CINXE.COM
(PDF) Numerical study of mixed convection of nanofluid inside an inlet/outlet inclined cavity under the effect of Brownian motion using Lattice Boltzmann Method (LBM | Dr. Davood Toghraie - Academia.edu
<!DOCTYPE html> <html > <head> <meta charset="utf-8"> <meta rel="search" type="application/opensearchdescription+xml" href="/open_search.xml" title="Academia.edu"> <meta content="width=device-width, initial-scale=1" name="viewport"> <meta name="google-site-verification" content="bKJMBZA7E43xhDOopFZkssMMkBRjvYERV-NaN4R6mrs"> <meta name="csrf-param" content="authenticity_token" /> <meta name="csrf-token" content="qYTussIJY8u15Uo2FBU3rdyuYhL2+9qUklAhwUiPsnDpHRcYAdYtAY8O/f2XK6Ujvc47r6NoGSoryCy71zAH3g==" /> <meta name="citation_title" content="Numerical study of mixed convection of nanofluid inside an inlet/outlet inclined cavity under the effect of Brownian motion using Lattice Boltzmann Method (LBM" /> <meta name="citation_publication_date" content="2021/01/01" /> <meta name="citation_journal_title" content="Elsevier" /> <meta name="citation_author" content="Dr. Davood Toghraie" /> <meta name="twitter:card" content="summary" /> <meta name="twitter:url" content="https://www.academia.edu/49983019/Numerical_study_of_mixed_convection_of_nanofluid_inside_an_inlet_outlet_inclined_cavity_under_the_effect_of_Brownian_motion_using_Lattice_Boltzmann_Method_LBM" /> <meta name="twitter:title" content="Numerical study of mixed convection of nanofluid inside an inlet/outlet inclined cavity under the effect of Brownian motion using Lattice Boltzmann Method (LBM" /> <meta name="twitter:description" content="In the present numerical study, the mixed convection of Cu-water and CuO-water nanofluids is modeled inside an inclined square-shaped cavity by utilizing the thermal model of the Lattice Boltzmann Method (LBM). A cold fluid flow enters into the" /> <meta name="twitter:image" content="https://0.academia-photos.com/5734988/33550597/29850154/s200_d.d.jpg" /> <meta property="fb:app_id" content="2369844204" /> <meta property="og:type" content="article" /> <meta property="og:url" content="https://www.academia.edu/49983019/Numerical_study_of_mixed_convection_of_nanofluid_inside_an_inlet_outlet_inclined_cavity_under_the_effect_of_Brownian_motion_using_Lattice_Boltzmann_Method_LBM" /> <meta property="og:title" content="Numerical study of mixed convection of nanofluid inside an inlet/outlet inclined cavity under the effect of Brownian motion using Lattice Boltzmann Method (LBM" /> <meta property="og:image" content="http://a.academia-assets.com/images/open-graph-icons/fb-paper.gif" /> <meta property="og:description" content="In the present numerical study, the mixed convection of Cu-water and CuO-water nanofluids is modeled inside an inclined square-shaped cavity by utilizing the thermal model of the Lattice Boltzmann Method (LBM). A cold fluid flow enters into the" /> <meta property="article:author" content="https://iaukhsh.academia.edu/DavoodToghraie" /> <meta name="description" content="In the present numerical study, the mixed convection of Cu-water and CuO-water nanofluids is modeled inside an inclined square-shaped cavity by utilizing the thermal model of the Lattice Boltzmann Method (LBM). A cold fluid flow enters into the" /> <title>(PDF) Numerical study of mixed convection of nanofluid inside an inlet/outlet inclined cavity under the effect of Brownian motion using Lattice Boltzmann Method (LBM | Dr. Davood Toghraie - Academia.edu</title> <link rel="canonical" href="https://www.academia.edu/49983019/Numerical_study_of_mixed_convection_of_nanofluid_inside_an_inlet_outlet_inclined_cavity_under_the_effect_of_Brownian_motion_using_Lattice_Boltzmann_Method_LBM" /> <script async src="https://www.googletagmanager.com/gtag/js?id=G-5VKX33P2DS"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-5VKX33P2DS', { cookie_domain: 'academia.edu', send_page_view: false, }); gtag('event', 'page_view', { 'controller': "single_work", 'action': "show", 'controller_action': 'single_work#show', 'logged_in': 'false', 'edge': 'unknown', // Send nil if there is no A/B test bucket, in case some records get logged // with missing data - that way we can distinguish between the two cases. // ab_test_bucket should be of the form <ab_test_name>:<bucket> 'ab_test_bucket': null, }) </script> <script> var $controller_name = 'single_work'; var $action_name = "show"; var $rails_env = 'production'; var $app_rev = 'dbbc078c4dd21927fee81e40cb40966a7787f597'; var $domain = 'academia.edu'; var $app_host = "academia.edu"; var $asset_host = "academia-assets.com"; var $start_time = new Date().getTime(); var $recaptcha_key = "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB"; var $recaptcha_invisible_key = "6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj"; var $disableClientRecordHit = false; </script> <script> window.require = { config: function() { return function() {} } } </script> <script> window.Aedu = window.Aedu || {}; window.Aedu.hit_data = null; window.Aedu.serverRenderTime = new Date(1734080145000); window.Aedu.timeDifference = new Date().getTime() - 1734080145000; </script> <script type="application/ld+json">{"@context":"https://schema.org","@type":"ScholarlyArticle","abstract":"In the present numerical study, the mixed convection of Cu-water and CuO-water nanofluids is modeled inside an inclined square-shaped cavity by utilizing the thermal model of the Lattice Boltzmann Method (LBM). A cold fluid flow enters into the cavity at the upper side of the left wall and, after being heated by the hot obstacle, exits from the lowest right side of the cavity The effective thermal conductivity and viscosity of nanofluids are computed by the KKL (Koo-Kleinstreuer-Li) equation. The results are presented in the constant Rayleigh number of 104 and the Richardson numbers of 0.1,1 and 10. Obtained results reveal that by incrementing Ri because of the augmentation of inlet fluid velocity from the left side, the gradient of isothermal lines decreases, and temperature distribution becomes more uniform, leading to Nusselt number reduction on hot wall. Although the Nu avg enhances considerably in Ri of 0.1, in Ri = 1 and 10, there is no sensible change. In the angle of 0o, by augmenting Ri, Nu avg decreases, but in the angle of 60o, by increasing Ri from 0.1 to 1, Nu avg increments up to 22%. This augmentation is due to the change of angle of the collision of flow with the hot obstacle. Furthermore, when the hot obstacle is located in the flow path, heat transfer improves. Application of such studies shows its importance in the design of electronic components cooling systems, solar energy storage, heat exchangers, and lubrication systems.","author":[{"@context":"https://schema.org","@type":"Person","name":"Dr. Davood Toghraie"}],"contributor":[],"dateCreated":"2021-07-16","dateModified":"2021-07-16","datePublished":"2021-01-01","headline":"Numerical study of mixed convection of nanofluid inside an inlet/outlet inclined cavity under the effect of Brownian motion using Lattice Boltzmann Method (LBM","identifier":{"@type":"PropertyValue","propertyID":"DOI","value":"10.1016/j.icheatmasstransfer.2021.105428"},"image":"https://attachments.academia-assets.com/68137978/thumbnails/1.jpg","inLanguage":"en","keywords":["Lattice Boltzmann Method (LBM) Brownian motion Heat transfer Nanofluid Mixed convection"],"publication":"Elsevier","publisher":{"@context":"https://schema.org","@type":"Organization","name":null},"sameAs":"https://doi.org/10.1016/j.icheatmasstransfer.2021.105428","sourceOrganization":[{"@context":"https://schema.org","@type":"EducationalOrganization","name":"iaukhsh"}],"thumbnailUrl":"https://attachments.academia-assets.com/68137978/thumbnails/1.jpg","url":"https://www.academia.edu/49983019/Numerical_study_of_mixed_convection_of_nanofluid_inside_an_inlet_outlet_inclined_cavity_under_the_effect_of_Brownian_motion_using_Lattice_Boltzmann_Method_LBM"}</script><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/single_work_page/loswp-102fa537001ba4d8dcd921ad9bd56c474abc201906ea4843e7e7efe9dfbf561d.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/body-8d679e925718b5e8e4b18e9a4fab37f7eaa99e43386459376559080ac8f2856a.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/button-3cea6e0ad4715ed965c49bfb15dedfc632787b32ff6d8c3a474182b231146ab7.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/text_button-73590134e40cdb49f9abdc8e796cc00dc362693f3f0f6137d6cf9bb78c318ce7.css" /><link crossorigin="" href="https://fonts.gstatic.com/" rel="preconnect" /><link href="https://fonts.googleapis.com/css2?family=DM+Sans:ital,opsz,wght@0,9..40,100..1000;1,9..40,100..1000&family=Gupter:wght@400;500;700&family=IBM+Plex+Mono:wght@300;400&family=Material+Symbols+Outlined:opsz,wght,FILL,GRAD@20,400,0,0&display=swap" rel="stylesheet" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/common-10fa40af19d25203774df2d4a03b9b5771b45109c2304968038e88a81d1215c5.css" /> </head> <body> <div id='react-modal'></div> <div class="js-upgrade-ie-banner" style="display: none; text-align: center; padding: 8px 0; background-color: #ebe480;"><p style="color: #000; font-size: 12px; margin: 0 0 4px;">Academia.edu no longer supports Internet Explorer.</p><p style="color: #000; font-size: 12px; margin: 0;">To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to <a href="https://www.academia.edu/upgrade-browser">upgrade your browser</a>.</p></div><script>// Show this banner for all versions of IE if (!!window.MSInputMethodContext || /(MSIE)/.test(navigator.userAgent)) { document.querySelector('.js-upgrade-ie-banner').style.display = 'block'; }</script> <div class="bootstrap login"><div class="modal fade login-modal" id="login-modal"><div class="login-modal-dialog modal-dialog"><div class="modal-content"><div class="modal-header"><button class="close close" data-dismiss="modal" type="button"><span aria-hidden="true">×</span><span class="sr-only">Close</span></button><h4 class="modal-title text-center"><strong>Log In</strong></h4></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><button class="btn btn-fb btn-lg btn-block btn-v-center-content" id="login-facebook-oauth-button"><svg style="float: left; width: 19px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="facebook-square" class="svg-inline--fa fa-facebook-square fa-w-14" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512"><path fill="currentColor" d="M400 32H48A48 48 0 0 0 0 80v352a48 48 0 0 0 48 48h137.25V327.69h-63V256h63v-54.64c0-62.15 37-96.48 93.67-96.48 27.14 0 55.52 4.84 55.52 4.84v61h-31.27c-30.81 0-40.42 19.12-40.42 38.73V256h68.78l-11 71.69h-57.78V480H400a48 48 0 0 0 48-48V80a48 48 0 0 0-48-48z"></path></svg><small><strong>Log in</strong> with <strong>Facebook</strong></small></button><br /><button class="btn btn-google btn-lg btn-block btn-v-center-content" id="login-google-oauth-button"><svg style="float: left; width: 22px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="google-plus" class="svg-inline--fa fa-google-plus fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M256,8C119.1,8,8,119.1,8,256S119.1,504,256,504,504,392.9,504,256,392.9,8,256,8ZM185.3,380a124,124,0,0,1,0-248c31.3,0,60.1,11,83,32.3l-33.6,32.6c-13.2-12.9-31.3-19.1-49.4-19.1-42.9,0-77.2,35.5-77.2,78.1S142.3,334,185.3,334c32.6,0,64.9-19.1,70.1-53.3H185.3V238.1H302.2a109.2,109.2,0,0,1,1.9,20.7c0,70.8-47.5,121.2-118.8,121.2ZM415.5,273.8v35.5H380V273.8H344.5V238.3H380V202.8h35.5v35.5h35.2v35.5Z"></path></svg><small><strong>Log in</strong> with <strong>Google</strong></small></button><br /><style type="text/css">.sign-in-with-apple-button { width: 100%; height: 52px; border-radius: 3px; border: 1px solid black; cursor: pointer; }</style><script src="https://appleid.cdn-apple.com/appleauth/static/jsapi/appleid/1/en_US/appleid.auth.js" type="text/javascript"></script><div class="sign-in-with-apple-button" data-border="false" data-color="white" id="appleid-signin"><span ="Sign Up with Apple" class="u-fs11"></span></div><script>AppleID.auth.init({ clientId: 'edu.academia.applesignon', scope: 'name email', redirectURI: 'https://www.academia.edu/sessions', state: "cbadd33688b8624ff5c5fc0361d9669549949fba757207c12b5f12a9f4e5eb88", });</script><script>// Hacky way of checking if on fast loswp if (window.loswp == null) { (function() { const Google = window?.Aedu?.Auth?.OauthButton?.Login?.Google; const Facebook = window?.Aedu?.Auth?.OauthButton?.Login?.Facebook; if (Google) { new Google({ el: '#login-google-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } if (Facebook) { new Facebook({ el: '#login-facebook-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } })(); }</script></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><div class="hr-heading login-hr-heading"><span class="hr-heading-text">or</span></div></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><form class="js-login-form" action="https://www.academia.edu/sessions" accept-charset="UTF-8" method="post"><input name="utf8" type="hidden" value="✓" autocomplete="off" /><input type="hidden" name="authenticity_token" value="vSNDEWgqoFVzh+9EHSGX0eVOFp1xY5aE6/CSezGWnY79urq7q/Xun0lsWI+eHwVfhC5PICTwVTpSaJ8BrikoIA==" autocomplete="off" /><div class="form-group"><label class="control-label" for="login-modal-email-input" style="font-size: 14px;">Email</label><input class="form-control" id="login-modal-email-input" name="login" type="email" /></div><div class="form-group"><label class="control-label" for="login-modal-password-input" style="font-size: 14px;">Password</label><input class="form-control" id="login-modal-password-input" name="password" type="password" /></div><input type="hidden" name="post_login_redirect_url" id="post_login_redirect_url" value="https://www.academia.edu/49983019/Numerical_study_of_mixed_convection_of_nanofluid_inside_an_inlet_outlet_inclined_cavity_under_the_effect_of_Brownian_motion_using_Lattice_Boltzmann_Method_LBM" autocomplete="off" /><div class="checkbox"><label><input type="checkbox" name="remember_me" id="remember_me" value="1" checked="checked" /><small style="font-size: 12px; margin-top: 2px; display: inline-block;">Remember me on this computer</small></label></div><br><input type="submit" name="commit" value="Log In" class="btn btn-primary btn-block btn-lg js-login-submit" data-disable-with="Log In" /></br></form><script>typeof window?.Aedu?.recaptchaManagedForm === 'function' && window.Aedu.recaptchaManagedForm( document.querySelector('.js-login-form'), document.querySelector('.js-login-submit') );</script><small style="font-size: 12px;"><br />or <a data-target="#login-modal-reset-password-container" data-toggle="collapse" href="javascript:void(0)">reset password</a></small><div class="collapse" id="login-modal-reset-password-container"><br /><div class="well margin-0x"><form class="js-password-reset-form" action="https://www.academia.edu/reset_password" accept-charset="UTF-8" method="post"><input name="utf8" type="hidden" value="✓" autocomplete="off" /><input type="hidden" name="authenticity_token" value="tL1WMLWJpBugF2uLW3ToULS3HylxuHm25aH3KULYZQ30JK+adlbq0Zr83EDYSnre1ddGlCQrughcOfpT3WfQow==" autocomplete="off" /><p>Enter the email address you signed up with and we'll email you a reset link.</p><div class="form-group"><input class="form-control" name="email" type="email" /></div><input class="btn btn-primary btn-block g-recaptcha js-password-reset-submit" data-sitekey="6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj" type="submit" value="Email me a link" /></form></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/collapse-45805421cf446ca5adf7aaa1935b08a3a8d1d9a6cc5d91a62a2a3a00b20b3e6a.js"], function() { // from javascript_helper.rb $("#login-modal-reset-password-container").on("shown.bs.collapse", function() { $(this).find("input[type=email]").focus(); }); }); </script> </div></div></div><div class="modal-footer"><div class="text-center"><small style="font-size: 12px;">Need an account? <a rel="nofollow" href="https://www.academia.edu/signup">Click here to sign up</a></small></div></div></div></div></div></div><script>// If we are on subdomain or non-bootstrapped page, redirect to login page instead of showing modal (function(){ if (typeof $ === 'undefined') return; var host = window.location.hostname; if ((host === $domain || host === "www."+$domain) && (typeof $().modal === 'function')) { $("#nav_log_in").click(function(e) { // Don't follow the link and open the modal e.preventDefault(); $("#login-modal").on('shown.bs.modal', function() { $(this).find("#login-modal-email-input").focus() }).modal('show'); }); } })()</script> <div id="fb-root"></div><script>window.fbAsyncInit = function() { FB.init({ appId: "2369844204", version: "v8.0", status: true, cookie: true, xfbml: true }); // Additional initialization code. if (window.InitFacebook) { // facebook.ts already loaded, set it up. window.InitFacebook(); } else { // Set a flag for facebook.ts to find when it loads. window.academiaAuthReadyFacebook = true; } };</script> <div id="google-root"></div><script>window.loadGoogle = function() { if (window.InitGoogle) { // google.ts already loaded, set it up. window.InitGoogle("331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"); } else { // Set a flag for google.ts to use when it loads. window.GoogleClientID = "331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"; } };</script> <div class="header--container" id="main-header-container"><div class="header--inner-container header--inner-container-ds2"><div class="header-ds2--left-wrapper"><div class="header-ds2--left-wrapper-inner"><a data-main-header-link-target="logo_home" href="https://www.academia.edu/"><img class="hide-on-desktop-redesign" style="height: 24px; width: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015-A.svg" width="24" height="24" /><img width="145.2" height="18" class="hide-on-mobile-redesign" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015.svg" /></a><div class="header--search-container header--search-container-ds2"><form class="js-SiteSearch-form select2-no-default-pills" action="https://www.academia.edu/search" accept-charset="UTF-8" method="get"><input name="utf8" type="hidden" value="✓" autocomplete="off" /><svg style="width: 14px; height: 14px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="search" class="header--search-icon svg-inline--fa fa-search fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M505 442.7L405.3 343c-4.5-4.5-10.6-7-17-7H372c27.6-35.3 44-79.7 44-128C416 93.1 322.9 0 208 0S0 93.1 0 208s93.1 208 208 208c48.3 0 92.7-16.4 128-44v16.3c0 6.4 2.5 12.5 7 17l99.7 99.7c9.4 9.4 24.6 9.4 33.9 0l28.3-28.3c9.4-9.4 9.4-24.6.1-34zM208 336c-70.7 0-128-57.2-128-128 0-70.7 57.2-128 128-128 70.7 0 128 57.2 128 128 0 70.7-57.2 128-128 128z"></path></svg><input class="header--search-input header--search-input-ds2 js-SiteSearch-form-input" data-main-header-click-target="search_input" name="q" placeholder="Search" type="text" /></form></div></div></div><nav class="header--nav-buttons header--nav-buttons-ds2 js-main-nav"><button class="ds2-5-button ds2-5-button--secondary js-header-login-url header-button-ds2 header-login-ds2 hide-on-mobile-redesign react-login-modal-opener" data-signup-modal="{"location":"login-button--header"}" rel="nofollow">Log In</button><button class="ds2-5-button ds2-5-button--secondary header-button-ds2 hide-on-mobile-redesign react-login-modal-opener" data-signup-modal="{"location":"signup-button--header"}" rel="nofollow">Sign Up</button><button class="header--hamburger-button header--hamburger-button-ds2 hide-on-desktop-redesign js-header-hamburger-button"><div class="icon-bar"></div><div class="icon-bar" style="margin-top: 4px;"></div><div class="icon-bar" style="margin-top: 4px;"></div></button></nav></div><ul class="header--dropdown-container js-header-dropdown"><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/login" rel="nofollow">Log In</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/signup" rel="nofollow">Sign Up</a></li><li class="header--dropdown-row js-header-dropdown-expand-button"><button class="header--dropdown-button">more<svg aria-hidden="true" focusable="false" data-prefix="fas" data-icon="caret-down" class="header--dropdown-button-icon svg-inline--fa fa-caret-down fa-w-10" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 320 512"><path fill="currentColor" d="M31.3 192h257.3c17.8 0 26.7 21.5 14.1 34.1L174.1 354.8c-7.8 7.8-20.5 7.8-28.3 0L17.2 226.1C4.6 213.5 13.5 192 31.3 192z"></path></svg></button></li><li><ul class="header--expanded-dropdown-container"><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/about">About</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/press">Press</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/documents">Papers</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/terms">Terms</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/privacy">Privacy</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/copyright">Copyright</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/hiring"><svg aria-hidden="true" focusable="false" data-prefix="fas" data-icon="briefcase" class="header--dropdown-row-icon svg-inline--fa fa-briefcase fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M320 336c0 8.84-7.16 16-16 16h-96c-8.84 0-16-7.16-16-16v-48H0v144c0 25.6 22.4 48 48 48h416c25.6 0 48-22.4 48-48V288H320v48zm144-208h-80V80c0-25.6-22.4-48-48-48H176c-25.6 0-48 22.4-48 48v48H48c-25.6 0-48 22.4-48 48v80h512v-80c0-25.6-22.4-48-48-48zm-144 0H192V96h128v32z"></path></svg>We're Hiring!