CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;24 of 24 results for author: <span class="mathjax">Collaboration, S</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/physics" aria-role="search"> Searching in archive <strong>physics</strong>. <a href="/search/?searchtype=author&amp;query=Collaboration%2C+S">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Collaboration, S"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Collaboration%2C+S&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Collaboration, S"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.05536">arXiv:2310.05536</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.05536">pdf</a>, <a href="https://arxiv.org/format/2310.05536">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Measurement of the muon flux at the SND@LHC experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Collaboration%2C+S">SND@LHC Collaboration</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.05536v2-abstract-short" style="display: inline;"> The Scattering and Neutrino Detector at the LHC (\SND) started taking data at the beginning of Run 3 of the LHC. The experiment is designed to perform measurements with neutrinos produced in proton-proton collisions at the LHC in an energy range between 100GeV and 1 TeV. It covers a previously unexplored pseudo-rapidity range of $7.2&lt;畏&lt;8.4$. The detector is located 480 m downstream of the ATLAS in&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.05536v2-abstract-full').style.display = 'inline'; document.getElementById('2310.05536v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.05536v2-abstract-full" style="display: none;"> The Scattering and Neutrino Detector at the LHC (\SND) started taking data at the beginning of Run 3 of the LHC. The experiment is designed to perform measurements with neutrinos produced in proton-proton collisions at the LHC in an energy range between 100GeV and 1 TeV. It covers a previously unexplored pseudo-rapidity range of $7.2&lt;畏&lt;8.4$. The detector is located 480 m downstream of the ATLAS interaction point in the TI18 tunnel. It comprises a veto system, a target consisting of tungsten plates interleaved with nuclear emulsion and scintillating fiber (SciFi) trackers, followed by a muon detector (UpStream, US and DownStream, DS). In this article we report the measurement of the muon flux in three subdetectors: the emulsion, the SciFi trackers and the DownStream Muon detector. The muon flux per integrated luminosity through an 18$\times$18 cm$^{2}$ area in the emulsion is $1.5 \pm 0.1(\textrm{stat}) \times 10^4\,\textrm{fb/cm}^{2}$. The muon flux per integrated luminosity through a 31$\times$31 cm$^{2}$ area in the centre of the SciFi is $2.06\pm0.01(\textrm{stat})\pm0.12(\textrm{sys}) \times 10^{4} \textrm{fb/cm}^{2}$. The muon flux per integrated luminosity through a 52$\times$52 cm$^{2}$ area in the centre of the downstream muon system is $2.35\pm0.01(\textrm{stat})\pm0.10(\textrm{sys}) \times 10^{4}\,\textrm{fb/cm}^{2}$. The total relative uncertainty of the measurements by the electronic detectors is 6 $\%$ for the SciFi and 4 $\%$ for the DS measurement. The Monte Carlo simulation prediction of these fluxes is 20-25 $\%$ lower than the measured values. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.05536v2-abstract-full').style.display = 'none'; document.getElementById('2310.05536v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 14 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.02224">arXiv:2308.02224</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2308.02224">pdf</a>, <a href="https://arxiv.org/format/2308.02224">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> </div> <p class="title is-5 mathjax"> Increasing the rate capability for the cryogenic stopping cell of the FRS Ion Catcher </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Zhao%2C+J+W">J. W. Zhao</a>, <a href="/search/physics?searchtype=author&amp;query=Amanbayev%2C+D">D. Amanbayev</a>, <a href="/search/physics?searchtype=author&amp;query=Dickel%2C+T">T. Dickel</a>, <a href="/search/physics?searchtype=author&amp;query=Miskun%2C+I">I. Miskun</a>, <a href="/search/physics?searchtype=author&amp;query=Plass%2C+W+R">W. R. Plass</a>, <a href="/search/physics?searchtype=author&amp;query=Tortorelli%2C+N">N. Tortorelli</a>, <a href="/search/physics?searchtype=author&amp;query=Andres%2C+S+A+S">S. Ayet San Andres</a>, <a href="/search/physics?searchtype=author&amp;query=Beck%2C+S">Soenke Beck</a>, <a href="/search/physics?searchtype=author&amp;query=Bergmann%2C+J">J. Bergmann</a>, <a href="/search/physics?searchtype=author&amp;query=Brencic%2C+Z">Z. Brencic</a>, <a href="/search/physics?searchtype=author&amp;query=Constantin%2C+P">P. Constantin</a>, <a href="/search/physics?searchtype=author&amp;query=Geissel%2C+H">H. Geissel</a>, <a href="/search/physics?searchtype=author&amp;query=Greiner%2C+F">F. Greiner</a>, <a href="/search/physics?searchtype=author&amp;query=Groef%2C+L">L. Groef</a>, <a href="/search/physics?searchtype=author&amp;query=Hornung%2C+C">C. Hornung</a>, <a href="/search/physics?searchtype=author&amp;query=Kuzminzuk%2C+N">N. Kuzminzuk</a>, <a href="/search/physics?searchtype=author&amp;query=Kripko-Koncz%2C+G">G. Kripko-Koncz</a>, <a href="/search/physics?searchtype=author&amp;query=Mardor%2C+I">I. Mardor</a>, <a href="/search/physics?searchtype=author&amp;query=Pohjalainen%2C+I">I. Pohjalainen</a>, <a href="/search/physics?searchtype=author&amp;query=Scheidenberger%2C+C">C. Scheidenberger</a>, <a href="/search/physics?searchtype=author&amp;query=Thirolf%2C+P+G">P. G. Thirolf</a>, <a href="/search/physics?searchtype=author&amp;query=Bagchi%2C+S">S. Bagchi</a>, <a href="/search/physics?searchtype=author&amp;query=Haettner%2C+E">E. Haettner</a>, <a href="/search/physics?searchtype=author&amp;query=Kazantseva%2C+E">E. Kazantseva</a>, <a href="/search/physics?searchtype=author&amp;query=Kostyleva%2C+D">D. Kostyleva</a> , et al. (23 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.02224v1-abstract-short" style="display: inline;"> At the FRS Ion Catcher (FRS-IC), projectile and fission fragments are produced at relativistic energies, separated in-flight, energy-bunched, slowed down, and thermalized in the ultra-pure helium gas-filled cryogenic stopping cell (CSC). Thermalized nuclei are extracted from the CSC using a combination of DC and RF electric fields and gas flow. This CSC also serves as the prototype CSC for the Sup&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.02224v1-abstract-full').style.display = 'inline'; document.getElementById('2308.02224v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.02224v1-abstract-full" style="display: none;"> At the FRS Ion Catcher (FRS-IC), projectile and fission fragments are produced at relativistic energies, separated in-flight, energy-bunched, slowed down, and thermalized in the ultra-pure helium gas-filled cryogenic stopping cell (CSC). Thermalized nuclei are extracted from the CSC using a combination of DC and RF electric fields and gas flow. This CSC also serves as the prototype CSC for the Super-FRS, where exotic nuclei will be produced at unprecedented rates making it possible to go towards the extremes of the nuclear chart. Therefore, it is essential to efficiently extract thermalized exotic nuclei from the CSC under high beam rate conditions, in order to use the rare exotic nuclei which come as cocktail beams. The extraction efficiency dependence on the intensity of the impinging beam into the CSC was studied with a primary beam of 238U and its fragments. Tests were done with two different versions of the DC electrode structure inside the cryogenic chamber, the standard 1 m long and a short 0.5 m long DC electrode. In contrast to the rate capability of 10^4 ions/s with the long DC electrode, results show no extraction efficiency loss up to the rate of 2x10^5 ions/s with the new short DC electrode. This order of magnitude increase of the rate capability paves the way for new experiments at the FRS-IC, including exotic nuclei studies with in-cell multi-nucleon transfer reactions. The results further validate the design concept of the CSC for the Super-FRS, which was developed to effectively manage beams of even higher intensities. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.02224v1-abstract-full').style.display = 'none'; document.getElementById('2308.02224v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.09350">arXiv:2306.09350</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2306.09350">pdf</a>, <a href="https://arxiv.org/format/2306.09350">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nimb.2023.05.018">10.1016/j.nimb.2023.05.018 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Mean range bunching of exotic nuclei produced by in-flight fragmentation and fission -- Stopped-beam experiments with increased efficiency </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Dickel%2C+T">Timo Dickel</a>, <a href="/search/physics?searchtype=author&amp;query=Hornung%2C+C">Christine Hornung</a>, <a href="/search/physics?searchtype=author&amp;query=Amanbayev%2C+D">Daler Amanbayev</a>, <a href="/search/physics?searchtype=author&amp;query=Andres%2C+S+A+S">Samuel Ayet San Andres</a>, <a href="/search/physics?searchtype=author&amp;query=Beck%2C+S">Soenke Beck</a>, <a href="/search/physics?searchtype=author&amp;query=Bergmann%2C+J">Julian Bergmann</a>, <a href="/search/physics?searchtype=author&amp;query=Geissel%2C+H">Hans Geissel</a>, <a href="/search/physics?searchtype=author&amp;query=Gerl%2C+J">Juergen Gerl</a>, <a href="/search/physics?searchtype=author&amp;query=Gorska%2C+M">Magdalena Gorska</a>, <a href="/search/physics?searchtype=author&amp;query=Groef%2C+L">Lizzy Groef</a>, <a href="/search/physics?searchtype=author&amp;query=Haettner%2C+E">Emma Haettner</a>, <a href="/search/physics?searchtype=author&amp;query=Hucka%2C+J">Jan-Paul Hucka</a>, <a href="/search/physics?searchtype=author&amp;query=Kostyleva%2C+D+A">Daria A. Kostyleva</a>, <a href="/search/physics?searchtype=author&amp;query=Kripko-Koncz%2C+G">Gabriella Kripko-Koncz</a>, <a href="/search/physics?searchtype=author&amp;query=Mollaebrahimi%2C+A">Ali Mollaebrahimi</a>, <a href="/search/physics?searchtype=author&amp;query=Mukha%2C+I">Ivan Mukha</a>, <a href="/search/physics?searchtype=author&amp;query=Pietri%2C+S">Stephane Pietri</a>, <a href="/search/physics?searchtype=author&amp;query=Pla%C3%9F%2C+W+R">Wolfgang R. Pla脽</a>, <a href="/search/physics?searchtype=author&amp;query=Podolyak%2C+Z">Zsolt Podolyak</a>, <a href="/search/physics?searchtype=author&amp;query=Purushothaman%2C+S">Sivaji Purushothaman</a>, <a href="/search/physics?searchtype=author&amp;query=Reiter%2C+M+P">Moritz Pascal Reiter</a>, <a href="/search/physics?searchtype=author&amp;query=Roesch%2C+H">Heidi Roesch</a>, <a href="/search/physics?searchtype=author&amp;query=Scheidenberger%2C+C">Christoph Scheidenberger</a>, <a href="/search/physics?searchtype=author&amp;query=Tanaka%2C+Y+K">Yoshiki K. Tanaka</a>, <a href="/search/physics?searchtype=author&amp;query=Weick%2C+H">Helmut Weick</a> , et al. (2 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.09350v1-abstract-short" style="display: inline;"> The novel technique of mean range bunching has been developed and applied at the projectile fragment separator FRS at GSI in four experiments of the FAIR phase-0 experimental program. Using a variable degrader system at the final focal plane of the FRS, the ranges of the different nuclides can be aligned, allowing to efficiently implant a large number of different nuclides simultaneously in a gas-&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.09350v1-abstract-full').style.display = 'inline'; document.getElementById('2306.09350v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.09350v1-abstract-full" style="display: none;"> The novel technique of mean range bunching has been developed and applied at the projectile fragment separator FRS at GSI in four experiments of the FAIR phase-0 experimental program. Using a variable degrader system at the final focal plane of the FRS, the ranges of the different nuclides can be aligned, allowing to efficiently implant a large number of different nuclides simultaneously in a gas-filled stopping cell or an implantation detector. Stopping and studying a cocktail beam overcomes the present limitations of stopped-beam experiments. The conceptual idea of mean range bunching is described and illustrated using simulations. In a single setting of the FRS, 37 different nuclides were stopped in the cryogenic stopping cell and were measured in a single setting broadband mass measurement with the multiple-reflection time-of-flight mass spectrometer of the FRS Ion Catcher. