CINXE.COM

Search results for: Lyapunov stability

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: Lyapunov stability</title> <meta name="description" content="Search results for: Lyapunov stability"> <meta name="keywords" content="Lyapunov stability"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="Lyapunov stability" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="Lyapunov stability"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 3440</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: Lyapunov stability</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3410</span> Implementation of Model Reference Adaptive Control in Tuning of Controller Gains for Following-Vehicle System with Fixed Time Headway</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fatemeh%20Behbahani">Fatemeh Behbahani</a>, <a href="https://publications.waset.org/abstracts/search?q=Rubiyah%20Yusof"> Rubiyah Yusof</a> </p> <p class="card-text"><strong>Abstract:</strong></p> To avoid collision between following vehicles and vehicles in front, it is vital to keep appropriate, safe spacing between both vehicles over all speeds. Therefore, the following vehicle needs to have exact information regarding the speed and spacing between vehicles. This project is conducted to simulate the tuning of controller gain for a vehicle-following system through the selected control strategy, spacing control policy and fixed-time headway policy. In addition, the paper simulates and designs an adaptive gain controller for a road-vehicle-following system which uses information on the spacing, velocity and also acceleration of a preceding vehicle in the proposed one-vehicle look-ahead strategy. The mathematical model is implemented using Kirchhoff and Newton’s Laws, and stability simulated. The trial-error method was used to obtain a suitable value of controller gain. However, the adaptive-based controller system was able to optimize the gain value automatically. Model Reference Adaptive Control (MRAC) is designed and utilized and based on firstly the Gradient and secondly the Lyapunov approach. The Lyapunov approach considers stability. The Gradient approach was found to improve the best value of gain in the controller system with fixed-time headway. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=one-vehicle%20look-ahead" title="one-vehicle look-ahead">one-vehicle look-ahead</a>, <a href="https://publications.waset.org/abstracts/search?q=model%20reference%20adaptive" title=" model reference adaptive"> model reference adaptive</a>, <a href="https://publications.waset.org/abstracts/search?q=stability" title=" stability"> stability</a>, <a href="https://publications.waset.org/abstracts/search?q=tuning%20gain%20controller" title=" tuning gain controller"> tuning gain controller</a>, <a href="https://publications.waset.org/abstracts/search?q=MRAC" title=" MRAC"> MRAC</a> </p> <a href="https://publications.waset.org/abstracts/78271/implementation-of-model-reference-adaptive-control-in-tuning-of-controller-gains-for-following-vehicle-system-with-fixed-time-headway" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78271.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">238</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3409</span> Control Law Design of a Wheeled Robot Mobile</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ghania%20Zidani">Ghania Zidani</a>, <a href="https://publications.waset.org/abstracts/search?q=Said%20Drid"> Said Drid</a>, <a href="https://publications.waset.org/abstracts/search?q=Larbi%20Chrifi-Alaoui"> Larbi Chrifi-Alaoui</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdeslam%20Benmakhlouf"> Abdeslam Benmakhlouf</a>, <a href="https://publications.waset.org/abstracts/search?q=Souad%20Chaouch"> Souad Chaouch</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we focus on the study for path tracking control of unicycle-type Wheeled Mobile Robots (WMR), by applying the Backstepping technic. The latter is a relatively new technic for nonlinear systems. To solve the problem of constraints nonholonomics met in the path tracking of such robots, an adaptive Backstepping based nonlinear controller is developed. The stability of the controller is guaranteed, using the Lyapunov theory. Simulation results show that the proposed controller achieves the objective and ensures good path tracking. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Backstepping%20control" title="Backstepping control">Backstepping control</a>, <a href="https://publications.waset.org/abstracts/search?q=kinematic%20and%20dynamic%20controllers" title=" kinematic and dynamic controllers"> kinematic and dynamic controllers</a>, <a href="https://publications.waset.org/abstracts/search?q=Lyapunov%20methods" title=" Lyapunov methods"> Lyapunov methods</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20control%20systems" title=" nonlinear control systems"> nonlinear control systems</a>, <a href="https://publications.waset.org/abstracts/search?q=Wheeled%20Mobile%20Robot%20%28WMR%29." title=" Wheeled Mobile Robot (WMR)."> Wheeled Mobile Robot (WMR).</a> </p> <a href="https://publications.waset.org/abstracts/22322/control-law-design-of-a-wheeled-robot-mobile" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22322.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">439</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3408</span> Stability Analysis of DFIG Stator Powers Control Based on Sliding Mode Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdelhak%20Djoudi">Abdelhak Djoudi</a>, <a href="https://publications.waset.org/abstracts/search?q=Hachemi%20Chekireb"> Hachemi Chekireb</a>, <a href="https://publications.waset.org/abstracts/search?q=El%20Madjid%20Berkouk"> El Madjid Berkouk</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The doubly fed induction generator (DFIG) received recently an important consideration in medium and high power wind energy conversion systems integration, due to its advantages compared to other generators types. The stator power sliding mode control (SPSMC) proves a great efficiency judge against other control laws and schemes. In the SPSMC laws elaborated by several authors, only the slide surface tracking conditions are elaborated using Lyapunov functions, and the boundedness of the DFIG states is never treated. Some works have validated theirs approaches by experiments results in the case of specified machines, but these verifications stay insufficient to generalize to other machines range. Adding to this argument, the DFIG states boundedness demonstration is widely suggested in goal to ensure that in the application of the SPSMC, the states evaluates within theirs tolerable bounds. Our objective in the present paper is to highlight the efficiency of the SPSMC by stability analysis. The boundedness of the DFIG states such as the stator current and rotor flux is discussed. Moreover, the states trajectories are finding using analytical proves taking into consideration the SPSMC gains. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Doubly%20Fed%20Induction%20Generator%20%28DFIG%29" title="Doubly Fed Induction Generator (DFIG)">Doubly Fed Induction Generator (DFIG)</a>, <a href="https://publications.waset.org/abstracts/search?q=Stator%20Powers%20Sliding%20Mode%20Control%20%28SPSMC%29" title=" Stator Powers Sliding Mode Control (SPSMC)"> Stator Powers Sliding Mode Control (SPSMC)</a>, <a href="https://publications.waset.org/abstracts/search?q=lyapunov%20function" title=" lyapunov function"> lyapunov function</a>, <a href="https://publications.waset.org/abstracts/search?q=stability" title=" stability"> stability</a>, <a href="https://publications.waset.org/abstracts/search?q=states%20boundedness" title=" states boundedness"> states boundedness</a>, <a href="https://publications.waset.org/abstracts/search?q=trajectories%20mathematical%20proves" title=" trajectories mathematical proves"> trajectories mathematical proves</a> </p> <a href="https://publications.waset.org/abstracts/1642/stability-analysis-of-dfig-stator-powers-control-based-on-sliding-mode-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1642.