CINXE.COM
Search results for: Lyapunov stability
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: Lyapunov stability</title> <meta name="description" content="Search results for: Lyapunov stability"> <meta name="keywords" content="Lyapunov stability"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="Lyapunov stability" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="Lyapunov stability"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 3440</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: Lyapunov stability</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3440</span> Sufficient Conditions for Exponential Stability of Stochastic Differential Equations with Non Trivial Solutions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fakhreddin%20Abedi">Fakhreddin Abedi</a>, <a href="https://publications.waset.org/abstracts/search?q=Wah%20June%20Leong"> Wah June Leong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Exponential stability of stochastic differential equations with non trivial solutions is provided in terms of Lyapunov functions. The main result of this paper establishes that, under certain hypotheses for the dynamics f(.) and g(.), practical exponential stability in probability at the small neighborhood of the origin is equivalent to the existence of an appropriate Lyapunov function. Indeed, we establish exponential stability of stochastic differential equation when almost all the state trajectories are bounded and approach a sufficiently small neighborhood of the origin. We derive sufficient conditions for exponential stability of stochastic differential equations. Finally, we give a numerical example illustrating our results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=exponential%20stability%20in%20probability" title="exponential stability in probability">exponential stability in probability</a>, <a href="https://publications.waset.org/abstracts/search?q=stochastic%20differential%20equations" title=" stochastic differential equations"> stochastic differential equations</a>, <a href="https://publications.waset.org/abstracts/search?q=Lyapunov%20technique" title=" Lyapunov technique"> Lyapunov technique</a>, <a href="https://publications.waset.org/abstracts/search?q=Ito%27s%20formula" title=" Ito's formula"> Ito's formula</a> </p> <a href="https://publications.waset.org/abstracts/184321/sufficient-conditions-for-exponential-stability-of-stochastic-differential-equations-with-non-trivial-solutions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/184321.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">52</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3439</span> Stability and Boundedness Theorems of Solutions of Certain Systems of Differential Equations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adetunji%20A.%20Adeyanju.">Adetunji A. Adeyanju.</a>, <a href="https://publications.waset.org/abstracts/search?q=Mathew%20O.%20Omeike"> Mathew O. Omeike</a>, <a href="https://publications.waset.org/abstracts/search?q=Johnson%20O.%20Adeniran"> Johnson O. Adeniran</a>, <a href="https://publications.waset.org/abstracts/search?q=Biodun%20S.%20Badmus"> Biodun S. Badmus</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we discuss certain conditions for uniform asymptotic stability and uniform ultimate boundedness of solutions to some systems of Aizermann-type of differential equations by means of second method of Lyapunov. In achieving our goal, some Lyapunov functions are constructed to serve as basic tools. The stability results in this paper, extend some stability results for some Aizermann-type of differential equations found in literature. Also, we prove some results on uniform boundedness and uniform ultimate boundedness of solutions of systems of equations study. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aizermann" title="Aizermann">Aizermann</a>, <a href="https://publications.waset.org/abstracts/search?q=boundedness" title=" boundedness"> boundedness</a>, <a href="https://publications.waset.org/abstracts/search?q=first%20order" title=" first order"> first order</a>, <a href="https://publications.waset.org/abstracts/search?q=Lyapunov%20function" title=" Lyapunov function"> Lyapunov function</a>, <a href="https://publications.waset.org/abstracts/search?q=stability" title=" stability"> stability</a> </p> <a href="https://publications.waset.org/abstracts/164909/stability-and-boundedness-theorems-of-solutions-of-certain-systems-of-differential-equations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/164909.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">84</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3438</span> Lyapunov-Based Tracking Control for Nonholonomic Wheeled Mobile Robot</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Raouf%20Fareh">Raouf Fareh</a>, <a href="https://publications.waset.org/abstracts/search?q=Maarouf%20Saad"> Maarouf Saad</a>, <a href="https://publications.waset.org/abstracts/search?q=Sofiane%20Khadraoui"> Sofiane Khadraoui</a>, <a href="https://publications.waset.org/abstracts/search?q=Tamer%20Rabie"> Tamer Rabie </a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a tracking control strategy based on Lyapunov approach for nonholonomic wheeled mobile robot. This control strategy consists of two levels. First, a kinematic controller is developed to adjust the right and left wheel velocities. Using this velocity control law, the stability of the tracking error is guaranteed using Lyapunov approach. This kinematic controller cannot be generated directly by the motors. To overcome this problem, the second level of the controllers, dynamic control, is designed. This dynamic control law is developed based on Lyapunov theory in order to track the desired trajectories of the mobile robot. The stability of the tracking error is proved using Lupunov and Barbalat approaches. Simulation results on a nonholonomic wheeled mobile robot are given to demonstrate the feasibility and effectiveness of the presented approach. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mobile%20robot" title="mobile robot">mobile robot</a>, <a href="https://publications.waset.org/abstracts/search?q=trajectory%20tracking" title=" trajectory tracking"> trajectory tracking</a>, <a href="https://publications.waset.org/abstracts/search?q=Lyapunov" title=" Lyapunov"> Lyapunov</a>, <a href="https://publications.waset.org/abstracts/search?q=stability" title=" stability"> stability</a> </p> <a href="https://publications.waset.org/abstracts/50751/lyapunov-based-tracking-control-for-nonholonomic-wheeled-mobile-robot" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50751.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">373</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3437</span> Lyapunov and Input-to-State Stability of Stochastic Differential Equations </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arcady%20Ponosov">Arcady Ponosov</a>, <a href="https://publications.waset.org/abstracts/search?q=Ramazan%20Kadiev"> Ramazan Kadiev</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Input-to-State Stability (ISS) is widely used in deterministic control theory but less known in the stochastic case. Roughly speaking, the theory explains when small perturbations of the right-hand sides of the system on the entire semiaxis cause only small changes in the solutions of the system, again on the entire semiaxis. This property is crucial in many applications. In the report, we explain how to define and study ISS for systems of linear stochastic differential equations with or without delays. The central result connects ISS with the property of Lyapunov stability. This relationship is well-known in the deterministic setting, but its stochastic version is new. As an application, a method of studying asymptotic Lyapunov stability for stochastic delay equations is described and justified. Several examples are provided that confirm the efficiency and simplicity of the framework. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=asymptotic%20stability" title="asymptotic stability">asymptotic stability</a>, <a href="https://publications.waset.org/abstracts/search?q=delay%20equations" title=" delay equations"> delay equations</a>, <a href="https://publications.waset.org/abstracts/search?q=operator%20methods" title=" operator methods"> operator methods</a>, <a href="https://publications.waset.org/abstracts/search?q=stochastic%20perturbations" title=" stochastic perturbations"> stochastic perturbations</a> </p> <a href="https://publications.waset.org/abstracts/127764/lyapunov-and-input-to-state-stability-of-stochastic-differential-equations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/127764.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">176</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3436</span> Strict Stability of Fuzzy Differential Equations by Lyapunov Functions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mustafa%20Bayram%20G%C3%BCcen">Mustafa Bayram Gücen</a>, <a href="https://publications.waset.org/abstracts/search?q=Co%C5%9Fkun%20Yakar"> Coşkun Yakar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, we have investigated the strict stability of fuzzy differential systems and we compare the classical notion of strict stability criteria of ordinary differential equations and the notion of strict stability of fuzzy differential systems. In addition that, we present definitions of stability and strict stability of fuzzy differential equations and also we have some theorems and comparison results. Strict Stability is a different stability definition and this stability type can give us an information about the rate of decay of the solutions. Lyapunov’s second method is a standard technique used in the study of the qualitative behavior of fuzzy differential systems along with a comparison result that allows the prediction of behavior of a fuzzy differential system when the behavior of the null solution of a fuzzy comparison system is known. This method is a usefull for investigating strict stability of fuzzy systems. First of all, we present definitions and necessary background material. Secondly, we discuss and compare the differences between the classical notion of stability and the recent notion of strict stability. And then, we have a comparison result in which the stability properties of the null solution of the comparison system imply the corresponding stability properties of the fuzzy differential system. Consequently, we give the strict stability results and a comparison theorem. We have used Lyapunov second method and we have proved a comparison result with scalar differential equations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20systems" title="fuzzy systems">fuzzy systems</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20differential%20equations" title=" fuzzy differential equations"> fuzzy differential equations</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20stability" title=" fuzzy stability"> fuzzy stability</a>, <a href="https://publications.waset.org/abstracts/search?q=strict%20stability" title=" strict stability"> strict stability</a> </p> <a href="https://publications.waset.org/abstracts/94432/strict-stability-of-fuzzy-differential-equations-by-lyapunov-functions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/94432.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">250</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3435</span> Lyapunov Functions for Extended Ross Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rahele%20Mosleh">Rahele Mosleh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper gives a survey of results on global stability of extended Ross model for malaria by constructing some elegant Lyapunov functions for two cases of epidemic, including disease-free and endemic occasions. The model is a nonlinear seven-dimensional system of ordinary differential equations that simulates this phenomenon in a more realistic fashion. We discuss the existence of positive disease-free and endemic equilibrium points of the model. It is stated that extended Ross model possesses invariant solutions for human and mosquito in a specific domain of the system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=global%20stability" title="global stability">global stability</a>, <a href="https://publications.waset.org/abstracts/search?q=invariant%20solutions" title=" invariant solutions"> invariant solutions</a>, <a href="https://publications.waset.org/abstracts/search?q=Lyapunov%20function" title=" Lyapunov function"> Lyapunov function</a>, <a href="https://publications.waset.org/abstracts/search?q=stationary%20points" title=" stationary points"> stationary points</a> </p> <a href="https://publications.waset.org/abstracts/125446/lyapunov-functions-for-extended-ross-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/125446.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">165</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3434</span> Stability of Hybrid Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kreangkri%20Ratchagit">Kreangkri Ratchagit</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper is concerned with exponential stability of switched linear systems with interval time-varying delays. The time delay is any continuous function belonging to a given interval, in which the lower bound of delay is not restricted to zero. By constructing a suitable augmented Lyapunov-Krasovskii functional combined with Leibniz-Newton’s formula, a switching rule for the exponential stability of switched linear systems with interval time-varying delays and new delay-dependent sufficient conditions for the exponential stability of the systems are first established in terms of LMIs. Finally, some examples are exploited to illustrate the effectiveness of the proposed schemes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=exponential%20stability" title="exponential stability">exponential stability</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20systems" title=" hybrid systems"> hybrid systems</a>, <a href="https://publications.waset.org/abstracts/search?q=timevarying%20delays" title=" timevarying delays"> timevarying delays</a>, <a href="https://publications.waset.org/abstracts/search?q=Lyapunov-Krasovskii%20functional" title=" Lyapunov-Krasovskii functional"> Lyapunov-Krasovskii functional</a>, <a href="https://publications.waset.org/abstracts/search?q=Leibniz-Newton%E2%80%99s%20formula" title=" Leibniz-Newton’s formula"> Leibniz-Newton’s formula</a> </p> <a href="https://publications.waset.org/abstracts/20280/stability-of-hybrid-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20280.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">458</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3433</span> New Results on Exponential Stability of Hybrid Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Grienggrai%20Rajchakit">Grienggrai Rajchakit</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper is concerned with the exponential stability of switched linear systems with interval time-varying delays. The time delay is any continuous function belonging to a given interval, in which the lower bound of delay is not restricted to zero. By constructing a suitable augmented Lyapunov-Krasovskii functional combined with Leibniz-Newton's formula, a switching rule for the exponential stability of switched linear systems with interval time-varying delays and new delay-dependent sufficient conditions for the exponential stability of the systems are first established in terms of LMIs. Finally, some examples are exploited to illustrate the effectiveness of the proposed schemes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=exponential%20stability" title="exponential stability">exponential stability</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20systems" title=" hybrid systems"> hybrid systems</a>, <a href="https://publications.waset.org/abstracts/search?q=time-varying%20delays" title=" time-varying delays"> time-varying delays</a>, <a href="https://publications.waset.org/abstracts/search?q=lyapunov-krasovskii%20functional" title=" lyapunov-krasovskii functional"> lyapunov-krasovskii functional</a>, <a href="https://publications.waset.org/abstracts/search?q=leibniz-newton%27s%20formula" title=" leibniz-newton's formula"> leibniz-newton's formula</a> </p> <a href="https://publications.waset.org/abstracts/19808/new-results-on-exponential-stability-of-hybrid-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19808.