CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 115 results for author: <span class="mathjax">Ali, A</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/physics" aria-role="search"> Searching in archive <strong>physics</strong>. <a href="/search/?searchtype=author&amp;query=Ali%2C+A">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Ali, A"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Ali%2C+A&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Ali, A"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Ali%2C+A&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Ali%2C+A&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Ali%2C+A&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Ali%2C+A&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.21033">arXiv:2502.21033</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2502.21033">pdf</a>, <a href="https://arxiv.org/ps/2502.21033">ps</a>, <a href="https://arxiv.org/format/2502.21033">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Numerical Analysis">math.NA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Physics and Society">physics.soc-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Populations and Evolution">q-bio.PE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">stat.ML</span> </div> </div> <p class="title is-5 mathjax"> A data augmentation strategy for deep neural networks with application to epidemic modelling </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Awais%2C+M">Muhammad Awais</a>, <a href="/search/physics?searchtype=author&amp;query=Ali%2C+A+S">Abu Sayfan Ali</a>, <a href="/search/physics?searchtype=author&amp;query=Dimarco%2C+G">Giacomo Dimarco</a>, <a href="/search/physics?searchtype=author&amp;query=Ferrarese%2C+F">Federica Ferrarese</a>, <a href="/search/physics?searchtype=author&amp;query=Pareschi%2C+L">Lorenzo Pareschi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.21033v1-abstract-short" style="display: inline;"> In this work, we integrate the predictive capabilities of compartmental disease dynamics models with machine learning ability to analyze complex, high-dimensional data and uncover patterns that conventional models may overlook. Specifically, we present a proof of concept demonstrating the application of data-driven methods and deep neural networks to a recently introduced SIR-type model with socia&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.21033v1-abstract-full').style.display = 'inline'; document.getElementById('2502.21033v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.21033v1-abstract-full" style="display: none;"> In this work, we integrate the predictive capabilities of compartmental disease dynamics models with machine learning ability to analyze complex, high-dimensional data and uncover patterns that conventional models may overlook. Specifically, we present a proof of concept demonstrating the application of data-driven methods and deep neural networks to a recently introduced SIR-type model with social features, including a saturated incidence rate, to improve epidemic prediction and forecasting. Our results show that a robust data augmentation strategy trough suitable data-driven models can improve the reliability of Feed-Forward Neural Networks (FNNs) and Nonlinear Autoregressive Networks (NARs), making them viable alternatives to Physics-Informed Neural Networks (PINNs). This approach enhances the ability to handle nonlinear dynamics and offers scalable, data-driven solutions for epidemic forecasting, prioritizing predictive accuracy over the constraints of physics-based models. Numerical simulations of the post-lockdown phase of the COVID-19 epidemic in Italy and Spain validate our methodology. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.21033v1-abstract-full').style.display = 'none'; document.getElementById('2502.21033v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.17002">arXiv:2502.17002</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2502.17002">pdf</a>, <a href="https://arxiv.org/format/2502.17002">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Neutron multiplicity measurement in muon capture on oxygen nuclei in the Gd-loaded Super-Kamiokande detector </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Collaboration%2C+T+S">The Super-Kamiokande Collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=%3A"> :</a>, <a href="/search/physics?searchtype=author&amp;query=Miki%2C+S">S. Miki</a>, <a href="/search/physics?searchtype=author&amp;query=Abe%2C+K">K. Abe</a>, <a href="/search/physics?searchtype=author&amp;query=Abe%2C+S">S. Abe</a>, <a href="/search/physics?searchtype=author&amp;query=Asaoka%2C+Y">Y. Asaoka</a>, <a href="/search/physics?searchtype=author&amp;query=Bronner%2C+C">C. Bronner</a>, <a href="/search/physics?searchtype=author&amp;query=Harada%2C+M">M. Harada</a>, <a href="/search/physics?searchtype=author&amp;query=Hayato%2C+Y">Y. Hayato</a>, <a href="/search/physics?searchtype=author&amp;query=Hiraide%2C+K">K. Hiraide</a>, <a href="/search/physics?searchtype=author&amp;query=Hosokawa%2C+K">K. Hosokawa</a>, <a href="/search/physics?searchtype=author&amp;query=Ieki%2C+K">K. Ieki</a>, <a href="/search/physics?searchtype=author&amp;query=Ikeda%2C+M">M. Ikeda</a>, <a href="/search/physics?searchtype=author&amp;query=Kameda%2C+J">J. Kameda</a>, <a href="/search/physics?searchtype=author&amp;query=Kanemura%2C+Y">Y. Kanemura</a>, <a href="/search/physics?searchtype=author&amp;query=Kaneshima%2C+R">R. Kaneshima</a>, <a href="/search/physics?searchtype=author&amp;query=Kashiwagi%2C+Y">Y. Kashiwagi</a>, <a href="/search/physics?searchtype=author&amp;query=Kataoka%2C+Y">Y. Kataoka</a>, <a href="/search/physics?searchtype=author&amp;query=Mine%2C+S">S. Mine</a>, <a href="/search/physics?searchtype=author&amp;query=Miura%2C+M">M. Miura</a>, <a href="/search/physics?searchtype=author&amp;query=Moriyama%2C+S">S. Moriyama</a>, <a href="/search/physics?searchtype=author&amp;query=Nakahata%2C+M">M. Nakahata</a>, <a href="/search/physics?searchtype=author&amp;query=Nakayama%2C+S">S. Nakayama</a>, <a href="/search/physics?searchtype=author&amp;query=Noguchi%2C+Y">Y. Noguchi</a>, <a href="/search/physics?searchtype=author&amp;query=Okamoto%2C+K">K. Okamoto</a> , et al. (265 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.17002v1-abstract-short" style="display: inline;"> In recent neutrino detectors, neutrons produced in neutrino reactions play an important role. Muon capture on oxygen nuclei is one of the processes that produce neutrons in water Cherenkov detectors. We measured neutron multiplicity in the process using cosmic ray muons that stop in the gadolinium-loaded Super-Kamiokande detector. For this measurement, neutron detection efficiency is obtained with&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.17002v1-abstract-full').style.display = 'inline'; document.getElementById('2502.17002v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.17002v1-abstract-full" style="display: none;"> In recent neutrino detectors, neutrons produced in neutrino reactions play an important role. Muon capture on oxygen nuclei is one of the processes that produce neutrons in water Cherenkov detectors. We measured neutron multiplicity in the process using cosmic ray muons that stop in the gadolinium-loaded Super-Kamiokande detector. For this measurement, neutron detection efficiency is obtained with the muon capture events followed by gamma rays to be $50.2^{+2.0}_{-2.1}\%$. By fitting the observed multiplicity considering the detection efficiency, we measure neutron multiplicity in muon capture as $P(0)=24\pm3\%$, $P(1)=70^{+3}_{-2}\%$, $P(2)=6.1\pm0.5\%$, $P(3)=0.38\pm0.09\%$. This is the first measurement of the multiplicity of neutrons associated with muon capture without neutron energy threshold. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.17002v1-abstract-full').style.display = 'none'; document.getElementById('2502.17002v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.02136">arXiv:2502.02136</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2502.02136">pdf</a>, <a href="https://arxiv.org/ps/2502.02136">ps</a>, <a href="https://arxiv.org/format/2502.02136">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mathematical Physics">math-ph</span> </div> </div> <p class="title is-5 mathjax"> Numerical simulation of Lugiato-Lefever equation for Kerr combs generation in Fabry-Perot resonators </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Ali%2C+M+A+S">Mouhamad Al Sayed Ali</a>, <a href="/search/physics?searchtype=author&amp;query=Balac%2C+S">St茅phane Balac</a>, <a href="/search/physics?searchtype=author&amp;query=Bourcier%2C+G">Germain Bourcier</a>, <a href="/search/physics?searchtype=author&amp;query=Caloz%2C+G">Gabriel Caloz</a>, <a href="/search/physics?searchtype=author&amp;query=Dauge%2C+M">Monique Dauge</a>, <a href="/search/physics?searchtype=author&amp;query=Fernandez%2C+A">Arnaud Fernandez</a>, <a href="/search/physics?searchtype=author&amp;query=Llopis%2C+O">Olivier Llopis</a>, <a href="/search/physics?searchtype=author&amp;query=Mah%C3%A9%2C+F">Fabrice Mah茅</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.02136v2-abstract-short" style="display: inline;"> Lugiato-Lefever equation (LLE) is a nonlinear Schr枚dinger equation with damping, detuning and driving terms, introduced as a model for Kerr combs generation in ring-shape resonators and more recently, in the form of a variant, in Fabry-Perot (FP) resonators. The aim of this paper is to present some numerical methods that complement each other to solve the LLE in its general form both in the dynami&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.02136v2-abstract-full').style.display = 'inline'; document.getElementById('2502.02136v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.02136v2-abstract-full" style="display: none;"> Lugiato-Lefever equation (LLE) is a nonlinear Schr枚dinger equation with damping, detuning and driving terms, introduced as a model for Kerr combs generation in ring-shape resonators and more recently, in the form of a variant, in Fabry-Perot (FP) resonators. The aim of this paper is to present some numerical methods that complement each other to solve the LLE in its general form both in the dynamic and in the steady state regimes. We also provide some mathematical properties of the LLE likely to help the understanding and interpretation of the numerical simulation results. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.02136v2-abstract-full').style.display = 'none'; document.getElementById('2502.02136v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.06429">arXiv:2410.06429</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.06429">pdf</a>, <a href="https://arxiv.org/format/2410.06429">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Emerging Technologies">cs.ET</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Popular Physics">physics.pop-ph</span> </div> </div> <p class="title is-5 mathjax"> A QUBO Formulation for the Generalized LinkedIn Queens and Takuzu/Tango Game </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Ali%2C+A+M">Alejandro Mata Ali</a>, <a href="/search/physics?searchtype=author&amp;query=Mencia%2C+E">Edgar Mencia</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.06429v2-abstract-short" style="display: inline;"> In this paper, we present a QUBO formulation designed to solve a series of generalisations of the LinkedIn queens game, a version of the N-queens problem, for the Takuzu game (or Binairo), for the most recent LinkedIn game, Tango, and for its generalizations. We adapt this formulation for several particular cases of the problem, as Tents &amp; Trees, by trying to optimise the number of variables and i&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.06429v2-abstract-full').style.display = 'inline'; document.getElementById('2410.06429v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.06429v2-abstract-full" style="display: none;"> In this paper, we present a QUBO formulation designed to solve a series of generalisations of the LinkedIn queens game, a version of the N-queens problem, for the Takuzu game (or Binairo), for the most recent LinkedIn game, Tango, and for its generalizations. We adapt this formulation for several particular cases of the problem, as Tents &amp; Trees, by trying to optimise the number of variables and interactions, improving the possibility of applying it on quantum hardware by means of Quantum Annealing or the Quantum Approximated Optimization Algorithm (QAOA). We also present two new types of problems, the Coloured Chess Piece Problem and the Max Chess Pieces Problem, with their corresponding QUBO formulations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.06429v2-abstract-full').style.display = 'none'; document.getElementById('2410.06429v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 9 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">MSC Class:</span> 90C27; 90C20; 81Q99 <span class="has-text-black-bis has-text-weight-semibold">ACM Class:</span> G.1.6; G.2.1 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.15110">arXiv:2408.15110</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.15110">pdf</a>, <a href="https://arxiv.org/format/2408.15110">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> </div> <p class="title is-5 mathjax"> Allosteric communication mediated by protein contact clusters: A dynamical model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Ali%2C+A+A+A+I">Ahmed A. A. I. Ali</a>, <a href="/search/physics?searchtype=author&amp;query=Dorbath%2C+E">Emanuel Dorbath</a>, <a href="/search/physics?searchtype=author&amp;query=Stock%2C+G">Gerhard Stock</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.15110v1-abstract-short" style="display: inline;"> Allostery refers to the puzzling phenomenon of long-range communication between distant sites in proteins. Despite its importance in biomolecular regulation and signal transduction, the underlying dynamical process is not well understood. This study introduces a dynamical model of allosteric communication based on &#34;contact clusters&#34;-localized groups of highly correlated contacts that facilitate in&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.15110v1-abstract-full').style.display = 'inline'; document.getElementById('2408.15110v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.15110v1-abstract-full" style="display: none;"> Allostery refers to the puzzling phenomenon of long-range communication between distant sites in proteins. Despite its importance in biomolecular regulation and signal transduction, the underlying dynamical process is not well understood. This study introduces a dynamical model of allosteric communication based on &#34;contact clusters&#34;-localized groups of highly correlated contacts that facilitate interactions between secondary structures. The model shows that allostery involves a multi-step process with cooperative contact changes within clusters and communication between distant clusters mediated by rigid secondary structures. Considering time-dependent experiments on a photoswitchable PDZ3 domain, extensive (in total $\sim 500\,渭$s) molecular dynamics simulations are conducted that directly monitor the photoinduced allosteric transition. The structural reorganization is illustrated by the time evolution of the contact clusters and the ligand, which affects the nonlocal coupling between distant clusters. A timescale analysis reveals dynamics from nano- to microseconds, which are in excellent agreement with the experimentally measured timescales. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.15110v1-abstract-full').style.display = 'none'; document.getElementById('2408.15110v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.13095">arXiv:2408.13095</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.13095">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Energy-efficient field-free unconventional spin-orbit torque magnetization switching dynamics in van der Waals heterostructures </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Pandey%2C+L">Lalit Pandey</a>, <a href="/search/physics?searchtype=author&amp;query=Zhao%2C+B">Bing Zhao</a>, <a href="/search/physics?searchtype=author&amp;query=Tenzin%2C+K">Karma Tenzin</a>, <a href="/search/physics?searchtype=author&amp;query=Ngaloy%2C+R">Roselle Ngaloy</a>, <a href="/search/physics?searchtype=author&amp;query=Lamparsk%C3%A1%2C+V">Veronika Lamparsk谩</a>, <a href="/search/physics?searchtype=author&amp;query=Bangar%2C+H">Himanshu Bangar</a>, <a href="/search/physics?searchtype=author&amp;query=Ali%2C+A">Aya Ali</a>, <a href="/search/physics?searchtype=author&amp;query=Abdel-Hafiez%2C+M">Mahmoud Abdel-Hafiez</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+G">Gaojie Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Wu%2C+H">Hao Wu</a>, <a href="/search/physics?searchtype=author&amp;query=Chang%2C+H">Haixin Chang</a>, <a href="/search/physics?searchtype=author&amp;query=Sj%C3%B6str%C3%B6m%2C+L">Lars Sj枚str枚m</a>, <a href="/search/physics?searchtype=author&amp;query=Rout%2C+P">Prasanna Rout</a>, <a href="/search/physics?searchtype=author&amp;query=S%C5%82awi%C5%84ska%2C+J">Jagoda S艂awi艅ska</a>, <a href="/search/physics?searchtype=author&amp;query=Dash%2C+S+P">Saroj P. Dash</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.13095v2-abstract-short" style="display: inline;"> Van der Waals (vdW) heterostructure of two-dimensional (2D) quantum materials offers a promising platform for efficient control of magnetization dynamics for non-volatile spin-based devices. However, energy-efficient field-free spin-orbit torque (SOT) switching and spin dynamics experiments to understand the basic SOT phenomena in all-2D vdW heterostructures are so far lacking. Here, we demonstrat&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.13095v2-abstract-full').style.display = 'inline'; document.getElementById('2408.13095v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.13095v2-abstract-full" style="display: none;"> Van der Waals (vdW) heterostructure of two-dimensional (2D) quantum materials offers a promising platform for efficient control of magnetization dynamics for non-volatile spin-based devices. However, energy-efficient field-free spin-orbit torque (SOT) switching and spin dynamics experiments to understand the basic SOT phenomena in all-2D vdW heterostructures are so far lacking. Here, we demonstrate energy-efficient field-free spin-orbit torque (SOT) switching and tunable magnetization dynamics in a vdW heterostructure comprising out-of-plane magnet Fe3GaTe2 and topological Weyl semimetal TaIrTe4. We measured the non-linear second harmonic Hall signal in TaIrTe4 /Fe3GaTe2 devices to evaluate the SOT-induced magnetization dynamics, which is characterized by a large and tunable out-of-plane damping-like torque. Energy-efficient and deterministic field-free SOT magnetization switching is achieved at room temperature with a very low current density. First-principles calculations unveil the origin of the unconventional charge-spin conversion phenomena, considering the crystal symmetry and electronic structure of TaIrTe4. These results establish that all-vdW heterostructures provide a promising route to energy-efficient, field-free, and tunable SOT-based spintronic devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.13095v2-abstract-full').style.display = 'none'; document.getElementById('2408.13095v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.16053">arXiv:2407.16053</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.16053">pdf</a>, <a href="https://arxiv.org/format/2407.16053">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Optical Chiral Microrobot for Out-of-plane Drilling Motion </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Ali%2C+A+M">Alaa M. Ali</a>, <a href="/search/physics?searchtype=author&amp;query=Gerena%2C+E">Edison Gerena</a>, <a href="/search/physics?searchtype=author&amp;query=Mart%C3%ADnez%2C+J+A+I">Julio Andr茅s Iglesias Mart铆nez</a>, <a href="/search/physics?searchtype=author&amp;query=Ulliac%2C+G">Gwenn Ulliac</a>, <a href="/search/physics?searchtype=author&amp;query=Lemkalli%2C+B">Brahim Lemkalli</a>, <a href="/search/physics?searchtype=author&amp;query=Mohand-Ousaid%2C+A">Abdenbi Mohand-Ousaid</a>, <a href="/search/physics?searchtype=author&amp;query=Haliyo%2C+S">Sinan Haliyo</a>, <a href="/search/physics?searchtype=author&amp;query=Bolopion%2C+A">Aude Bolopion</a>, <a href="/search/physics?searchtype=author&amp;query=Kadic%2C+M">Muamer Kadic</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.16053v1-abstract-short" style="display: inline;"> Optical Microrobots (Optobots) have demonstrated a keen interest in various fields including microfluidics, microrobotics, and medicine. Conversely, optomechanics serves as a crucial domain for theoretical exploration into concepts such as chirality, duality, and parity concerning optical forces. In this paper, we elucidate a method to amalgamate chirality through broken axial parity into optobots&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.16053v1-abstract-full').style.display = 'inline'; document.getElementById('2407.16053v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.16053v1-abstract-full" style="display: none;"> Optical Microrobots (Optobots) have demonstrated a keen interest in various fields including microfluidics, microrobotics, and medicine. Conversely, optomechanics serves as a crucial domain for theoretical exploration into concepts such as chirality, duality, and parity concerning optical forces. In this paper, we elucidate a method to amalgamate chirality through broken axial parity into optobots, thereby augmenting their versatility. Specifically, we illustrate how this integration