CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;15 of 15 results for author: <span class="mathjax">Champenois, E G</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/physics" aria-role="search"> Searching in archive <strong>physics</strong>. <a href="/search/?searchtype=author&amp;query=Champenois%2C+E+G">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Champenois, E G"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Champenois%2C+E+G&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Champenois, E G"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.12764">arXiv:2402.12764</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2402.12764">pdf</a>, <a href="https://arxiv.org/format/2402.12764">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> </div> <p class="title is-5 mathjax"> Attosecond Delays in X-ray Molecular Ionization </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Driver%2C+T">Taran Driver</a>, <a href="/search/physics?searchtype=author&amp;query=Mountney%2C+M">Miles Mountney</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+J">Jun Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Ortmann%2C+L">Lisa Ortmann</a>, <a href="/search/physics?searchtype=author&amp;query=Al-Haddad%2C+A">Andre Al-Haddad</a>, <a href="/search/physics?searchtype=author&amp;query=Berrah%2C+N">Nora Berrah</a>, <a href="/search/physics?searchtype=author&amp;query=Bostedt%2C+C">Christoph Bostedt</a>, <a href="/search/physics?searchtype=author&amp;query=Champenois%2C+E+G">Elio G. Champenois</a>, <a href="/search/physics?searchtype=author&amp;query=DiMauro%2C+L+F">Louis F. DiMauro</a>, <a href="/search/physics?searchtype=author&amp;query=Duris%2C+J">Joseph Duris</a>, <a href="/search/physics?searchtype=author&amp;query=Garratt%2C+D">Douglas Garratt</a>, <a href="/search/physics?searchtype=author&amp;query=Glownia%2C+J+M">James M. Glownia</a>, <a href="/search/physics?searchtype=author&amp;query=Guo%2C+Z">Zhaoheng Guo</a>, <a href="/search/physics?searchtype=author&amp;query=Haxton%2C+D">Daniel Haxton</a>, <a href="/search/physics?searchtype=author&amp;query=Isele%2C+E">Erik Isele</a>, <a href="/search/physics?searchtype=author&amp;query=Ivanov%2C+I">Igor Ivanov</a>, <a href="/search/physics?searchtype=author&amp;query=Ji%2C+J">Jiabao Ji</a>, <a href="/search/physics?searchtype=author&amp;query=Kamalov%2C+A">Andrei Kamalov</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+S">Siqi Li</a>, <a href="/search/physics?searchtype=author&amp;query=Lin%2C+M">Ming-Fu Lin</a>, <a href="/search/physics?searchtype=author&amp;query=Marangos%2C+J+P">Jon P. Marangos</a>, <a href="/search/physics?searchtype=author&amp;query=Obaid%2C+R">Razib Obaid</a>, <a href="/search/physics?searchtype=author&amp;query=O%27Neal%2C+J+T">Jordan T. O&#39;Neal</a>, <a href="/search/physics?searchtype=author&amp;query=Rosenberger%2C+P">Philipp Rosenberger</a>, <a href="/search/physics?searchtype=author&amp;query=Shivaram%2C+N+H">Niranjan H. Shivaram</a> , et al. (12 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.12764v1-abstract-short" style="display: inline;"> The photoelectric effect is not truly instantaneous, but exhibits attosecond delays that can reveal complex molecular dynamics. Sub-femtosecond duration light pulses provide the requisite tools to resolve the dynamics of photoionization. Accordingly, the past decade has produced a large volume of work on photoionization delays following single photon absorption of an extreme ultraviolet (XUV) phot&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.12764v1-abstract-full').style.display = 'inline'; document.getElementById('2402.12764v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.12764v1-abstract-full" style="display: none;"> The photoelectric effect is not truly instantaneous, but exhibits attosecond delays that can reveal complex molecular dynamics. Sub-femtosecond duration light pulses provide the requisite tools to resolve the dynamics of photoionization. Accordingly, the past decade has produced a large volume of work on photoionization delays following single photon absorption of an extreme ultraviolet (XUV) photon. However, the measurement of time-resolved core-level photoionization remained out of reach. The required x-ray photon energies needed for core-level photoionization were not available with attosecond tabletop sources. We have now measured the x-ray photoemission delay of core-level electrons, and here report unexpectedly large delays, ranging up to 700 attoseconds in NO near the oxygen K-shell threshold. These measurements exploit attosecond soft x-ray pulses from a free-electron laser (XFEL) to scan across the entire region near the K-shell threshold. Furthermore, we find the delay spectrum is richly modulated, suggesting several contributions including transient trapping of the photoelectron due to shape resonances, collisions with the Auger-Meitner electron that is emitted in the rapid non-radiative relaxation of the molecule, and multi-electron scattering effects. The results demonstrate how x-ray attosecond experiments, supported by comprehensive theoretical modelling, can unravel the complex correlated dynamics of core-level photoionization. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.12764v1-abstract-full').style.display = 'none'; document.getElementById('2402.12764v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.03586">arXiv:2303.03586</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2303.03586">pdf</a>, <a href="https://arxiv.org/format/2303.03586">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> </div> <p class="title is-5 mathjax"> Femtosecond electronic and hydrogen structural dynamics in ammonia imaged with ultrafast electron diffraction </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Champenois%2C+E+G">Elio G. Champenois</a>, <a href="/search/physics?searchtype=author&amp;query=List%2C+N+H">Nanna H. List</a>, <a href="/search/physics?searchtype=author&amp;query=Ware%2C+M">Matthew Ware</a>, <a href="/search/physics?searchtype=author&amp;query=Britton%2C+M">Mathew Britton</a>, <a href="/search/physics?searchtype=author&amp;query=Bucksbaum%2C+P+H">Philip H. Bucksbaum</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+X">Xinxin Cheng</a>, <a href="/search/physics?searchtype=author&amp;query=Centurion%2C+M">Martin Centurion</a>, <a href="/search/physics?searchtype=author&amp;query=Cryan%2C+J+P">James P. Cryan</a>, <a href="/search/physics?searchtype=author&amp;query=Forbes%2C+R">Ruaridh Forbes</a>, <a href="/search/physics?searchtype=author&amp;query=Gabalski%2C+I">Ian Gabalski</a>, <a href="/search/physics?searchtype=author&amp;query=Hegazy%2C+K">Kareem Hegazy</a>, <a href="/search/physics?searchtype=author&amp;query=Hoffmann%2C+M+C">Matthias C. Hoffmann</a>, <a href="/search/physics?searchtype=author&amp;query=Howard%2C+A+J">Andrew J. Howard</a>, <a href="/search/physics?searchtype=author&amp;query=Ji%2C+F">Fuhao Ji</a>, <a href="/search/physics?searchtype=author&amp;query=Lin%2C+M">Ming-Fu Lin</a>, <a href="/search/physics?searchtype=author&amp;query=Nunes%2C+J+P">J. Pedro Nunes</a>, <a href="/search/physics?searchtype=author&amp;query=Shen%2C+X">Xiaozhe Shen</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+J">Jie Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+X">Xijie Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Martinez%2C+T+J">Todd J. Martinez</a>, <a href="/search/physics?searchtype=author&amp;query=Wolf%2C+T+J+A">Thomas J. A. Wolf</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.03586v1-abstract-short" style="display: inline;"> Directly imaging structural dynamics involving hydrogen atoms by ultrafast diffraction methods is complicated by their low scattering cross-sections. Here we demonstrate that megaelectronvolt ultrafast electron diffraction is sufficiently sensitive to follow hydrogen dynamics in isolated molecules. In a study of the photodissociation of gas phase ammonia, we simultaneously observe signatures of th&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.03586v1-abstract-full').style.display = 'inline'; document.getElementById('2303.03586v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.03586v1-abstract-full" style="display: none;"> Directly imaging structural dynamics involving hydrogen atoms by ultrafast diffraction methods is complicated by their low scattering cross-sections. Here we demonstrate that megaelectronvolt ultrafast electron diffraction is sufficiently sensitive to follow hydrogen dynamics in isolated molecules. In a study of the photodissociation of gas phase ammonia, we simultaneously observe signatures of the nuclear and corresponding electronic structure changes resulting from the dissociation dynamics in the time-dependent diffraction. Both assignments are confirmed by ab initio simulations of the photochemical dynamics and the resulting diffraction observable. While the temporal resolution of the experiment is insufficient to resolve the dissociation in time, our results represent an important step towards the observation of proton dynamics in real space and time. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.03586v1-abstract-full').style.display = 'none'; document.getElementById('2303.03586v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.13691">arXiv:2209.13691</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2209.13691">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-023-38513-6">10.1038/s41467-023-38513-6 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Rehybridization dynamics into the pericyclic minimum of an electrcyclic reaction imaged in real-time </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Y">Yusong Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Sanchez%2C+D+M">David M. Sanchez</a>, <a href="/search/physics?searchtype=author&amp;query=Ware%2C+M+R">Matthew R. Ware</a>, <a href="/search/physics?searchtype=author&amp;query=Champenois%2C+E+G">Elio G. Champenois</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+J">Jie Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Nunes%2C+J+P+F">J. Pedro F. Nunes</a>, <a href="/search/physics?searchtype=author&amp;query=Attar%2C+A">Andrew Attar</a>, <a href="/search/physics?searchtype=author&amp;query=Centurion%2C+M">Martin Centurion</a>, <a href="/search/physics?searchtype=author&amp;query=Cryan%2C+J+P">James P. Cryan</a>, <a href="/search/physics?searchtype=author&amp;query=Forbes%2C+R+G">Ruaridh G. Forbes</a>, <a href="/search/physics?searchtype=author&amp;query=Hegazy%2C+K">Kareem Hegazy</a>, <a href="/search/physics?searchtype=author&amp;query=Hoffmann%2C+M+C">Matthias C. Hoffmann</a>, <a href="/search/physics?searchtype=author&amp;query=Ji%2C+F">Fuhao Ji</a>, <a href="/search/physics?searchtype=author&amp;query=Lin%2C+M">Ming-Fu Lin</a>, <a href="/search/physics?searchtype=author&amp;query=Luo%2C+D">Duan Luo</a>, <a href="/search/physics?searchtype=author&amp;query=Saha%2C+S+K">Sajib K. Saha</a>, <a href="/search/physics?searchtype=author&amp;query=Shen%2C+X">Xiaozhe Shen</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+X">Xijie Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Mart%C3%ADnez%2C+T+J">Todd J. Mart铆nez</a>, <a href="/search/physics?searchtype=author&amp;query=Wolf%2C+T+J+A">Thomas J. A. Wolf</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.13691v1-abstract-short" style="display: inline;"> Electrocyclic reactions are characterized by the concerted formation and cleavage of both 蟽 and 蟺 bonds through a cyclic structure. This structure is known as a pericyclic transition state for thermal reactions and a pericyclic minimum in the excited state for photochemical reactions. However, the structure of the pericyclic geometry has yet to be observed experimentally. We use a combination of u&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.13691v1-abstract-full').style.display = 'inline'; document.getElementById('2209.13691v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.13691v1-abstract-full" style="display: none;"> Electrocyclic reactions are characterized by the concerted formation and cleavage of both 蟽 and 蟺 bonds through a cyclic structure. This structure is known as a pericyclic transition state for thermal reactions and a pericyclic minimum in the excited state for photochemical reactions. However, the structure of the pericyclic geometry has yet to be observed experimentally. We use a combination of ultrafast electron diffraction and excited state wavepacket simulations to image structural dynamics through the pericyclic minimum of a photochemical electrocyclic ring-opening reaction in the molecule 伪-terpinene. The structural motion into the pericyclic minimum is dominated by rehybridization of two carbon atoms, which is required for the transformation from two to three conjugated 蟺 bonds. The 蟽 bond dissociation largely happens after internal conversion from the pericyclic minimum to the electronic ground state. These findings may be transferrable to electrocyclic reactions in general. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.13691v1-abstract-full').style.display = 'none'; document.getElementById('2209.13691v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Combined manuscript and supplementary information</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2112.00863">arXiv:2112.00863</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2112.00863">pdf</a>, <a href="https://arxiv.org/format/2112.00863">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1107/S1600577522004283">10.1107/S1600577522004283 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Time-resolved Atomic, Molecular and Optical Science Instrument at the Linac Coherent Light Source </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Walter%2C+P">Peter Walter</a>, <a href="/search/physics?searchtype=author&amp;query=Osipov%2C+T">Timur Osipov</a>, <a href="/search/physics?searchtype=author&amp;query=Lin%2C+M">Ming-Fu Lin</a>, <a href="/search/physics?searchtype=author&amp;query=Cryan%2C+J">James Cryan</a>, <a href="/search/physics?searchtype=author&amp;query=Driver%2C+T">Taran Driver</a>, <a href="/search/physics?searchtype=author&amp;query=Kamalov%2C+A">Andrei Kamalov</a>, <a href="/search/physics?searchtype=author&amp;query=Marinelli%2C+A">Agostino Marinelli</a>, <a href="/search/physics?searchtype=author&amp;query=Robinson%2C+J">Joe Robinson</a>, <a href="/search/physics?searchtype=author&amp;query=Seaberg%2C+M">Matt Seaberg</a>, <a href="/search/physics?searchtype=author&amp;query=Wolf%2C+T+J+A">Thomas J. A. Wolf</a>, <a href="/search/physics?searchtype=author&amp;query=Aldrich%2C+J">Jeff Aldrich</a>, <a href="/search/physics?searchtype=author&amp;query=Brown%2C+N">Nolan Brown</a>, <a href="/search/physics?searchtype=author&amp;query=Champenois%2C+E+G">Elio G. Champenois</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+X">Xinxin Cheng</a>, <a href="/search/physics?searchtype=author&amp;query=Cocco%2C+D">Daniele Cocco</a>, <a href="/search/physics?searchtype=author&amp;query=Conder%2C+A">Alan Conder</a>, <a