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">544</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3432</span> Parallel Particle Swarm Optimization Optimized LDI Controller with Lyapunov Stability Criterion for Nonlinear Structural Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20W.%20Tsai">P. W. Tsai</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20L.%20Hong"> W. L. Hong</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20W.%20Chen"> C. W. Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Y.%20Chen"> C. Y. Chen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we present a neural network (NN) based approach represent a nonlinear Tagagi-Sugeno (T-S) system. A linear differential inclusion (LDI) state-space representation is utilized to deal with the NN models. Taking advantage of the LDI representation, the stability conditions and controller design are derived for a class of nonlinear structural systems. Moreover, the concept of utilizing the Parallel Particle Swarm Optimization (PPSO) algorithm to solve the common P matrix under the stability criteria is given in this paper. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lyapunov%20stability" title="Lyapunov stability">Lyapunov stability</a>, <a href="https://publications.waset.org/abstracts/search?q=parallel%20particle%20swarm%20optimization" title=" parallel particle swarm optimization"> parallel particle swarm optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=linear%20differential%20inclusion" title=" linear differential inclusion"> linear differential inclusion</a>, <a href="https://publications.waset.org/abstracts/search?q=artificial%20intelligence" title=" artificial intelligence"> artificial intelligence</a> </p> <a href="https://publications.waset.org/abstracts/6974/parallel-particle-swarm-optimization-optimized-ldi-controller-with-lyapunov-stability-criterion-for-nonlinear-structural-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6974.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">656</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3431</span> Nonlinear Control of Mobile Inverted Pendulum: Theory and Experiment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=V.%20Sankaranarayanan">V. Sankaranarayanan</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Amrita%20Sundari"> V. Amrita Sundari</a>, <a href="https://publications.waset.org/abstracts/search?q=Sunit%20P.%20Gopal"> Sunit P. Gopal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the design and implementation of a nonlinear controller for the point to point control of a mobile inverted pendulum (MIP). The controller is designed based on the kinematic model of the MIP to stabilize all the four coordinates. The stability of the closed-loop system is proved using Lyapunov stability theory. The proposed controller is validated through numerical simulations and also implemented in a laboratory prototype. The results are presented to evaluate the performance of the proposed closed loop system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mobile%20inverted%20pendulum" title="mobile inverted pendulum">mobile inverted pendulum</a>, <a href="https://publications.waset.org/abstracts/search?q=switched%20control" title=" switched control"> switched control</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20systems" title=" nonlinear systems"> nonlinear systems</a>, <a href="https://publications.waset.org/abstracts/search?q=lyapunov%20stability" title=" lyapunov stability"> lyapunov stability</a> </p> <a href="https://publications.waset.org/abstracts/56547/nonlinear-control-of-mobile-inverted-pendulum-theory-and-experiment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56547.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">328</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3430</span> H∞ Sampled-Data Control for Linear Systems Time-Varying Delays: Application to Power System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chang-Ho%20Lee">Chang-Ho Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Seung-Hoon%20Lee"> Seung-Hoon Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Myeong-Jin%20Park"> Myeong-Jin Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Oh-Min%20Kwon"> Oh-Min Kwon</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper investigates improved stability criteria for sampled-data control of linear systems with disturbances and time-varying delays. Based on Lyapunov-Krasovskii stability theory, delay-dependent conditions sufficient to ensure H∞ stability for the system are derived in the form of linear matrix inequalities(LMI). The effectiveness of the proposed method will be shown in numerical examples. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sampled-data%20control%20system" title="sampled-data control system">sampled-data control system</a>, <a href="https://publications.waset.org/abstracts/search?q=Lyapunov-Krasovskii%20functional" title=" Lyapunov-Krasovskii functional"> Lyapunov-Krasovskii functional</a>, <a href="https://publications.waset.org/abstracts/search?q=time%20delay-dependent" title=" time delay-dependent"> time delay-dependent</a>, <a href="https://publications.waset.org/abstracts/search?q=LMI" title=" LMI"> LMI</a>, <a href="https://publications.waset.org/abstracts/search?q=H%E2%88%9E%20control" title=" H∞ control"> H∞ control</a> </p> <a href="https://publications.waset.org/abstracts/66538/h-sampled-data-control-for-linear-systems-time-varying-delays-application-to-power-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66538.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">320</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3429</span> Fast Terminal Synergetic Converter Control</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Z.%20Bouchama">Z. Bouchama</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Essounbouli"> N. Essounbouli</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Hamzaoui"> A. Hamzaoui</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20N.%20Harmas"> M. N. Harmas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A new robust finite time synergetic controller is presented based on recently developed synergetic control methodology and a terminal attractor technique. A Fast Terminal Synergetic Control (FTSC) is proposed for controlling DC-DC buck converter. Unlike Synergetic Control (SC) and sliding mode control, the proposed control scheme has the characteristics of finite time convergence and chattering free phenomena. Simulation of stabilization and reference tracking for buck converter systems illustrates the approach effectiveness while stability is assured in the Lyapunov sense and converse Lyapunov results involving scalar differential inequalities are given for finite-time stability. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dc-dc%20buck%20converter" title="dc-dc buck converter">dc-dc buck converter</a>, <a href="https://publications.waset.org/abstracts/search?q=synergetic%20control" title=" synergetic control"> synergetic control</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20time%20convergence" title=" finite time convergence"> finite time convergence</a>, <a href="https://publications.waset.org/abstracts/search?q=terminal%20synergetic%20control" title=" terminal synergetic control"> terminal synergetic control</a>, <a href="https://publications.waset.org/abstracts/search?q=fast%20terminal%20synergetic%20control" title=" fast terminal synergetic control"> fast terminal synergetic control</a>, <a href="https://publications.waset.org/abstracts/search?q=Lyapunov" title=" Lyapunov"> Lyapunov</a> </p> <a href="https://publications.waset.org/abstracts/7054/fast-terminal-synergetic-converter-control" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7054.