allows for out-of-plane rotation which helps in their utilization as optical drills under unidirectional excitation achieved through repetitive stimulation of three focal regions: two traps and one chiral rotational site. We fabricate the microrobots employing two-photon lithography, and note a highly satisfactory correspondence between finite element calculations and experimental observations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.16053v1-abstract-full').style.display = 'none'; document.getElementById('2407.16053v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.01915">arXiv:2407.01915</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.01915">pdf</a>, <a href="https://arxiv.org/format/2407.01915">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Space Physics">physics.space-ph</span> </div> </div> <p class="title is-5 mathjax"> Unraveling the Trigger Mechanism of Explosive Reconnection in Partially Ionized Solar Plasma </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Zafar%2C+A">Abdullah Zafar</a>, <a href="/search/physics?searchtype=author&amp;query=Ni%2C+L">Lei Ni</a>, <a href="/search/physics?searchtype=author&amp;query=Lin%2C+J">Jun Lin</a>, <a href="/search/physics?searchtype=author&amp;query=Ali%2C+A">Ahmad Ali</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.01915v1-abstract-short" style="display: inline;"> Plasmoid instability is usually accounted for the onset of fast reconnection events observed in astrophysical plasmas. However, the measured reconnection rate from observations can be one order of magnitude higher than that derived from MHD simulations. In this study, we present the results of magnetic reconnection in the partially ionized low solar atmosphere based on 2.5D magnetohydrodynamics (M&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.01915v1-abstract-full').style.display = 'inline'; document.getElementById('2407.01915v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.01915v1-abstract-full" style="display: none;"> Plasmoid instability is usually accounted for the onset of fast reconnection events observed in astrophysical plasmas. However, the measured reconnection rate from observations can be one order of magnitude higher than that derived from MHD simulations. In this study, we present the results of magnetic reconnection in the partially ionized low solar atmosphere based on 2.5D magnetohydrodynamics (MHD) simulations. The whole reconnection process covers two different fast reconnection phases. In the first phase, the slow Sweet-Parker reconnection transits to the plasmoid-mediated reconnection, and the reconnection rate reaches about 0.02. In the second phase, a faster explosive reconnection appears, with the reconnection rate reaching above 0.06. At the same time, a sharp decrease in plasma temperature and density at the principle X-point is observed which is associated with the strong radiative cooling, the ejection of hot plasma from the local reconnection region or the motion of principle X-point from hot and denser region to cool and less dense one along the narrow current sheet. This causes gas pressure depletion and the increasing of magnetic diffusion at the main X-point, resulting in the local Petschek-like reconnection and a violent and rapid increase in the reconnection rate. This study for the first time reveals a common phenomenon that the plasmoid dominated reconnection transits to an explosive faster reconnection with the rate approaching the order of 0.1 in partially ionized plasma in the MHD scale. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.01915v1-abstract-full').style.display = 'none'; document.getElementById('2407.01915v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.15820">arXiv:2405.15820</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.15820">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Systems and Control">eess.SY</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Concurrent Multiphysics and Multiscale Topology Optimization for Lightweight Laser-Driven Porous Actuator Systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Ali%2C+M+A">Musaddiq Al Ali</a>, <a href="/search/physics?searchtype=author&amp;query=Shimoda%2C+M">Masatoshi Shimoda</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.15820v1-abstract-short" style="display: inline;"> In this research, multi-physics topology optimization is employed to achieve the detailed design of a lightweight porous linear actuation mechanism that harnesses energy through laser activation. A multiscale topology optimization methodology is introduced for micro- and macroscale design, considering energy dissipation via heat convection and radiation. This investigation meticulously considers t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.15820v1-abstract-full').style.display = 'inline'; document.getElementById('2405.15820v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.15820v1-abstract-full" style="display: none;"> In this research, multi-physics topology optimization is employed to achieve the detailed design of a lightweight porous linear actuation mechanism that harnesses energy through laser activation. A multiscale topology optimization methodology is introduced for micro- and macroscale design, considering energy dissipation via heat convection and radiation. This investigation meticulously considers the impact of heat dissipation mechanisms, including thermal conduction, convection, and radiation. Through various numerical cases, we systematically explore the influence of micro-scale considerations on porous design and understand the effects on the topology optimization process by incorporating various microstructural systems. The results demonstrate that porous actuator designs exhibit superior performance compared to solid actuator designs. This study contributes to advancing the understanding of multiscale effects in topology optimization, paving the way for more efficient and lightweight designs in the field of laser-activated porous actuators. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.15820v1-abstract-full').style.display = 'none'; document.getElementById('2405.15820v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.06579">arXiv:2405.06579</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.06579">pdf</a>, <a href="https://arxiv.org/format/2405.06579">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Terahertz Antenna Impedance Matched to a Graphene Photodetector </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Joint%2C+F">Fran莽ois Joint</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+K">Kunyi Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Poojali%2C+J">Jayaprakash Poojali</a>, <a href="/search/physics?searchtype=author&amp;query=Lewis%2C+D">Daniel Lewis</a>, <a href="/search/physics?searchtype=author&amp;query=Pedowitz%2C+M">Michael Pedowitz</a>, <a href="/search/physics?searchtype=author&amp;query=Jordan%2C+B">Brendan Jordan</a>, <a href="/search/physics?searchtype=author&amp;query=Prakash%2C+G">Gyan Prakash</a>, <a href="/search/physics?searchtype=author&amp;query=Ali%2C+A">Ashraf Ali</a>, <a href="/search/physics?searchtype=author&amp;query=Daniels%2C+K">Kevin Daniels</a>, <a href="/search/physics?searchtype=author&amp;query=Myers-Ward%2C+R+L">Rachael L. Myers-Ward</a>, <a href="/search/physics?searchtype=author&amp;query=Murphy%2C+T+E">Thomas E. Murphy</a>, <a href="/search/physics?searchtype=author&amp;query=Drew%2C+H+D">Howard D. Drew</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.06579v1-abstract-short" style="display: inline;"> Developing low-power, high-sensitivity photodetectors for the terahertz (THz) band that operate at room temperature is an important challenge in optoelectronics. In this study, we introduce a photo-thermal-electric (PTE) effect detector based on quasi-free standing bilayer graphene (BLG) on a silicon carbide (SiC) substrate, designed for the THz frequency range. Our detector&#39;s performance hinges o&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.06579v1-abstract-full').style.display = 'inline'; document.getElementById('2405.06579v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.06579v1-abstract-full" style="display: none;"> Developing low-power, high-sensitivity photodetectors for the terahertz (THz) band that operate at room temperature is an important challenge in optoelectronics. In this study, we introduce a photo-thermal-electric (PTE) effect detector based on quasi-free standing bilayer graphene (BLG) on a silicon carbide (SiC) substrate, designed for the THz frequency range. Our detector&#39;s performance hinges on a quasi-optical coupling scheme, which integrates an aspherical silicon lens, to optimize impedance matching between the THz antenna and the graphene p-n junction. At room temperature, we achieved a noise equivalent power (NEP) of less than 300 $pW/\sqrt{Hz}$. Through an impedance matching analysis, we coupled a planar antenna with a graphene p-n junction, inserted in parallel to the nano-gap of the antenna, via two coupling capacitors. By adjusting the capacitors and the antenna arm length, we tailored the antenna&#39;s maximum infrared power absorption to specific frequencies. The sensitivity, spectral properties, and scalability of our material make it an ideal candidate for future development of far-infrared detectors operating at room temperature. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.06579v1-abstract-full').style.display = 'none'; document.getElementById('2405.06579v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.11277">arXiv:2404.11277</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.11277">pdf</a>, <a href="https://arxiv.org/format/2404.11277">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Emerging Technologies">cs.ET</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> Quantum-inspired Techniques in Tensor Networks for Industrial Contexts </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Ali%2C+A+M">Alejandro Mata Ali</a>, <a href="/search/physics?searchtype=author&amp;query=Delgado%2C+I+P">I帽igo Perez Delgado</a>, <a href="/search/physics?searchtype=author&amp;query=de+Leceta%2C+A+M+F">Aitor Moreno Fdez. de Leceta</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.11277v1-abstract-short" style="display: inline;"> In this paper we present a study of the applicability and feasibility of quantum-inspired algorithms and techniques in tensor networks for industrial environments and contexts, with a compilation of the available literature and an analysis of the use cases that may be affected by such methods. In addition, we explore the limitations of such techniques in order to determine their potential scalabil&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.11277v1-abstract-full').style.display = 'inline'; document.getElementById('2404.11277v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.11277v1-abstract-full" style="display: none;"> In this paper we present a study of the applicability and feasibility of quantum-inspired algorithms and techniques in tensor networks for industrial environments and contexts, with a compilation of the available literature and an analysis of the use cases that may be affected by such methods. In addition, we explore the limitations of such techniques in order to determine their potential scalability. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.11277v1-abstract-full').style.display = 'none'; document.getElementById('2404.11277v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">MSC Class:</span> 81P68; 15A69 <span class="has-text-black-bis has-text-weight-semibold">ACM Class:</span> G.1.3; G.2.1; I.2; I.4 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.09920">arXiv:2404.09920</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.09920">pdf</a>, <a href="https://arxiv.org/format/2404.09920">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/ad5fee">10.3847/1538-4357/ad5fee <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Combined Pre-Supernova Alert System with Kamland and Super-Kamiokande </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=KamLAND"> KamLAND</a>, <a href="/search/physics?searchtype=author&amp;query=Collaborations%2C+S">Super-Kamiokande Collaborations</a>, <a href="/search/physics?searchtype=author&amp;query=%3A"> :</a>, <a href="/search/physics?searchtype=author&amp;query=Abe%2C+S">Seisho Abe</a>, <a href="/search/physics?searchtype=author&amp;query=Eizuka%2C+M">Minori Eizuka</a>, <a href="/search/physics?searchtype=author&amp;query=Futagi%2C+S">Sawako Futagi</a>, <a href="/search/physics?searchtype=author&amp;query=Gando%2C+A">Azusa Gando</a>, <a href="/search/physics?searchtype=author&amp;query=Gando%2C+Y">Yoshihito Gando</a>, <a href="/search/physics?searchtype=author&amp;query=Goto%2C+S">Shun Goto</a>, <a href="/search/physics?searchtype=author&amp;query=Hachiya%2C+T">Takahiko Hachiya</a>, <a href="/search/physics?searchtype=author&amp;query=Hata%2C+K">Kazumi Hata</a>, <a href="/search/physics?searchtype=author&amp;query=Ichimura%2C+K">Koichi Ichimura</a>, <a href="/search/physics?searchtype=author&amp;query=Ieki%2C+S">Sei Ieki</a>, <a href="/search/physics?searchtype=author&amp;query=Ikeda%2C+H">Haruo Ikeda</a>, <a href="/search/physics?searchtype=author&amp;query=Inoue%2C+K">Kunio Inoue</a>, <a href="/search/physics?searchtype=author&amp;query=Ishidoshiro%2C+K">Koji Ishidoshiro</a>, <a href="/search/physics?searchtype=author&amp;query=Kamei%2C+Y">Yuto Kamei</a>, <a href="/search/physics?searchtype=author&amp;query=Kawada%2C+N">Nanami Kawada</a>, <a href="/search/physics?searchtype=author&amp;query=Kishimoto%2C+Y">Yasuhiro Kishimoto</a>, <a href="/search/physics?searchtype=author&amp;query=Koga%2C+M">Masayuki Koga</a>, <a href="/search/physics?searchtype=author&amp;query=Kurasawa%2C+M">Maho Kurasawa</a>, <a href="/search/physics?searchtype=author&amp;query=Mitsui%2C+T">Tadao Mitsui</a>, <a href="/search/physics?searchtype=author&amp;query=Miyake%2C+H">Haruhiko Miyake</a>, <a href="/search/physics?searchtype=author&amp;query=Morita%2C+D">Daisuke Morita</a>, <a href="/search/physics?searchtype=author&amp;query=Nakahata%2C+T">Takeshi Nakahata</a> , et al. (290 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.09920v3-abstract-short" style="display: inline;"> Preceding a core-collapse supernova, various processes produce an increasing amount of neutrinos of all flavors characterized by mounting energies from the interior of massive stars. Among them, the electron antineutrinos are potentially detectable by terrestrial neutrino experiments such as KamLAND and Super-Kamiokande via inverse beta decay interactions. Once these pre-supernova neutrinos are ob&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.09920v3-abstract-full').style.display = 'inline'; document.getElementById('2404.09920v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.09920v3-abstract-full" style="display: none;"> Preceding a core-collapse supernova, various processes produce an increasing amount of neutrinos of all flavors characterized by mounting energies from the interior of massive stars. Among them, the electron antineutrinos are potentially detectable by terrestrial neutrino experiments such as KamLAND and Super-Kamiokande via inverse beta decay interactions. Once these pre-supernova neutrinos are observed, an early warning of the upcoming core-collapse supernova can be provided. In light of this, KamLAND and Super-Kamiokande, both located in the Kamioka mine in Japan, have been monitoring pre-supernova neutrinos since 2015 and 2021, respectively. Recently, we performed a joint study between KamLAND and Super-Kamiokande on pre-supernova neutrino detection. A pre-supernova alert system combining the KamLAND detector and the Super-Kamiokande detector was developed and put into operation, which can provide a supernova alert to the astrophysics community. Fully leveraging the complementary properties of these two detectors, the combined alert is expected to resolve a pre-supernova neutrino signal from a 15 M$_{\odot}$ star within 510 pc of the Earth, at a significance level corresponding to a false alarm rate of no more than 1 per century. For a Betelgeuse-like model with optimistic parameters, it can provide early warnings up to 12 hours in advance. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.09920v3-abstract-full').style.display = 'none'; document.getElementById('2404.09920v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Resubmitted to ApJ. 22 pages, 16 figures, for more information about the combined pre-supernova alert system, see https://www.lowbg.org/presnalarm/</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.07833">arXiv:2403.07833</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.07833">pdf</a>, <a href="https://arxiv.org/format/2403.07833">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Physics and Society">physics.soc-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> </div> <p class="title is-5 mathjax"> A Science4Peace initiative: Alleviating the consequences of sanctions in international scientific cooperation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Ali%2C+A">A. Ali</a>, <a href="/search/physics?searchtype=author&amp;query=Barone%2C+M">M. Barone</a>, <a href="/search/physics?searchtype=author&amp;query=Brentjes%2C+S">S. Brentjes</a>, <a href="/search/physics?searchtype=author&amp;query=Britzger%2C+D">D. Britzger</a>, <a href="/search/physics?searchtype=author&amp;query=Dittmar%2C+M">M. Dittmar</a>, <a href="/search/physics?searchtype=author&amp;query=Ekel%C3%B6f%2C+T">T. Ekel枚f</a>, <a href="/search/physics?searchtype=author&amp;query=Ellis%2C+J">J. Ellis</a>, <a href="/search/physics?searchtype=author&amp;query=de+Souza%2C+S+F">S. Fonseca de Souza</a>, <a href="/search/physics?searchtype=author&amp;query=Glazov%2C+A">A. Glazov</a>, <a href="/search/physics?searchtype=author&amp;query=Gritsan%2C+A+V">A. V. Gritsan</a>, <a href="/search/physics?searchtype=author&amp;query=Hoffmann%2C+R">R. Hoffmann</a>, <a href="/search/physics?searchtype=author&amp;query=Jung%2C+H">H. Jung</a>, <a href="/search/physics?searchtype=author&amp;query=Klein%2C+M">M. Klein</a>, <a href="/search/physics?searchtype=author&amp;query=Klyukhin%2C+V">V. Klyukhin</a>, <a href="/search/physics?searchtype=author&amp;query=Korbel%2C+V">V. Korbel</a>, <a href="/search/physics?searchtype=author&amp;query=Kokkas%2C+P">P. Kokkas</a>, <a href="/search/physics?searchtype=author&amp;query=Kostka%2C+P">P. Kostka</a>, <a href="/search/physics?searchtype=author&amp;query=Langenegger%2C+U">U. Langenegger</a>, <a href="/search/physics?searchtype=author&amp;query=List%2C+J">J. List</a>, <a href="/search/physics?searchtype=author&amp;query=Raicevic%2C+N">N. Raicevic</a>, <a href="/search/physics?searchtype=author&amp;query=Rostovtsev%2C+A">A. Rostovtsev</a>, <a href="/search/physics?searchtype=author&amp;query=Vera%2C+A+S">A. Sabio Vera</a>, <a href="/search/physics?searchtype=author&amp;query=Spiro%2C+M">M. Spiro</a>, <a href="/search/physics?searchtype=author&amp;query=Tonelli%2C+G">G. Tonelli</a>, <a href="/search/physics?searchtype=author&amp;query=van+Mechelen%2C+P">P. van Mechelen</a> , et al. (1 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.07833v1-abstract-short" style="display: inline;"> The armed invasion of Ukraine by the Russian Federation has adversely affected the relations between Russia and Western countries. Among other aspects, it has put scientific cooperation and collaboration into question and changed the scientific landscape significantly. Cooperation between some Western institutions and their Russian and Belarusian partners were put on hold after February 24, 2022.&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.07833v1-abstract-full').style.display = 'inline'; document.getElementById('2403.07833v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.07833v1-abstract-full" style="display: none;"> The armed invasion of Ukraine by the Russian Federation has adversely affected the relations between Russia and Western countries. Among other aspects, it has put scientific cooperation and collaboration into question and changed the scientific landscape significantly. Cooperation between some Western institutions and their Russian and Belarusian partners were put on hold after February 24, 2022. The CERN Council decided at its meeting in December 2023 to terminate cooperation agreements with Russia and Belarus that date back a decade. CERN is an international institution with UN observer status, and has so far played a role in international cooperation which was independent of national political strategies. We argue that the Science4Peace idea still has a great value and scientific collaboration between scientists must continue, since fundamental science is by its nature an international discipline. A ban of scientists participating in international cooperation and collaboration is against the traditions, requirements and understanding of science. We call for measures to reactivate the peaceful cooperation of individual scientists on fundamental research in order to stimulate international cooperation for a more peaceful world in the future. Specifically, we plead for finding ways to continue this cooperation through international organizations, such as CERN and JINR. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.07833v1-abstract-full').style.display = 'none'; document.getElementById('2403.07833v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.07796">arXiv:2403.07796</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.07796">pdf</a>, <a href="https://arxiv.org/format/2403.07796">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nima.2024.169480">10.1016/j.nima.2024.169480 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Second gadolinium loading to Super-Kamiokande </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Abe%2C+K">K. Abe</a>, <a href="/search/physics?searchtype=author&amp;query=Bronner%2C+C">C. Bronner</a>, <a href="/search/physics?searchtype=author&amp;query=Hayato%2C+Y">Y. Hayato</a>, <a href="/search/physics?searchtype=author&amp;query=Hiraide%2C+K">K. Hiraide</a>, <a href="/search/physics?searchtype=author&amp;query=Hosokawa%2C+K">K. Hosokawa</a>, <a href="/search/physics?searchtype=author&amp;query=Ieki%2C+K">K. Ieki</a>, <a href="/search/physics?searchtype=author&amp;query=Ikeda%2C+M">M. Ikeda</a>, <a href="/search/physics?searchtype=author&amp;query=Kameda%2C+J">J. Kameda</a>, <a href="/search/physics?searchtype=author&amp;query=Kanemura%2C+Y">Y. Kanemura</a>, <a href="/search/physics?searchtype=author&amp;query=Kaneshima%2C+R">R. Kaneshima</a>, <a href="/search/physics?searchtype=author&amp;query=Kashiwagi%2C+Y">Y. Kashiwagi</a>, <a href="/search/physics?searchtype=author&amp;query=Kataoka%2C+Y">Y. Kataoka</a>, <a href="/search/physics?searchtype=author&amp;query=Miki%2C+S">S. Miki</a>, <a href="/search/physics?searchtype=author&amp;query=Mine%2C+S">S. Mine</a>, <a href="/search/physics?searchtype=author&amp;query=Miura%2C+M">M. Miura</a>, <a href="/search/physics?searchtype=author&amp;query=Moriyama%2C+S">S. Moriyama</a>, <a href="/search/physics?searchtype=author&amp;query=Nakano%2C+Y">Y. Nakano</a>, <a href="/search/physics?searchtype=author&amp;query=Nakahata%2C+M">M. Nakahata</a>, <a href="/search/physics?searchtype=author&amp;query=Nakayama%2C+S">S. Nakayama</a>, <a href="/search/physics?searchtype=author&amp;query=Noguchi%2C+Y">Y. Noguchi</a>, <a href="/search/physics?searchtype=author&amp;query=Sato%2C+K">K. Sato</a>, <a href="/search/physics?searchtype=author&amp;query=Sekiya%2C+H">H. Sekiya</a>, <a href="/search/physics?searchtype=author&amp;query=Shiba%2C+H">H. Shiba</a>, <a href="/search/physics?searchtype=author&amp;query=Shimizu%2C+K">K. Shimizu</a>, <a href="/search/physics?searchtype=author&amp;query=Shiozawa%2C+M">M. Shiozawa</a> , et al. (225 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.07796v3-abstract-short" style="display: inline;"> The first loading of gadolinium (Gd) into Super-Kamiokande in 2020 was successful, and the neutron capture efficiency on Gd reached 50\%. To further increase the Gd neutron capture efficiency to 75\%, 26.1 tons of $\rm Gd_2(\rm SO_4)_3\cdot \rm 8H_2O$ was additionally loaded into Super-Kamiokande (SK) from May 31 to July 4, 2022. As the amount of loaded $\rm Gd_2(\rm SO_4)_3\cdot \rm 8H_2O$ was do&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.07796v3-abstract-full').style.display = 'inline'; document.getElementById('2403.07796v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.07796v3-abstract-full" style="display: none;"> The first loading of gadolinium (Gd) into Super-Kamiokande in 2020 was successful, and the neutron capture efficiency on Gd reached 50\%. To further increase the Gd neutron capture efficiency to 75\%, 26.1 tons of $\rm Gd_2(\rm SO_4)_3\cdot \rm 8H_2O$ was additionally loaded into Super-Kamiokande (SK) from May 31 to July 4, 2022. As the amount of loaded $\rm Gd_2(\rm SO_4)_3\cdot \rm 8H_2O$ was doubled compared to the first loading, the capacity of the powder dissolving system was doubled. We also developed new batches of gadolinium sulfate with even further reduced radioactive impurities. In addition, a more efficient screening method was devised and implemented to evaluate these new batches of $\rm Gd_2(\rm SO_4)_3\cdot \rm 8H_2O$. Following the second loading, the Gd concentration in SK was measured to be $333.5\pm2.5$ ppm via an Atomic Absorption Spectrometer (AAS). From the mean neutron capture time constant of neutrons from an Am/Be calibration source, the Gd concentration was independently measured to be 332.7 $\pm$ 6.8(sys.) $\pm$ 1.1(stat.) ppm, consistent with the AAS result. Furthermore, during the loading the Gd concentration was monitored continually using the capture time constant of each spallation neutron produced by cosmic-ray muons,and the final neutron capture efficiency was shown to become 1.5 times higher than that of the first loaded phase, as expected. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.07796v3-abstract-full').style.display = 'none'; document.getElementById('2403.07796v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">34 pages, 13 figures, submitted to Nuclear Inst. and Methods in Physics Research, A</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nuclear Inst. and Methods in Physics Research, A 1065 (2024) 169480 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.06708">arXiv:2401.06708</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.06708">pdf</a>, <a href="https://arxiv.org/format/2401.06708">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nima.2023.168480">10.1016/j.nima.2023.168480 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The PANDA Barrel DIRC </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Dzhygadlo%2C+R">R. Dzhygadlo</a>, <a href="/search/physics?searchtype=author&amp;query=Belias%2C+A">A. Belias</a>, <a href="/search/physics?searchtype=author&amp;query=Gerhardt%2C+A">A. Gerhardt</a>, <a href="/search/physics?searchtype=author&amp;query=Lehmann%2C+D">D. Lehmann</a>, <a href="/search/physics?searchtype=author&amp;query=Peters%2C+K">K. Peters</a>, <a href="/search/physics?searchtype=author&amp;query=Schepers%2C+G">G. Schepers</a>, <a href="/search/physics?searchtype=author&amp;query=Schwarz%2C+C">C. Schwarz</a>, <a href="/search/physics?searchtype=author&amp;query=Schwiening%2C+J">J. Schwiening</a>, <a href="/search/physics?searchtype=author&amp;query=Traxler%2C+M">M. Traxler</a>, <a href="/search/physics?searchtype=author&amp;query=Wolf%2C+Y">Y. Wolf</a>, <a href="/search/physics?searchtype=author&amp;query=Schmitt%2C+L">L. Schmitt</a>, <a href="/search/physics?searchtype=author&amp;query=B%C3%B6hm%2C+M">M. B枚hm</a>, <a href="/search/physics?searchtype=author&amp;query=Gumbert%2C+K">K. Gumbert</a>, <a href="/search/physics?searchtype=author&amp;query=Krauss%2C+S">S. Krauss</a>, <a href="/search/physics?searchtype=author&amp;query=Lehmann%2C+A">A. Lehmann</a>, <a href="/search/physics?searchtype=author&amp;query=Miehling%2C+D">D. Miehling</a>, <a href="/search/physics?searchtype=author&amp;query=D%C3%BCren%2C+M">M. D眉ren</a>, <a href="/search/physics?searchtype=author&amp;query=Hayrapetyan%2C+A">A. Hayrapetyan</a>, <a href="/search/physics?searchtype=author&amp;query=K%C3%B6seoglu%2C+I">I. K枚seoglu</a>, <a href="/search/physics?searchtype=author&amp;query=Schmidt%2C+M">M. Schmidt</a>, <a href="/search/physics?searchtype=author&amp;query=Wasem%2C+T">T. Wasem</a>, <a href="/search/physics?searchtype=author&amp;query=Sfienti%2C+C">C. Sfienti</a>, <a href="/search/physics?searchtype=author&amp;query=Ali%2C+A">A. Ali</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.06708v1-abstract-short" style="display: inline;"> The PANDA experiment at the international accelerator Facility for Antiproton and Ion Research in Europe (FAIR), Darmstadt, Germany, will address fundamental questions of hadron physics using $\bar{p}p$ annihilations. Excellent Particle Identification (PID) over a large range of solid angles and particle momenta will be essential to meet the objectives of the rich physics program. Charged PID in t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.06708v1-abstract-full').style.display = 'inline'; document.getElementById('2401.06708v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.06708v1-abstract-full" style="display: none;"> The PANDA experiment at the international accelerator Facility for Antiproton and Ion Research in Europe (FAIR), Darmstadt, Germany, will address fundamental questions of hadron physics using $\bar{p}p$ annihilations. Excellent Particle Identification (PID) over a large range of solid angles and particle momenta will be essential to meet the objectives of the rich physics program. Charged PID in the target region will be provided by a Barrel DIRC (Detection of Internally Reflected Cherenkov light) counter. The Barrel DIRC, covering the polar angle range of 22-140 degrees, will provide a $蟺/K$ separation power of at least 3 standard deviations for charged particle momenta up to 3.5 GeV/c. The design of the Barrel DIRC features narrow radiator bars made from synthetic fused silica, an innovative multi-layer spherical lens focusing system, a prism-shaped synthetic fused silica expansion volume, and an array of lifetime-enhanced Microchannel Plate PMTs (MCP-PMTs) to detect the hit location and arrival time of the Cherenkov photons. Detailed Monte-Carlo simulations were performed, and reconstruction methods were developed to study the performance of the system. All critical aspects of the design and the performance were validated with system prototypes in a mixed hadron beam at the CERN PS. In 2020 the PANDA Barrel DIRC project advanced from the design stage to component fabrication. The series production of the fused silica bars was successfully completed in 2021 and delivery of the MCP-PMTs started in May 2022. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.06708v1-abstract-full').style.display = 'none'; document.getElementById('2401.06708v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">XI International Workshop on Ring Imaging Cherenkov Detectors</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nucl. Instr. and Meth. Res. Sect. A 1055 (2023) 168480 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.05591">arXiv:2401.05591</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.05591">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Data Analysis, Statistics and Probability">physics.data-an</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applications">stat.AP</span> </div> </div> <p class="title is-5 mathjax"> Time Series of Magnetic Field Parameters of Merged MDI and HMI Space-Weather Active Region Patches as Potential Tool for Solar Flare Forecasting </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Kosovich%2C+P+A">Paul A. Kosovich</a>, <a href="/search/physics?searchtype=author&amp;query=Kosovichev%2C+A+G">Alexander G. Kosovichev</a>, <a href="/search/physics?searchtype=author&amp;query=Sadykov%2C+V+M">Viacheslav M. Sadykov</a>, <a href="/search/physics?searchtype=author&amp;query=Kasapis%2C+S">Spiridon Kasapis</a>, <a href="/search/physics?searchtype=author&amp;query=Kitiashvili%2C+I+N">Irina N. Kitiashvili</a>, <a href="/search/physics?searchtype=author&amp;query=O%27Keefe%2C+P+M">Patrick M. O&#39;Keefe</a>, <a href="/search/physics?searchtype=author&amp;query=Ali%2C+A">Aatiya Ali</a>, <a href="/search/physics?searchtype=author&amp;query=Oria%2C+V">Vincent Oria</a>, <a href="/search/physics?searchtype=author&amp;query=Granovsky%2C+S">Samuel Granovsky</a>, <a href="/search/physics?searchtype=author&amp;query=Chong%2C+C+J">Chun Jie Chong</a>, <a href="/search/physics?searchtype=author&amp;query=Nita%2C+G+M">Gelu M. Nita</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.05591v3-abstract-short" style="display: inline;"> Solar flare prediction studies have been recently conducted with the use of Space-Weather MDI (Michelson Doppler Imager onboard Solar and Heliospheric Observatory) Active Region Patches (SMARP) and Space-Weather HMI (Helioseismic and Magnetic Imager onboard Solar Dynamics Observatory) Active Region Patches (SHARP), which are two currently available data products containing magnetic field character&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.05591v3-abstract-full').style.display = 'inline'; document.getElementById('2401.05591v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.05591v3-abstract-full" style="display: none;"> Solar flare prediction studies have been recently conducted with the use of Space-Weather MDI (Michelson Doppler Imager onboard Solar and Heliospheric Observatory) Active Region Patches (SMARP) and Space-Weather HMI (Helioseismic and Magnetic Imager onboard Solar Dynamics Observatory) Active Region Patches (SHARP), which are two currently available data products containing magnetic field characteristics of solar active regions. The present work is an effort to combine them into one data product, and perform some initial statistical analyses in order to further expand their application in space weather forecasting. The combined data are derived by filtering, rescaling, and merging the SMARP with SHARP parameters, which can then be spatially reduced to create uniform multivariate time series. The resulting combined MDI-HMI dataset currently spans the period between April 4, 1996, and December 13, 2022, and may be extended to a more recent date. This provides an opportunity to correlate and compare it with other space weather time series, such as the daily solar flare index or the statistical properties of the soft X-ray flux measured by the Geostationary Operational Environmental Satellites (GOES). Time-lagged cross-correlation indicates that a relationship may exist, where some magnetic field properties of active regions lead the flare index in time. Applying the rolling window technique makes it possible to see how this leader-follower dynamic varies with time. Preliminary results indicate that areas of high correlation generally correspond to increased flare activity during the peak solar cycle. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.05591v3-abstract-full').style.display = 'none'; document.getElementById('2401.05591v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.03989">arXiv:2312.03989</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.03989">pdf</a>, <a href="https://arxiv.org/format/2312.03989">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Image and Video Processing">eess.IV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Data Analysis, Statistics and Probability">physics.data-an</span> </div> </div> <p class="title is-5 mathjax"> Rapid detection of rare events from in situ X-ray diffraction data using machine learning </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Zheng%2C+W">Weijian Zheng</a>, <a href="/search/physics?searchtype=author&amp;query=Park%2C+J">Jun-Sang Park</a>, <a href="/search/physics?searchtype=author&amp;query=Kenesei%2C+P">Peter Kenesei</a>, <a href="/search/physics?searchtype=author&amp;query=Ali%2C+A">Ahsan Ali</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Z">Zhengchun Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Foster%2C+I+T">Ian T. Foster</a>, <a href="/search/physics?searchtype=author&amp;query=Schwarz%2C+N">Nicholas Schwarz</a>, <a href="/search/physics?searchtype=author&amp;query=Kettimuthu%2C+R">Rajkumar Kettimuthu</a>, <a href="/search/physics?searchtype=author&amp;query=Miceli%2C+A">Antonino Miceli</a>, <a href="/search/physics?searchtype=author&amp;query=Sharma%2C+H">Hemant Sharma</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.03989v1-abstract-short" style="display: inline;"> High-energy X-ray diffraction methods can non-destructively map the 3D microstructure and associated attributes of metallic polycrystalline engineering materials in their bulk form. These methods are often combined with external stimuli such as thermo-mechanical loading to take snapshots over time of the evolving microstructure and attributes. However, the extreme data volumes and the high costs o&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.03989v1-abstract-full').style.display = 'inline'; document.getElementById('2312.03989v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.03989v1-abstract-full" style="display: none;"> High-energy X-ray diffraction methods can non-destructively map the 3D microstructure and associated attributes of metallic polycrystalline engineering materials in their bulk form. These methods are often combined with external stimuli such as thermo-mechanical loading to take snapshots over time of the evolving microstructure and attributes. However, the extreme data volumes and the high costs of traditional data acquisition and reduction approaches pose a barrier to quickly extracting actionable insights and improving the temporal resolution of these snapshots. Here we present a fully automated technique capable of rapidly detecting the onset of plasticity in high-energy X-ray microscopy data. Our technique is computationally faster by at least 50 times than the traditional approaches and works for data sets that are up to 9 times sparser than a full data set. This new technique leverages self-supervised image representation learning and clustering to transform massive data into compact, semantic-rich representations of visually salient characteristics (e.g., peak shapes). These characteristics can be a rapid indicator of anomalous events such as changes in diffraction peak shapes. We anticipate that this technique will provide just-in-time actionable information to drive smarter experiments that effectively deploy multi-modal X-ray diffraction methods that span many decades of length scales. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.03989v1-abstract-full').style.display = 'none'; document.getElementById('2312.03989v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.16698">arXiv:2311.16698</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2311.16698">pdf</a>, <a href="https://arxiv.org/format/2311.16698">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nima.2023.168659">10.1016/j.nima.2023.168659 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Performance of the most recent Microchannel-Plate PMTs for the PANDA DIRC detectors at FAIR </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Krauss%2C+S">S. Krauss</a>, <a href="/search/physics?searchtype=author&amp;query=B%C3%B6hm%2C+M">M. B枚hm</a>, <a href="/search/physics?searchtype=author&amp;query=Gumbert%2C+K">K. Gumbert</a>, <a href="/search/physics?searchtype=author&amp;query=Lehmann%2C+A">A. Lehmann</a>, <a href="/search/physics?searchtype=author&amp;query=Miehling%2C+D">D. Miehling</a>, <a href="/search/physics?searchtype=author&amp;query=Belias%2C+A">A. Belias</a>, <a href="/search/physics?searchtype=author&amp;query=Dzhygadlo%2C+R">R. Dzhygadlo</a>, <a href="/search/physics?searchtype=author&amp;query=Gerhardt%2C+A">A. Gerhardt</a>, <a href="/search/physics?searchtype=author&amp;query=Lehmann%2C+D">D. Lehmann</a>, <a href="/search/physics?searchtype=author&amp;query=Peters%2C+K">K. Peters</a>, <a href="/search/physics?searchtype=author&amp;query=Schepers%2C+G">G. Schepers</a>, <a href="/search/physics?searchtype=author&amp;query=Schwarz%2C+C">C. Schwarz</a>, <a href="/search/physics?searchtype=author&amp;query=Schwiening%2C+J">J. Schwiening</a>, <a href="/search/physics?searchtype=author&amp;query=Traxler%2C+M">M. Traxler</a>, <a href="/search/physics?searchtype=author&amp;query=Wolf%2C+Y">Y. Wolf</a>, <a href="/search/physics?searchtype=author&amp;query=Schmitt%2C+L">L. Schmitt</a>, <a href="/search/physics?searchtype=author&amp;query=D%C3%BCren%2C+M">M. D眉ren</a>, <a href="/search/physics?searchtype=author&amp;query=Hayrapetyan%2C+A">A. Hayrapetyan</a>, <a href="/search/physics?searchtype=author&amp;query=K%C3%B6seoglu%2C+I">I. K枚seoglu</a>, <a href="/search/physics?searchtype=author&amp;query=Schmidt%2C+M">M. Schmidt</a>, <a href="/search/physics?searchtype=author&amp;query=Wasem%2C+T">T. Wasem</a>, <a href="/search/physics?searchtype=author&amp;query=Sfienti%2C+C">C. Sfienti</a>, <a href="/search/physics?searchtype=author&amp;query=Ali%2C+A">A. Ali</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.16698v1-abstract-short" style="display: inline;"> In the PANDA experiment at the FAIR facility at GSI two DIRC (Detection of Internally Reflected Cherenkov light) detectors will be used for $蟺$/K separation up to 4 GeV/c. Due to their location in a high magnetic field and other stringent requirements like high detection efficiency, low dark count rate, radiation hardness, long lifetime and good timing, MCP-PMTs (microchannel-plate photomultiplier&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.16698v1-abstract-full').style.display = 'inline'; document.getElementById('2311.16698v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.16698v1-abstract-full" style="display: none;"> In the PANDA experiment at the FAIR facility at GSI two DIRC (Detection of Internally Reflected Cherenkov light) detectors will be used for $蟺$/K separation up to 4 GeV/c. Due to their location in a high magnetic field and other stringent requirements like high detection efficiency, low dark count rate, radiation hardness, long lifetime and good timing, MCP-PMTs (microchannel-plate photomultiplier) were the best choice of photon sensors for the DIRC detectors in the PANDA experiment. This paper will present the performance of some of the latest 2$\times$2 inch$^2$ MCP-PMTs from Photek and Photonis, including the first mass production tubes for the PANDA Barrel DIRC from Photonis. Performance parameters like the collection efficiency (CE), quantum efficiency (QE), and gain homogeneity were determined. The effect of magnetic fields on some properties like gain and charge cloud width was investigated as well. Apart from that the spatial distribution of many internal parameters like time resolution, dark count rate, afterpulse ratio, charge sharing crosstalk and recoil electrons were measured simultaneously with a multihit capable DAQ system. The latest generation of Photonis MCP-PMTs shows an unexpected &#34;escalation&#34; effect where the MCP-PMT itself produces photons. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.16698v1-abstract-full').style.display = 'none'; document.getElementById('2311.16698v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Proceedings contribution to RICH2022 (11th International Workshop on Ring Imaging Cherenkov Detectors)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nuclear Inst. and Methods in Physics Research, A 1057 (2023) 168659 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.16676">arXiv:2311.16676</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2311.16676">pdf</a>, <a href="https://arxiv.org/format/2311.16676">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nima.2023.168047">10.1016/j.nima.2023.168047 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Lifetime and performance of the very latest microchannel-plate photomultipliers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Miehling%2C+D">D. Miehling</a>, <a href="/search/physics?searchtype=author&amp;query=B%C3%B6hm%2C+M">M. B枚hm</a>, <a href="/search/physics?searchtype=author&amp;query=Gumbert%2C+K">K. Gumbert</a>, <a href="/search/physics?searchtype=author&amp;query=Krauss%2C+S">S. Krauss</a>, <a href="/search/physics?searchtype=author&amp;query=Lehmann%2C+A">A. Lehmann</a>, <a href="/search/physics?searchtype=author&amp;query=Belias%2C+A">A. Belias</a>, <a href="/search/physics?searchtype=author&amp;query=Dzhygadlo%2C+R">R. Dzhygadlo</a>, <a href="/search/physics?searchtype=author&amp;query=Gerhardt%2C+A">A. Gerhardt</a>, <a href="/search/physics?searchtype=author&amp;query=Lehmann%2C+D">D. Lehmann</a>, <a href="/search/physics?searchtype=author&amp;query=Peters%2C+K">K. Peters</a>, <a href="/search/physics?searchtype=author&amp;query=Schepers%2C+G">G. Schepers</a>, <a href="/search/physics?searchtype=author&amp;query=Schwarz%2C+C">C. Schwarz</a>, <a href="/search/physics?searchtype=author&amp;query=Schwiening%2C+J">J. Schwiening</a>, <a href="/search/physics?searchtype=author&amp;query=Traxler%2C+M">M. Traxler</a>, <a href="/search/physics?searchtype=author&amp;query=Wolf%2C+Y">Y. Wolf</a>, <a href="/search/physics?searchtype=author&amp;query=Schmitt%2C+L">L. Schmitt</a>, <a href="/search/physics?searchtype=author&amp;query=D%C3%BCren%2C+M">M. D眉ren</a>, <a href="/search/physics?searchtype=author&amp;query=Hayrapetyan%2C+A">A. Hayrapetyan</a>, <a href="/search/physics?searchtype=author&amp;query=K%C3%B6seoglu%2C+I">I. K枚seoglu</a>, <a href="/search/physics?searchtype=author&amp;query=Schmidt%2C+M">M. Schmidt</a>, <a href="/search/physics?searchtype=author&amp;query=Wasem%2C+T">T. Wasem</a>, <a href="/search/physics?searchtype=author&amp;query=Sfienti%2C+C">C. Sfienti</a>, <a href="/search/physics?searchtype=author&amp;query=Ali%2C+A">A. Ali</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.16676v1-abstract-short" style="display: inline;"> The PANDA experiment at the FAIR facility at GSI will study hadron physics using a high intensity antiproton beam of up to 15 GeV/c momentum to perform high precision spectroscopy. Two DIRC detectors with their image planes residing in an $\sim$1 T magnetic field will be used in the experiment. The only suitable photon detectors for both DIRCs were identified to be Microchannel-Plate Photomultipli&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.16676v1-abstract-full').style.display = 'inline'; document.getElementById('2311.16676v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.16676v1-abstract-full" style="display: none;"> The PANDA experiment at the FAIR facility at GSI will study hadron physics using a high intensity antiproton beam of up to 15 GeV/c momentum to perform high precision spectroscopy. Two DIRC detectors with their image planes residing in an $\sim$1 T magnetic field will be used in the experiment. The only suitable photon detectors for both DIRCs were identified to be Microchannel-Plate Photomultipliers (MCP-PMTs). Since the aging problems of MCP-PMTs were solved recently by coating the MCPs with the so-called ALD-technique (atomic layer deposition) we are investigating devices which are significantly improved with respect to other parameters, as, e.g., the collection efficiency (CE) and the quantum efficiency (QE). The latest generation of MCP-PMTs can reach a detective quantum efficiency DQE = QE - CE of 30%. This paper will present the performance of the most advanced 53 $\times$ 53 mm$^2$ ALD-coated MCP-PMTs from Photonis (8 $\times$ 8 and 3 $\times$ 100 anodes) and Photek (8 $\times$ 8 anodes), also inside the magnetic field. With a picosecond laser and a multi-hit capable DAQ system which allows read out up to 300 pixels simultaneously, parameters like darkcount rate, afterpulse probability and time resolution can be investigated as a function of incident photon position. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.16676v1-abstract-full').style.display = 'none'; document.getElementById('2311.16676v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Proceedings contribution to NDIP20 (9th Conference on New Developments in Photodetection)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nuclear Inst. and Methods in Physics Research, A 1049 (2023) 168047 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.02141">arXiv:2311.02141</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2311.02141">pdf</a>, <a href="https://arxiv.org/format/2311.02141">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Physics and Society">physics.soc-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> </div> <p class="title is-5 mathjax"> Beyond a Year of Sanctions in Science </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Albrecht%2C+M">M. Albrecht</a>, <a href="/search/physics?searchtype=author&amp;query=Ali%2C+A">A. Ali</a>, <a href="/search/physics?searchtype=author&amp;query=Barone%2C+M">M. Barone</a>, <a href="/search/physics?searchtype=author&amp;query=Brentjes%2C+S">S. Brentjes</a>, <a href="/search/physics?searchtype=author&amp;query=Bona%2C+M">M. Bona</a>, <a href="/search/physics?searchtype=author&amp;query=Ellis%2C+J">J. Ellis</a>, <a href="/search/physics?searchtype=author&amp;query=Glazov%2C+A">A. Glazov</a>, <a href="/search/physics?searchtype=author&amp;query=Jung%2C+H">H. Jung</a>, <a href="/search/physics?searchtype=author&amp;query=Mangano%2C+M">M. Mangano</a>, <a href="/search/physics?searchtype=author&amp;query=Neuneck%2C+G">G. Neuneck</a>, <a href="/search/physics?searchtype=author&amp;query=Raicevic%2C+N">N. Raicevic</a>, <a href="/search/physics?searchtype=author&amp;query=Scheffran%2C+J">J. Scheffran</a>, <a href="/search/physics?searchtype=author&amp;query=Spiro%2C+M">M. Spiro</a>, <a href="/search/physics?searchtype=author&amp;query=van+Mechelen%2C+P">P. van Mechelen</a>, <a href="/search/physics?searchtype=author&amp;query=Vigen%2C+J">J. Vigen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.02141v1-abstract-short" style="display: inline;"> While sanctions in political and economic areas are now part of the standard repertoire of Western countries (not always endorsed by UN mandates), sanctions in science and culture in general are new. Historically, fundamental research as conducted at international research centers such as CERN has long been seen as a driver for peace, and the Science4Peace idea has been celebrated for decades. How&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.02141v1-abstract-full').style.display = 'inline'; document.getElementById('2311.02141v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.02141v1-abstract-full" style="display: none;"> While sanctions in political and economic areas are now part of the standard repertoire of Western countries (not always endorsed by UN mandates), sanctions in science and culture in general are new. Historically, fundamental research as conducted at international research centers such as CERN has long been seen as a driver for peace, and the Science4Peace idea has been celebrated for decades. However, much changed with the war against Ukraine, and most Western science organizations put scientific cooperation with Russia and Belarus on hold immediately after the start of the war in 2022. In addition, common publications and participation in conferences were banned by some institutions, going against the ideal of free scientific exchange and communication. These and other points were the topics of an international virtual panel discussion organized by the Science4Peace Forum together with the &#34;Natural Scientists Initiative - Responsibility for Peace and Sustainability&#34; (NatWiss e.V.) in Germany and the journal &#34;Wissenschaft und Frieden&#34; (W&amp;F) (see the Figure). Fellows from the Hamburg Institute for Peace Research and Security Policy (IFSH), scientists collaborating with the large physics research institutes DESY and CERN, as well as from climate and futures researchers were represented on the panel. In this Dossier we document the panel discussion, and give additional perspectives. The authors of the individual sections present their personal reflections, which should not be taken as implying that they are endorsed by the Science4Peace Forum or any other organizations. It is regrettable that some colleagues who expressed support for this document felt that it would be unwise for them to co-sign it. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.02141v1-abstract-full').style.display = 'none'; document.getElementById('2311.02141v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Writeup based on a Panel discussion organized by the Science4Peace Forum (https://science4peace.com/Public-Events/Entries/2023/4/sanctions-in-science---one-year-of-sanctions-a-virtual-panel-discussion.html) on Sanctions in Science in April 2023</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.17991">arXiv:2310.17991</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.17991">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Effects of impurity band on multiphoton photocurrent from InGaN and GaN photodetectors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Wang%2C+C">Chuanliang Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Ali%2C+A">Ahsan Ali</a>, <a href="/search/physics?searchtype=author&amp;query=Wu%2C+J">Jinlei Wu</a>, <a href="/search/physics?searchtype=author&amp;query=Huang%2C+W">Wei Huang</a>, <a href="/search/physics?searchtype=author&amp;query=Lu%2C+H">Hai Lu</a>, <a href="/search/physics?searchtype=author&amp;query=Karki%2C+K+J">Khadga Jung Karki</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.17991v1-abstract-short" style="display: inline;"> Multiphoton absorption of wide band-gap semiconductors has shown great prospects in many fundamental researches and practical applications. With intensity-modulated femtosecond lasers by acousto-optic frequency shifters, photocurrents and yellow luminescence induced by two-photon absorption of InGaN and GaN photodetectors are investigated experimentally. Photocurrent from InGaN detector shows near&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.17991v1-abstract-full').style.display = 'inline'; document.getElementById('2310.17991v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.17991v1-abstract-full" style="display: none;"> Multiphoton absorption of wide band-gap semiconductors has shown great prospects in many fundamental researches and practical applications. With intensity-modulated femtosecond lasers by acousto-optic frequency shifters, photocurrents and yellow luminescence induced by two-photon absorption of InGaN and GaN photodetectors are investigated experimentally. Photocurrent from InGaN detector shows nearly perfect quadratic dependence on excitation intensity, while that in GaN detector shows cubic and higher order dependence. Yellow luminescence from both detectors show sub-quadratic dependence on excitation intensity. Highly nonlinear photocurrent from GaN is ascribed to absorption of additional photons by long-lived electrons in traps and impurity bands. Our investigation indicates that InGaN can serve as a superior detector for multiphoton absorption, absent of linear and higher order process, while GaN, which suffers from absorption by trapped electrons and impurity bands, must be used with caution. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.17991v1-abstract-full').style.display = 'none'; document.getElementById('2310.17991v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.16315">arXiv:2310.16315</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.16315">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Probing Silicon Carbide with Phase-Modulated Femtosecond Laser Pulses: Insights into Multiphoton Photocurrent </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Ali%2C+A">Ahsan Ali</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+C">Chuanliang Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Cai%2C+J">Jinyang Cai</a>, <a href="/search/physics?searchtype=author&amp;query=Karki%2C+K+J">Khadga Jung Karki</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.16315v1-abstract-short" style="display: inline;"> Wide bandgap semiconductors are widely used in photonic technologies due to their advantageous features, such as large optical bandgap, low losses, and fast operational speeds. Silicon carbide is a prototypical wide bandgap semiconductor with high optical nonlinearities, large electron transport, and a high breakdown threshold. Integration of silicon carbide in nonlinear photonics requires a syste&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.16315v1-abstract-full').style.display = 'inline'; document.getElementById('2310.16315v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.16315v1-abstract-full" style="display: none;"> Wide bandgap semiconductors are widely used in photonic technologies due to their advantageous features, such as large optical bandgap, low losses, and fast operational speeds. Silicon carbide is a prototypical wide bandgap semiconductor with high optical nonlinearities, large electron transport, and a high breakdown threshold. Integration of silicon carbide in nonlinear photonics requires a systematic analysis of the multiphoton contribution to the device functionality. Here, multiphoton photocurrent in a silicon carbide photodetector is investigated using phase-modulated femtosecond pulses. Multiphoton absorption is quantified using a 1030 nm phase-modulated pulsed laser. Our measurements show that although the bandgap is less than the energy of three photons, only four-photon absorption has a significant contribution to the photocurrent. We interpret the four-photon absorption as a direct transition from the valance to the conduction band at the 螕 point. More importantly, silicon carbide withstands higher excitation intensities compared to other wide bandgap semiconductors making it an ideal system for high-power nonlinear applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.16315v1-abstract-full').style.display = 'none'; document.getElementById('2310.16315v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.05290">arXiv:2309.05290</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2309.05290">pdf</a>, <a href="https://arxiv.org/format/2309.05290">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> Solving Systems of Linear Equations: HHL from a Tensor Networks Perspective </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Ali%2C+A+M">Alejandro Mata Ali</a>, <a href="/search/physics?searchtype=author&amp;query=Delgado%2C+I+P">I帽igo Perez Delgado</a>, <a href="/search/physics?searchtype=author&amp;query=Roura%2C+M+R">Marina Ristol Roura</a>, <a href="/search/physics?searchtype=author&amp;query=de+Leceta%2C+A+M+F">Aitor Moreno Fdez. de Leceta</a>, <a href="/search/physics?searchtype=author&amp;query=Romero%2C+S+V">Sebasti谩n V. Romero</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.05290v3-abstract-short" style="display: inline;"> We present an algorithm for solving systems of linear equations based on the HHL algorithm with a novel qudits methodology, a generalization of the qubits with more states, to reduce the number of gates to be applied and the amount of resources. Based on this idea, we perform a quantum-inspired version on tensor networks, taking advantage of their ability to perform non-unitary operations such as&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.05290v3-abstract-full').style.display = 'inline'; document.getElementById('2309.05290v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.05290v3-abstract-full" style="display: none;"> We present an algorithm for solving systems of linear equations based on the HHL algorithm with a novel qudits methodology, a generalization of the qubits with more states, to reduce the number of gates to be applied and the amount of resources. Based on this idea, we perform a quantum-inspired version on tensor networks, taking advantage of their ability to perform non-unitary operations such as projection. The main novelty of this proposal is to perform a simulation as efficient as possible of the HHL algorithm in order to benchmark the algorithm steps according to its input parameters and the input matrix. Finally, we use this algorithm to obtain a solution for the harmonic oscillator with an external force, the forced damped oscillator and the 2D static heat equation differential equations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.05290v3-abstract-full').style.display = 'none'; document.getElementById('2309.05290v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 7 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">MSC Class:</span> 68Q12; 65L06 <span class="has-text-black-bis has-text-weight-semibold">ACM Class:</span> G.1.3 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.08501">arXiv:2308.08501</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2308.08501">pdf</a>, <a href="https://arxiv.org/format/2308.08501">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Physics and Society">physics.soc-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1109/ICCITECHN.2017.8281770">10.1109/ICCITECHN.2017.8281770 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Understanding Dhaka City Traffic Intensity and Traffic Expansion Using Gravity Model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Sayed%2C+M+A">Md Abu Sayed</a>, <a href="/search/physics?searchtype=author&amp;query=Rahman%2C+M+M">Md Maksudur Rahman</a>, <a href="/search/physics?searchtype=author&amp;query=Zaber%2C+M+I">Moinul Islam Zaber</a>, <a href="/search/physics?searchtype=author&amp;query=Ali%2C+A+A">Amin Ahsan Ali</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.08501v1-abstract-short" style="display: inline;"> Analysis of traffic pattern recognition and traffic congestion expansion in real time are one of the exciting and challenging tasks which help the government to build a robust and sustainable traffic management system specially in a densely populated city like Dhaka. In this paper, we analyze the traffic intensity for small areas which are also known as junction points or corridors. We describe Dh&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.08501v1-abstract-full').style.display = 'inline'; document.getElementById('2308.08501v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.08501v1-abstract-full" style="display: none;"> Analysis of traffic pattern recognition and traffic congestion expansion in real time are one of the exciting and challenging tasks which help the government to build a robust and sustainable traffic management system specially in a densely populated city like Dhaka. In this paper, we analyze the traffic intensity for small areas which are also known as junction points or corridors. We describe Dhaka city traffic expansion from a congestion point by using gravity model. However, we process real-time traffic data of Dhaka city rather than depend on survey and interview. We exactly show that traffic expansion of Dhaka city exactly follows gravity model. Expansion of traffic from a congestion point spreads out rapidly to its neighbor and impact of congested point decreases as the distance increases from that congested point. This analysis will help the government making a planned urbanized Dhaka city in order to reduce traffic jam. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.08501v1-abstract-full').style.display = 'none'; document.getElementById('2308.08501v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 10 citations</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> 20th International Conference of Computer and Information Technology (ICCIT), pp. 1-6. IEEE, 2017 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.05135">arXiv:2305.05135</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2305.05135">pdf</a>, <a href="https://arxiv.org/format/2305.05135">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/2041-8213/acdc9e">10.3847/2041-8213/acdc9e <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Search for astrophysical electron antineutrinos in Super-Kamiokande with 0.01wt% gadolinium-loaded water </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Harada%2C+M">M. Harada</a>, <a href="/search/physics?searchtype=author&amp;query=Abe%2C+K">K. Abe</a>, <a href="/search/physics?searchtype=author&amp;query=Bronner%2C+C">C. Bronner</a>, <a href="/search/physics?searchtype=author&amp;query=Hayato%2C+Y">Y. Hayato</a>, <a href="/search/physics?searchtype=author&amp;query=Hiraide%2C+K">K. Hiraide</a>, <a href="/search/physics?searchtype=author&amp;query=Hosokawa%2C+K">K. Hosokawa</a>, <a href="/search/physics?searchtype=author&amp;query=Ieki%2C+K">K. Ieki</a>, <a href="/search/physics?searchtype=author&amp;query=Ikeda%2C+M">M. Ikeda</a>, <a href="/search/physics?searchtype=author&amp;query=Kameda%2C+J">J. Kameda</a>, <a href="/search/physics?searchtype=author&amp;query=Kanemura%2C+Y">Y. Kanemura</a>, <a href="/search/physics?searchtype=author&amp;query=Kaneshima%2C+R">R. Kaneshima</a>, <a href="/search/physics?searchtype=author&amp;query=Kashiwagi%2C+Y">Y. Kashiwagi</a>, <a href="/search/physics?searchtype=author&amp;query=Kataoka%2C+Y">Y. Kataoka</a>, <a href="/search/physics?searchtype=author&amp;query=Miki%2C+S">S. Miki</a>, <a href="/search/physics?searchtype=author&amp;query=Mine%2C+S">S. Mine</a>, <a href="/search/physics?searchtype=author&amp;query=Miura%2C+M">M. Miura</a>, <a href="/search/physics?searchtype=author&amp;query=Moriyama%2C+S">S. Moriyama</a>, <a href="/search/physics?searchtype=author&amp;query=Nakano%2C+Y">Y. Nakano</a>, <a href="/search/physics?searchtype=author&amp;query=Nakahata%2C+M">M. Nakahata</a>, <a href="/search/physics?searchtype=author&amp;query=Nakayama%2C+S">S. Nakayama</a>, <a href="/search/physics?searchtype=author&amp;query=Noguchi%2C+Y">Y. Noguchi</a>, <a href="/search/physics?searchtype=author&amp;query=Okamoto%2C+K">K. Okamoto</a>, <a href="/search/physics?searchtype=author&amp;query=Sato%2C+K">K. Sato</a>, <a href="/search/physics?searchtype=author&amp;query=Sekiya%2C+H">H. Sekiya</a>, <a href="/search/physics?searchtype=author&amp;query=Shiba%2C+H">H. Shiba</a> , et al. (216 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.05135v2-abstract-short" style="display: inline;"> We report the first search result for the flux of astrophysical electron antineutrinos for energies O(10) MeV in the gadolinium-loaded Super-Kamiokande (SK) detector. In June 2020, gadolinium was introduced to the ultra-pure water of the SK detector in order to detect neutrons more efficiently. In this new experimental phase, SK-Gd, we can search for electron antineutrinos via inverse beta decay w&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.05135v2-abstract-full').style.display = 'inline'; document.getElementById('2305.05135v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.05135v2-abstract-full" style="display: none;"> We report the first search result for the flux of astrophysical electron antineutrinos for energies O(10) MeV in the gadolinium-loaded Super-Kamiokande (SK) detector. In June 2020, gadolinium was introduced to the ultra-pure water of the SK detector in order to detect neutrons more efficiently. In this new experimental phase, SK-Gd, we can search for electron antineutrinos via inverse beta decay with efficient background rejection and higher signal efficiency thanks to the high efficiency of the neutron tagging technique. In this paper, we report the result for the initial stage of SK-Gd with a $22.5\times552$ $\rm kton\cdot day$ exposure at 0.01% Gd mass concentration. No significant excess over the expected background in the observed events is found for the neutrino energies below 31.3 MeV. Thus, the flux upper limits are placed at the 90% confidence level. The limits and sensitivities are already comparable with the previous SK result with pure-water ($22.5 \times 2970 \rm kton\cdot day$) owing to the enhanced neutron tagging. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.05135v2-abstract-full').style.display = 'none'; document.getElementById('2305.05135v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.09928">arXiv:2303.09928</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2303.09928">pdf</a>, <a href="https://arxiv.org/format/2303.09928">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/ptep/ptad059">10.1093/ptep/ptad059 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Angular correlation of the two gamma rays produced in the thermal neutron capture on gadolinium-155 and gadolinium-157 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Goux%2C+P">Pierre Goux</a>, <a href="/search/physics?searchtype=author&amp;query=Glessgen%2C+F">Franz Glessgen</a>, <a href="/search/physics?searchtype=author&amp;query=Gazzola%2C+E">Enrico Gazzola</a>, <a href="/search/physics?searchtype=author&amp;query=Reen%2C+M+S">Mandeep Singh Reen</a>, <a href="/search/physics?searchtype=author&amp;query=Focillon%2C+W">William Focillon</a>, <a href="/search/physics?searchtype=author&amp;query=Gonin%2C+M">Michel Gonin</a>, <a href="/search/physics?searchtype=author&amp;query=Tanaka%2C+T">Tomoyuki Tanaka</a>, <a href="/search/physics?searchtype=author&amp;query=Hagiwara%2C+K">Kaito Hagiwara</a>, <a href="/search/physics?searchtype=author&amp;query=Ali%2C+A">Ajmi Ali</a>, <a href="/search/physics?searchtype=author&amp;query=Sudo%2C+T">Takashi Sudo</a>, <a href="/search/physics?searchtype=author&amp;query=Koshio%2C+Y">Yusuke Koshio</a>, <a href="/search/physics?searchtype=author&amp;query=Sakuda%2C+M">Makoto Sakuda</a>, <a href="/search/physics?searchtype=author&amp;query=Collazuol%2C+G">Gianmaria Collazuol</a>, <a href="/search/physics?searchtype=author&amp;query=Kimura%2C+A">Atsushi Kimura</a>, <a href="/search/physics?searchtype=author&amp;query=Nakamura%2C+S">Shoji Nakamura</a>, <a href="/search/physics?searchtype=author&amp;query=Iwamoto%2C+N">Nobuyuki Iwamoto</a>, <a href="/search/physics?searchtype=author&amp;query=Harada%2C+H">Hideo Harada</a>, <a href="/search/physics?searchtype=author&amp;query=Wurm%2C+M">Michael Wurm</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.09928v2-abstract-short" style="display: inline;"> The ANNRI-Gd collaboration studied in detail the single $纬$-ray spectrum produced from the thermal neutron capture on $^{155}$Gd and $^{157}$Gd in our previous publications. Gadolinium targets were exposed to a neutron beam provided by the Japan Spallation Neutron Source (JSNS) in J-PARC, Japan. In the present analysis, one new additional coaxial germanium crystal was used in the analysis in combi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.09928v2-abstract-full').style.display = 'inline'; document.getElementById('2303.09928v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.09928v2-abstract-full" style="display: none;"> The ANNRI-Gd collaboration studied in detail the single $纬$-ray spectrum produced from the thermal neutron capture on $^{155}$Gd and $^{157}$Gd in our previous publications. Gadolinium targets were exposed to a neutron beam provided by the Japan Spallation Neutron Source (JSNS) in J-PARC, Japan. In the present analysis, one new additional coaxial germanium crystal was used in the analysis in combination with the fourteen germanium crystals in the cluster detectors to study the angular correlation of the two $纬$ rays emitted in the same neutron capture. We present for the first time angular correlation functions for two $纬$ rays produced during the electromagnetic cascade transitions in the (n, $纬$) reactions on $^{\rm 155}$Gd and $^{\rm 157}$Gd. As expected, we observe the mild angular correlations for the strong, but rare transitions from the resonance state to the two energy levels of known spin-parities. Contrariwise, we observe negligibly small angular correlations for arbitrary pairs of two $纬$ rays produced in the majority of cascade transitions from the resonance state to the dense continuum states. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.09928v2-abstract-full').style.display = 'none'; document.getElementById('2303.09928v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 13 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Prog Theor Exp Phys (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.08092">arXiv:2303.08092</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2303.08092">pdf</a>, <a href="https://arxiv.org/format/2303.08092">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Data Analysis, Statistics and Probability">physics.data-an</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.asr.2024.04.044">10.1016/j.asr.2024.04.044 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Random Hivemind: An Ensemble Deep Learner Application to Solar Energetic Particle Prediction Problem </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=O%27Keefe%2C+P+M">Patrick M. O&#39;Keefe</a>, <a href="/search/physics?searchtype=author&amp;query=Sadykov%2C+V">Viacheslav Sadykov</a>, <a href="/search/physics?searchtype=author&amp;query=Kosovichev%2C+A">Alexander Kosovichev</a>, <a href="/search/physics?searchtype=author&amp;query=Kitiashvili%2C+I+N">Irina N. Kitiashvili</a>, <a href="/search/physics?searchtype=author&amp;query=Oria%2C+V">Vincent Oria</a>, <a href="/search/physics?searchtype=author&amp;query=Nita%2C+G+M">Gelu M. Nita</a>, <a href="/search/physics?searchtype=author&amp;query=Francis%2C+F">Fraila Francis</a>, <a href="/search/physics?searchtype=author&amp;query=Chong%2C+C">Chun-Jie Chong</a>, <a href="/search/physics?searchtype=author&amp;query=Kosovich%2C+P">Paul Kosovich</a>, <a href="/search/physics?searchtype=author&amp;query=Ali%2C+A">Aatiya Ali</a>, <a href="/search/physics?searchtype=author&amp;query=Marroquin%2C+R+D">Russell D. Marroquin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.08092v2-abstract-short" style="display: inline;"> The application of machine learning and deep learning, including the wide use of non-ensemble, conventional neural networks (CoNN), for predicting various phenomena has become very popular in recent years thanks to the efficiencies and the abilities of these techniques to find relationships in data without human intervention. However, certain CoNN setups may not work on some datasets, especially i&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.08092v2-abstract-full').style.display = 'inline'; document.getElementById('2303.08092v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.08092v2-abstract-full" style="display: none;"> The application of machine learning and deep learning, including the wide use of non-ensemble, conventional neural networks (CoNN), for predicting various phenomena has become very popular in recent years thanks to the efficiencies and the abilities of these techniques to find relationships in data without human intervention. However, certain CoNN setups may not work on some datasets, especially if the parameters passed to it, including model parameters and hyperparameters, are arguably arbitrary in nature and need to continuously be updated with the need to retrain the model. This concern can be partially alleviated by employing committees of neural networks that are identical in terms of input features and architectures, initialized randomly, and &#34;vote&#34; on the decisions made by the committees as a whole. Yet, it is possible for the committee members to &#34;agree&#34; on identical sets of weights and biases for all nodes and edges. Members of these committees also cannot be expanded to accommodate new features and entire committees must therefore be retrained in order to do so. We propose the Random Hivemind (RH) approach, which helps to alleviate this concern by having multiple neural network estimators make decisions based on random permutations of features and prescribing a method to determine the weight of the decision of each individual estimator. The effectiveness of RH is demonstrated through experimentation in the predictions of hazardous Solar Energetic Particle (SEP) events by comparing it to that of using both CoNNs and the aforementioned setup of committees. Our results demonstrate that RH, while having a comparable or better performance than the CoNN and a Committee-based approach, demonstrates a lesser score spread for the individual experiments, and shows promising results with respect to capturing almost every single flare instance leading to SEPs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.08092v2-abstract-full').style.display = 'none'; document.getElementById('2303.08092v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 6 figures, 2 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.05446">arXiv:2303.05446</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2303.05446">pdf</a>, <a href="https://arxiv.org/format/2303.05446">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Space Physics">physics.space-ph</span> </div> </div> <p class="title is-5 mathjax"> Predicting Solar Proton Events of Solar Cycles 22-24 using GOES Proton &amp; soft X-Ray flux features </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Ali%2C+A">Aatiya Ali</a>, <a href="/search/physics?searchtype=author&amp;query=Sadykov%2C+V">Viacheslav Sadykov</a>, <a href="/search/physics?searchtype=author&amp;query=Kosovichev%2C+A">Alexander Kosovichev</a>, <a href="/search/physics?searchtype=author&amp;query=Kitiashvili%2C+I+N">Irina N. Kitiashvili</a>, <a href="/search/physics?searchtype=author&amp;query=Oria%2C+V">Vincent Oria</a>, <a href="/search/physics?searchtype=author&amp;query=Nita%2C+G+M">Gelu M. Nita</a>, <a href="/search/physics?searchtype=author&amp;query=Illarionov%2C+E">Egor Illarionov</a>, <a href="/search/physics?searchtype=author&amp;query=O%27Keefe%2C+P+M">Patrick M. O&#39;Keefe</a>, <a href="/search/physics?searchtype=author&amp;query=Francis%2C+F">Fraila Francis</a>, <a href="/search/physics?searchtype=author&amp;query=Chong%2C+C">Chun-Jie Chong</a>, <a href="/search/physics?searchtype=author&amp;query=Kosovich%2C+P">Paul Kosovich</a>, <a href="/search/physics?searchtype=author&amp;query=Marroquin%2C+R+D">Russell D. Marroquin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.05446v2-abstract-short" style="display: inline;"> Solar Energetic Particle (SEP) events and their major subclass, Solar Proton Events (SPEs), can have unfavorable consequences on numerous aspects of life and technology, making them one of the most harmful effects of solar activity. Garnering knowledge preceding such events by studying operational data flows is essential for their forecasting. Considering only Solar Cycle (SC) 24 in our previous s&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.05446v2-abstract-full').style.display = 'inline'; document.getElementById('2303.05446v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.05446v2-abstract-full" style="display: none;"> Solar Energetic Particle (SEP) events and their major subclass, Solar Proton Events (SPEs), can have unfavorable consequences on numerous aspects of life and technology, making them one of the most harmful effects of solar activity. Garnering knowledge preceding such events by studying operational data flows is essential for their forecasting. Considering only Solar Cycle (SC) 24 in our previous study, Sadykov et al. 2021, we found that it may be sufficient to utilize only proton and soft X-ray (SXR) parameters for SPE forecasts. Here, we report a catalog recording $\geq$ 10 MeV $\geq$ 10 particle flux unit SPEs with their properties, spanning SCs 22-24, using NOAA&#39;s Geostationary Operational Environmental Satellite flux data. We report an additional catalog of daily proton and SXR flux statistics for this period, employing it to test the application of machine learning (ML) on the prediction of SPEs using a Support Vector Machine (SVM) and eXtreme Gradient Boosting (XGBoost). We explore the effects of training models with data from one and two SCs, evaluating how transferable a model can be across different time periods. XGBoost proved to be more accurate than SVMs for almost every test considered, while outperforming operational SWPC NOAA predictions and a persistence forecast. Interestingly, training done with SC 24 produces weaker TSS and HSS2, even when paired with SC 22 or SC 23, indicating transferability issues. This work contributes towards validating forecasts using long-spanning data -- an understudied area in SEP research that should be considered to verify the cross-cycle robustness of ML-driven forecasts. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.05446v2-abstract-full').style.display = 'none'; document.getElementById('2303.05446v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2301.06666">arXiv:2301.06666</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2301.06666">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Enhancement of photocatalytic performance of V2O5 by rare-earth ions doping, synthesized by facile hydrothermal technique </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Kabir%2C+M+H">M. H. Kabir</a>, <a href="/search/physics?searchtype=author&amp;query=Hossain%2C+M+Z">M. Z. Hossain</a>, <a href="/search/physics?searchtype=author&amp;query=Jalil%2C+M+A">M. A. Jalil</a>, <a href="/search/physics?searchtype=author&amp;query=Hossain%2C+M+M">M. M. Hossain</a>, <a href="/search/physics?searchtype=author&amp;query=Ali%2C+M+A">M. A. Ali</a>, <a href="/search/physics?searchtype=author&amp;query=Khandaker%2C+M+U">M. U. Khandaker</a>, <a href="/search/physics?searchtype=author&amp;query=Jana%2C+D">D. Jana</a>, <a href="/search/physics?searchtype=author&amp;query=Rahman%2C+M+M">Md. M. Rahman</a>, <a href="/search/physics?searchtype=author&amp;query=Hossain%2C+M+K">M. K. Hossain</a>, <a href="/search/physics?searchtype=author&amp;query=Uddin%2C+M+M">M. M. Uddin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2301.06666v1-abstract-short" style="display: inline;"> The rare-earth (RE) elements [Holmium (Ho) and Ytterbium (Yb)] doped vanadium pentoxide (V2O5) with a series of doping concentrations (1 mol.%, 3 mol.%, and 5 mol.%) have been successfully synthesized using environment-friendly facile hydrothermal method. The effect of RE ions on the photocatalytic efficiency of doped V2O5 has also been analyzed. The stable orthorhombic crystal structure of doped&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.06666v1-abstract-full').style.display = 'inline'; document.getElementById('2301.06666v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2301.06666v1-abstract-full" style="display: none;"> The rare-earth (RE) elements [Holmium (Ho) and Ytterbium (Yb)] doped vanadium pentoxide (V2O5) with a series of doping concentrations (1 mol.%, 3 mol.%, and 5 mol.%) have been successfully synthesized using environment-friendly facile hydrothermal method. The effect of RE ions on the photocatalytic efficiency of doped V2O5 has also been analyzed. The stable orthorhombic crystal structure of doped V2O5 confirms by the X-ray diffraction with no secondary phase, and high-stressed conditions are generated for the 3 mol.%. The crystallite size, strain, and dislocation density are calculated to perceive the doping effect on the bare V2O5. The optical characteristics have been measured using UV-vis spectroscopy. The absorptions are found to be increased with increasing doping concentrations; however, the bandgap remains in the visible range. The photocatalytic properties are examined for the compounds with varying pH, and it is observed that higher efficiency is exhibited for the pH 7 and catalyst concentration 500 ppm. The highest degradation efficiency is found to be 93% and 95% for the 3 mol.% of Ho and Yb-doped V2O5 samples within 2 hours, respectively. It is elucidated that the RE ions significantly impact the catalytic behavior of V2O5, and the mechanism behind these extraordinary efficiencies has been explained thoroughly. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.06666v1-abstract-full').style.display = 'none'; document.getElementById('2301.06666v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.08629">arXiv:2211.08629</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2211.08629">pdf</a>, <a href="https://arxiv.org/format/2211.08629">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> </div> <p class="title is-5 mathjax"> Viscous effects on nonlinear double tearing mode and plasmoid formation in adjacent Harris sheets </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Ahmad%2C+N">Nisar Ahmad</a>, <a href="/search/physics?searchtype=author&amp;query=Zhu%2C+P">Ping Zhu</a>, <a href="/search/physics?searchtype=author&amp;query=Shen%2C+C">Chao Shen</a>, <a href="/search/physics?searchtype=author&amp;query=Ali%2C+A">Ahmad Ali</a>, <a href="/search/physics?searchtype=author&amp;query=Zeng%2C+S">Shiyong Zeng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.08629v1-abstract-short" style="display: inline;"> In this paper, we study the effects of viscosity on the evolution of double tearing mode (DTM) in a pair of adjacent Harris sheets based on the resistive MHD model in the NIMROD code. Similar to the tearing mode in the conventional single Harris sheet, a transition is observed in the generation of both normal and monster plasmoids at Pr = 1. In the Pr &lt; 1 regime of DTM, normal plasmoids (small pla&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.08629v1-abstract-full').style.display = 'inline'; document.getElementById('2211.08629v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.08629v1-abstract-full" style="display: none;"> In this paper, we study the effects of viscosity on the evolution of double tearing mode (DTM) in a pair of adjacent Harris sheets based on the resistive MHD model in the NIMROD code. Similar to the tearing mode in the conventional single Harris sheet, a transition is observed in the generation of both normal and monster plasmoids at Pr = 1. In the Pr &lt; 1 regime of DTM, normal plasmoids (small plasmoids) are generated along with monster plasmoid, whereas in the single tearing mode (STM) cases such a generation is not observed. When Pr is above the critical value, the generation of monster plasmoid is halted. Correspondingly, in the Pr &lt; 1 regime, a quadrupolar flow advects along poloidal direction, but in Pr &gt; 1 regime this flow advection is inhibited. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.08629v1-abstract-full').style.display = 'none'; document.getElementById('2211.08629v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.12948">arXiv:2210.12948</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2210.12948">pdf</a>, <a href="https://arxiv.org/format/2210.12948">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Space Physics">physics.space-ph</span> </div> </div> <p class="title is-5 mathjax"> Searching for neutrinos from solar flares across solar cycles 23 and 24 with the Super-Kamiokande detector </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Okamoto%2C+K">K. Okamoto</a>, <a href="/search/physics?searchtype=author&amp;query=Abe%2C+K">K. Abe</a>, <a href="/search/physics?searchtype=author&amp;query=Hayato%2C+Y">Y. Hayato</a>, <a href="/search/physics?searchtype=author&amp;query=Hiraide%2C+K">K. Hiraide</a>, <a href="/search/physics?searchtype=author&amp;query=Hosokawa%2C+K">K. Hosokawa</a>, <a href="/search/physics?searchtype=author&amp;query=Ieki%2C+K">K. Ieki</a>, <a href="/search/physics?searchtype=author&amp;query=Ikeda%2C+M">M. Ikeda</a>, <a href="/search/physics?searchtype=author&amp;query=Kameda%2C+J">J. Kameda</a>, <a href="/search/physics?searchtype=author&amp;query=Kanemura%2C+Y">Y. Kanemura</a>, <a href="/search/physics?searchtype=author&amp;query=Kaneshima%2C+Y">Y. Kaneshima</a>, <a href="/search/physics?searchtype=author&amp;query=Kataoka%2C+Y">Y. Kataoka</a>, <a href="/search/physics?searchtype=author&amp;query=Kashiwagi%2C+Y">Y. Kashiwagi</a>, <a href="/search/physics?searchtype=author&amp;query=Miki%2C+S">S. Miki</a>, <a href="/search/physics?searchtype=author&amp;query=Mine%2C+S">S. Mine</a>, <a href="/search/physics?searchtype=author&amp;query=Miura%2C+M">M. Miura</a>, <a href="/search/physics?searchtype=author&amp;query=Moriyama%2C+S">S. Moriyama</a>, <a href="/search/physics?searchtype=author&amp;query=Nagao%2C+Y">Y. Nagao</a>, <a href="/search/physics?searchtype=author&amp;query=Nakahata%2C+M">M. Nakahata</a>, <a href="/search/physics?searchtype=author&amp;query=Nakano%2C+Y">Y. Nakano</a>, <a href="/search/physics?searchtype=author&amp;query=Nakayama%2C+S">S. Nakayama</a>, <a href="/search/physics?searchtype=author&amp;query=Noguchi%2C+Y">Y. Noguchi</a>, <a href="/search/physics?searchtype=author&amp;query=Sato%2C+K">K. Sato</a>, <a href="/search/physics?searchtype=author&amp;query=Sekiya%2C+H">H. Sekiya</a>, <a href="/search/physics?searchtype=author&amp;query=Shimizu%2C+K">K. Shimizu</a>, <a href="/search/physics?searchtype=author&amp;query=Shiozawa%2C+M">M. Shiozawa</a> , et al. (220 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.12948v2-abstract-short" style="display: inline;"> Neutrinos associated with solar flares (solar-flare neutrinos) provide information on particle acceleration mechanisms during the impulsive phase of solar flares. We searched using the Super-Kamiokande detector for neutrinos from solar flares that occurred during solar cycles $23$ and $24$, including the largest solar flare (X28.0) on November 4th, 2003. In order to minimize the background rate we&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.12948v2-abstract-full').style.display = 'inline'; document.getElementById('2210.12948v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.12948v2-abstract-full" style="display: none;"> Neutrinos associated with solar flares (solar-flare neutrinos) provide information on particle acceleration mechanisms during the impulsive phase of solar flares. We searched using the Super-Kamiokande detector for neutrinos from solar flares that occurred during solar cycles $23$ and $24$, including the largest solar flare (X28.0) on November 4th, 2003. In order to minimize the background rate we searched for neutrino interactions within narrow time windows coincident with $纬$-rays and soft X-rays recorded by satellites. In addition, we performed the first attempt to search for solar-flare neutrinos from solar flares on the invisible side of the Sun by using the emission time of coronal mass ejections (CMEs). By selecting twenty powerful solar flares above X5.0 on the visible side and eight CMEs whose emission speed exceeds $2000$ $\mathrm{km \, s^{-1}}$ on the invisible side from 1996 to 2018, we found two (six) neutrino events coincident with solar flares occurring on the visible (invisible) side of the Sun, with a typical background rate of $0.10$ ($0.62$) events per flare in the MeV-GeV energy range. No significant solar-flare neutrino signal above the estimated background rate was observed. As a result we set the following upper limit on neutrino fluence at the Earth $\mathit桅&lt;1.1\times10^{6}$ $\mathrm{cm^{-2}}$ at the $90\%$ confidence level for the largest solar flare. The resulting fluence limits allow us to constrain some of the theoretical models for solar-flare neutrino emission. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.12948v2-abstract-full').style.display = 'none'; document.getElementById('2210.12948v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">36 pages, 18 figures, 9 tables (Figure 12 was replaced because it was incorrect in version 1.)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.06262">arXiv:2210.06262</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2210.06262">pdf</a>, <a href="https://arxiv.org/format/2210.06262">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="General Physics">physics.gen-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1142/S0218271824500366">10.1142/S0218271824500366 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Theoretical and Observational Implications of Planck&#39;s Constant as a Running Fine Structure Constant </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Ali%2C+A+F">Ahmed Farag Ali</a>, <a href="/search/physics?searchtype=author&amp;query=Mureika%2C+J">Jonas Mureika</a>, <a href="/search/physics?searchtype=author&amp;query=Vagenas%2C+E+C">Elias C. Vagenas</a>, <a href="/search/physics?searchtype=author&amp;query=Elmashad%2C+I">Ibrahim Elmashad</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.06262v3-abstract-short" style="display: inline;"> This letter explores how a reinterpretation of the generalized uncertainty principle as an effective variation of Planck&#39;s constant provides a physical explanation for a number of fundamental quantities and couplings. In this context, a running fine structure constant is naturally emergent and the cosmological constant problem is solved, yielding a novel connection between gravitation and quantum&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.06262v3-abstract-full').style.display = 'inline'; document.getElementById('2210.06262v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.06262v3-abstract-full" style="display: none;"> This letter explores how a reinterpretation of the generalized uncertainty principle as an effective variation of Planck&#39;s constant provides a physical explanation for a number of fundamental quantities and couplings. In this context, a running fine structure constant is naturally emergent and the cosmological constant problem is solved, yielding a novel connection between gravitation and quantum field theories. The model could potentially clarify the recent experimental observations by the DESI Collaboration that could imply a fading of dark energy over time. When applied to quantum systems and their characteristic length scales, a simple geometric relationship between energy and entropy is disclosed. Lastly, a mass-radius relation for both quantum and classical systems reveals a phase transition-like behaviour similar to thermodynamical systems, which we speculate to be a consequence of topological defects in the universe. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.06262v3-abstract-full').style.display = 'none'; document.getElementById('2210.06262v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, revtex4-2, 3 figures. Title changed, abstract changed and entire paper revised. Added authors for new analysis, sections, and materials. To appear in IJMPD</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Int.J.Mod.Phys.D 33 (2024) 09n10, 2450036 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.08609">arXiv:2209.08609</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2209.08609">pdf</a>, <a href="https://arxiv.org/format/2209.08609">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/17/10/P10029">10.1088/1748-0221/17/10/P10029 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Neutron Tagging following Atmospheric Neutrino Events in a Water Cherenkov Detector </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Abe%2C+K">K. Abe</a>, <a href="/search/physics?searchtype=author&amp;query=Haga%2C+Y">Y. Haga</a>, <a href="/search/physics?searchtype=author&amp;query=Hayato%2C+Y">Y. Hayato</a>, <a href="/search/physics?searchtype=author&amp;query=Hiraide%2C+K">K. Hiraide</a>, <a href="/search/physics?searchtype=author&amp;query=Ieki%2C+K">K. Ieki</a>, <a href="/search/physics?searchtype=author&amp;query=Ikeda%2C+M">M. Ikeda</a>, <a href="/search/physics?searchtype=author&amp;query=Imaizumi%2C+S">S. Imaizumi</a>, <a href="/search/physics?searchtype=author&amp;query=Iyogi%2C+K">K. Iyogi</a>, <a href="/search/physics?searchtype=author&amp;query=Kameda%2C+J">J. Kameda</a>, <a href="/search/physics?searchtype=author&amp;query=Kanemura%2C+Y">Y. Kanemura</a>, <a href="/search/physics?searchtype=author&amp;query=Kataoka%2C+Y">Y. Kataoka</a>, <a href="/search/physics?searchtype=author&amp;query=Kato%2C+Y">Y. Kato</a>, <a href="/search/physics?searchtype=author&amp;query=Kishimoto%2C+Y">Y. Kishimoto</a>, <a href="/search/physics?searchtype=author&amp;query=Miki%2C+S">S. Miki</a>, <a href="/search/physics?searchtype=author&amp;query=Mine%2C+S">S. Mine</a>, <a href="/search/physics?searchtype=author&amp;query=Miura%2C+M">M. Miura</a>, <a href="/search/physics?searchtype=author&amp;query=Mochizuki%2C+T">T. Mochizuki</a>, <a href="/search/physics?searchtype=author&amp;query=Moriyama%2C+S">S. Moriyama</a>, <a href="/search/physics?searchtype=author&amp;query=Nagao%2C+Y">Y. Nagao</a>, <a href="/search/physics?searchtype=author&amp;query=Nakahata%2C+M">M. Nakahata</a>, <a href="/search/physics?searchtype=author&amp;query=Nakajima%2C+T">T. Nakajima</a>, <a href="/search/physics?searchtype=author&amp;query=Nakano%2C+Y">Y. Nakano</a>, <a href="/search/physics?searchtype=author&amp;query=Nakayama%2C+S">S. Nakayama</a>, <a href="/search/physics?searchtype=author&amp;query=Okada%2C+T">T. Okada</a>, <a href="/search/physics?searchtype=author&amp;query=Okamoto%2C+K">K. Okamoto</a> , et al. (281 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.08609v2-abstract-short" style="display: inline;"> We present the development of neutron-tagging techniques in Super-Kamiokande IV using a neural network analysis. The detection efficiency of neutron capture on hydrogen is estimated to be 26%, with a mis-tag rate of 0.016 per neutrino event. The uncertainty of the tagging efficiency is estimated to be 9.0%. Measurement of the tagging efficiency with data from an Americium-Beryllium calibration agr&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.08609v2-abstract-full').style.display = 'inline'; document.getElementById('2209.08609v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.08609v2-abstract-full" style="display: none;"> We present the development of neutron-tagging techniques in Super-Kamiokande IV using a neural network analysis. The detection efficiency of neutron capture on hydrogen is estimated to be 26%, with a mis-tag rate of 0.016 per neutrino event. The uncertainty of the tagging efficiency is estimated to be 9.0%. Measurement of the tagging efficiency with data from an Americium-Beryllium calibration agrees with this value within 10%. The tagging procedure was performed on 3,244.4 days of SK-IV atmospheric neutrino data, identifying 18,091 neutrons in 26,473 neutrino events. The fitted neutron capture lifetime was measured as 218 \pm 9 渭s. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.08609v2-abstract-full').style.display = 'none'; document.getElementById('2209.08609v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> JINST 17 P10029 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.07829">arXiv:2209.07829</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2209.07829">pdf</a>, <a href="https://arxiv.org/format/2209.07829">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Biomolecules">q-bio.BM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acs.jpclett.2c02821">10.1021/acs.jpclett.2c02821 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Nonequilibrium Modeling of the Elementary Step in PDZ3 Allosteric Communication </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Ali%2C+A+A+A+I">Ahmed A. A. I. Ali</a>, <a href="/search/physics?searchtype=author&amp;query=Gulzar%2C+A">Adnan Gulzar</a>, <a href="/search/physics?searchtype=author&amp;query=Wolf%2C+S">Steffen Wolf</a>, <a href="/search/physics?searchtype=author&amp;query=Stock%2C+G">Gerhard Stock</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.07829v1-abstract-short" style="display: inline;"> While allostery is of paramount importance for protein signaling and regulation, the underlying dynamical process of allosteric communication is not well understood. PDZ3 domain represents a prime example of an allosteric single-domain protein, as it features a well-established long-range coupling between the C-terminal $伪_3$-helix and ligand binding. In an intriguing experiment, Hamm and coworker&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.07829v1-abstract-full').style.display = 'inline'; document.getElementById('2209.07829v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.07829v1-abstract-full" style="display: none;"> While allostery is of paramount importance for protein signaling and regulation, the underlying dynamical process of allosteric communication is not well understood. PDZ3 domain represents a prime example of an allosteric single-domain protein, as it features a well-established long-range coupling between the C-terminal $伪_3$-helix and ligand binding. In an intriguing experiment, Hamm and coworkers employed photoswitching of the $伪_3$-helix to initiate a conformational change of PDZ3 that propagates from the C-terminus to the bound ligand within 200 ns. Performing extensive nonequilibrium molecular dynamics simulations, the modeling of the experiment reproduces the measured timescales and reveals a detailed picture of the allosteric communication in PDZ3. In particular, a correlation analysis identifies a network of contacts connecting the $伪_3$-helix and the core of the protein, which move in a concerted manner. Representing a one-step process and involving direct $伪_3$-ligand contacts, this cooperative transition is considered as elementary step in the propagation of conformational change. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.07829v1-abstract-full').style.display = 'none'; document.getElementById('2209.07829v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> The Journal of Physical Chemistry Letters 13.42 (2022): 9862-9868 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2208.06864">arXiv:2208.06864</a> <span>&nbsp;&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Realizing Giant Spin-Selective Reflection based on a Chiral Meta-structure Operating in the Visible-Infrared Regime </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Ali%2C+A">Asif Ali</a>, <a href="/search/physics?searchtype=author&amp;query=Tahir%2C+S+R">Syeda Rida Tahir</a>, <a href="/search/physics?searchtype=author&amp;query=Adnan%2C+M">Muhammad Adnan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2208.06864v2-abstract-short" style="display: inline;"> The spin-selective reflection to introduce chirality which can have a lot of applications in real life such as spectroscopy, optical setups, media industry etc. In this paper, a reflection based metasurface proposed to introduce the giant chiroptical effects at broadband visible and infrared (IR) regimes. The optimization and results of basic unit also termed as nanostructure are demonstrated here&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.06864v2-abstract-full').style.display = 'inline'; document.getElementById('2208.06864v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2208.06864v2-abstract-full" style="display: none;"> The spin-selective reflection to introduce chirality which can have a lot of applications in real life such as spectroscopy, optical setups, media industry etc. In this paper, a reflection based metasurface proposed to introduce the giant chiroptical effects at broadband visible and infrared (IR) regimes. The optimization and results of basic unit also termed as nanostructure are demonstrated here. The reflectance at the optimal parameters for the proposed nanostructure shows the inclusion of multiband giant chiroptical effects in reflection mode. The results show that this metasurface can elicit large spin-selective reflection coefficients with moderate chirality covering the broadband wavelength. The circular dichroism in the visible and IR regime shows its potential applicability for a lot of applications in our daily life. This work also provides a new approach to achieve giant Spin Hall Effect at broadband wavelength ranges with low loss. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.06864v2-abstract-full').style.display = 'none'; document.getElementById('2208.06864v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">addition of essential technical content</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2208.00836">arXiv:2208.00836</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2208.00836">pdf</a>, <a href="https://arxiv.org/format/2208.00836">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Signal Processing">eess.SP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1109/JLT.2022.3209092">10.1109/JLT.2022.3209092 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Enhanced Atmospheric Turbulence Resiliency with Successive Interference Cancellation DSP in Mode Division Multiplexing Free-Space Optical Links </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Li%2C+Y">Yiming Li</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Z">Zhaozhong Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Hu%2C+Z">Zhouyi Hu</a>, <a href="/search/physics?searchtype=author&amp;query=Benton%2C+D+M">David M. Benton</a>, <a href="/search/physics?searchtype=author&amp;query=Ali%2C+A+A+I">Abdallah A. I. Ali</a>, <a href="/search/physics?searchtype=author&amp;query=Patel%2C+M">Mohammed Patel</a>, <a href="/search/physics?searchtype=author&amp;query=Lavery%2C+M+P+J">Martin P. J. Lavery</a>, <a href="/search/physics?searchtype=author&amp;query=Ellis%2C+A+D">Andrew D. Ellis</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2208.00836v1-abstract-short" style="display: inline;"> We experimentally demonstrate the enhanced atmospheric turbulence resiliency in a 137.8 Gbit/s/mode mode-division multiplexing free-space optical communication link through the application of a successive interference cancellation digital signal processing algorithm. The turbulence resiliency is further enhanced through redundant receive channels in the mode-division multiplexing link. The proof o&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.00836v1-abstract-full').style.display = 'inline'; document.getElementById('2208.00836v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2208.00836v1-abstract-full" style="display: none;"> We experimentally demonstrate the enhanced atmospheric turbulence resiliency in a 137.8 Gbit/s/mode mode-division multiplexing free-space optical communication link through the application of a successive interference cancellation digital signal processing algorithm. The turbulence resiliency is further enhanced through redundant receive channels in the mode-division multiplexing link. The proof of concept demonstration is performed using commercially available mode-selective photonic lanterns, a commercial transponder, and a spatial light modulator based turbulence emulator. In this link, 5 spatial modes with each mode carrying 34.46 GBaud dual-polarization quadrature phase shift keying signals are successfully transmitted with an average bit error rate lower than the hard-decision forward error correction limit. As a result, we achieved a record-high mode- and polarization-division multiplexing channel number of 10, a record-high line rate of 689.23 Gbit/s, and a record-high net spectral efficiency of 13.9 bit/s/Hz in emulated turbulent links in a mode-division multiplexing free-space optical system. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.00836v1-abstract-full').style.display = 'none'; document.getElementById('2208.00836v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2207.12982">arXiv:2207.12982</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2207.12982">pdf</a>, <a href="https://arxiv.org/format/2207.12982">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> Scintillator ageing of the T2K near detectors from 2010 to 2021 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=The+T2K+Collaboration"> The T2K Collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Abe%2C+K">K. Abe</a>, <a href="/search/physics?searchtype=author&amp;query=Akhlaq%2C+N">N. Akhlaq</a>, <a href="/search/physics?searchtype=author&amp;query=Akutsu%2C+R">R. Akutsu</a>, <a href="/search/physics?searchtype=author&amp;query=Ali%2C+A">A. Ali</a>, <a href="/search/physics?searchtype=author&amp;query=Alt%2C+C">C. Alt</a>, <a href="/search/physics?searchtype=author&amp;query=Andreopoulos%2C+C">C. Andreopoulos</a>, <a href="/search/physics?searchtype=author&amp;query=Antonova%2C+M">M. Antonova</a>, <a href="/search/physics?searchtype=author&amp;query=Aoki%2C+S">S. Aoki</a>, <a href="/search/physics?searchtype=author&amp;query=Arihara%2C+T">T. Arihara</a>, <a href="/search/physics?searchtype=author&amp;query=Asada%2C+Y">Y. Asada</a>, <a href="/search/physics?searchtype=author&amp;query=Ashida%2C+Y">Y. Ashida</a>, <a href="/search/physics?searchtype=author&amp;query=Atkin%2C+E+T">E. T. Atkin</a>, <a href="/search/physics?searchtype=author&amp;query=Ban%2C+S">S. Ban</a>, <a href="/search/physics?searchtype=author&amp;query=Barbi%2C+M">M. Barbi</a>, <a href="/search/physics?searchtype=author&amp;query=Barker%2C+G+J">G. J. Barker</a>, <a href="/search/physics?searchtype=author&amp;query=Barr%2C+G">G. Barr</a>, <a href="/search/physics?searchtype=author&amp;query=Barrow%2C+D">D. Barrow</a>, <a href="/search/physics?searchtype=author&amp;query=Batkiewicz-Kwasniak%2C+M">M. Batkiewicz-Kwasniak</a>, <a href="/search/physics?searchtype=author&amp;query=Bench%2C+F">F. Bench</a>, <a href="/search/physics?searchtype=author&amp;query=Berardi%2C+V">V. Berardi</a>, <a href="/search/physics?searchtype=author&amp;query=Berns%2C+L">L. Berns</a>, <a href="/search/physics?searchtype=author&amp;query=Bhadra%2C+S">S. Bhadra</a>, <a href="/search/physics?searchtype=author&amp;query=Blanchet%2C+A">A. Blanchet</a>, <a href="/search/physics?searchtype=author&amp;query=Blondel%2C+A">A. Blondel</a> , et al. (333 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2207.12982v1-abstract-short" style="display: inline;"> The T2K experiment widely uses plastic scintillator as a target for neutrino interactions and an active medium for the measurement of charged particles produced in neutrino interactions at its near detector complex. Over 10 years of operation the measured light yield recorded by the scintillator based subsystems has been observed to degrade by 0.9--2.2\% per year. Extrapolation of the degradation&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.12982v1-abstract-full').style.display = 'inline'; document.getElementById('2207.12982v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2207.12982v1-abstract-full" style="display: none;"> The T2K experiment widely uses plastic scintillator as a target for neutrino interactions and an active medium for the measurement of charged particles produced in neutrino interactions at its near detector complex. Over 10 years of operation the measured light yield recorded by the scintillator based subsystems has been observed to degrade by 0.9--2.2\% per year. Extrapolation of the degradation rate through to 2040 indicates the recorded light yield should remain above the lower threshold used by the current reconstruction algorithms for all subsystems. This will allow the near detectors to continue contributing to important physics measurements during the T2K-II and Hyper-Kamiokande eras. Additionally, work to disentangle the degradation of the plastic scintillator and wavelength shifting fibres shows that the reduction in light yield can be attributed to the ageing of the plastic scintillator. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.12982v1-abstract-full').style.display = 'none'; document.getElementById('2207.12982v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">29 pages, 18 figures. Prepared for submission to JINST</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2207.06496">arXiv:2207.06496</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2207.06496">pdf</a>, <a href="https://arxiv.org/format/2207.06496">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Precision Measurements of the PMNS Parameters with T2K Data </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Ali%2C+A">Ajmi Ali</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2207.06496v1-abstract-short" style="display: inline;"> T2K is a long baseline neutrino experiment which exploits a neutrino and antineutrino beam at JPARC to perform precision measurements of neutrino oscillation parameters $螖{\rm m}^2_{\rm 32}$, $\sin^2 胃_{23}$ (besides the CP-violating phase $未_{\rm CP}$). The latest results for the measurement of PMNS parameters in the disappearance mode are presented here, highlighting the main systematic uncertai&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.06496v1-abstract-full').style.display = 'inline'; document.getElementById('2207.06496v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2207.06496v1-abstract-full" style="display: none;"> T2K is a long baseline neutrino experiment which exploits a neutrino and antineutrino beam at JPARC to perform precision measurements of neutrino oscillation parameters $螖{\rm m}^2_{\rm 32}$, $\sin^2 胃_{23}$ (besides the CP-violating phase $未_{\rm CP}$). The latest results for the measurement of PMNS parameters in the disappearance mode are presented here, highlighting the main systematic uncertainties limiting the precision. The future strategy to improve the precision on the measurement of PMNS parameters are also discussed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.06496v1-abstract-full').style.display = 'none'; document.getElementById('2207.06496v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2205.14009">arXiv:2205.14009</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2205.14009">pdf</a>, <a href="https://arxiv.org/format/2205.14009">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="General Physics">physics.gen-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.physletb.2022.137182">10.1016/j.physletb.2022.137182 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Universality of minimal length </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Ali%2C+A+F">Ahmed Farag Ali</a>, <a href="/search/physics?searchtype=author&amp;query=Elmashad%2C+I">Ibrahim Elmashad</a>, <a href="/search/physics?searchtype=author&amp;query=Mureika%2C+J">Jonas Mureika</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2205.14009v2-abstract-short" style="display: inline;"> We present an argument reinterpreting the generalized uncertainty principle (GUP) and its associated minimal length as an effective variation of Planck constant ($\hbar$), complementing Dirac&#39;s large number hypothesis of varying $G$. We argue that the charge radii (i.e. the minimal length of a scattering process) of hadrons/nuclei along with their corresponding masses support an existence of an ef&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.14009v2-abstract-full').style.display = 'inline'; document.getElementById('2205.14009v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2205.14009v2-abstract-full" style="display: none;"> We present an argument reinterpreting the generalized uncertainty principle (GUP) and its associated minimal length as an effective variation of Planck constant ($\hbar$), complementing Dirac&#39;s large number hypothesis of varying $G$. We argue that the charge radii (i.e. the minimal length of a scattering process) of hadrons/nuclei along with their corresponding masses support an existence of an effective variation of $\hbar$. This suggests a universality of a minimal length in measurement of scattering process. Varying $\hbar$ and $G$ explains the necessity of Von Neumann entropy correction in Bekenstein-Hawking entropy-area law. Lastly, we suggest that the effective value of $\hbar$ derived from various elements may be related to the epoch of their creation via nucleosynthesis. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.14009v2-abstract-full').style.display = 'none'; document.getElementById('2205.14009v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, revtex4-2, 5 figures, 1 table, references added, added journal reference</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys.Lett.B 831 (2022) 137182 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2205.11382">arXiv:2205.11382</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2205.11382">pdf</a>, <a href="https://arxiv.org/format/2205.11382">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1742-6596/2374/1/012009">10.1088/1742-6596/2374/1/012009 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Initial performance of the GlueX DIRC detector </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Ali%2C+A">A. Ali</a>, <a href="/search/physics?searchtype=author&amp;query=Barbosa%2C+F">F. Barbosa</a>, <a href="/search/physics?searchtype=author&amp;query=Bessuille%2C+J">J. Bessuille</a>, <a href="/search/physics?searchtype=author&amp;query=Chudakov%2C+E">E. Chudakov</a>, <a href="/search/physics?searchtype=author&amp;query=Dzhygadlo%2C+R">R. Dzhygadlo</a>, <a href="/search/physics?searchtype=author&amp;query=Fanelli%2C+C">C. Fanelli</a>, <a href="/search/physics?searchtype=author&amp;query=Frye%2C+J">J. Frye</a>, <a href="/search/physics?searchtype=author&amp;query=Hardin%2C+J">J. Hardin</a>, <a href="/search/physics?searchtype=author&amp;query=Hurley%2C+A">A. Hurley</a>, <a href="/search/physics?searchtype=author&amp;query=Ihloff%2C+E">E. Ihloff</a>, <a href="/search/physics?searchtype=author&amp;query=Kalicy%2C+G">G. Kalicy</a>, <a href="/search/physics?searchtype=author&amp;query=Kelsey%2C+J">J. Kelsey</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+W+B">W. B. Li</a>, <a href="/search/physics?searchtype=author&amp;query=Patsyuk%2C+M">M. Patsyuk</a>, <a href="/search/physics?searchtype=author&amp;query=Schwiening%2C+J">J. Schwiening</a>, <a href="/search/physics?searchtype=author&amp;query=Shepherd%2C+M">M. Shepherd</a>, <a href="/search/physics?searchtype=author&amp;query=Stevens%2C+J+R">J. R. Stevens</a>, <a href="/search/physics?searchtype=author&amp;query=Whitlatch%2C+T">T. Whitlatch</a>, <a href="/search/physics?searchtype=author&amp;query=Williams%2C+M">M. Williams</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+Y">Y. Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2205.11382v1-abstract-short" style="display: inline;"> The GlueX experiment at Jefferson Laboratory aims to perform quantitative tests of non-perturbative QCD by studying the spectrum of light-quark mesons and baryons. A Detector of Internally Reflected Cherenkov light (DIRC) was installed to enhance the particle identification (PID) capability of the GlueX experiment by providing clean $蟺$/K separation up to 3.7 GeV/$c$ momentum in the forward region&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.11382v1-abstract-full').style.display = 'inline'; document.getElementById('2205.11382v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2205.11382v1-abstract-full" style="display: none;"> The GlueX experiment at Jefferson Laboratory aims to perform quantitative tests of non-perturbative QCD by studying the spectrum of light-quark mesons and baryons. A Detector of Internally Reflected Cherenkov light (DIRC) was installed to enhance the particle identification (PID) capability of the GlueX experiment by providing clean $蟺$/K separation up to 3.7 GeV/$c$ momentum in the forward region ($胃&lt;11^{\circ}$), which will allow the study of hybrid mesons decaying into kaon final states with significantly higher efficiency and purity. The new PID system is constructed with radiators from the decommissioned BaBar DIRC counter, combined with new compact photon cameras based on the SuperB FDIRC concept. The full system was successfully installed and commissioned with beam during 2019/2020. The initial PID performance of the system was evaluated and compared to one from Geant4 simulation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.11382v1-abstract-full').style.display = 'none'; document.getElementById('2205.11382v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">International Conference on Technology and Instrumentation in Particle Physics 2021, 5 pages</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2205.09881">arXiv:2205.09881</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2205.09881">pdf</a>, <a href="https://arxiv.org/format/2205.09881">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/ac7f9c">10.3847/1538-4357/ac7f9c <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Pre-Supernova Alert System for Super-Kamiokande </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Collaboration%2C+S">Super-Kamiokande Collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=%3A"> :</a>, <a href="/search/physics?searchtype=author&amp;query=Machado%2C+L+N">L. N. Machado</a>, <a href="/search/physics?searchtype=author&amp;query=Abe%2C+K">K. Abe</a>, <a href="/search/physics?searchtype=author&amp;query=Hayato%2C+Y">Y. Hayato</a>, <a href="/search/physics?searchtype=author&amp;query=Hiraide%2C+K">K. Hiraide</a>, <a href="/search/physics?searchtype=author&amp;query=Ieki%2C+K">K. Ieki</a>, <a href="/search/physics?searchtype=author&amp;query=Ikeda%2C+M">M. Ikeda</a>, <a href="/search/physics?searchtype=author&amp;query=Kameda%2C+J">J. Kameda</a>, <a href="/search/physics?searchtype=author&amp;query=Kanemura%2C+Y">Y. Kanemura</a>, <a href="/search/physics?searchtype=author&amp;query=Kaneshima%2C+R">R. Kaneshima</a>, <a href="/search/physics?searchtype=author&amp;query=Kashiwagi%2C+Y">Y. Kashiwagi</a>, <a href="/search/physics?searchtype=author&amp;query=Kataoka%2C+Y">Y. Kataoka</a>, <a href="/search/physics?searchtype=author&amp;query=Miki%2C+S">S. Miki</a>, <a href="/search/physics?searchtype=author&amp;query=Mine%2C+S">S. Mine</a>, <a href="/search/physics?searchtype=author&amp;query=Miura%2C+M">M. Miura</a>, <a href="/search/physics?searchtype=author&amp;query=Moriyama%2C+S">S. Moriyama</a>, <a href="/search/physics?searchtype=author&amp;query=Nakano%2C+Y">Y. Nakano</a>, <a href="/search/physics?searchtype=author&amp;query=Nakahata%2C+M">M. Nakahata</a>, <a href="/search/physics?searchtype=author&amp;query=Nakayama%2C+S">S. Nakayama</a>, <a href="/search/physics?searchtype=author&amp;query=Noguchi%2C+Y">Y. Noguchi</a>, <a href="/search/physics?searchtype=author&amp;query=Okamoto%2C+K">K. Okamoto</a>, <a href="/search/physics?searchtype=author&amp;query=Sato%2C+K">K. Sato</a>, <a href="/search/physics?searchtype=author&amp;query=Sekiya%2C+H">H. Sekiya</a>, <a href="/search/physics?searchtype=author&amp;query=Shiba%2C+H">H. Shiba</a> , et al. (202 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2205.09881v2-abstract-short" style="display: inline;"> In 2020, the Super-Kamiokande (SK) experiment moved to a new stage (SK-Gd) in which gadolinium (Gd) sulfate octahydrate was added to the water in the detector, enhancing the efficiency to detect thermal neutrons and consequently improving the sensitivity to low energy electron anti-neutrinos from inverse beta decay (IBD) interactions. SK-Gd has the potential to provide early alerts of incipient co&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.09881v2-abstract-full').style.display = 'inline'; document.getElementById('2205.09881v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2205.09881v2-abstract-full" style="display: none;"> In 2020, the Super-Kamiokande (SK) experiment moved to a new stage (SK-Gd) in which gadolinium (Gd) sulfate octahydrate was added to the water in the detector, enhancing the efficiency to detect thermal neutrons and consequently improving the sensitivity to low energy electron anti-neutrinos from inverse beta decay (IBD) interactions. SK-Gd has the potential to provide early alerts of incipient core-collapse supernovae through detection of electron anti-neutrinos from thermal and nuclear processes responsible for the cooling of massive stars before the gravitational collapse of their cores. These pre-supernova neutrinos emitted during the silicon burning phase can exceed the energy threshold for IBD reactions. We present the sensitivity of SK-Gd to pre-supernova stars and the techniques used for the development of a pre-supernova alarm based on the detection of these neutrinos in SK, as well as prospects for future SK-Gd phases with higher concentrations of Gd. For the current SK-Gd phase, high-confidence alerts for Betelgeuse could be issued up to nine hours in advance of the core-collapse itself. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.09881v2-abstract-full').style.display = 'none'; document.getElementById('2205.09881v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> The Astrophysical Journal, Volume 935, Number 1 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.11699">arXiv:2203.11699</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2203.11699">pdf</a>, <a href="https://arxiv.org/ps/2203.11699">ps</a>, <a href="https://arxiv.org/format/2203.11699">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="General Physics">physics.gen-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1142/S0217751X23500999">10.1142/S0217751X23500999 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Lorentz and gauge invariance of quantum space </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Ali%2C+A+F">Ahmed Farag Ali</a>, <a href="/search/physics?searchtype=author&amp;query=Majumder%2C+B">Barun Majumder</a>, <a href="/search/physics?searchtype=author&amp;query=Rudra%2C+P">Prabir Rudra</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.11699v2-abstract-short" style="display: inline;"> Motivated by generalized uncertainty principle, we derive a discrete picture of the space that respects Lorentz symmetry as well as gauge symmetry through setting an equivalency between linear GUP correction term and electromagnetic interaction term in Dirac equation. We derived a wavefunction solution that satisfies this equivalency. This discreteness may explain the crystal and quasicrystal stru&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.11699v2-abstract-full').style.display = 'inline'; document.getElementById('2203.11699v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.11699v2-abstract-full" style="display: none;"> Motivated by generalized uncertainty principle, we derive a discrete picture of the space that respects Lorentz symmetry as well as gauge symmetry through setting an equivalency between linear GUP correction term and electromagnetic interaction term in Dirac equation. We derived a wavefunction solution that satisfies this equivalency. This discreteness may explain the crystal and quasicrystal structures observed in nature at different energy scales. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.11699v2-abstract-full').style.display = 'none'; document.getElementById('2203.11699v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 2 figures, Accepted for Publication in International Journal of Modern Physics A</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Int.J.Mod.Phys.A 38 (2023) 18n19, 2350099 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.02428">arXiv:2203.02428</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2203.02428">pdf</a>, <a href="https://arxiv.org/format/2203.02428">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Pattern Formation and Solitons">nlin.PS</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Exactly Solvable and Integrable Systems">nlin.SI</span> </div> </div> <p class="title is-5 mathjax"> Stabilization of light bullets in nonlinear metamaterial waveguides </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Ali%2C+A+K+S">A. K. Shafeeque Ali</a>, <a href="/search/physics?searchtype=author&amp;query=Govindarajan%2C+A">A. Govindarajan</a>, <a href="/search/physics?searchtype=author&amp;query=Lakshmanan%2C+M">M. Lakshmanan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.02428v1-abstract-short" style="display: inline;"> In this paper, we carry out a theoretical investigation on the propagation of spatio-temporal solitons (light bullets) in the nonlinear metamaterial waveguides. Our theoretical study is based on the formulation of Lagrangian variational analysis with a suitable ansatz followed by a split-step Fourier method in confirming the outcomes former numerically. A particular emphasis is given to obtain the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.02428v1-abstract-full').style.display = 'inline'; document.getElementById('2203.02428v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.02428v1-abstract-full" style="display: none;"> In this paper, we carry out a theoretical investigation on the propagation of spatio-temporal solitons (light bullets) in the nonlinear metamaterial waveguides. Our theoretical study is based on the formulation of Lagrangian variational analysis with a suitable ansatz followed by a split-step Fourier method in confirming the outcomes former numerically. A particular emphasis is given to obtain the conditions on the system parameters for stable dynamics in negative as well as positive index regimes of metamaterial waveguides. Similar to the conventional medium, the three-dimensional (3D) light bullets are highly unstable in metamaterials with the Kerr type nonlinearity alone. However, in the negative index regime of metamaterials, stable propagation of light bullets may occur in the normal dispersion regime balancing with defocusing cubic nonlinearity and focusing quintic nonlinearity. As in the conventional case, the stable dynamics is also observed in the case of anomalous dispersion with focusing cubic nonlinearity and defocusing quintic nonlinearity in the positive index regime. To test the solitonic nature of the 3D light bullets in the metamaterials, we also numerically investigate the collision dynamics of two light bullets. The study shows that the spatio-temporal soliton propagates without any change except perhaps some phase shift after a collision with another spatio-temporal soliton in competing cubic and quintic nonlinear metamaterials. The improper balancing between the linear and nonlinear effects results to form the bullet molecules in a distorted form with a large amount of energy after interaction and in the long run, oscillations of the light bullets grow and the bullets become filaments. We have observed the same collision dynamics in both the negative and positive refractive index regimes of the metamaterial. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.02428v1-abstract-full').style.display = 'none'; document.getElementById('2203.02428v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in Phys. Rev. A</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.02251">arXiv:2203.02251</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2203.02251">pdf</a>, <a href="https://arxiv.org/format/2203.02251">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.105.205411">10.1103/PhysRevB.105.205411 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Indirect Mechanism of Au adatom Diffusion on the Si(100) Surface </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Pe%C3%B1a-Torres%2C+A">Alejandro Pe帽a-Torres</a>, <a href="/search/physics?searchtype=author&amp;query=Ali%2C+A">Abid Ali</a>, <a href="/search/physics?searchtype=author&amp;query=Stamatakis%2C+M">Michail Stamatakis</a>, <a href="/search/physics?searchtype=author&amp;query=J%C3%B3nsson%2C+H">Hannes J贸nsson</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.02251v1-abstract-short" style="display: inline;"> Calculations of the diffusion of a Au adatom on the dimer reconstructed Si(100)-2x1 surface reveal an interesting mechanism that differs significantly from a direct path between optimal binding sites, which are located in between dimer rows. Instead, the active diffusion mechanism involves promotion of the adatom to higher energy sites on top of a dimer row and then fast migration along the row, v&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.02251v1-abstract-full').style.display = 'inline'; document.getElementById('2203.02251v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.02251v1-abstract-full" style="display: none;"> Calculations of the diffusion of a Au adatom on the dimer reconstructed Si(100)-2x1 surface reveal an interesting mechanism that differs significantly from a direct path between optimal binding sites, which are located in between dimer rows. Instead, the active diffusion mechanism involves promotion of the adatom to higher energy sites on top of a dimer row and then fast migration along the row, visiting ca. a hundred sites at room temperature, before falling back down into an optimal binding site. This top-of-row mechanism becomes more important the lower the temperature is. The calculations are carried out by finding minimum energy paths on the energy surface obtained from density functional theory within the PBEsol functional approximation followed by kinetic Monte Carlo simulations of the diffusion over a range of temperature from 200 K to 900 K. While the activation energy for the direct diffusion mechanism is calculated to be 0.84 eV, the effective activation energy for the indirect mechanism is on average 0.56 eV. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.02251v1-abstract-full').style.display = 'none'; document.getElementById('2203.02251v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2202.00672">arXiv:2202.00672</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2202.00672">pdf</a>, <a href="https://arxiv.org/ps/2202.00672">ps</a>, <a href="https://arxiv.org/format/2202.00672">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Classical Physics">physics.class-ph</span> </div> </div> <p class="title is-5 mathjax"> Relation Between the Partial Derivatives of the Kinetic Energy in the Lagrangian and Hamiltonian Formalisms of Dynamics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Ali%2C+A">Asghar Ali</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2202.00672v2-abstract-short" style="display: inline;"> The partial derivative of the kinetic energy of a dynamical system with respect to a generalized coordinate as it appears in the Lagrangian formalism is not equal to the derivative of the kinetic energy with respect to the same coordinate in the Hamiltonian formalism but differs by a sign. We find another exact relation between the two partial derivatives in the case of a conservative system. We a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.00672v2-abstract-full').style.display = 'inline'; document.getElementById('2202.00672v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2202.00672v2-abstract-full" style="display: none;"> The partial derivative of the kinetic energy of a dynamical system with respect to a generalized coordinate as it appears in the Lagrangian formalism is not equal to the derivative of the kinetic energy with respect to the same coordinate in the Hamiltonian formalism but differs by a sign. We find another exact relation between the two partial derivatives in the case of a conservative system. We also identify another form of kinetic energy whose partial derivative with respect to a generalized coordinate vanishes identically. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.00672v2-abstract-full').style.display = 'none'; document.getElementById('2202.00672v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2201.10834">arXiv:2201.10834</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2201.10834">pdf</a>, <a href="https://arxiv.org/format/2201.10834">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1742-6596/2374/1/012119">10.1088/1742-6596/2374/1/012119 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> PANDA Barrel DIRC: From Design to Component Production </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Schepers%2C+G">G Schepers</a>, <a href="/search/physics?searchtype=author&amp;query=Belias%2C+A">A Belias</a>, <a href="/search/physics?searchtype=author&amp;query=Dzhygadlo%2C+R">R Dzhygadlo</a>, <a href="/search/physics?searchtype=author&amp;query=Gerhardt%2C+A">A Gerhardt</a>, <a href="/search/physics?searchtype=author&amp;query=Lehmann%2C+D">D Lehmann</a>, <a href="/search/physics?searchtype=author&amp;query=Peters%2C+K">K Peters</a>, <a href="/search/physics?searchtype=author&amp;query=Schwarz%2C+C">C Schwarz</a>, <a href="/search/physics?searchtype=author&amp;query=Schwiening%2C+J">J Schwiening</a>, <a href="/search/physics?searchtype=author&amp;query=Traxler%2C+M">M Traxler</a>, <a href="/search/physics?searchtype=author&amp;query=Schmitt%2C+L">L Schmitt</a>, <a href="/search/physics?searchtype=author&amp;query=B%7F%C3%B6hm%2C+M">M B枚hm</a>, <a href="/search/physics?searchtype=author&amp;query=Krauss%2C+S">S Krauss</a>, <a href="/search/physics?searchtype=author&amp;query=Lehmann%2C+A">A Lehmann</a>, <a href="/search/physics?searchtype=author&amp;query=Miehling%2C+D">D Miehling</a>, <a href="/search/physics?searchtype=author&amp;query=Pfaffinger%2C+M">M Pfaffinger</a>, <a href="/search/physics?searchtype=author&amp;query=D%7F%C3%BCren%2C+M">M D眉ren</a>, <a href="/search/physics?searchtype=author&amp;query=Etzelm%7F%C3%BCller%2C+E">E Etzelm眉ller</a>, <a href="/search/physics?searchtype=author&amp;query=F%7F%C3%B6hl%2C+K">K F枚hl</a>, <a href="/search/physics?searchtype=author&amp;query=Hayrapetyan%2C+A">A Hayrapetyan</a>, <a href="/search/physics?searchtype=author&amp;query=K%7F%C3%B6seoglu%2C+I">I K枚seoglu</a>, <a href="/search/physics?searchtype=author&amp;query=Schmidt%2C+M">M Schmidt</a>, <a href="/search/physics?searchtype=author&amp;query=Wasem%2C+T">T Wasem</a>, <a href="/search/physics?searchtype=author&amp;query=Sfienti%2C+C">C Sfienti</a>, <a href="/search/physics?searchtype=author&amp;query=Ali%2C+A">A Ali</a>, <a href="/search/physics?searchtype=author&amp;query=Barnyakov%2C+A">A Barnyakov</a> , et al. (3 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2201.10834v1-abstract-short" style="display: inline;"> Excellent particle identification (PID) will be essential for the PANDA experiment at FAIR. The Barrel DIRC will separate kaons and pions with at least 3 s.d. for momenta up to 3.5 GeV/c and polar angles between 22 and 140 deg. After successful validation of the final design in the CERN PS/T9 beam line, the tendering process for the two most time- and cost-intensive items, radiator bars and MCP-PM&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.10834v1-abstract-full').style.display = 'inline'; document.getElementById('2201.10834v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2201.10834v1-abstract-full" style="display: none;"> Excellent particle identification (PID) will be essential for the PANDA experiment at FAIR. The Barrel DIRC will separate kaons and pions with at least 3 s.d. for momenta up to 3.5 GeV/c and polar angles between 22 and 140 deg. After successful validation of the final design in the CERN PS/T9 beam line, the tendering process for the two most time- and cost-intensive items, radiator bars and MCP-PMTs, started in 2018. In Sep. 2019 Nikon was selected to build the fused silica bars and successfully completed the series production of 112 bars in Feb. 2021. Measurements of the mechanical quality of the bars were performed by Nikon and the optical quality was evaluated at GSI. In Dec. 2020, the contract for the fabrication of the MCP-PMTs was awarded to PHOTONIS and the delivery of the first-of-series MCP-PMTs is expected in July 2021. We present the design of the PANDA Barrel DIRC as well as the status of the component series production and the result of the quality assurance measurements. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.10834v1-abstract-full').style.display = 'none'; document.getElementById('2201.10834v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 5 figures, TIPP2021 TRIUMF Vancouver, Canada</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2109.00360">arXiv:2109.00360</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2109.00360">pdf</a>, <a href="https://arxiv.org/format/2109.00360">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nima.2021.166248">10.1016/j.nima.2021.166248 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> First Gadolinium Loading to Super-Kamiokande </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Abe%2C+K">K. Abe</a>, <a href="/search/physics?searchtype=author&amp;query=Bronner%2C+C">C. Bronner</a>, <a href="/search/physics?searchtype=author&amp;query=Hayato%2C+Y">Y. Hayato</a>, <a href="/search/physics?searchtype=author&amp;query=Hiraide%2C+K">K. Hiraide</a>, <a href="/search/physics?searchtype=author&amp;query=Ikeda%2C+M">M. Ikeda</a>, <a href="/search/physics?searchtype=author&amp;query=Imaizumi%2C+S">S. Imaizumi</a>, <a href="/search/physics?searchtype=author&amp;query=Kameda%2C+J">J. Kameda</a>, <a href="/search/physics?searchtype=author&amp;query=Kanemura%2C+Y">Y. Kanemura</a>, <a href="/search/physics?searchtype=author&amp;query=Kataoka%2C+Y">Y. Kataoka</a>, <a href="/search/physics?searchtype=author&amp;query=Miki%2C+S">S. Miki</a>, <a href="/search/physics?searchtype=author&amp;query=Miura%2C+M">M. Miura</a>, <a href="/search/physics?searchtype=author&amp;query=Moriyama%2C+S">S. Moriyama</a>, <a href="/search/physics?searchtype=author&amp;query=Nagao%2C+Y">Y. Nagao</a>, <a href="/search/physics?searchtype=author&amp;query=Nakahata%2C+M">M. Nakahata</a>, <a href="/search/physics?searchtype=author&amp;query=Nakayama%2C+S">S. Nakayama</a>, <a href="/search/physics?searchtype=author&amp;query=Okada%2C+T">T. Okada</a>, <a href="/search/physics?searchtype=author&amp;query=Okamoto%2C+K">K. Okamoto</a>, <a href="/search/physics?searchtype=author&amp;query=Orii%2C+A">A. Orii</a>, <a href="/search/physics?searchtype=author&amp;query=Pronost%2C+G">G. Pronost</a>, <a href="/search/physics?searchtype=author&amp;query=Sekiya%2C+H">H. Sekiya</a>, <a href="/search/physics?searchtype=author&amp;query=Shiozawa%2C+M">M. Shiozawa</a>, <a href="/search/physics?searchtype=author&amp;query=Sonoda%2C+Y">Y. Sonoda</a>, <a href="/search/physics?searchtype=author&amp;query=Suzuki%2C+Y">Y. Suzuki</a>, <a href="/search/physics?searchtype=author&amp;query=Takeda%2C+A">A. Takeda</a>, <a href="/search/physics?searchtype=author&amp;query=Takemoto%2C+Y">Y. Takemoto</a> , et al. (192 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2109.00360v3-abstract-short" style="display: inline;"> In order to improve Super-Kamiokande&#39;s neutron detection efficiency and to thereby increase its sensitivity to the diffuse supernova neutrino background flux, 13 tons of $\rm Gd_2(\rm SO_4)_3\cdot \rm 8H_2O$ (gadolinium sulfate octahydrate) was dissolved into the detector&#39;s otherwise ultrapure water from July 14 to August 17, 2020, marking the start of the SK-Gd phase of operations. During the loa&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.00360v3-abstract-full').style.display = 'inline'; document.getElementById('2109.00360v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2109.00360v3-abstract-full" style="display: none;"> In order to improve Super-Kamiokande&#39;s neutron detection efficiency and to thereby increase its sensitivity to the diffuse supernova neutrino background flux, 13 tons of $\rm Gd_2(\rm SO_4)_3\cdot \rm 8H_2O$ (gadolinium sulfate octahydrate) was dissolved into the detector&#39;s otherwise ultrapure water from July 14 to August 17, 2020, marking the start of the SK-Gd phase of operations. During the loading, water was continuously recirculated at a rate of 60 m$^3$/h, extracting water from the top of the detector and mixing it with concentrated $\rm Gd_2(\rm SO_4)_3\cdot \rm 8H_2O$ solution to create a 0.02% solution of the Gd compound before injecting it into the bottom of the detector. A clear boundary between the Gd-loaded and pure water was maintained through the loading, enabling monitoring of the loading itself and the spatial uniformity of the Gd concentration over the 35 days it took to reach the top of the detector. During the subsequent commissioning the recirculation rate was increased to 120 m$^3$/h, resulting in a constant and uniform distribution of Gd throughout the detector and water transparency equivalent to that of previous pure-water operation periods. Using an Am-Be neutron calibration source the mean neutron capture time was measured to be $115\pm1$ $渭$s, which corresponds to a Gd concentration of $111\pm2$ ppm, as expected for this level of Gd loading. This paper describes changes made to the water circulation system for this detector upgrade, the Gd loading procedure, detector commissioning, and the first neutron calibration measurements in SK-Gd. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.00360v3-abstract-full').style.display = 'none'; document.getElementById('2109.00360v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">37 pages, 19 Figures, Accepted for publication in Nucl. Instrum. Meth. A</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nuclear Inst. and Methods in Physics Research, A 1027 (2022) 166248 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2108.06668">arXiv:2108.06668</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2108.06668">pdf</a>, <a href="https://arxiv.org/format/2108.06668">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/2058-6272/ac3563">10.1088/2058-6272/ac3563 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Viscous effects on plasmoid formation from nonlinear resistive tearing growth in a Harris sheet </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Ahmad%2C+N">Nisar Ahmad</a>, <a href="/search/physics?searchtype=author&amp;query=Zhu%2C+P">Ping Zhu</a>, <a href="/search/physics?searchtype=author&amp;query=Ali%2C+A">Ahmad Ali</a>, <a href="/search/physics?searchtype=author&amp;query=Zeng%2C+S">Shiyong Zeng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2108.06668v1-abstract-short" style="display: inline;"> In this study, the evolution of a highly unstable m = 1 resistive tearing mode, leading to plasmoid formation in a Harris sheet is studied in the framework of full MHD model using the NIMROD simulation. Following the initial nonlinear growth of the primary m = 1 island, the X-point develops into a secondary elongated current sheet that eventually breaks into plasmoids. Two distinctive viscous regi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.06668v1-abstract-full').style.display = 'inline'; document.getElementById('2108.06668v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2108.06668v1-abstract-full" style="display: none;"> In this study, the evolution of a highly unstable m = 1 resistive tearing mode, leading to plasmoid formation in a Harris sheet is studied in the framework of full MHD model using the NIMROD simulation. Following the initial nonlinear growth of the primary m = 1 island, the X-point develops into a secondary elongated current sheet that eventually breaks into plasmoids. Two distinctive viscous regimes are found for the plasmoid formation and saturation. In the low viscosity regime (i.e. P r . 1), the plasmoid width increases sharply with viscosity, whereas in the viscosity dominant regime (i.e. P r &amp; 1 ), the plasmoid size gradually decreases with viscosity. Such a finding quantifies the role of viscosity in modulating the plasmoid formation process through its effects on the plasma flow and the reconnection itself. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.06668v1-abstract-full').style.display = 'none'; document.getElementById('2108.06668v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 August, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2107.12097">arXiv:2107.12097</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2107.12097">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0064464">10.1063/5.0064464 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Helicity-selective Raman scattering from in-plane anisotropic 伪-MoO$_3$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Ali%2C+S+A">Shahzad Akhtar Ali</a>, <a href="/search/physics?searchtype=author&amp;query=Irfan%2C+A">Abdullah Irfan</a>, <a href="/search/physics?searchtype=author&amp;query=Mazumder%2C+A">Aishani Mazumder</a>, <a href="/search/physics?searchtype=author&amp;query=Balendhran%2C+S">Sivacarendran Balendhran</a>, <a href="/search/physics?searchtype=author&amp;query=Ahmed%2C+T">Taimur Ahmed</a>, <a href="/search/physics?searchtype=author&amp;query=Walia%2C+S">Sumeet Walia</a>, <a href="/search/physics?searchtype=author&amp;query=Ulhaq%2C+A">Ata Ulhaq</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2107.12097v2-abstract-short" style="display: inline;"> Hyperbolic crystals like 伪-MoO$_3$ can support large wavevectors and photon density as compared to the commonly used dielectric crystals, which makes them a highly desirable platform for compact photonic devices. The extreme anisotropy of the dielectric constant in these crystals is intricately linked with the anisotropic character of the phonons, which along with photon confinement leads to the r&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.12097v2-abstract-full').style.display = 'inline'; document.getElementById('2107.12097v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2107.12097v2-abstract-full" style="display: none;"> Hyperbolic crystals like 伪-MoO$_3$ can support large wavevectors and photon density as compared to the commonly used dielectric crystals, which makes them a highly desirable platform for compact photonic devices. The extreme anisotropy of the dielectric constant in these crystals is intricately linked with the anisotropic character of the phonons, which along with photon confinement leads to the rich physics of phonon polaritons. However, the chiral nature of phonons in these hyperbolic crystals have not been studied in detail. In this study, we report our observations of helicity selective Raman scattering from flakes of 伪-MoO$_3$. Both helicity-preserving and helicity-reversing Raman scattering are observed. We observe that helical selectivity is largely governed by the underlying crystal symmetry. This study shed light on the chiral character of the high symmetry phonons in these hyperbolic crystals. It paves the way for exploiting proposed schemes of coupling chiral phonon modes into propagating surface plasmon polaritons and for compact photonic circuits based on helical polarized light. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.12097v2-abstract-full').style.display = 'none'; document.getElementById('2107.12097v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">The following article has been submitted to Applied Physics Letters</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2107.04643">arXiv:2107.04643</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2107.04643">pdf</a>, <a href="https://arxiv.org/format/2107.04643">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="General Physics">physics.gen-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1142/S0217751X21501372">10.1142/S0217751X21501372 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Timeless state of gravity: Black hole universal clock </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Ali%2C+A+F">Ahmed Farag Ali</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2107.04643v2-abstract-short" style="display: inline;"> We investigate Rindler&#39;s frame measurements. From its perspective, we found a geometric/gravitational interpretation of speed of light, mass and uncertainty principle. This can be interpreted as measurements of a black hole universal clock. This lead to an emergence of a timeless state of gravity in a mathematically consistent way. In other words, space my be a frozen time. </span> <span class="abstract-full has-text-grey-dark mathjax" id="2107.04643v2-abstract-full" style="display: none;"> We investigate Rindler&#39;s frame measurements. From its perspective, we found a geometric/gravitational interpretation of speed of light, mass and uncertainty principle. This can be interpreted as measurements of a black hole universal clock. This lead to an emergence of a timeless state of gravity in a mathematically consistent way. In other words, space my be a frozen time. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.04643v2-abstract-full').style.display = 'none'; document.getElementById('2107.04643v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 2 figures, reference added</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Int.J.Mod.Phys.A (2021), 2150137 </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Ali%2C+A&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Ali%2C+A&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Ali%2C+A&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Ali%2C+A&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10