CINXE.COM
Search results for: SWCNT
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: SWCNT</title> <meta name="description" content="Search results for: SWCNT"> <meta name="keywords" content="SWCNT"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="SWCNT" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="SWCNT"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 20</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: SWCNT</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20</span> Performance Analysis of Carbon Nanotube for VLSI Interconnects and Their Comparison with Copper Interconnects</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gagnesh%20Kumar">Gagnesh Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Prashant%20Gupta"> Prashant Gupta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper investigates the performance of the bundle of single wall carbon nanotubes (SWCNT) for low-power and high-speed interconnects for future VLSI applications. The power dissipation, delay and power delay product (PDP) of SWCNT bundle interconnects are examined and compared with that of the Cu interconnects at 22 nm technology node for both intermediate and global interconnects. The results show that SWCNT bundle consume less power and also faster than Cu for intermediate and global interconnects. It is concluded that the metallic SWCNT has been regarded as a viable candidate for intermediate and global interconnects in future technologies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon%20nanotube" title="carbon nanotube">carbon nanotube</a>, <a href="https://publications.waset.org/abstracts/search?q=SWCNT" title=" SWCNT"> SWCNT</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20power" title=" low power"> low power</a>, <a href="https://publications.waset.org/abstracts/search?q=delay" title=" delay"> delay</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20delay%20product" title=" power delay product"> power delay product</a>, <a href="https://publications.waset.org/abstracts/search?q=global%20and%20intermediate%20interconnects" title=" global and intermediate interconnects"> global and intermediate interconnects</a> </p> <a href="https://publications.waset.org/abstracts/9055/performance-analysis-of-carbon-nanotube-for-vlsi-interconnects-and-their-comparison-with-copper-interconnects" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9055.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">320</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19</span> Chaotic Motion of Single-Walled Carbon Nanotube Subject to Damping Effect</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tai-Ping%20Chang">Tai-Ping Chang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the present study, the effects on chaotic motion of single-walled carbon nanotube (SWCNT) due to the linear and nonlinear damping are investigated. By using the Hamilton’s principle, the nonlinear governing equation of the single-walled carbon nanotube embedded in a matrix is derived. The Galerkin’s method is adopted to simplify the integro-partial differential equation into a nonlinear dimensionless governing equation for the SWCNT, which turns out to be a forced Duffing equation. The variations of the Lyapunov exponents of the SWCNT with damping and harmonic forcing amplitudes are investigated. Based on the computations of the top Lyapunov exponent, it is concluded that the chaotic motion of the SWCNT occurs when the amplitude of the periodic excitation exceeds certain value, besides, the chaotic motion of the SWCNT occurs with small linear damping and tiny nonlinear damping. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chaotic%20motion" title="chaotic motion">chaotic motion</a>, <a href="https://publications.waset.org/abstracts/search?q=damping" title=" damping"> damping</a>, <a href="https://publications.waset.org/abstracts/search?q=Lyapunov%20exponents" title=" Lyapunov exponents"> Lyapunov exponents</a>, <a href="https://publications.waset.org/abstracts/search?q=single-walled%20carbon%20nanotube" title=" single-walled carbon nanotube"> single-walled carbon nanotube</a> </p> <a href="https://publications.waset.org/abstracts/43091/chaotic-motion-of-single-walled-carbon-nanotube-subject-to-damping-effect" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43091.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">320</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18</span> Investigation of Chlorophylls a and b Interaction with Inner and Outer Surfaces of Single-Walled Carbon Nanotube Using Molecular Dynamics Simulation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Dehestani">M. Dehestani</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Ghasemi-Kooch"> M. Ghasemi-Kooch</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, adsorption of chlorophylls a and b pigments in aqueous solution on the inner and outer surfaces of single-walled carbon nanotube (SWCNT) has been studied using molecular dynamics simulation. The linear interaction energy algorithm has been used to calculate the binding free energy. The results show that the adsorption of two pigments is fine on the both positions. Although there is the close similarity between these two pigments, their interaction with the nanotube is different. This result is useful to separate these pigments from one another. According to interaction energy between the pigments and carbon nanotube, interaction between these pigments-SWCNT on the inner surface is stronger than the outer surface. The interaction of SWCNT with chlorophylls phytol tail is stronger than the interaction of SWCNT with porphyrin ring of chlorophylls. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adsorption" title="adsorption">adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=chlorophyll" title=" chlorophyll"> chlorophyll</a>, <a href="https://publications.waset.org/abstracts/search?q=interaction" title=" interaction"> interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20dynamics%20simulation" title=" molecular dynamics simulation"> molecular dynamics simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=nanotube" title=" nanotube"> nanotube</a> </p> <a href="https://publications.waset.org/abstracts/78825/investigation-of-chlorophylls-a-and-b-interaction-with-inner-and-outer-surfaces-of-single-walled-carbon-nanotube-using-molecular-dynamics-simulation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78825.