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.09350v1-abstract-full').style.display = 'none'; document.getElementById('2306.09350v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> NIM B 541 (2023) 275-278 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.09383">arXiv:2305.09383</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2305.09383">pdf</a>, <a href="https://arxiv.org/format/2305.09383">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.131.031802">10.1103/PhysRevLett.131.031802 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Observation of collider muon neutrinos with the SND@LHC experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Collaboration%2C+T+S">The SND@LHC Collaboration</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.09383v1-abstract-short" style="display: inline;"> We report the direct observation of muon neutrino interactions with the SND@LHC detector at the Large Hadron Collider. A data set of proton-proton collisions at $\sqrt{s} = 13.6\,$TeV collected by SND@LHC in 2022 is used, corresponding to an integrated luminosity of 36.8$\,\rm{fb}^{-1}$. The search is based on information from the active electronic components of the SND@LHC detector, which covers&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.09383v1-abstract-full').style.display = 'inline'; document.getElementById('2305.09383v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.09383v1-abstract-full" style="display: none;"> We report the direct observation of muon neutrino interactions with the SND@LHC detector at the Large Hadron Collider. A data set of proton-proton collisions at $\sqrt{s} = 13.6\,$TeV collected by SND@LHC in 2022 is used, corresponding to an integrated luminosity of 36.8$\,\rm{fb}^{-1}$. The search is based on information from the active electronic components of the SND@LHC detector, which covers the pseudo-rapidity region of $7.2 &lt; 畏&lt; 8.4$, inaccessible to the other experiments at the collider. Muon neutrino candidates are identified through their charged-current interaction topology, with a track propagating through the entire length of the muon detector. After selection cuts, 8 $谓_渭$ interaction candidate events remain with an estimated background of 0.076 events, yielding a significance of seven standard deviations for the observed $谓_渭$ signal. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.09383v1-abstract-full').style.display = 'none'; document.getElementById('2305.09383v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Submitted to Phys. Rev. Lett</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> CERN-EP-2023-092 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.02784">arXiv:2210.02784</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2210.02784">pdf</a>, <a href="https://arxiv.org/format/2210.02784">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/19/05/P05067">10.1088/1748-0221/19/05/P05067 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> SND@LHC: The Scattering and Neutrino Detector at the LHC </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Collaboration%2C+T+S">The SND@LHC Collaboration</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.02784v3-abstract-short" style="display: inline;"> SND@LHC is a compact and stand-alone experiment designed to perform measurements with neutrinos produced at the LHC in the pseudo-rapidity region of ${7.2 &lt; 畏&lt; 8.4}$. The experiment is located 480 m downstream of the ATLAS interaction point, in the TI18 tunnel. The detector is composed of a hybrid system based on an 830 kg target made of tungsten plates, interleaved with emulsion and electronic tr&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.02784v3-abstract-full').style.display = 'inline'; document.getElementById('2210.02784v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.02784v3-abstract-full" style="display: none;"> SND@LHC is a compact and stand-alone experiment designed to perform measurements with neutrinos produced at the LHC in the pseudo-rapidity region of ${7.2 &lt; 畏&lt; 8.4}$. The experiment is located 480 m downstream of the ATLAS interaction point, in the TI18 tunnel. The detector is composed of a hybrid system based on an 830 kg target made of tungsten plates, interleaved with emulsion and electronic trackers, also acting as an electromagnetic calorimeter, and followed by a hadronic calorimeter and a muon identification system. The detector is able to distinguish interactions of all three neutrino flavours, which allows probing the physics of heavy flavour production at the LHC in the very forward region. This region is of particular interest for future circular colliders and for very high energy astrophysical neutrino experiments. The detector is also able to search for the scattering of Feebly Interacting Particles. In its first phase, the detector will operate throughout LHC Run 3 and collect a total of 250 $\text{fb}^{-1}$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.02784v3-abstract-full').style.display = 'none'; document.getElementById('2210.02784v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">57 pages. To be published in JINST</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2205.09881">arXiv:2205.09881</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2205.09881">pdf</a>, <a href="https://arxiv.org/format/2205.09881">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/ac7f9c">10.3847/1538-4357/ac7f9c <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Pre-Supernova Alert System for Super-Kamiokande </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Collaboration%2C+S">Super-Kamiokande Collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=%3A"> :</a>, <a href="/search/physics?searchtype=author&amp;query=Machado%2C+L+N">L. N. Machado</a>, <a href="/search/physics?searchtype=author&amp;query=Abe%2C+K">K. Abe</a>, <a href="/search/physics?searchtype=author&amp;query=Hayato%2C+Y">Y. Hayato</a>, <a href="/search/physics?searchtype=author&amp;query=Hiraide%2C+K">K. Hiraide</a>, <a href="/search/physics?searchtype=author&amp;query=Ieki%2C+K">K. Ieki</a>, <a href="/search/physics?searchtype=author&amp;query=Ikeda%2C+M">M. Ikeda</a>, <a href="/search/physics?searchtype=author&amp;query=Kameda%2C+J">J. Kameda</a>, <a href="/search/physics?searchtype=author&amp;query=Kanemura%2C+Y">Y. Kanemura</a>, <a href="/search/physics?searchtype=author&amp;query=Kaneshima%2C+R">R. Kaneshima</a>, <a href="/search/physics?searchtype=author&amp;query=Kashiwagi%2C+Y">Y. Kashiwagi</a>, <a href="/search/physics?searchtype=author&amp;query=Kataoka%2C+Y">Y. Kataoka</a>, <a href="/search/physics?searchtype=author&amp;query=Miki%2C+S">S. Miki</a>, <a href="/search/physics?searchtype=author&amp;query=Mine%2C+S">S. Mine</a>, <a href="/search/physics?searchtype=author&amp;query=Miura%2C+M">M. Miura</a>, <a href="/search/physics?searchtype=author&amp;query=Moriyama%2C+S">S. Moriyama</a>, <a href="/search/physics?searchtype=author&amp;query=Nakano%2C+Y">Y. Nakano</a>, <a href="/search/physics?searchtype=author&amp;query=Nakahata%2C+M">M. Nakahata</a>, <a href="/search/physics?searchtype=author&amp;query=Nakayama%2C+S">S. Nakayama</a>, <a href="/search/physics?searchtype=author&amp;query=Noguchi%2C+Y">Y. Noguchi</a>, <a href="/search/physics?searchtype=author&amp;query=Okamoto%2C+K">K. Okamoto</a>, <a href="/search/physics?searchtype=author&amp;query=Sato%2C+K">K. Sato</a>, <a href="/search/physics?searchtype=author&amp;query=Sekiya%2C+H">H. Sekiya</a>, <a href="/search/physics?searchtype=author&amp;query=Shiba%2C+H">H. Shiba</a> , et al. (202 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2205.09881v2-abstract-short" style="display: inline;"> In 2020, the Super-Kamiokande (SK) experiment moved to a new stage (SK-Gd) in which gadolinium (Gd) sulfate octahydrate was added to the water in the detector, enhancing the efficiency to detect thermal neutrons and consequently improving the sensitivity to low energy electron anti-neutrinos from inverse beta decay (IBD) interactions. SK-Gd has the potential to provide early alerts of incipient co&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.09881v2-abstract-full').style.display = 'inline'; document.getElementById('2205.09881v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2205.09881v2-abstract-full" style="display: none;"> In 2020, the Super-Kamiokande (SK) experiment moved to a new stage (SK-Gd) in which gadolinium (Gd) sulfate octahydrate was added to the water in the detector, enhancing the efficiency to detect thermal neutrons and consequently improving the sensitivity to low energy electron anti-neutrinos from inverse beta decay (IBD) interactions. SK-Gd has the potential to provide early alerts of incipient core-collapse supernovae through detection of electron anti-neutrinos from thermal and nuclear processes responsible for the cooling of massive stars before the gravitational collapse of their cores. These pre-supernova neutrinos emitted during the silicon burning phase can exceed the energy threshold for IBD reactions. We present the sensitivity of SK-Gd to pre-supernova stars and the techniques used for the development of a pre-supernova alarm based on the detection of these neutrinos in SK, as well as prospects for future SK-Gd phases with higher concentrations of Gd. For the current SK-Gd phase, high-confidence alerts for Betelgeuse could be issued up to nine hours in advance of the core-collapse itself. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.09881v2-abstract-full').style.display = 'none'; document.getElementById('2205.09881v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> The Astrophysical Journal, Volume 935, Number 1 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2108.02176">arXiv:2108.02176</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2108.02176">pdf</a>, <a href="https://arxiv.org/format/2108.02176">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.105.092005">10.1103/PhysRevD.105.092005 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Scintillation yield from electronic and nuclear recoils in superfluid $^4$He </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Collaboration%2C+S">SPICE/HeRALD Collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=%3A"> :</a>, <a href="/search/physics?searchtype=author&amp;query=Biekert%2C+A">A. Biekert</a>, <a href="/search/physics?searchtype=author&amp;query=Chang%2C+C">C. Chang</a>, <a href="/search/physics?searchtype=author&amp;query=Fink%2C+C+W">C. W. Fink</a>, <a href="/search/physics?searchtype=author&amp;query=Garcia-Sciveres%2C+M">M. Garcia-Sciveres</a>, <a href="/search/physics?searchtype=author&amp;query=Glazer%2C+E+C">E. C. Glazer</a>, <a href="/search/physics?searchtype=author&amp;query=Guo%2C+W">W. Guo</a>, <a href="/search/physics?searchtype=author&amp;query=Hertel%2C+S+A">S. A. Hertel</a>, <a href="/search/physics?searchtype=author&amp;query=Kravitz%2C+S">S. Kravitz</a>, <a href="/search/physics?searchtype=author&amp;query=Lin%2C+J">J. Lin</a>, <a href="/search/physics?searchtype=author&amp;query=Lisovenko%2C+M">M. Lisovenko</a>, <a href="/search/physics?searchtype=author&amp;query=Mahapatra%2C+R">R. Mahapatra</a>, <a href="/search/physics?searchtype=author&amp;query=McKinsey%2C+D+N">D. N. McKinsey</a>, <a href="/search/physics?searchtype=author&amp;query=Nguyen%2C+J+S">J. S. Nguyen</a>, <a href="/search/physics?searchtype=author&amp;query=Novosad%2C+V">V. Novosad</a>, <a href="/search/physics?searchtype=author&amp;query=Page%2C+W">W. Page</a>, <a href="/search/physics?searchtype=author&amp;query=Patel%2C+P+K">P. K. Patel</a>, <a href="/search/physics?searchtype=author&amp;query=Penning%2C+B">B. Penning</a>, <a href="/search/physics?searchtype=author&amp;query=Pinckney%2C+H+D">H. D. Pinckney</a>, <a href="/search/physics?searchtype=author&amp;query=Pyle%2C+M">M. Pyle</a>, <a href="/search/physics?searchtype=author&amp;query=Romani%2C+R+K">R. K. Romani</a>, <a href="/search/physics?searchtype=author&amp;query=Seilnacht%2C+A+S">A. S. Seilnacht</a>, <a href="/search/physics?searchtype=author&amp;query=Serafin%2C+A">A. Serafin</a>, <a href="/search/physics?searchtype=author&amp;query=Smith%2C+R+J">R. J. Smith</a> , et al. (9 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2108.02176v2-abstract-short" style="display: inline;"> Superfluid $^4$He is a promising target material for direct detection of light ($&lt;$ 1 GeV) dark matter. Possible signal channels available for readout in this medium include prompt photons, triplet excimers, and roton and phonon quasiparticles. The relative yield of these signals has implications for the sensitivity and discrimination power of a superfluid $^4$He dark matter detector. Using a 16~c&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.02176v2-abstract-full').style.display = 'inline'; document.getElementById('2108.02176v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2108.02176v2-abstract-full" style="display: none;"> Superfluid $^4$He is a promising target material for direct detection of light ($&lt;$ 1 GeV) dark matter. Possible signal channels available for readout in this medium include prompt photons, triplet excimers, and roton and phonon quasiparticles. The relative yield of these signals has implications for the sensitivity and discrimination power of a superfluid $^4$He dark matter detector. Using a 16~cm$^3$ volume of 1.75~K superfluid $^4$He read out by six immersed photomultiplier tubes, we measured the scintillation from electronic recoils ranging between 36.3 and 185 keV$_\mathrm{ee}$, yielding a mean signal size of $1.25^{+0.03}_{-0.03}$~phe/keV$_\mathrm{ee}$, and nuclear recoils from 53.2 to 1090 keV$_\mathrm{nr}$. We compare the results of our relative scintillation yield measurements to an existing semiempirical model based on helium-helium and electron-helium interaction cross sections. We also study the behavior of delayed scintillation components as a function of recoil type and energy, a further avenue for signal discrimination in superfluid $^4$He. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.02176v2-abstract-full').style.display = 'none'; document.getElementById('2108.02176v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 August, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 19 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 105, 092005 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2108.01379">arXiv:2108.01379</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2108.01379">pdf</a>, <a href="https://arxiv.org/format/2108.01379">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Physics Education">physics.ed-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.22323/1.395.1397">10.22323/1.395.1397 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Astronomy outreach in Namibia: H.E.S.S. and beyond </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Dalgleish%2C+H">Hannah Dalgleish</a>, <a href="/search/physics?searchtype=author&amp;query=Prokoph%2C+H">Heike Prokoph</a>, <a href="/search/physics?searchtype=author&amp;query=Zhu%2C+S">Sylvia Zhu</a>, <a href="/search/physics?searchtype=author&amp;query=Backes%2C+M">Michael Backes</a>, <a href="/search/physics?searchtype=author&amp;query=Cotter%2C+G">Garret Cotter</a>, <a href="/search/physics?searchtype=author&amp;query=Catalano%2C+J">Jacqueline Catalano</a>, <a href="/search/physics?searchtype=author&amp;query=Ruiz-Velasco%2C+E">Edna Ruiz-Velasco</a>, <a href="/search/physics?searchtype=author&amp;query=Kasai%2C+E">Eli Kasai</a>, <a href="/search/physics?searchtype=author&amp;query=Collaboration%2C+t+H+E+S+S">the H. E. S. S. Collaboration</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2108.01379v1-abstract-short" style="display: inline;"> Astronomy plays a major role in the scientific landscape of Namibia. Because of its excellent sky conditions, Namibia is home to ground-based observatories like the High Energy Spectroscopic System (H.E.S.S.), in operation since 2002. Located near the Gamsberg mountain, H.E.S.S. performs groundbreaking science by detecting very-high-energy gamma rays from astronomical objects. The fascinating stor&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.01379v1-abstract-full').style.display = 'inline'; document.getElementById('2108.01379v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2108.01379v1-abstract-full" style="display: none;"> Astronomy plays a major role in the scientific landscape of Namibia. Because of its excellent sky conditions, Namibia is home to ground-based observatories like the High Energy Spectroscopic System (H.E.S.S.), in operation since 2002. Located near the Gamsberg mountain, H.E.S.S. performs groundbreaking science by detecting very-high-energy gamma rays from astronomical objects. The fascinating stories behind many of them are featured regularly in the ``Source of the Month&#39;&#39;, a blog-like format intended for the general public with more than 170 features to date. In addition to other online communication via social media, H.E.S.S. outreach activities have been covered locally, e.g. through `open days&#39; and guided tours on the H.E.S.S. site itself. An overview of the H.E.S.S. outreach activities are presented in this contribution, along with discussions relating to the current landscape of astronomy outreach and education in Namibia. There has also been significant activity in the country in recent months, whereby astronomy is being used to further sustainable development via human capacity-building. Finally, as we take into account the future prospects of radio astronomy in the country, momentum for a wider range of astrophysics research is clearly building -- this presents a great opportunity for the astronomy community to come together to capitalise on this movement and support astronomy outreach, with the overarching aim to advance sustainable development in Namibia. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.01379v1-abstract-full').style.display = 'none'; document.getElementById('2108.01379v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 August, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">ICRC 2021 conference proceedings, 9 pages, 1 figure, 1 table</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2106.03951">arXiv:2106.03951</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2106.03951">pdf</a>, <a href="https://arxiv.org/format/2106.03951">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/16/10/P10021">10.1088/1748-0221/16/10/P10021 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Optical calibration of the SNO+ detector in the water phase with deployed sources </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Collaboration%2C+S">SNO+ Collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=%3A"> :</a>, <a href="/search/physics?searchtype=author&amp;query=Anderson%2C+M+R">M. R. Anderson</a>, <a href="/search/physics?searchtype=author&amp;query=Andringa%2C+S">S. Andringa</a>, <a href="/search/physics?searchtype=author&amp;query=Askins%2C+M">M. Askins</a>, <a href="/search/physics?searchtype=author&amp;query=Auty%2C+D+J">D. J. Auty</a>, <a href="/search/physics?searchtype=author&amp;query=Bar%C3%A3o%2C+F">F. Bar茫o</a>, <a href="/search/physics?searchtype=author&amp;query=Barros%2C+N">N. Barros</a>, <a href="/search/physics?searchtype=author&amp;query=Bayes%2C+R">R. Bayes</a>, <a href="/search/physics?searchtype=author&amp;query=Beier%2C+E+W">E. W. Beier</a>, <a href="/search/physics?searchtype=author&amp;query=Bialek%2C+A">A. Bialek</a>, <a href="/search/physics?searchtype=author&amp;query=Biller%2C+S+D">S. D. Biller</a>, <a href="/search/physics?searchtype=author&amp;query=Blucher%2C+E">E. Blucher</a>, <a href="/search/physics?searchtype=author&amp;query=Boulay%2C+M">M. Boulay</a>, <a href="/search/physics?searchtype=author&amp;query=Caden%2C+E">E. Caden</a>, <a href="/search/physics?searchtype=author&amp;query=Callaghan%2C+E+J">E. J. Callaghan</a>, <a href="/search/physics?searchtype=author&amp;query=Caravaca%2C+J">J. Caravaca</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+M">M. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chkvorets%2C+O">O. Chkvorets</a>, <a href="/search/physics?searchtype=author&amp;query=Cleveland%2C+B">B. Cleveland</a>, <a href="/search/physics?searchtype=author&amp;query=Cookman%2C+D">D. Cookman</a>, <a href="/search/physics?searchtype=author&amp;query=Corning%2C+J">J. Corning</a>, <a href="/search/physics?searchtype=author&amp;query=Cox%2C+M+A">M. A. Cox</a>, <a href="/search/physics?searchtype=author&amp;query=Deluce%2C+C">C. Deluce</a>, <a href="/search/physics?searchtype=author&amp;query=Depatie%2C+M+M">M. M. Depatie</a> , et al. (98 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2106.03951v2-abstract-short" style="display: inline;"> SNO+ is a large-scale liquid scintillator experiment with the primary goal of searching for neutrinoless double beta decay, and is located approximately 2 km underground in SNOLAB, Sudbury, Canada. The detector acquired data for two years as a pure water Cherenkov detector, starting in May 2017. During this period, the optical properties of the detector were measured in situ using a deployed light&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.03951v2-abstract-full').style.display = 'inline'; document.getElementById('2106.03951v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2106.03951v2-abstract-full" style="display: none;"> SNO+ is a large-scale liquid scintillator experiment with the primary goal of searching for neutrinoless double beta decay, and is located approximately 2 km underground in SNOLAB, Sudbury, Canada. The detector acquired data for two years as a pure water Cherenkov detector, starting in May 2017. During this period, the optical properties of the detector were measured in situ using a deployed light diffusing sphere, with the goal of improving the detector model and the energy response systematic uncertainties. The measured parameters included the water attenuation coefficients, effective attenuation coefficients for the acrylic vessel, and the angular response of the photomultiplier tubes and their surrounding light concentrators, all across different wavelengths. The calibrated detector model was validated using a deployed tagged gamma source, which showed a 0.6% variation in energy scale across the primary target volume. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.03951v2-abstract-full').style.display = 'none'; document.getElementById('2106.03951v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted by JINST (30 pages, 19 figures)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> JINST 16 (2021) P10021 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2104.11687">arXiv:2104.11687</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2104.11687">pdf</a>, <a href="https://arxiv.org/format/2104.11687">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/16/08/P08059">10.1088/1748-0221/16/08/P08059 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The SNO+ Experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Collaboration%2C+S">SNO+ Collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=%3A"> :</a>, <a href="/search/physics?searchtype=author&amp;query=Albanese%2C+V">V. Albanese</a>, <a href="/search/physics?searchtype=author&amp;query=Alves%2C+R">R. Alves</a>, <a href="/search/physics?searchtype=author&amp;query=Anderson%2C+M+R">M. R. Anderson</a>, <a href="/search/physics?searchtype=author&amp;query=Andringa%2C+S">S. Andringa</a>, <a href="/search/physics?searchtype=author&amp;query=Anselmo%2C+L">L. Anselmo</a>, <a href="/search/physics?searchtype=author&amp;query=Arushanova%2C+E">E. Arushanova</a>, <a href="/search/physics?searchtype=author&amp;query=Asahi%2C+S">S. Asahi</a>, <a href="/search/physics?searchtype=author&amp;query=Askins%2C+M">M. Askins</a>, <a href="/search/physics?searchtype=author&amp;query=Auty%2C+D+J">D. J. Auty</a>, <a href="/search/physics?searchtype=author&amp;query=Back%2C+A+R">A. R. Back</a>, <a href="/search/physics?searchtype=author&amp;query=Back%2C+S">S. Back</a>, <a href="/search/physics?searchtype=author&amp;query=Bar%C3%A3o%2C+F">F. Bar茫o</a>, <a href="/search/physics?searchtype=author&amp;query=Barnard%2C+Z">Z. Barnard</a>, <a href="/search/physics?searchtype=author&amp;query=Barr%2C+A">A. Barr</a>, <a href="/search/physics?searchtype=author&amp;query=Barros%2C+N">N. Barros</a>, <a href="/search/physics?searchtype=author&amp;query=Bartlett%2C+D">D. Bartlett</a>, <a href="/search/physics?searchtype=author&amp;query=Bayes%2C+R">R. Bayes</a>, <a href="/search/physics?searchtype=author&amp;query=Beaudoin%2C+C">C. Beaudoin</a>, <a href="/search/physics?searchtype=author&amp;query=Beier%2C+E+W">E. W. Beier</a>, <a href="/search/physics?searchtype=author&amp;query=Berardi%2C+G">G. Berardi</a>, <a href="/search/physics?searchtype=author&amp;query=Bialek%2C+A">A. Bialek</a>, <a href="/search/physics?searchtype=author&amp;query=Biller%2C+S+D">S. D. Biller</a>, <a href="/search/physics?searchtype=author&amp;query=Blucher%2C+E">E. Blucher</a> , et al. (229 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2104.11687v3-abstract-short" style="display: inline;"> The SNO+ experiment is located 2 km underground at SNOLAB in Sudbury, Canada. A low background search for neutrinoless double beta ($0谓尾尾$) decay will be conducted using 780 tonnes of liquid scintillator loaded with 3.9 tonnes of natural tellurium, corresponding to 1.3 tonnes of $^{130}$Te. This paper provides a general overview of the SNO+ experiment, including detector design, construction of pr&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.11687v3-abstract-full').style.display = 'inline'; document.getElementById('2104.11687v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2104.11687v3-abstract-full" style="display: none;"> The SNO+ experiment is located 2 km underground at SNOLAB in Sudbury, Canada. A low background search for neutrinoless double beta ($0谓尾尾$) decay will be conducted using 780 tonnes of liquid scintillator loaded with 3.9 tonnes of natural tellurium, corresponding to 1.3 tonnes of $^{130}$Te. This paper provides a general overview of the SNO+ experiment, including detector design, construction of process plants, commissioning efforts, electronics upgrades, data acquisition systems, and calibration techniques. The SNO+ collaboration is reusing the acrylic vessel, PMT array, and electronics of the SNO detector, having made a number of experimental upgrades and essential adaptations for use with the liquid scintillator. With low backgrounds and a low energy threshold, the SNO+ collaboration will also pursue a rich physics program beyond the search for $0谓尾尾$ decay, including studies of geo- and reactor antineutrinos, supernova and solar neutrinos, and exotic physics such as the search for invisible nucleon decay. The SNO+ approach to the search for $0谓尾尾$ decay is scalable: a future phase with high $^{130}$Te-loading is envisioned to probe an effective Majorana mass in the inverted mass ordering region. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.11687v3-abstract-full').style.display = 'none'; document.getElementById('2104.11687v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 August, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 April, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">61 pages, 23 figures, 4 tables</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> The SNO+ collaboration, 2021 JINST 16 P08059 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2012.03807">arXiv:2012.03807</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2012.03807">pdf</a>, <a href="https://arxiv.org/ps/2012.03807">ps</a>, <a href="https://arxiv.org/format/2012.03807">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.astropartphys.2022.102702">10.1016/j.astropartphys.2022.102702 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Search for solar electron anti-neutrinos due to spin-flavor precession in the Sun with Super-Kamiokande-IV </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Collaboration%2C+S">Super-Kamiokande Collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=%3A"> :</a>, <a href="/search/physics?searchtype=author&amp;query=Abe%2C+K">K. Abe</a>, <a href="/search/physics?searchtype=author&amp;query=Bronner%2C+C">C. Bronner</a>, <a href="/search/physics?searchtype=author&amp;query=Hayato%2C+Y">Y. Hayato</a>, <a href="/search/physics?searchtype=author&amp;query=Ikeda%2C+M">M. Ikeda</a>, <a href="/search/physics?searchtype=author&amp;query=Imaizumi%2C+S">S. Imaizumi</a>, <a href="/search/physics?searchtype=author&amp;query=Ito%2C+H">H. Ito</a>, <a href="/search/physics?searchtype=author&amp;query=Kameda%2C+J">J. Kameda</a>, <a href="/search/physics?searchtype=author&amp;query=Kataoka%2C+Y">Y. Kataoka</a>, <a href="/search/physics?searchtype=author&amp;query=Miura%2C+M">M. Miura</a>, <a href="/search/physics?searchtype=author&amp;query=Moriyama%2C+S">S. Moriyama</a>, <a href="/search/physics?searchtype=author&amp;query=Nagao%2C+Y">Y. Nagao</a>, <a href="/search/physics?searchtype=author&amp;query=Nakahata%2C+M">M. Nakahata</a>, <a href="/search/physics?searchtype=author&amp;query=Nakajima%2C+Y">Y. Nakajima</a>, <a href="/search/physics?searchtype=author&amp;query=Nakayama%2C+S">S. Nakayama</a>, <a href="/search/physics?searchtype=author&amp;query=Okada%2C+T">T. Okada</a>, <a href="/search/physics?searchtype=author&amp;query=Okamoto%2C+K">K. Okamoto</a>, <a href="/search/physics?searchtype=author&amp;query=Orii%2C+A">A. Orii</a>, <a href="/search/physics?searchtype=author&amp;query=Pronost%2C+G">G. Pronost</a>, <a href="/search/physics?searchtype=author&amp;query=Sekiya%2C+H">H. Sekiya</a>, <a href="/search/physics?searchtype=author&amp;query=Shiozawa%2C+M">M. Shiozawa</a>, <a href="/search/physics?searchtype=author&amp;query=Sonoda%2C+Y">Y. Sonoda</a>, <a href="/search/physics?searchtype=author&amp;query=Suzuki%2C+Y">Y. Suzuki</a>, <a href="/search/physics?searchtype=author&amp;query=Takeda%2C+A">A. Takeda</a> , et al. (177 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2012.03807v3-abstract-short" style="display: inline;"> Due to a very low production rate of electron anti-neutrinos ($\bar谓_e$) via nuclear fusion in the Sun, a flux of solar $\bar谓_e$ is unexpected. An appearance of $\bar谓_e$ in solar neutrino flux opens a new window for the new physics beyond the standard model. In particular, a spin-flavor precession process is expected to convert an electron neutrino into an electron anti-neutrino (&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.03807v3-abstract-full').style.display = 'inline'; document.getElementById('2012.03807v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2012.03807v3-abstract-full" style="display: none;"> Due to a very low production rate of electron anti-neutrinos ($\bar谓_e$) via nuclear fusion in the Sun, a flux of solar $\bar谓_e$ is unexpected. An appearance of $\bar谓_e$ in solar neutrino flux opens a new window for the new physics beyond the standard model. In particular, a spin-flavor precession process is expected to convert an electron neutrino into an electron anti-neutrino (${谓_e\to\bar谓_e}$) when neutrino has a finite magnetic moment. In this work, we have searched for solar $\bar谓_e$ in the Super-Kamiokande experiment, using neutron tagging to identify their inverse beta decay signature. We identified 78 $\bar谓_e$ candidates for neutrino energies of 9.3 to 17.3 MeV in 2970.1 live days with a fiducial volume of 22.5 kiloton water (183.0 kton$\cdot$year exposure). The energy spectrum has been consistent with background predictions and we thus derived a 90% confidence level upper limit of ${4.7\times10^{-4}}$ on the $谓_e\to\bar谓_e$ conversion probability in the Sun. We used this result to evaluate the sensitivity of future experiments, notably the Super-Kamiokande Gadolinium (SK-Gd) upgrade. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.03807v3-abstract-full').style.display = 'none'; document.getElementById('2012.03807v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 10 figures, 7 tables</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Astroparticle Physics 139 (2022) 102702 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2011.12924">arXiv:2011.12924</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2011.12924">pdf</a>, <a href="https://arxiv.org/format/2011.12924">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/16/05/P05009">10.1088/1748-0221/16/05/P05009 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Development, characterisation, and deployment of the SNO+ liquid scintillator </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Collaboration%2C+S">SNO+ Collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=%3A"> :</a>, <a href="/search/physics?searchtype=author&amp;query=Anderson%2C+M+R">M. R. Anderson</a>, <a href="/search/physics?searchtype=author&amp;query=Andringa%2C+S">S. Andringa</a>, <a href="/search/physics?searchtype=author&amp;query=Anselmo%2C+L">L. Anselmo</a>, <a href="/search/physics?searchtype=author&amp;query=Arushanova%2C+E">E. Arushanova</a>, <a href="/search/physics?searchtype=author&amp;query=Asahi%2C+S">S. Asahi</a>, <a href="/search/physics?searchtype=author&amp;query=Askins%2C+M">M. Askins</a>, <a href="/search/physics?searchtype=author&amp;query=Auty%2C+D+J">D. J. Auty</a>, <a href="/search/physics?searchtype=author&amp;query=Back%2C+A+R">A. R. Back</a>, <a href="/search/physics?searchtype=author&amp;query=Barnard%2C+Z">Z. Barnard</a>, <a href="/search/physics?searchtype=author&amp;query=Barros%2C+N">N. Barros</a>, <a href="/search/physics?searchtype=author&amp;query=Bartlett%2C+D">D. Bartlett</a>, <a href="/search/physics?searchtype=author&amp;query=Bar%C3%A3o%2C+F">F. Bar茫o</a>, <a href="/search/physics?searchtype=author&amp;query=Bayes%2C+R">R. Bayes</a>, <a href="/search/physics?searchtype=author&amp;query=Beier%2C+E+W">E. W. Beier</a>, <a href="/search/physics?searchtype=author&amp;query=Bialek%2C+A">A. Bialek</a>, <a href="/search/physics?searchtype=author&amp;query=Biller%2C+S+D">S. D. Biller</a>, <a href="/search/physics?searchtype=author&amp;query=Blucher%2C+E">E. Blucher</a>, <a href="/search/physics?searchtype=author&amp;query=Bonventre%2C+R">R. Bonventre</a>, <a href="/search/physics?searchtype=author&amp;query=Boulay%2C+M">M. Boulay</a>, <a href="/search/physics?searchtype=author&amp;query=Braid%2C+D">D. Braid</a>, <a href="/search/physics?searchtype=author&amp;query=Caden%2C+E">E. Caden</a>, <a href="/search/physics?searchtype=author&amp;query=Callaghan%2C+E+J">E. J. Callaghan</a>, <a href="/search/physics?searchtype=author&amp;query=Caravaca%2C+J">J. Caravaca</a> , et al. (201 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2011.12924v2-abstract-short" style="display: inline;"> A liquid scintillator consisting of linear alkylbenzene as the solvent and 2,5-diphenyloxazole as the fluor was developed for the SNO+ experiment. This mixture was chosen as it is compatible with acrylic and has a competitive light yield to pre-existing liquid scintillators while conferring other advantages including longer attenuation lengths, superior safety characteristics, chemical simplicity,&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.12924v2-abstract-full').style.display = 'inline'; document.getElementById('2011.12924v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2011.12924v2-abstract-full" style="display: none;"> A liquid scintillator consisting of linear alkylbenzene as the solvent and 2,5-diphenyloxazole as the fluor was developed for the SNO+ experiment. This mixture was chosen as it is compatible with acrylic and has a competitive light yield to pre-existing liquid scintillators while conferring other advantages including longer attenuation lengths, superior safety characteristics, chemical simplicity, ease of handling, and logistical availability. Its properties have been extensively characterized and are presented here. This liquid scintillator is now used in several neutrino physics experiments in addition to SNO+. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.12924v2-abstract-full').style.display = 'none'; document.getElementById('2011.12924v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 February, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 10 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> JINST 16 (2021) P05009 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2009.14327">arXiv:2009.14327</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2009.14327">pdf</a>, <a href="https://arxiv.org/format/2009.14327">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atmospheric and Oceanic Physics">physics.ao-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1029/2019JD031940">10.1029/2019JD031940 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Observations of the Origin of Downward Terrestrial Gamma-Ray Flashes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Belz%2C+J+W">J. W. Belz</a>, <a href="/search/physics?searchtype=author&amp;query=Krehbiel%2C+P+R">P. R. Krehbiel</a>, <a href="/search/physics?searchtype=author&amp;query=Remington%2C+J">J. Remington</a>, <a href="/search/physics?searchtype=author&amp;query=Stanley%2C+M+A">M. A. Stanley</a>, <a href="/search/physics?searchtype=author&amp;query=Abbasi%2C+R+U">R. U. Abbasi</a>, <a href="/search/physics?searchtype=author&amp;query=LeVon%2C+R">R. LeVon</a>, <a href="/search/physics?searchtype=author&amp;query=Rison%2C+W">W. Rison</a>, <a href="/search/physics?searchtype=author&amp;query=Rodeheffer%2C+D">D. Rodeheffer</a>, <a href="/search/physics?searchtype=author&amp;query=Collaboration%2C+t+T+A+S">the Telescope Array Scientific Collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=%3A"> :</a>, <a href="/search/physics?searchtype=author&amp;query=Abu-Zayyad%2C+T">T. Abu-Zayyad</a>, <a href="/search/physics?searchtype=author&amp;query=Allen%2C+M">M. Allen</a>, <a href="/search/physics?searchtype=author&amp;query=Barcikowski%2C+E">E. Barcikowski</a>, <a href="/search/physics?searchtype=author&amp;query=Bergman%2C+D+R">D. R. Bergman</a>, <a href="/search/physics?searchtype=author&amp;query=Blake%2C+S+A">S. A. Blake</a>, <a href="/search/physics?searchtype=author&amp;query=Byrne%2C+M">M. Byrne</a>, <a href="/search/physics?searchtype=author&amp;query=Cady%2C+R">R. Cady</a>, <a href="/search/physics?searchtype=author&amp;query=Cheon%2C+B+G">B. G. Cheon</a>, <a href="/search/physics?searchtype=author&amp;query=Chikawa%2C+M">M. Chikawa</a>, <a href="/search/physics?searchtype=author&amp;query=di+Matteo%2C+A">A. di Matteo</a>, <a href="/search/physics?searchtype=author&amp;query=Fujii%2C+T">T. Fujii</a>, <a href="/search/physics?searchtype=author&amp;query=Fujita%2C+K">K. Fujita</a>, <a href="/search/physics?searchtype=author&amp;query=Fujiwara%2C+R">R. Fujiwara</a>, <a href="/search/physics?searchtype=author&amp;query=Fukushima%2C+M">M. Fukushima</a>, <a href="/search/physics?searchtype=author&amp;query=Furlich%2C+G">G. Furlich</a> , et al. (116 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2009.14327v2-abstract-short" style="display: inline;"> In this paper we report the first close, high-resolution observations of downward-directed terrestrial gamma-ray flashes (TGFs) detected by the large-area Telescope Array cosmic ray observatory, obtained in conjunction with broadband VHF interferometer and fast electric field change measurements of the parent discharge. The results show that the TGFs occur during strong initial breakdown pulses (I&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.14327v2-abstract-full').style.display = 'inline'; document.getElementById('2009.14327v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2009.14327v2-abstract-full" style="display: none;"> In this paper we report the first close, high-resolution observations of downward-directed terrestrial gamma-ray flashes (TGFs) detected by the large-area Telescope Array cosmic ray observatory, obtained in conjunction with broadband VHF interferometer and fast electric field change measurements of the parent discharge. The results show that the TGFs occur during strong initial breakdown pulses (IBPs) in the first few milliseconds of negative cloud-to-ground and low-altitude intracloud flashes, and that the IBPs are produced by a newly-identified streamer-based discharge process called fast negative breakdown. The observations indicate the relativistic runaway electron avalanches (RREAs) responsible for producing the TGFs are initiated by embedded spark-like transient conducting events (TCEs) within the fast streamer system, and potentially also by individual fast streamers themselves. The TCEs are inferred to be the cause of impulsive sub-pulses that are characteristic features of classic IBP sferics. Additional development of the avalanches would be facilitated by the enhanced electric field ahead of the advancing front of the fast negative breakdown. In addition to showing the nature of IBPs and their enigmatic sub-pulses, the observations also provide a possible explanation for the unsolved question of how the streamer to leader transition occurs during the initial negative breakdown, namely as a result of strong currents flowing in the final stage of successive IBPs, extending backward through both the IBP itself and the negative streamer breakdown preceding the IBP. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.14327v2-abstract-full').style.display = 'none'; document.getElementById('2009.14327v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 October, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 September, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Typo fixed and reference added. Manuscript is 36 pages. Supplemental Information is 42 pages. This paper is to be published in the Journal of Geophysical Research: Atmospheres. Online data repository: Open Science Framework DOI: 10.17605/OSF.IO/Z3XDA</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2002.10351">arXiv:2002.10351</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2002.10351">pdf</a>, <a href="https://arxiv.org/format/2002.10351">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevC.102.014002">10.1103/PhysRevC.102.014002 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Measurement of neutron-proton capture in the SNO+ water phase </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Collaboration%2C+T+S">The SNO+ Collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=%3A"> :</a>, <a href="/search/physics?searchtype=author&amp;query=Anderson%2C+M+R">M. R. Anderson</a>, <a href="/search/physics?searchtype=author&amp;query=Andringa%2C+S">S. Andringa</a>, <a href="/search/physics?searchtype=author&amp;query=Askins%2C+M">M. Askins</a>, <a href="/search/physics?searchtype=author&amp;query=Auty%2C+D+J">D. J. Auty</a>, <a href="/search/physics?searchtype=author&amp;query=Barros%2C+N">N. Barros</a>, <a href="/search/physics?searchtype=author&amp;query=Bar%C3%A3o%2C+F">F. Bar茫o</a>, <a href="/search/physics?searchtype=author&amp;query=Bayes%2C+R">R. Bayes</a>, <a href="/search/physics?searchtype=author&amp;query=Beier%2C+E+W">E. W. Beier</a>, <a href="/search/physics?searchtype=author&amp;query=Bialek%2C+A">A. Bialek</a>, <a href="/search/physics?searchtype=author&amp;query=Biller%2C+S+D">S. D. Biller</a>, <a href="/search/physics?searchtype=author&amp;query=Blucher%2C+E">E. Blucher</a>, <a href="/search/physics?searchtype=author&amp;query=Bonventre%2C+R">R. Bonventre</a>, <a href="/search/physics?searchtype=author&amp;query=Boulay%2C+M">M. Boulay</a>, <a href="/search/physics?searchtype=author&amp;query=Caden%2C+E">E. Caden</a>, <a href="/search/physics?searchtype=author&amp;query=Callaghan%2C+E+J">E. J. Callaghan</a>, <a href="/search/physics?searchtype=author&amp;query=Caravaca%2C+J">J. Caravaca</a>, <a href="/search/physics?searchtype=author&amp;query=Chauhan%2C+D">D. Chauhan</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+M">M. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chkvorets%2C+O">O. Chkvorets</a>, <a href="/search/physics?searchtype=author&amp;query=Cleveland%2C+B">B. Cleveland</a>, <a href="/search/physics?searchtype=author&amp;query=Cox%2C+M+A">M. A. Cox</a>, <a href="/search/physics?searchtype=author&amp;query=Depatie%2C+M+M">M. M. Depatie</a>, <a href="/search/physics?searchtype=author&amp;query=Dittmer%2C+J">J. Dittmer</a> , et al. (108 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2002.10351v2-abstract-short" style="display: inline;"> The SNO+ experiment collected data as a low-threshold water Cherenkov detector from September 2017 to July 2019. Measurements of the 2.2-MeV $纬$ produced by neutron capture on hydrogen have been made using an Am-Be calibration source, for which a large fraction of emitted neutrons are produced simultaneously with a 4.4-MeV $纬$. Analysis of the delayed coincidence between the 4.4-MeV $纬$ and the 2.&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2002.10351v2-abstract-full').style.display = 'inline'; document.getElementById('2002.10351v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2002.10351v2-abstract-full" style="display: none;"> The SNO+ experiment collected data as a low-threshold water Cherenkov detector from September 2017 to July 2019. Measurements of the 2.2-MeV $纬$ produced by neutron capture on hydrogen have been made using an Am-Be calibration source, for which a large fraction of emitted neutrons are produced simultaneously with a 4.4-MeV $纬$. Analysis of the delayed coincidence between the 4.4-MeV $纬$ and the 2.2-MeV capture $纬$ revealed a neutron detection efficiency that is centered around 50% and varies at the level of 1% across the inner region of the detector, which to our knowledge is the highest efficiency achieved among pure water Cherenkov detectors. In addition, the neutron capture time constant was measured and converted to a thermal neutron-proton capture cross section of $336.3^{+1.2}_{-1.5}$ mb. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2002.10351v2-abstract-full').style.display = 'none'; document.getElementById('2002.10351v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 July, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 February, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. C 102, 014002 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1912.11045">arXiv:1912.11045</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1912.11045">pdf</a>, <a href="https://arxiv.org/format/1912.11045">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nima.2020.163477">10.1016/j.nima.2020.163477 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Space Charge Effects in the S$蟺$RIT Time Projection Chamber </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Tsang%2C+C+Y">C. Y. Tsang</a>, <a href="/search/physics?searchtype=author&amp;query=Estee%2C+J">J. Estee</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+R">R. Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Barney%2C+J">J. Barney</a>, <a href="/search/physics?searchtype=author&amp;query=Jhang%2C+G">G. Jhang</a>, <a href="/search/physics?searchtype=author&amp;query=Lynch%2C+W+G">W. G. Lynch</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+Z+Q">Z. Q. Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Cerizza%2C+G">G. Cerizza</a>, <a href="/search/physics?searchtype=author&amp;query=Isobe%2C+T">T. Isobe</a>, <a href="/search/physics?searchtype=author&amp;query=Kaneko%2C+M">M. Kaneko</a>, <a href="/search/physics?searchtype=author&amp;query=Kurata-Nishimura%2C+M">M. Kurata-Nishimura</a>, <a href="/search/physics?searchtype=author&amp;query=Lee%2C+J+W">J. W. Lee</a>, <a href="/search/physics?searchtype=author&amp;query=Murakami%2C+T">T. Murakami</a>, <a href="/search/physics?searchtype=author&amp;query=Tsang%2C+M+B">M. B. Tsang</a>, <a href="/search/physics?searchtype=author&amp;query=collaboration%2C+S">S$蟺$RIT collaboration</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1912.11045v2-abstract-short" style="display: inline;"> Time projection chambers (TPCs) are widely used in nuclear and particle physics. They are particularly useful when measuring reaction products from heavy ion collisions. Most nuclear experiments at low energy are performed in a fixed target configuration, in which the unreacted beam will pass through the detection volume. As the beam intensity increases, the buildup of positive ions created from t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1912.11045v2-abstract-full').style.display = 'inline'; document.getElementById('1912.11045v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1912.11045v2-abstract-full" style="display: none;"> Time projection chambers (TPCs) are widely used in nuclear and particle physics. They are particularly useful when measuring reaction products from heavy ion collisions. Most nuclear experiments at low energy are performed in a fixed target configuration, in which the unreacted beam will pass through the detection volume. As the beam intensity increases, the buildup of positive ions created from the ionization of the detector gas by the beam creates the main source of space charge, distorting the nominal electric field of the TPC. This has a profound effect on the accuracy of the measured momenta of the emitted particles. In this paper we will discuss the magnitude of the effects and construct an observable more appropriate for fixed target experiments to study the effects. We also will present an algorithm for correcting the space charge and some of the implications it has on the momentum determination. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1912.11045v2-abstract-full').style.display = 'none'; document.getElementById('1912.11045v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 January, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 December, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 10 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1812.05552">arXiv:1812.05552</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1812.05552">pdf</a>, <a href="https://arxiv.org/format/1812.05552">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.99.032008">10.1103/PhysRevD.99.032008 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Search for invisible modes of nucleon decay in water with the SNO+ detector </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Collaboration%2C+S">SNO+ Collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=%3A"> :</a>, <a href="/search/physics?searchtype=author&amp;query=Anderson%2C+M">M. Anderson</a>, <a href="/search/physics?searchtype=author&amp;query=Andringa%2C+S">S. Andringa</a>, <a href="/search/physics?searchtype=author&amp;query=Arushanova%2C+E">E. Arushanova</a>, <a href="/search/physics?searchtype=author&amp;query=Asahi%2C+S">S. Asahi</a>, <a href="/search/physics?searchtype=author&amp;query=Askins%2C+M">M. Askins</a>, <a href="/search/physics?searchtype=author&amp;query=Auty%2C+D+J">D. J. Auty</a>, <a href="/search/physics?searchtype=author&amp;query=Back%2C+A+R">A. R. Back</a>, <a href="/search/physics?searchtype=author&amp;query=Barnard%2C+Z">Z. Barnard</a>, <a href="/search/physics?searchtype=author&amp;query=Barros%2C+N">N. Barros</a>, <a href="/search/physics?searchtype=author&amp;query=Bartlett%2C+D">D. Bartlett</a>, <a href="/search/physics?searchtype=author&amp;query=Bar%C3%A3o%2C+F">F. Bar茫o</a>, <a href="/search/physics?searchtype=author&amp;query=Bayes%2C+R">R. Bayes</a>, <a href="/search/physics?searchtype=author&amp;query=Beier%2C+E+W">E. W. Beier</a>, <a href="/search/physics?searchtype=author&amp;query=Bialek%2C+A">A. Bialek</a>, <a href="/search/physics?searchtype=author&amp;query=Biller%2C+S+D">S. D. Biller</a>, <a href="/search/physics?searchtype=author&amp;query=Blucher%2C+E">E. Blucher</a>, <a href="/search/physics?searchtype=author&amp;query=Bonventre%2C+R">R. Bonventre</a>, <a href="/search/physics?searchtype=author&amp;query=Boulay%2C+M">M. Boulay</a>, <a href="/search/physics?searchtype=author&amp;query=Braid%2C+D">D. Braid</a>, <a href="/search/physics?searchtype=author&amp;query=Caden%2C+E">E. Caden</a>, <a href="/search/physics?searchtype=author&amp;query=Callaghan%2C+E+J">E. J. Callaghan</a>, <a href="/search/physics?searchtype=author&amp;query=Caravaca%2C+J">J. Caravaca</a>, <a href="/search/physics?searchtype=author&amp;query=Carvalho%2C+J">J. Carvalho</a> , et al. (173 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1812.05552v1-abstract-short" style="display: inline;"> This paper reports results from a search for nucleon decay through &#39;invisible&#39; modes, where no visible energy is directly deposited during the decay itself, during the initial water phase of SNO+. However, such decays within the oxygen nucleus would produce an excited daughter that would subsequently de-excite, often emitting detectable gamma rays. A search for such gamma rays yields limits of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1812.05552v1-abstract-full').style.display = 'inline'; document.getElementById('1812.05552v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1812.05552v1-abstract-full" style="display: none;"> This paper reports results from a search for nucleon decay through &#39;invisible&#39; modes, where no visible energy is directly deposited during the decay itself, during the initial water phase of SNO+. However, such decays within the oxygen nucleus would produce an excited daughter that would subsequently de-excite, often emitting detectable gamma rays. A search for such gamma rays yields limits of $2.5 \times 10^{29}$ y at 90% Bayesian credibility level (with a prior uniform in rate) for the partial lifetime of the neutron, and $3.6 \times 10^{29}$ y for the partial lifetime of the proton, the latter a 70% improvement on the previous limit from SNO. We also present partial lifetime limits for invisible dinucleon modes of $1.3\times 10^{28}$ y for $nn$, $2.6\times 10^{28}$ y for $pn$ and $4.7\times 10^{28}$ y for $pp$, an improvement over existing limits by close to three orders of magnitude for the latter two. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1812.05552v1-abstract-full').style.display = 'none'; document.getElementById('1812.05552v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 December, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 99, 032008 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1610.00003">arXiv:1610.00003</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1610.00003">pdf</a>, <a href="https://arxiv.org/format/1610.00003">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1742-6596/888/1/012095">10.1088/1742-6596/888/1/012095 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Electronics for the STEREO experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=H%C3%A9laine%2C+V">V. H茅laine</a>, <a href="/search/physics?searchtype=author&amp;query=collaboration%2C+S">STEREO collaboration</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1610.00003v1-abstract-short" style="display: inline;"> The STEREO experiment, aiming to probe short baseline neutrino oscillations by precisely measuring reactor anti-neutrino spectrum, is currently under installation. It is located at short distance from the compact research reactor core of the Institut Laue-Langevin, Grenoble, France. Dedicated electronics, hosted in a single $渭$TCA crate, were designed for this experiment. In this article, the elec&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1610.00003v1-abstract-full').style.display = 'inline'; document.getElementById('1610.00003v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1610.00003v1-abstract-full" style="display: none;"> The STEREO experiment, aiming to probe short baseline neutrino oscillations by precisely measuring reactor anti-neutrino spectrum, is currently under installation. It is located at short distance from the compact research reactor core of the Institut Laue-Langevin, Grenoble, France. Dedicated electronics, hosted in a single $渭$TCA crate, were designed for this experiment. In this article, the electronics requirements, architecture and the performances achieved are described. It is shown how intrinsic Pulse Shape Discrimination properties of the liquid scintillator are preserved and how custom adaptable logic is used to improve the muon veto efficiency. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1610.00003v1-abstract-full').style.display = 'none'; document.getElementById('1610.00003v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 September, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Neutrino2016 conference proceedings, 3 pages</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1606.07538">arXiv:1606.07538</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1606.07538">pdf</a>, <a href="https://arxiv.org/ps/1606.07538">ps</a>, <a href="https://arxiv.org/format/1606.07538">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.94.052010">10.1103/PhysRevD.94.052010 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Solar Neutrino Measurements in Super-Kamiokande-IV </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Collaboration%2C+S">Super-Kamiokande Collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=%3A"> :</a>, <a href="/search/physics?searchtype=author&amp;query=Abe%2C+K">K. Abe</a>, <a href="/search/physics?searchtype=author&amp;query=Haga%2C+Y">Y. Haga</a>, <a href="/search/physics?searchtype=author&amp;query=Hayato%2C+Y">Y. Hayato</a>, <a href="/search/physics?searchtype=author&amp;query=Ikeda%2C+M">M. Ikeda</a>, <a href="/search/physics?searchtype=author&amp;query=Iyogi%2C+K">K. Iyogi</a>, <a href="/search/physics?searchtype=author&amp;query=Kameda%2C+J">J. Kameda</a>, <a href="/search/physics?searchtype=author&amp;query=Kishimoto%2C+Y">Y. Kishimoto</a>, <a href="/search/physics?searchtype=author&amp;query=Marti%2C+L">Ll. Marti</a>, <a href="/search/physics?searchtype=author&amp;query=Miura%2C+M">M. Miura</a>, <a href="/search/physics?searchtype=author&amp;query=Moriyama%2C+S">S. Moriyama</a>, <a href="/search/physics?searchtype=author&amp;query=Nakahata%2C+M">M. Nakahata</a>, <a href="/search/physics?searchtype=author&amp;query=Nakajima%2C+T">T. Nakajima</a>, <a href="/search/physics?searchtype=author&amp;query=Nakayama%2C+S">S. Nakayama</a>, <a href="/search/physics?searchtype=author&amp;query=Orii%2C+A">A. Orii</a>, <a href="/search/physics?searchtype=author&amp;query=Sekiya%2C+H">H. Sekiya</a>, <a href="/search/physics?searchtype=author&amp;query=Shiozawa%2C+M">M. Shiozawa</a>, <a href="/search/physics?searchtype=author&amp;query=Sonoda%2C+Y">Y. Sonoda</a>, <a