CINXE.COM
Search results for: interconnects
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: interconnects</title> <meta name="description" content="Search results for: interconnects"> <meta name="keywords" content="interconnects"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="interconnects" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="interconnects"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 20</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: interconnects</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20</span> Performance Analysis of Carbon Nanotube for VLSI Interconnects and Their Comparison with Copper Interconnects</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gagnesh%20Kumar">Gagnesh Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Prashant%20Gupta"> Prashant Gupta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper investigates the performance of the bundle of single wall carbon nanotubes (SWCNT) for low-power and high-speed interconnects for future VLSI applications. The power dissipation, delay and power delay product (PDP) of SWCNT bundle interconnects are examined and compared with that of the Cu interconnects at 22 nm technology node for both intermediate and global interconnects. The results show that SWCNT bundle consume less power and also faster than Cu for intermediate and global interconnects. It is concluded that the metallic SWCNT has been regarded as a viable candidate for intermediate and global interconnects in future technologies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon%20nanotube" title="carbon nanotube">carbon nanotube</a>, <a href="https://publications.waset.org/abstracts/search?q=SWCNT" title=" SWCNT"> SWCNT</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20power" title=" low power"> low power</a>, <a href="https://publications.waset.org/abstracts/search?q=delay" title=" delay"> delay</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20delay%20product" title=" power delay product"> power delay product</a>, <a href="https://publications.waset.org/abstracts/search?q=global%20and%20intermediate%20interconnects" title=" global and intermediate interconnects"> global and intermediate interconnects</a> </p> <a href="https://publications.waset.org/abstracts/9055/performance-analysis-of-carbon-nanotube-for-vlsi-interconnects-and-their-comparison-with-copper-interconnects" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9055.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">320</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19</span> High Temperature Oxidation of Cr-Steel Interconnects in Solid Oxide Fuel Cells</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saeed%20Ghali">Saeed Ghali</a>, <a href="https://publications.waset.org/abstracts/search?q=Azza%20Ahmed"> Azza Ahmed</a>, <a href="https://publications.waset.org/abstracts/search?q=Taha%20Mattar"> Taha Mattar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Solid Oxide Fuel Cell (SOFC) is a promising solution for the energy resources leakage. Ferritic stainless steel becomes a suitable candidate for the SOFCs interconnects due to the recent advancements. Different steel alloys were designed to satisfy the needed characteristics in SOFCs interconnect as conductivity, thermal expansion and corrosion resistance. Refractory elements were used as alloying elements to satisfy the needed properties. The oxidation behaviour of the developed alloys was studied where the samples were heated for long time period at the maximum operating temperature to simulate the real working conditions. The formed scale and oxidized surface were investigated by SEM. Microstructure examination was carried out for some selected steel grades. The effect of alloying elements on the behaviour of the proposed interconnects material and the performance during the working conditions of the cells are explored and discussed. Refractory metals alloying of chromium steel seems to satisfy the needed characteristics in metallic interconnects. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=SOFCs" title="SOFCs">SOFCs</a>, <a href="https://publications.waset.org/abstracts/search?q=Cr-steel" title=" Cr-steel"> Cr-steel</a>, <a href="https://publications.waset.org/abstracts/search?q=interconnects" title=" interconnects"> interconnects</a>, <a href="https://publications.waset.org/abstracts/search?q=oxidation" title=" oxidation"> oxidation</a> </p> <a href="https://publications.waset.org/abstracts/67075/high-temperature-oxidation-of-cr-steel-interconnects-in-solid-oxide-fuel-cells" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67075.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">331</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18</span> Graphene/h-BN Heterostructure Interconnects</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nikhil%20Jain">Nikhil Jain</a>, <a href="https://publications.waset.org/abstracts/search?q=Yang%20Xu"> Yang Xu</a>, <a href="https://publications.waset.org/abstracts/search?q=Bin%20Yu"> Bin Yu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The material behavior of graphene, a single layer of carbon lattice, is extremely sensitive to its dielectric environment. We demonstrate improvement in electronic performance of graphene nanowire interconnects with full encapsulation by lattice-matching, chemically inert, 2D layered insulator hexagonal boron nitride (h- BN). A novel layer-based transfer technique is developed to construct the h-BN/MLG/h-BN heterostructures. The encapsulated graphene wires are characterized and compared with that on SiO2 or h-BN substrate without passivating h-BN layer. Significant improvements in maximum current-carrying density, breakdown threshold, and power density in encapsulated graphene wires are observed. These critical improvements are achieved without compromising the carrier transport characteristics in graphene. Furthermore, graphene wires exhibit electrical behavior less insensitive to ambient conditions, as compared with the non-passivated ones. Overall, h-BN/graphene/h- BN heterostructure presents a robust material platform towards the implementation of high-speed carbon-based interconnects. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=two-dimensional%20nanosheet" title="two-dimensional nanosheet">two-dimensional nanosheet</a>, <a href="https://publications.waset.org/abstracts/search?q=graphene" title=" graphene"> graphene</a>, <a href="https://publications.waset.org/abstracts/search?q=hexagonal%20boron%20nitride" title=" hexagonal boron nitride"> hexagonal boron nitride</a>, <a href="https://publications.waset.org/abstracts/search?q=heterostructure" title=" heterostructure"> heterostructure</a>, <a href="https://publications.waset.org/abstracts/search?q=interconnects" title=" interconnects"> interconnects</a> </p> <a href="https://publications.waset.org/abstracts/6905/grapheneh-bn-heterostructure-interconnects" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6905.