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">400</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3407</span> Stability of Solutions of Semidiscrete Stochastic Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ramazan%20Kadiev">Ramazan Kadiev</a>, <a href="https://publications.waset.org/abstracts/search?q=Arkadi%20Ponossov"> Arkadi Ponossov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Semidiscrete systems contain both continuous and discrete components. This means that the dynamics is mostly continuous, but at certain instants, it is exposed to abrupt influences. Such systems naturally appear in applications, for example, in biological and ecological models as well as in the control theory. Therefore, the study of semidiscrete systems has recently attracted the attention of many specialists. Stochastic effects are an important part of any realistic approach to modeling. For example, stochasticity arises in the population dynamics, demographic and ecological due to a change in time of factors external to the system affecting the survival of the population. In control theory, random coefficients can simulate inaccuracies in measurements. It will be shown in the presentation how to incorporate such effects into semidiscrete systems. Stability analysis is an essential part of modeling real-world problems. In the presentation, it will be explained how sufficient conditions for the moment stability of solutions in terms of the coefficients for linear semidiscrete stochastic equations can be derived using non-Lyapunov technique. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=abrupt%20changes" title="abrupt changes">abrupt changes</a>, <a href="https://publications.waset.org/abstracts/search?q=exponential%20stability" title=" exponential stability"> exponential stability</a>, <a href="https://publications.waset.org/abstracts/search?q=regularization" title=" regularization"> regularization</a>, <a href="https://publications.waset.org/abstracts/search?q=stochastic%20noises" title=" stochastic noises"> stochastic noises</a> </p> <a href="https://publications.waset.org/abstracts/144470/stability-of-solutions-of-semidiscrete-stochastic-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/144470.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">187</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3406</span> Projective Lag Synchronization in Drive-Response Dynamical Networks via Hybrid Feedback Control</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohd%20Salmi%20Md%20Noorani">Mohd Salmi Md Noorani</a>, <a href="https://publications.waset.org/abstracts/search?q=Ghada%20Al-Mahbashi"> Ghada Al-Mahbashi</a>, <a href="https://publications.waset.org/abstracts/search?q=Sakhinah%20Abu%20Bakar"> Sakhinah Abu Bakar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper investigates projective lag synchronization (PLS) behavior in drive response dynamical networks (DRDNs) model with identical nodes. A hybrid feedback control method is designed to achieve the PLS with mismatch and without mismatch terms. The stability of the error dynamics is proven theoretically using the Lyapunov stability theory. Finally, analytical results show that the states of the dynamical network with non-delayed coupling can be asymptotically synchronized onto a desired scaling factor under the designed controller. Moreover, the numerical simulations results demonstrate the validity of the proposed method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=drive-response%20dynamical%20network" title="drive-response dynamical network">drive-response dynamical network</a>, <a href="https://publications.waset.org/abstracts/search?q=projective%20lag%20synchronization" title=" projective lag synchronization"> projective lag synchronization</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20feedback%20control" title=" hybrid feedback control"> hybrid feedback control</a>, <a href="https://publications.waset.org/abstracts/search?q=stability%20theory" title=" stability theory"> stability theory</a> </p> <a href="https://publications.waset.org/abstracts/14139/projective-lag-synchronization-in-drive-response-dynamical-networks-via-hybrid-feedback-control" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14139.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">391</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3405</span> Suppressing Vibration in a Three-axis Flexible Satellite: An Approach with Composite Control</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jalal%20Eddine%20Benmansour">Jalal Eddine Benmansour</a>, <a href="https://publications.waset.org/abstracts/search?q=Khouane%20Boulanoir"> Khouane Boulanoir</a>, <a href="https://publications.waset.org/abstracts/search?q=Nacera%20Bekhadda"> Nacera Bekhadda</a>, <a href="https://publications.waset.org/abstracts/search?q=Elhassen%20Benfriha"> Elhassen Benfriha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper introduces a novel composite control approach that addresses the challenge of stabilizing the three-axis attitude of a flexible satellite in the presence of vibrations caused by flexible appendages. The key contribution of this research lies in the development of a disturbance observer, which effectively observes and estimates the unwanted torques induced by the vibrations. By utilizing the estimated disturbance, the proposed approach enables efficient compensation for the detrimental effects of vibrations on the satellite system. To govern the attitude angles of the spacecraft, a proportional derivative controller (PD) is specifically designed and proposed. The PD controller ensures precise control over all attitude angles, facilitating stable and accurate spacecraft maneuvering. In order to demonstrate the global stability of the system, the Lyapunov method, a well-established technique in control theory, is employed. Through rigorous analysis, the Lyapunov method verifies the convergence of system dynamics, providing strong evidence of system stability. To evaluate the performance and efficacy of the proposed control algorithm, extensive simulations are conducted. The simulation results validate the effectiveness of the combined approach, showcasing significant improvements in the stabilization and control of the satellite's attitude, even in the presence of disruptive vibrations from flexible appendages. This novel composite control approach presented in this paper contributes to the advancement of satellite attitude control techniques, offering a promising solution for achieving enhanced stability and precision in challenging operational environments. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=attitude%20control" title="attitude control">attitude control</a>, <a href="https://publications.waset.org/abstracts/search?q=flexible%20satellite" title=" flexible satellite"> flexible satellite</a>, <a href="https://publications.waset.org/abstracts/search?q=vibration%20control" title=" vibration control"> vibration control</a>, <a href="https://publications.waset.org/abstracts/search?q=disturbance%20observer" title=" disturbance observer"> disturbance observer</a> </p> <a href="https://publications.waset.org/abstracts/169781/suppressing-vibration-in-a-three-axis-flexible-satellite-an-approach-with-composite-control" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/169781.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">86</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3404</span> Robust H∞ State Feedback Control for Discrete Time T-S Fuzzy Systems Based on Fuzzy Lyapunov Function Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Walied%20Hanora">Walied Hanora</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the problem of robust state feedback H∞ for discrete time nonlinear system represented by Takagi-Sugeno fuzzy systems. Based on fuzzy lyapunov function, the condition ,which is represented in the form of Liner Matrix Inequalities (LMI), guarantees the H∞ performance of the T-S fuzzy system with uncertainties. By comparison with recent literature, this approach will be more relaxed condition. Finally, an example is given to illustrate the proposed result. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20lyapunov%20function" title="fuzzy lyapunov function">fuzzy lyapunov function</a>, <a href="https://publications.waset.org/abstracts/search?q=H%E2%88%9E%20control" title=" H∞ control "> H∞ control </a>, <a href="https://publications.waset.org/abstracts/search?q=linear%20matrix%20inequalities" title=" linear matrix inequalities"> linear matrix inequalities</a>, <a href="https://publications.waset.org/abstracts/search?q=state%20feedback" title=" state feedback"> state feedback</a>, <a href="https://publications.waset.org/abstracts/search?q=T-S%20fuzzy%20systems" title=" T-S fuzzy systems"> T-S fuzzy systems</a> </p> <a href="https://publications.waset.org/abstracts/58045/robust-h-state-feedback-control-for-discrete-time-t-s-fuzzy-systems-based-on-fuzzy-lyapunov-function-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58045.