href="/search/physics?searchtype=author&amp;query=Curiel%2C+I">Ivan Curiel</a>, <a href="/search/physics?searchtype=author&amp;query=Egger%2C+A">Adam Egger</a>, <a href="/search/physics?searchtype=author&amp;query=Glownia%2C+J+M">James M. Glownia</a>, <a href="/search/physics?searchtype=author&amp;query=Heimann%2C+P">Philip Heimann</a>, <a href="/search/physics?searchtype=author&amp;query=Holmes%2C+M">Michael Holmes</a>, <a href="/search/physics?searchtype=author&amp;query=Johnson%2C+T">Tyler Johnson</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+X">Xiang Li</a>, <a href="/search/physics?searchtype=author&amp;query=Moeller%2C+S">Stefan Moeller</a>, <a href="/search/physics?searchtype=author&amp;query=Morton%2C+D">DanielS Morton</a> , et al. (17 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2112.00863v1-abstract-short" style="display: inline;"> The newly constructed Time-resolved atomic, Molecular and Optical science instrument (TMO), is configured to take full advantage of both linear accelerators at SLAC National Accelerator Laboratory, the copper accelerator operating at a repetition rate of 120 Hz providing high per pulse energy, as well as the superconducting accelerator operating at a repetition rate of about 1 MHz providing high a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.00863v1-abstract-full').style.display = 'inline'; document.getElementById('2112.00863v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2112.00863v1-abstract-full" style="display: none;"> The newly constructed Time-resolved atomic, Molecular and Optical science instrument (TMO), is configured to take full advantage of both linear accelerators at SLAC National Accelerator Laboratory, the copper accelerator operating at a repetition rate of 120 Hz providing high per pulse energy, as well as the superconducting accelerator operating at a repetition rate of about 1 MHz providing high average intensity. Both accelerators build a soft X-ray free electron laser with the new variable gab undulator section. With this flexible light sources, TMO supports many experimental techniques not previously available at LCLS and will have two X-ray beam focus spots in line. Thereby, TMO supports Atomic, Molecular and Optical (AMO), strong-field and nonlinear science and will host a designated new dynamic reaction microscope with a sub-micron X-ray focus spot. The flexible instrument design is optimized for studying ultrafast electronic and molecular phenomena and can take full advantage of the sub-femtosecond soft X-ray pulse generation program. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.00863v1-abstract-full').style.display = 'none'; document.getElementById('2112.00863v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> gb5129 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Journal of Synchrotron Radiation 2022 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2107.03592">arXiv:2107.03592</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2107.03592">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1126/science.abk3132">10.1126/science.abk3132 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Conformer-specific Chemistry Imaged in Real Space and Time </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Champenois%2C+E+G">E. G. Champenois</a>, <a href="/search/physics?searchtype=author&amp;query=Sanchez%2C+D+M">D. M. Sanchez</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+J">J. Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Nunes%2C+J+P+F">J. P. F. Nunes</a>, <a href="/search/physics?searchtype=author&amp;query=Attar%2C+A">A. Attar</a>, <a href="/search/physics?searchtype=author&amp;query=Centurion%2C+M">M. Centurion</a>, <a href="/search/physics?searchtype=author&amp;query=Forbes%2C+R">R. Forbes</a>, <a href="/search/physics?searchtype=author&amp;query=G%C3%BChr%2C+M">M. G眉hr</a>, <a href="/search/physics?searchtype=author&amp;query=Hegazy%2C+K">K. Hegazy</a>, <a href="/search/physics?searchtype=author&amp;query=Ji%2C+F">F. Ji</a>, <a href="/search/physics?searchtype=author&amp;query=Saha%2C+S+K">S. K. Saha</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Y">Y. Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Lin%2C+M+-">M. -F. Lin</a>, <a href="/search/physics?searchtype=author&amp;query=Luo%2C+D">D. Luo</a>, <a href="/search/physics?searchtype=author&amp;query=Moore%2C+B">B. Moore</a>, <a href="/search/physics?searchtype=author&amp;query=Shen%2C+X">X. Shen</a>, <a href="/search/physics?searchtype=author&amp;query=Ware%2C+M+R">M. R. Ware</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+X+J">X. J. Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Mart%C3%ADnez%2C+T+J">T. J. Mart铆nez</a>, <a href="/search/physics?searchtype=author&amp;query=Wolf%2C+T+J+A">T. J. A. Wolf</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2107.03592v1-abstract-short" style="display: inline;"> Conformational isomers or conformers of molecules play a decisive role in chemistry and biology. However, experimental methods to investigate chemical reaction dynamics are typically not conformer-sensitive. Here, we report on a gas-phase megaelectronvolt ultrafast electron diffraction investigation of 伪-phellandrene undergoing an electrocyclic ring-opening reaction. We directly image the evolutio&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.03592v1-abstract-full').style.display = 'inline'; document.getElementById('2107.03592v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2107.03592v1-abstract-full" style="display: none;"> Conformational isomers or conformers of molecules play a decisive role in chemistry and biology. However, experimental methods to investigate chemical reaction dynamics are typically not conformer-sensitive. Here, we report on a gas-phase megaelectronvolt ultrafast electron diffraction investigation of 伪-phellandrene undergoing an electrocyclic ring-opening reaction. We directly image the evolution of a specific set of 伪-phellandrene conformers into the product isomer predicted by the Woodward-Hoffmann rules in real space and time. Our experimental results are in quantitative agreement with nonadiabatic quantum molecular dynamics simulations, which provide unprecedented detail of how conformation influences time scale and quantum efficiency of photoinduced ring-opening reactions. Due to the prevalence of large numbers of conformers in organic chemistry, our findings impact our general understanding of reaction dynamics in chemistry and biology. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.03592v1-abstract-full').style.display = 'none'; document.getElementById('2107.03592v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2105.08854">arXiv:2105.08854</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2105.08854">pdf</a>, <a href="https://arxiv.org/format/2105.08854">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1126/science.abj2096">10.1126/science.abj2096 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Attosecond Coherent Electron Motion in Auger-Meitner Decay </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Li%2C+S">Siqi Li</a>, <a href="/search/physics?searchtype=author&amp;query=Driver%2C+T">Taran Driver</a>, <a href="/search/physics?searchtype=author&amp;query=Rosenberger%2C+P">Philipp Rosenberger</a>, <a href="/search/physics?searchtype=author&amp;query=Champenois%2C+E+G">Elio G. Champenois</a>, <a href="/search/physics?searchtype=author&amp;query=Duris%2C+J">Joseph Duris</a>, <a href="/search/physics?searchtype=author&amp;query=Al-Haddad%2C+A">Andre Al-Haddad</a>, <a href="/search/physics?searchtype=author&amp;query=Averbukh%2C+V">Vitali Averbukh</a>, <a href="/search/physics?searchtype=author&amp;query=Barnard%2C+J+C+T">Jonathan C. T. Barnard</a>, <a href="/search/physics?searchtype=author&amp;query=Berrah%2C+N">Nora Berrah</a>, <a href="/search/physics?searchtype=author&amp;query=Bostedt%2C+C">Christoph Bostedt</a>, <a href="/search/physics?searchtype=author&amp;query=Bucksbaum%2C+P+H">Philip H. Bucksbaum</a>, <a href="/search/physics?searchtype=author&amp;query=Coffee%2C+R">Ryan Coffee</a>, <a href="/search/physics?searchtype=author&amp;query=DiMauro%2C+L+F">Louis F. DiMauro</a>, <a href="/search/physics?searchtype=author&amp;query=Fang%2C+L">Li Fang</a>, <a href="/search/physics?searchtype=author&amp;query=Garratt%2C+D">Douglas Garratt</a>, <a href="/search/physics?searchtype=author&amp;query=Gatton%2C+A">Averell Gatton</a>, <a href="/search/physics?searchtype=author&amp;query=Guo%2C+Z">Zhaoheng Guo</a>, <a href="/search/physics?searchtype=author&amp;query=Hartmann%2C+G">Gregor Hartmann</a>, <a href="/search/physics?searchtype=author&amp;query=Haxton%2C+D">Daniel Haxton</a>, <a href="/search/physics?searchtype=author&amp;query=Helml%2C+W">Wolfram Helml</a>, <a href="/search/physics?searchtype=author&amp;query=Huang%2C+Z">Zhirong Huang</a>, <a href="/search/physics?searchtype=author&amp;query=LaForge%2C+A+C">Aaron C. LaForge</a>, <a href="/search/physics?searchtype=author&amp;query=Kamalov%2C+A">Andrei Kamalov</a>, <a href="/search/physics?searchtype=author&amp;query=Knurr%2C+J">Jonas Knurr</a>, <a href="/search/physics?searchtype=author&amp;query=Lin%2C+M">Ming-Fu Lin</a> , et al. (16 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2105.08854v1-abstract-short" style="display: inline;"> In quantum systems, coherent superpositions of electronic states evolve on ultrafast timescales (few femtosecond to attosecond, 1 as = 0.001 fs = 10^{-18} s), leading to a time dependent charge density. Here we exploit the first attosecond soft x-ray pulses produced by an x-ray free-electron laser to induce a coherent core-hole excitation in nitric oxide. Using an additional circularly polarized i&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.08854v1-abstract-full').style.display = 'inline'; document.getElementById('2105.08854v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2105.08854v1-abstract-full" style="display: none;"> In quantum systems, coherent superpositions of electronic states evolve on ultrafast timescales (few femtosecond to attosecond, 1 as = 0.001 fs = 10^{-18} s), leading to a time dependent charge density. Here we exploit the first attosecond soft x-ray pulses produced by an x-ray free-electron laser to induce a coherent core-hole excitation in nitric oxide. Using an additional circularly polarized infrared laser pulse we create a clock to time-resolve the electron dynamics, and demonstrate control of the coherent electron motion by tuning the photon energy of the x-ray pulse. Core-excited states offer a fundamental test bed for studying coherent electron dynamics in highly excited and strongly correlated matter. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.08854v1-abstract-full').style.display = 'none'; document.getElementById('2105.08854v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 May, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2008.11777">arXiv:2008.11777</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2008.11777">pdf</a>, <a href="https://arxiv.org/format/2008.11777">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevResearch.2.043056">10.1103/PhysRevResearch.2.043056 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Photoelectron and fragmentation dynamics of the H$^{+}$ + H$^{+}$ dissociative channel in NH$_3$ following direct single-photon double ionization </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Larsen%2C+K+A">Kirk A. Larsen</a>, <a href="/search/physics?searchtype=author&amp;query=Rescigno%2C+T+N">Thomas N. Rescigno</a>, <a href="/search/physics?searchtype=author&amp;query=Severt%2C+T">Travis Severt</a>, <a href="/search/physics?searchtype=author&amp;query=Streeter%2C+Z+L">Zachary L. Streeter</a>, <a href="/search/physics?searchtype=author&amp;query=Iskandar%2C+W">Wael Iskandar</a>, <a href="/search/physics?searchtype=author&amp;query=Heck%2C+S">Saijoscha Heck</a>, <a href="/search/physics?searchtype=author&amp;query=Gatton%2C+A">Averell Gatton</a>, <a href="/search/physics?searchtype=author&amp;query=Champenois%2C+E+G">Elio G. Champenois</a>, <a href="/search/physics?searchtype=author&amp;query=Strom%2C+R">Richard Strom</a>, <a href="/search/physics?searchtype=author&amp;query=Jochim%2C+B">Bethany Jochim</a>, <a href="/search/physics?searchtype=author&amp;query=Reedy%2C+D">Dylan Reedy</a>, <a href="/search/physics?searchtype=author&amp;query=Call%2C+D">Demitri Call</a>, <a href="/search/physics?searchtype=author&amp;query=Moshammer%2C+R">Robert Moshammer</a>, <a href="/search/physics?searchtype=author&amp;query=D%C3%B6rner%2C+R">Reinhard D枚rner</a>, <a href="/search/physics?searchtype=author&amp;query=Landers%2C+A+L">Allen L. Landers</a>, <a href="/search/physics?searchtype=author&amp;query=Williams%2C+J+B">Joshua B. Williams</a>, <a href="/search/physics?searchtype=author&amp;query=McCurdy%2C+C+W">C. William McCurdy</a>, <a href="/search/physics?searchtype=author&amp;query=Lucchese%2C+R+R">Robert R. Lucchese</a>, <a href="/search/physics?searchtype=author&amp;query=Ben-Itzhak%2C+I">Itzik Ben-Itzhak</a>, <a href="/search/physics?searchtype=author&amp;query=Slaughter%2C+D+S">Daniel S. Slaughter</a>, <a href="/search/physics?searchtype=author&amp;query=Weber%2C+T">Thorsten Weber</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2008.11777v2-abstract-short" style="display: inline;"> We report measurements on the H$^{+}$ + H$^{+}$ fragmentation channel following direct single-photon double ionization of neutral NH$_{3}$ at 61.5 eV, where the two photoelectrons and two protons are measured in coincidence using 3-D momentum imaging. We identify four dication electronic states that contribute to H$^{+}$ + H$^{+}$ dissociation, based on our multireference configuration-interaction&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.11777v2-abstract-full').style.display = 'inline'; document.getElementById('2008.11777v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2008.11777v2-abstract-full" style="display: none;"> We report measurements on the H$^{+}$ + H$^{+}$ fragmentation channel following direct single-photon double ionization of neutral NH$_{3}$ at 61.5 eV, where the two photoelectrons and two protons are measured in coincidence using 3-D momentum imaging. We identify four dication electronic states that contribute to H$^{+}$ + H$^{+}$ dissociation, based on our multireference configuration-interaction calculations of the dication potential energy surfaces. The extracted branching ratios between these four dication electronic states are presented. Of the four dication electronic states, three dissociate in a concerted process, while the fourth undergoes a sequential fragmentation mechanism. We find evidence that the neutral NH fragment or intermediate NH$^+$ ion is markedly ro-vibrationally excited. We also identify differences in the relative emission angle between the two photoelectrons as a function of their energy sharing for the four different dication states, which bare some similarities to previous observations made on atomic targets. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.11777v2-abstract-full').style.display = 'none'; document.getElementById('2008.11777v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 October, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 August, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 13 figures, 3 tables</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Research 2, 043056 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2008.11775">arXiv:2008.11775</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2008.11775">pdf</a>, <a href="https://arxiv.org/format/2008.11775">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1361-6455/abc3aa">10.1088/1361-6455/abc3aa <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Mechanisms and dynamics of the NH$_2^{+}$ + H$^{+}$ and NH$^{+}$ + H$^{+}$ + H fragmentation channels upon single-photon double ionization of NH$_3$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Larsen%2C+K+A">Kirk A. Larsen</a>, <a href="/search/physics?searchtype=author&amp;query=Rescigno%2C+T+N">Thomas N. Rescigno</a>, <a href="/search/physics?searchtype=author&amp;query=Streeter%2C+Z+L">Zachary L. Streeter</a>, <a href="/search/physics?searchtype=author&amp;query=Iskandar%2C+W">Wael Iskandar</a>, <a href="/search/physics?searchtype=author&amp;query=Heck%2C+S">Saijoscha Heck</a>, <a href="/search/physics?searchtype=author&amp;query=Gatton%2C+A">Averell Gatton</a>, <a href="/search/physics?searchtype=author&amp;query=Champenois%2C+E+G">Elio G. Champenois</a>, <a href="/search/physics?searchtype=author&amp;query=Severt%2C+T">Travis Severt</a>, <a href="/search/physics?searchtype=author&amp;query=Strom%2C+R">Richard Strom</a>, <a href="/search/physics?searchtype=author&amp;query=Jochim%2C+B">Bethany Jochim</a>, <a href="/search/physics?searchtype=author&amp;query=Reedy%2C+D">Dylan Reedy</a>, <a href="/search/physics?searchtype=author&amp;query=Call%2C+D">Demitri Call</a>, <a href="/search/physics?searchtype=author&amp;query=Moshammer%2C+R">Robert Moshammer</a>, <a href="/search/physics?searchtype=author&amp;query=D%C3%B6rner%2C+R">Reinhard D枚rner</a>, <a href="/search/physics?searchtype=author&amp;query=Landers%2C+A+L">Allen L. Landers</a>, <a href="/search/physics?searchtype=author&amp;query=Williams%2C+J+B">Joshua B. Williams</a>, <a href="/search/physics?searchtype=author&amp;query=McCurdy%2C+C+W">C. William McCurdy</a>, <a href="/search/physics?searchtype=author&amp;query=Lucchese%2C+R+R">Robert R. Lucchese</a>, <a href="/search/physics?searchtype=author&amp;query=Ben-Itzhak%2C+I">Itzik Ben-Itzhak</a>, <a href="/search/physics?searchtype=author&amp;query=Slaughter%2C+D+S">Daniel S. Slaughter</a>, <a href="/search/physics?searchtype=author&amp;query=Weber%2C+T">Thorsten Weber</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2008.11775v2-abstract-short" style="display: inline;"> We present state-selective measurements on the NH$_2^{+}$ + H$^{+}$ and NH$^{+}$ + H$^{+}$ + H dissociation channels following single-photon double ionization at 61.5 eV of neutral NH$_{3}$, where the two photoelectrons and two cations are measured in coincidence using 3-D momentum imaging. Three dication electronic states are identified to contribute to the NH$_2^{+}$ + H$^{+}$ dissociation chann&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.11775v2-abstract-full').style.display = 'inline'; document.getElementById('2008.11775v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2008.11775v2-abstract-full" style="display: none;"> We present state-selective measurements on the NH$_2^{+}$ + H$^{+}$ and NH$^{+}$ + H$^{+}$ + H dissociation channels following single-photon double ionization at 61.5 eV of neutral NH$_{3}$, where the two photoelectrons and two cations are measured in coincidence using 3-D momentum imaging. Three dication electronic states are identified to contribute to the NH$_2^{+}$ + H$^{+}$ dissociation channel, where the excitation in one of the three states undergoes intersystem crossing prior to dissociation, producing a cold NH$_2^+$ fragment. In contrast, the other two states directly dissociate, producing a ro-vibrationally excited NH$_2^+$ fragment with roughly 1 eV of internal energy. The NH$^{+}$ + H$^{+}$ + H channel is fed by direct dissociation from three intermediate dication states, one of which is shared with the NH$_2^{+}$ + H$^{+}$ channel. We find evidence of autoionization contributing to each of the double ionization channels. The distributions of the relative emission angle between the two photoelectrons, as well as the relative angle between the recoil axis of the molecular breakup and the polarization vector of the ionizing field, are also presented to provide insight on both the photoionization and photodissociation mechanisms for the different dication states. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.11775v2-abstract-full').style.display = 'none'; document.getElementById('2008.11775v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 August, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 21 figures, 3 tables</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. Phys. B: At. Mol. Opt. Phys. 53, 244003 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2002.05286">arXiv:2002.05286</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2002.05286">pdf</a>, <a href="https://arxiv.org/format/2002.05286">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1364/OE.389653">10.1364/OE.389653 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Enabling high repetition rate nonlinear THz science with a kilowatt-class sub-100 fs laser source </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Kramer%2C+P+L">Patrick L. Kramer</a>, <a href="/search/physics?searchtype=author&amp;query=Windeler%2C+M">Matthew Windeler</a>, <a href="/search/physics?searchtype=author&amp;query=Mecseki%2C+K">Katalin Mecseki</a>, <a href="/search/physics?searchtype=author&amp;query=Champenois%2C+E+G">Elio G. Champenois</a>, <a href="/search/physics?searchtype=author&amp;query=Hoffmann%2C+M+C">Matthias C. Hoffmann</a>, <a href="/search/physics?searchtype=author&amp;query=Tavella%2C+F">Franz Tavella</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2002.05286v1-abstract-short" style="display: inline;"> Manipulating the atomic and electronic structure of matter with strong terahertz (THz) fields while probing the response with ultrafast pulses at x-ray free electron lasers (FELs) has offered unique insights into a multitude of physical phenomena in solid state and atomic physics. Recent upgrades of x-ray FEL facilities are pushing to much higher repetition rates, enabling unprecedented signal to&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2002.05286v1-abstract-full').style.display = 'inline'; document.getElementById('2002.05286v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2002.05286v1-abstract-full" style="display: none;"> Manipulating the atomic and electronic structure of matter with strong terahertz (THz) fields while probing the response with ultrafast pulses at x-ray free electron lasers (FELs) has offered unique insights into a multitude of physical phenomena in solid state and atomic physics. Recent upgrades of x-ray FEL facilities are pushing to much higher repetition rates, enabling unprecedented signal to noise for pump probe experiments. This requires the development of suitable THz pump sources that are able to deliver intense pulses at compatible repetition rates. Here we present a high power laser-driven THz source based on optical rectification in LiNbO3 using tilted pulse front pumping. Our source is driven by a kilowatt-level Yb:YAG amplifier system operating at 100 kHz repetition rate and employing nonlinear spectral broadening and recompression to achieve sub-100 fs pulses at 1030 nm wavelength. We demonstrate a maximum of 144 mW average THz power (1.44 uJ pulse energy), consisting of single-cycle pulses centered at 0.6 THz with a peak electric field strength exceeding 150 kV/cm. These high field pulses open up a range of possibilities for nonlinear time-resolved experiments with x-ray probing at unprecedented rates. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2002.05286v1-abstract-full').style.display = 'none'; document.getElementById('2002.05286v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 February, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 10 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1912.12902">arXiv:1912.12902</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1912.12902">pdf</a>, <a href="https://arxiv.org/format/1912.12902">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acs.jpca.0c01943">10.1021/acs.jpca.0c01943 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Ultrafast dynamics of excited electronic states in nitrobenzene measured by ultrafast transient polarization spectroscopy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Thurston%2C+R">Richard Thurston</a>, <a href="/search/physics?searchtype=author&amp;query=Brister%2C+M+M">Matthew M. Brister</a>, <a href="/search/physics?searchtype=author&amp;query=Tan%2C+L+Z">Liang Z. Tan</a>, <a href="/search/physics?searchtype=author&amp;query=Champenois%2C+E+G">Elio G. Champenois</a>, <a href="/search/physics?searchtype=author&amp;query=Bakhti%2C+S">Said Bakhti</a>, <a href="/search/physics?searchtype=author&amp;query=Muddukrishna%2C+P">Pavan Muddukrishna</a>, <a href="/search/physics?searchtype=author&amp;query=Weber%2C+T">Thorsten Weber</a>, <a href="/search/physics?searchtype=author&amp;query=Belkacem%2C+A">Ali Belkacem</a>, <a href="/search/physics?searchtype=author&amp;query=Slaughter%2C+D+S">Daniel S. Slaughter</a>, <a href="/search/physics?searchtype=author&amp;query=Shivaram%2C+N">Niranjan Shivaram</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1912.12902v1-abstract-short" style="display: inline;"> We investigate ultrafast dynamics of the lowest singlet excited electronic state in liquid nitrobenzene using Ultrafast Transient Polarization Spectroscopy (UTPS), extending the well-known technique of Optical-Kerr Effect (OKE) spectroscopy to excited electronic states. The third-order non-linear response of the excited molecular ensemble is highly sensitive to details of excited state character a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1912.12902v1-abstract-full').style.display = 'inline'; document.getElementById('1912.12902v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1912.12902v1-abstract-full" style="display: none;"> We investigate ultrafast dynamics of the lowest singlet excited electronic state in liquid nitrobenzene using Ultrafast Transient Polarization Spectroscopy (UTPS), extending the well-known technique of Optical-Kerr Effect (OKE) spectroscopy to excited electronic states. The third-order non-linear response of the excited molecular ensemble is highly sensitive to details of excited state character and geometries and is measured using two femtosecond pulses following a third femtosecond pulse that populates the S1 excited state. By measuring this response as a function of time delays between the three pulses involved, we extract the dephasing time of the wave-packet on the excited state. The dephasing time measured as a function of time-delay after pump excitation shows oscillations indicating oscillatory wave-packet dynamics on the excited state. From the experimental measurements and supporting theoretical calculations, we deduce that the wave-packet completely leaves the S1 state surface after three traversals of the inter-system crossing between the singlet S1 and triplet T2 states. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1912.12902v1-abstract-full').style.display = 'none'; document.getElementById('1912.12902v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 December, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Manuscript 15 pages, 4 figures, 1 table. Supporting Information 5 pages</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1909.07441">arXiv:1909.07441</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1909.07441">pdf</a>, <a href="https://arxiv.org/format/1909.07441">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1039/C9CP03951A">10.1039/C9CP03951A <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Attosecond Transient Absorption Spooktroscopy: a ghost imaging approach to ultrafast absorption spectroscopy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Driver%2C+T">Taran Driver</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+S">Siqi Li</a>, <a href="/search/physics?searchtype=author&amp;query=Champenois%2C+E+G">Elio G. Champenois</a>, <a href="/search/physics?searchtype=author&amp;query=Duris%2C+J">Joseph Duris</a>, <a href="/search/physics?searchtype=author&amp;query=Ratner%2C+D">Daniel Ratner</a>, <a href="/search/physics?searchtype=author&amp;query=Lane%2C+T">TJ Lane</a>, <a href="/search/physics?searchtype=author&amp;query=Rosenberger%2C+P">Philipp Rosenberger</a>, <a href="/search/physics?searchtype=author&amp;query=Al-Haddad%2C+A">Andre Al-Haddad</a>, <a href="/search/physics?searchtype=author&amp;query=Averbukh%2C+V">Vitali Averbukh</a>, <a href="/search/physics?searchtype=author&amp;query=Barnard%2C+T">Toby Barnard</a>, <a href="/search/physics?searchtype=author&amp;query=Berrah%2C+N">Nora Berrah</a>, <a href="/search/physics?searchtype=author&amp;query=Bostedt%2C+C">Christoph Bostedt</a>, <a href="/search/physics?searchtype=author&amp;query=Bucksbaum%2C+P+H">Philip H. Bucksbaum</a>, <a href="/search/physics?searchtype=author&amp;query=Coffee%2C+R">Ryan Coffee</a>, <a href="/search/physics?searchtype=author&amp;query=DiMauro%2C+L+F">Louis F. DiMauro</a>, <a href="/search/physics?searchtype=author&amp;query=Fang%2C+L">Li Fang</a>, <a href="/search/physics?searchtype=author&amp;query=Garratt%2C+D">Douglas Garratt</a>, <a href="/search/physics?searchtype=author&amp;query=Gatton%2C+A">Averell Gatton</a>, <a href="/search/physics?searchtype=author&amp;query=Guo%2C+Z">Zhaoheng Guo</a>, <a href="/search/physics?searchtype=author&amp;query=Hartmann%2C+G">Gregor Hartmann</a>, <a href="/search/physics?searchtype=author&amp;query=Haxton%2C+D">Daniel Haxton</a>, <a href="/search/physics?searchtype=author&amp;query=Helml%2C+W">Wolfram Helml</a>, <a href="/search/physics?searchtype=author&amp;query=Huang%2C+Z">Zhirong Huang</a>, <a href="/search/physics?searchtype=author&amp;query=LaForge%2C+A">Aaron LaForge</a>, <a href="/search/physics?searchtype=author&amp;query=Kamalov%2C+A">Andrei Kamalov</a> , et al. (16 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1909.07441v1-abstract-short" style="display: inline;"> The recent demonstration of isolated attosecond pulses from an X-ray free-electron laser (XFEL) opens the possibility for probing ultrafast electron dynamics at X-ray wavelengths. An established experimental method for probing ultrafast dynamics is X-ray transient absorption spectroscopy, where the X-ray absorption spectrum is measured by scanning the central photon energy and recording the result&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1909.07441v1-abstract-full').style.display = 'inline'; document.getElementById('1909.07441v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1909.07441v1-abstract-full" style="display: none;"> The recent demonstration of isolated attosecond pulses from an X-ray free-electron laser (XFEL) opens the possibility for probing ultrafast electron dynamics at X-ray wavelengths. An established experimental method for probing ultrafast dynamics is X-ray transient absorption spectroscopy, where the X-ray absorption spectrum is measured by scanning the central photon energy and recording the resultant photoproducts. The spectral bandwidth inherent to attosecond pulses is wide compared to the resonant features typically probed, which generally precludes the application of this technique in the attosecond regime. In this paper we propose and demonstrate a new technique to conduct transient absorption spectroscopy with broad bandwidth attosecond pulses with the aid of ghost imaging, recovering sub-bandwidth resolution in photoproduct-based absorption measurements. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1909.07441v1-abstract-full').style.display = 'none'; document.getElementById('1909.07441v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 September, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1906.10649">arXiv:1906.10649</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1906.10649">pdf</a>, <a href="https://arxiv.org/format/1906.10649">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41566-019-0549-5">10.1038/s41566-019-0549-5 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Tunable Isolated Attosecond X-ray Pulses with Gigawatt Peak Power from a Free-Electron Laser </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Duris%2C+J">Joseph Duris</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+S">Siqi Li</a>, <a href="/search/physics?searchtype=author&amp;query=Driver%2C+T">Taran Driver</a>, <a href="/search/physics?searchtype=author&amp;query=Champenois%2C+E+G">Elio G. Champenois</a>, <a href="/search/physics?searchtype=author&amp;query=MacArthur%2C+J+P">James P. MacArthur</a>, <a href="/search/physics?searchtype=author&amp;query=Lutman%2C+A+A">Alberto A. Lutman</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+Z">Zhen Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Rosenberger%2C+P">Philipp Rosenberger</a>, <a href="/search/physics?searchtype=author&amp;query=Aldrich%2C+J+W">Jeff W. Aldrich</a>, <a href="/search/physics?searchtype=author&amp;query=Coffee%2C+R">Ryan Coffee</a>, <a href="/search/physics?searchtype=author&amp;query=Coslovich%2C+G">Giacomo Coslovich</a>, <a href="/search/physics?searchtype=author&amp;query=Decker%2C+F">Franz-Josef Decker</a>, <a href="/search/physics?searchtype=author&amp;query=Glownia%2C+J+M">James M. Glownia</a>, <a href="/search/physics?searchtype=author&amp;query=Hartmann%2C+G">Gregor Hartmann</a>, <a href="/search/physics?searchtype=author&amp;query=Helml%2C+W">Wolfram Helml</a>, <a href="/search/physics?searchtype=author&amp;query=Kamalov%2C+A">Andrei Kamalov</a>, <a href="/search/physics?searchtype=author&amp;query=Knurr%2C+J">Jonas Knurr</a>, <a href="/search/physics?searchtype=author&amp;query=Krzywinski%2C+J">Jacek Krzywinski</a>, <a href="/search/physics?searchtype=author&amp;query=Lin%2C+M">Ming-Fu Lin</a>, <a href="/search/physics?searchtype=author&amp;query=Nantel%2C+M">Megan Nantel</a>, <a href="/search/physics?searchtype=author&amp;query=Natan%2C+A">Adi Natan</a>, <a href="/search/physics?searchtype=author&amp;query=O%27Neal%2C+J">Jordan O&#39;Neal</a>, <a href="/search/physics?searchtype=author&amp;query=Shivaram%2C+N">Niranjan Shivaram</a>, <a href="/search/physics?searchtype=author&amp;query=Walter%2C+P">Peter Walter</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+A">Anna Wang</a> , et al. (9 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1906.10649v1-abstract-short" style="display: inline;"> The quantum mechanical motion of electrons in molecules and solids occurs on the sub-femtosecond timescale. Consequently, the study of ultrafast electronic phenomena requires the generation of laser pulses shorter than 1 fs and of sufficient intensity to interact with their target with high probability. Probing these dynamics with atomic-site specificity requires the extension of sub-femtosecond p&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1906.10649v1-abstract-full').style.display = 'inline'; document.getElementById('1906.10649v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1906.10649v1-abstract-full" style="display: none;"> The quantum mechanical motion of electrons in molecules and solids occurs on the sub-femtosecond timescale. Consequently, the study of ultrafast electronic phenomena requires the generation of laser pulses shorter than 1 fs and of sufficient intensity to interact with their target with high probability. Probing these dynamics with atomic-site specificity requires the extension of sub-femtosecond pulses to the soft X-ray spectral region. Here we report the generation of isolated GW-scale soft X-ray attosecond pulses with an X-ray free-electron laser. Our source has a pulse energy that is six orders of magnitude larger than any other source of isolated attosecond pulses in the soft X-ray spectral region, with a peak power in the tens of gigawatts. This unique combination of high intensity, high photon energy and short pulse duration enables the investigation of electron dynamics with X-ray non-linear spectroscopy and single-particle imaging. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1906.10649v1-abstract-full').style.display = 'none'; document.getElementById('1906.10649v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 June, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Duris, J., Li, S., Driver, T. et al. Nat. Photonics 14, 30-36 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1806.09650">arXiv:1806.09650</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1806.09650">pdf</a>, <a href="https://arxiv.org/format/1806.09650">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> </div> </div> <p class="title is-5 mathjax"> Coherent Space-Charge to X-ray Up-Conversion in Gas </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Li%2C+S">Siqi Li</a>, <a href="/search/physics?searchtype=author&amp;query=Champenois%2C+E+G">Elio G. Champenois</a>, <a href="/search/physics?searchtype=author&amp;query=Cryan%2C+J+P">James P. Cryan</a>, <a href="/search/physics?searchtype=author&amp;query=Marinelli%2C+A">Agostino Marinelli</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1806.09650v1-abstract-short" style="display: inline;"> We theoretically investigate the use of the intense transverse field created by a relativistic electron bunch to drive strong-field processes. Such bunches can be easily implemented from beam shaping in existing electron accelerators. We focus on the process of strong-field driven high harmonic generation and calculate the single-atom dipole response to the space-charge field of relativistic tilte&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1806.09650v1-abstract-full').style.display = 'inline'; document.getElementById('1806.09650v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1806.09650v1-abstract-full" style="display: none;"> We theoretically investigate the use of the intense transverse field created by a relativistic electron bunch to drive strong-field processes. Such bunches can be easily implemented from beam shaping in existing electron accelerators. We focus on the process of strong-field driven high harmonic generation and calculate the single-atom dipole response to the space-charge field of relativistic tilted electron beam. We compare the emitted radiation spectrum of the space-charge field to that of a few-cycle laser pulse and show that the space-charge field creates a spectrum which extends much further into the X-ray domain. We apply simple classical trajectory analysis to understand this result. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1806.09650v1-abstract-full').style.display = 'none'; document.getElementById('1806.09650v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 June, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1805.02648">arXiv:1805.02648</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1805.02648">pdf</a>, <a href="https://arxiv.org/format/1805.02648">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/1.5079549">10.1063/1.5079549 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Ultrafast Photodissociation Dynamics and Nonadiabatic Coupling Between Excited Electronic States of Methanol Probed by Time-Resolved Photoelectron Spectroscopy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Champenois%2C+E+G">Elio G. Champenois</a>, <a href="/search/physics?searchtype=author&amp;query=Greenman%2C+L">Loren Greenman</a>, <a href="/search/physics?searchtype=author&amp;query=Shivaram%2C+N">Niranjan Shivaram</a>, <a href="/search/physics?searchtype=author&amp;query=Cryan%2C+J+P">James P. Cryan</a>, <a href="/search/physics?searchtype=author&amp;query=Larsen%2C+K+A">Kirk A. Larsen</a>, <a href="/search/physics?searchtype=author&amp;query=Rescigno%2C+T+N">Thomas N. Rescigno</a>, <a href="/search/physics?searchtype=author&amp;query=McCurdy%2C+C+W">C. William McCurdy</a>, <a href="/search/physics?searchtype=author&amp;query=Belkacem%2C+A">Ali Belkacem</a>, <a href="/search/physics?searchtype=author&amp;query=Slaughter%2C+D+S">Daniel S. Slaughter</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1805.02648v3-abstract-short" style="display: inline;"> The electronic and nuclear dynamics in methanol, following 156~nm photoexcitation, are investigated by combining a detailed analysis of time-resolved photoelectron spectroscopy experiments with electronic structure calculations. The photoexcitation pump pulse is followed by a delayed 260~nm photoionization probe pulse, to produce photoelectrons that are analyzed by velocity map imaging. The yield&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1805.02648v3-abstract-full').style.display = 'inline'; document.getElementById('1805.02648v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1805.02648v3-abstract-full" style="display: none;"> The electronic and nuclear dynamics in methanol, following 156~nm photoexcitation, are investigated by combining a detailed analysis of time-resolved photoelectron spectroscopy experiments with electronic structure calculations. The photoexcitation pump pulse is followed by a delayed 260~nm photoionization probe pulse, to produce photoelectrons that are analyzed by velocity map imaging. The yield of mass-resolved ions, measured with similar experimental conditions, are found to exhibit the same time-dependence as specific photoelectron spectral features. Energy-resolved signal onset and decay times are extracted from the measured photoelectron spectra to achieve high temporal resolution, beyond the 20~fs pump and probe pulse durations. When combined with {\it ab initio} calculations of selected cuts through the excited state potential energy surfaces, this information allows the dynamics of the transient excited molecule, which exhibits multiple nuclear and electronic degrees of freedom, to be tracked on its intrinsic few-femtosecond timescale. Within 15~fs of photoexcitation, we observe nuclear motion on the initially bound photoexcited 2$^{1}$A$&#39;&#39;$ (S$_2$) electronic state, through a conical intersection with the 1$^{1}$A$&#39;$ (S$_3$) state, which reveals paths to photodissociation following C--O stretch and C--O--H angle opening. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1805.02648v3-abstract-full').style.display = 'none'; document.getElementById('1805.02648v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 October, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 May, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 5 figures + Supporting Info</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. Chem. Phys. 150, 114301 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1608.05107">arXiv:1608.05107</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1608.05107">pdf</a>, <a href="https://arxiv.org/ps/1608.05107">ps</a>, <a href="https://arxiv.org/format/1608.05107">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/1.4972343">10.1063/1.4972343 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Focal overlap gating in velocity map imaging to achieve high signal-to-noise ratio in photo-ion pump-probe experiments </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Shivaram%2C+N">Niranjan Shivaram</a>, <a href="/search/physics?searchtype=author&amp;query=Champenois%2C+E+G">Elio G Champenois</a>, <a href="/search/physics?searchtype=author&amp;query=Cryan%2C+J+P">James P Cryan</a>, <a href="/search/physics?searchtype=author&amp;query=Wright%2C+T+W">Travis W Wright</a>, <a href="/search/physics?searchtype=author&amp;query=Wingard%2C+T">Taylor Wingard</a>, <a href="/search/physics?searchtype=author&amp;query=Belkacem%2C+A">Ali Belkacem</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1608.05107v1-abstract-short" style="display: inline;"> We demonstrate a new technique in velocity map imaging (VMI) that allows spatial gating of the laser focal overlap region in time resolved pump-probe experiments. This significantly enhances signal-to-noise ratio by eliminating background signal arising outside the region of spatial overlap of pump and probe beams. This enhancement is achieved by tilting the laser beams with respect to the surface&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1608.05107v1-abstract-full').style.display = 'inline'; document.getElementById('1608.05107v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1608.05107v1-abstract-full" style="display: none;"> We demonstrate a new technique in velocity map imaging (VMI) that allows spatial gating of the laser focal overlap region in time resolved pump-probe experiments. This significantly enhances signal-to-noise ratio by eliminating background signal arising outside the region of spatial overlap of pump and probe beams. This enhancement is achieved by tilting the laser beams with respect to the surface of the VMI electrodes which creates a gradient in flight time for particles born at different points along the beam. By suitably pulsing our microchannel plate detector, we can select particles born only where the laser beams overlap. This spatial gating in velocity map imaging can benefit nearly all photoion pump-probe VMI experiments especially when extreme-ultraviolet (XUV) light or X-rays are involved which produce large background signals on their own. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1608.05107v1-abstract-full').style.display = 'none'; document.getElementById('1608.05107v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 August, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 pages, 4 figures</span> </p> </li> </ol> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10