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">316</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17</span> Horizontal-Vertical and Enhanced-Unicast Interconnect Testing Techniques for Network-on-Chip</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mahdiar%20Hosseinghadiry">Mahdiar Hosseinghadiry</a>, <a href="https://publications.waset.org/abstracts/search?q=Razali%20Ismail"> Razali Ismail</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Fotovati"> F. Fotovati</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the most important and challenging tasks in testing network-on-chip based system-on-chips (NoC based SoCs) is to verify the communication entity. It is important because of its usage for transferring both data packets and test patterns for intellectual properties (IPs) during normal and test mode. Hence, ensuring of NoC reliability is required for reliable IPs functionality and testing. On the other hand, it is challenging due to the required time to test it and the way of transferring test patterns from the tester to the NoC components. In this paper, two testing techniques for mesh-based NoC interconnections are proposed. The first one is based on one-by-one testing and the second one divides NoC interconnects into three parts, horizontal links of switches in even columns, horizontal links of switches in odd columns and all vertical. A design for testability (DFT) architecture is represented to send test patterns directly to each switch under test and also support the proposed testing techniques by providing a loopback path in each switch. The simulation results shows the second proposed testing mechanism outperforms in terms of test time because this method test all the interconnects in only three phases, independent to the number of existed interconnects in the network, while test time of other methods are highly dependent to the number of switches and interconnects in the NoC. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=on%20chip" title="on chip">on chip</a>, <a href="https://publications.waset.org/abstracts/search?q=interconnection%20testing" title=" interconnection testing"> interconnection testing</a>, <a href="https://publications.waset.org/abstracts/search?q=horizontal-vertical%20testing" title=" horizontal-vertical testing"> horizontal-vertical testing</a>, <a href="https://publications.waset.org/abstracts/search?q=enhanced%20unicast" title=" enhanced unicast"> enhanced unicast</a> </p> <a href="https://publications.waset.org/abstracts/16767/horizontal-vertical-and-enhanced-unicast-interconnect-testing-techniques-for-network-on-chip" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16767.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">553</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16</span> Two-Dimensional Nanostack Based On Chip Wiring</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nikhil%20Jain">Nikhil Jain</a>, <a href="https://publications.waset.org/abstracts/search?q=Bin%20Yu"> Bin Yu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The material behavior of graphene, a single layer of carbon lattice, is extremely sensitive to its dielectric environment. We demonstrate improvement in electronic performance of graphene nanowire interconnects with full encapsulation by lattice-matching, chemically inert, 2D layered insulator hexagonal boron nitride (h-BN). A novel layer-based transfer technique is developed to construct the h-BN/MLG/h-BN heterostructures. The encapsulated graphene wires are characterized and compared with that on SiO2 or h-BN substrate without passivating h-BN layer. Significant improvements in maximum current-carrying density, breakdown threshold, and power density in encapsulated graphene wires are observed. These critical improvements are achieved without compromising the carrier transport characteristics in graphene. Furthermore, graphene wires exhibit electrical behavior less insensitive to ambient conditions, as compared with the non-passivated ones. Overall, h-BN/graphene/h-BN heterostructure presents a robust material platform towards the implementation of high-speed carbon-based interconnects. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=two-dimensional%20nanosheet" title="two-dimensional nanosheet">two-dimensional nanosheet</a>, <a href="https://publications.waset.org/abstracts/search?q=graphene" title=" graphene"> graphene</a>, <a href="https://publications.waset.org/abstracts/search?q=hexagonal%20boron%20nitride" title=" hexagonal boron nitride"> hexagonal boron nitride</a>, <a href="https://publications.waset.org/abstracts/search?q=heterostructure" title=" heterostructure"> heterostructure</a>, <a href="https://publications.waset.org/abstracts/search?q=interconnects" title=" interconnects "> interconnects </a> </p> <a href="https://publications.waset.org/abstracts/22591/two-dimensional-nanostack-based-on-chip-wiring" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22591.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">453</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15</span> Signal Integrity Performance Analysis in Capacitive and Inductively Coupled Very Large Scale Integration Interconnect Models</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mudavath%20Raju">Mudavath Raju</a>, <a href="https://publications.waset.org/abstracts/search?q=Bhaskar%20Gugulothu"> Bhaskar Gugulothu</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Rajendra%20Naik"> B. Rajendra Naik</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The rapid advances in Very Large Scale Integration (VLSI) technology has resulted in the reduction of minimum feature size to sub-quarter microns and switching time in tens of picoseconds or even less. As a result, the degradation of high-speed digital circuits due to signal integrity issues such as coupling effects, clock feedthrough, crosstalk noise and delay uncertainty noise. Crosstalk noise in VLSI interconnects is a major concern and reduction in VLSI interconnect has become more important for high-speed digital circuits. It is the most effectively considered in Deep Sub Micron (DSM) and Ultra Deep Sub Micron (UDSM) technology. Increasing spacing in-between aggressor and victim line is one of the technique to reduce the crosstalk. Guard trace or shield insertion in-between aggressor and victim is also one of the prominent options for the minimization of crosstalk. In this paper, far end crosstalk noise is estimated with mutual inductance and capacitance RLC interconnect model. Also investigated the extent of crosstalk in capacitive and inductively coupled interconnects to minimizes the same through shield insertion technique. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=VLSI" title="VLSI">VLSI</a>, <a href="https://publications.waset.org/abstracts/search?q=interconnects" title=" interconnects"> interconnects</a>, <a href="https://publications.waset.org/abstracts/search?q=signal%20integrity" title=" signal integrity"> signal integrity</a>, <a href="https://publications.waset.org/abstracts/search?q=crosstalk" title=" crosstalk"> crosstalk</a>, <a href="https://publications.waset.org/abstracts/search?q=shield%20insertion" title=" shield insertion"> shield insertion</a>, <a href="https://publications.waset.org/abstracts/search?q=guard%20trace" title=" guard trace"> guard trace</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20sub%20micron" title=" deep sub micron"> deep sub micron</a> </p> <a href="https://publications.waset.org/abstracts/87200/signal-integrity-performance-analysis-in-capacitive-and-inductively-coupled-very-large-scale-integration-interconnect-models" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/87200.