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">235</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17</span> Transparent and Solution Processable Low Contact Resistance SWCNT/AZONP Bilayer Electrodes for Sol-Gel Metal Oxide Thin Film Transistor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Su%20Jeong%20Lee">Su Jeong Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Tae%20Il%20Lee"> Tae Il Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Jung%20Han%20Kim"> Jung Han Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Chul-Hong%20Kim"> Chul-Hong Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Gee%20Sung%20Chae"> Gee Sung Chae</a>, <a href="https://publications.waset.org/abstracts/search?q=Jae-Min%20Myoung"> Jae-Min Myoung</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The contact resistance between source/drain electrodes and semiconductor layer is an important parameter affecting electron transporting performance in the thin film transistor (TFT). In this work, we introduced a transparent and the solution prossable single-walled carbon nanotube (SWCNT)/Al-doped ZnO nano particle (AZO NP) bilayer electrodes showing low contact resistance with indium-oxide (In2O3) sol gel thin film. By inserting low work function AZO NPs into the interface between the SWCNTs and the In2O3 which has a high energy barrier, we could obtain an electrical Ohmic contact between them. Finally, with the SWCNT-AZO NP bilayer electrodes, we successfully fabricated a TFT showing a field effect mobility of 5.38 cm2/V∙s at 250 °C. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=single-walled%20carbon%20nanotube%20%28SWCNT%29" title="single-walled carbon nanotube (SWCNT)">single-walled carbon nanotube (SWCNT)</a>, <a href="https://publications.waset.org/abstracts/search?q=Al-doped%20ZnO%20%28AZO%29%20nanoparticle" title=" Al-doped ZnO (AZO) nanoparticle"> Al-doped ZnO (AZO) nanoparticle</a>, <a href="https://publications.waset.org/abstracts/search?q=contact%20resistance" title=" contact resistance"> contact resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=thin-film%20transistor%20%28TFT%29" title=" thin-film transistor (TFT) "> thin-film transistor (TFT) </a> </p> <a href="https://publications.waset.org/abstracts/19325/transparent-and-solution-processable-low-contact-resistance-swcntazonp-bilayer-electrodes-for-sol-gel-metal-oxide-thin-film-transistor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19325.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">531</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16</span> Single-Walled Carbon Nanotube Synthesis by Chemical Vapor Deposition Using Platinum-Group Metal Catalysts</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=T.%20Maruyama">T. Maruyama</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Saida"> T. Saida</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Naritsuka"> S. Naritsuka</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Iijima"> S. Iijima</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Single-walled carbon nanotubes (SWCNTs) are generally synthesized by chemical vapor deposition (CVD) using Fe, Co, and Ni as catalysts. However, due to the Ostwald ripening of metal catalysts, the diameter distribution of the grown SWCNTs is considerably wide (>2 nm), which is not suitable for electronics applications. In addition, reduction in the growth temperature is desirable for fabricating SWCNT devices compatible with the LSI process. Herein, we performed SWCNT growth by alcohol catalytic CVD using platinum-group metal catalysts (Pt, Rh, and Pd) because these metals have high melting points, and the reduction in the Ostwald ripening of catalyst particles is expected. Our results revealed that web-like SWCNTs were obtained from Pt and Rh catalysts at growth temperature between 500 °C and 600 °C by optimizing the ethanol pressure. The SWCNT yield from Pd catalysts was considerably low. By decreasing the growth temperature, the diameter and chirality distribution of SWCNTs from Pt and Rh catalysts became small and narrow. In particular, the diameters of most SWCNTs grown using Pt catalysts were below 1 nm and their diameter distribution was considerably narrow. On the contrary, SWCNTs can grow from Rh catalysts even at 300 °C by optimizing the growth condition, which is the lowest temperature recorded for SWCNT growth. Our results demonstrated that platinum-group metals are useful for the growth of small-diameter SWCNTs and facilitate low-temperature growth. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon%20nanotube" title="carbon nanotube">carbon nanotube</a>, <a href="https://publications.waset.org/abstracts/search?q=chemical%20vapor%20deposition" title=" chemical vapor deposition"> chemical vapor deposition</a>, <a href="https://publications.waset.org/abstracts/search?q=catalyst" title=" catalyst"> catalyst</a>, <a href="https://publications.waset.org/abstracts/search?q=platinum" title=" platinum"> platinum</a>, <a href="https://publications.waset.org/abstracts/search?q=rhodium" title=" rhodium"> rhodium</a>, <a href="https://publications.waset.org/abstracts/search?q=palladium" title=" palladium"> palladium</a> </p> <a href="https://publications.waset.org/abstracts/90219/single-walled-carbon-nanotube-synthesis-by-chemical-vapor-deposition-using-platinum-group-metal-catalysts" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/90219.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">347</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15</span> A Comparative Study of Single- and Multi-Walled Carbon Nanotube Incorporation to Indium Tin Oxide Electrodes for Solar Cells </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=G.%20Gokceli">G. Gokceli</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20Eksik"> O. Eksik</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Ozkan%20Zayim"> E. Ozkan Zayim</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Karatepe"> N. Karatepe</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Alternative electrode materials for optoelectronic devices have been widely investigated in recent years. Since indium tin oxide (ITO) is the most preferred transparent conductive electrode, producing ITO films by simple and cost-effective solution-based techniques with enhanced optical and electrical properties has great importance. In this study, single- and multi-walled carbon nanotubes (SWCNT and MWCNT) incorporated into the ITO structure to increase electrical conductivity, mechanical strength, and chemical stability. Carbon nanotubes (CNTs) were firstly functionalized by acid treatment (HNO<sub>3</sub>:H<sub>2</sub>SO<sub>4</sub>), and the thermal resistance of CNTs after functionalization was determined by thermogravimetric analysis (TGA). Thin films were then prepared by spin coating technique and characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), four-point probe measurement system and UV-Vis spectrophotometer. The effects of process parameters were compared for ITO, MWCNT-ITO, and SWCNT-ITO films. Two factors including CNT concentration and annealing temperature were considered. The UV-Vis measurements demonstrated that the transmittance of ITO films was 83.58% at 550 nm, which was decreased depending on the concentration of CNT dopant. On the other hand, both CNT dopants provided an enhancement in the crystalline structure and electrical conductivity. Due to compatible diameter and better dispersibility of SWCNTs in the ITO solution, the best result in terms of electrical conductivity was obtained by SWCNT-ITO films with the 0.1 g/L SWCNT dopant concentration and heat-treatment at 550 °C for 1 hour. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CNT%20incorporation" title="CNT incorporation">CNT incorporation</a>, <a href="https://publications.waset.org/abstracts/search?q=ITO%20electrode" title=" ITO electrode"> ITO electrode</a>, <a href="https://publications.waset.org/abstracts/search?q=spin%20coating" title=" spin coating"> spin coating</a>, <a href="https://publications.waset.org/abstracts/search?q=thin%20film" title=" thin film"> thin film</a> </p> <a href="https://publications.waset.org/abstracts/101020/a-comparative-study-of-single-and-multi-walled-carbon-nanotube-incorporation-to-indium-tin-oxide-electrodes-for-solar-cells" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/101020.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">115</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14</span> Charge Trapping on a Single-wall Carbon Nanotube Thin-film Transistor with Several Electrode Metals for Memory Function Mimicking</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ameni%20Mahmoudi">Ameni Mahmoudi</a>, <a href="https://publications.waset.org/abstracts/search?q=Manel%20Troudi"> Manel Troudi</a>, <a href="https://publications.waset.org/abstracts/search?q=Paolo%20Bondavalli"> Paolo Bondavalli</a>, <a href="https://publications.waset.org/abstracts/search?q=Nabil%20Sghaier"> Nabil Sghaier</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, the charge storage on thin-film SWCNT transistors was investigated, and C-V hysteresis tests showed that interface charge trapping effects predominate the memory window. Two electrode materials were utilized to demonstrate that selecting the appropriate metal electrode clearly improves the conductivity and, consequently, the SWCNT thin-film’s memory effect. Because their work function is similar to that of thin-film carbon nanotubes, Ti contacts produce higher charge confinement and show greater charge storage than Pd contacts. For Pd-contact CNTFETs and CNTFETs with Ti electrodes, a sizable clockwise hysteresis window was seen in the dual sweep circle with a threshold voltage shift of V11.52V and V9.7V, respectively. The SWCNT thin-film based transistor is expected to have significant trapping and detrapping charges because of the large C-V hysteresis. We have found that the predicted stored charge density for CNTFETs with Ti contacts is approximately 4.01×10-2C.m-2, which is nearly twice as high as the charge density of the device with Pd contacts. We have shown that the amount of trapped charges can be changed by sweeping the range or Vgs rate. We also looked into the variation in the flat band voltage (V FB) vs. time in order to determine the carrier retention period in CNTFETs with Ti and Pd electrodes. The outcome shows that memorizing trapped charges is about 300 seconds, which is a crucial finding for memory function mimicking. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=charge%20storage" title="charge storage">charge storage</a>, <a href="https://publications.waset.org/abstracts/search?q=thin-film%20SWCNT%20based%20transistors" title=" thin-film SWCNT based transistors"> thin-film SWCNT based transistors</a>, <a href="https://publications.waset.org/abstracts/search?q=C-V%20hysteresis" title=" C-V hysteresis"> C-V hysteresis</a>, <a href="https://publications.waset.org/abstracts/search?q=memory%20effect" title=" memory effect"> memory effect</a>, <a href="https://publications.waset.org/abstracts/search?q=trapping%20and%20detrapping%20charges" title=" trapping and detrapping charges"> trapping and detrapping charges</a>, <a href="https://publications.waset.org/abstracts/search?q=stored%20charge%20density" title=" stored charge density"> stored charge density</a>, <a href="https://publications.waset.org/abstracts/search?q=the%20carrier%20retention%20time" title=" the carrier retention time"> the carrier retention time</a> </p> <a href="https://publications.waset.org/abstracts/159141/charge-trapping-on-a-single-wall-carbon-nanotube-thin-film-transistor-with-several-electrode-metals-for-memory-function-mimicking" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/159141.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">80</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13</span> Thin-Film Nanocomposite Membrane with Single-Walled Carbon Nanotubes Axial Positioning in Support Layer for Desalination of Water</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20A.%20Alghamdi">Ahmed A. Alghamdi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Single-walled carbon nanotubes (SWCNTs) are an outstanding material for applications in thermoelectric power generation, nanoelectronics, electrochemical energy storage, photovoltaics, and light emission. They are ultra-lightweight and possess electrical as well as thermal conductivity, flexibility, and mechanical strength. SWCNT is applicable in water treatment, brine desalination, removal of heavy metal ions associated with pollutants, and oil-water separation. Carbon nanotube (CNT) is believed to tackle the trade-off issue between permeability, selectivity, and fouling issues in membrane filtration applications. Studying these CNT structures, as well as their interconnection in nanotechnology, assists in finding the precise position to be placed for water desalination. Reverse osmosis (RO) has been used globally for desalination, resulting in purified water. Thin film composite (TFC) membranes were utilized in the RO process for desalination. The sheet thickness increases the salt rejection and decreases the water flux when CNT is utilized as a support layer to this membrane. Thus, through a temperature-induced phase separation technique (TIPS), axially aligned SWCNT (AASWCNT) is fabricated, and its use enhances the salt rejection and water flux at short reaction times with a modified procedure. An evaluation was conducted and analogized with prior works in the literature, which exhibited that the prepared TFC membrane showed a better outcome. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=single-walled%20carbon%20nanotubes" title="single-walled carbon nanotubes">single-walled carbon nanotubes</a>, <a href="https://publications.waset.org/abstracts/search?q=thin%20film%20composite" title=" thin film composite"> thin film composite</a>, <a href="https://publications.waset.org/abstracts/search?q=axially%20aligned%20swcnt" title=" axially aligned swcnt"> axially aligned swcnt</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature%20induced%20phase%20separation%20technique" title=" temperature induced phase separation technique"> temperature induced phase separation technique</a>, <a href="https://publications.waset.org/abstracts/search?q=reverse%20osmosis" title=" reverse osmosis"> reverse osmosis</a> </p> <a href="https://publications.waset.org/abstracts/180409/thin-film-nanocomposite-membrane-with-single-walled-carbon-nanotubes-axial-positioning-in-support-layer-for-desalination-of-water" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/180409.