</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://support.academia.edu/"><svg aria-hidden="true" focusable="false" data-prefix="fas" data-icon="question-circle" class="header--dropdown-row-icon svg-inline--fa fa-question-circle fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M504 256c0 136.997-111.043 248-248 248S8 392.997 8 256C8 119.083 119.043 8 256 8s248 111.083 248 248zM262.655 90c-54.497 0-89.255 22.957-116.549 63.758-3.536 5.286-2.353 12.415 2.715 16.258l34.699 26.31c5.205 3.947 12.621 3.008 16.665-2.122 17.864-22.658 30.113-35.797 57.303-35.797 20.429 0 45.698 13.148 45.698 32.958 0 14.976-12.363 22.667-32.534 33.976C247.128 238.528 216 254.941 216 296v4c0 6.627 5.373 12 12 12h56c6.627 0 12-5.373 12-12v-1.333c0-28.462 83.186-29.647 83.186-106.667 0-58.002-60.165-102-116.531-102zM256 338c-25.365 0-46 20.635-46 46 0 25.364 20.635 46 46 46s46-20.636 46-46c0-25.365-20.635-46-46-46z"></path></svg>Help Center</a></li><li class="header--dropdown-row js-header-dropdown-collapse-button"><button class="header--dropdown-button">less<svg aria-hidden="true" focusable="false" data-prefix="fas" data-icon="caret-up" class="header--dropdown-button-icon svg-inline--fa fa-caret-up fa-w-10" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 320 512"><path fill="currentColor" d="M288.662 352H31.338c-17.818 0-26.741-21.543-14.142-34.142l128.662-128.662c7.81-7.81 20.474-7.81 28.284 0l128.662 128.662c12.6 12.599 3.676 34.142-14.142 34.142z"></path></svg></button></li></ul></li></ul></div> <script src="//a.academia-assets.com/assets/webpack_bundles/fast_loswp-bundle-1e0a91de9afc71f3bcc9819f839d05fb16da3cae88cee3bdd331b09732fa6b3e.js" defer="defer"></script><script>window.loswp = {}; window.loswp.author = 5734988; window.loswp.bulkDownloadFilterCounts = {}; window.loswp.hasDownloadableAttachment = true; window.loswp.hasViewableAttachments = true; // TODO: just use routes for this window.loswp.loginUrl = "https://www.academia.edu/login?post_login_redirect_url=https%3A%2F%2Fwww.academia.edu%2F49983019%2FNumerical_study_of_mixed_convection_of_nanofluid_inside_an_inlet_outlet_inclined_cavity_under_the_effect_of_Brownian_motion_using_Lattice_Boltzmann_Method_LBM%3Fauto%3Ddownload"; window.loswp.translateUrl = "https://www.academia.edu/login?post_login_redirect_url=https%3A%2F%2Fwww.academia.edu%2F49983019%2FNumerical_study_of_mixed_convection_of_nanofluid_inside_an_inlet_outlet_inclined_cavity_under_the_effect_of_Brownian_motion_using_Lattice_Boltzmann_Method_LBM%3Fshow_translation%3Dtrue"; window.loswp.previewableAttachments = [{"id":68137978,"identifier":"Attachment_68137978","shouldShowBulkDownload":false}]; window.loswp.shouldDetectTimezone = true; window.loswp.shouldShowBulkDownload = true; window.loswp.showSignupCaptcha = false window.loswp.willEdgeCache = false; window.loswp.work = {"work":{"id":49983019,"created_at":"2021-07-16T07:32:33.676-07:00","from_world_paper_id":null,"updated_at":"2021-07-18T01:29:32.269-07:00","_data":{"doi":"10.1016/j.icheatmasstransfer.2021.105428","abstract":"In the present numerical study, the mixed convection of Cu-water and CuO-water nanofluids is modeled inside an inclined square-shaped cavity by utilizing the thermal model of the Lattice Boltzmann Method (LBM). A cold fluid flow enters into the cavity at the upper side of the left wall and, after being heated by the hot obstacle, exits from the lowest right side of the cavity The effective thermal conductivity and viscosity of nanofluids are computed by the KKL (Koo-Kleinstreuer-Li) equation. The results are presented in the constant Rayleigh number of 104 and the Richardson numbers of 0.1,1 and 10. Obtained results reveal that by incrementing Ri because of the augmentation of inlet fluid velocity from the left side, the gradient of isothermal lines decreases, and temperature distribution becomes more uniform, leading to Nusselt number reduction on hot wall. Although the Nu avg enhances considerably in Ri of 0.1, in Ri = 1 and 10, there is no sensible change. In the angle of 0o, by augmenting Ri, Nu avg decreases, but in the angle of 60o, by increasing Ri from 0.1 to 1, Nu avg increments up to 22%. This augmentation is due to the change of angle of the collision of flow with the hot obstacle. Furthermore, when the hot obstacle is located in the flow path, heat transfer improves. Application of such studies shows its importance in the design of electronic components cooling systems, solar energy storage, heat exchangers, and lubrication systems.","publication_date":"2021,,","publication_name":"Elsevier"},"document_type":"paper","pre_hit_view_count_baseline":null,"quality":"high","language":"en","title":"Numerical study of mixed convection of nanofluid inside an inlet/outlet inclined cavity under the effect of Brownian motion using Lattice Boltzmann Method (LBM","broadcastable":true,"draft":false,"has_indexable_attachment":true,"indexable":true}}["work"]; window.loswp.workCoauthors = [5734988]; window.loswp.locale = "en"; window.loswp.countryCode = "SG"; window.loswp.cwvAbTestBucket = ""; window.loswp.designVariant = "ds_vanilla"; window.loswp.fullPageMobileSutdModalVariant = "control"; window.loswp.useOptimizedScribd4genScript = false; window.loginModal = {}; window.loginModal.appleClientId = 'edu.academia.applesignon';</script><script defer="" src="https://accounts.google.com/gsi/client"></script><div class="ds-loswp-container"><div class="ds-work-card--grid-container"><div class="ds-work-card--container js-loswp-work-card"><div class="ds-work-card--cover"><div class="ds-work-cover--wrapper"><div class="ds-work-cover--container"><button class="ds-work-cover--clickable js-swp-download-button" data-signup-modal="{"location":"swp-splash-paper-cover","attachmentId":68137978,"attachmentType":"pdf"}"><img alt="First page of “Numerical study of mixed convection of nanofluid inside an inlet/outlet inclined cavity under the effect of Brownian motion using Lattice Boltzmann Method (LBM”" class="ds-work-cover--cover-thumbnail" src="https://0.academia-photos.com/attachment_thumbnails/68137978/mini_magick20210716-3070-lepv5i.png?1626445989" /><img alt="PDF Icon" class="ds-work-cover--file-icon" src="//a.academia-assets.com/images/single_work_splash/adobe_icon.svg" /><div class="ds-work-cover--hover-container"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">download</span><p>Download Free PDF</p></div><div class="ds-work-cover--ribbon-container">Download Free PDF</div><div class="ds-work-cover--ribbon-triangle"></div></button></div></div></div><div class="ds-work-card--work-information"><h1 class="ds-work-card--work-title">Numerical study of mixed convection of nanofluid inside an inlet/outlet inclined cavity under the effect of Brownian motion using Lattice Boltzmann Method (LBM</h1><div class="ds-work-card--work-authors ds-work-card--detail"><a class="ds-work-card--author js-wsj-grid-card-author ds2-5-body-md ds2-5-body-link" data-author-id="5734988" href="https://iaukhsh.academia.edu/DavoodToghraie"><img alt="Profile image of Dr. Davood Toghraie" class="ds-work-card--author-avatar" src="https://0.academia-photos.com/5734988/33550597/29850154/s65_d.d.jpg" />Dr. Davood Toghraie</a></div><div class="ds-work-card--detail"><p class="ds-work-card--detail ds2-5-body-sm">2021, Elsevier</p><a class="js-loswp-work-card-doi-link ds2-5-body-sm ds2-5-body-link" href="https://doi.org/10.1016/j.icheatmasstransfer.2021.105428" rel="nofollow">https://doi.org/10.1016/j.icheatmasstransfer.2021.105428</a><div class="ds-work-card--work-metadata"><div class="ds-work-card--work-metadata__stat"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">visibility</span><p class="ds2-5-body-sm" id="work-metadata-view-count">…</p></div><div class="ds-work-card--work-metadata__stat"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">description</span><p class="ds2-5-body-sm">14 pages</p></div><div class="ds-work-card--work-metadata__stat"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">link</span><p class="ds2-5-body-sm">1 file</p></div></div><script>(async () => { const workId = 49983019; const worksViewsPath = "/v0/works/views?subdomain_param=api&work_ids%5B%5D=49983019"; const getWorkViews = async (workId) => { const response = await fetch(worksViewsPath); if (!response.ok) { throw new Error('Failed to load work views'); } const data = await response.json(); return data.views[workId]; }; // Get the view count for the work - we send this immediately rather than waiting for // the DOM to load, so it can be available as soon as possible (but without holding up // the backend or other resource requests, because it's a bit expensive and not critical). const viewCount = await getWorkViews(workId); const updateViewCount = (viewCount) => { try { const viewCountNumber = parseInt(viewCount, 10); if (viewCountNumber === 0) { // Remove the whole views element if there are zero views. document.getElementById('work-metadata-view-count')?.parentNode?.remove(); return; } const commaizedViewCount = viewCountNumber.toLocaleString(); const viewCountBody = document.getElementById('work-metadata-view-count'); if (!viewCountBody) { throw new Error('Failed to find work views element'); } viewCountBody.textContent = `${commaizedViewCount} views`; } catch (error) { // Remove the whole views element if there was some issue parsing. document.getElementById('work-metadata-view-count')?.parentNode?.remove(); throw new Error(`Failed to parse view count: ${viewCount}`, error); } }; // If the DOM is still loading, wait for it to be ready before updating the view count. if (document.readyState === "loading") { document.addEventListener('DOMContentLoaded', () => { updateViewCount(viewCount); }); // Otherwise, just update it immediately. } else { updateViewCount(viewCount); } })();</script></div><p class="ds-work-card--work-abstract ds-work-card--detail ds2-5-body-md">In the present numerical study, the mixed convection of Cu-water and CuO-water nanofluids is modeled inside an inclined square-shaped cavity by utilizing the thermal model of the Lattice Boltzmann Method (LBM). A cold fluid flow enters into the cavity at the upper side of the left wall and, after being heated by the hot obstacle, exits from the lowest right side of the cavity The effective thermal conductivity and viscosity of nanofluids are computed by the KKL (Koo-Kleinstreuer-Li) equation. The results are presented in the constant Rayleigh number of 104 and the Richardson numbers of 0.1,1 and 10. Obtained results reveal that by incrementing Ri because of the augmentation of inlet fluid velocity from the left side, the gradient of isothermal lines decreases, and temperature distribution becomes more uniform, leading to Nusselt number reduction on hot wall. Although the Nu avg enhances considerably in Ri of 0.1, in Ri = 1 and 10, there is no sensible change. In the angle of 0o, by augmenting Ri, Nu avg decreases, but in the angle of 60o, by increasing Ri from 0.1 to 1, Nu avg increments up to 22%. This augmentation is due to the change of angle of the collision of flow with the hot obstacle. Furthermore, when the hot obstacle is located in the flow path, heat transfer improves. Application of such studies shows its importance in the design of electronic components cooling systems, solar energy storage, heat exchangers, and lubrication systems.