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">186</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14</span> Observation of Inverse Blech Length Effect during Electromigration of Cu Thin Film</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nalla%20Somaiah">Nalla Somaiah</a>, <a href="https://publications.waset.org/abstracts/search?q=Praveen%20Kumar"> Praveen Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Scaling of transistors and, hence, interconnects is very important for the enhanced performance of microelectronic devices. Scaling of devices creates significant complexity, especially in the multilevel interconnect architectures, wherein current crowding occurs at the corners of interconnects. Such a current crowding creates hot-spots at the respective corners, resulting in non-uniform temperature distribution in the interconnect as well. This non-uniform temperature distribution, which is exuberated with continued scaling of devices, creates a temperature gradient in the interconnect. In particular, the increased current density at corners and the associated temperature rise due to Joule heating accelerate the electromigration induced failures in interconnects, especially at corners. This has been the classic reliability issue associated with metallic interconnects. Herein, it is generally understood that electromigration induced damages can be avoided if the length of interconnect is smaller than a critical length, often termed as Blech length. Interestingly, the effect of non-negligible temperature gradients generated at these corners in terms of thermomigration and electromigration-thermomigration coupling has not attracted enough attention. Accordingly, in this work, the interplay between the electromigration and temperature gradient induced mass transport was studied using standard Blech structure. In this particular sample structure, the majority of the current is forcefully directed into the low resistivity metallic film from a high resistivity underlayer film, resulting in current crowding at the edges of the metallic film. In this study, 150 nm thick Cu metallic film was deposited on 30 nm thick W underlayer film in the configuration of Blech structure. Series of Cu thin strips, with lengths of 10, 20, 50, 100, 150 and 200 μm, were fabricated. Current density of ≈ 4 × 1010 A/m² was passed through Cu and W films at a temperature of 250ºC. Herein, along with expected forward migration of Cu atoms from the cathode to the anode at the cathode end of the Cu film, backward migration from the anode towards the center of Cu film was also observed. Interestingly, smaller length samples consistently showed enhanced migration at the cathode end, thus indicating the existence of inverse Blech length effect in presence of temperature gradient. A finite element based model showing the interplay between electromigration and thermomigration driving forces has been developed to explain this observation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Blech%20structure" title="Blech structure">Blech structure</a>, <a href="https://publications.waset.org/abstracts/search?q=electromigration" title=" electromigration"> electromigration</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature%20gradient" title=" temperature gradient"> temperature gradient</a>, <a href="https://publications.waset.org/abstracts/search?q=thin%20films" title=" thin films"> thin films</a> </p> <a href="https://publications.waset.org/abstracts/69174/observation-of-inverse-blech-length-effect-during-electromigration-of-cu-thin-film" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69174.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">257</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13</span> Temperature-Stable High-Speed Vertical-Cavity Surface-Emitting Lasers with Strong Carrier Confinement </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yun%20Sun">Yun Sun</a>, <a href="https://publications.waset.org/abstracts/search?q=Meng%20Xun"> Meng Xun</a>, <a href="https://publications.waset.org/abstracts/search?q=Jingtao%20Zhou"> Jingtao Zhou</a>, <a href="https://publications.waset.org/abstracts/search?q=Ming%20Li"> Ming Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Qiang%20Kan"> Qiang Kan</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhi%20Jin"> Zhi Jin</a>, <a href="https://publications.waset.org/abstracts/search?q=Xinyu%20Liu"> Xinyu Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Dexin%20Wu"> Dexin Wu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Higher speed short-wavelength vertical-cavity surface-emitting lasers (VCSELs) working at high temperature are required for future optical interconnects. In this work, the high-speed 850 nm VCSELs are designed, fabricated and characterized. The temperature dependent static and dynamic performance of devices are investigated by using current-power-voltage and small signal modulation measurements. Temperature-stable high-speed properties are obtained by employing highly strained multiple quantum wells and short cavity length of half wavelength. The temperature dependent photon lifetimes and carrier radiative times are determined from damping factor and resonance frequency obtained by fitting the intrinsic optical bandwidth with the two-pole transfer function. In addition, an analytical theoretical model including the strain effect is development based on model-solid theory. The calculation results indicate that the better high temperature performance of VCSELs can be attributed to the strong confinement of holes in the quantum wells leading to enhancement of the carrier transit time. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=vertical%20cavity%20surface%20emitting%20lasers" title="vertical cavity surface emitting lasers">vertical cavity surface emitting lasers</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20speed%20modulation" title=" high speed modulation"> high speed modulation</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20interconnects" title=" optical interconnects"> optical interconnects</a>, <a href="https://publications.waset.org/abstracts/search?q=semiconductor%20lasers" title=" semiconductor lasers"> semiconductor lasers</a> </p> <a href="https://publications.waset.org/abstracts/104556/temperature-stable-high-speed-vertical-cavity-surface-emitting-lasers-with-strong-carrier-confinement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/104556.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">126</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12</span> Effect of Preoxidation on the Effectiveness of Gd₂O₃ Nanoparticles Applied as a Source of Active Element in the Crofer 22 APU Coated with a Protective-conducting Spinel Layer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=%C5%81ukasz%20Mazur">Łukasz Mazur</a>, <a href="https://publications.waset.org/abstracts/search?q=Kamil%20Domaradzki"> Kamil Domaradzki</a>, <a href="https://publications.waset.org/abstracts/search?q=Maciej%20Bik"> Maciej Bik</a>, <a href="https://publications.waset.org/abstracts/search?q=Tomasz%20Brylewski"> Tomasz Brylewski</a>, <a href="https://publications.waset.org/abstracts/search?q=Aleksander%20Gil"> Aleksander Gil</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Interconnects used in solid oxide fuel and electrolyzer cells (SOFCₛ/SOECs) serve several important functions, and therefore interconnect materials must exhibit certain properties. Their thermal expansion coefficient needs to match that of the ceramic components of these devices – the electrolyte, anode and cathode. Interconnects also provide structural rigidity to the entire device, which is why interconnect materials must exhibit sufficient mechanical strength at high temperatures. Gas-tightness is also a prerequisite since they separate gas reagents, and they also must provide very good electrical contact between neighboring cells over the entire operating time. High-chromium ferritic steels meets these requirements to a high degree but are affected by the formation of a Cr₂O₃ scale, which leads to increased electrical resistance. The final criterion for interconnect materials is chemical inertness in relation to the remaining cell components. In the case of ferritic steels, this has proved difficult due to the formation of volatile and reactive oxyhydroxides observed when Cr₂O3 is exposed to oxygen and water vapor. This process