CINXE.COM
Search | arXiv e-print repository
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1–50 of 121 results for author: <span class="mathjax">Lin, M</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> <div class="content"> <form method="GET" action="/search/physics" aria-role="search"> Searching in archive <strong>physics</strong>. <a href="/search/?searchtype=author&query=Lin%2C+M">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Lin, M"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Lin%2C+M&terms-0-field=author&size=50&order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Lin, M"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Lin%2C+M&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Lin%2C+M&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Lin%2C+M&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&query=Lin%2C+M&start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.05033">arXiv:2411.05033</a> <span> [<a href="https://arxiv.org/pdf/2411.05033">pdf</a>, <a href="https://arxiv.org/format/2411.05033">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> Diagonalization without Diagonalization: A Direct Optimization Approach for Solid-State Density Functional Theory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Li%2C+T">Tianbo Li</a>, <a href="/search/physics?searchtype=author&query=Lin%2C+M">Min Lin</a>, <a href="/search/physics?searchtype=author&query=Dale%2C+S">Stephen Dale</a>, <a href="/search/physics?searchtype=author&query=Shi%2C+Z">Zekun Shi</a>, <a href="/search/physics?searchtype=author&query=Neto%2C+A+H+C">A. H. Castro Neto</a>, <a href="/search/physics?searchtype=author&query=Novoselov%2C+K+S">Kostya S. Novoselov</a>, <a href="/search/physics?searchtype=author&query=Vignale%2C+G">Giovanni Vignale</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.05033v1-abstract-short" style="display: inline;"> We present a novel approach to address the challenges of variable occupation numbers in direct optimization of density functional theory (DFT). By parameterizing both the eigenfunctions and the occupation matrix, our method minimizes the free energy with respect to these parameters. As the stationary conditions require the occupation matrix and the Kohn-Sham Hamiltonian to be simultaneously diagon… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.05033v1-abstract-full').style.display = 'inline'; document.getElementById('2411.05033v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.05033v1-abstract-full" style="display: none;"> We present a novel approach to address the challenges of variable occupation numbers in direct optimization of density functional theory (DFT). By parameterizing both the eigenfunctions and the occupation matrix, our method minimizes the free energy with respect to these parameters. As the stationary conditions require the occupation matrix and the Kohn-Sham Hamiltonian to be simultaneously diagonalizable, this leads to the concept of ``self-diagonalization,'' where, by assuming a diagonal occupation matrix without loss of generality, the Hamiltonian matrix naturally becomes diagonal at stationary points. Our method incorporates physical constraints on both the eigenfunctions and the occupations into the parameterization, transforming the constrained optimization into an fully differentiable unconstrained problem, which is solvable via gradient descent. Implemented in JAX, our method was tested on aluminum and silicon, confirming that it achieves efficient self-diagonalization, produces the correct Fermi-Dirac distribution of the occupation numbers and yields band structures consistent with those obtained with SCF methods in Quantum Espresso. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.05033v1-abstract-full').style.display = 'none'; document.getElementById('2411.05033v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.01700">arXiv:2411.01700</a> <span> [<a href="https://arxiv.org/pdf/2411.01700">pdf</a>, <a href="https://arxiv.org/format/2411.01700">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> </div> <p class="title is-5 mathjax"> Attosecond Coherent Electron Motion in a Photoionized Aromatic Molecule </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Driver%2C+T">Taran Driver</a>, <a href="/search/physics?searchtype=author&query=Guo%2C+Z">Zhaoheng Guo</a>, <a href="/search/physics?searchtype=author&query=Isele%2C+E">Erik Isele</a>, <a href="/search/physics?searchtype=author&query=Grell%2C+G">Gilbert Grell</a>, <a href="/search/physics?searchtype=author&query=Ruberti%2C+M">Marco Ruberti</a>, <a href="/search/physics?searchtype=author&query=ONeal%2C+J+T">Jordan T. ONeal</a>, <a href="/search/physics?searchtype=author&query=Alexander%2C+O">Oliver Alexander</a>, <a href="/search/physics?searchtype=author&query=Beauvarlet%2C+S">Sandra Beauvarlet</a>, <a href="/search/physics?searchtype=author&query=Cesar%2C+D">David Cesar</a>, <a href="/search/physics?searchtype=author&query=Duris%2C+J">Joseph Duris</a>, <a href="/search/physics?searchtype=author&query=Garratt%2C+D">Douglas Garratt</a>, <a href="/search/physics?searchtype=author&query=Larsen%2C+K+A">Kirk A. Larsen</a>, <a href="/search/physics?searchtype=author&query=Li%2C+S">Siqi Li</a>, <a href="/search/physics?searchtype=author&query=Koloren%C4%8D%2C+P">P艡emysl Koloren膷</a>, <a href="/search/physics?searchtype=author&query=McCracken%2C+G+A">Gregory A. McCracken</a>, <a href="/search/physics?searchtype=author&query=Tuthill%2C+D">Daniel Tuthill</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+Z">Zifan Wang</a>, <a href="/search/physics?searchtype=author&query=Berrah%2C+N">Nora Berrah</a>, <a href="/search/physics?searchtype=author&query=Bostedt%2C+C">Christoph Bostedt</a>, <a href="/search/physics?searchtype=author&query=Borne%2C+K">Kurtis Borne</a>, <a href="/search/physics?searchtype=author&query=Cheng%2C+X">Xinxin Cheng</a>, <a href="/search/physics?searchtype=author&query=DiMauro%2C+L+F">Louis F. DiMauro</a>, <a href="/search/physics?searchtype=author&query=Doumy%2C+G">Gilles Doumy</a>, <a href="/search/physics?searchtype=author&query=Franz%2C+P+L">Paris L. Franz</a>, <a href="/search/physics?searchtype=author&query=Kamalov%2C+A">Andrei Kamalov</a> , et al. (28 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.01700v1-abstract-short" style="display: inline;"> In molecular systems, the ultrafast motion of electrons initiates the process of chemical change. Tracking this electronic motion across molecules requires coupling attosecond time resolution to atomic-scale spatial sensitivity. In this work, we employ a pair of attosecond x-ray pulses from an x-ray free-electron laser to follow electron motion resulting from the sudden removal of an electron from… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.01700v1-abstract-full').style.display = 'inline'; document.getElementById('2411.01700v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.01700v1-abstract-full" style="display: none;"> In molecular systems, the ultrafast motion of electrons initiates the process of chemical change. Tracking this electronic motion across molecules requires coupling attosecond time resolution to atomic-scale spatial sensitivity. In this work, we employ a pair of attosecond x-ray pulses from an x-ray free-electron laser to follow electron motion resulting from the sudden removal of an electron from a prototypical aromatic system, para-aminophenol. X-ray absorption enables tracking this motion with atomic-site specificity. Our measurements are compared with state-of-the-art computational modeling, reproducing the observed response across multiple timescales. Sub-femtosecond dynamics are assigned to states undergoing non-radiative decay, while few-femtosecond oscillatory motion is associated with electronic wavepacket motion in stable cation states, that will eventually couple to nuclear motion. Our work provides insight on the ultrafast charge motion preceding and initiating chemical transformations in moderately complex systems, and provides a powerful benchmark for computational models of ultrafast charge motion in matter. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.01700v1-abstract-full').style.display = 'none'; document.getElementById('2411.01700v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.14660">arXiv:2409.14660</a> <span> [<a href="https://arxiv.org/pdf/2409.14660">pdf</a>, <a href="https://arxiv.org/format/2409.14660">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chaotic Dynamics">nlin.CD</span> </div> </div> <p class="title is-5 mathjax"> Fourier neural operators for spatiotemporal dynamics in two-dimensional turbulence </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Atif%2C+M">Mohammad Atif</a>, <a href="/search/physics?searchtype=author&query=Dubey%2C+P">Pulkit Dubey</a>, <a href="/search/physics?searchtype=author&query=Aghor%2C+P+P">Pratik P. Aghor</a>, <a href="/search/physics?searchtype=author&query=Lopez-Marrero%2C+V">Vanessa Lopez-Marrero</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+T">Tao Zhang</a>, <a href="/search/physics?searchtype=author&query=Sharfuddin%2C+A">Abdullah Sharfuddin</a>, <a href="/search/physics?searchtype=author&query=Yu%2C+K">Kwangmin Yu</a>, <a href="/search/physics?searchtype=author&query=Yang%2C+F">Fan Yang</a>, <a href="/search/physics?searchtype=author&query=Ladeinde%2C+F">Foluso Ladeinde</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+Y">Yangang Liu</a>, <a href="/search/physics?searchtype=author&query=Lin%2C+M">Meifeng Lin</a>, <a href="/search/physics?searchtype=author&query=Li%2C+L">Lingda Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.14660v3-abstract-short" style="display: inline;"> High-fidelity direct numerical simulation of turbulent flows for most real-world applications remains an outstanding computational challenge. Several machine learning approaches have recently been proposed to alleviate the computational cost even though they become unstable or unphysical for long time predictions. We identify that the Fourier neural operator (FNO) based models combined with a part… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.14660v3-abstract-full').style.display = 'inline'; document.getElementById('2409.14660v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.14660v3-abstract-full" style="display: none;"> High-fidelity direct numerical simulation of turbulent flows for most real-world applications remains an outstanding computational challenge. Several machine learning approaches have recently been proposed to alleviate the computational cost even though they become unstable or unphysical for long time predictions. We identify that the Fourier neural operator (FNO) based models combined with a partial differential equation (PDE) solver can accelerate fluid dynamic simulations and thus address computational expense of large-scale turbulence simulations. We treat the FNO model on the same footing as a PDE solver and answer important questions about the volume and temporal resolution of data required to build pre-trained models for turbulence. We also discuss the pitfalls of purely data-driven approaches that need to be avoided by the machine learning models to become viable and competitive tools for long time simulations of turbulence. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.14660v3-abstract-full').style.display = 'none'; document.getElementById('2409.14660v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.15464">arXiv:2408.15464</a> <span> [<a href="https://arxiv.org/pdf/2408.15464">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Ultrafast symmetry control in photoexcited quantum dots </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Guzelturk%2C+B">Burak Guzelturk</a>, <a href="/search/physics?searchtype=author&query=Portner%2C+J">Joshua Portner</a>, <a href="/search/physics?searchtype=author&query=Ondry%2C+J">Justin Ondry</a>, <a href="/search/physics?searchtype=author&query=Ghanbarzadeh%2C+S">Samira Ghanbarzadeh</a>, <a href="/search/physics?searchtype=author&query=Tarantola%2C+M">Mia Tarantola</a>, <a href="/search/physics?searchtype=author&query=Jeong%2C+A">Ahhyun Jeong</a>, <a href="/search/physics?searchtype=author&query=Field%2C+T">Thomas Field</a>, <a href="/search/physics?searchtype=author&query=Chandler%2C+A+M">Alicia M. Chandler</a>, <a href="/search/physics?searchtype=author&query=Wieman%2C+E">Eliza Wieman</a>, <a href="/search/physics?searchtype=author&query=Hopper%2C+T+R">Thomas R. Hopper</a>, <a href="/search/physics?searchtype=author&query=Watkins%2C+N+E">Nicolas E. Watkins</a>, <a href="/search/physics?searchtype=author&query=Yue%2C+J">Jin Yue</a>, <a href="/search/physics?searchtype=author&query=Cheng%2C+X">Xinxin Cheng</a>, <a href="/search/physics?searchtype=author&query=Lin%2C+M">Ming-Fu Lin</a>, <a href="/search/physics?searchtype=author&query=Luo%2C+D">Duan Luo</a>, <a href="/search/physics?searchtype=author&query=Kramer%2C+P+L">Patrick L. Kramer</a>, <a href="/search/physics?searchtype=author&query=Shen%2C+X">Xiaozhe Shen</a>, <a href="/search/physics?searchtype=author&query=Reid%2C+A+H">Alexander H. Reid</a>, <a href="/search/physics?searchtype=author&query=Borkiewicz%2C+O">Olaf Borkiewicz</a>, <a href="/search/physics?searchtype=author&query=Ruett%2C+U">Uta Ruett</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+X">Xiaoyi Zhang</a>, <a href="/search/physics?searchtype=author&query=Lindenberg%2C+A+M">Aaron M. Lindenberg</a>, <a href="/search/physics?searchtype=author&query=Ma%2C+J">Jihong Ma</a>, <a href="/search/physics?searchtype=author&query=Schaller%2C+R">Richard Schaller</a>, <a href="/search/physics?searchtype=author&query=Talapin%2C+D+V">Dmitri V. Talapin</a> , et al. (1 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.15464v1-abstract-short" style="display: inline;"> Symmetry control is essential for realizing unconventional properties, such as ferroelectricity, nonlinear optical responses, and complex topological order, thus it holds promise for the design of emerging quantum and photonic systems. Nevertheless, fast and reversible control of symmetry in materials remains a challenge, especially for nanoscale systems. Here, we unveil reversible symmetry change… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.15464v1-abstract-full').style.display = 'inline'; document.getElementById('2408.15464v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.15464v1-abstract-full" style="display: none;"> Symmetry control is essential for realizing unconventional properties, such as ferroelectricity, nonlinear optical responses, and complex topological order, thus it holds promise for the design of emerging quantum and photonic systems. Nevertheless, fast and reversible control of symmetry in materials remains a challenge, especially for nanoscale systems. Here, we unveil reversible symmetry changes in colloidal lead chalcogenide quantum dots on picosecond timescales. Using a combination of ultrafast electron diffraction and total X-ray scattering, in conjunction with atomic-scale structural modeling and first-principles calculations, we reveal that symmetry-broken lead sulfide quantum dots restore to a centrosymmetric phase upon photoexcitation. The symmetry restoration is driven by photoexcited electronic carriers, which suppress lead off-centering for about 100 ps. Furthermore, the change in symmetry is closely correlated with the electronic properties as shown by transient optical measurements. Overall, this study elucidates reversible symmetry changes in colloidal quantum dots, and more broadly defines a new methodology to optically control symmetry in nanoscale systems on ultrafast timescales. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.15464v1-abstract-full').style.display = 'none'; document.getElementById('2408.15464v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.09404">arXiv:2407.09404</a> <span> [<a href="https://arxiv.org/pdf/2407.09404">pdf</a>, <a href="https://arxiv.org/format/2407.09404">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optimization and Control">math.OC</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Systems and Control">eess.SY</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Physics and Society">physics.soc-ph</span> </div> </div> <p class="title is-5 mathjax"> A Carbon Aware Ant Colony System (CAACS) </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Lin%2C+M">Marina Lin</a>, <a href="/search/physics?searchtype=author&query=Schaposnik%2C+L+P">Laura P. Schaposnik</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.09404v2-abstract-short" style="display: inline;"> In an era where sustainability is becoming increasingly crucial, we introduce a new Carbon-Aware Ant Colony System (CAACS) Algorithm that addresses the Generalized Traveling Salesman Problem (GTSP) while minimizing carbon emissions. This novel approach leverages the natural efficiency of ant colony pheromone trails to find optimal routes, balancing both environmental and economic objectives. By in… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.09404v2-abstract-full').style.display = 'inline'; document.getElementById('2407.09404v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.09404v2-abstract-full" style="display: none;"> In an era where sustainability is becoming increasingly crucial, we introduce a new Carbon-Aware Ant Colony System (CAACS) Algorithm that addresses the Generalized Traveling Salesman Problem (GTSP) while minimizing carbon emissions. This novel approach leverages the natural efficiency of ant colony pheromone trails to find optimal routes, balancing both environmental and economic objectives. By integrating sustainability into transportation models, CAACS provides a powerful tool for real-world applications, including network design, delivery route planning, and commercial aircraft logistics. Our algorithm's unique bi-objective optimization advances the study of sustainable transportation solutions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.09404v2-abstract-full').style.display = 'none'; document.getElementById('2407.09404v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">31 figures, 23 pages</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.09037">arXiv:2407.09037</a> <span> [<a href="https://arxiv.org/pdf/2407.09037">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Photonic quasicrystal of spin angular momentum </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Lin%2C+M">Min Lin</a>, <a href="/search/physics?searchtype=author&query=Gou%2C+X">Xinxin Gou</a>, <a href="/search/physics?searchtype=author&query=Xie%2C+Z">Zhenwei Xie</a>, <a href="/search/physics?searchtype=author&query=Yang%2C+A">Aiping Yang</a>, <a href="/search/physics?searchtype=author&query=Du%2C+L">Luping Du</a>, <a href="/search/physics?searchtype=author&query=Yuan%2C+X">Xiaocong Yuan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.09037v1-abstract-short" style="display: inline;"> Quasicrystals,characterized by long-range order without translational symmetry,have catalyzed transformative advances in various fields,including optics in terms of field quasicrystals.Here,we present the first demonstration of photonic quasicrystals formed by spin angular momentum, unveiling novel spin-orbit coupling effects absent in traditional field quasicrystals.A de Bruijn tiling like theore… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.09037v1-abstract-full').style.display = 'inline'; document.getElementById('2407.09037v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.09037v1-abstract-full" style="display: none;"> Quasicrystals,characterized by long-range order without translational symmetry,have catalyzed transformative advances in various fields,including optics in terms of field quasicrystals.Here,we present the first demonstration of photonic quasicrystals formed by spin angular momentum, unveiling novel spin-orbit coupling effects absent in traditional field quasicrystals.A de Bruijn tiling like theoretical framework was built elucidating the formation mechanism of spin quasicrystals for diverse symmetries.Moreover,the configurations of these spin textures can be manipulated through the adjustments of the wavefronts,among which phason-like discontinuous dynamics is observed and quantitatively measured. Unlike optical quasicrystals shaped by electromagnetic fields,these spin-governed quasicrystals exhibit quasi-periodic properties of kinematic parameters,extending their potential applications to other physical systems. These findings hold promise for novel advancements in optical trapping,quasicrystal fabrication,and optical encryption systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.09037v1-abstract-full').style.display = 'none'; document.getElementById('2407.09037v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.13083">arXiv:2406.13083</a> <span> [<a href="https://arxiv.org/pdf/2406.13083">pdf</a>, <a href="https://arxiv.org/format/2406.13083">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Design and Performance of a Magnetic Bottle Electron Spectrometer for High-Energy Photoelectron Spectroscopy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Borne%2C+K">Kurtis Borne</a>, <a href="/search/physics?searchtype=author&query=ONeal%2C+J+T">Jordan T ONeal</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+J">Jun Wang</a>, <a href="/search/physics?searchtype=author&query=Isele%2C+E">Erk Isele</a>, <a href="/search/physics?searchtype=author&query=Obaid%2C+R">Razib Obaid</a>, <a href="/search/physics?searchtype=author&query=Berrah%2C+N">Nora Berrah</a>, <a href="/search/physics?searchtype=author&query=Cheng%2C+X">Xinxin Cheng</a>, <a href="/search/physics?searchtype=author&query=Bucksbaum%2C+P+H">Philip H Bucksbaum</a>, <a href="/search/physics?searchtype=author&query=James%2C+J">Justin James</a>, <a href="/search/physics?searchtype=author&query=Kamalov%2C+A">Andri Kamalov</a>, <a href="/search/physics?searchtype=author&query=Larsen%2C+K+A">Kirk A Larsen</a>, <a href="/search/physics?searchtype=author&query=Li%2C+X">Xiang Li</a>, <a href="/search/physics?searchtype=author&query=Lin%2C+M">Ming-Fu Lin</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+Y">Yusong Liu</a>, <a href="/search/physics?searchtype=author&query=Marinelli%2C+A">Agostino Marinelli</a>, <a href="/search/physics?searchtype=author&query=Summers%2C+A">Adam Summers</a>, <a href="/search/physics?searchtype=author&query=Thierstein%2C+E">Emily Thierstein</a>, <a href="/search/physics?searchtype=author&query=Wolf%2C+T">Thomas Wolf</a>, <a href="/search/physics?searchtype=author&query=Rolles%2C+D">Daniel Rolles</a>, <a href="/search/physics?searchtype=author&query=Walter%2C+P">Peter Walter</a>, <a href="/search/physics?searchtype=author&query=Cryan%2C+J+P">James P Cryan</a>, <a href="/search/physics?searchtype=author&query=Driver%2C+T">Taran Driver</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.13083v2-abstract-short" style="display: inline;"> We describe the design and performance of a magnetic bottle electron spectrometer~(MBES) for high-energy electron spectroscopy. Our design features a ${\sim2}$~m long electron drift tube and electrostatic retardation lens, achieving sub-electronvolt (eV) electron kinetic energy resolution for high energy (several hundred eV) electrons with close to 4$蟺$ collection efficiency. A segmented anode… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.13083v2-abstract-full').style.display = 'inline'; document.getElementById('2406.13083v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.13083v2-abstract-full" style="display: none;"> We describe the design and performance of a magnetic bottle electron spectrometer~(MBES) for high-energy electron spectroscopy. Our design features a ${\sim2}$~m long electron drift tube and electrostatic retardation lens, achieving sub-electronvolt (eV) electron kinetic energy resolution for high energy (several hundred eV) electrons with close to 4$蟺$ collection efficiency. A segmented anode electron detector enables the simultaneous collection of photoelectron spectra in high resolution and high collection efficiency modes. This versatile instrument is installed at the TMO endstation at the LCLS x-ray free-electron laser (XFEL). In this paper, we demonstrate its high resolution, collection efficiency and spatial selectivity in measurements where it is coupled to an XFEL source. These combined characteristics are designed to enable high-resolution time-resolved measurements using x-ray photoelectron, absorption, and Auger-Meitner spectroscopy. We also describe the pervasive artifact in MBES time-of-flight spectra that arises from a periodic modulation in electron detection efficiency, and present a robust analysis procedure for its removal. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.13083v2-abstract-full').style.display = 'none'; document.getElementById('2406.13083v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.01602">arXiv:2406.01602</a> <span> [<a href="https://arxiv.org/pdf/2406.01602">pdf</a>, <a href="https://arxiv.org/format/2406.01602">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Data Analysis, Statistics and Probability">physics.data-an</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> </div> <p class="title is-5 mathjax"> Effectiveness of denoising diffusion probabilistic models for fast and high-fidelity whole-event simulation in high-energy heavy-ion experiments </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Go%2C+Y">Yeonju Go</a>, <a href="/search/physics?searchtype=author&query=Torbunov%2C+D">Dmitrii Torbunov</a>, <a href="/search/physics?searchtype=author&query=Rinn%2C+T">Timothy Rinn</a>, <a href="/search/physics?searchtype=author&query=Huang%2C+Y">Yi Huang</a>, <a href="/search/physics?searchtype=author&query=Yu%2C+H">Haiwang Yu</a>, <a href="/search/physics?searchtype=author&query=Viren%2C+B">Brett Viren</a>, <a href="/search/physics?searchtype=author&query=Lin%2C+M">Meifeng Lin</a>, <a href="/search/physics?searchtype=author&query=Ren%2C+Y">Yihui Ren</a>, <a href="/search/physics?searchtype=author&query=Huang%2C+J">Jin Huang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.01602v1-abstract-short" style="display: inline;"> Artificial intelligence (AI) generative models, such as generative adversarial networks (GANs), variational auto-encoders, and normalizing flows, have been widely used and studied as efficient alternatives for traditional scientific simulations. However, they have several drawbacks, including training instability and inability to cover the entire data distribution, especially for regions where dat… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.01602v1-abstract-full').style.display = 'inline'; document.getElementById('2406.01602v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.01602v1-abstract-full" style="display: none;"> Artificial intelligence (AI) generative models, such as generative adversarial networks (GANs), variational auto-encoders, and normalizing flows, have been widely used and studied as efficient alternatives for traditional scientific simulations. However, they have several drawbacks, including training instability and inability to cover the entire data distribution, especially for regions where data are rare. This is particularly challenging for whole-event, full-detector simulations in high-energy heavy-ion experiments, such as sPHENIX at the Relativistic Heavy Ion Collider and Large Hadron Collider experiments, where thousands of particles are produced per event and interact with the detector. This work investigates the effectiveness of Denoising Diffusion Probabilistic Models (DDPMs) as an AI-based generative surrogate model for the sPHENIX experiment that includes the heavy-ion event generation and response of the entire calorimeter stack. DDPM performance in sPHENIX simulation data is compared with a popular rival, GANs. Results show that both DDPMs and GANs can reproduce the data distribution where the examples are abundant (low-to-medium calorimeter energies). Nonetheless, DDPMs significantly outperform GANs, especially in high-energy regions where data are rare. Additionally, DDPMs exhibit superior stability compared to GANs. The results are consistent between both central and peripheral centrality heavy-ion collision events. Moreover, DDPMs offer a substantial speedup of approximately a factor of 100 compared to the traditional Geant4 simulation method. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.01602v1-abstract-full').style.display = 'none'; document.getElementById('2406.01602v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.16279">arXiv:2405.16279</a> <span> [<a href="https://arxiv.org/pdf/2405.16279">pdf</a>, <a href="https://arxiv.org/format/2405.16279">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> </div> </div> <p class="title is-5 mathjax"> AI-Assisted Detector Design for the EIC (AID(2)E) </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Diefenthaler%2C+M">M. Diefenthaler</a>, <a href="/search/physics?searchtype=author&query=Fanelli%2C+C">C. Fanelli</a>, <a href="/search/physics?searchtype=author&query=Gerlach%2C+L+O">L. O. Gerlach</a>, <a href="/search/physics?searchtype=author&query=Guan%2C+W">W. Guan</a>, <a href="/search/physics?searchtype=author&query=Horn%2C+T">T. Horn</a>, <a href="/search/physics?searchtype=author&query=Jentsch%2C+A">A. Jentsch</a>, <a href="/search/physics?searchtype=author&query=Lin%2C+M">M. Lin</a>, <a href="/search/physics?searchtype=author&query=Nagai%2C+K">K. Nagai</a>, <a href="/search/physics?searchtype=author&query=Nayak%2C+H">H. Nayak</a>, <a href="/search/physics?searchtype=author&query=Pecar%2C+C">C. Pecar</a>, <a href="/search/physics?searchtype=author&query=Suresh%2C+K">K. Suresh</a>, <a href="/search/physics?searchtype=author&query=Vossen%2C+A">A. Vossen</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+T">T. Wang</a>, <a href="/search/physics?searchtype=author&query=Wenaus%2C+T">T. Wenaus</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.16279v2-abstract-short" style="display: inline;"> Artificial Intelligence is poised to transform the design of complex, large-scale detectors like the ePIC at the future Electron Ion Collider. Featuring a central detector with additional detecting systems in the far forward and far backward regions, the ePIC experiment incorporates numerous design parameters and objectives, including performance, physics reach, and cost, constrained by mechanical… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.16279v2-abstract-full').style.display = 'inline'; document.getElementById('2405.16279v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.16279v2-abstract-full" style="display: none;"> Artificial Intelligence is poised to transform the design of complex, large-scale detectors like the ePIC at the future Electron Ion Collider. Featuring a central detector with additional detecting systems in the far forward and far backward regions, the ePIC experiment incorporates numerous design parameters and objectives, including performance, physics reach, and cost, constrained by mechanical and geometric limits. This project aims to develop a scalable, distributed AI-assisted detector design for the EIC (AID(2)E), employing state-of-the-art multiobjective optimization to tackle complex designs. Supported by the ePIC software stack and using Geant4 simulations, our approach benefits from transparent parameterization and advanced AI features. The workflow leverages the PanDA and iDDS systems, used in major experiments such as ATLAS at CERN LHC, the Rubin Observatory, and sPHENIX at RHIC, to manage the compute intensive demands of ePIC detector simulations. Tailored enhancements to the PanDA system focus on usability, scalability, automation, and monitoring. Ultimately, this project aims to establish a robust design capability, apply a distributed AI-assisted workflow to the ePIC detector, and extend its applications to the design of the second detector (Detector-2) in the EIC, as well as to calibration and alignment tasks. Additionally, we are developing advanced data science tools to efficiently navigate the complex, multidimensional trade-offs identified through this optimization process. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.16279v2-abstract-full').style.display = 'none'; document.getElementById('2405.16279v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 4 figures, AI4EIC 2023 proceeding</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.11367">arXiv:2404.11367</a> <span> [<a href="https://arxiv.org/pdf/2404.11367">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Phonon Directionality Impacts Electron-Phonon Coupling and Polarization of the Band-Edge Emission in Two-Dimensional Metal Halide Perovskites </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Krahne%2C+R">Roman Krahne</a>, <a href="/search/physics?searchtype=author&query=Schleusener%2C+A">Alexander Schleusener</a>, <a href="/search/physics?searchtype=author&query=Faraji%2C+M">Mehrdad Faraji</a>, <a href="/search/physics?searchtype=author&query=Li%2C+L">Lin-Han Li</a>, <a href="/search/physics?searchtype=author&query=Lin%2C+M">Miao-Ling Lin</a>, <a href="/search/physics?searchtype=author&query=Tan%2C+P">Ping-Heng Tan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.11367v2-abstract-short" style="display: inline;"> Two-dimensional metal-halide perovskites are highly versatile for light-driven applications due to their exceptional variety in material composition, which can be exploited for tunability of mechanical and optoelectronic properties. The band edge emission is defined by structure and composition of both organic and inorganic layers, and electron-phonon coupling plays a crucial role in the recombina… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.11367v2-abstract-full').style.display = 'inline'; document.getElementById('2404.11367v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.11367v2-abstract-full" style="display: none;"> Two-dimensional metal-halide perovskites are highly versatile for light-driven applications due to their exceptional variety in material composition, which can be exploited for tunability of mechanical and optoelectronic properties. The band edge emission is defined by structure and composition of both organic and inorganic layers, and electron-phonon coupling plays a crucial role in the recombination dynamics. However, the nature of the electron-phonon coupling and which kind of phonons are involved is still under debate. Here we investigate the emission, reflectance and phonon response from single two-dimensional lead-iodide microcrystals with angle-resolved polarized spectroscopy. We find an intricate dependence of the emission polarization with the vibrational directionality in the materials, which reveals that several bands of the low-frequency phonons with non-orthogonal directionality contribute to the band edge emission. Such complex electron-phonon coupling requires adequate models to predict the thermal broadening of the emission and provides opportunities to design its polarization properties. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.11367v2-abstract-full').style.display = 'none'; document.getElementById('2404.11367v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.02299">arXiv:2404.02299</a> <span> [<a href="https://arxiv.org/pdf/2404.02299">pdf</a>, <a href="https://arxiv.org/format/2404.02299">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> </div> </div> <p class="title is-5 mathjax"> "Beam `a la carte": laser heater shaping for attosecond pulses in a multiplexed x-ray free-electron laser </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Li%2C+S">Siqi Li</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+Z">Zhen Zhang</a>, <a href="/search/physics?searchtype=author&query=Alverson%2C+S">Shawn Alverson</a>, <a href="/search/physics?searchtype=author&query=Cesar%2C+D">David Cesar</a>, <a href="/search/physics?searchtype=author&query=Driver%2C+T">Taran Driver</a>, <a href="/search/physics?searchtype=author&query=Franz%2C+P">Paris Franz</a>, <a href="/search/physics?searchtype=author&query=Isele%2C+E">Erik Isele</a>, <a href="/search/physics?searchtype=author&query=Duris%2C+J+P">Joseph P. Duris</a>, <a href="/search/physics?searchtype=author&query=Larsen%2C+K">Kirk Larsen</a>, <a href="/search/physics?searchtype=author&query=Lin%2C+M">Ming-Fu Lin</a>, <a href="/search/physics?searchtype=author&query=Obaid%2C+R">Razib Obaid</a>, <a href="/search/physics?searchtype=author&query=O%27Neal%2C+J+T">Jordan T O'Neal</a>, <a href="/search/physics?searchtype=author&query=Robles%2C+R">River Robles</a>, <a href="/search/physics?searchtype=author&query=Sudar%2C+N">Nick Sudar</a>, <a href="/search/physics?searchtype=author&query=Guo%2C+Z">Zhaoheng Guo</a>, <a href="/search/physics?searchtype=author&query=Vetter%2C+S">Sharon Vetter</a>, <a href="/search/physics?searchtype=author&query=Walter%2C+P">Peter Walter</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+A+L">Anna L. Wang</a>, <a href="/search/physics?searchtype=author&query=Xu%2C+J">Joseph Xu</a>, <a href="/search/physics?searchtype=author&query=Carbajo%2C+S">Sergio Carbajo</a>, <a href="/search/physics?searchtype=author&query=Cryan%2C+J+P">James P. Cryan</a>, <a href="/search/physics?searchtype=author&query=Marinelli%2C+A">Agostino Marinelli</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.02299v1-abstract-short" style="display: inline;"> Electron beam shaping allows the control of the temporal properties of x-ray free-electron laser pulses from femtosecond to attosecond timescales. Here we demonstrate the use of a laser heater to shape electron bunches and enable the generation of attosecond x-ray pulses. We demonstrate that this method can be applied in a selective way, shaping a targeted subset of bunches while leaving the remai… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.02299v1-abstract-full').style.display = 'inline'; document.getElementById('2404.02299v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.02299v1-abstract-full" style="display: none;"> Electron beam shaping allows the control of the temporal properties of x-ray free-electron laser pulses from femtosecond to attosecond timescales. Here we demonstrate the use of a laser heater to shape electron bunches and enable the generation of attosecond x-ray pulses. We demonstrate that this method can be applied in a selective way, shaping a targeted subset of bunches while leaving the remaining bunches unchanged. This experiment enables the delivery of shaped x-ray pulses to multiple undulator beamlines, with pulse properties tailored to specialized scientific applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.02299v1-abstract-full').style.display = 'none'; document.getElementById('2404.02299v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.17685">arXiv:2402.17685</a> <span> [<a href="https://arxiv.org/pdf/2402.17685">pdf</a>, <a href="https://arxiv.org/format/2402.17685">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> </div> <p class="title is-5 mathjax"> Attosecond X-ray Chronoscopy of Core-level Photoemission </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Ji%2C+J">Jia-Bao Ji</a>, <a href="/search/physics?searchtype=author&query=Guo%2C+Z">Zhaoheng Guo</a>, <a href="/search/physics?searchtype=author&query=Driver%2C+T">Taran Driver</a>, <a href="/search/physics?searchtype=author&query=Trevisan%2C+C+S">Cynthia S. Trevisan</a>, <a href="/search/physics?searchtype=author&query=Cesar%2C+D">David Cesar</a>, <a href="/search/physics?searchtype=author&query=Cheng%2C+X">Xinxin Cheng</a>, <a href="/search/physics?searchtype=author&query=Duris%2C+J">Joseph Duris</a>, <a href="/search/physics?searchtype=author&query=Franz%2C+P+L">Paris L. Franz</a>, <a href="/search/physics?searchtype=author&query=Glownia%2C+J">James Glownia</a>, <a href="/search/physics?searchtype=author&query=Gong%2C+X">Xiaochun Gong</a>, <a href="/search/physics?searchtype=author&query=Hammerland%2C+D">Daniel Hammerland</a>, <a href="/search/physics?searchtype=author&query=Han%2C+M">Meng Han</a>, <a href="/search/physics?searchtype=author&query=Heck%2C+S">Saijoscha Heck</a>, <a href="/search/physics?searchtype=author&query=Hoffmann%2C+M">Matthias Hoffmann</a>, <a href="/search/physics?searchtype=author&query=Kamalov%2C+A">Andrei Kamalov</a>, <a href="/search/physics?searchtype=author&query=Larsen%2C+K+A">Kirk A. Larsen</a>, <a href="/search/physics?searchtype=author&query=Li%2C+X">Xiang Li</a>, <a href="/search/physics?searchtype=author&query=Lin%2C+M">Ming-Fu Lin</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+Y">Yuchen Liu</a>, <a href="/search/physics?searchtype=author&query=McCurdy%2C+C+W">C. William McCurdy</a>, <a href="/search/physics?searchtype=author&query=Obaid%2C+R">Razib Obaid</a>, <a href="/search/physics?searchtype=author&query=ONeal%2C+J+T">Jordan T. ONeal</a>, <a href="/search/physics?searchtype=author&query=Rescigno%2C+T+N">Thomas N. Rescigno</a>, <a href="/search/physics?searchtype=author&query=Robles%2C+R+R">River R. Robles</a>, <a href="/search/physics?searchtype=author&query=Sudar%2C+N">Nicholas Sudar</a> , et al. (10 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.17685v3-abstract-short" style="display: inline;"> Attosecond photoemission or photoionization delays are a unique probe of the structure and the electronic dynamics of matter. However, spectral congestion and spatial delocalization of valence electron wave functions set fundamental limits to the complexity of systems that can be studied and the information that can be retrieved, respectively. Using attosecond X-ray pulses from LCLS, we demonstrat… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.17685v3-abstract-full').style.display = 'inline'; document.getElementById('2402.17685v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.17685v3-abstract-full" style="display: none;"> Attosecond photoemission or photoionization delays are a unique probe of the structure and the electronic dynamics of matter. However, spectral congestion and spatial delocalization of valence electron wave functions set fundamental limits to the complexity of systems that can be studied and the information that can be retrieved, respectively. Using attosecond X-ray pulses from LCLS, we demonstrate the key advantages of measuring core-level delays: the photoelectron spectra remain atom-like, the measurements become element specific and the observed scattering dynamics originate from a point-like source. We exploit these unique features to reveal the effects of electronegativity and symmetry on attosecond scattering dynamics by measuring the photoionization delays between N-1s and C-1s core shells of a series of aromatic azabenzene molecules. Remarkably, the delays systematically increase with the number of nitrogen atoms in the molecule and reveal multiple resonances. We identify two previously unknown mechanisms regulating the associated attosecond dynamics, namely the enhanced confinement of the trapped wavefunction with increasing electronegativity of the atoms and the decrease of the coupling strength among the photoemitted partial waves with increasing symmetry. This study demonstrates the unique opportunities opened by measurements of core-level photoionization delays for unravelling attosecond electron dynamics in complex matter. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.17685v3-abstract-full').style.display = 'none'; document.getElementById('2402.17685v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.12764">arXiv:2402.12764</a> <span> [<a href="https://arxiv.org/pdf/2402.12764">pdf</a>, <a href="https://arxiv.org/format/2402.12764">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> </div> <p class="title is-5 mathjax"> Attosecond Delays in X-ray Molecular Ionization </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Driver%2C+T">Taran Driver</a>, <a href="/search/physics?searchtype=author&query=Mountney%2C+M">Miles Mountney</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+J">Jun Wang</a>, <a href="/search/physics?searchtype=author&query=Ortmann%2C+L">Lisa Ortmann</a>, <a href="/search/physics?searchtype=author&query=Al-Haddad%2C+A">Andre Al-Haddad</a>, <a href="/search/physics?searchtype=author&query=Berrah%2C+N">Nora Berrah</a>, <a href="/search/physics?searchtype=author&query=Bostedt%2C+C">Christoph Bostedt</a>, <a href="/search/physics?searchtype=author&query=Champenois%2C+E+G">Elio G. Champenois</a>, <a href="/search/physics?searchtype=author&query=DiMauro%2C+L+F">Louis F. DiMauro</a>, <a href="/search/physics?searchtype=author&query=Duris%2C+J">Joseph Duris</a>, <a href="/search/physics?searchtype=author&query=Garratt%2C+D">Douglas Garratt</a>, <a href="/search/physics?searchtype=author&query=Glownia%2C+J+M">James M. Glownia</a>, <a href="/search/physics?searchtype=author&query=Guo%2C+Z">Zhaoheng Guo</a>, <a href="/search/physics?searchtype=author&query=Haxton%2C+D">Daniel Haxton</a>, <a href="/search/physics?searchtype=author&query=Isele%2C+E">Erik Isele</a>, <a href="/search/physics?searchtype=author&query=Ivanov%2C+I">Igor Ivanov</a>, <a href="/search/physics?searchtype=author&query=Ji%2C+J">Jiabao Ji</a>, <a href="/search/physics?searchtype=author&query=Kamalov%2C+A">Andrei Kamalov</a>, <a href="/search/physics?searchtype=author&query=Li%2C+S">Siqi Li</a>, <a href="/search/physics?searchtype=author&query=Lin%2C+M">Ming-Fu Lin</a>, <a href="/search/physics?searchtype=author&query=Marangos%2C+J+P">Jon P. Marangos</a>, <a href="/search/physics?searchtype=author&query=Obaid%2C+R">Razib Obaid</a>, <a href="/search/physics?searchtype=author&query=O%27Neal%2C+J+T">Jordan T. O'Neal</a>, <a href="/search/physics?searchtype=author&query=Rosenberger%2C+P">Philipp Rosenberger</a>, <a href="/search/physics?searchtype=author&query=Shivaram%2C+N+H">Niranjan H. Shivaram</a> , et al. (12 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.12764v1-abstract-short" style="display: inline;"> The photoelectric effect is not truly instantaneous, but exhibits attosecond delays that can reveal complex molecular dynamics. Sub-femtosecond duration light pulses provide the requisite tools to resolve the dynamics of photoionization. Accordingly, the past decade has produced a large volume of work on photoionization delays following single photon absorption of an extreme ultraviolet (XUV) phot… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.12764v1-abstract-full').style.display = 'inline'; document.getElementById('2402.12764v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.12764v1-abstract-full" style="display: none;"> The photoelectric effect is not truly instantaneous, but exhibits attosecond delays that can reveal complex molecular dynamics. Sub-femtosecond duration light pulses provide the requisite tools to resolve the dynamics of photoionization. Accordingly, the past decade has produced a large volume of work on photoionization delays following single photon absorption of an extreme ultraviolet (XUV) photon. However, the measurement of time-resolved core-level photoionization remained out of reach. The required x-ray photon energies needed for core-level photoionization were not available with attosecond tabletop sources. We have now measured the x-ray photoemission delay of core-level electrons, and here report unexpectedly large delays, ranging up to 700 attoseconds in NO near the oxygen K-shell threshold. These measurements exploit attosecond soft x-ray pulses from a free-electron laser (XFEL) to scan across the entire region near the K-shell threshold. Furthermore, we find the delay spectrum is richly modulated, suggesting several contributions including transient trapping of the photoelectron due to shape resonances, collisions with the Auger-Meitner electron that is emitted in the rapid non-radiative relaxation of the molecule, and multi-electron scattering effects. The results demonstrate how x-ray attosecond experiments, supported by comprehensive theoretical modelling, can unravel the complex correlated dynamics of core-level photoionization. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.12764v1-abstract-full').style.display = 'none'; document.getElementById('2402.12764v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.15250">arXiv:2401.15250</a> <span> [<a href="https://arxiv.org/pdf/2401.15250">pdf</a>, <a href="https://arxiv.org/format/2401.15250">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> </div> <p class="title is-5 mathjax"> Experimental Demonstration of Attosecond Pump-Probe Spectroscopy with an X-ray Free-Electron Laser </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Guo%2C+Z">Zhaoheng Guo</a>, <a href="/search/physics?searchtype=author&query=Driver%2C+T">Taran Driver</a>, <a href="/search/physics?searchtype=author&query=Beauvarlet%2C+S">Sandra Beauvarlet</a>, <a href="/search/physics?searchtype=author&query=Cesar%2C+D">David Cesar</a>, <a href="/search/physics?searchtype=author&query=Duris%2C+J">Joseph Duris</a>, <a href="/search/physics?searchtype=author&query=Franz%2C+P+L">Paris L. Franz</a>, <a href="/search/physics?searchtype=author&query=Alexander%2C+O">Oliver Alexander</a>, <a href="/search/physics?searchtype=author&query=Bohler%2C+D">Dorian Bohler</a>, <a href="/search/physics?searchtype=author&query=Bostedt%2C+C">Christoph Bostedt</a>, <a href="/search/physics?searchtype=author&query=Averbukh%2C+V">Vitali Averbukh</a>, <a href="/search/physics?searchtype=author&query=Cheng%2C+X">Xinxin Cheng</a>, <a href="/search/physics?searchtype=author&query=DiMauro%2C+L+F">Louis F. DiMauro</a>, <a href="/search/physics?searchtype=author&query=Doumy%2C+G">Gilles Doumy</a>, <a href="/search/physics?searchtype=author&query=Forbes%2C+R">Ruaridh Forbes</a>, <a href="/search/physics?searchtype=author&query=Gessner%2C+O">Oliver Gessner</a>, <a href="/search/physics?searchtype=author&query=Glownia%2C+J+M">James M. Glownia</a>, <a href="/search/physics?searchtype=author&query=Isele%2C+E">Erik Isele</a>, <a href="/search/physics?searchtype=author&query=Kamalov%2C+A">Andrei Kamalov</a>, <a href="/search/physics?searchtype=author&query=Larsen%2C+K+A">Kirk A. Larsen</a>, <a href="/search/physics?searchtype=author&query=Li%2C+S">Siqi Li</a>, <a href="/search/physics?searchtype=author&query=Li%2C+X">Xiang Li</a>, <a href="/search/physics?searchtype=author&query=Lin%2C+M">Ming-Fu Lin</a>, <a href="/search/physics?searchtype=author&query=McCracken%2C+G+A">Gregory A. McCracken</a>, <a href="/search/physics?searchtype=author&query=Obaid%2C+R">Razib Obaid</a>, <a href="/search/physics?searchtype=author&query=ONeal%2C+J+T">Jordan T. ONeal</a> , et al. (25 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.15250v1-abstract-short" style="display: inline;"> Pump-probe experiments with sub-femtosecond resolution are the key to understanding electronic dynamics in quantum systems. Here we demonstrate the generation and control of sub-femtosecond pulse pairs from a two-colour X-ray free-electron laser (XFEL). By measuring the delay between the two pulses with an angular streaking diagnostic, we characterise the group velocity of the XFEL and demonstrate… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.15250v1-abstract-full').style.display = 'inline'; document.getElementById('2401.15250v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.15250v1-abstract-full" style="display: none;"> Pump-probe experiments with sub-femtosecond resolution are the key to understanding electronic dynamics in quantum systems. Here we demonstrate the generation and control of sub-femtosecond pulse pairs from a two-colour X-ray free-electron laser (XFEL). By measuring the delay between the two pulses with an angular streaking diagnostic, we characterise the group velocity of the XFEL and demonstrate control of the pulse delay down to 270 as. We demonstrate the application of this technique to a pump-probe measurement in core-excited para-aminophenol. These results demonstrate the ability to perform pump-probe experiments with sub-femtosecond resolution and atomic site specificity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.15250v1-abstract-full').style.display = 'none'; document.getElementById('2401.15250v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">55 pages, main manuscript (5 figures) + supplementary materials (25 figures), 30 figures total. Submitted to Nature Photonics</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.12412">arXiv:2312.12412</a> <span> [<a href="https://arxiv.org/pdf/2312.12412">pdf</a>, <a href="https://arxiv.org/format/2312.12412">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> </div> </div> <p class="title is-5 mathjax"> Towards Accelerating Particle-Resolved Direct Numerical Simulation with Neural Operators </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Atif%2C+M">Mohammad Atif</a>, <a href="/search/physics?searchtype=author&query=L%C3%B3pez-Marrero%2C+V">Vanessa L贸pez-Marrero</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+T">Tao Zhang</a>, <a href="/search/physics?searchtype=author&query=Sharfuddin%2C+A+A+M">Abdullah Al Muti Sharfuddin</a>, <a href="/search/physics?searchtype=author&query=Yu%2C+K">Kwangmin Yu</a>, <a href="/search/physics?searchtype=author&query=Yang%2C+J">Jiaqi Yang</a>, <a href="/search/physics?searchtype=author&query=Yang%2C+F">Fan Yang</a>, <a href="/search/physics?searchtype=author&query=Ladeinde%2C+F">Foluso Ladeinde</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+Y">Yangang Liu</a>, <a href="/search/physics?searchtype=author&query=Lin%2C+M">Meifeng Lin</a>, <a href="/search/physics?searchtype=author&query=Li%2C+L">Lingda Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.12412v1-abstract-short" style="display: inline;"> We present our ongoing work aimed at accelerating a particle-resolved direct numerical simulation model designed to study aerosol-cloud-turbulence interactions. The dynamical model consists of two main components - a set of fluid dynamics equations for air velocity, temperature, and humidity, coupled with a set of equations for particle (i.e., cloud droplet) tracing. Rather than attempting to repl… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.12412v1-abstract-full').style.display = 'inline'; document.getElementById('2312.12412v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.12412v1-abstract-full" style="display: none;"> We present our ongoing work aimed at accelerating a particle-resolved direct numerical simulation model designed to study aerosol-cloud-turbulence interactions. The dynamical model consists of two main components - a set of fluid dynamics equations for air velocity, temperature, and humidity, coupled with a set of equations for particle (i.e., cloud droplet) tracing. Rather than attempting to replace the original numerical solution method in its entirety with a machine learning (ML) method, we consider developing a hybrid approach. We exploit the potential of neural operator learning to yield fast and accurate surrogate models and, in this study, develop such surrogates for the velocity and vorticity fields. We discuss results from numerical experiments designed to assess the performance of ML architectures under consideration as well as their suitability for capturing the behavior of relevant dynamical systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.12412v1-abstract-full').style.display = 'none'; document.getElementById('2312.12412v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.17442">arXiv:2311.17442</a> <span> [<a href="https://arxiv.org/pdf/2311.17442">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1002/solr.202300722">10.1002/solr.202300722 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Quantifying Nonradiative Recombination and Resistive Losses in Perovskite Photovoltaics: A Modified Diode Model Approach </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Lin%2C+M">Minshen Lin</a>, <a href="/search/physics?searchtype=author&query=Xu%2C+X">Xuehui Xu</a>, <a href="/search/physics?searchtype=author&query=Tian%2C+H">Hong Tian</a>, <a href="/search/physics?searchtype=author&query=Yang%2C+Y+M">Yang Michael Yang</a>, <a href="/search/physics?searchtype=author&query=Sha%2C+W+E+I">Wei E. I. Sha</a>, <a href="/search/physics?searchtype=author&query=Zhong%2C+W">Wenxing Zhong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.17442v2-abstract-short" style="display: inline;"> Pinpointing the origin of inefficiency can expedite the process of optimizing the efficiency of perovskite photovoltaics. However, it is challenging to discern and quantify the different loss pathways in a complete perovskite photovoltaic device under operational conditions. To address this challenge, we propose a modified diode model that can quantify bulk/interface defect-assisted recombination… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.17442v2-abstract-full').style.display = 'inline'; document.getElementById('2311.17442v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.17442v2-abstract-full" style="display: none;"> Pinpointing the origin of inefficiency can expedite the process of optimizing the efficiency of perovskite photovoltaics. However, it is challenging to discern and quantify the different loss pathways in a complete perovskite photovoltaic device under operational conditions. To address this challenge, we propose a modified diode model that can quantify bulk/interface defect-assisted recombination and series/shunt resistive losses. By adopting drift-diffusion simulation as the benchmark, we explore the physical meanings of the modified diode model parameters and evaluate the performance of the model for simulation parameters spanning many orders of magnitude. Our evaluation shows that, in most practical cases, the proposed model can accurately quantify all the aforementioned losses, and in some special cases, it is possible to identify the predominant loss pathway. Moreover, we apply the modified diode model to our lab-produced devices (based on Cs0.05FA0.95PbI3 perovskites), demonstrating its effectiveness in quantifying entangled losses in practice. Finally, we provide a set of guidelines for applying the modified diode model and interpreting the results. Source code available at https://github.com/WPT-Lab124/Modified-Diode-Model. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.17442v2-abstract-full').style.display = 'none'; document.getElementById('2311.17442v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">26 pages, 6 figures, published in Solar RRL</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.15378">arXiv:2311.15378</a> <span> [<a href="https://arxiv.org/pdf/2311.15378">pdf</a>, <a href="https://arxiv.org/format/2311.15378">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> </div> </div> <p class="title is-5 mathjax"> The information gain limit of molecular computation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Arunachalam%2C+E">Easun Arunachalam</a>, <a href="/search/physics?searchtype=author&query=Lin%2C+M+M">Milo M. Lin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.15378v3-abstract-short" style="display: inline;"> Biomolecules stochastically occupy different possible configurations with probabilities given by non-equilibrium steady-state distributions. These distributions are determined by the transition rate constants between different configurations. Changing these biochemical parameters (inputs) alters the resulting distributions (outputs), and thus constitutes a form of computation. The information-theo… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.15378v3-abstract-full').style.display = 'inline'; document.getElementById('2311.15378v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.15378v3-abstract-full" style="display: none;"> Biomolecules stochastically occupy different possible configurations with probabilities given by non-equilibrium steady-state distributions. These distributions are determined by the transition rate constants between different configurations. Changing these biochemical parameters (inputs) alters the resulting distributions (outputs), and thus constitutes a form of computation. The information-theoretic advantage of performing computations using non-equilibrium distributions, which require a thermodynamic driving force and thus continual energy expenditure to maintain, is unclear. Here we show how much driving can change probability distributions beyond what is possible at equilibrium. First, we establish a tight limit on how much the driving force can change the probability of observing any configuration of an arbitrary molecular system. We then derive a concise expression relating the driving force to the maximum information gain -- the change in the full probability distribution over configurations -- in any computation, showing how small input changes can exponentially alter outputs. Finally, we numerically show that synthetic systems and Ras signaling can closely approach this bound, illustrating the necessity of energy expenditure to enable the computational capabilities observed in nature. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.15378v3-abstract-full').style.display = 'none'; document.getElementById('2311.15378v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">MSC Class:</span> 82C05; 92E20; 92C05; 92C40; 94C15 <span class="has-text-black-bis has-text-weight-semibold">ACM Class:</span> J.2; J.3 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.12482">arXiv:2311.12482</a> <span> [<a href="https://arxiv.org/pdf/2311.12482">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/jacs.3c13046">10.1021/jacs.3c13046 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Monitoring the evolution of relative product populations at early times during a photochemical reaction </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Nunes%2C+J+P+F">Joao Pedro Figueira Nunes</a>, <a href="/search/physics?searchtype=author&query=Ibele%2C+L+M">Lea Maria Ibele</a>, <a href="/search/physics?searchtype=author&query=Pathak%2C+S">Shashank Pathak</a>, <a href="/search/physics?searchtype=author&query=Attar%2C+A+R">Andrew R. Attar</a>, <a href="/search/physics?searchtype=author&query=Bhattacharyya%2C+S">Surjendu Bhattacharyya</a>, <a href="/search/physics?searchtype=author&query=Boll%2C+R">Rebecca Boll</a>, <a href="/search/physics?searchtype=author&query=Borne%2C+K">Kurtis Borne</a>, <a href="/search/physics?searchtype=author&query=Centurion%2C+M">Martin Centurion</a>, <a href="/search/physics?searchtype=author&query=Erk%2C+B">Benjamin Erk</a>, <a href="/search/physics?searchtype=author&query=Lin%2C+M">Ming-Fu Lin</a>, <a href="/search/physics?searchtype=author&query=Forbes%2C+R+J+G">Ruaridh J. G. Forbes</a>, <a href="/search/physics?searchtype=author&query=Goff%2C+N">Nate Goff</a>, <a href="/search/physics?searchtype=author&query=Hansen%2C+C+S">Christopher S. Hansen</a>, <a href="/search/physics?searchtype=author&query=Hoffmann%2C+M">Matthias Hoffmann</a>, <a href="/search/physics?searchtype=author&query=Holland%2C+D+M+P">David M. P. Holland</a>, <a href="/search/physics?searchtype=author&query=Ingle%2C+R+A">Rebecca A. Ingle</a>, <a href="/search/physics?searchtype=author&query=Luo%2C+D">Duan Luo</a>, <a href="/search/physics?searchtype=author&query=Muvva%2C+S+B">Sri Bhavya Muvva</a>, <a href="/search/physics?searchtype=author&query=Reid%2C+A">Alex Reid</a>, <a href="/search/physics?searchtype=author&query=Rouz%C3%A9e%2C+A">Arnaud Rouz茅e</a>, <a href="/search/physics?searchtype=author&query=Rudenko%2C+A">Artem Rudenko</a>, <a href="/search/physics?searchtype=author&query=Saha%2C+S+K">Sajib Kumar Saha</a>, <a href="/search/physics?searchtype=author&query=Shen%2C+X">Xiaozhe Shen</a>, <a href="/search/physics?searchtype=author&query=Venkatachalam%2C+A+S">Anbu Selvam Venkatachalam</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+X">Xijie Wang</a> , et al. (9 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.12482v1-abstract-short" style="display: inline;"> Identifying multiple rival reaction products and transient species formed during ultrafast photochemical reactions and determining their time-evolving relative populations are key steps towards understanding and predicting photochemical outcomes. Yet, most contemporary ultrafast studies struggle with clearly identifying and quantifying competing molecular structures/species amongst the emerging re… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.12482v1-abstract-full').style.display = 'inline'; document.getElementById('2311.12482v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.12482v1-abstract-full" style="display: none;"> Identifying multiple rival reaction products and transient species formed during ultrafast photochemical reactions and determining their time-evolving relative populations are key steps towards understanding and predicting photochemical outcomes. Yet, most contemporary ultrafast studies struggle with clearly identifying and quantifying competing molecular structures/species amongst the emerging reaction products. Here, we show that mega-electronvolt ultrafast electron diffraction in combination with ab initio molecular dynamics calculations offer a powerful route to determining time-resolved populations of the various isomeric products formed after UV (266 nm) excitation of the five-membered heterocyclic molecule 2(5H)-thiophenone. This strategy provides experimental validation of the predicted high (~50%) yield of an episulfide isomer containing a strained 3-membered ring within ~1 ps of photoexcitation and highlights the rapidity of interconversion between the rival highly vibrationally excited photoproducts in their ground electronic state. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.12482v1-abstract-full').style.display = 'none'; document.getElementById('2311.12482v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. Am. Chem. Soc. 2024, 146, 6, 4134-4143 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.06775">arXiv:2311.06775</a> <span> [<a href="https://arxiv.org/pdf/2311.06775">pdf</a>, <a href="https://arxiv.org/format/2311.06775">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> </div> </div> <p class="title is-5 mathjax"> Emergent collective motion of self-propelled condensate droplets </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Lin%2C+M">Marcus Lin</a>, <a href="/search/physics?searchtype=author&query=Kim%2C+P">Philseok Kim</a>, <a href="/search/physics?searchtype=author&query=Arunachalam%2C+S">Sankara Arunachalam</a>, <a href="/search/physics?searchtype=author&query=Hardian%2C+R">Rifan Hardian</a>, <a href="/search/physics?searchtype=author&query=Adera%2C+S">Solomon Adera</a>, <a href="/search/physics?searchtype=author&query=Aizenberg%2C+J">Joanna Aizenberg</a>, <a href="/search/physics?searchtype=author&query=Yao%2C+X">Xi Yao</a>, <a href="/search/physics?searchtype=author&query=Daniel%2C+D">Dan Daniel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.06775v1-abstract-short" style="display: inline;"> Recently, there is much interest in droplet condensation on soft or liquid/liquid-like substrates. Droplets can deform soft and liquid interfaces resulting in a wealth of phenomena not observed on hard, solid surfaces (e.g., increased nucleation, inter-droplet attraction). Here, we describe a unique complex collective motion of condensate water droplets that emerges spontaneously when a solid subs… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.06775v1-abstract-full').style.display = 'inline'; document.getElementById('2311.06775v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.06775v1-abstract-full" style="display: none;"> Recently, there is much interest in droplet condensation on soft or liquid/liquid-like substrates. Droplets can deform soft and liquid interfaces resulting in a wealth of phenomena not observed on hard, solid surfaces (e.g., increased nucleation, inter-droplet attraction). Here, we describe a unique complex collective motion of condensate water droplets that emerges spontaneously when a solid substrate is covered with a thin oil film. Droplets move first in a serpentine, self-avoiding fashion before transitioning to circular motions. We show that this self-propulsion (with speeds in the 0.1-1 mm/s range) is fuelled by the interfacial energy release upon merging with newly condensed but much smaller droplets. The resultant collective motion spans multiple length scales from submillimetre to several centimetres, with potentially important heat-transfer and water-harvesting applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.06775v1-abstract-full').style.display = 'none'; document.getElementById('2311.06775v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.02927">arXiv:2311.02927</a> <span> [<a href="https://arxiv.org/pdf/2311.02927">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Image and Video Processing">eess.IV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> </div> </div> <p class="title is-5 mathjax"> Auto-ICell: An Accessible and Cost-Effective Integrative Droplet Microfluidic System for Real-Time Single-Cell Morphological and Apoptotic Analysis </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Wei%2C+Y">Yuanyuan Wei</a>, <a href="/search/physics?searchtype=author&query=Lin%2C+M">Meiai Lin</a>, <a href="/search/physics?searchtype=author&query=Luo%2C+S">Shanhang Luo</a>, <a href="/search/physics?searchtype=author&query=Abbasi%2C+S+M+T">Syed Muhammad Tariq Abbasi</a>, <a href="/search/physics?searchtype=author&query=Tan%2C+L">Liwei Tan</a>, <a href="/search/physics?searchtype=author&query=Cheng%2C+G">Guangyao Cheng</a>, <a href="/search/physics?searchtype=author&query=Bai%2C+B">Bijie Bai</a>, <a href="/search/physics?searchtype=author&query=Ho%2C+Y">Yi-Ping Ho</a>, <a href="/search/physics?searchtype=author&query=Yuan%2C+S+W">Scott Wu Yuan</a>, <a href="/search/physics?searchtype=author&query=Ho%2C+H">Ho-Pui Ho</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.02927v1-abstract-short" style="display: inline;"> The Auto-ICell system, a novel, and cost-effective integrated droplet microfluidic system, is introduced for real-time analysis of single-cell morphology and apoptosis. This system integrates a 3D-printed microfluidic chip with image analysis algorithms, enabling the generation of uniform droplet reactors and immediate image analysis. The system employs a color-based image analysis algorithm in th… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.02927v1-abstract-full').style.display = 'inline'; document.getElementById('2311.02927v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.02927v1-abstract-full" style="display: none;"> The Auto-ICell system, a novel, and cost-effective integrated droplet microfluidic system, is introduced for real-time analysis of single-cell morphology and apoptosis. This system integrates a 3D-printed microfluidic chip with image analysis algorithms, enabling the generation of uniform droplet reactors and immediate image analysis. The system employs a color-based image analysis algorithm in the bright field for droplet content analysis. Meanwhile, in the fluorescence field, cell apoptosis is quantitatively measured through a combination of deep-learning-enabled multiple fluorescent channel analysis and a live/dead cell stain kit. Breast cancer cells are encapsulated within uniform droplets, with diameters ranging from 70 渭m to 240 渭m, generated at a high throughput of 1,500 droplets per minute. Real-time image analysis results are displayed within 2 seconds on a custom graphical user interface (GUI). The system provides an automatic calculation of the distribution and ratio of encapsulated dyes in the bright field, and in the fluorescent field, cell blebbing and cell circularity are observed and quantified respectively. The Auto-ICell system is non-invasive and provides online detection, offering a robust, time-efficient, user-friendly, and cost-effective solution for single-cell analysis. It significantly enhances the detection throughput of droplet single-cell analysis by reducing setup costs and improving operational performance. This study highlights the potential of the Auto-ICell system in advancing biological research and personalized disease treatment, with promising applications in cell culture, biochemical microreactors, drug carriers, cell-based assays, synthetic biology, and point-of-care diagnostics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.02927v1-abstract-full').style.display = 'none'; document.getElementById('2311.02927v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.13997">arXiv:2309.13997</a> <span> [<a href="https://arxiv.org/pdf/2309.13997">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> The hidden spin-momentum locking and topological defects in unpolarized light fields </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Shi%2C+P">Peng Shi</a>, <a href="/search/physics?searchtype=author&query=Lin%2C+M">Min Lin</a>, <a href="/search/physics?searchtype=author&query=Gou%2C+X">Xinxin Gou</a>, <a href="/search/physics?searchtype=author&query=Du%2C+L">Luping Du</a>, <a href="/search/physics?searchtype=author&query=Yang%2C+A">Aiping Yang</a>, <a href="/search/physics?searchtype=author&query=Yuan%2C+X">Xiaocong Yuan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.13997v1-abstract-short" style="display: inline;"> Electromagnetic waves characterized by intensity, phase, and polarization degrees of freedom are widely applied in data storage, encryption, and communications. However, these properties can be substantially affected by phase disorders and disturbances, whereas high-dimensional degrees of freedom including momentum and angular momentum of electromagnetic waves can offer new insights into their fea… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.13997v1-abstract-full').style.display = 'inline'; document.getElementById('2309.13997v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.13997v1-abstract-full" style="display: none;"> Electromagnetic waves characterized by intensity, phase, and polarization degrees of freedom are widely applied in data storage, encryption, and communications. However, these properties can be substantially affected by phase disorders and disturbances, whereas high-dimensional degrees of freedom including momentum and angular momentum of electromagnetic waves can offer new insights into their features and phenomena, for example topological characteristics and structures that are robust to these disturbances. Here, we discover