</p><div class="ds-work-card--button-container"><button class="ds2-5-button js-swp-download-button" data-signup-modal="{"location":"continue-reading-button--work-card","attachmentId":68137978,"attachmentType":"pdf","workUrl":"https://www.academia.edu/49983019/Numerical_study_of_mixed_convection_of_nanofluid_inside_an_inlet_outlet_inclined_cavity_under_the_effect_of_Brownian_motion_using_Lattice_Boltzmann_Method_LBM"}">See full PDF</button><button class="ds2-5-button ds2-5-button--secondary js-swp-download-button" data-signup-modal="{"location":"download-pdf-button--work-card","attachmentId":68137978,"attachmentType":"pdf","workUrl":"https://www.academia.edu/49983019/Numerical_study_of_mixed_convection_of_nanofluid_inside_an_inlet_outlet_inclined_cavity_under_the_effect_of_Brownian_motion_using_Lattice_Boltzmann_Method_LBM"}"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">download</span>Download PDF</button></div></div></div></div><div data-auto_select="false" data-client_id="331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b" data-doc_id="68137978" data-landing_url="https://www.academia.edu/49983019/Numerical_study_of_mixed_convection_of_nanofluid_inside_an_inlet_outlet_inclined_cavity_under_the_effect_of_Brownian_motion_using_Lattice_Boltzmann_Method_LBM" data-login_uri="https://www.academia.edu/registrations/google_one_tap" data-moment_callback="onGoogleOneTapEvent" id="g_id_onload"></div><div class="ds-top-related-works--grid-container"><div class="ds-related-content--container ds-top-related-works--container"><h2 class="ds-related-content--heading">Related papers</h2><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="0" data-entity-id="103281739" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/103281739/Numerical_Study_of_the_Effect_of_the_Nanofluids_Type_and_The_Size_of_the_Heating_Sections_on_Heat_Transfer_for_Cooling_Electronic_Components">Numerical Study of the Effect of the Nanofluids Type and The Size of the Heating Sections on Heat Transfer for Cooling Electronic Components</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="121718272" href="https://independent.academia.edu/mohamedsannad">mohamed sannad</a></div><p class="ds-related-work--metadata ds2-5-body-xs">2020</p><p class="ds-related-work--abstract ds2-5-body-sm">The present work consists of analysing heat exchange by natural convection. The intensification of these exchanges and the improvement of efficiency have become a major issue in the industrial world today. This paper is part of this framework, and is particularly concerned with problems related to the intensification of heat exchanges in electronic components. Our objective is to understand the effect of the nanofluid on the mechanism of natural laminar convection in a three-dimensional cavity. In this context, we have developed our own computational code and conducted a parametric study looking at thermomechanical and geometrical parameters. The fluid flow and heat transfer in the cavity are studied for different sets of the governing parameters, namely the Rayleigh number Ra = 10 3 ,10 4 ,10 5 and 10 6 , volume fraction Ф varying between Ф = 0% and 10% and nanofluid type. The obtained results show a positive effect of the volume fraction and the Rayleigh number on the heat transfer improvement. It should also be noted that the increase of the heating section size and Ra results in increased amount of heat removed by the same nanofluid. Similarly, increasing the volume fraction causes the intensification of the flow and an increase of the heat exchange.</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Numerical Study of the Effect of the Nanofluids Type and The Size of the Heating Sections on Heat Transfer for Cooling Electronic Components","attachmentId":103330753,"attachmentType":"pdf","work_url":"https://www.academia.edu/103281739/Numerical_Study_of_the_Effect_of_the_Nanofluids_Type_and_The_Size_of_the_Heating_Sections_on_Heat_Transfer_for_Cooling_Electronic_Components","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/103281739/Numerical_Study_of_the_Effect_of_the_Nanofluids_Type_and_The_Size_of_the_Heating_Sections_on_Heat_Transfer_for_Cooling_Electronic_Components"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="1" data-entity-id="69020991" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/69020991/Case_Studies_in_Thermal_Engineering">Case Studies in Thermal Engineering</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="129073005" href="https://soharuni.academia.edu/HusseinAlwaeli">Hussein Alwaeli</a></div><p class="ds-related-work--abstract ds2-5-body-sm">Nanofluids have become widely used in different applications. One of these applications, it may be used in Photovoltaic/Thermal PV/T systems, as there is many research that works to determine the best type of nanofluids for this important application. In this study, differences in the thermo-physical properties of three types of nanofluids were emphasized, which used nano-SiC as additive and cetyl-trichromyl ammonium bromide as surfactant. Water was mixed with 35% ethylene glycol, and with 35% of propylene glycol. The study aims to find the best base fluid for use in solar PV/T applications. The increase in density and viscosity of all studied nanofluids was evident as well as the superiority of the density of ethylene glycol water mixture (for the tested temperature range, nano-EG-water density was higher than nano-water and nano-PG-water densities by 15.51% and 0.066%, respectively compared to water). The propylene glycol-water mixture has higher viscosity than the other two nanofluids (it was higher than nano-water and nano-EG-water viscosities by 16.066% and 0.212%, respectively compared to water). The thermal conductivity of the three nanofluids was close to each other in the studied temperatures region. Glycol solutions were more stable than water when ultra-shaking hours were from four to six hours.</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Case Studies in Thermal Engineering","attachmentId":79280496,"attachmentType":"pdf","work_url":"https://www.academia.edu/69020991/Case_Studies_in_Thermal_Engineering","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/69020991/Case_Studies_in_Thermal_Engineering"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="2" data-entity-id="81810179" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/81810179/Journal_of_Advanced_Research_in_Fluid_Mechanics_and_Thermal_Sciences">Journal of Advanced Research in Fluid Mechanics and Thermal Sciences</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="14556943" href="https://acadamia.academia.edu/SintayehuMekuriaHailegiorgis">Sintayehu Mekuria Hailegiorgis</a></div><p class="ds-related-work--abstract ds2-5-body-sm">Heat pipes are heat transfer device that do not need external power; as a result, they are used in various thermal systems. Enhancing the performance of heat transfer device is a continues effort. Thus, this study investigates the effect of copper nanofluid on the thermal performance of cylindrical heat pipe (HP) that has screen mesh wick for heat transfer applications. The copper HP consists of 350 mm length and 12.7 mm outside diameter. To investigate its thermal performance mathematical model is developed. Demineralized water based 20 nm copper nanofluids with 0 to 4% particle concentrations were considered in the study. Simulation was done at 100 W heat input and results showed that when the particle concentration increases the evaporator wall temperature drops. At 4% particle concentration nanofluid the HP thermal resistance reduced by 17.5% compared to when the HP uses demineralized water. Furthermore, for a given particle concentration as the heat input increases the temperature change between the evaporator and the condenser increases. The outcome of the investigation can be input to the design of solar heat exchangers that use HPs filled with nanofluids.</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Journal of Advanced Research in Fluid Mechanics and Thermal Sciences","attachmentId":87725456,"attachmentType":"pdf","work_url":"https://www.academia.edu/81810179/Journal_of_Advanced_Research_in_Fluid_Mechanics_and_Thermal_Sciences","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/81810179/Journal_of_Advanced_Research_in_Fluid_Mechanics_and_Thermal_Sciences"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="3" data-entity-id="93148184" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/93148184/Theoretical_Study_of_Mixed_Convection_Cooling_of_Microprocessor_Using_CuO_Nanofluid_Dept_M_">Theoretical Study of Mixed Convection Cooling of Microprocessor Using CuO Nanofluid. (Dept. M)</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="7786796" href="https://independent.academia.edu/GamalSultan1">Gamal Sultan</a></div><p class="ds-related-work--metadata ds2-5-body-xs">MEJ. Mansoura Engineering Journal, 2021</p><p class="ds-related-work--abstract ds2-5-body-sm">effective thermal performance in expressions of energy storage with super capacitors, batteries, and solar panels. Wang et al. [2] presented a literature survey to study the possibility of improving heat transfer characteristics of nanofluids, chaos convection, and heat transfer optimization of nanofluids with the response to an applied electromagnetic field. Alihosseini et al. [3] focused mostly on studying discrepancy in a cross-section effect on the thermal properties efficiency of micro channel heat sinks. Wong et al. [4] provided a broad review of experimental and numerical studies for different styles of thermal diodes applied in past years. The thermal diodes mentioned there were categorized based on their main heat transfer procedure and the constituents to create them. Xu et al. [5] investigated air cooling restrictions for a high power CPU (Central Processing Unit) with high local power density discovered through a thermal model. The thermal model involved a 0.02 m 0.02 m die with such output power of 160W and a power generation capability of 100W/cm 2 considered. The liquid cooling system volume is 100 mm (flow length) 100 mm (width) 45 mm (height), and the shipment area is believed to be 50 mm 50 mm. Heat transfer and pressure</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Theoretical Study of Mixed Convection Cooling of Microprocessor Using CuO Nanofluid. (Dept. M)","attachmentId":95966534,"attachmentType":"pdf","work_url":"https://www.academia.edu/93148184/Theoretical_Study_of_Mixed_Convection_Cooling_of_Microprocessor_Using_CuO_Nanofluid_Dept_M_","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/93148184/Theoretical_Study_of_Mixed_Convection_Cooling_of_Microprocessor_Using_CuO_Nanofluid_Dept_M_"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="4" data-entity-id="64495370" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/64495370/Application_of_Nanofluids_in_Thermal_Design_of_Compact_Heat_Exchanger">Application of Nanofluids in Thermal Design of Compact Heat Exchanger</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="196167590" href="https://independent.academia.edu/vasuv17">vasu v</a></div><p class="ds-related-work--metadata ds2-5-body-xs">International Journal of Nanotechnology and …, 2008</p><p class="ds-related-work--abstract ds2-5-body-sm">Compact heat exchangers have been widely used in various applications in thermal fluid systems including automotive thermal fluid systems. Radiators for engine cooling systems, evaporators and condensers for HVAC systems, oil coolers and inter coolers are typical examples that can be found in ground vehicles. Recent development of Nanotechnology brings out a new heat transfer coolant called 'Nanofluids' these fluids exhibit larger thermal properties than conventional coolants (water, Ethylene glycol, Engine oil etc.) due to the presence of suspended nanosized particles in then such as Al 2 O 3 , Cu,CuO,TiO 2 etc. In this paper a theoretical analysis was carried with ε-NTU rating method by using Al 2 O 3 + H 2 O Nanofluid as coolant on automobile flat tube plain fin compact heat exchanger and different characteristics are graphically presented.