is particularly harmful on the cathode side in SOFCs and the anode side in SOECs. To mitigate this, protective-conducting ceramic coatings can be deposited on an interconnect's surface. The area-specific resistance (ASR) of a single interconnect cannot exceed 0.1 m-2 at any point of the device's operation. The rate at which the CrO₃ scale grows on ferritic steels can be reduced significantly via the so-called reactive element effect (REE). Research has shown that the deposition of Gd₂O₃ nanoparticles on the surface of the Crofer 22 APU, already modified using a protective-conducting spinel layer, further improves the oxidation resistance of this steel. However, the deposition of the manganese-cobalt spinel layer is a rather complex process and is performed at high temperatures in reducing and oxidizing atmospheres. There was thus reason to believe that this process may reduce the effectiveness of Gd₂O₃ nanoparticles added as an active element source. The objective of the present study was, therefore, to determine any potential impact by introducing a preoxidation stage after the nanoparticle deposition and before the steel is coated with the spinel. This should have allowed the nanoparticles to incorporate into the interior of the scale formed on the steel. Different samples were oxidized for 7000 h in air at 1073 K under quasi-isothermal conditions. The phase composition, chemical composition, and microstructure of the oxidation products formed on the samples were determined using X-ray diffraction, Raman spectroscopy, and scanning electron microscopy combined with energy-dispersive X-ray spectroscopy. A four-point, two-probe DC method was applied to measure ASR. It was found that coating deposition does indeed reduce the beneficial effect of Gd₂O₃ addition, since the smallest mass gain and the lowest ASR value were determined for the sample for which the additional preoxidation stage had been performed. It can be assumed that during this stage, gadolinium incorporates into and segregates at grain boundaries in the thin Cr₂O₃ that is forming. This allows the Gd₂O₃ nanoparticles to be a more effective source of the active element. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=interconnects" title="interconnects">interconnects</a>, <a href="https://publications.waset.org/abstracts/search?q=oxide%20nanoparticles" title=" oxide nanoparticles"> oxide nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=reactive%20element%20effect" title=" reactive element effect"> reactive element effect</a>, <a href="https://publications.waset.org/abstracts/search?q=SOEC" title=" SOEC"> SOEC</a>, <a href="https://publications.waset.org/abstracts/search?q=SOFC" title=" SOFC"> SOFC</a> </p> <a href="https://publications.waset.org/abstracts/165908/effect-of-preoxidation-on-the-effectiveness-of-gd2o3-nanoparticles-applied-as-a-source-of-active-element-in-the-crofer-22-apu-coated-with-a-protective-conducting-spinel-layer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165908.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">84</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11</span> Investigation of Cylindrical Multi-Layer Hybrid Plasmonic Waveguides</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Prateeksha%20Sharma">Prateeksha Sharma</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Dinesh%20Kumar"> V. Dinesh Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Performances of cylindrical multilayer hybrid plasmonic waveguides have been investigated in detail considering their structural and material aspects. Characteristics of hybrid metal insulator metal (HMIM) and hybrid insulator metal insulator (HIMI) waveguides have been compared on the basis of propagation length and confinement factor. Necessity of this study is to understand newer kind of waveguides that overcome the limitations of conventional waveguides. Investigation reveals that sub wavelength confinement can be obtained in two low dielectric spacer layers. This study provides gateway for many applications such as nano lasers, interconnects, bio sensors and optical trapping etc. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hybrid%20insulator%20metal%20insulator" title="hybrid insulator metal insulator">hybrid insulator metal insulator</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20metal%20insulator%20metal" title=" hybrid metal insulator metal"> hybrid metal insulator metal</a>, <a href="https://publications.waset.org/abstracts/search?q=nano%20laser" title=" nano laser"> nano laser</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20plasmon%20polariton" title=" surface plasmon polariton"> surface plasmon polariton</a> </p> <a href="https://publications.waset.org/abstracts/33732/investigation-of-cylindrical-multi-layer-hybrid-plasmonic-waveguides" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33732.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">427</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10</span> Oxidation Behavior of Ferritic Stainless Steel Interconnects Modified Using Nanoparticles of Rare-Earth Elements under Operating Conditions Specific to Solid Oxide Electrolyzer Cells</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=%C5%81ukasz%20Mazur">Łukasz Mazur</a>, <a href="https://publications.waset.org/abstracts/search?q=Kamil%20Domaradzki"> Kamil Domaradzki</a>, <a href="https://publications.waset.org/abstracts/search?q=Bartosz%20Kamecki"> Bartosz Kamecki</a>, <a href="https://publications.waset.org/abstracts/search?q=Justyna%20Ignaczak"> Justyna Ignaczak</a>, <a href="https://publications.waset.org/abstracts/search?q=Sebastian%20Molin"> Sebastian Molin</a>, <a href="https://publications.waset.org/abstracts/search?q=Aleksander%20Gil"> Aleksander Gil</a>, <a href="https://publications.waset.org/abstracts/search?q=Tomasz%20Brylewski"> Tomasz Brylewski</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The rising global power consumption necessitates the development of new energy storage solutions. Prospective technologies include solid oxide electrolyzer cells (SOECs), which convert surplus electrical energy into hydrogen. An electrolyzer cell consists of a porous anode, and cathode, and a dense electrolyte. Power output is increased by connecting cells into stacks using interconnects. Interconnects are currently made from high-chromium ferritic steels – for example, Crofer 22 APU – which exhibit high oxidation resistance and a thermal expansion coefficient that is similar to that of electrode materials. These materials have one disadvantage – their area-specific resistance (ASR) gradually increases due to the formation of a Cr₂O₃ scale on their surface as a result of oxidation. The chromia in the scale also reacts with the water vapor present in the reaction media, forming volatile chromium oxyhydroxides, which in turn react with electrode materials and cause their deterioration. The electrochemical efficiency of SOECs thus decreases. To mitigate this, the interconnect surface can be modified with protective-conducting coatings of spinel or other materials. The high prices of SOEC components -especially the Crofer 22 APU- have prevented their widespread adoption. More inexpensive counterparts, therefore, need to be found, and their properties need to be enhanced to make them viable. Candidates include the Nirosta 4016/1,4016 low-chromium ferritic steel with a chromium content of just 16.3 wt%. This steel's resistance to high-temperature oxidation was improved by depositing Gd₂O₃ nanoparticles on its surface via either dip coating or electrolysis. Modification with CeO₂ or Ce₀.₉Y₀.