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">288</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3403</span> Fault Tolerant Control System Using a Multiple Time Scale SMC Technique and a Geometric Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ghodbane%20Azeddine">Ghodbane Azeddine</a>, <a href="https://publications.waset.org/abstracts/search?q=Saad%20Maarouf"> Saad Maarouf</a>, <a href="https://publications.waset.org/abstracts/search?q=Boland%20Jean-Francois"> Boland Jean-Francois</a>, <a href="https://publications.waset.org/abstracts/search?q=Thibeault%20Claude"> Thibeault Claude</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper proposes a new design of an active fault-tolerant flight control system against abrupt actuator faults. This overall system combines a multiple time scale sliding mode controller for fault compensation and a geometric approach for fault detection and diagnosis. The proposed control system is able to accommodate several kinds of partial and total actuator failures, by using available healthy redundancy actuators. The overall system first estimates the correct fault information using the geometric approach. Then, and based on that, a new reconfigurable control law is designed based on the multiple time scale sliding mode technique for on-line compensating the effect of such faults. This approach takes advantages of the fact that there are significant difference between the time scales of aircraft states that have a slow dynamics and those that have a fast dynamics. The closed-loop stability of the overall system is proved using Lyapunov technique. A case study of the non-linear model of the F16 fighter, subject to the rudder total loss of control confirms the effectiveness of the proposed approach. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=actuator%20faults" title="actuator faults">actuator faults</a>, <a href="https://publications.waset.org/abstracts/search?q=fault%20detection%20and%20diagnosis" title=" fault detection and diagnosis"> fault detection and diagnosis</a>, <a href="https://publications.waset.org/abstracts/search?q=fault%20tolerant%20flight%20control" title=" fault tolerant flight control"> fault tolerant flight control</a>, <a href="https://publications.waset.org/abstracts/search?q=sliding%20mode%20control" title=" sliding mode control"> sliding mode control</a>, <a href="https://publications.waset.org/abstracts/search?q=multiple%20time%20scale%20approximation" title=" multiple time scale approximation"> multiple time scale approximation</a>, <a href="https://publications.waset.org/abstracts/search?q=geometric%20approach%20for%20fault%20reconstruction" title=" geometric approach for fault reconstruction"> geometric approach for fault reconstruction</a>, <a href="https://publications.waset.org/abstracts/search?q=lyapunov%20stability" title=" lyapunov stability"> lyapunov stability</a> </p> <a href="https://publications.waset.org/abstracts/50753/fault-tolerant-control-system-using-a-multiple-time-scale-smc-technique-and-a-geometric-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50753.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">370</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3402</span> Applied Actuator Fault Accommodation in Flight Control Systems Using Fault Reconstruction Based FDD and SMC Reconfiguration</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Ghodbane">A. Ghodbane</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Saad"> M. Saad</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20F.%20Boland"> J. F. Boland</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Thibeault"> C. Thibeault</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Historically, actuators’ redundancy was used to deal with faults occurring suddenly in flight systems. This technique was generally expensive, time consuming and involves increased weight and space in the system. Therefore, nowadays, the on-line fault diagnosis of actuators and accommodation plays a major role in the design of avionic systems. These approaches, known as Fault Tolerant Flight Control systems (FTFCs) are able to adapt to such sudden faults while keeping avionics systems lighter and less expensive. In this paper, a (FTFC) system based on the Geometric Approach and a Reconfigurable Flight Control (RFC) are presented. The Geometric approach is used for cosmic ray fault reconstruction, while Sliding Mode Control (SMC) based on Lyapunov stability theory is designed for the reconfiguration of the controller in order to compensate the fault effect. Matlab®/Simulink® simulations are performed to illustrate the effectiveness and robustness of the proposed flight control system against actuators’ faulty signal caused by cosmic rays. The results demonstrate the successful real-time implementation of the proposed FTFC system on a non-linear 6 DOF aircraft model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=actuators%E2%80%99%20faults" title="actuators’ faults">actuators’ faults</a>, <a href="https://publications.waset.org/abstracts/search?q=fault%20detection%20and%20diagnosis" title=" fault detection and diagnosis"> fault detection and diagnosis</a>, <a href="https://publications.waset.org/abstracts/search?q=fault%20tolerant%20flight%20control" title=" fault tolerant flight control"> fault tolerant flight control</a>, <a href="https://publications.waset.org/abstracts/search?q=sliding%20mode%20control" title=" sliding mode control"> sliding mode control</a>, <a href="https://publications.waset.org/abstracts/search?q=geometric%20approach%20for%20fault%20reconstruction" title=" geometric approach for fault reconstruction"> geometric approach for fault reconstruction</a>, <a href="https://publications.waset.org/abstracts/search?q=Lyapunov%20stability" title=" Lyapunov stability"> Lyapunov stability</a> </p> <a href="https://publications.waset.org/abstracts/7903/applied-actuator-fault-accommodation-in-flight-control-systems-using-fault-reconstruction-based-fdd-and-smc-reconfiguration" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7903.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">418</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3401</span> Global Analysis of HIV Virus Models with Cell-to-Cell</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hossein%20Pourbashash">Hossein Pourbashash</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recent experimental studies have shown that HIV can be transmitted directly from cell to cell when structures called virological synapses form during interactions between T cells. In this article, we describe a new within-host model of HIV infection that incorporates two mechanisms: infection by free virions and the direct cell-to-cell transmission. We conduct the local and global stability analysis of the model. We show that if the basic reproduction number R0 1, the virus is cleared and the disease dies out; if R0 > 1, the virus persists in the host. We also prove that the unique positive equilibrium attracts all positive solutions under additional assumptions on the parameters. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=HIV%20virus%20model" title="HIV virus model">HIV virus model</a>, <a href="https://publications.waset.org/abstracts/search?q=cell-to-cell%20transmission" title=" cell-to-cell transmission"> cell-to-cell transmission</a>, <a href="https://publications.waset.org/abstracts/search?q=global%20stability" title=" global stability"> global stability</a>, <a href="https://publications.waset.org/abstracts/search?q=Lyapunov%20function" title=" Lyapunov function"> Lyapunov function</a>, <a href="https://publications.waset.org/abstracts/search?q=second%20compound%20matrices" title=" second compound matrices"> second compound matrices</a> </p> <a href="https://publications.waset.org/abstracts/23412/global-analysis-of-hiv-virus-models-with-cell-to-cell" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23412.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">517</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3400</span> Lyapunov Exponents in the Restricted Three Body Problem under the Influence of Perturbations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ram%20Kishor">Ram Kishor</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Lyapunov characteristic exponent (LCE) is an important tool to describe behavior of a dynamical system, which measures the average rate of divergence (or convergence) of a trajectory emanating in the vicinity of initial point. To analyze the behavior of nearby trajectory emanating in the neighborhood of an equilibrium point in the restricted three-body problem under the influence of perturbations in the form of radiation pressure and oblateness, we compute LCEs of first order with the help of slandered method which is based on variational equation of the system. It is observed that trajectories are chaotic in nature due positive LCEs. Also, we analyze the effect of radiation pressure and oblateness on the LCEs. Results are applicable to study the behavior of more generalized RTBP in the presence of perturbations such as PR drag, solar wind drag etc. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lyapunov%20characteristic%20exponent" title="Lyapunov characteristic exponent">Lyapunov characteristic exponent</a>, <a href="https://publications.waset.org/abstracts/search?q=RTBP" title=" RTBP"> RTBP</a>, <a href="https://publications.waset.org/abstracts/search?q=radiation%20pressure" title=" radiation pressure"> radiation pressure</a>, <a href="https://publications.waset.org/abstracts/search?q=oblateness" title=" oblateness"> oblateness</a> </p> <a href="https://publications.waset.org/abstracts/49916/lyapunov-exponents-in-the-restricted-three-body-problem-under-the-influence-of-perturbations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49916.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">443</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3399</span> Chaotic Motion of Single-Walled Carbon Nanotube Subject to Damping Effect</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tai-Ping%20Chang">Tai-Ping Chang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the present study, the effects on chaotic motion of single-walled carbon nanotube (SWCNT) due to the linear and nonlinear damping are investigated. By using the Hamilton’s principle, the nonlinear governing equation of the single-walled carbon nanotube embedded in a matrix is derived. The Galerkin’s method is adopted to simplify the integro-partial differential equation into a nonlinear dimensionless governing equation for the SWCNT, which turns out to be a forced Duffing equation. The variations of the Lyapunov exponents of the SWCNT with damping and harmonic forcing amplitudes are investigated. Based on the computations of the top Lyapunov exponent, it is concluded that the chaotic motion of the SWCNT occurs when the amplitude of the periodic excitation exceeds certain value, besides, the chaotic motion of the SWCNT occurs with small linear damping and tiny nonlinear damping. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chaotic%20motion" title="chaotic motion">chaotic motion</a>, <a href="https://publications.waset.org/abstracts/search?q=damping" title=" damping"> damping</a>, <a href="https://publications.waset.org/abstracts/search?q=Lyapunov%20exponents" title=" Lyapunov exponents"> Lyapunov exponents</a>, <a href="https://publications.waset.org/abstracts/search?q=single-walled%20carbon%20nanotube" title=" single-walled carbon nanotube"> single-walled carbon nanotube</a> </p> <a href="https://publications.waset.org/abstracts/43091/chaotic-motion-of-single-walled-carbon-nanotube-subject-to-damping-effect" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43091.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">320</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3398</span> Analysing the Behaviour of Local Hurst Exponent and Lyapunov Exponent for Prediction of Market Crashes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shreemoyee%20Sarkar">Shreemoyee Sarkar</a>, <a href="https://publications.waset.org/abstracts/search?q=Vikhyat%20Chadha"> Vikhyat Chadha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, the local fractal properties and chaotic properties of financial time series are investigated by calculating two exponents, the Local Hurst Exponent: LHE and Lyapunov Exponent in a moving time window of a financial series.y. For the purpose of this paper, the Dow Jones Industrial Average (DIJA) and S&P 500, two of the major indices of United States have been considered. The behaviour of the above-mentioned exponents prior to some major crashes (1998 and 2008 crashes in S&P 500 and 2002 and 2008 crashes in DIJA) is discussed. Also, the optimal length of the window for obtaining the best possible results is decided. Based on the outcomes of the above, an attempt is made to predict the crashes and accuracy of such an algorithm is decided. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=local%20hurst%20exponent" title="local hurst exponent">local hurst exponent</a>, <a href="https://publications.waset.org/abstracts/search?q=lyapunov%20exponent" title=" lyapunov exponent"> lyapunov exponent</a>, <a href="https://publications.waset.org/abstracts/search?q=market%20crash%20prediction" title=" market crash prediction"> market crash prediction</a>, <a href="https://publications.waset.org/abstracts/search?q=time%20series%20chaos" title=" time series chaos"> time series chaos</a>, <a href="https://publications.waset.org/abstracts/search?q=time%20series%20local%20fractal%20properties" title=" time series local fractal properties"> time series local fractal properties</a> </p> <a href="https://publications.waset.org/abstracts/102568/analysing-the-behaviour-of-local-hurst-exponent-and-lyapunov-exponent-for-prediction-of-market-crashes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/102568.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">152</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3397</span> Control of Spherical Robot with Sliding Mode</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Roya%20Khajepour">Roya Khajepour</a>, <a href="https://publications.waset.org/abstracts/search?q=Alireza%20B.%20Novinzadeh"> Alireza B. Novinzadeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A major issue with spherical robot is it surface shape, which is not always predictable. This means that given only the dynamic model of the robot, it is not possible to control the robot. Due to the fact that in certain conditions it is not possible to measure surface friction, control methods must be prepared for these conditions. Moreover, although spherical robot never becomes unstable or topples thanks to its special shape, since it moves by rolling it has a non-holonomic constraint at point of contact and therefore it is considered a non-holonomic system. Existence of such a point leads to complexity and non-linearity of robot's kinematic equations and makes the control problem difficult. Due to the non-linear dynamics and presence of uncertainty, the sliding-mode control is employed. The proposed method is based on Lyapunov Theory and guarantees system stability. This controller is insusceptible to external disturbances and un-modeled dynamics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sliding%20mode" title="sliding mode">sliding mode</a>, <a href="https://publications.waset.org/abstracts/search?q=spherical%20robot" title=" spherical robot"> spherical robot</a>, <a href="https://publications.waset.org/abstracts/search?q=non-holomonic%20constraint" title=" non-holomonic constraint"> non-holomonic constraint</a>, <a href="https://publications.waset.org/abstracts/search?q=system%20stability" title=" system stability"> system stability</a> </p> <a href="https://publications.waset.org/abstracts/27170/control-of-spherical-robot-with-sliding-mode" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27170.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">389</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3396</span> A New Fuzzy Fractional Order Model of Transmission of Covid-19 With Quarantine Class</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Asma%20Hanif">Asma Hanif</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20I.%20K.%20Butt"> A. I. K. Butt</a>, <a href="https://publications.waset.org/abstracts/search?q=Shabir%20Ahmad"> Shabir Ahmad</a>, <a href="https://publications.waset.org/abstracts/search?q=Rahim%20Ud%20Din"> Rahim Ud Din</a>, <a href="https://publications.waset.org/abstracts/search?q=Mustafa%20Inc"> Mustafa Inc</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper is devoted to a study of the fuzzy fractional mathematical model reviewing the transmission dynamics of the infectious disease Covid-19. The proposed dynamical model consists of susceptible, exposed, symptomatic, asymptomatic, quarantine, hospitalized and recovered compartments. In this study, we deal with the fuzzy fractional model defined in Caputo’s sense. We show the positivity of state variables that all the state variables that represent different compartments of the model are positive. Using Gronwall inequality, we show that the solution of the model is bounded. Using the notion of the next-generation matrix, we find the basic reproduction number of the model. We demonstrate the local and global stability of the equilibrium point by using the concept of Castillo-Chavez and Lyapunov theory with the Lasalle invariant principle, respectively. We present the results that reveal the existence and uniqueness of the solution of the considered model through the fixed point theorem of Schauder and Banach. Using the fuzzy hybrid Laplace method, we acquire the approximate solution of the proposed model. The results are graphically presented via MATLAB-17. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Caputo%20fractional%20derivative" title="Caputo fractional derivative">Caputo fractional derivative</a>, <a href="https://publications.waset.org/abstracts/search?q=existence%20and%20uniqueness" title=" existence and uniqueness"> existence and uniqueness</a>, <a href="https://publications.waset.org/abstracts/search?q=gronwall%20inequality" title=" gronwall inequality"> gronwall inequality</a>, <a href="https://publications.waset.org/abstracts/search?q=Lyapunov%20theory" title=" Lyapunov theory"> Lyapunov theory</a> </p> <a href="https://publications.waset.org/abstracts/147667/a-new-fuzzy-fractional-order-model-of-transmission-of-covid-19-with-quarantine-class" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/147667.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">105</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3395</span> Some Results on Cluster Synchronization</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shahed%20Vahedi">Shahed Vahedi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohd%20Salmi%20Md%20Noorani"> Mohd Salmi Md Noorani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper investigates cluster synchronization phenomena between community networks. We focus on the situation where a variety of dynamics occur in the clusters. In particular, we show that different synchronization states simultaneously occur between the networks. The controller is designed having an adaptive control gain, and theoretical results are derived via Lyapunov stability. Simulations on well-known dynamical systems are provided to elucidate our results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cluster%20synchronization" title="cluster synchronization">cluster synchronization</a>, <a href="https://publications.waset.org/abstracts/search?q=adaptive%20control" title=" adaptive control"> adaptive control</a>, <a href="https://publications.waset.org/abstracts/search?q=community%20network" title=" community network"> community network</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a> </p> <a href="https://publications.waset.org/abstracts/28916/some-results-on-cluster-synchronization" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28916.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">475</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3394</span> Multi-Agent Coverage Control with Bounded Gain Forgetting Composite Adaptive Controller</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mert%20Turanli">Mert Turanli</a>, <a href="https://publications.waset.org/abstracts/search?q=Hakan%20Temeltas"> Hakan Temeltas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we present an adaptive controller for decentralized coordination problem of multiple non-holonomic agents. The performance of the presented Multi-Agent Bounded Gain Forgetting (BGF) Composite Adaptive controller is compared against the tracking error criterion with a Feedback Linearization controller. By using the method, the sensor nodes move and reconfigure themselves in a coordinated way in response to a sensed environment. The multi-agent coordination is achieved through Centroidal Voronoi Tessellations and Coverage Control. Also, a consensus protocol is used for synchronization of the parameter vectors. The two controllers are given with their Lyapunov stability analysis and their stability is verified with simulation results. The simulations are carried out in MATLAB and ROS environments. Better performance is obtained with BGF Adaptive Controller. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adaptive%20control" title="adaptive control">adaptive control</a>, <a href="https://publications.waset.org/abstracts/search?q=centroidal%20voronoi%20tessellations" title=" centroidal voronoi tessellations"> centroidal voronoi tessellations</a>, <a href="https://publications.waset.org/abstracts/search?q=composite%20adaptation" title=" composite adaptation"> composite adaptation</a>, <a href="https://publications.waset.org/abstracts/search?q=coordination" title=" coordination"> coordination</a>, <a href="https://publications.waset.org/abstracts/search?q=multi%20robots" title=" multi robots"> multi robots</a> </p> <a href="https://publications.waset.org/abstracts/57931/multi-agent-coverage-control-with-bounded-gain-forgetting-composite-adaptive-controller" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57931.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">348</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3393</span> Modelling the Effect of Distancing and Wearing of Face Masks on Transmission of COVID-19 Infection Dynamics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nurudeen%20Oluwasola%20Lasisi">Nurudeen Oluwasola Lasisi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The COVID-19 is an infection caused by coronavirus, which has been designated as a pandemic in the world. In this paper, we proposed a model to study the effect of distancing and wearing masks on the transmission of COVID-19 infection dynamics. The invariant region of the model is established. The COVID-19 free equilibrium and the reproduction number of the model were obtained. The local and global stability of the model is determined using the linearization technique method and Lyapunov method. It was found that COVID-19 free equilibrium state is locally asymptotically stable in feasible region Ω if R₀ < 1 and globally asymptomatically stable if R₀ < 1, otherwise unstable if R₀ > 1. More so, numerical analysis and simulations of the dynamics of the COVID-19 infection are presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=distancing" title="distancing">distancing</a>, <a href="https://publications.waset.org/abstracts/search?q=reproduction%20number" title=" reproduction number"> reproduction number</a>, <a href="https://publications.waset.org/abstracts/search?q=wearing%20of%20mask" title=" wearing of mask"> wearing of mask</a>, <a href="https://publications.waset.org/abstracts/search?q=local%20and%20global%20stability" title=" local and global stability"> local and global stability</a>, <a href="https://publications.waset.org/abstracts/search?q=modelling" title=" modelling"> modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=transmission" title=" transmission"> transmission</a> </p> <a href="https://publications.waset.org/abstracts/129529/modelling-the-effect-of-distancing-and-wearing-of-face-masks-on-transmission-of-covid-19-infection-dynamics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/129529.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">138</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3392</span> Generalized Synchronization in Systems with a Complex Topology of Attractor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Olga%20I.%20Moskalenko">Olga I. Moskalenko</a>, <a href="https://publications.waset.org/abstracts/search?q=Vladislav%20A.%20Khanadeev"> Vladislav A. Khanadeev</a>, <a href="https://publications.waset.org/abstracts/search?q=Anastasya%20D.%20Koloskova"> Anastasya D. Koloskova</a>, <a href="https://publications.waset.org/abstracts/search?q=Alexey%20A.%20Koronovskii"> Alexey A. Koronovskii</a>, <a href="https://publications.waset.org/abstracts/search?q=Anatoly%20A.