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">51</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12</span> Sonodynamic Activity of Porphyrins-SWCNT</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=F.%20Bosca">F. Bosca</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Foglietta"> F. Foglietta</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Turci"> F. Turci</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Calcio%20Gaudino"> E. Calcio Gaudino</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Mana"> S. Mana</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Dosio"> F. Dosio</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Canaparo"> R. Canaparo</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Serpe"> L. Serpe</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Barge"> A. Barge</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent years, medical science has improved chemotherapy, radiation therapy and adjuvant therapy and has developed newer targeted therapies as well as refining surgical techniques for removing cancer. However, the chances of surviving the disease depend greatly on the type and location of the cancer and the extent of the disease at the start of treatment. Moreover, mainstream forms of cancer treatment have side effects which range from the unpleasant to the fatal. Therefore, the continuation of progress in anti-cancer therapy may depend on placing emphasis on other existing but less thoroughly investigated therapeutic approaches such as Sonodynamic Therapy (SDT). SDT is based on the local activation of a so called 'sonosensitizer', a molecule able to be excited by ultrasound, the radical production as a consequence of its relaxation processes and cell death due to different mechanisms induced by radical production. The present work deals with synthesis, characterization and preliminary in vitro test of Single Walled Carbon Nanotubes (SWCNT) decorated with porphyrins and biological vectors. The SWCNT’s surface was modified exploiting 1, 3-dipolar cycloaddition or Dies Alder reactions. For this purpose, different porphyrins scaffolds were ad-hoc synthesized using also non-conventional techniques. To increase cellular specificity of porphyrin-conjugated SWCNTs and to improve their ability to be suspended in aqueous solution, the modified nano-tubes were grafted with suitable glutamine or hyaluronic acid derivatives. These nano-sized sonosensitizers were characterized by several methodologies and tested in vitro on different cancer cell lines. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sonodynamic%20therapy" title="sonodynamic therapy">sonodynamic therapy</a>, <a href="https://publications.waset.org/abstracts/search?q=porphyrins%20synthesis%20and%20modification" title=" porphyrins synthesis and modification"> porphyrins synthesis and modification</a>, <a href="https://publications.waset.org/abstracts/search?q=SWNCT%20grafting" title=" SWNCT grafting"> SWNCT grafting</a>, <a href="https://publications.waset.org/abstracts/search?q=hyaluronic%20acid" title=" hyaluronic acid"> hyaluronic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=anti-cancer%20treatment" title=" anti-cancer treatment"> anti-cancer treatment</a> </p> <a href="https://publications.waset.org/abstracts/4873/sonodynamic-activity-of-porphyrins-swcnt" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4873.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">390</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11</span> Adsorption of Chlorinated Pesticides in Drinking Water by Carbon Nanotubes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hacer%20Sule%20Gonul">Hacer Sule Gonul</a>, <a href="https://publications.waset.org/abstracts/search?q=Vedat%20Uyak"> Vedat Uyak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Intensive use of pesticides in agricultural activity causes mixing of these compounds into water sources with surface flow. Especially after the 1970s, a number of limitations imposed on the use of chlorinated pesticides that have a carcinogenic risk potential and regulatory limit have been established. These chlorinated pesticides discharge to water resources, transport in the water and land environment and accumulation in the human body through the food chain raises serious health concerns. Carbon nanotubes (CNTs) have attracted considerable attention from on all because of their excellent mechanical, electrical, and environmental characteristics. Due to CNT particles' high degree of hydrophobic surfaces, these nanoparticles play critical role in the removal of water contaminants of natural organic matters, pesticides and phenolic compounds in water sources. Health concerns associated with chlorinated pesticides requires the removal of such contaminants from aquatic environment. Although the use of aldrin and atrazine was restricted in our country, repatriation of illegal entry and widespread use of such chemicals in agricultural areas cause increases for the concentration of these chemicals in the water supply. In this study, the compounds of chlorinated pesticides such as aldrin and atrazine compounds would be tried to eliminate from drinking water with carbon nanotube adsorption method. Within this study, 2 different types of CNT would be used including single-wall (SWCNT) and multi-wall (MWCNT) carbon nanotubes. Adsorption isotherms within the scope of work, the parameters affecting the adsorption of chlorinated pesticides in water are considered as pH, contact time, CNT type, CNT dose and initial concentration of pesticides. As a result, under conditions of neutral pH conditions with MWCNT respectively for atrazine and aldrin obtained adsorption capacity of determined as 2.24 µg/mg ve 3.84 µg/mg. On the other hand, the determined adsorption capacity rates for SWCNT for aldrin and atrazine has identified as 3.91 µg/mg ve 3.92 µg/mg. After all, each type of pesticide that provides superior performance in relieving SWCNT particles has emerged. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pesticide" title="pesticide">pesticide</a>, <a href="https://publications.waset.org/abstracts/search?q=drinking%20water" title=" drinking water"> drinking water</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20nanotube" title=" carbon nanotube"> carbon nanotube</a>, <a href="https://publications.waset.org/abstracts/search?q=adsorption" title=" adsorption"> adsorption</a> </p> <a href="https://publications.waset.org/abstracts/81463/adsorption-of-chlorinated-pesticides-in-drinking-water-by-carbon-nanotubes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81463.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">170</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10</span> Molecular Dynamics Simulation for Buckling Analysis at Nanocomposite Beams</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Babak%20Safaei">Babak Safaei</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20M.