₁O₂ nanoparticles deposited by means of spray pyrolysis was also tested. These methods were selected because of their low cost and simplicity of application. The aim of this study was to investigate the oxidation kinetics of Nirosta 4016/1,4016 modified using the afore-mentioned methods and to subsequently measure the obtained samples' ASR. The samples were oxidized for 100 h in the air as well as air/H₂O and Ar/H₂/H₂O mixtures at 1073 K. Such conditions reflect those found in the anode and cathode operating space during real-life use of SOECs. Phase and chemical composition and the microstructure of oxidation products were determined using XRD and SEM-EDS. ASR was measured over the range of 623-1073 K using a four-point, two-probe DC technique. The results indicate that the applied nanoparticles improve the oxidation resistance and electrical properties of the studied layered systems. The properties of individual systems varied significantly depending on the applied reaction medium. Gd₂O₃ nanoparticles improved oxidation resistance to a greater degree than either CeO₂ or Ce₀.₉Y₀.₁O₂ nanoparticles. On the other hand, the cerium-containing nanoparticles improved electrical properties regardless of the reaction medium. The ASR values of all surface-modified steel samples were below the 0.1 Ω.cm² threshold set for interconnect materials, which was exceeded in the case of the unmodified reference sample. It can be concluded that the applied modifications increased the oxidation resistance of Nirosta 4016/1.4016 to a level that allows its use as SOEC interconnect material. Acknowledgments: Funding of Research project supported by program "Excellence initiative – research university" for the AGH University of Krakow" is gratefully acknowledged (TB). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cerium%20oxide" title="cerium oxide">cerium oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=ferritic%20stainless%20steel" title=" ferritic stainless steel"> ferritic stainless steel</a>, <a href="https://publications.waset.org/abstracts/search?q=gadolinium%20oxide" title=" gadolinium oxide"> gadolinium oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=interconnect" title=" interconnect"> interconnect</a>, <a href="https://publications.waset.org/abstracts/search?q=SOEC" title=" SOEC"> SOEC</a> </p> <a href="https://publications.waset.org/abstracts/165907/oxidation-behavior-of-ferritic-stainless-steel-interconnects-modified-using-nanoparticles-of-rare-earth-elements-under-operating-conditions-specific-to-solid-oxide-electrolyzer-cells" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165907.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">87</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9</span> Time-Domain Analysis of Pulse Parameters Effects on Crosstalk in High-Speed Circuits</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Loubna%20Tani">Loubna Tani</a>, <a href="https://publications.waset.org/abstracts/search?q=Nabih%20Elouzzani"> Nabih Elouzzani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Crosstalk among interconnects and printed-circuit board (PCB) traces is a major limiting factor of signal quality in high-speed digital and communication equipments especially when fast data buses are involved. Such a bus is considered as a planar multiconductor transmission line. This paper will demonstrate how the finite difference time domain (FDTD) method provides an exact solution of the transmission-line equations to analyze the near end and the far end crosstalk. In addition, this study makes it possible to analyze the rise time effect on the near and far end voltages of the victim conductor. The paper also discusses a statistical analysis, based upon a set of several simulations. Such analysis leads to a better understanding of the phenomenon and yields useful information. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=multiconductor%20transmission%20line" title="multiconductor transmission line">multiconductor transmission line</a>, <a href="https://publications.waset.org/abstracts/search?q=crosstalk" title=" crosstalk"> crosstalk</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20difference%20time%20domain%20%28FDTD%29" title=" finite difference time domain (FDTD)"> finite difference time domain (FDTD)</a>, <a href="https://publications.waset.org/abstracts/search?q=printed-circuit%20board%20%28PCB%29" title=" printed-circuit board (PCB)"> printed-circuit board (PCB)</a>, <a href="https://publications.waset.org/abstracts/search?q=rise%20time" title=" rise time"> rise time</a>, <a href="https://publications.waset.org/abstracts/search?q=statistical%20analysis" title=" statistical analysis"> statistical analysis</a> </p> <a href="https://publications.waset.org/abstracts/27538/time-domain-analysis-of-pulse-parameters-effects-on-crosstalk-in-high-speed-circuits" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27538.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">433</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8</span> Analyze of Nanoscale Materials and Devices for Future Communication and Telecom Networks in the Gas Refinery </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamad%20Bagher%20Heidari">Mohamad Bagher Heidari</a>, <a href="https://publications.waset.org/abstracts/search?q=Hefzollah%20Mohammadian"> Hefzollah Mohammadian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> New discoveries in materials on the nanometer-length scale are expected to play an important role in addressing ongoing and future challenges in the field of communication. Devices and systems for ultra-high speed short and long range communication links, portable and power efficient computing devices, high-density memory and logics, ultra-fast interconnects, and autonomous and robust energy scavenging devices for accessing ambient intelligence and needed information will critically depend on the success of next-generation emerging nonmaterials and devices. This article presents some exciting recent developments in nonmaterials that have the potential to play a critical role in the development and transformation of future intelligent communication and telecom networks in the gas refinery. The industry is benefiting from nanotechnology advances with numerous applications including those in smarter sensors, logic elements, computer chips, memory storage devices, optoelectronics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nonmaterial" title="nonmaterial">nonmaterial</a>, <a href="https://publications.waset.org/abstracts/search?q=intelligent%20communication" title=" intelligent communication"> intelligent communication</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoscale" title=" nanoscale"> nanoscale</a>, <a href="https://publications.waset.org/abstracts/search?q=nanophotonic" title=" nanophotonic"> nanophotonic</a>, <a href="https://publications.waset.org/abstracts/search?q=telecom" title=" telecom"> telecom</a> </p> <a href="https://publications.waset.org/abstracts/43798/analyze-of-nanoscale-materials-and-devices-for-future-communication-and-telecom-networks-in-the-gas-refinery" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43798.