%20Pivovarov"> Anatoly A. Pivovarov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Generalized synchronization is one of the most intricate phenomena in nonlinear science. It can be observed both in systems with a unidirectional and mutual type of coupling including the complex networks. Such a phenomenon has a number of practical applications, for example, for the secure information transmission through the communication channel with a high level of noise. Known methods for the secure information transmission needs in the increase of the privacy of data transmission that arises a question about the observation of such phenomenon in systems with a complex topology of chaotic attractor possessing two or more positive Lyapunov exponents. The present report is devoted to the study of such phenomenon in two unidirectionally and mutually coupled dynamical systems being in chaotic (with one positive Lyapunov exponent) and hyperchaotic (with two or more positive Lyapunov exponents) regimes, respectively. As the systems under study, we have used two mutually coupled modified Lorenz oscillators and two unidirectionally coupled time-delayed generators. We have shown that in both cases the generalized synchronization regime can be detected by means of the calculation of Lyapunov exponents and phase tube approach whereas due to the complex topology of attractor the nearest neighbor method is misleading. Moreover, the auxiliary system approaches being the standard method for the synchronous regime observation, for the mutual type of coupling results in incorrect results. To calculate the Lyapunov exponents in time-delayed systems we have proposed an approach based on the modification of Gram-Schmidt orthogonalization procedure in the context of the time-delayed system. We have studied in detail the mechanisms resulting in the generalized synchronization regime onset paying a great attention to the field where one positive Lyapunov exponent has already been become negative whereas the second one is a positive yet. We have found the intermittency here and studied its characteristics. To detect the laminar phase lengths the method based on a calculation of local Lyapunov exponents has been proposed. The efficiency of the method has been verified using the example of two unidirectionally coupled Rössler systems being in the band chaos regime. We have revealed the main characteristics of intermittency, i.e. the distribution of the laminar phase lengths and dependence of the mean length of the laminar phases on the criticality parameter, for all systems studied in the report. This work has been supported by the Russian President's Council grant for the state support of young Russian scientists (project MK-531.2018.2). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=complex%20topology%20of%20attractor" title="complex topology of attractor">complex topology of attractor</a>, <a href="https://publications.waset.org/abstracts/search?q=generalized%20synchronization" title=" generalized synchronization"> generalized synchronization</a>, <a href="https://publications.waset.org/abstracts/search?q=hyperchaos" title=" hyperchaos"> hyperchaos</a>, <a href="https://publications.waset.org/abstracts/search?q=Lyapunov%20exponents" title=" Lyapunov exponents"> Lyapunov exponents</a> </p> <a href="https://publications.waset.org/abstracts/95332/generalized-synchronization-in-systems-with-a-complex-topology-of-attractor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/95332.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">276</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3391</span> Balancing a Rotary Inverted Pendulum System Using Robust Generalized Dynamic Inverse: Design and Experiment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ibrahim%20M.%20Mehedi">Ibrahim M. Mehedi</a>, <a href="https://publications.waset.org/abstracts/search?q=Uzair%20Ansari"> Uzair Ansari</a>, <a href="https://publications.waset.org/abstracts/search?q=Ubaid%20M.%20Al-Saggaf"> Ubaid M. Al-Saggaf</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdulrahman%20H.%20Bajodah"> Abdulrahman H. Bajodah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a methodology for balancing a rotary inverted pendulum system using Robust Generalized Dynamic Inversion (RGDI) under influence of parametric variations and external disturbances. In GDI control, dynamic constraints are formulated in the form of asymptotically stable differential equation which encapsulates the control objectives. The constraint differential equations are based on the deviation function of the angular position and its rates from their reference values. The constraint dynamics are inverted using Moore-Penrose Generalized Inverse (MPGI) to realize the control expression. The GDI singularity problem is addressed by augmenting a dynamic scale factor in the interpretation of MPGI which guarantee asymptotically stable position tracking. An additional term based on Sliding Mode Control is appended within GDI control to make it robust against parametric variations, disturbances and tracking performance deterioration due to generalized inversion scaling. The stability of the closed loop system is ensured by using positive definite Lyapunov energy function that guarantees semi-global practically stable position tracking. Numerical simulations are conducted on the dynamic model of rotary inverted pendulum system to analyze the efficiency of proposed RGDI control law. The comparative study is also presented, in which the performance of RGDI control is compared with Linear Quadratic Regulator (LQR) and is verified through experiments. Numerical simulations and real-time experiments demonstrate better tracking performance abilities and robustness features of RGDI control in the presence of parametric uncertainties and disturbances. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=generalized%20dynamic%20inversion" title="generalized dynamic inversion">generalized dynamic inversion</a>, <a href="https://publications.waset.org/abstracts/search?q=lyapunov%20stability" title=" lyapunov stability"> lyapunov stability</a>, <a href="https://publications.waset.org/abstracts/search?q=rotary%20inverted%20pendulum%20system" title=" rotary inverted pendulum system"> rotary inverted pendulum system</a>, <a href="https://publications.waset.org/abstracts/search?q=sliding%20mode%20control" title=" sliding mode control"> sliding mode control</a> </p> <a href="https://publications.waset.org/abstracts/86904/balancing-a-rotary-inverted-pendulum-system-using-robust-generalized-dynamic-inverse-design-and-experiment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/86904.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">172</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3390</span> Design of a Fuzzy Luenberger Observer for Fault Nonlinear System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mounir%20Bekaik">Mounir Bekaik</a>, <a href="https://publications.waset.org/abstracts/search?q=Messaoud%20Ramdani"> Messaoud Ramdani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We present in this work a new technique of stabilization for fault nonlinear systems. The approach we adopt focus on a fuzzy Luenverger observer. The T-S approximation of the nonlinear observer is based on fuzzy C-Means clustering algorithm to find local linear subsystems. The MOESP identification approach was applied to design an empirical model describing the subsystems state variables. The gain of the observer is given by the minimization of the estimation error through Lyapunov-krasovskii functional and LMI approach. We consider a three tank hydraulic system for an illustrative example. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20system" title="nonlinear system">nonlinear system</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy" title=" fuzzy"> fuzzy</a>, <a href="https://publications.waset.org/abstracts/search?q=faults" title=" faults"> faults</a>, <a href="https://publications.waset.org/abstracts/search?q=TS" title=" TS"> TS</a>, <a href="https://publications.waset.org/abstracts/search?q=Lyapunov-Krasovskii" title=" Lyapunov-Krasovskii"> Lyapunov-Krasovskii</a>, <a href="https://publications.waset.org/abstracts/search?q=observer" title=" observer"> observer</a> </p> <a href="https://publications.waset.org/abstracts/47230/design-of-a-fuzzy-luenberger-observer-for-fault-nonlinear-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47230.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">333</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3389</span> Reliable Consensus Problem for Multi-Agent Systems with Sampled-Data </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20H.%20Lee">S. H. Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20J.%20Park"> M. J. Park</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20M.%20Kwon"> O. M. Kwon</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, reliable consensus of multi-agent systems with sampled-data is investigated. By using a suitable Lyapunov-Krasovskii functional and some techniques such as Wirtinger Inequality, Schur Complement and Kronecker Product, the results of this systems are obtained by solving a set of Linear Matrix Inequalities(LMIs). One numerical example is included to show the effectiveness of the proposed criteria. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=multi-agent" title="multi-agent">multi-agent</a>, <a href="https://publications.waset.org/abstracts/search?q=linear%20matrix%20inequalities%20%28LMIs%29" title=" linear matrix inequalities (LMIs)"> linear matrix inequalities (LMIs)</a>, <a href="https://publications.waset.org/abstracts/search?q=kronecker%20product" title=" kronecker product"> kronecker product</a>, <a href="https://publications.waset.org/abstracts/search?q=sampled-data" title=" sampled-data"> sampled-data</a>, <a href="https://publications.waset.org/abstracts/search?q=Lyapunov%20method" title=" Lyapunov method"> Lyapunov method</a> </p> <a href="https://publications.waset.org/abstracts/25582/reliable-consensus-problem-for-multi-agent-systems-with-sampled-data" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25582.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">528</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3388</span> Parameterized Lyapunov Function Based Robust Diagonal Dominance Pre-Compensator Design for Linear Parameter Varying Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xiaobao%20Han">Xiaobao Han</a>, <a href="https://publications.waset.org/abstracts/search?q=Huacong%20Li"> Huacong Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Jia%20Li"> Jia Li</a> </p> <p class="card-text"><strong>Abstract:</strong></p> For dynamic decoupling of linear parameter varying system, a robust dominance pre-compensator design method is given. The parameterized pre-compensator design problem is converted into optimal problem constrained with parameterized linear matrix inequalities (PLMI); To solve this problem, firstly, this optimization problem is equivalently transformed into a new form with elimination of coupling relationship between parameterized Lyapunov function (PLF) and pre-compensator. Then the problem was reduced to a normal convex optimization problem with normal linear matrix inequalities (LMI) constraints on a newly constructed convex polyhedron. Moreover, a parameter scheduling pre-compensator was achieved, which satisfies robust performance and decoupling performances. Finally, the feasibility and validity of the robust diagonal dominance pre-compensator design method are verified by the numerical simulation of a turbofan engine PLPV model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=linear%20parameter%20varying%20%28LPV%29" title="linear parameter varying (LPV)">linear parameter varying (LPV)</a>, <a href="https://publications.waset.org/abstracts/search?q=parameterized%20Lyapunov%20function%20%28PLF%29" title=" parameterized Lyapunov function (PLF)"> parameterized Lyapunov function (PLF)</a>, <a href="https://publications.waset.org/abstracts/search?q=linear%20matrix%20inequalities%20%28LMI%29" title=" linear matrix inequalities (LMI)"> linear matrix inequalities (LMI)</a>, <a href="https://publications.waset.org/abstracts/search?q=diagonal%20dominance%20pre-compensator" title=" diagonal dominance pre-compensator"> diagonal dominance pre-compensator</a> </p> <a href="https://publications.waset.org/abstracts/57964/parameterized-lyapunov-function-based-robust-diagonal-dominance-pre-compensator-design-for-linear-parameter-varying-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57964.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">399</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3387</span> Reconstruction and Rejection of External Disturbances in a Dynamical System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Iftikhar%20Ahmad">Iftikhar Ahmad</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Benallegue"> A. Benallegue</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20El%20Hadri"> A. El Hadri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we have proposed an observer for the reconstruction and a control law for the rejection application of unknown bounded external disturbance in a dynamical system. The strategy of both the observer and the controller is designed like a second order sliding mode with a proportional-integral (PI) term. Lyapunov theory is used to prove the exponential convergence and stability. Simulations results are given to show the performance of this method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=non-linear%20systems" title="non-linear systems">non-linear systems</a>, <a href="https://publications.waset.org/abstracts/search?q=sliding%20mode%20observer" title=" sliding mode observer"> sliding mode observer</a>, <a href="https://publications.waset.org/abstracts/search?q=disturbance%20rejection" title=" disturbance rejection"> disturbance rejection</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20control" title=" nonlinear control"> nonlinear control</a> </p> <a href="https://publications.waset.org/abstracts/44910/reconstruction-and-rejection-of-external-disturbances-in-a-dynamical-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44910.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">334</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3386</span> A Survey on Routh-Hurwitz Stability Criterion</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mojtaba%20Hakimi-Moghaddam">Mojtaba Hakimi-Moghaddam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Routh-Hurwitz stability criterion is a powerful approach to determine stability of linear time invariant systems. On the other hand, applying this criterion to characteristic equation of a system, whose stability or marginal stability can be determined. Although the command roots (.) of MATLAB software can be easily used to determine the roots of a polynomial, the characteristic equation of closed loop system usually includes parameters, so software cannot handle it; however, Routh-Hurwitz stability criterion results the region of parameter changes where the stability is guaranteed. Moreover, this criterion has been extended to characterize the stability of interval polynomials as well as fractional-order polynomials. Furthermore, it can help us to design stable and minimum-phase controllers. In this paper, theory and application of this criterion will be reviewed. Also, several illustrative examples are given. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hurwitz%20polynomials" title="Hurwitz polynomials">Hurwitz polynomials</a>, <a href="https://publications.waset.org/abstracts/search?q=Routh-Hurwitz%20stability%20criterion" title=" Routh-Hurwitz stability criterion"> Routh-Hurwitz stability criterion</a>, <a href="https://publications.waset.org/abstracts/search?q=continued%20fraction%20expansion" title=" continued fraction expansion"> continued fraction expansion</a>, <a href="https://publications.waset.org/abstracts/search?q=pure%20imaginary%20roots" title=" pure imaginary roots"> pure imaginary roots</a> </p> <a href="https://publications.waset.org/abstracts/72768/a-survey-on-routh-hurwitz-stability-criterion" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72768.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">328</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3385</span> Boundedness and Asymptotic Behavior of Solutions for Gierer-Meinhardt Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Henine">S. Henine</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Youkana"> A. Youkana</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work is devoted to study the global existence and asymptotic behavior of solutions for Gierer-Meinhardt systems arising in biological phenomena. We prove that the solutions are global and uniformly bounded by a positive constant independent of the time. Our technique is based on Lyapunov functional argument. Under suitable conditions, we established a result on the asymptotic behavior of solutions. These results are valid for any positive continuous initial data, and improve some recently results established. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=asymptotic%20behavior" title="asymptotic behavior">asymptotic behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=Gierer-Meinhardt%20systems" title=" Gierer-Meinhardt systems"> Gierer-Meinhardt systems</a>, <a href="https://publications.waset.org/abstracts/search?q=global%20existence" title=" global existence"> global existence</a>, <a href="https://publications.waset.org/abstracts/search?q=Lyapunov%20functional" title=" Lyapunov functional"> Lyapunov functional</a> </p> <a href="https://publications.waset.org/abstracts/39077/boundedness-and-asymptotic-behavior-of-solutions-for-gierer-meinhardt-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39077.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">388</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3384</span> Stability of Power System with High Penetration of Wind Energy: A Comprehensive Review</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jignesh%20Patel">Jignesh Patel</a>, <a href="https://publications.waset.org/abstracts/search?q=Satish%20K.