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">459</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3428</span> Stability Analysis of a Human-Mosquito Model of Malaria with Infective Immigrants</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nisha%20Budhwar">Nisha Budhwar</a>, <a href="https://publications.waset.org/abstracts/search?q=Sunita%20Daniel"> Sunita Daniel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we analyse the stability of the SEIR model of malaria with infective immigrants which was recently formulated by the authors. The model consists of an SEIR model for the human population and SI Model for the mosquitoes. Susceptible humans become infected after they are bitten by infectious mosquitoes and move on to the Exposed, Infected and Recovered classes respectively. The susceptible mosquito becomes infected after biting an infected person and remains infected till death. We calculate the reproduction number R0 using the next generation method and then discuss about the stability of the equilibrium points. We use the Lyapunov function to show the global stability of the equilibrium points. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=equilibrium%20points" title="equilibrium points">equilibrium points</a>, <a href="https://publications.waset.org/abstracts/search?q=exposed" title=" exposed"> exposed</a>, <a href="https://publications.waset.org/abstracts/search?q=global%20stability" title=" global stability"> global stability</a>, <a href="https://publications.waset.org/abstracts/search?q=infective%20immigrants" title=" infective immigrants"> infective immigrants</a>, <a href="https://publications.waset.org/abstracts/search?q=Lyapunov%20function" title=" Lyapunov function"> Lyapunov function</a>, <a href="https://publications.waset.org/abstracts/search?q=recovered" title=" recovered"> recovered</a>, <a href="https://publications.waset.org/abstracts/search?q=reproduction%20number" title=" reproduction number"> reproduction number</a>, <a href="https://publications.waset.org/abstracts/search?q=susceptible" title=" susceptible"> susceptible</a> </p> <a href="https://publications.waset.org/abstracts/60608/stability-analysis-of-a-human-mosquito-model-of-malaria-with-infective-immigrants" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60608.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">365</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3427</span> Further Analysis of Global Robust Stability of Neural Networks with Multiple Time Delays</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sabri%20Arik">Sabri Arik</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we study the global asymptotic robust stability of delayed neural networks with norm-bounded uncertainties. By employing the Lyapunov stability theory and Homeomorphic mapping theorem, we derive some new types of sufficient conditions ensuring the existence, uniqueness and global asymptotic stability of the equilibrium point for the class of neural networks with discrete time delays under parameter uncertainties and with respect to continuous and slopebounded activation functions. An important aspect of our results is their low computational complexity as the reported results can be verified by checking some properties symmetric matrices associated with the uncertainty sets of network parameters. The obtained results are shown to be generalization of some of the previously published corresponding results. Some comparative numerical examples are also constructed to compare our results with some closely related existing literature results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=neural%20networks" title="neural networks">neural networks</a>, <a href="https://publications.waset.org/abstracts/search?q=delayed%20systems" title=" delayed systems"> delayed systems</a>, <a href="https://publications.waset.org/abstracts/search?q=lyapunov%20functionals" title=" lyapunov functionals"> lyapunov functionals</a>, <a href="https://publications.waset.org/abstracts/search?q=stability%20analysis" title=" stability analysis"> stability analysis</a> </p> <a href="https://publications.waset.org/abstracts/24118/further-analysis-of-global-robust-stability-of-neural-networks-with-multiple-time-delays" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24118.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">528</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3426</span> Delay-Independent Closed-Loop Stabilization of Neutral System with Infinite Delays</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Iyai%20Davies">Iyai Davies</a>, <a href="https://publications.waset.org/abstracts/search?q=Olivier%20L.%20C.%20Haas"> Olivier L. C. Haas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, the problem of stability and stabilization for neutral delay-differential systems with infinite delay is investigated. Using Lyapunov method, new delay-independent sufficient condition for the stability of neutral systems with infinite delay is obtained in terms of linear matrix inequality (LMI). Memory-less state feedback controllers are then designed for the stabilization of the system using the feasible solution of the resulting LMI, which are easily solved using any optimization algorithms. Numerical examples are given to illustrate the results of the proposed methods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=infinite%20delays" title="infinite delays">infinite delays</a>, <a href="https://publications.waset.org/abstracts/search?q=Lyapunov%20method" title=" Lyapunov method"> Lyapunov method</a>, <a href="https://publications.waset.org/abstracts/search?q=linear%20matrix%20inequality" title=" linear matrix inequality"> linear matrix inequality</a>, <a href="https://publications.waset.org/abstracts/search?q=neutral%20systems" title=" neutral systems"> neutral systems</a>, <a href="https://publications.waset.org/abstracts/search?q=stability" title=" stability"> stability</a> </p> <a href="https://publications.waset.org/abstracts/36298/delay-independent-closed-loop-stabilization-of-neutral-system-with-infinite-delays" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36298.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">431</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3425</span> Stability Analysis and Controller Design of Further Development of Miniaturized Mössbauer Spectrometer II for Space Applications with Focus on the Extended Lyapunov Method – Part I –</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Beyki">Mohammad Beyki</a>, <a href="https://publications.waset.org/abstracts/search?q=Justus%20Pawlak"> Justus Pawlak</a>, <a href="https://publications.waset.org/abstracts/search?q=Robert%20Patzke"> Robert Patzke</a>, <a href="https://publications.waset.org/abstracts/search?q=Franz%20Renz"> Franz Renz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the context of planetary exploration, the MIMOS II (miniaturized Mössbauer spectrometer) serves as a proven and reliable measuring instrument. The transmission behaviour of the electronics in the Mössbauer spectroscopy is newly developed and optimized. For this purpose, the overall electronics is split into three parts. This elaboration deals exclusively with the first part of the signal chain for the evaluation of photons in experiments with gamma radiation. Parallel to the analysis of the electronics, a new method for the stability consideration of linear and non-linear systems is presented: The extended method of Lyapunov’s