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">333</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7</span> Synthesizing CuFe2O4 Spinel Powders by a Combustion-Like Process for Solid Oxide Fuel Cell Interconnects Coating</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seyedeh%20Narjes%20Hosseini">Seyedeh Narjes Hosseini</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Hossein%20Enayati"> Mohammad Hossein Enayati</a>, <a href="https://publications.waset.org/abstracts/search?q=Fathallah%20Karimzadeh"> Fathallah Karimzadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Nigel%20Mark%20Sammes"> Nigel Mark Sammes</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The synthesis of CuFe2O4 spinel powders by an optimized combustion-like process followed by calcinations is described herein. The samples were characterized by X-ray diffraction (XRD), differential thermal analysis (TG/DTA), scanning electron microscopy (SEM), dilatometry and 4-probe DC methods. Different glycine to nitrate (G/N) ratios of 1 (fuel-deficient), 1.48 (stoichiometric) and 2 (fuel-rich) were employed. Calcining the as-prepared powders at 800 and 1000°C for 5 hours showed that the 2 ratio results in the formation of desired copper spinel single phase at both calcinations temperatures. For G/N=1, formation of CuFe2O4 takes place in three steps. First, iron and copper nitrates decomposes to iron oxide and pure copper. Then, copper transforms to copper oxide and finally, copper and iron oxides react to each other to form copper ferrite spinel phase. The electrical conductivity and the coefficient of thermal expansion of the sintered pelletized samples were obtained 2 S.cm-1 (800°C) and 11×10-6 °C-1 (25-800°C), respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=SOFC%20interconnect%20coatings" title="SOFC interconnect coatings">SOFC interconnect coatings</a>, <a href="https://publications.waset.org/abstracts/search?q=Copper%20ferrite" title=" Copper ferrite"> Copper ferrite</a>, <a href="https://publications.waset.org/abstracts/search?q=Spinels" title=" Spinels"> Spinels</a>, <a href="https://publications.waset.org/abstracts/search?q=electrical%20conductivity" title=" electrical conductivity"> electrical conductivity</a>, <a href="https://publications.waset.org/abstracts/search?q=Glycine%E2%80%93nitrate%20process" title=" Glycine–nitrate process"> Glycine–nitrate process</a> </p> <a href="https://publications.waset.org/abstracts/31568/synthesizing-cufe2o4-spinel-powders-by-a-combustion-like-process-for-solid-oxide-fuel-cell-interconnects-coating" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31568.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">479</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6</span> Progress and Challenges of Smart Cities in India: An Exploratory Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sushil%20K.%20Sharma">Sushil K. Sharma</a>, <a href="https://publications.waset.org/abstracts/search?q=Jeff%20Zhang"> Jeff Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Saeed%20Tabar"> Saeed Tabar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Worldwide, several governments are utilizing the Internet of Things (IoT) and other information and communication technologies (ICTs) to create smart city infrastructures to improve both the quality of government services and citizen welfare. Over 700 cities from around the world have already started implementing their smart city projects. Smart City utilizes the network of connected things, or the Internet of Things (IoT), that interconnects devices and various components across city infrastructure, making them work together seamlessly to enhance the quality, performance, and interactivity of urban services, optimize resources, and reduce costs. Without developing smart cities, the accelerating growth of cities, and their disproportionate consumption of physical and social resources are unsustainable. In 2016, the Indian Government released a list of 100 cities with the intention of kick-starting the process of developing them into 'smart cities’ as part of the Smart Cities Mission. This study reports the progress and challenges of Smart City projects in India. The data were collected through the city/state government websites, media reports, and focus group discussions/interviews. The preliminary results indicate that smart city projects are not only behind in their implementation and scope but also lacks the sincerity for its implementation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=smart%20city" title="smart city">smart city</a>, <a href="https://publications.waset.org/abstracts/search?q=smart%20government" title=" smart government"> smart government</a>, <a href="https://publications.waset.org/abstracts/search?q=Internet%20of%20Things" title=" Internet of Things"> Internet of Things</a>, <a href="https://publications.waset.org/abstracts/search?q=digital%20government" title=" digital government"> digital government</a> </p> <a href="https://publications.waset.org/abstracts/119755/progress-and-challenges-of-smart-cities-in-india-an-exploratory-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/119755.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">182</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5</span> Design and Characterization of a Smart Composite Fabric for Knee Brace</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rohith%20J.%20K.">Rohith J. K.</a>, <a href="https://publications.waset.org/abstracts/search?q=Amir%20Nazemi"> Amir Nazemi</a>, <a href="https://publications.waset.org/abstracts/search?q=Abbas%20S.%20Milani"> Abbas S. Milani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In Paralympic sports, athletes often depend on some form of equipment to enable competitive sporting, where most of this equipment would only allow passive physiological supports and discrete physiological measurements. Active feedback physiological support and continuous detection of performance indicators, without time or space constraints, would be beneficial in more effective training and performance measures of Paralympic athletes. Moreover, occasionally the athletes suffer from fatigue and muscular stains due to improper monitoring systems. The latter challenges can be overcome by using Smart Composites technology when manufacturing, e.g., knee brace and other sports wearables utilities, where the sensors can be fused together into the fabric and an assisted system actively support the athlete. This paper shows how different sensing functionality may be created by intrinsic and extrinsic modifications onto different types of composite fabrics, depending on the level of integration and the employed functional elements. Results demonstrate that fabric sensors can be well-tailored to measure muscular strain and be used in the fabrication of a smart knee brace as a sample potential application. Materials, connectors, fabric circuits, interconnects, encapsulation and fabrication methods associated with such smart fabric technologies prove to be customizable and versatile. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=smart%20composites" title="smart composites">smart composites</a>, <a href="https://publications.waset.org/abstracts/search?q=sensors" title=" sensors"> sensors</a>, <a href="https://publications.waset.org/abstracts/search?q=smart%20fabrics" title=" smart fabrics"> smart fabrics</a>, <a href="https://publications.waset.org/abstracts/search?q=knee%20brace" title=" knee brace"> knee brace</a> </p> <a href="https://publications.waset.org/abstracts/142502/design-and-characterization-of-a-smart-composite-fabric-for-knee-brace" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/142502.