%20Joshi"> Satish K. Joshi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the literature review on the works done so far in the area of stability of power system with high penetration of Wind Power with other conventional power sources. Out of many problems, the voltage and frequency stability is of prime concern as it is directly related with the stable operation of power system. In this paper, different aspects of stability of power system, particularly voltage and frequency, Optimization of FACTS-Energy Storage devices is discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=small%20singal%20stability" title="small singal stability">small singal stability</a>, <a href="https://publications.waset.org/abstracts/search?q=voltage%20stability" title=" voltage stability"> voltage stability</a>, <a href="https://publications.waset.org/abstracts/search?q=frequency%20stability" title=" frequency stability"> frequency stability</a>, <a href="https://publications.waset.org/abstracts/search?q=LVRT" title=" LVRT"> LVRT</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20power" title=" wind power"> wind power</a>, <a href="https://publications.waset.org/abstracts/search?q=FACTS" title=" FACTS"> FACTS</a> </p> <a href="https://publications.waset.org/abstracts/15241/stability-of-power-system-with-high-penetration-of-wind-energy-a-comprehensive-review" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15241.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">486</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3383</span> Implementation of an Associative Memory Using a Restricted Hopfield Network</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tet%20H.%20Yeap">Tet H. Yeap</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An analog restricted Hopfield Network is presented in this paper. It consists of two layers of nodes, visible and hidden nodes, connected by directional weighted paths forming a bipartite graph with no intralayer connection. An energy or Lyapunov function was derived to show that the proposed network will converge to stable states. By introducing hidden nodes, the proposed network can be trained to store patterns and has increased memory capacity. Training to be an associative memory, simulation results show that the associative memory performs better than a classical Hopfield network by being able to perform better memory recall when the input is noisy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=restricted%20Hopfield%20network" title="restricted Hopfield network">restricted Hopfield network</a>, <a href="https://publications.waset.org/abstracts/search?q=Lyapunov%20function" title=" Lyapunov function"> Lyapunov function</a>, <a href="https://publications.waset.org/abstracts/search?q=simultaneous%20perturbation%20stochastic%20approximation" title=" simultaneous perturbation stochastic approximation"> simultaneous perturbation stochastic approximation</a> </p> <a href="https://publications.waset.org/abstracts/122365/implementation-of-an-associative-memory-using-a-restricted-hopfield-network" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/122365.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">133</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3382</span> An Efficient Discrete Chaos in Generalized Logistic Maps with Applications in Image Encryption </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ashish%20Ashish">Ashish Ashish</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the last few decades, the discrete chaos of difference equations has gained a massive attention of academicians and scholars due to its tremendous applications in each and every branch of science, such as cryptography, traffic control models, secure communications, weather forecasting, and engineering. In this article, a generalized logistic discrete map is established and discrete chaos is reported through period doubling bifurcation, period three orbit and Lyapunov exponent. It is interesting to see that the generalized logistic map exhibits superior chaos due to the presence of an extra degree of freedom of an ordered parameter. The period doubling bifurcation and Lyapunov exponent are demonstrated for some particular values of parameter and the discrete chaos is determined in the sense of Devaney's definition of chaos theoretically as well as numerically. Moreover, the study discusses an extended chaos based image encryption and decryption scheme in cryptography using this novel system. Surprisingly, a larger key space for coding and more sensitive dependence on initial conditions are examined for encryption and decryption of text messages, images and videos which secure the system strongly from external cyber attacks, coding attacks, statistic attacks and differential attacks. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chaos" title="chaos">chaos</a>, <a href="https://publications.waset.org/abstracts/search?q=period-doubling" title=" period-doubling"> period-doubling</a>, <a href="https://publications.waset.org/abstracts/search?q=logistic%20map" title=" logistic map"> logistic map</a>, <a href="https://publications.waset.org/abstracts/search?q=Lyapunov%20exponent" title=" Lyapunov exponent"> Lyapunov exponent</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20encryption" title=" image encryption"> image encryption</a> </p> <a href="https://publications.waset.org/abstracts/112408/an-efficient-discrete-chaos-in-generalized-logistic-maps-with-applications-in-image-encryption" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/112408.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">152</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3381</span> Performance of the Strong Stability Method in the Univariate Classical Risk Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Safia%20Hocine">Safia Hocine</a>, <a href="https://publications.waset.org/abstracts/search?q=Zina%20Benouaret"> Zina Benouaret</a>, <a href="https://publications.waset.org/abstracts/search?q=Djamil%20A%C2%A8%C4%B1ssani"> Djamil A¨ıssani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we study the performance of the strong stability method of the univariate classical risk model. We interest to the stability bounds established using two approaches. The first based on the strong stability method developed for a general Markov chains. The second approach based on the regenerative processes theory . By adopting an algorithmic procedure, we study the performance of the stability method in the case of exponential distribution claim amounts. After presenting numerically and graphically the stability bounds, an interpretation and comparison of the results have been done. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Marcov%20chain" title="Marcov chain">Marcov chain</a>, <a href="https://publications.waset.org/abstracts/search?q=regenerative%20process" title=" regenerative process"> regenerative process</a>, <a href="https://publications.waset.org/abstracts/search?q=risk%20model" title=" risk model"> risk model</a>, <a href="https://publications.waset.org/abstracts/search?q=ruin%20probability" title=" ruin probability"> ruin probability</a>, <a href="https://publications.waset.org/abstracts/search?q=strong%20stability" title=" strong stability"> strong stability</a> </p> <a href="https://publications.waset.org/abstracts/89002/performance-of-the-strong-stability-method-in-the-univariate-classical-risk-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/89002.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">324</span> </span> </div> </div> <ul class="pagination"> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Lyapunov%20stability&amp;page=1" rel="prev">&lsaquo;</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Lyapunov%20stability&amp;page=1">1</a></li> <li class="page-item active"><span class="page-link">2</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Lyapunov%20stability&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Lyapunov%20stability&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Lyapunov%20stability&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Lyapunov%20stability&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Lyapunov%20stability&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Lyapunov%20stability&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Lyapunov%20stability&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Lyapunov%20stability&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Lyapunov%20stability&amp;page=114">114</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Lyapunov%20stability&amp;page=115">115</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Lyapunov%20stability&amp;page=3" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10