stability criteria. The design helps to weigh advantages and disadvantages against other simulated circuits in order to optimize the MIMOS II for the terestric and extraterestric measurment. Finally, after stability analysis, the controller design according to Ackermann is performed, achieving the best possible optimization of the output variable through a skillful pole assignment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=M%C3%B6ssbauer%20spectroscopy" title="Mössbauer spectroscopy">Mössbauer spectroscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=electronic%20signal%20amplifier" title=" electronic signal amplifier"> electronic signal amplifier</a>, <a href="https://publications.waset.org/abstracts/search?q=light%20processing%20technology" title=" light processing technology"> light processing technology</a>, <a href="https://publications.waset.org/abstracts/search?q=photocurrent" title=" photocurrent"> photocurrent</a>, <a href="https://publications.waset.org/abstracts/search?q=trans-impedance%20amplifier" title=" trans-impedance amplifier"> trans-impedance amplifier</a>, <a href="https://publications.waset.org/abstracts/search?q=extended%20Lyapunov%20method" title=" extended Lyapunov method"> extended Lyapunov method</a> </p> <a href="https://publications.waset.org/abstracts/177743/stability-analysis-and-controller-design-of-further-development-of-miniaturized-mossbauer-spectrometer-ii-for-space-applications-with-focus-on-the-extended-lyapunov-method-part-i" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/177743.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">99</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3424</span> Lyapunov Type Inequalities for Fractional Impulsive Hamiltonian Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kazem%20Ghanbari">Kazem Ghanbari</a>, <a href="https://publications.waset.org/abstracts/search?q=Yousef%20Gholami"> Yousef Gholami</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper deals with study about fractional order impulsive Hamiltonian systems and fractional impulsive Sturm-Liouville type problems derived from these systems. The main purpose of this paper devotes to obtain so called Lyapunov type inequalities for mentioned problems. Also, in view point on applicability of obtained inequalities, some qualitative properties such as stability, disconjugacy, nonexistence and oscillatory behaviour of fractional Hamiltonian systems and fractional Sturm-Liouville type problems under impulsive conditions will be derived. At the end, we want to point out that for studying fractional order Hamiltonian systems, we will apply recently introduced fractional Conformable operators. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fractional%20derivatives%20and%20integrals" title="fractional derivatives and integrals">fractional derivatives and integrals</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamiltonian%20system" title=" Hamiltonian system"> Hamiltonian system</a>, <a href="https://publications.waset.org/abstracts/search?q=Lyapunov-type%20inequalities" title=" Lyapunov-type inequalities"> Lyapunov-type inequalities</a>, <a href="https://publications.waset.org/abstracts/search?q=stability" title=" stability"> stability</a>, <a href="https://publications.waset.org/abstracts/search?q=disconjugacy" title=" disconjugacy"> disconjugacy</a> </p> <a href="https://publications.waset.org/abstracts/48806/lyapunov-type-inequalities-for-fractional-impulsive-hamiltonian-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48806.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">356</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3423</span> Synchronization of Chaotic T-System via Optimal Control as an Adaptive Controller</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hossein%20Kheiri">Hossein Kheiri</a>, <a href="https://publications.waset.org/abstracts/search?q=Bashir%20Naderi"> Bashir Naderi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamad%20Reza%20Niknam"> Mohamad Reza Niknam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper we study the optimal synchronization of chaotic T-system with complete uncertain parameter. Optimal control laws and parameter estimation rules are obtained by using Hamilton-Jacobi-Bellman (HJB) technique and Lyapunov stability theorem. The derived control laws are optimal adaptive control and make the states of drive and response systems asymptotically synchronized. Numerical simulation shows the effectiveness and feasibility of the proposed method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lyapunov%20stability" title="Lyapunov stability">Lyapunov stability</a>, <a href="https://publications.waset.org/abstracts/search?q=synchronization" title=" synchronization"> synchronization</a>, <a href="https://publications.waset.org/abstracts/search?q=chaos" title=" chaos"> chaos</a>, <a href="https://publications.waset.org/abstracts/search?q=optimal%20control" title=" optimal control"> optimal control</a>, <a href="https://publications.waset.org/abstracts/search?q=adaptive%20control" title=" adaptive control"> adaptive control</a> </p> <a href="https://publications.waset.org/abstracts/8820/synchronization-of-chaotic-t-system-via-optimal-control-as-an-adaptive-controller" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8820.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">487</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3422</span> Stability of Hybrid Stochastic Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Manlika%20Ratchagit">Manlika Ratchagit</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper is concerned with robust mean square stability of uncertain stochastic switched discrete time-delay systems. The system to be considered is subject to interval time-varying delays, which allows the delay to be a fast time-varying function and the lower bound is not restricted to zero. Based on the discrete Lyapunov functional, a switching rule for the robust mean square stability for the uncertain stochastic discrete time-delay system is designed via linear matrix inequalities. Finally, some examples are exploited to illustrate the effectiveness of the proposed schemes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=robust%20mean%20square%20stability" title="robust mean square stability">robust mean square stability</a>, <a href="https://publications.waset.org/abstracts/search?q=discrete-time%20stochastic%20systems" title=" discrete-time stochastic systems"> discrete-time stochastic systems</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20systems" title=" hybrid systems"> hybrid systems</a>, <a href="https://publications.waset.org/abstracts/search?q=interval%20time-varying%20delays" title=" interval time-varying delays"> interval time-varying delays</a>, <a href="https://publications.waset.org/abstracts/search?q=Lyapunov%20functional" title=" Lyapunov functional"> Lyapunov functional</a>, <a href="https://publications.waset.org/abstracts/search?q=linear%20matrix%20inequalities" title=" linear matrix inequalities"> linear matrix inequalities</a> </p> <a href="https://publications.waset.org/abstracts/20283/stability-of-hybrid-stochastic-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20283.