</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Application of Nanofluids in Thermal Design of Compact Heat Exchanger","attachmentId":76505300,"attachmentType":"pdf","work_url":"https://www.academia.edu/64495370/Application_of_Nanofluids_in_Thermal_Design_of_Compact_Heat_Exchanger","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/64495370/Application_of_Nanofluids_in_Thermal_Design_of_Compact_Heat_Exchanger"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="5" data-entity-id="75154683" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/75154683/Lattice_Boltzmann_Simulation_of_MHD_Natural_Convection_Heat_Transfer_of_Cu_Water_Nanofluid_in_a_Linearly_Sinusoidally_Heated_Cavity">Lattice Boltzmann Simulation of MHD Natural Convection Heat Transfer of Cu-Water Nanofluid in a Linearly/Sinusoidally Heated Cavity</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="50498196" href="https://independent.academia.edu/BouchmelMliki">Bouchmel Mliki</a></div><p class="ds-related-work--metadata ds2-5-body-xs">2020</p><p class="ds-related-work--abstract ds2-5-body-sm">In this numerical study, natural convection of Cu–water nanofluid in a cavity submitted to different heating modes on its vertical walls is analyzed. Maxwell-Garnetts (MG) and Brinkman models have been utilized for calculating the effective thermal conductivity and dynamic viscosity of nanofluid, respectively. Influences of Rayleigh number (&lt;em&gt;Ra&lt;/em&gt; = 10&lt;sup&gt;3&lt;/sup&gt;−10&lt;sup&gt;6&lt;/sup&gt;), nanoparticle volume concentration (&lt;em&gt;f&lt;/em&gt; = 0-0.04) and Hartmann number (&lt;em&gt;Ha&lt;/em&gt; = 0-90) on the flow and heat transfer characteristics have been examined. The results indicate that the Hartmann number influences the heat transfer at &lt;em&gt;Ra&lt;/em&gt; = 10&lt;sup&gt;6&lt;/sup&gt; more than other Raleigh numbers, as the least effect is observed at &lt;em&gt;Ra&lt;/em&gt; = 10&lt;sup&gt;3&lt;/sup&gt;. Moreover, the results show that the solid volume fraction has a significant influence on heat transfer, depending on the value of Ha...</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Lattice Boltzmann Simulation of MHD Natural Convection Heat Transfer of Cu-Water Nanofluid in a Linearly/Sinusoidally Heated Cavity","attachmentId":83037910,"attachmentType":"pdf","work_url":"https://www.academia.edu/75154683/Lattice_Boltzmann_Simulation_of_MHD_Natural_Convection_Heat_Transfer_of_Cu_Water_Nanofluid_in_a_Linearly_Sinusoidally_Heated_Cavity","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/75154683/Lattice_Boltzmann_Simulation_of_MHD_Natural_Convection_Heat_Transfer_of_Cu_Water_Nanofluid_in_a_Linearly_Sinusoidally_Heated_Cavity"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="6" data-entity-id="21055677" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/21055677/INVESTIGATION_OF_NANOFLUIDS_BEHAVIOR_IN_HEAT_EXCHANGERS">INVESTIGATION OF NANOFLUIDS BEHAVIOR IN HEAT EXCHANGERS</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="5083954" href="https://cnpq.academia.edu/MilaAvelino">Mila Rosendahl Avelino</a></div><p class="ds-related-work--abstract ds2-5-body-sm">The purpose of this paper is to present this new class of fluid called nanofluid and its feasibility for use in industrial heat exchangers. Aiming to analyse the behaviour of the thermophysical properties of nanofluids of alumina oxide and nanofluids copper oxide. Also, checking the reduction in the proposed design of a heat exchanger, hoping to find a good reduction in the use of this novel class of fluid.</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"INVESTIGATION OF NANOFLUIDS BEHAVIOR IN HEAT EXCHANGERS","attachmentId":47513577,"attachmentType":"pdf","work_url":"https://www.academia.edu/21055677/INVESTIGATION_OF_NANOFLUIDS_BEHAVIOR_IN_HEAT_EXCHANGERS","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/21055677/INVESTIGATION_OF_NANOFLUIDS_BEHAVIOR_IN_HEAT_EXCHANGERS"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="7" data-entity-id="21444154" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/21444154/TO_STUDY_THE_BEHAVIOR_OF_NANOFLUIDS_IN_HEAT_TRANSFER_APPLICATIONS_A_REVIEW">TO STUDY THE BEHAVIOR OF NANOFLUIDS IN HEAT TRANSFER APPLICATIONS: A REVIEW</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="29235708" href="https://independent.academia.edu/eSATJournals">eSAT Journals</a></div><p class="ds-related-work--abstract ds2-5-body-sm">Using nanofluids as an innovative kind of liquid blend including trivial volume fraction (in percent) of millimeter or nanometer size powdered particles with base fluids is fairly a novel arena or idea. The objective of this presented review paper is to inspect the performance of the nanofluid-based solar collector (NBSC). In past few years for a number of experimental and industrial thermal engineering systems solar energy has proven to be the best input energy source. Nanofluids are the fluid that has shown various developments in the thermal properties over the past decade. In the field of nanotechnology, nano fluids have a great potential to enhance the rheological properties like thermal conductivity of base fluid like water, ethanol etc. Nanofluids are the suspension of mainly the base fluid like water in nanoparticles such as alumina (Al 2 O 3) of size micro or milimetre and shows distinctive features than that of conservative fluids used. Because of better rheological properties nanofluids are utilized to build up the performance of conventional solar thermal engineering systems. The presented literature review presents a detailed discussion about the solar collectors, applications of nanofluids in solar collector and their augmentation in thermo physical properties.</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"TO STUDY THE BEHAVIOR OF NANOFLUIDS IN HEAT TRANSFER APPLICATIONS: A REVIEW","attachmentId":41878958,"attachmentType":"pdf","work_url":"https://www.academia.edu/21444154/TO_STUDY_THE_BEHAVIOR_OF_NANOFLUIDS_IN_HEAT_TRANSFER_APPLICATIONS_A_REVIEW","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/21444154/TO_STUDY_THE_BEHAVIOR_OF_NANOFLUIDS_IN_HEAT_TRANSFER_APPLICATIONS_A_REVIEW"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="8" data-entity-id="31443703" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/31443703/Analysis_of_nanofluids_as_a_means_of_thermal_conductivity_enhancement_in_heavy_machineries">Analysis of nanofluids as a means of thermal conductivity enhancement in heavy machineries</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="60128359" href="https://iisc.academia.edu/ImbesatRizvi">Md Imbesat Hassan Rizvi</a><span>, </span><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="60160875" href="https://independent.academia.edu/AyushJain150">Ayush Jain</a></div><p class="ds-related-work--metadata ds2-5-body-xs">2014</p><p class="ds-related-work--abstract ds2-5-body-sm">Purpose – Nanofluids exhibit enhanced heat transfer characteristics and are expected to be the future heat transfer fluids particularly the lubricants and transmission fluids used in heavy machinery. For studying the heat transfer behaviour of the nanofluids, precise values of their thermal conductivity are required. For predicting the correct value of thermal conductivity of a nanofluid, mathematical models are necessary. In this paper, the effective thermal conductivity of various nanofluids has been reported by using both experimental and mathematical modelling. The paper aims to discuss these issues. Design/methodology/approach – Hamilton and Crosser equation was used for predicting the thermal conductivities of nanofluids, and the obtained values were compared with the experimental findings. Nanofluid studied in this paper are Al 2 O 3 in base fluid water, Al 2 O 3 in base fluid ethylene glycol, CuO in base fluid water, CuO in base fluid ethylene glycol, TiO 2 in base fluid ethylene glycol. In addition, studies have been made on nanofluids with CuO and Al 2 O 3 in base fluid SAE 30 particularly for heavy machinery applications. Findings – The study shows that increase in thermal conductivity of the nanofluid with particle concentration is in good agreement with that predicted by Hamilton and Crosser at typical lower concentrations. Research limitations/implications – It has been observed that deviation between experimental and theoretical results increases as the volume concentration of nanoparticles increases. Therefore, the mathematical model cannot be used for predicting thermal conductivity at high concentration values. Originality/value – Studies on nanoparticles with a standard mineral oil as base fluid have not been considered extensively as per the previous literatures available. Nomenclature k e ¼ thermal conductivity of nanofluid k p ¼ particle's thermal conductivity k m ¼ thermal conductivity of the base fluid v p ¼ volume fraction of nanoparticles suspended in base fluid c ¼ sphericity g ¼ ratio of nano-layer's thermal conductivity to particle's thermal conductivity b ¼ ratio of the nano-layer thickness to the original particle radius DT ¼ temperature rise of the wire q ¼ heat dissipation per unit length t ¼ time from the start of heating a ¼ thermal diffusivity of the fluid r w ¼ radius of the wire C ¼ exponent of Euler's constant</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Analysis of nanofluids as a means of thermal conductivity enhancement in heavy machineries","attachmentId":51803568,"attachmentType":"pdf","work_url":"https://www.academia.edu/31443703/Analysis_of_nanofluids_as_a_means_of_thermal_conductivity_enhancement_in_heavy_machineries","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/31443703/Analysis_of_nanofluids_as_a_means_of_thermal_conductivity_enhancement_in_heavy_machineries"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="9" data-entity-id="11033228" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/11033228/Numerical_simulation_of_natural_convection_of_the_nanofluid_in_heat_exchangers_using_a_Buongiorno_model">Numerical simulation of natural convection of the nanofluid in heat exchangers using a Buongiorno model</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="9259403" href="https://tongji.academia.edu/MohammadMehdiRashidi">Mohammad Mehdi Rashidi</a><span>, </span><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="129402" href="https://tabrizu.academia.edu/leilajahanshaloo">leila jahanshaloo</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Applied Mathematics and Computation, 2015</p><p class="ds-related-work--abstract ds2-5-body-sm">A numerical study is carried out concerning natural convection heat transfer of nanofluid in a two-dimensional square cavity containing several pairs of heater and coolers (HACs). Walls of the cavity are insulated and several pairs of heater and coolers (HACs) with isothermal walls of T h and T c (T h > T c ) are placed inside the cavity. Two-dimensional Navier-Stokes, energy and volume fraction equations are solved using finite volume discretization method. The effects of various design parameters on the heat transfer rate and distribution of nanoparticles such as Rayleigh number (10 4 6 Ra 6 10 7 ), volume fraction (0 6 u 6 0:05) and size of nanoparticles (25 nm 6 d p 6 145 nm), type of the nanoparticles (Cu, Al 2 O 3 and TiO 2 ), nanofluid average temperature (294 K 6 T ave 6 324 K ), number of the cooler, location of the heater and arrangement of the HAC are investigated. The simulation results are indicated that, HACs location has the most significant influence on the heat transfer rate. It is also found that at low Rayleigh numbers, the particle distribution is fairly non-uniform while at high Ra, particle distribution remains almost uniform. Moreover, it is found that there is an optimal volume fraction of the nano-particles at each Rayleigh number in which the maximum heat transfer rate can be obtained.