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">178</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4</span> Performance Evaluation of Soft RoCE over 1 Gigabit Ethernet</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gurkirat%20Kaur">Gurkirat Kaur</a>, <a href="https://publications.waset.org/abstracts/search?q=Manoj%20Kumar"> Manoj Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Manju%20Bala"> Manju Bala</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ethernet is the most influential and widely used technology in the world. With the growing demand of low latency and high throughput technologies like InfiniBand and RoCE, unique features viz. RDMA (Remote Direct Memory Access) have evolved. RDMA is an effective technology which is used for reducing system load and improving performance. InfiniBand is a well known technology which provides high-bandwidth and low-latency and makes optimal use of in-built features like RDMA. With the rapid evolution of InfiniBand technology and Ethernet lacking the RDMA and zero copy protocol, the Ethernet community has came out with a new enhancements that bridges the gap between InfiniBand and Ethernet. By adding the RDMA and zero copy protocol to the Ethernet a new networking technology is evolved, called RDMA over Converged Ethernet (RoCE). RoCE is a standard released by the IBTA standardization body to define RDMA protocol over Ethernet. With the emergence of lossless Ethernet, RoCE uses InfiniBand’s efficient transport to provide the platform for deploying RDMA technology in mainstream data centres over 10GigE, 40GigE and beyond. RoCE provide all of the InfiniBand benefits transport benefits and well established RDMA ecosystem combined with converged Ethernet. In this paper, we evaluate the heterogeneous Linux cluster, having multi nodes with fast interconnects i.e. gigabit Ethernet and Soft RoCE. This paper presents the heterogeneous Linux cluster configuration and evaluates its performance using Intel’s MPI Benchmarks. Our result shows that Soft RoCE is performing better than Ethernet in various performance metrics like bandwidth, latency and throughput. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ethernet" title="ethernet">ethernet</a>, <a href="https://publications.waset.org/abstracts/search?q=InfiniBand" title=" InfiniBand"> InfiniBand</a>, <a href="https://publications.waset.org/abstracts/search?q=RoCE" title=" RoCE"> RoCE</a>, <a href="https://publications.waset.org/abstracts/search?q=RDMA" title=" RDMA"> RDMA</a>, <a href="https://publications.waset.org/abstracts/search?q=MPI" title=" MPI"> MPI</a>, <a href="https://publications.waset.org/abstracts/search?q=Soft%20RoCE" title=" Soft RoCE"> Soft RoCE</a> </p> <a href="https://publications.waset.org/abstracts/8912/performance-evaluation-of-soft-roce-over-1-gigabit-ethernet" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8912.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">464</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3</span> Spatial Structure of First-Order Voronoi for the Future of Roundabout Cairo Since 1867</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Essam%20El%20Shazly">Ali Essam El Shazly</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Haussmannization plan of Cairo in 1867 formed a regular network of roundabout spaces, though deteriorated at present. The method of identifying the spatial structure of roundabout Cairo for conservation matches the voronoi diagram with the space syntax through their geometrical property of spatial convexity. In this initiative, the primary convex hull of first-order voronoi adopts the integral and control measurements of space syntax on Cairo’s roundabout generators. The functional essence of royal palaces optimizes the roundabout structure in terms of spatial measurements and the symbolic voronoi projection of 'Tahrir Roundabout' over the Giza Nile and Pyramids. Some roundabouts of major public and commercial landmarks surround the pole of 'Ezbekia Garden' with a higher control than integral measurements, which filter the new spatial structure from the adjacent traditional town. Nevertheless, the least integral and control measures correspond to the voronoi contents of pollutant workshops and the plateau of old Cairo Citadel with the visual compensation of new royal landmarks on top. Meanwhile, the extended suburbs of infinite voronoi polygons arrange high control generators of chateaux housing in 'garden city' environs. The point pattern of roundabouts determines the geometrical characteristics of voronoi polygons. The measured lengths of voronoi edges alternate between the zoned short range at the new poles of Cairo and the distributed structure of longer range. Nevertheless, the shortest range of generator-vertex geometry concentrates at 'Ezbekia Garden' where the crossways of vast Cairo intersect, which maximizes the variety of choice at different spatial resolutions. However, the symbolic 'Hippodrome' which is the largest public landmark forms exclusive geometrical measurements, while structuring a most integrative roundabout to parallel the royal syntax. Overview of the symbolic convex hull of voronoi with space syntax interconnects Parisian Cairo with the spatial chronology of scattered monuments to conceive one universal Cairo structure. Accordingly, the approached methodology of 'voronoi-syntax' prospects the future conservation of roundabout Cairo at the inferred city-level concept. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=roundabout%20Cairo" title="roundabout Cairo">roundabout Cairo</a>, <a href="https://publications.waset.org/abstracts/search?q=first-order%20Voronoi" title=" first-order Voronoi"> first-order Voronoi</a>, <a href="https://publications.waset.org/abstracts/search?q=space%20syntax" title=" space syntax"> space syntax</a>, <a href="https://publications.waset.org/abstracts/search?q=spatial%20structure" title=" spatial structure"> spatial structure</a> </p> <a href="https://publications.waset.org/abstracts/41526/spatial-structure-of-first-order-voronoi-for-the-future-of-roundabout-cairo-since-1867" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41526.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">501</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2</span> A Web and Cloud-Based Measurement System Analysis Tool for the Automotive Industry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=C.%20A.%20Barros">C. A. Barros</a>, <a href="https://publications.waset.org/abstracts/search?q=Ana%20P.%20Barroso"> Ana P. Barroso</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Any industrial company needs to determine the amount of variation that exists within its measurement process and guarantee the reliability of their data, studying the performance of their measurement system, in terms of linearity, bias, repeatability and reproducibility and stability. This issue is critical for automotive industry suppliers, who are required to be certified by the 16949:2016 standard (replaces the ISO/TS 16949) of International Automotive Task Force, defining the requirements of a quality management system for companies in the automotive industry. Measurement System Analysis (MSA) is one of the mandatory tools. Frequently, the measurement system in companies is not connected to the equipment and do not incorporate the methods proposed by the Automotive Industry Action Group (AIAG). To address these constraints, an R&D project is in progress, whose objective is to develop a web and cloud-based MSA tool. This MSA tool incorporates Industry 4.0 concepts, such as, Internet of Things (IoT) protocols to assure the connection with the measuring equipment, cloud computing, artificial intelligence, statistical tools, and advanced mathematical algorithms. This paper presents the preliminary findings of the project. The web and cloud-based MSA tool is innovative because it implements all statistical tests proposed in the MSA-4 reference manual from AIAG as well as other emerging methods and techniques. As it is integrated with the measuring devices, it reduces the manual input of data and therefore the errors. The tool ensures traceability of all performed tests and can be used in quality laboratories and in the production lines. Besides, it monitors MSAs over time, allowing both