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">485</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3421</span> New Results on Stability of Hybrid Stochastic Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Manlika%20Rajchakit">Manlika Rajchakit</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper is concerned with robust mean square stability of uncertain stochastic switched discrete time-delay systems. The system to be considered is subject to interval time-varying delays, which allows the delay to be a fast time-varying function and the lower bound is not restricted to zero. Based on the discrete Lyapunov functional, a switching rule for the robust mean square stability for the uncertain stochastic discrete time-delay system is designed via linear matrix inequalities. Finally, some examples are exploited to illustrate the effectiveness of the proposed schemes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=robust%20mean%20square%20stability" title="robust mean square stability">robust mean square stability</a>, <a href="https://publications.waset.org/abstracts/search?q=discrete-time%20stochastic%20systems" title=" discrete-time stochastic systems"> discrete-time stochastic systems</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20systems" title=" hybrid systems"> hybrid systems</a>, <a href="https://publications.waset.org/abstracts/search?q=interval%20time-varying%20delays" title=" interval time-varying delays"> interval time-varying delays</a>, <a href="https://publications.waset.org/abstracts/search?q=lyapunov%20functional" title=" lyapunov functional"> lyapunov functional</a>, <a href="https://publications.waset.org/abstracts/search?q=linear%20matrix%20inequalities" title=" linear matrix inequalities"> linear matrix inequalities</a> </p> <a href="https://publications.waset.org/abstracts/19809/new-results-on-stability-of-hybrid-stochastic-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19809.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">429</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3420</span> Global Mittag-Leffler Stability of Fractional-Order Bidirectional Associative Memory Neural Network with Discrete and Distributed Transmission Delays</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Swati%20Tyagi">Swati Tyagi</a>, <a href="https://publications.waset.org/abstracts/search?q=Syed%20Abbas"> Syed Abbas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fractional-order Hopfield neural networks are generally used to model the information processing among the interacting neurons. To show the constancy of the processed information, it is required to analyze the stability of these systems. In this work, we perform Mittag-Leffler stability for the corresponding Caputo fractional-order bidirectional associative memory (BAM) neural networks with various time-delays. We derive sufficient conditions to ensure the existence and uniqueness of the equilibrium point by using the theory of topological degree theory. By applying the fractional Lyapunov method and Mittag-Leffler functions, we derive sufficient conditions for the global Mittag-Leffler stability, which further imply the global asymptotic stability of the network equilibrium. Finally, we present two suitable examples to show the effectiveness of the obtained results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bidirectional%20associative%20memory%20neural%20network" title="bidirectional associative memory neural network">bidirectional associative memory neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=existence%20and%20uniqueness" title=" existence and uniqueness"> existence and uniqueness</a>, <a href="https://publications.waset.org/abstracts/search?q=fractional-order" title=" fractional-order"> fractional-order</a>, <a href="https://publications.waset.org/abstracts/search?q=Lyapunov%20function" title=" Lyapunov function"> Lyapunov function</a>, <a href="https://publications.waset.org/abstracts/search?q=Mittag-Leffler%20stability" title=" Mittag-Leffler stability"> Mittag-Leffler stability</a> </p> <a href="https://publications.waset.org/abstracts/52374/global-mittag-leffler-stability-of-fractional-order-bidirectional-associative-memory-neural-network-with-discrete-and-distributed-transmission-delays" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52374.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">364</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3419</span> Turing Pattern in the Oregonator Revisited</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Elragig%20Aiman">Elragig Aiman</a>, <a href="https://publications.waset.org/abstracts/search?q=Dreiwi%20Hanan"> Dreiwi Hanan</a>, <a href="https://publications.waset.org/abstracts/search?q=Townley%20Stuart"> Townley Stuart</a>, <a href="https://publications.waset.org/abstracts/search?q=Elmabrook%20Idriss"> Elmabrook Idriss</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we reconsider the analysis of the Oregonator model. We highlight an error in this analysis which leads to an incorrect depiction of the parameter region in which diffusion driven instability is possible. We believe that the cause of the oversight is the complexity of stability analyses based on eigenvalues and the dependence on parameters of matrix minors appearing in stability calculations. We regenerate the parameter space where Turing patterns can be seen, and we use the common Lyapunov function (CLF) approach, which is numerically reliable, to further confirm the dependence of the results on diffusion coefficients intensities. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=diffusion%20driven%20instability" title="diffusion driven instability">diffusion driven instability</a>, <a href="https://publications.waset.org/abstracts/search?q=common%20Lyapunov%20function%20%28CLF%29" title=" common Lyapunov function (CLF)"> common Lyapunov function (CLF)</a>, <a href="https://publications.waset.org/abstracts/search?q=turing%20pattern" title=" turing pattern"> turing pattern</a>, <a href="https://publications.waset.org/abstracts/search?q=positive-definite%20matrix" title=" positive-definite matrix"> positive-definite matrix</a> </p> <a href="https://publications.waset.org/abstracts/73343/turing-pattern-in-the-oregonator-revisited" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73343.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">358</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3418</span> Advanced Stability Criterion for Time-Delayed Systems of Neutral Type and Its Application</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20J.%20Park">M. J. Park</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20H.%20Lee"> S. H. Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20H.%20Lee"> C. H. Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20M.%20Kwon"> O. M. Kwon</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper investigates stability problem for linear systems of neutral type with time-varying delay. By constructing various Lyapunov-Krasovskii functional, and utilizing some mathematical techniques, the sufficient stability conditions for the systems are established in terms of linear matrix inequalities (LMIs), which can be easily solved by various effective optimization algorithms. Finally, some illustrative examples are given to show the effectiveness of the proposed criterion. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=neutral%20systems" title="neutral systems">neutral systems</a>, <a href="https://publications.waset.org/abstracts/search?q=time-delay" title=" time-delay"> time-delay</a>, <a href="https://publications.waset.org/abstracts/search?q=stability" title=" stability"> stability</a>, <a href="https://publications.waset.org/abstracts/search?q=Lyapnov%20method" title=" Lyapnov method"> Lyapnov method</a>, <a href="https://publications.waset.org/abstracts/search?q=LMI" title=" LMI"> LMI</a> </p> <a href="https://publications.waset.org/abstracts/66517/advanced-stability-criterion-for-time-delayed-systems-of-neutral-type-and-its-application" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66517.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">348</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3417</span> Quantifying Meaning in Biological Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Richard%20L.