</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Numerical simulation of natural convection of the nanofluid in heat exchangers using a Buongiorno model","attachmentId":46955637,"attachmentType":"pdf","work_url":"https://www.academia.edu/11033228/Numerical_simulation_of_natural_convection_of_the_nanofluid_in_heat_exchangers_using_a_Buongiorno_model","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/11033228/Numerical_simulation_of_natural_convection_of_the_nanofluid_in_heat_exchangers_using_a_Buongiorno_model"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div></div></div><div class="ds-sticky-ctas--wrapper js-loswp-sticky-ctas hidden"><div class="ds-sticky-ctas--grid-container"><div class="ds-sticky-ctas--container"><button class="ds2-5-button js-swp-download-button" data-signup-modal="{"location":"continue-reading-button--sticky-ctas","attachmentId":68137978,"attachmentType":"pdf","workUrl":null}">See full PDF</button><button class="ds2-5-button ds2-5-button--secondary js-swp-download-button" data-signup-modal="{"location":"download-pdf-button--sticky-ctas","attachmentId":68137978,"attachmentType":"pdf","workUrl":null}"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">download</span>Download PDF</button></div></div></div><div class="ds-below-fold--grid-container"><div class="ds-work--container js-loswp-embedded-document"><div class="attachment_preview" data-attachment="Attachment_68137978" style="display: none"><div class="js-scribd-document-container"><div class="scribd--document-loading js-scribd-document-loader" style="display: block;"><img alt="Loading..." src="//a.academia-assets.com/images/loaders/paper-load.gif" /><p>Loading Preview</p></div></div><div style="text-align: center;"><div class="scribd--no-preview-alert js-preview-unavailable"><p>Sorry, preview is currently unavailable. You can download the paper by clicking the button above.</p></div></div></div></div><div class="ds-sidebar--container js-work-sidebar"><div class="ds-related-content--container"><h2 class="ds-related-content--heading">Related papers</h2><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="0" data-entity-id="76313276" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/76313276/International_Journal_of_Recent_Development_in_Engineering_and_Technology_Utilization_of_Nano_fluids_for_Heat_exchanger">International Journal of Recent Development in Engineering and Technology Utilization of Nano fluids for Heat exchanger</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="70833295" href="https://independent.academia.edu/DrHiregoudarYerrennagoudaru">Dr. Hiregoudar Yerrennagoudaru</a></div><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"International Journal of Recent Development in Engineering and Technology Utilization of Nano fluids for Heat exchanger","attachmentId":84058848,"attachmentType":"pdf","work_url":"https://www.academia.edu/76313276/International_Journal_of_Recent_Development_in_Engineering_and_Technology_Utilization_of_Nano_fluids_for_Heat_exchanger","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/76313276/International_Journal_of_Recent_Development_in_Engineering_and_Technology_Utilization_of_Nano_fluids_for_Heat_exchanger"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="1" data-entity-id="33961230" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/33961230/Heatline_analysis_on_natural_convection_for_nanofluids_confined_within_square_cavities_with_various_thermal_boundary_pdf">Heatline analysis on natural convection for nanofluids confined within square cavities with various thermal boundary.pdf</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="12669347" href="https://wwwpmu.academia.edu/AliChamkha">Ali Chamkha</a></div><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Heatline analysis on natural convection for nanofluids confined within square cavities with various thermal boundary.pdf","attachmentId":53918683,"attachmentType":"pdf","work_url":"https://www.academia.edu/33961230/Heatline_analysis_on_natural_convection_for_nanofluids_confined_within_square_cavities_with_various_thermal_boundary_pdf","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/33961230/Heatline_analysis_on_natural_convection_for_nanofluids_confined_within_square_cavities_with_various_thermal_boundary_pdf"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="2" data-entity-id="54037954" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/54037954/Numerical_Simulation_of_the_Cooling_of_Heated_Electronic_Blocks_in_Horizontal_Channel_by_Mixed_Convection_of_Nanofluids">Numerical Simulation of the Cooling of Heated Electronic Blocks in Horizontal Channel by Mixed Convection of Nanofluids</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="40541121" href="https://independent.academia.edu/YounessELHAMMAMI">Youness EL HAMMAMI</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Journal of Nanomaterials</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Numerical Simulation of the Cooling of Heated Electronic Blocks in Horizontal Channel by Mixed Convection of Nanofluids","attachmentId":70595108,"attachmentType":"pdf","work_url":"https://www.academia.edu/54037954/Numerical_Simulation_of_the_Cooling_of_Heated_Electronic_Blocks_in_Horizontal_Channel_by_Mixed_Convection_of_Nanofluids","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/54037954/Numerical_Simulation_of_the_Cooling_of_Heated_Electronic_Blocks_in_Horizontal_Channel_by_Mixed_Convection_of_Nanofluids"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="3" data-entity-id="79694806" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/79694806/Comparative_Study_of_Thermal_Characteristics_of_Metallic_and_Nonmetallic_Water_Based_Nanofluids_in_a_Square_Cavity">Comparative Study of Thermal Characteristics of Metallic and Nonmetallic Water-Based Nanofluids in a Square Cavity</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="43861233" href="https://shittuaf.academia.edu/SangotayoEmmanuelO">Emmanuel O Sangotayo</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Journal of Information Engineering and Applications, 2021</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Comparative Study of Thermal Characteristics of Metallic and Nonmetallic Water-Based Nanofluids in a Square Cavity","attachmentId":86321845,"attachmentType":"pdf","work_url":"https://www.academia.edu/79694806/Comparative_Study_of_Thermal_Characteristics_of_Metallic_and_Nonmetallic_Water_Based_Nanofluids_in_a_Square_Cavity","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/79694806/Comparative_Study_of_Thermal_Characteristics_of_Metallic_and_Nonmetallic_Water_Based_Nanofluids_in_a_Square_Cavity"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="4" data-entity-id="89022748" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/89022748/Applications_of_Nanofluid_in_the_thermal_devices_A_Review">Applications of Nanofluid in the thermal devices: A Review</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="39459920" href="https://independent.academia.edu/TabishAlam1">Tabish Alam</a></div><p class="ds-related-work--metadata ds2-5-body-xs">IOP Conference Series: Materials Science and Engineering, 2021</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Applications of Nanofluid in the thermal devices: A Review","attachmentId":92896857,"attachmentType":"pdf","work_url":"https://www.academia.edu/89022748/Applications_of_Nanofluid_in_the_thermal_devices_A_Review","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/89022748/Applications_of_Nanofluid_in_the_thermal_devices_A_Review"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="5" data-entity-id="97191493" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/97191493/Thermal_design_analysis_of_compact_heat_exchanger_using_nanofluids">Thermal design analysis of compact heat exchanger using nanofluids</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="26265402" href="https://independent.academia.edu/RamakrishnaKonijeti">Ramakrishna Konijeti</a></div><p class="ds-related-work--metadata ds2-5-body-xs">International Journal of Nanomanufacturing, 2008</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Thermal design analysis of compact heat exchanger using nanofluids","attachmentId":98881393,"attachmentType":"pdf","work_url":"https://www.academia.edu/97191493/Thermal_design_analysis_of_compact_heat_exchanger_using_nanofluids","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/97191493/Thermal_design_analysis_of_compact_heat_exchanger_using_nanofluids"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="6" data-entity-id="45655224" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/45655224/Investigation_of_Nanofluid_Natural_Convection_Heat_Transfer_in_Open_Ended_L_shaped_Cavities_utilizing_LBM">Investigation of Nanofluid Natural Convection Heat Transfer in Open Ended L-shaped Cavities utilizing LBM</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="32904210" href="https://uk.academia.edu/hasanmohammadifar">hasan mohammadifar</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Journal of Applied and Computational Mechanics, 2020</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Investigation of Nanofluid Natural Convection Heat Transfer in Open Ended L-shaped Cavities utilizing LBM","attachmentId":66154966,"attachmentType":"pdf","work_url":"https://www.academia.edu/45655224/Investigation_of_Nanofluid_Natural_Convection_Heat_Transfer_in_Open_Ended_L_shaped_Cavities_utilizing_LBM","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/45655224/Investigation_of_Nanofluid_Natural_Convection_Heat_Transfer_in_Open_Ended_L_shaped_Cavities_utilizing_LBM"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="7" data-entity-id="91557960" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/91557960/Numerical_modeling_of_nanofluid_flow_and_heat_transfer_in_a_quartered_gearwheel_shaped_heat_exchanger_using_FVM">Numerical modeling of nanofluid flow and heat transfer in a quartered gearwheel-shaped heat exchanger using FVM</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="116087437" href="https://independent.academia.edu/BagheriNavid">Navid Bagheri</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Chinese Journal of Physics, 2019</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Numerical modeling of nanofluid flow and heat transfer in a quartered gearwheel-shaped heat exchanger using