the analysis of deviations from the variation of the measurements performed and the management of measurement equipment and calibrations. To develop the MSA tool a ten-step approach was implemented. Firstly, it was performed a benchmarking analysis of the current competitors and commercial solutions linked to MSA, concerning Industry 4.0 paradigm. Next, an analysis of the size of the target market for the MSA tool was done. Afterwards, data flow and traceability requirements were analysed in order to implement an IoT data network that interconnects with the equipment, preferably via wireless. The MSA web solution was designed under UI/UX principles and an API in python language was developed to perform the algorithms and the statistical analysis. Continuous validation of the tool by companies is being performed to assure real time management of the ‘big data’. The main results of this R&D project are: MSA Tool, web and cloud-based; Python API; New Algorithms to the market; and Style Guide of UI/UX of the tool. The MSA tool proposed adds value to the state of the art as it ensures an effective response to the new challenges of measurement systems, which are increasingly critical in production processes. Although the automotive industry has triggered the development of this innovative MSA tool, other industries would also benefit from it. Currently, companies from molds and plastics, chemical and food industry are already validating it. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=automotive%20Industry" title="automotive Industry">automotive Industry</a>, <a href="https://publications.waset.org/abstracts/search?q=industry%204.0" title=" industry 4.0"> industry 4.0</a>, <a href="https://publications.waset.org/abstracts/search?q=Internet%20of%20Things" title=" Internet of Things"> Internet of Things</a>, <a href="https://publications.waset.org/abstracts/search?q=IATF%2016949%3A2016" title=" IATF 16949:2016"> IATF 16949:2016</a>, <a href="https://publications.waset.org/abstracts/search?q=measurement%20system%20analysis" title=" measurement system analysis"> measurement system analysis</a> </p> <a href="https://publications.waset.org/abstracts/94048/a-web-and-cloud-based-measurement-system-analysis-tool-for-the-automotive-industry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/94048.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">214</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1</span> Location3: A Location Scouting Platform for the Support of Film and Multimedia Industries</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dimitrios%20Tzilopoulos">Dimitrios Tzilopoulos</a>, <a href="https://publications.waset.org/abstracts/search?q=Panagiotis%20Symeonidis"> Panagiotis Symeonidis</a>, <a href="https://publications.waset.org/abstracts/search?q=Michael%20Loufakis"> Michael Loufakis</a>, <a href="https://publications.waset.org/abstracts/search?q=Dimosthenis%20Ioannidis"> Dimosthenis Ioannidis</a>, <a href="https://publications.waset.org/abstracts/search?q=Dimitrios%20Tzovaras"> Dimitrios Tzovaras</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The domestic film industry in Greece has traditionally relied heavily on state support. While film productions are crucial for the country's economy, it has not fully capitalized on attracting and promoting foreign productions. The lack of motivation, organized state support for attraction and licensing, and the absence of location scouting have hindered its potential. Although recent legislative changes have addressed the first two of these issues, the development of a comprehensive location database and a search engine that would effectively support location scouting at the pre-production location scouting is still in its early stages. In addition to the expected benefits of the film, television, marketing, and multimedia industries, a location-scouting service platform has the potential to yield significant financial gains locally and nationally. By promoting featured places like cultural and archaeological sites, natural monuments, and attraction points for visitors, it plays a vital role in both cultural promotion and facilitating tourism development. This study introduces LOCATION3, an internet platform revolutionizing film production location management. It interconnects location providers, film crews, and multimedia stakeholders, offering a comprehensive environment for seamless collaboration. The platform's central geodatabase (PostgreSQL) stores each location’s attributes, while web technologies like HTML, JavaScript, CSS, React.js, and Redux power the user-friendly interface. Advanced functionalities, utilizing deep learning models, developed in Python, are integrated via Node.js. Visual data presentation is achieved using the JS Leaflet library, delivering an interactive map experience. LOCATION3 sets a new standard, offering a range of essential features to enhance the management of film production locations. Firstly, it empowers users to effortlessly upload audiovisual material enriched with geospatial and temporal data, such as location coordinates, photographs, videos, 360-degree panoramas, and 3D location models. With the help of cutting-edge deep learning algorithms, the application automatically tags these materials, while users can also manually tag them. Moreover, the application allows users to record locations directly through its user-friendly mobile application. Users can then embark on seamless location searches, employing spatial or descriptive criteria. This intelligent search functionality considers a combination of relevant tags, dominant colors, architectural characteristics, emotional associations, and unique location traits. One of the application's standout features is the ability to explore locations by their visual similarity to other materials, facilitated by a reverse image search. Also, the interactive map serves as both a dynamic display for locations and a versatile filter, adapting to the user's preferences and effortlessly enhancing location searches. To further streamline the process, the application facilitates the creation of location lightboxes, enabling users to efficiently organize and share their content via email. Going above and beyond location management, the platform also provides invaluable liaison, matchmaking, and online marketplace services. This powerful functionality bridges the gap between visual and three-dimensional geospatial material providers, local agencies, film companies, production companies, etc. so that those interested in a specific location can access additional material beyond what is stored on the platform, as well as access production services supporting the functioning and completion of productions in a location (equipment provision, transportation, catering, accommodation, etc.). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=deep%20learning%20models" title="deep learning models">deep learning models</a>, <a href="https://publications.waset.org/abstracts/search?q=film%20industry" title=" film industry"> film industry</a>, <a href="https://publications.waset.org/abstracts/search?q=geospatial%20data%20management" title=" geospatial data management"> geospatial data management</a>, <a href="https://publications.waset.org/abstracts/search?q=location%20scouting" title=" location scouting"> location scouting</a> </p> <a href="https://publications.waset.org/abstracts/169034/location3-a-location-scouting-platform-for-the-support-of-film-and-multimedia-industries" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/169034.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">71</span> </span> </div> </div> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>