div id='full-screen-modal'></div> </div> </body> </html>