%20Summers">Richard L. Summers</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The advanced computational analysis of biological systems is becoming increasingly dependent upon an understanding of the information-theoretic structure of the materials, energy and interactive processes that comprise those systems. The stability and survival of these living systems are fundamentally contingent upon their ability to acquire and process the meaning of information concerning the physical state of its biological continuum (biocontinuum). The drive for adaptive system reconciliation of a divergence from steady-state within this biocontinuum can be described by an information metric-based formulation of the process for actionable knowledge acquisition that incorporates the axiomatic inference of Kullback-Leibler information minimization driven by survival replicator dynamics. If the mathematical expression of this process is the Lagrangian integrand for any change within the biocontinuum then it can also be considered as an action functional for the living system. In the direct method of Lyapunov, such a summarizing mathematical formulation of global system behavior based on the driving forces of energy currents and constraints within the system can serve as a platform for the analysis of stability. As the system evolves in time in response to biocontinuum perturbations, the summarizing function then conveys information about its overall stability. This stability information portends survival and therefore has absolute existential meaning for the living system. The first derivative of the Lyapunov energy information function will have a negative trajectory toward a system's steady state if the driving force is dissipating. By contrast, system instability leading to system dissolution will have a positive trajectory. The direction and magnitude of the vector for the trajectory then serves as a quantifiable signature of the meaning associated with the living system’s stability information, homeostasis and survival potential. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=meaning" title="meaning">meaning</a>, <a href="https://publications.waset.org/abstracts/search?q=information" title=" information"> information</a>, <a href="https://publications.waset.org/abstracts/search?q=Lyapunov" title=" Lyapunov"> Lyapunov</a>, <a href="https://publications.waset.org/abstracts/search?q=living%20systems" title=" living systems"> living systems</a> </p> <a href="https://publications.waset.org/abstracts/146575/quantifying-meaning-in-biological-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/146575.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">131</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3416</span> Self-Organizing Control Systems for Unstable and Deterministic Chaotic Processes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mamyrbek%20A.%20Beisenbi">Mamyrbek A. Beisenbi</a>, <a href="https://publications.waset.org/abstracts/search?q=Nurgul%20M.%20Kissikova"> Nurgul M. Kissikova</a>, <a href="https://publications.waset.org/abstracts/search?q=Saltanat%20E.%20Beisembina"> Saltanat E. Beisembina</a>, <a href="https://publications.waset.org/abstracts/search?q=Salamat%20T.%20Suleimenova"> Salamat T. Suleimenova</a>, <a href="https://publications.waset.org/abstracts/search?q=Samal%20A.%20Kaliyeva"> Samal A. Kaliyeva</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper proposes a method for constructing a self-organizing control system for unstable and deterministic chaotic processes in the class of catastrophe “hyperbolic umbilic” for objects with m-inputs and n-outputs. The self-organizing control system is investigated by the universal gradient-velocity method of Lyapunov vector functions. The conditions for self-organization of the control system in the class of catastrophes “hyperbolic umbilic” are shown in the form of a system of algebraic inequalities that characterize the aperiodic robust stability in the stationary states of the system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gradient-velocity%20method%20of%20Lyapunov%20vector-functions" title="gradient-velocity method of Lyapunov vector-functions">gradient-velocity method of Lyapunov vector-functions</a>, <a href="https://publications.waset.org/abstracts/search?q=hyperbolic%20umbilic" title=" hyperbolic umbilic"> hyperbolic umbilic</a>, <a href="https://publications.waset.org/abstracts/search?q=self-organizing%20control%20system" title=" self-organizing control system"> self-organizing control system</a>, <a href="https://publications.waset.org/abstracts/search?q=stability" title=" stability"> stability</a> </p> <a href="https://publications.waset.org/abstracts/147574/self-organizing-control-systems-for-unstable-and-deterministic-chaotic-processes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/147574.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">137</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3415</span> The Uniting Control Lyapunov Functions in Permanent Magnet Synchronous Linear Motor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yi-Fei%20Yang">Yi-Fei Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=Nai-Bao%20He"> Nai-Bao He</a>, <a href="https://publications.waset.org/abstracts/search?q=Shao-Bang%20Xing"> Shao-Bang Xing</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study investigates the permanent magnet synchronous linear motor (PMSLM) chaotic motion under the specific physical parameters, the stability and the security of motor-driven system will be unavoidably influenced. Therefore, it is really necessary to investigate the methods of controlling or suppressing chaos in PMSLM. Firstly, we derive a chaotic model of PMSLM in the closed-loop system. Secondly, in order to realize the local asymptotic stabilization of the mechanical subsystem and the global stabilization of the motor-driven system including electrical subsystem, we propose an improved uniting control lyapunov functions by introducing backstepping approach. Finally, an illustrated example is also given to show the electiveness of the obtained results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=linear%20motor" title="linear motor">linear motor</a>, <a href="https://publications.waset.org/abstracts/search?q=lyapunov%20functions" title=" lyapunov functions"> lyapunov functions</a>, <a href="https://publications.waset.org/abstracts/search?q=chao%20control" title=" chao control"> chao control</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20controller" title=" hybrid controller"> hybrid controller</a> </p> <a href="https://publications.waset.org/abstracts/46677/the-uniting-control-lyapunov-functions-in-permanent-magnet-synchronous-linear-motor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46677.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">338</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3414</span> Sliding Mode Control of Autonomous Underwater Vehicles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmad%20Forouzantabar">Ahmad Forouzantabar</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Azadi"> Mohammad Azadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Alireza%20Alesaadi"> Alireza Alesaadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper describes a sliding mode controller for autonomous underwater vehicles (AUVs). The dynamic of AUV model is highly nonlinear because of many factors, such as hydrodynamic drag, damping, and lift forces, Coriolis and centripetal forces, gravity and buoyancy forces, as well as forces from thruster. To address these difficulties, a nonlinear sliding mode controller is designed to approximate the nonlinear dynamics of AUV and improve trajectory tracking. Moreover, the proposed controller can profoundly attenuate the effects of uncertainties and external disturbances in the closed-loop system. Using the Lyapunov theory the boundedness of AUV tracking errors and the stability of the proposed control system are also guaranteed. Numerical simulation studies of an AUV are included to illustrate the effectiveness of the presented approach. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lyapunov%20stability" title="lyapunov stability">lyapunov stability</a>, <a href="https://publications.waset.org/abstracts/search?q=autonomous%20underwater%20vehicle" title=" autonomous underwater vehicle"> autonomous underwater vehicle</a>, <a href="https://publications.waset.org/abstracts/search?q=sliding%20mode%20controller" title=" sliding mode controller"> sliding mode controller</a>, <a href="https://publications.waset.org/abstracts/search?q=electronics%20engineering" title=" electronics engineering"> electronics engineering</a> </p> <a href="https://publications.waset.org/abstracts/6715/sliding-mode-control-of-autonomous-underwater-vehicles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6715.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">612</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3413</span> Evolved Bat Algorithm Based Adaptive Fuzzy Sliding Mode Control with LMI Criterion</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.-W.%20Tsai">P.-W. Tsai</a>, <a href="https://publications.waset.org/abstracts/search?q=C.-Y.%20Chen"> C.-Y. Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=C.-W.%20Chen"> C.-W. Chen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, the stability analysis of a GA-Based adaptive fuzzy sliding model controller for a nonlinear system is discussed. First, a nonlinear plant is well-approximated and described with a reference model and a fuzzy model, both involving FLC rules. Then, FLC rules and the consequent parameter are decided on via an Evolved Bat Algorithm (EBA). After this, we guarantee a new tracking performance inequality for the control system. The tracking problem is characterized to solve an eigenvalue problem (EVP). Next, an adaptive fuzzy sliding model controller (AFSMC) is proposed to stabilize the system so as to achieve good control performance. Lyapunov’s direct method can be used to ensure the stability of the nonlinear system. It is shown that the stability analysis can reduce nonlinear systems into a linear matrix inequality (LMI) problem. Finally, a numerical simulation is provided to demonstrate the control methodology. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adaptive%20fuzzy%20sliding%20mode%20control" title="adaptive fuzzy sliding mode control">adaptive fuzzy sliding mode control</a>, <a href="https://publications.waset.org/abstracts/search?q=Lyapunov%20direct%20method" title=" Lyapunov direct method"> Lyapunov direct method</a>, <a href="https://publications.waset.org/abstracts/search?q=swarm%20intelligence" title=" swarm intelligence"> swarm intelligence</a>, <a href="https://publications.waset.org/abstracts/search?q=evolved%20bat%20algorithm" title=" evolved bat algorithm"> evolved bat algorithm</a> </p> <a href="https://publications.waset.org/abstracts/11231/evolved-bat-algorithm-based-adaptive-fuzzy-sliding-mode-control-with-lmi-criterion" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11231.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">445</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3412</span> Sliding Mode Control of Bilateral Teleoperation System with Time Delay</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmad%20Forouzantabar">Ahmad Forouzantabar</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Azadi"> Mohammad Azadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents sliding mode controller for bilateral teleoperation systems with robotic master and slave under constant communication delays. We extend the passivity-based coordination architecture to enhance position and force tracking in the presence of offset in initial conditions, environmental contacts and unknown parameters such as friction coefficient. To address these difficulties, a nonlinear sliding mode controller is designed to approximate the nonlinear dynamics of master and slave robots and improve both position and force tracking. Using the Lyapunov theory, the boundedness of master- slave tracking errors and the stability of the teleoperation system are also guaranteed. Numerical simulations show that proposed controller position and force tracking performances are superior to that of conventional coordination controller tracking performances. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lyapunov%20stability" title="Lyapunov stability">Lyapunov stability</a>, <a href="https://publications.waset.org/abstracts/search?q=teleoperation%20system" title=" teleoperation system"> teleoperation system</a>, <a href="https://publications.waset.org/abstracts/search?q=time%20delay" title=" time delay"> time delay</a>, <a href="https://publications.waset.org/abstracts/search?q=sliding%20mode%20controller" title=" sliding mode controller"> sliding mode controller</a> </p> <a href="https://publications.waset.org/abstracts/45830/sliding-mode-control-of-bilateral-teleoperation-system-with-time-delay" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45830.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">385</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3411</span> Ant Colony Optimization Control for Multilevel STATCOM</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20T%C3%A9djini">H. Tédjini</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Meslem"> Y. Meslem</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Guesbaoui"> B. Guesbaoui</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Safa"> A. Safa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Flexible AC Transmission Systems (FACTS) are potentially becoming more flexible and more economical local controllers in the power system; and because of the high MVA ratings, it would be expensive to provide independent, equal, regulated DC voltage sources to power the multilevel converters which are presently proposed for STATCOMs. DC voltage sources can be derived from the DC link capacitances which are charged by the rectified ac power. In this paper a new stronger control combined of nonlinear control based Lyapunov’s theorem and Ant Colony Algorithm (ACA) to maintain stability of multilevel STATCOM and the utility. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Static%20Compensator%20%28STATCOM%29" title="Static Compensator (STATCOM)">Static Compensator (STATCOM)</a>, <a href="https://publications.waset.org/abstracts/search?q=ant%20colony%20optimization%20%28ACO%29" title=" ant colony optimization (ACO)"> ant colony optimization (ACO)</a>, <a href="https://publications.waset.org/abstracts/search?q=lyapunov%20control%20theory" title=" lyapunov control theory"> lyapunov control theory</a>, <a href="https://publications.waset.org/abstracts/search?q=Decoupled%20power%20control" title=" Decoupled power control"> Decoupled power control</a>, <a href="https://publications.waset.org/abstracts/search?q=neutral%20point%20clamped%20%28NPC%29" title=" neutral point clamped (NPC)"> neutral point clamped (NPC)</a> </p> <a href="https://publications.waset.org/abstracts/19254/ant-colony-optimization-control-for-multilevel-statcom" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19254.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">556</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Lyapunov%20stability&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Lyapunov%20stability&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Lyapunov%20stability&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Lyapunov%20stability&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Lyapunov%20stability&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Lyapunov%20stability&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Lyapunov%20stability&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Lyapunov%20stability&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Lyapunov%20stability&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Lyapunov%20stability&page=114">114</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Lyapunov%20stability&page=115">115</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Lyapunov%20stability&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>