href="/search/physics?searchtype=author&amp;query=Takeda%2C+A">A. Takeda</a>, <a href="/search/physics?searchtype=author&amp;query=Tanaka%2C+H">H. Tanaka</a>, <a href="/search/physics?searchtype=author&amp;query=Takenaga%2C+Y">Y. Takenaga</a>, <a href="/search/physics?searchtype=author&amp;query=Tasaka%2C+S">S. Tasaka</a>, <a href="/search/physics?searchtype=author&amp;query=Tomura%2C+T">T. Tomura</a>, <a href="/search/physics?searchtype=author&amp;query=Ueno%2C+K">K. Ueno</a> , et al. (146 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1606.07538v1-abstract-short" style="display: inline;"> Upgraded electronics, improved water system dynamics, better calibration and analysis techniques allowed Super-Kamiokande-IV to clearly observe very low-energy 8B solar neutrino interactions, with recoil electron kinetic energies as low as 3.49 MeV. Super-Kamiokande-IV data-taking began in September of 2008; this paper includes data until February 2014, a total livetime of 1664 days. The measured&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1606.07538v1-abstract-full').style.display = 'inline'; document.getElementById('1606.07538v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1606.07538v1-abstract-full" style="display: none;"> Upgraded electronics, improved water system dynamics, better calibration and analysis techniques allowed Super-Kamiokande-IV to clearly observe very low-energy 8B solar neutrino interactions, with recoil electron kinetic energies as low as 3.49 MeV. Super-Kamiokande-IV data-taking began in September of 2008; this paper includes data until February 2014, a total livetime of 1664 days. The measured solar neutrino flux is (2.308+-0.020(stat.) + 0.039-0.040(syst.)) x 106/(cm2sec) assuming no oscillations. The observed recoil electron energy spectrum is consistent with no distortions due to neutrino oscillations. An extended maximum likelihood fit to the amplitude of the expected solar zenith angle variation of the neutrino-electron elastic scattering rate in SK-IV results in a day/night asymmetry of (-3.6+-1.6(stat.)+-0.6(syst.))%. The SK-IV solar neutrino data determine the solar mixing angle as sin2 theta_12 = 0.327+0.026-0.031, all SK solar data (SK-I, SK-II, SK III and SKIV) measures this angle to be sin2 theta_12 = 0.334+0.027-0.023, the determined mass-squared splitting is Delta m2_21 = 4.8+1.5-0.8 x10-5 eV2. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1606.07538v1-abstract-full').style.display = 'none'; document.getElementById('1606.07538v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 June, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Submitted to Physical Review D; 23 pages, 40 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1509.08168">arXiv:1509.08168</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1509.08168">pdf</a>, <a href="https://arxiv.org/ps/1509.08168">ps</a>, <a href="https://arxiv.org/format/1509.08168">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.93.012004">10.1103/PhysRevD.93.012004 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> First measurement of radioactive isotope production through cosmic-ray muon spallation in Super-Kamiokande IV </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Collaboration%2C+S">Super-Kamiokande Collaboration</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1509.08168v2-abstract-short" style="display: inline;"> Cosmic-ray-muon spallation-induced radioactive isotopes with $尾$ decays are one of the major backgrounds for solar, reactor, and supernova relic neutrino experiments. Unlike in scintillator, production yields for cosmogenic backgrounds in water have not been exclusively measured before, yet they are becoming more and more important in next generation neutrino experiments designed to search for rar&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1509.08168v2-abstract-full').style.display = 'inline'; document.getElementById('1509.08168v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1509.08168v2-abstract-full" style="display: none;"> Cosmic-ray-muon spallation-induced radioactive isotopes with $尾$ decays are one of the major backgrounds for solar, reactor, and supernova relic neutrino experiments. Unlike in scintillator, production yields for cosmogenic backgrounds in water have not been exclusively measured before, yet they are becoming more and more important in next generation neutrino experiments designed to search for rare signals. We have analyzed the low-energy trigger data collected at Super-Kamiokande-IV in order to determine the production rates of $^{12}$B, $^{12}$N, $^{16}$N, $^{11}$Be, $^9$Li, $^8$He, $^9$C, $^8$Li, $^8$B and $^{15}$C. These rates were extracted from fits to time differences between parent muons and subsequent daughter $尾$&#39;s by fixing the known isotope lifetimes. Since $^9$Li can fake an inverse-beta-decay reaction chain via a $尾+ n$ cascade decay, producing an irreducible background with detected energy up to a dozen MeV, a dedicated study is needed for evaluating its impact on future measurements; the application of a neutron tagging technique using correlated triggers was found to improve this $^9$Li measurement. The measured yields were generally found to be comparable with theoretical calculations, except the cases of the isotopes $^8$Li/$^8$B and $^9$Li. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1509.08168v2-abstract-full').style.display = 'none'; document.getElementById('1509.08168v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 December, 2015; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 September, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 6 figures, accepted by PRD for publication</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 93, 012004 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1508.05759">arXiv:1508.05759</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1508.05759">pdf</a>, <a href="https://arxiv.org/format/1508.05759">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1155/2016/6194250">10.1155/2016/6194250 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Current Status and Future Prospects of the SNO+ Experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Collaboration%2C+S">SNO+ Collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=%3A"> :</a>, <a href="/search/physics?searchtype=author&amp;query=Andringa%2C+S">S. Andringa</a>, <a href="/search/physics?searchtype=author&amp;query=Arushanova%2C+E">E. Arushanova</a>, <a href="/search/physics?searchtype=author&amp;query=Asahi%2C+S">S. Asahi</a>, <a href="/search/physics?searchtype=author&amp;query=Askins%2C+M">M. Askins</a>, <a href="/search/physics?searchtype=author&amp;query=Auty%2C+D+J">D. J. Auty</a>, <a href="/search/physics?searchtype=author&amp;query=Back%2C+A+R">A. R. Back</a>, <a href="/search/physics?searchtype=author&amp;query=Barnard%2C+Z">Z. Barnard</a>, <a href="/search/physics?searchtype=author&amp;query=Barros%2C+N">N. Barros</a>, <a href="/search/physics?searchtype=author&amp;query=Beier%2C+E+W">E. W. Beier</a>, <a href="/search/physics?searchtype=author&amp;query=Bialek%2C+A">A. Bialek</a>, <a href="/search/physics?searchtype=author&amp;query=Biller%2C+S+D">S. D. Biller</a>, <a href="/search/physics?searchtype=author&amp;query=Blucher%2C+E">E. Blucher</a>, <a href="/search/physics?searchtype=author&amp;query=Bonventre%2C+R">R. Bonventre</a>, <a href="/search/physics?searchtype=author&amp;query=Braid%2C+D">D. Braid</a>, <a href="/search/physics?searchtype=author&amp;query=Caden%2C+E">E. Caden</a>, <a href="/search/physics?searchtype=author&amp;query=Callaghan%2C+E">E. Callaghan</a>, <a href="/search/physics?searchtype=author&amp;query=Caravaca%2C+J">J. Caravaca</a>, <a href="/search/physics?searchtype=author&amp;query=Carvalho%2C+J">J. Carvalho</a>, <a href="/search/physics?searchtype=author&amp;query=Cavalli%2C+L">L. Cavalli</a>, <a href="/search/physics?searchtype=author&amp;query=Chauhan%2C+D">D. Chauhan</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+M">M. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chkvorets%2C+O">O. Chkvorets</a>, <a href="/search/physics?searchtype=author&amp;query=Clark%2C+K">K. Clark</a> , et al. (133 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1508.05759v3-abstract-short" style="display: inline;"> SNO+ is a large liquid scintillator-based experiment located 2km underground at SNOLAB, Sudbury, Canada. It reuses the Sudbury Neutrino Observatory detector, consisting of a 12m diameter acrylic vessel which will be filled with about 780 tonnes of ultra-pure liquid scintillator. Designed as a multipurpose neutrino experiment, the primary goal of SNO+ is a search for the neutrinoless double-beta de&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1508.05759v3-abstract-full').style.display = 'inline'; document.getElementById('1508.05759v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1508.05759v3-abstract-full" style="display: none;"> SNO+ is a large liquid scintillator-based experiment located 2km underground at SNOLAB, Sudbury, Canada. It reuses the Sudbury Neutrino Observatory detector, consisting of a 12m diameter acrylic vessel which will be filled with about 780 tonnes of ultra-pure liquid scintillator. Designed as a multipurpose neutrino experiment, the primary goal of SNO+ is a search for the neutrinoless double-beta decay (0$谓尾尾$) of 130Te. In Phase I, the detector will be loaded with 0.3% natural tellurium, corresponding to nearly 800 kg of 130Te, with an expected effective Majorana neutrino mass sensitivity in the region of 55-133 meV, just above the inverted mass hierarchy. Recently, the possibility of deploying up to ten times more natural tellurium has been investigated, which would enable SNO+ to achieve sensitivity deep into the parameter space for the inverted neutrino mass hierarchy in the future. Additionally, SNO+ aims to measure reactor antineutrino oscillations, low-energy solar neutrinos, and geoneutrinos, to be sensitive to supernova neutrinos, and to search for exotic physics. A first phase with the detector filled with water will begin soon, with the scintillator phase expected to start after a few months of water data taking. The 0$谓尾尾$ Phase I is foreseen for 2017. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1508.05759v3-abstract-full').style.display = 'none'; document.getElementById('1508.05759v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 January, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 August, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Published in &#34;Neutrino Masses and Oscillations&#34; of Advances in High Energy Physics (Hindawi)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Advances in High Energy Physics, vol. 2016, 6194250 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1507.07035">arXiv:1507.07035</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1507.07035">pdf</a>, <a href="https://arxiv.org/format/1507.07035">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> TID-Effect Compensation and Sensor-Circuit Cross-Talk Suppression in Double-SOI Devices </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Honda%2C+S">Shunsuke Honda</a>, <a href="/search/physics?searchtype=author&amp;query=Hara%2C+K">Kazuhiko Hara</a>, <a href="/search/physics?searchtype=author&amp;query=Sekigawa%2C+D">Daisuke Sekigawa</a>, <a href="/search/physics?searchtype=author&amp;query=Subedi%2C+B">Bipin Subedi</a>, <a href="/search/physics?searchtype=author&amp;query=Asano%2C+M">Mari Asano</a>, <a href="/search/physics?searchtype=author&amp;query=Tobita%2C+N">Naoshi Tobita</a>, <a href="/search/physics?searchtype=author&amp;query=Aoyagi%2C+W">Wataru Aoyagi</a>, <a href="/search/physics?searchtype=author&amp;query=Arai%2C+Y">Yasuo Arai</a>, <a href="/search/physics?searchtype=author&amp;query=Ishikawa%2C+A">Akimasa Ishikawa</a>, <a href="/search/physics?searchtype=author&amp;query=Ono%2C+Y">Yoshimasa Ono</a>, <a href="/search/physics?searchtype=author&amp;query=Ushiki%2C+I">Itaru Ushiki</a>, <a href="/search/physics?searchtype=author&amp;query=Collaboration%2C+S">SOI Collaboration</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1507.07035v1-abstract-short" style="display: inline;"> We are developing double silicon-on-insulator (DSOI) pixel sensors for various applications such as for high-energy experiments. The performance of DSOI devices has been evaluated including total ionization damage (TID) effect compensation in transistors using a test-element-group (TEG) up to 2 MGy and in integration-type sensors up to 100 kGy. In this article, successful TID compensation in a pix&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1507.07035v1-abstract-full').style.display = 'inline'; document.getElementById('1507.07035v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1507.07035v1-abstract-full" style="display: none;"> We are developing double silicon-on-insulator (DSOI) pixel sensors for various applications such as for high-energy experiments. The performance of DSOI devices has been evaluated including total ionization damage (TID) effect compensation in transistors using a test-element-group (TEG) up to 2 MGy and in integration-type sensors up to 100 kGy. In this article, successful TID compensation in a pixel-ASD-readout-circuit is shown up to 100 kGy for the application of DSOI to counting-type sensors. The cross-talk suppression in DSOI is being evaluated. These results encourage us that DSOI sensors are applicable to future high-energy experiments such as the BELLE-II experiment or the ILC experiment. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1507.07035v1-abstract-full').style.display = 'none'; document.getElementById('1507.07035v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 July, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Proceedings of International Workshop on SOI Pixel Detector (SOIPIX2015), Tohoku University, Sendai, Japan, 3-6, June, 2015. C15-06-03</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1311.3738">arXiv:1311.3738</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1311.3738">pdf</a>, <a href="https://arxiv.org/ps/1311.3738">ps</a>, <a href="https://arxiv.org/format/1311.3738">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.astropartphys.2014.05.004">10.1016/j.astropartphys.2014.05.004 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Supernova Relic Neutrino Search with Neutron Tagging at Super-Kamiokande-IV </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Collaboration%2C+S">Super-Kamiokande Collaboration</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1311.3738v2-abstract-short" style="display: inline;"> A search for Supernova Relic Neutrinos $\bar谓_e$&#39;s is first conducted via inverse-beta-decay by tagging neutron capture on hydrogen at Super-Kamiokande-IV. The neutron tagging efficiency is determined to be $(17.74\pm0.04_{stat.}\pm1.05_{sys.})%$, while the corresponding accidental background probability is $(1.06\pm0.01_{stat.}\pm 0.18_{sys.})$%. Using 960 days of data, we obtain 13 inverse-beta-&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1311.3738v2-abstract-full').style.display = 'inline'; document.getElementById('1311.3738v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1311.3738v2-abstract-full" style="display: none;"> A search for Supernova Relic Neutrinos $\bar谓_e$&#39;s is first conducted via inverse-beta-decay by tagging neutron capture on hydrogen at Super-Kamiokande-IV. The neutron tagging efficiency is determined to be $(17.74\pm0.04_{stat.}\pm1.05_{sys.})%$, while the corresponding accidental background probability is $(1.06\pm0.01_{stat.}\pm 0.18_{sys.})$%. Using 960 days of data, we obtain 13 inverse-beta-decay candidates in the range of $E_{\bar谓_e}$ between 13.3 MeV and 31.3 MeV. All of the observed candidates are attributed to background. Upper limits at 90% C.L. are calculated in the absence of a signal. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1311.3738v2-abstract-full').style.display = 'none'; document.getElementById('1311.3738v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 May, 2014; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 November, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Astroparticle Physics 60 (2015) 41 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1106.2209">arXiv:1106.2209</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1106.2209">pdf</a>, <a href="https://arxiv.org/ps/1106.2209">ps</a>, <a href="https://arxiv.org/format/1106.2209">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nima.2011.09.011">10.1016/j.nima.2011.09.011 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Scintillation-only Based Pulse Shape Discrimination for Nuclear and Electron Recoils in Liquid Xenon </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Ueshima%2C+K">K. Ueshima</a>, <a href="/search/physics?searchtype=author&amp;query=Abe%2C+K">K. Abe</a>, <a href="/search/physics?searchtype=author&amp;query=Hiraide%2C+K">K. Hiraide</a>, <a href="/search/physics?searchtype=author&amp;query=Hirano%2C+S">S. Hirano</a>, <a href="/search/physics?searchtype=author&amp;query=Kishimoto%2C+Y">Y. Kishimoto</a>, <a href="/search/physics?searchtype=author&amp;query=Kobayashi%2C+K">K. Kobayashi</a>, <a href="/search/physics?searchtype=author&amp;query=Koshio%2C+Y">Y. Koshio</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+J">J. Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Martens%2C+K">K. Martens</a>, <a href="/search/physics?searchtype=author&amp;query=Moriyama%2C+S">S. Moriyama</a>, <a href="/search/physics?searchtype=author&amp;query=Nakahata%2C+M">M. Nakahata</a>, <a href="/search/physics?searchtype=author&amp;query=Nishiie%2C+H">H. Nishiie</a>, <a href="/search/physics?searchtype=author&amp;query=Ogawa%2C+H">H. Ogawa</a>, <a href="/search/physics?searchtype=author&amp;query=Sekiya%2C+H">H. Sekiya</a>, <a href="/search/physics?searchtype=author&amp;query=Shinozaki%2C+A">A. Shinozaki</a>, <a href="/search/physics?searchtype=author&amp;query=Suzuki%2C+Y">Y. Suzuki</a>, <a href="/search/physics?searchtype=author&amp;query=Takeda%2C+A">A. Takeda</a>, <a href="/search/physics?searchtype=author&amp;query=Yamashita%2C+M">M. Yamashita</a>, <a href="/search/physics?searchtype=author&amp;query=Fujii%2C+K">K. Fujii</a>, <a href="/search/physics?searchtype=author&amp;query=Murayama%2C+I">I. Murayama</a>, <a href="/search/physics?searchtype=author&amp;query=Nakamura%2C+S">S. Nakamura</a>, <a href="/search/physics?searchtype=author&amp;query=Otsuka%2C+K">K. Otsuka</a>, <a href="/search/physics?searchtype=author&amp;query=Takeuchi%2C+Y">Y. Takeuchi</a>, <a href="/search/physics?searchtype=author&amp;query=Fukuda%2C+Y">Y. Fukuda</a>, <a href="/search/physics?searchtype=author&amp;query=Nishijima%2C+K">K. Nishijima</a> , et al. (12 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1106.2209v1-abstract-short" style="display: inline;"> In a dedicated test setup at the Kamioka Observatory we studied pulse shape discrimination (PSD) in liquid xenon (LXe) for dark matter searches. PSD in LXe was based on the observation that scintillation light from electron events was emitted over a longer period of time than that of nuclear recoil events, and our method used a simple ratio of early to total scintillation light emission in a singl&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1106.2209v1-abstract-full').style.display = 'inline'; document.getElementById('1106.2209v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1106.2209v1-abstract-full" style="display: none;"> In a dedicated test setup at the Kamioka Observatory we studied pulse shape discrimination (PSD) in liquid xenon (LXe) for dark matter searches. PSD in LXe was based on the observation that scintillation light from electron events was emitted over a longer period of time than that of nuclear recoil events, and our method used a simple ratio of early to total scintillation light emission in a single scintillation event. Requiring an efficiency of 50% for nuclear recoil retention we reduced the electron background to 7.7\pm1.1(stat)\pm1.2 0.6(sys)\times10-2 at energies between 4.8 and 7.2 keVee and to 7.7\pm2.8(stat)\pm2.5 2.8(sys)\times10-3 at energies between 9.6 and 12 keVee for a scintillation light yield of 20.9 p.e./keV. Further study was done by masking some of that light to reduce this yield to 4.6 p.e./keV, the same method results in an electron event reduction of 2.4\pm0.2(stat)\pm0.3 0.2(sys)\times10-1 for the lower of the energy regions above. We also observe that in contrast to nuclear recoils the fluctuations in our early to total ratio for electron events are larger than expected from statistical fluctuations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1106.2209v1-abstract-full').style.display = 'none'; document.getElementById('1106.2209v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 June, 2011; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2011. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">25 pages, 15 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/nucl-ex/0502016">arXiv:nucl-ex/0502016</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/nucl-ex/0502016">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> </div> </div> <p class="title is-5 mathjax"> GANIL Status report </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Jacquot%2C+B">B. Jacquot</a>, <a href="/search/physics?searchtype=author&amp;query=Chautard%2C+F">F. Chautard</a>, <a href="/search/physics?searchtype=author&amp;query=Savalle%2C+A">A. Savalle</a>, <a href="/search/physics?searchtype=author&amp;query=Collaboration%2C+t+S">the SPIRAL Collaboration</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="nucl-ex/0502016v1-abstract-short" style="display: inline;"> The GANIL-Spiral facility (Caen, France) is dedicated to the acceleration of heavy ion beams for nuclear physics, atomic physics, radiobiology and material irradiation. The production of radioactive ion beams for nuclear physics studies represents the main part of the activity. The facility possesses a versatile combination of equipments, which permits to produce accelerated radioactive ion beam&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('nucl-ex/0502016v1-abstract-full').style.display = 'inline'; document.getElementById('nucl-ex/0502016v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="nucl-ex/0502016v1-abstract-full" style="display: none;"> The GANIL-Spiral facility (Caen, France) is dedicated to the acceleration of heavy ion beams for nuclear physics, atomic physics, radiobiology and material irradiation. The production of radioactive ion beams for nuclear physics studies represents the main part of the activity. The facility possesses a versatile combination of equipments, which permits to produce accelerated radioactive ion beams with two complementary methods: Isotope Separation In Line (ISOL) and In-Flight Separation techniques (IFS). Considering the future of GANIL, SPIRAL II projects aims to produce high intensity secondary beams, by fission induced with a 5 mA deuteron beam on an uranium target. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('nucl-ex/0502016v1-abstract-full').style.display = 'none'; document.getElementById('nucl-ex/0502016v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 February, 2005; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2005. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 5 figures, to be appear in the proceedings of the 17th International Conference on Cyclotrons and their Applications</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Conference: 17th International Conference on Cyclotrons and their Applications (2004-10-18 to 2004-10-22), Tokyo (jp) </p> </li> </ol> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10