FVM","attachmentId":94811748,"attachmentType":"pdf","work_url":"https://www.academia.edu/91557960/Numerical_modeling_of_nanofluid_flow_and_heat_transfer_in_a_quartered_gearwheel_shaped_heat_exchanger_using_FVM","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/91557960/Numerical_modeling_of_nanofluid_flow_and_heat_transfer_in_a_quartered_gearwheel_shaped_heat_exchanger_using_FVM"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="8" data-entity-id="76730971" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/76730971/A_New_Thermal_Conductivity_Model_and_Two_Phase_Mixed_Convection_of_CuO_Water_Nanofluids_in_a_Novel_I_Shaped_Porous_Cavity_Heated_by_Oriented_Triangular_Hot_Block">A New Thermal Conductivity Model and Two-Phase Mixed Convection of CuO–Water Nanofluids in a Novel I-Shaped Porous Cavity Heated by Oriented Triangular Hot Block</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="212361674" href="https://independent.academia.edu/RaminGhasemiasl">Ramin Ghasemiasl</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Nanomaterials, 2020</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"A New Thermal Conductivity Model and Two-Phase Mixed Convection of CuO–Water Nanofluids in a Novel I-Shaped Porous Cavity Heated by Oriented Triangular Hot Block","attachmentId":84336939,"attachmentType":"pdf","work_url":"https://www.academia.edu/76730971/A_New_Thermal_Conductivity_Model_and_Two_Phase_Mixed_Convection_of_CuO_Water_Nanofluids_in_a_Novel_I_Shaped_Porous_Cavity_Heated_by_Oriented_Triangular_Hot_Block","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/76730971/A_New_Thermal_Conductivity_Model_and_Two_Phase_Mixed_Convection_of_CuO_Water_Nanofluids_in_a_Novel_I_Shaped_Porous_Cavity_Heated_by_Oriented_Triangular_Hot_Block"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="9" data-entity-id="33727686" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/33727686/Comparison_of_the_Performance_of_Copper_Oxide_Nanofluid_with_Water_in_Electronic_Cooling">Comparison of the Performance of Copper Oxide Nanofluid with Water in Electronic Cooling</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="55556856" href="https://utkaluniversityutkaluniversity.academia.edu/DipakDas">Dipak Das</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Journal of ASTM International, 2012</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Comparison of the Performance of Copper Oxide Nanofluid with Water in Electronic Cooling","attachmentId":53722782,"attachmentType":"pdf","work_url":"https://www.academia.edu/33727686/Comparison_of_the_Performance_of_Copper_Oxide_Nanofluid_with_Water_in_Electronic_Cooling","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/33727686/Comparison_of_the_Performance_of_Copper_Oxide_Nanofluid_with_Water_in_Electronic_Cooling"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="10" data-entity-id="34654461" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/34654461/Comparison_of_the_thermal_performances_of_two_nanofluids_at_low_temperature_in_a_plate_heat_exchanger">Comparison of the thermal performances of two nanofluids at low temperature in a plate heat exchanger</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="68589049" href="https://independent.academia.edu/PatriceEstell%C3%A9">Patrice Estellé</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Experimental Thermal and Fluid Science, 2011</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Comparison of the thermal performances of two nanofluids at low temperature in a plate heat exchanger","attachmentId":54514291,"attachmentType":"pdf","work_url":"https://www.academia.edu/34654461/Comparison_of_the_thermal_performances_of_two_nanofluids_at_low_temperature_in_a_plate_heat_exchanger","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/34654461/Comparison_of_the_thermal_performances_of_two_nanofluids_at_low_temperature_in_a_plate_heat_exchanger"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="11" data-entity-id="43149073" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/43149073/Numerical_study_of_natural_convection_of_nanofluid_in_a_semi_circular_cavity_with_lattice_Boltzmann_method">Numerical study of natural convection of nanofluid in a semi-circular cavity with lattice Boltzmann method</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="5734988" href="https://iaukhsh.academia.edu/DavoodToghraie">Dr. Davood Toghraie</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Emerald Publishing Limited, 2020</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Numerical study of natural convection of nanofluid in a semi-circular cavity with lattice Boltzmann method","attachmentId":63409596,"attachmentType":"pdf","work_url":"https://www.academia.edu/43149073/Numerical_study_of_natural_convection_of_nanofluid_in_a_semi_circular_cavity_with_lattice_Boltzmann_method","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/43149073/Numerical_study_of_natural_convection_of_nanofluid_in_a_semi_circular_cavity_with_lattice_Boltzmann_method"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="12" data-entity-id="117814383" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/117814383/Numerical_analysis_of_conjugate_natural_and_mixed_convection_heat_transfer_of_nanofluids_in_a_square_cavity_using_the_two_phase_method">Numerical analysis of conjugate natural and mixed convection heat transfer of nanofluids in a square cavity using the two-phase method</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="2915450" href="https://semnanu.academia.edu/farhadtalebi">farhad talebi</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Advanced Powder Technology, 2017</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Numerical analysis of conjugate natural and mixed convection heat transfer of nanofluids in a square cavity using the two-phase method","attachmentId":113580674,"attachmentType":"pdf","work_url":"https://www.academia.edu/117814383/Numerical_analysis_of_conjugate_natural_and_mixed_convection_heat_transfer_of_nanofluids_in_a_square_cavity_using_the_two_phase_method","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/117814383/Numerical_analysis_of_conjugate_natural_and_mixed_convection_heat_transfer_of_nanofluids_in_a_square_cavity_using_the_two_phase_method"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="13" data-entity-id="76447086" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/76447086/A_NEW_APPROACH_FOR_THE_ANALYSIS_OF_THE_NANOPARTICLES_EFFECTS_ON_Cu_WATER_NANOFLUID_MIXED_CONVECTION_HEAT_TRANSFER_AND_REQUIRED_POWER_IN_A_LID_DRIVEN_CAVITY">A NEW APPROACH FOR THE ANALYSIS OF THE NANOPARTICLES EFFECTS ON Cu-WATER NANOFLUID MIXED CONVECTION HEAT TRANSFER AND REQUIRED POWER IN A LID-DRIVEN CAVITY</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="89252776" href="https://shahroodut.academia.edu/mostafavalizadehardalan">mostafa valizadeh ardalan</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Thermal Science, 2016</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"A NEW APPROACH FOR THE ANALYSIS OF THE NANOPARTICLES EFFECTS ON Cu-WATER NANOFLUID MIXED CONVECTION HEAT TRANSFER AND REQUIRED POWER IN A LID-DRIVEN CAVITY","attachmentId":84152475,"attachmentType":"pdf","work_url":"https://www.academia.edu/76447086/A_NEW_APPROACH_FOR_THE_ANALYSIS_OF_THE_NANOPARTICLES_EFFECTS_ON_Cu_WATER_NANOFLUID_MIXED_CONVECTION_HEAT_TRANSFER_AND_REQUIRED_POWER_IN_A_LID_DRIVEN_CAVITY","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/76447086/A_NEW_APPROACH_FOR_THE_ANALYSIS_OF_THE_NANOPARTICLES_EFFECTS_ON_Cu_WATER_NANOFLUID_MIXED_CONVECTION_HEAT_TRANSFER_AND_REQUIRED_POWER_IN_A_LID_DRIVEN_CAVITY"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="14" data-entity-id="108547646" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/108547646/Particle_Diameter_Effect_on_Heat_Transfer_Due_to_Natural_Convection_Using_Cu_Water_Nanofluid_A_Non_Newtonian_Approach">Particle Diameter Effect on Heat Transfer Due to Natural Convection Using Cu-Water Nanofluid - A Non-Newtonian Approach</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="122979924" href="https://independent.academia.edu/SantraApurba">Apurba Santra</a></div><p class="ds-related-work--metadata ds2-5-body-xs">International Journal of Emerging Multidisciplinary Fluid Sciences, 2010</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Particle Diameter Effect on Heat Transfer Due to Natural Convection Using Cu-Water Nanofluid - A Non-Newtonian Approach","attachmentId":106900266,"attachmentType":"pdf","work_url":"https://www.academia.edu/108547646/Particle_Diameter_Effect_on_Heat_Transfer_Due_to_Natural_Convection_Using_Cu_Water_Nanofluid_A_Non_Newtonian_Approach","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/108547646/Particle_Diameter_Effect_on_Heat_Transfer_Due_to_Natural_Convection_Using_Cu_Water_Nanofluid_A_Non_Newtonian_Approach"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="15" data-entity-id="58739368" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/58739368/Forced_convective_heat_transfer_of_nanofluids">Forced convective heat transfer of nanofluids</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="217421" href="https://newcastle.academia.edu/LidijaSiller">Lidija Siller</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Advanced Powder Technology the International Journal of the Society of Powder Technology Japan, 2007</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Forced convective heat transfer of nanofluids","attachmentId":73006780,"attachmentType":"pdf","work_url":"https://www.academia.edu/58739368/Forced_convective_heat_transfer_of_nanofluids","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/58739368/Forced_convective_heat_transfer_of_nanofluids"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="16" data-entity-id="97191490" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/97191490/Heat_transfer_with_nanofluids_for_electronic_cooling">Heat transfer with nanofluids for electronic cooling</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="26265402" href="https://independent.academia.edu/RamakrishnaKonijeti">Ramakrishna Konijeti</a><span>, </span><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="297527311" href="https://independent.academia.edu/RamaKrishna1278">Rama Krishna</a></div><p class="ds-related-work--metadata ds2-5-body-xs">International Journal of Materials and Product Technology, 2009</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Heat transfer with nanofluids for electronic cooling","attachmentId":98881392,"attachmentType":"pdf","work_url":"https://www.academia.edu/97191490/Heat_transfer_with_nanofluids_for_electronic_cooling","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/97191490/Heat_transfer_with_nanofluids_for_electronic_cooling"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="17" data-entity-id="13908503" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/13908503/EXPERIMENTAL_AND_NUMERICAL_EVALUATION_OF_HEAT_TRANSFER_ENHACEMENT_POTENTIAL_OF_COPPER_II_AND_ZINC_OXIDE_NANOFLUIDS_FLOWING_OVER_A_HEATED_FLAT_PLATE">EXPERIMENTAL AND NUMERICAL EVALUATION OF HEAT TRANSFER ENHACEMENT POTENTIAL OF COPPER-II AND ZINC OXIDE NANOFLUIDS FLOWING OVER A HEATED FLAT