%20Fattahi"> A. M. Fattahi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the present study we have investigated axial buckling characteristics of nanocomposite beams reinforced by single-walled carbon nanotubes (SWCNTs). Various types of beam theories including Euler-Bernoulli beam theory, Timoshenko beam theory and Reddy beam theory were used to analyze the buckling behavior of carbon nanotube-reinforced composite beams. Generalized differential quadrature (GDQ) method was utilized to discretize the governing differential equations along with four commonly used boundary conditions. The material properties of the nanocomposite beams were obtained using molecular dynamic (MD) simulation corresponding to both short-(10,10) SWCNT and long-(10,10) SWCNT composites which were embedded by amorphous polyethylene matrix. Then the results obtained directly from MD simulations were matched with those calculated by the mixture rule to extract appropriate values of carbon nanotube efficiency parameters accounting for the scale-dependent material properties. The selected numerical results were presented to indicate the influences of nanotube volume fractions and end supports on the critical axial buckling loads of nanocomposite beams relevant to long- and short-nanotube composites. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanocomposites" title="nanocomposites">nanocomposites</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20dynamics%20simulation" title=" molecular dynamics simulation"> molecular dynamics simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=axial%20buckling" title=" axial buckling"> axial buckling</a>, <a href="https://publications.waset.org/abstracts/search?q=generalized%20differential%20quadrature%20%28GDQ%29" title=" generalized differential quadrature (GDQ)"> generalized differential quadrature (GDQ)</a> </p> <a href="https://publications.waset.org/abstracts/38174/molecular-dynamics-simulation-for-buckling-analysis-at-nanocomposite-beams" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38174.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">325</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9</span> Vibration Behavior of Nanoparticle Delivery in a Single-Walled Carbon Nanotube Using Nonlocal Timoshenko Beam Theory</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Haw-Long%20Lee">Haw-Long Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Win-Jin%20Chang"> Win-Jin Chang</a>, <a href="https://publications.waset.org/abstracts/search?q=Yu-Ching%20Yang"> Yu-Ching Yang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the paper, the coupled equation of motion for the dynamic displacement of a fullerene moving in a (10,10) single-walled carbon nanotube (SWCNT) is derived using nonlocal Timoshenko beam theory, including the effects of rotary inertia and shear deformation. The effects of confined stiffness between the fullerene and nanotube, foundation stiffness, and nonlocal parameter on the dynamic behavior are analyzed using the Runge-Kutta Method. The numerical solution is in agreement with the analytical result for the special case. The numerical results show that increasing the confined stiffness and foundation stiffness decrease the dynamic displacement of SWCNT. However, the dynamic displacement increases with increasing the nonlocal parameter. In addition, result using the Euler beam theory and the Timoshenko beam theory are compared. It can be found that ignoring the effects of rotary inertia and shear deformation leads to an underestimation of the displacement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=single-walled%20carbon%20nanotube" title="single-walled carbon nanotube">single-walled carbon nanotube</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoparticle%20delivery" title=" nanoparticle delivery"> nanoparticle delivery</a>, <a href="https://publications.waset.org/abstracts/search?q=Nonlocal%20Timoshenko%20beam%20theory" title=" Nonlocal Timoshenko beam theory"> Nonlocal Timoshenko beam theory</a>, <a href="https://publications.waset.org/abstracts/search?q=Runge-Kutta%20Method" title=" Runge-Kutta Method"> Runge-Kutta Method</a>, <a href="https://publications.waset.org/abstracts/search?q=Van%20der%20Waals%20force" title=" Van der Waals force"> Van der Waals force</a> </p> <a href="https://publications.waset.org/abstracts/65037/vibration-behavior-of-nanoparticle-delivery-in-a-single-walled-carbon-nanotube-using-nonlocal-timoshenko-beam-theory" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65037.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">377</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8</span> Development of a Myocardial Patch with 3D Hydrogel Electrical Stimulation System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yung-Gi%20Chen">Yung-Gi Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Pei-Leun%20Kang"> Pei-Leun Kang</a>, <a href="https://publications.waset.org/abstracts/search?q=Yu-Hsin%20Lin"> Yu-Hsin Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Shwu-Jen%20Chang"> Shwu-Jen Chang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Myocardial tissue has limited self-repair ability due to its loss of differentiation characteristic for most mature cardiomyocytes. Therefore, the effective use of stem cell technology in regenerative medicine is an important development to alleviate the current difficulties in cardiac disease treatment. The main purpose of this project was to develop a 3-D hydrogel electrical stimulating system for promoting the differentiation of stem cells into myocardial cells, and the patch will be used to repair damaged myocardial tissue. This project was focused on the preparation of the electrical stimulation system with carbon/CaCl₂ electrodes covered with carbon nanotube-hydrogel. In this study, we utilized screen imprinting techniques and used Poly(lactic-co-glycolic acid)(PLGA) membranes as printing substrates to fabricate a carbon/CaCl₂ interdigitated electrode that covered with alginate/carbon nanotube hydrogels. The single-walled carbon nanotube was added in the hydrogel to enhance the mechanical strength and conductivity of hydrogel. In this study, we used PLGA (85:15) as electrode preparing substrate. The CaCl₂/ EtOH solution (80% w/v) was mixed into carbon paste to prepare various concentration calcium-containing carbon paste (2.5%, 5%, 7.5%, 10% v/v). Different concentrations of alginate (1%, 1.5%, 2% v/v) and SWCNT(Diameter < 2nm, length between 5-15μm) (1, 1.5, 3 mg/ml) are gently immobilized on the electrode by cross-linking with calcium chloride. The three-dimensional hydrogel electrode was tested for its redox efficiency by cyclic voltammetry to determine the optimal parameters for the hydrogel electrode preparation. From the result of the final electrodes, it indicated that the electrode was not easy to maintain the pattern of the interdigitated electrode when the concentration of calcium of chloride was more than 10%. According to the gel rate test and cyclic voltammetry experiment results showed the SWCNT could increase the electron conduction of hydrogel electrodes significantly. So far the 3D electrode system has been completed, 2% alginate mixed with 3mg SWCNT is the optimal condition to construct the most complete structure for the hydrogel preparation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=myocardial%20tissue%20engineering" title="myocardial tissue engineering">myocardial tissue engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=screen%20printing%20technology" title=" screen printing technology"> screen printing technology</a>, <a href="https://publications.waset.org/abstracts/search?q=poly%20%28lactic-co-glycolic%20acid%29" title=" poly (lactic-co-glycolic acid)"> poly (lactic-co-glycolic acid)</a>, <a href="https://publications.waset.org/abstracts/search?q=alginate" title=" alginate"> alginate</a>, <a href="https://publications.waset.org/abstracts/search?q=single%20walled%20carbon%20nanotube" title=" single walled carbon nanotube"> single walled carbon nanotube</a> </p> <a href="https://publications.waset.org/abstracts/98452/development-of-a-myocardial-patch-with-3d-hydrogel-electrical-stimulation-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/98452.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">112</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7</span> Molecular Dynamics Simulation for Vibration Analysis at Nanocomposite Plates</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Babak%20Safaei">Babak Safaei</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20M.%20Fattahi"> A. M. Fattahi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Polymer/carbon nanotube nanocomposites have a wide range of promising applications Due to their enhanced properties. In this work, free vibration analysis of single-walled carbon nanotube-reinforced composite plates is conducted in which carbon nanotubes are embedded in an amorphous polyethylene. The rule of mixture based on various types of plate model namely classical plate theory (CLPT), first-order shear deformation theory (FSDT), and higher-order shear deformation theory (HSDT) was employed to obtain fundamental frequencies of the nanocomposite plates. Generalized differential quadrature (GDQ) method was used to discretize the governing differential equations along with the simply supported and clamped boundary conditions. The material properties of the nanocomposite plates were evaluated using molecular dynamic (MD) simulation corresponding to both short-(10,10) SWCNT and long-(10,10) SWCNT composites. Then the results obtained directly from MD simulations were fitted with those calculated by the rule of mixture to extract appropriate values of carbon nanotube efficiency parameters accounting for the scale-dependent material properties. The selected numerical results are presented to address the influences of nanotube volume fraction and edge supports on the value of fundamental frequency of carbon nanotube-reinforced composite plates corresponding to both long- and short-nanotube composites. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanocomposites" title="nanocomposites">nanocomposites</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20dynamics%20simulation" title=" molecular dynamics simulation"> molecular dynamics simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=free%20vibration" title=" free vibration"> free vibration</a>, <a href="https://publications.waset.org/abstracts/search?q=generalized" title=" generalized"> generalized</a>, <a href="https://publications.waset.org/abstracts/search?q=differential%20quadrature%20%28GDQ%29%20method" title=" differential quadrature (GDQ) method"> differential quadrature (GDQ) method</a> </p> <a href="https://publications.waset.org/abstracts/38175/molecular-dynamics-simulation-for-vibration-analysis-at-nanocomposite-plates" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38175.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">329</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6</span> Characterization of Inkjet-Printed Carbon Nanotube Electrode Patterns on Cotton Fabric</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20Najafi">N. Najafi</a>, <a href="https://publications.waset.org/abstracts/search?q=Laleh%20Maleknia"> Laleh Maleknia </a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20E.%20Olya"> M. E. Olya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An aqueous conductive ink of single-walled carbon nanotubes for inkjet printing was formulated. To prepare the homogeneous SWCNT ink in a size small enough not to block a commercial inkjet printer nozzle, we used a kinetic ball-milling process to disperse the SWCNTs in an aqueous suspension. When a patterned electrode was overlaid by repeated inkjet printings of the ink on various types of fabric, the fabric resistance decreased rapidly following a power law, reaching approximately 760 X/sq, which is the lowest value ever for a dozen printings. The Raman and Fourier transform infrared spectra revealed that the oxidation of the SWCNTs was the source of the doped impurities. This study proved also that the droplet ejection velocity can have an impact on the CNT distribution and consequently on the electrical performances of the ink. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ink-jet%20printing" title="ink-jet printing">ink-jet printing</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20nanotube" title=" carbon nanotube"> carbon nanotube</a>, <a href="https://publications.waset.org/abstracts/search?q=fabric%20ink" title=" fabric ink"> fabric ink</a>, <a href="https://publications.waset.org/abstracts/search?q=cotton%20fabric" title=" cotton fabric"> cotton fabric</a>, <a href="https://publications.waset.org/abstracts/search?q=raman%20spectroscopy" title=" raman spectroscopy"> raman spectroscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=fourier%20transform%20infrared%20spectroscopy" title=" fourier transform infrared spectroscopy"> fourier transform infrared spectroscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=dozen%20printings" title=" dozen printings"> dozen printings</a> </p> <a href="https://publications.waset.org/abstracts/35339/characterization-of-inkjet-printed-carbon-nanotube-electrode-patterns-on-cotton-fabric" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35339.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">422</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5</span> Mechanical Properties of CNT Reinforced Composite Using Berkovich Nanoindentation Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khondaker%20Sakil%20Ahmed">Khondaker Sakil Ahmed</a>, <a href="https://publications.waset.org/abstracts/search?q=Ang%20Kok%20Keng"> Ang Kok Keng</a>, <a href="https://publications.waset.org/abstracts/search?q=Shah%20Md%20Muniruzzaman"> Shah Md Muniruzzaman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Spherical and Berkovich indentation tests are carried out numerically using finite element method for uniformly dispersed Carbon Nanotube (CNT) in the polymer matrix in which perfectly bonded CNT/matrix interface is considered. The Large strain elasto-plastic analysis is performed to investigate the actual scenario of nanoindentation test. This study investigates how the addition of CNT in polymer matrix influences the mechanical properties like hardness, elastic modulus of the nanocomposite. Since the wall thickness to radius ratio (t/r) is significantly small for SWCNT there is a huge possibility of lateral buckling which is a function of the location of indentation tip as well as the mechanical properties of matrix. Separate finite element models are constructed to compare the result with Berkovich indentation. This study also investigates the buckling behavior of different nanotube in a different polymer matrix. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon%20nanotube" title="carbon nanotube">carbon nanotube</a>, <a href="https://publications.waset.org/abstracts/search?q=elasto-plastic" title=" elasto-plastic"> elasto-plastic</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20model" title=" finite element model"> finite element model</a>, <a href="https://publications.waset.org/abstracts/search?q=nano-indentation" title=" nano-indentation"> nano-indentation</a> </p> <a href="https://publications.waset.org/abstracts/32191/mechanical-properties-of-cnt-reinforced-composite-using-berkovich-nanoindentation-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32191.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">389</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4</span> Magnetic Single-Walled Carbon Nanotubes (SWCNTs) as Novel Theranostic Nanocarriers: Enhanced Targeting and Noninvasive MRI Tracking</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Achraf%20Al%20Faraj">Achraf Al Faraj</a>, <a href="https://publications.waset.org/abstracts/search?q=Asma%20Sultana%20Shaik"> Asma Sultana Shaik</a>, <a href="https://publications.waset.org/abstracts/search?q=Baraa%20Al%20Sayed"> Baraa Al Sayed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Specific and effective targeting of drug delivery systems (DDS) to cancerous sites remains a major challenge for a better diagnostic and therapy. Recently, SWCNTs with their unique physicochemical properties and the ability to cross the cell membrane show promising in the biomedical field. The purpose of this study was first to develop a biocompatible iron oxide tagged SWCNTs as diagnostic nanoprobes to allow their noninvasive detection using MRI and their preferential targeting in a breast cancer murine model by placing an optimized flexible magnet over the tumor site. Magnetic targeting was associated to specific antibody-conjugated SWCNTs active targeting. The therapeutic efficacy of doxorubicin-conjugated SWCNTs was assessed, and the superiority of diffusion-weighted (DW-) MRI as sensitive imaging biomarker was investigated. Short Polyvinylpyrrolidone (PVP) stabilized water soluble SWCNTs were first developed, tagged with iron oxide nanoparticles and conjugated with Endoglin/CD105 monoclonal antibodies. They were then conjugated with doxorubicin drugs. SWCNTs conjugates were extensively characterized using TEM, UV-Vis spectrophotometer, dynamic light scattering (DLS) zeta potential analysis and electron spin resonance (ESR) spectroscopy. Their MR relaxivities (i.e. r1 and r2*) were measured at 4.7T and their iron content and metal impurities quantified using ICP-MS. SWCNTs biocompatibility and drug efficacy were then evaluated both in vitro and in vivo using a set of immunological assays. Luciferase enhanced bioluminescence 4T1 mouse mammary tumor cells (4T1-Luc2) were injected into the right inguinal mammary fat pad of Balb/c mice. Tumor bearing mice received either free doxorubicin (DOX) drug or SWCNTs with or without either DOX or iron oxide nanoparticles. A multi-pole 10x10mm high-energy flexible magnet was maintained over the tumor site during 2 hours post-injections and their properties and polarity were optimized to allow enhanced magnetic targeting of SWCNTs toward the primary tumor site. Tumor volume was quantified during the follow-up investigation study using a fast spin echo MRI sequence. In order to detect the homing of SWCNTs to the main tumor site, susceptibility-weighted multi-gradient echo (MGE) sequence was used to generate T2* maps. Apparent diffusion coefficient (ADC) measurements were also performed as a sensitive imaging biomarker providing early and better assessment of disease treatment. At several times post-SWCNT injection, histological analysis were performed on tumor extracts and iron-loaded SWCNT were quantified using ICP-MS in tumor sites, liver, spleen, kidneys, and lung. The optimized multi-poles magnet revealed an enhanced targeting of magnetic SWCNTs to the primary tumor site, which was found to be much higher than the active targeting achieved using antibody-conjugated SWCNTs. Iron-loading allowed their sensitive noninvasive tracking after intravenous administration using MRI. The active targeting of doxorubicin through magnetic antibody-conjugated SWCNTs nanoprobes was found to considerably decrease the primary tumor site and may have inhibited the development of metastasis in the tumor-bearing mice lung. ADC measurements in DW-MRI were found to significantly increase in a time-dependent manner after the injection of DOX-conjugated SWCNTs complexes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=single-walled%20carbon%20nanotubes" title="single-walled carbon nanotubes">single-walled carbon nanotubes</a>, <a href="https://publications.waset.org/abstracts/search?q=nanomedicine" title=" nanomedicine"> nanomedicine</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20resonance%20imaging" title=" magnetic resonance imaging"> magnetic resonance imaging</a>, <a href="https://publications.waset.org/abstracts/search?q=cancer%20diagnosis%20and%20therapy" title=" cancer diagnosis and therapy"> cancer diagnosis and therapy</a> </p> <a href="https://publications.waset.org/abstracts/19881/magnetic-single-walled-carbon-nanotubes-swcnts-as-novel-theranostic-nanocarriers-enhanced-targeting-and-noninvasive-mri-tracking" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19881.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">329</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3</span> Determination of Bisphenol A and Uric Acid by Modified Single-Walled Carbon Nanotube with Magnesium Layered Hydroxide 3-(4-Methoxyphenyl)Propionic Acid Nanocomposite </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Illyas%20Md%20Isa">Illyas Md Isa</a>, <a href="https://publications.waset.org/abstracts/search?q=Maryam%20Musfirah%20Che%20Sobry"> Maryam Musfirah Che Sobry</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamad%20Syahrizal%20Ahmad"> Mohamad Syahrizal Ahmad</a>, <a href="https://publications.waset.org/abstracts/search?q=Nurashikin%20Abd%20Azis"> Nurashikin Abd Azis</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A single-walled carbon nanotube (SWCNT) that has been modified with magnesium layered hydroxide 3-(4-methoxyphenyl)propionic acid nanocomposite was proposed for the determination of uric acid and bisphenol A by square wave voltammetry. The results obtained denote that MLH-MPP nanocomposites enhance the sensitivity of the voltammetry detection responses. The best performance