PLATE</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="32978367" href="https://sc.academia.edu/JamilKhan">Jamil Khan</a></div><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"EXPERIMENTAL AND NUMERICAL EVALUATION OF HEAT TRANSFER ENHACEMENT POTENTIAL OF COPPER-II AND ZINC OXIDE NANOFLUIDS FLOWING OVER A HEATED FLAT PLATE","attachmentId":44814053,"attachmentType":"pdf","work_url":"https://www.academia.edu/13908503/EXPERIMENTAL_AND_NUMERICAL_EVALUATION_OF_HEAT_TRANSFER_ENHACEMENT_POTENTIAL_OF_COPPER_II_AND_ZINC_OXIDE_NANOFLUIDS_FLOWING_OVER_A_HEATED_FLAT_PLATE","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/13908503/EXPERIMENTAL_AND_NUMERICAL_EVALUATION_OF_HEAT_TRANSFER_ENHACEMENT_POTENTIAL_OF_COPPER_II_AND_ZINC_OXIDE_NANOFLUIDS_FLOWING_OVER_A_HEATED_FLAT_PLATE"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="18" data-entity-id="34957397" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/34957397/Heatline_analysis_on_natural_convection_for_nanofluids_confined_within_square_cavities_with_various_thermal_boundary_conditions">Heatline analysis on natural convection for nanofluids confined within square cavities with various thermal boundary conditions</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="51111834" href="https://independent.academia.edu/BasakTanmay">Tanmay Basak</a></div><p class="ds-related-work--metadata ds2-5-body-xs">International Journal of Heat and Mass Transfer, 2012</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Heatline analysis on natural convection for nanofluids confined within square cavities with various thermal boundary conditions","attachmentId":54819603,"attachmentType":"pdf","work_url":"https://www.academia.edu/34957397/Heatline_analysis_on_natural_convection_for_nanofluids_confined_within_square_cavities_with_various_thermal_boundary_conditions","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/34957397/Heatline_analysis_on_natural_convection_for_nanofluids_confined_within_square_cavities_with_various_thermal_boundary_conditions"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="19" data-entity-id="44845934" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/44845934/IJERT_Experimental_Investigation_Of_Liquid_Cooling_System_For_Electronics_Cooling">IJERT-Experimental Investigation Of Liquid Cooling System For Electronics Cooling</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="109571315" href="https://independent.academia.edu/IJERTORG">IJERT Journal</a></div><p class="ds-related-work--metadata ds2-5-body-xs">International Journal of Engineering Research and Technology (IJERT), 2013</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"IJERT-Experimental Investigation Of Liquid Cooling System For Electronics Cooling","attachmentId":65353416,"attachmentType":"pdf","work_url":"https://www.academia.edu/44845934/IJERT_Experimental_Investigation_Of_Liquid_Cooling_System_For_Electronics_Cooling","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/44845934/IJERT_Experimental_Investigation_Of_Liquid_Cooling_System_For_Electronics_Cooling"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="20" data-entity-id="111519016" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/111519016/Natural_convection_of_nanofluids_flow_with_nanofluid_oriented_models_of_thermal_conductivity_and_dynamic_viscosity_in_the_presence_of_heat_source">Natural convection of nanofluids flow with "nanofluid-oriented" models of thermal conductivity and dynamic viscosity in the presence of heat source</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="94657775" href="https://independent.academia.edu/EugeneS8">Eugene S.</a></div><p class="ds-related-work--metadata ds2-5-body-xs">International Journal of Numerical Methods for Heat & Fluid Flow, 2013</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Natural convection of nanofluids flow with \"nanofluid-oriented\" models of thermal conductivity and dynamic viscosity in the presence of heat source","attachmentId":109034859,"attachmentType":"pdf","work_url":"https://www.academia.edu/111519016/Natural_convection_of_nanofluids_flow_with_nanofluid_oriented_models_of_thermal_conductivity_and_dynamic_viscosity_in_the_presence_of_heat_source","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/111519016/Natural_convection_of_nanofluids_flow_with_nanofluid_oriented_models_of_thermal_conductivity_and_dynamic_viscosity_in_the_presence_of_heat_source"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="21" data-entity-id="53153170" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/53153170/Theoretical_Model_Development_for_Nanofluids_Thermal_Effectiveness">Theoretical Model Development for Nanofluids Thermal Effectiveness</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="69303944" href="https://independent.academia.edu/fatimavaranda">fatima varanda</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Defect and Diffusion Forum, 2006</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Theoretical Model Development for Nanofluids Thermal Effectiveness","attachmentId":70074443,"attachmentType":"pdf","work_url":"https://www.academia.edu/53153170/Theoretical_Model_Development_for_Nanofluids_Thermal_Effectiveness","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/53153170/Theoretical_Model_Development_for_Nanofluids_Thermal_Effectiveness"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="22" data-entity-id="48458578" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/48458578/Performance_Analysis_of_Electronics_Cooling_using_Nanofluids_in_Microchannel_Heat_Sink">Performance Analysis of Electronics Cooling using Nanofluids in Microchannel Heat Sink</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="17439293" href="https://puo.academia.edu/NatashaMalikFesal">Natasha Malik Fesal</a></div><p class="ds-related-work--metadata ds2-5-body-xs">International Journal of Engineering and Technology, 2016</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Performance Analysis of Electronics Cooling using Nanofluids in Microchannel Heat Sink","attachmentId":67059251,"attachmentType":"pdf","work_url":"https://www.academia.edu/48458578/Performance_Analysis_of_Electronics_Cooling_using_Nanofluids_in_Microchannel_Heat_Sink","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/48458578/Performance_Analysis_of_Electronics_Cooling_using_Nanofluids_in_Microchannel_Heat_Sink"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="23" data-entity-id="45544452" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/45544452/Heat_Transfer_in_Nanofluids_2013">Heat Transfer in Nanofluids 2013</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="21159847" href="https://independent.academia.edu/KambizVafai">Kambiz Vafai</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Advances in Mechanical Engineering, 2014</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Heat Transfer in Nanofluids 2013","attachmentId":66023759,"attachmentType":"pdf","work_url":"https://www.academia.edu/45544452/Heat_Transfer_in_Nanofluids_2013","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/45544452/Heat_Transfer_in_Nanofluids_2013"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="24" data-entity-id="87565945" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/87565945/Nanofluid_as_a_coolant_for_next_generation_high_heat_dissipation_electronic_devices">Nanofluid as a coolant for next generation high heat dissipation electronic devices</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="66067139" href="https://independent.academia.edu/ABDULRAJAKBURADI">ABDULRAJAK BURADI</a></div><p class="ds-related-work--metadata ds2-5-body-xs">International Journal of Renewable Energy Technology, 2017</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Nanofluid as a coolant for next generation high heat dissipation electronic devices","attachmentId":91739119,"attachmentType":"pdf","work_url":"https://www.academia.edu/87565945/Nanofluid_as_a_coolant_for_next_generation_high_heat_dissipation_electronic_devices","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/87565945/Nanofluid_as_a_coolant_for_next_generation_high_heat_dissipation_electronic_devices"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div></div></div></div></div><div class="footer--content"><ul class="footer--main-links hide-on-mobile"><li><a href="https://www.academia.edu/about">About</a></li><li><a href="https://www.academia.edu/press">Press</a></li><li><a href="https://www.academia.edu/documents">Papers</a></li><li><a href="https://www.academia.edu/topics">Topics</a></li><li><a href="https://www.academia.edu/hiring"><svg style="width: 13px; height: 13px; position: relative; bottom: -1px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="briefcase" class="svg-inline--fa fa-briefcase fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M320 336c0 8.84-7.16 16-16 16h-96c-8.84 0-16-7.16-16-16v-48H0v144c0 25.6 22.4 48 48 48h416c25.6 0 48-22.4 48-48V288H320v48zm144-208h-80V80c0-25.6-22.4-48-48-48H176c-25.6 0-48 22.4-48 48v48H48c-25.6 0-48 22.4-48 48v80h512v-80c0-25.6-22.4-48-48-48zm-144 0H192V96h128v32z"></path></svg> <strong>We're Hiring!</strong></a></li><li><a href="https://support.academia.edu/"><svg style="width: 12px; height: 12px; position: relative; bottom: -1px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="question-circle" class="svg-inline--fa fa-question-circle fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M504 256c0 136.997-111.043 248-248 248S8 392.997 8 256C8 119.083 119.043 8 256 8s248 111.083 248 248zM262.655 90c-54.497 0-89.255 22.957-116.549 63.758-3.536 5.286-2.353 12.415 2.715 16.258l34.699 26.31c5.205 3.947 12.621 3.008 16.665-2.122 17.864-22.658 30.113-35.797 57.303-35.797 20.429 0 45.698 13.148 45.698 32.958 0 14.976-12.363 22.667-32.534 33.976C247.128 238.528 216 254.941 216 296v4c0 6.627 5.373 12 12 12h56c6.627 0 12-5.373 12-12v-1.333c0-28.462 83.186-29.647 83.186-106.667 0-58.002-60.165-102-116.531-102zM256 338c-25.365 0-46 20.635-46 46 0 25.364 20.635 46 46 46s46-20.636 46-46c0-25.365-20.635-46-46-46z"></path></svg> <strong>Help Center</strong></a></li></ul><ul class="footer--research-interests"><li>Find new research papers in:</li><li><a href="https://www.academia.edu/Documents/in/Physics">Physics</a></li><li><a href="https://www.academia.edu/Documents/in/Chemistry">Chemistry</a></li><li><a href="https://www.academia.edu/Documents/in/Biology">Biology</a></li><li><a href="https://www.academia.edu/Documents/in/Health_Sciences">Health Sciences</a></li><li><a href="https://www.academia.edu/Documents/in/Ecology">Ecology</a></li><li><a href="https://www.academia.edu/Documents/in/Earth_Sciences">Earth Sciences</a></li><li><a href="https://www.academia.edu/Documents/in/Cognitive_Science">Cognitive Science</a></li><li><a href="https://www.academia.edu/Documents/in/Mathematics">Mathematics</a></li><li><a href="https://www.academia.edu/Documents/in/Computer_Science">Computer Science</a></li></ul><ul class="footer--legal-links hide-on-mobile"><li><a href="https://www.academia.edu/terms">Terms</a></li><li><a href="https://www.academia.edu/privacy">Privacy</a></li><li><a href="https://www.academia.edu/copyright">Copyright</a></li><li>Academia ©2024</li></ul></div> </body> </html>