is shown by the modified carbon nanotube paste electrode (CNTPE) with the composition of single-walled carbon nanotube: magnesium layered hydroxide 3-(4-methoxyphenyl)propionic acid nanocomposite at 100:15 (% w/w). The linear range where the sensor works well is within the concentration 1.0 10-7 – 1.0 10-4 and 3.0 10-7 – 1.0 10-4 for uric acid and bisphenol A respectively with the limit of detection of 1.0 10-7 M for both organics. The interferences of uric acid and bisphenol A with other organic were studied and most of them did not interfere. The results shown for each experimental parameter on the proposed CNTPE showed that it has high sensitivity, good selectivity, repeatability and reproducibility. Therefore, the modified CNTPE can be used for the determination of uric acid and bisphenol A in real samples such as blood, plastic bottles and foods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bisphenol%20A" title="bisphenol A">bisphenol A</a>, <a href="https://publications.waset.org/abstracts/search?q=magnesium%20layered%20hydroxide%203-%284-methoxyphenyl%29propionic%20acid%20nanocomposite" title=" magnesium layered hydroxide 3-(4-methoxyphenyl)propionic acid nanocomposite"> magnesium layered hydroxide 3-(4-methoxyphenyl)propionic acid nanocomposite</a>, <a href="https://publications.waset.org/abstracts/search?q=Nanocomposite" title=" Nanocomposite"> Nanocomposite</a>, <a href="https://publications.waset.org/abstracts/search?q=uric%20acid" title=" uric acid"> uric acid</a> </p> <a href="https://publications.waset.org/abstracts/84874/determination-of-bisphenol-a-and-uric-acid-by-modified-single-walled-carbon-nanotube-with-magnesium-layered-hydroxide-3-4-methoxyphenylpropionic-acid-nanocomposite" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84874.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">212</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2</span> Free Vibration Analysis of FG Nanocomposite Sandwich Beams Using Various Higher-Order Beam Theories</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saeed%20Kamarian">Saeed Kamarian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, free vibrations of Functionally Graded Sandwich (FGS) beams reinforced by randomly oriented Single-Walled Carbon Nanotubes (SWCNTs) are investigated. The Eshelby–Mori–Tanaka approach based on an equivalent fiber is used to investigate the material properties of the structure. The natural frequencies of the FGS nanocomposite beam are analyzed based on various Higher-order Shear Deformation Beam Theories (HSDBTs) and using an analytical method. The verification study represents the simplicity and accuracy of the method for free vibration analysis of nanocomposite beams. The effects of carbon nanotube volume fraction profiles in the face layers, length to span ratio and thicknesses of face layers on the natural frequency of structure are studied for the different HSDBTs. Results show that by utilizing the FGS type of structures, free vibration characteristics of structures can be improved. A comparison is also provided to show the difference between natural frequency responses of the FGS nanocomposite beam reinforced by aligned and randomly oriented SWCNT. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sandwich%20beam" title="sandwich beam">sandwich beam</a>, <a href="https://publications.waset.org/abstracts/search?q=nanocomposite%20beam" title=" nanocomposite beam"> nanocomposite beam</a>, <a href="https://publications.waset.org/abstracts/search?q=functionally%20graded%20materials" title=" functionally graded materials"> functionally graded materials</a>, <a href="https://publications.waset.org/abstracts/search?q=higher-order%20beam%20theories" title=" higher-order beam theories"> higher-order beam theories</a>, <a href="https://publications.waset.org/abstracts/search?q=Mori-Tanaka%20approach" title=" Mori-Tanaka approach"> Mori-Tanaka approach</a> </p> <a href="https://publications.waset.org/abstracts/36195/free-vibration-analysis-of-fg-nanocomposite-sandwich-beams-using-various-higher-order-beam-theories" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36195.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">462</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1</span> Dynamic Analysis of Functionally Graded Nano Composite Pipe with PZT Layers Subjected to Moving Load</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Morteza%20Raminnia">Morteza Raminnia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, dynamic analysis of functionally graded nano-composite pipe reinforced by single-walled carbon nano-tubes (SWCNTs) with simply supported boundary condition subjected to moving mechanical loads is investigated. The material properties of functionally graded carbon nano tube-reinforced composites (FG-CNTRCs) are assumed to be graded in the thickness direction and are estimated through a micro-mechanical model. In this paper polymeric matrix considered as isotropic material and for the CNTRC, uniform distribution (UD) and three types of FG distribution patterns of SWCNT reinforcements are considered. The system equation of motion is derived by using Hamilton's principle under the assumptions of first order shear deformation theory (FSDT).The thin piezoelectric layers embedded on inner and outer surfaces of FG-CNTRC layer are acted as distributed sensor and actuator to control dynamic characteristics of the FG-CNTRC laminated pipe. The modal analysis technique and Newmark's integration method are used to calculate the displacement and dynamic stress of the pipe subjected to moving loads. The effects of various material distribution and velocity of moving loads on dynamic behavior of the pipe is presented. This present approach is validated by comparing the numerical results with the published numerical results in literature. The results show that the above-mentioned effects play very important role on dynamic behavior of the pipe .This present work shows that some meaningful results that which are interest to scientific and engineering community in the field of FGM nano-structures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nano-composite" title="nano-composite">nano-composite</a>, <a href="https://publications.waset.org/abstracts/search?q=functionally%20garded%20material" title=" functionally garded material"> functionally garded material</a>, <a href="https://publications.waset.org/abstracts/search?q=moving%20load" title=" moving load"> moving load</a>, <a href="https://publications.waset.org/abstracts/search?q=active%20control" title=" active control"> active control</a>, <a href="https://publications.waset.org/abstracts/search?q=PZT%20layers" title=" PZT layers"> PZT layers</a> </p> <a href="https://publications.waset.org/abstracts/29642/dynamic-analysis-of-functionally-graded-nano-composite-pipe-with-pzt-layers-subjected-to-moving-load" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29642.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">419</span> </span> </div> </div> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>