and demonstrate theoretically and experimentally spin-momentum locking and topological defects in unpolarized light. The coherent spin is locked to the kinetic momentum except for a small coupling spin term, due to the simultaneous presence of transverse magnetic and electric components in unpolarized light. To cancel the coupling term, we employ a metal film acting as a polarizer to form some skyrmion-like spin textures at the metal/air interface. Using an in-house scanning optical microscopic system to image the out-of-plane spin density of the focused unpolarized vortex light, we obtained experimental results that coincide well with our theoretical predictions. The theory and technique promote the applications of topological defects in optical data storage, encryption, and decryption, and communications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.13997v1-abstract-full').style.display = 'none'; document.getElementById('2309.13997v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 3 figures, 47 references</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.03996">arXiv:2308.03996</a> <span> [<a href="https://arxiv.org/pdf/2308.03996">pdf</a>, <a href="https://arxiv.org/format/2308.03996">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> </div> <p class="title is-5 mathjax"> Investigating dissociation pathways of nitrobenzene via mega-electron-volt ultrafast electron diffraction </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Hegazy%2C+K">Kareem Hegazy</a>, <a href="/search/physics?searchtype=author&query=Cryan%2C+J">James Cryan</a>, <a href="/search/physics?searchtype=author&query=Li%2C+R">Renkai Li</a>, <a href="/search/physics?searchtype=author&query=Lin%2C+M">Ming-Fu Lin</a>, <a href="/search/physics?searchtype=author&query=Moore%2C+B">Brian Moore</a>, <a href="/search/physics?searchtype=author&query=Nunes%2C+P">Pedro Nunes</a>, <a href="/search/physics?searchtype=author&query=Shen%2C+X">Xiaozhe Shen</a>, <a href="/search/physics?searchtype=author&query=Weathersby%2C+S">Stephen Weathersby</a>, <a href="/search/physics?searchtype=author&query=Yang%2C+J">Jie Yang</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+X">Xijie Wang</a>, <a href="/search/physics?searchtype=author&query=Wolf%2C+T">Thomas Wolf</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.03996v1-abstract-short" style="display: inline;"> As the simplest nitroaromatic compound, nitrobenzene is an interesting model system to explore the rich photochemistry of nitroaromatic compounds. Previous measurements of nitrobenzene's photochemical dynamics have probed structural and electronic properties, which, at times, paint a convoluted and sometimes contradictory description of the photochemical landscape. A sub-picosecond structural prob… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.03996v1-abstract-full').style.display = 'inline'; document.getElementById('2308.03996v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.03996v1-abstract-full" style="display: none;"> As the simplest nitroaromatic compound, nitrobenzene is an interesting model system to explore the rich photochemistry of nitroaromatic compounds. Previous measurements of nitrobenzene's photochemical dynamics have probed structural and electronic properties, which, at times, paint a convoluted and sometimes contradictory description of the photochemical landscape. A sub-picosecond structural probe can complement previous electronic measurements and aid in determining the photochemical dynamics with less ambiguity. We investigate the ultrafast dynamics of nitrobenzene triggered by photoexcitation at 267 nm employing megaelectronvolt ultrafast electron diffraction with femtosecond time resolution. We measure the first 5 ps of dynamics and, by comparing our measured results to simulation, we unambiguously distinguish the lowest singlet and triplet electronic states. We observe ground state recovery within 160 +/- 60 fs through internal conversions and without signal corresponding to photofragmentation. Our lack of dissociation signal within the first 5 ps indicates that previously observed photofragmenation reactions take place in the vibrationally "hot" ground state on timescales considerably beyond 5 ps. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.03996v1-abstract-full').style.display = 'none'; document.getElementById('2308.03996v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 3 figures, and 1 table</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.13220">arXiv:2307.13220</a> <span> [<a href="https://arxiv.org/pdf/2307.13220">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Image and Video Processing">eess.IV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Medical Physics">physics.med-ph</span> </div> </div> <p class="title is-5 mathjax"> One for Multiple: Physics-informed Synthetic Data Boosts Generalizable Deep Learning for Fast MRI Reconstruction </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Wang%2C+Z">Zi Wang</a>, <a href="/search/physics?searchtype=author&query=Yu%2C+X">Xiaotong Yu</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+C">Chengyan Wang</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+W">Weibo Chen</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+J">Jiazheng Wang</a>, <a href="/search/physics?searchtype=author&query=Chu%2C+Y">Ying-Hua Chu</a>, <a href="/search/physics?searchtype=author&query=Sun%2C+H">Hongwei Sun</a>, <a href="/search/physics?searchtype=author&query=Li%2C+R">Rushuai Li</a>, <a href="/search/physics?searchtype=author&query=Li%2C+P">Peiyong Li</a>, <a href="/search/physics?searchtype=author&query=Yang%2C+F">Fan Yang</a>, <a href="/search/physics?searchtype=author&query=Han%2C+H">Haiwei Han</a>, <a href="/search/physics?searchtype=author&query=Kang%2C+T">Taishan Kang</a>, <a href="/search/physics?searchtype=author&query=Lin%2C+J">Jianzhong Lin</a>, <a href="/search/physics?searchtype=author&query=Yang%2C+C">Chen Yang</a>, <a href="/search/physics?searchtype=author&query=Chang%2C+S">Shufu Chang</a>, <a href="/search/physics?searchtype=author&query=Shi%2C+Z">Zhang Shi</a>, <a href="/search/physics?searchtype=author&query=Hua%2C+S">Sha Hua</a>, <a href="/search/physics?searchtype=author&query=Li%2C+Y">Yan Li</a>, <a href="/search/physics?searchtype=author&query=Hu%2C+J">Juan Hu</a>, <a href="/search/physics?searchtype=author&query=Zhu%2C+L">Liuhong Zhu</a>, <a href="/search/physics?searchtype=author&query=Zhou%2C+J">Jianjun Zhou</a>, <a href="/search/physics?searchtype=author&query=Lin%2C+M">Meijing Lin</a>, <a href="/search/physics?searchtype=author&query=Guo%2C+J">Jiefeng Guo</a>, <a href="/search/physics?searchtype=author&query=Cai%2C+C">Congbo Cai</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+Z">Zhong Chen</a> , et al. (3 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.13220v2-abstract-short" style="display: inline;"> Magnetic resonance imaging (MRI) is a widely used radiological modality renowned for its radiation-free, comprehensive insights into the human body, facilitating medical diagnoses. However, the drawback of prolonged scan times hinders its accessibility. The k-space undersampling offers a solution, yet the resultant artifacts necessitate meticulous removal during image reconstruction. Although Deep… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.13220v2-abstract-full').style.display = 'inline'; document.getElementById('2307.13220v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.13220v2-abstract-full" style="display: none;"> Magnetic resonance imaging (MRI) is a widely used radiological modality renowned for its radiation-free, comprehensive insights into the human body, facilitating medical diagnoses. However, the drawback of prolonged scan times hinders its accessibility. The k-space undersampling offers a solution, yet the resultant artifacts necessitate meticulous removal during image reconstruction. Although Deep Learning (DL) has proven effective for fast MRI image reconstruction, its broader applicability across various imaging scenarios has been constrained. Challenges include the high cost and privacy restrictions associated with acquiring large-scale, diverse training data, coupled with the inherent difficulty of addressing mismatches between training and target data in existing DL methodologies. Here, we present a novel Physics-Informed Synthetic data learning framework for Fast MRI, called PISF. PISF marks a breakthrough by enabling generalized DL for multi-scenario MRI reconstruction through a single trained model. Our approach separates the reconstruction of a 2D image into many 1D basic problems, commencing with 1D data synthesis to facilitate generalization. We demonstrate that training DL models on synthetic data, coupled with enhanced learning techniques, yields in vivo MRI reconstructions comparable to or surpassing those of models trained on matched realistic datasets, reducing the reliance on real-world MRI data by up to 96%. Additionally, PISF exhibits remarkable generalizability across multiple vendors and imaging centers. Its adaptability to diverse patient populations has been validated through evaluations by ten experienced medical professionals. PISF presents a feasible and cost-effective way to significantly boost the widespread adoption of DL in various fast MRI applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.13220v2-abstract-full').style.display = 'none'; document.getElementById('2307.13220v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">38 pages, 19 figures, 5 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.08593">arXiv:2307.08593</a> <span> [<a href="https://arxiv.org/pdf/2307.08593">pdf</a>, <a href="https://arxiv.org/format/2307.08593">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> </div> <p class="title is-5 mathjax"> Artificial Intelligence for the Electron Ion Collider (AI4EIC) </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Allaire%2C+C">C. Allaire</a>, <a href="/search/physics?searchtype=author&query=Ammendola%2C+R">R. Ammendola</a>, <a href="/search/physics?searchtype=author&query=Aschenauer%2C+E+-">E. -C. Aschenauer</a>, <a href="/search/physics?searchtype=author&query=Balandat%2C+M">M. Balandat</a>, <a href="/search/physics?searchtype=author&query=Battaglieri%2C+M">M. Battaglieri</a>, <a href="/search/physics?searchtype=author&query=Bernauer%2C+J">J. Bernauer</a>, <a href="/search/physics?searchtype=author&query=Bond%C3%AC%2C+M">M. Bond矛</a>, <a href="/search/physics?searchtype=author&query=Branson%2C+N">N. Branson</a>, <a href="/search/physics?searchtype=author&query=Britton%2C+T">T. Britton</a>, <a href="/search/physics?searchtype=author&query=Butter%2C+A">A. Butter</a>, <a href="/search/physics?searchtype=author&query=Chahrour%2C+I">I. Chahrour</a>, <a href="/search/physics?searchtype=author&query=Chatagnon%2C+P">P. Chatagnon</a>, <a href="/search/physics?searchtype=author&query=Cisbani%2C+E">E. Cisbani</a>, <a href="/search/physics?searchtype=author&query=Cline%2C+E+W">E. W. Cline</a>, <a href="/search/physics?searchtype=author&query=Dash%2C+S">S. Dash</a>, <a href="/search/physics?searchtype=author&query=Dean%2C+C">C. Dean</a>, <a href="/search/physics?searchtype=author&query=Deconinck%2C+W">W. Deconinck</a>, <a href="/search/physics?searchtype=author&query=Deshpande%2C+A">A. Deshpande</a>, <a href="/search/physics?searchtype=author&query=Diefenthaler%2C+M">M. Diefenthaler</a>, <a href="/search/physics?searchtype=author&query=Ent%2C+R">R. Ent</a>, <a href="/search/physics?searchtype=author&query=Fanelli%2C+C">C. Fanelli</a>, <a href="/search/physics?searchtype=author&query=Finger%2C+M">M. Finger</a>, <a href="/search/physics?searchtype=author&query=Finger%2C%2C+M">M. Finger, Jr.</a>, <a href="/search/physics?searchtype=author&query=Fol%2C+E">E. Fol</a>, <a href="/search/physics?searchtype=author&query=Furletov%2C+S">S. Furletov</a> , et al. (70 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.08593v1-abstract-short" style="display: inline;"> The Electron-Ion Collider (EIC), a state-of-the-art facility for studying the strong force, is expected to begin commissioning its first experiments in 2028. This is an opportune time for artificial intelligence (AI) to be included from the start at this facility and in all phases that lead up to the experiments. The second annual workshop organized by the AI4EIC working group, which recently took… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.08593v1-abstract-full').style.display = 'inline'; document.getElementById('2307.08593v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.08593v1-abstract-full" style="display: none;"> The Electron-Ion Collider (EIC), a state-of-the-art facility for studying the strong force, is expected to begin commissioning its first experiments in 2028. This is an opportune time for artificial intelligence (AI) to be included from the start at this facility and in all phases that lead up to the experiments. The second annual workshop organized by the AI4EIC working group, which recently took place, centered on exploring all current and prospective application areas of AI for the EIC. This workshop is not only beneficial for the EIC, but also provides valuable insights for the newly established ePIC collaboration at EIC. This paper summarizes the different activities and R&D projects covered across the sessions of the workshop and provides an overview of the goals, approaches and strategies regarding AI/ML in the EIC community, as well as cutting-edge techniques currently studied in other experiments. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.08593v1-abstract-full').style.display = 'none'; document.getElementById('2307.08593v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">27 pages, 11 figures, AI4EIC workshop, tutorials and hackathon</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.01614">arXiv:2307.01614</a> <span> [<a href="https://arxiv.org/pdf/2307.01614">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantitative Methods">q-bio.QM</span> </div> </div> <p class="title is-5 mathjax"> Single-molecule fluorescence multiplexing by multi-parameter spectroscopic detection of nanostructured FRET labels </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Chu%2C+J">Jiachong Chu</a>, <a href="/search/physics?searchtype=author&query=Ejaz%2C+A">Ayesha Ejaz</a>, <a href="/search/physics?searchtype=author&query=Lin%2C+K+M">Kyle M. Lin</a>, <a href="/search/physics?searchtype=author&query=Joseph%2C+M+R">Madeline R. Joseph</a>, <a href="/search/physics?searchtype=author&query=Coraor%2C+A+E">Aria E. Coraor</a>, <a href="/search/physics?searchtype=author&query=Drummond%2C+D+A">D. Allan Drummond</a>, <a href="/search/physics?searchtype=author&query=Squires%2C+A+H">Allison H. Squires</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.01614v2-abstract-short" style="display: inline;"> Multiplexed, real-time fluorescence detection at the single-molecule level is highly desirable to reveal the stoichiometry, dynamics, and interactions of individual molecular species within complex systems. However, traditionally fluorescence sensing is limited to 3-4 concurrently detected labels, due to low signal-to-noise, high spectral overlap between labels, and the need to avoid dissimilar dy… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.01614v2-abstract-full').style.display = 'inline'; document.getElementById('2307.01614v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.01614v2-abstract-full" style="display: none;"> Multiplexed, real-time fluorescence detection at the single-molecule level is highly desirable to reveal the stoichiometry, dynamics, and interactions of individual molecular species within complex systems. However, traditionally fluorescence sensing is limited to 3-4 concurrently detected labels, due to low signal-to-noise, high spectral overlap between labels, and the need to avoid dissimilar dye chemistries. We have engineered a palette of several dozen fluorescent labels, called FRETfluors, for spectroscopic multiplexing at the single-molecule level. Each FRETfluor is a compact nanostructure formed from the same three chemical building blocks (DNA, Cy3, and Cy5). The composition and dye-dye geometries create a characteristic F枚rster Resonance Energy Transfer (FRET) efficiency for each construct. In addition, we varied the local DNA sequence and attachment chemistry to alter the Cy3 and Cy5 emission properties and thereby shift the emission signatures of an entire series of FRET constructs to new sectors of the multi-parameter detection space. Unique spectroscopic emission of each FRETfluor is therefore conferred by a combination of FRET and this site-specific tuning of individual fluorophore photophysics. We show single-molecule identification of a set of 27 FRETfluors in a sample mixture using a subset of constructs statistically selected to minimize classification errors, measured using an Anti-Brownian ELectrokinetic (ABEL) trap which provides precise multi-parameter spectroscopic measurements. The ABEL trap also enables discrimination between FRETfluors attached to a target (here: mRNA) and unbound FRETfluors, eliminating the need for washes or removal of excess label by purification. We show single-molecule identification of a set of 27 FRETfluors in a sample mixture using a subset of constructs selected to minimize classification errors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.01614v2-abstract-full').style.display = 'none'; document.getElementById('2307.01614v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">62 pages, 6 figures, 19 Supplementary figures, 5 Supplementary tables, 9 Supplementary notes</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.09681">arXiv:2306.09681</a> <span> [<a href="https://arxiv.org/pdf/2306.09681">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Medical Physics">physics.med-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> Magnetic Resonance Spectroscopy Quantification Aided by Deep Estimations of Imperfection Factors and Macromolecular Signal </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Chen%2C+D">Dicheng Chen</a>, <a href="/search/physics?searchtype=author&query=Lin%2C+M">Meijin Lin</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+H">Huiting Liu</a>, <a href="/search/physics?searchtype=author&query=Li%2C+J">Jiayu Li</a>, <a href="/search/physics?searchtype=author&query=Zhou%2C+Y">Yirong Zhou</a>, <a href="/search/physics?searchtype=author&query=Kang%2C+T">Taishan Kang</a>, <a href="/search/physics?searchtype=author&query=Lin%2C+L">Liangjie Lin</a>, <a href="/search/physics?searchtype=author&query=Wu%2C+Z">Zhigang Wu</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+J">Jiazheng Wang</a>, <a href="/search/physics?searchtype=author&query=Li%2C+J">Jing Li</a>, <a href="/search/physics?searchtype=author&query=Lin%2C+J">Jianzhong Lin</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+X">Xi Chen</a>, <a href="/search/physics?searchtype=author&query=Guo%2C+D">Di Guo</a>, <a href="/search/physics?searchtype=author&query=Qu%2C+X">Xiaobo Qu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.09681v2-abstract-short" style="display: inline;"> Objective: Magnetic Resonance Spectroscopy (MRS) is an important technique for biomedical detection. However, it is challenging to accurately quantify metabolites with proton MRS due to serious overlaps of metabolite signals, imperfections because of non-ideal acquisition conditions, and interference with strong background signals mainly from macromolecules. The most popular method, LCModel, adopt… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.09681v2-abstract-full').style.display = 'inline'; document.getElementById('2306.09681v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.09681v2-abstract-full" style="display: none;"> Objective: Magnetic Resonance Spectroscopy (MRS) is an important technique for biomedical detection. However, it is challenging to accurately quantify metabolites with proton MRS due to serious overlaps of metabolite signals, imperfections because of non-ideal acquisition conditions, and interference with strong background signals mainly from macromolecules. The most popular method, LCModel, adopts complicated non-linear least square to quantify metabolites and addresses these problems by designing empirical priors such as basis-sets, imperfection factors. However, when the signal-to-noise ratio of MRS signal is low, the solution may have large deviation. Methods: Linear Least Squares (LLS) is integrated with deep learning to reduce the complexity of solving this overall quantification. First, a neural network is designed to explicitly predict the imperfection factors and the overall signal from macromolecules. Then, metabolite quantification is solved analytically with the introduced LLS. In our Quantification Network (QNet), LLS takes part in the backpropagation of network training, which allows the feedback of the quantification error into metabolite spectrum estimation. This scheme greatly improves the generalization to metabolite concentrations unseen for training compared to the end-to-end deep learning method. Results: Experiments show that compared with LCModel, the proposed QNet, has smaller quantification errors for simulated data, and presents more stable quantification for 20 healthy in vivo data at a wide range of signal-to-noise ratio. QNet also outperforms other end-to-end deep learning methods. Conclusion: This study provides an intelligent, reliable and robust MRS quantification. Significance: QNet is the first LLS quantification aided by deep learning. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.09681v2-abstract-full').style.display = 'none'; document.getElementById('2306.09681v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.10178">arXiv:2305.10178</a> <span> [<a href="https://arxiv.org/pdf/2305.10178">pdf</a>, <a href="https://arxiv.org/format/2305.10178">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> </div> </div> <p class="title is-5 mathjax"> Effects of inflow turbulence on a cavity-stabilised supersonic premixed hydrogen flame: A direct numerical simulation study </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Lin%2C+M">Minqi Lin</a>, <a href="/search/physics?searchtype=author&query=Fang%2C+J">Jian Fang</a>, <a href="/search/physics?searchtype=author&query=Deng%2C+X">Xi Deng</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+Z+X">Zhi X. Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.10178v1-abstract-short" style="display: inline;"> In this work, supersonic premixed H2/air combustion stabilised by a cavity flame-holder in a model scramjet combustor with a Mach 1.5 inflow is studied via direct numerical simulations. By applying turbulent and laminar inlet condition separately, we compare the flame stabilisation characteristics between these two cases to study the effect of inflow turbulence. The ignition and flame propagation… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.10178v1-abstract-full').style.display = 'inline'; document.getElementById('2305.10178v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.10178v1-abstract-full" style="display: none;"> In this work, supersonic premixed H2/air combustion stabilised by a cavity flame-holder in a model scramjet combustor with a Mach 1.5 inflow is studied via direct numerical simulations. By applying turbulent and laminar inlet condition separately, we compare the flame stabilisation characteristics between these two cases to study the effect of inflow turbulence. The ignition and flame propagation process are similar in both cases.After combustion in the area near the cavity reaches quasi-stationary state, the results show that with inflow turbulence more robust vortices are developed in cavity shear layer and near the aft wall, resulting in a thicker reaction zone and larger flame surface which present more efficient combustion. In addition, the inlet turbulence enhances the entry of fresh mixture and this further supports flame stabilisation near the cavity. However, the fully developed cavity shear layer also leads to greater cavity resistance. As for the flame stabilization, with inlet turbulence more robust recirculation and stronger mass exchange process is observed and promote the radical transport. These results give a preliminary insight into the flame stabilization mechanism. The distribution of progress variable indicates that the flame stabilized toward products side with turbulent inlet. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.10178v1-abstract-full').style.display = 'none'; document.getElementById('2305.10178v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.05169">arXiv:2305.05169</a> <span> [<a href="https://arxiv.org/pdf/2305.05169">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> A compact single-shot soft X-ray photon spectrometer for free electron laser diagnostics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Larsen%2C+K+A">Kirk A. Larsen</a>, <a href="/search/physics?searchtype=author&query=Borne%2C+K">Kurtis Borne</a>, <a href="/search/physics?searchtype=author&query=Obaid%2C+R">Razib Obaid</a>, <a href="/search/physics?searchtype=author&query=Kamalov%2C+A">Andrei Kamalov</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+Y">Yusong Liu</a>, <a href="/search/physics?searchtype=author&query=Cheng%2C+X">Xinxin Cheng</a>, <a href="/search/physics?searchtype=author&query=James%2C+J">Justin James</a>, <a href="/search/physics?searchtype=author&query=Driver%2C+T">Taran Driver</a>, <a href="/search/physics?searchtype=author&query=Li%2C+K">Kenan Li</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+Y">Yanwei Liu</a>, <a href="/search/physics?searchtype=author&query=Sakdinawat%2C+A">Anne Sakdinawat</a>, <a href="/search/physics?searchtype=author&query=David%2C+C">Christian David</a>, <a href="/search/physics?searchtype=author&query=Wolf%2C+T+J+A">Thomas J. A. Wolf</a>, <a href="/search/physics?searchtype=author&query=Cryan%2C+J">James Cryan</a>, <a href="/search/physics?searchtype=author&query=Walter%2C+P">Peter Walter</a>, <a href="/search/physics?searchtype=author&query=Lin%2C+M">Ming-Fu Lin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.05169v1-abstract-short" style="display: inline;"> The photon spectrum from free-electron laser (FEL) light sources offers valuable information in time-resolved experiments and machine optimization in the spectral and temporal domains. We have developed a compact single-shot photon spectrometer to diagnose soft X-ray spectra. The spectrometer consists of an array of off-axis Fresnel zone plates (FZP) that act as transmission-imaging gratings, a Ce… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.05169v1-abstract-full').style.display = 'inline'; document.getElementById('2305.05169v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.05169v1-abstract-full" style="display: none;"> The photon spectrum from free-electron laser (FEL) light sources offers valuable information in time-resolved experiments and machine optimization in the spectral and temporal domains. We have developed a compact single-shot photon spectrometer to diagnose soft X-ray spectra. The spectrometer consists of an array of off-axis Fresnel zone plates (FZP) that act as transmission-imaging gratings, a Ce-YAG scintillator, and a microscope objective to image the scintillation target onto a two-dimensional imaging detector. This spectrometer operates in an energy range which covers absorption edges associated with several atomic constituents carbon, nitrogen, oxygen, and neon. The spectrometer's performance is demonstrated at a repetition rate of 120 Hz, but our detection scheme can be easily extended to 200 kHz spectral collection by employing a fast complementary metal oxide semiconductor (CMOS) line-scan camera to detect the light from the scintillator. This compact photon spectrometer provides an opportunity for monitoring the spectrum downstream of an endstation in a limited space environment with subelectronvolt energy resolution. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.05169v1-abstract-full').style.display = 'none'; document.getElementById('2305.05169v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 5 figures, 1 table</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.01841">arXiv:2304.01841</a> <span> [<a href="https://arxiv.org/pdf/2304.01841">pdf</a>, <a href="https://arxiv.org/format/2304.01841">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Distributed, Parallel, and Cluster Computing">cs.DC</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> Portable Programming Model Exploration for LArTPC Simulation in a Heterogeneous Computing Environment: OpenMP vs. SYCL </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Lin%2C+M">Meifeng Lin</a>, <a href="/search/physics?searchtype=author&query=Dong%2C+Z">Zhihua Dong</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+T">Tianle Wang</a>, <a href="/search/physics?searchtype=author&query=Atif%2C+M">Mohammad Atif</a>, <a href="/search/physics?searchtype=author&query=Battacharya%2C+M">Meghna Battacharya</a>, <a href="/search/physics?searchtype=author&query=Knoepfel%2C+K">Kyle Knoepfel</a>, <a href="/search/physics?searchtype=author&query=Leggett%2C+C">Charles Leggett</a>, <a href="/search/physics?searchtype=author&query=Viren%2C+B">Brett Viren</a>, <a href="/search/physics?searchtype=author&query=Yu%2C+H">Haiwang Yu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.01841v1-abstract-short" style="display: inline;"> The evolution of the computing landscape has resulted in the proliferation of diverse hardware architectures, with different flavors of GPUs and other compute accelerators becoming more widely available. To facilitate the efficient use of these architectures in a heterogeneous computing environment, several programming models are available to enable portability and performance across different com… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.01841v1-abstract-full').style.display = 'inline'; document.getElementById('2304.01841v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.01841v1-abstract-full" style="display: none;"> The evolution of the computing landscape has resulted in the proliferation of diverse hardware architectures, with different flavors of GPUs and other compute accelerators becoming more widely available. To facilitate the efficient use of these architectures in a heterogeneous computing environment, several programming models are available to enable portability and performance across different computing systems, such as Kokkos, SYCL, OpenMP and others. As part of the High Energy Physics Center for Computational Excellence (HEP-CCE) project, we investigate if and how these different programming models may be suitable for experimental HEP workflows through a few representative use cases. One of such use cases is the Liquid Argon Time Projection Chamber (LArTPC) simulation which is essential for LArTPC detector design, validation and data analysis. Following up on our previous investigations of using Kokkos to port LArTPC simulation in the Wire-Cell Toolkit (WCT) to GPUs, we have explored OpenMP and SYCL as potential portable programming models for WCT, with the goal to make diverse computing resources accessible to the LArTPC simulations. In this work, we describe how we utilize relevant features of OpenMP and SYCL for the LArTPC simulation module in WCT. We also show performance benchmark results on multi-core CPUs, NVIDIA and AMD GPUs for both the OpenMP and the SYCL implementations. Comparisons with different compilers will also be given where appropriate. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.01841v1-abstract-full').style.display = 'none'; document.getElementById('2304.01841v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 6 figures. Proceedings of 21st International Workshop on Advanced Computing and Analysis Techniques in Physics Research (ACAT 2022)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.03586">arXiv:2303.03586</a> <span> [<a href="https://arxiv.org/pdf/2303.03586">pdf</a>, <a href="https://arxiv.org/format/2303.03586">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> </div> <p class="title is-5 mathjax"> Femtosecond electronic and hydrogen structural dynamics in ammonia imaged with ultrafast electron diffraction </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Champenois%2C+E+G">Elio G. Champenois</a>, <a href="/search/physics?searchtype=author&query=List%2C+N+H">Nanna H. List</a>, <a href="/search/physics?searchtype=author&query=Ware%2C+M">Matthew Ware</a>, <a href="/search/physics?searchtype=author&query=Britton%2C+M">Mathew Britton</a>, <a href="/search/physics?searchtype=author&query=Bucksbaum%2C+P+H">Philip H. Bucksbaum</a>, <a href="/search/physics?searchtype=author&query=Cheng%2C+X">Xinxin Cheng</a>, <a href="/search/physics?searchtype=author&query=Centurion%2C+M">Martin Centurion</a>, <a href="/search/physics?searchtype=author&query=Cryan%2C+J+P">James P. Cryan</a>, <a href="/search/physics?searchtype=author&query=Forbes%2C+R">Ruaridh Forbes</a>, <a href="/search/physics?searchtype=author&query=Gabalski%2C+I">Ian Gabalski</a>, <a href="/search/physics?searchtype=author&query=Hegazy%2C+K">Kareem Hegazy</a>, <a href="/search/physics?searchtype=author&query=Hoffmann%2C+M+C">Matthias C. Hoffmann</a>, <a href="/search/physics?searchtype=author&query=Howard%2C+A+J">Andrew J. Howard</a>, <a href="/search/physics?searchtype=author&query=Ji%2C+F">Fuhao Ji</a>, <a href="/search/physics?searchtype=author&query=Lin%2C+M">Ming-Fu Lin</a>, <a href="/search/physics?searchtype=author&query=Nunes%2C+J+P">J. Pedro Nunes</a>, <a href="/search/physics?searchtype=author&query=Shen%2C+X">Xiaozhe Shen</a>, <a href="/search/physics?searchtype=author&query=Yang%2C+J">Jie Yang</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+X">Xijie Wang</a>, <a href="/search/physics?searchtype=author&query=Martinez%2C+T+J">Todd J. Martinez</a>, <a href="/search/physics?searchtype=author&query=Wolf%2C+T+J+A">Thomas J. A. Wolf</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.03586v1-abstract-short" style="display: inline;"> Directly imaging structural dynamics involving hydrogen atoms by ultrafast diffraction methods is complicated by their low scattering cross-sections. Here we demonstrate that megaelectronvolt ultrafast electron diffraction is sufficiently sensitive to follow hydrogen dynamics in isolated molecules. In a study of the photodissociation of gas phase ammonia, we simultaneously observe signatures of th… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.03586v1-abstract-full').style.display = 'inline'; document.getElementById('2303.03586v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.03586v1-abstract-full" style="display: none;"> Directly imaging structural dynamics involving hydrogen atoms by ultrafast diffraction methods is complicated by their low scattering cross-sections. Here we demonstrate that megaelectronvolt ultrafast electron diffraction is sufficiently sensitive to follow hydrogen dynamics in isolated molecules. In a study of the photodissociation of gas phase ammonia, we simultaneously observe signatures of the nuclear and corresponding electronic structure changes resulting from the dissociation dynamics in the time-dependent diffraction. Both assignments are confirmed by ab initio simulations of the photochemical dynamics and the resulting diffraction observable. While the temporal resolution of the experiment is insufficient to resolve the dissociation in time, our results represent an important step towards the observation of proton dynamics in real space and time. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.03586v1-abstract-full').style.display = 'none'; document.getElementById('2303.03586v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2302.01493">arXiv:2302.01493</a> <span> [<a href="https://arxiv.org/pdf/2302.01493">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Image and Video Processing">eess.IV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Medical Physics">physics.med-ph</span> </div> </div> <p class="title is-5 mathjax"> Deep Learning (DL)-based Automatic Segmentation of the Internal Pudendal Artery (IPA) for Reduction of Erectile Dysfunction in Definitive Radiotherapy of Localized Prostate Cancer </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Balagopal%2C+A">Anjali Balagopal</a>, <a href="/search/physics?searchtype=author&query=Dohopolski%2C+M">Michael Dohopolski</a>, <a href="/search/physics?searchtype=author&query=Kwon%2C+Y+S">Young Suk Kwon</a>, <a href="/search/physics?searchtype=author&query=Montalvo%2C+S">Steven Montalvo</a>, <a href="/search/physics?searchtype=author&query=Morgan%2C+H">Howard Morgan</a>, <a href="/search/physics?searchtype=author&query=Bai%2C+T">Ti Bai</a>, <a href="/search/physics?searchtype=author&query=Nguyen%2C+D">Dan Nguyen</a>, <a href="/search/physics?searchtype=author&query=Liang%2C+X">Xiao Liang</a>, <a href="/search/physics?searchtype=author&query=Zhong%2C+X">Xinran Zhong</a>, <a href="/search/physics?searchtype=author&query=Lin%2C+M">Mu-Han Lin</a>, <a href="/search/physics?searchtype=author&query=Desai%2C+N">Neil Desai</a>, <a href="/search/physics?searchtype=author&query=Jiang%2C+S">Steve Jiang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2302.01493v1-abstract-short" style="display: inline;"> Background and purpose: Radiation-induced erectile dysfunction (RiED) is commonly seen in prostate cancer patients. Clinical trials have been developed in multiple institutions to investigate whether dose-sparing to the internal-pudendal-arteries (IPA) will improve retention of sexual potency. The IPA is usually not considered a conventional organ-at-risk (OAR) due to segmentation difficulty. In t… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.01493v1-abstract-full').style.display = 'inline'; document.getElementById('2302.01493v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2302.01493v1-abstract-full" style="display: none;"> Background and purpose: Radiation-induced erectile dysfunction (RiED) is commonly seen in prostate cancer patients. Clinical trials have been developed in multiple institutions to investigate whether dose-sparing to the internal-pudendal-arteries (IPA) will improve retention of sexual potency. The IPA is usually not considered a conventional organ-at-risk (OAR) due to segmentation difficulty. In this work, we propose a deep learning (DL)-based auto-segmentation model for the IPA that utilizes CT and MRI or CT alone as the input image modality to accommodate variation in clinical practice. Materials and methods: 86 patients with CT and MRI images and noisy IPA labels were recruited in this study. We split the data into 42/14/30 for model training, testing, and a clinical observer study, respectively. There were three major innovations in this model: 1) we designed an architecture with squeeze-and-excite blocks and modality attention for effective feature extraction and production of accurate segmentation, 2) a novel loss function was used for training the model effectively with noisy labels, and 3) modality dropout strategy was used for making the model capable of segmentation in the absence of MRI. Results: The DSC, ASD, and HD95 values for the test dataset were 62.2%, 2.54mm, and 7mm, respectively. AI segmented contours were dosimetrically equivalent to the expert physician's contours. The observer study showed that expert physicians' scored AI contours (mean=3.7) higher than inexperienced physicians' contours (mean=3.1). When inexperienced physicians started with AI contours, the score improved to 3.7. Conclusion: The proposed model achieved good quality IPA contours to improve uniformity of segmentation and to facilitate introduction of standardized IPA segmentation into clinical trials and practice. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.01493v1-abstract-full').style.display = 'none'; document.getElementById('2302.01493v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.08886">arXiv:2211.08886</a> <span> [<a href="https://arxiv.org/pdf/2211.08886">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1002/pssr.202200378">10.1002/pssr.202200378 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Synaptic modulation of conductivity and magnetism in a CoPt-based electrochemical transistor </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Li%2C+S">Shengyao Li</a>, <a href="/search/physics?searchtype=author&query=Miao%2C+B">Bojun Miao</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+X">Xueyan Wang</a>, <a href="/search/physics?searchtype=author&query=Teo%2C+S+L">Siew Lang Teo</a>, <a href="/search/physics?searchtype=author&query=Lin%2C+M">Ming Lin</a>, <a href="/search/physics?searchtype=author&query=Zhu%2C+Q">Qiang Zhu</a>, <a href="/search/physics?searchtype=author&query=Piramanayagam%2C+S+N">S. N. Piramanayagam</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+X+R">X. Renshaw Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.08886v1-abstract-short" style="display: inline;"> Among various types of neuromorphic devices towards artificial intelligence, the electrochemical synaptic transistor emerges, in which the channel conductance is modulated by the insertion of ions according to the history of gate voltage across the electrolyte. Despite the striking progress in exploring novel channel materials, few studies report on the ferromagnetic metal-based synaptic transisto… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.08886v1-abstract-full').style.display = 'inline'; document.getElementById('2211.08886v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.08886v1-abstract-full" style="display: none;"> Among various types of neuromorphic devices towards artificial intelligence, the electrochemical synaptic transistor emerges, in which the channel conductance is modulated by the insertion of ions according to the history of gate voltage across the electrolyte. Despite the striking progress in exploring novel channel materials, few studies report on the ferromagnetic metal-based synaptic transistors, limiting the development of spin-based neuromorphic devices. Here, we present synaptic modulation of both conductivity as well as magnetism based on an electrochemical transistor with a metallic channel of ferromagnetic CoPt alloy. We first demonstrate its essential synaptic functionalities in the transistor, including depression and potentiation of synaptic weight, and paired-pulse facilitation. Then, we show a short- to long-term plasticity transition induced by different gate parameters, such as amplitude, duration, and frequency. Furthermore, the device presents multilevel and reversible nonvolatile states in both conductivity and coercivity. The results demonstrate simultaneous modulation of conductivity and magnetism, paving the way for building future spin-based multifunctional synaptic devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.08886v1-abstract-full').style.display = 'none'; document.getElementById('2211.08886v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.07043">arXiv:2211.07043</a> <span> [<a href="https://arxiv.org/pdf/2211.07043">pdf</a>, <a href="https://arxiv.org/format/2211.07043">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> </div> </div> <p class="title is-5 mathjax"> Unsteady wetting of soft solids </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Mitra%2C+S">Surjyasish Mitra</a>, <a href="/search/physics?searchtype=author&query=Vo%2C+Q">Quoc Vo</a>, <a href="/search/physics?searchtype=author&query=Lin%2C+M">Marcus Lin</a>, <a href="/search/physics?searchtype=author&query=Tran%2C+T">Tuan Tran</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.07043v1-abstract-short" style="display: inline;"> From hydrogels and plastics to liquid crystals, soft solids cover a wide array of synthetic and biological materials that play key enabling roles in advanced technologies such as 3D printing, soft robotics, wearable electronics, self-assembly, and bioartificial tissues. Their elasticity and stimuli-induced changes in mechanical, optical, or electrical properties offer a unique advantage in designi… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.07043v1-abstract-full').style.display = 'inline'; document.getElementById('2211.07043v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.07043v1-abstract-full" style="display: none;"> From hydrogels and plastics to liquid crystals, soft solids cover a wide array of synthetic and biological materials that play key enabling roles in advanced technologies such as 3D printing, soft robotics, wearable electronics, self-assembly, and bioartificial tissues. Their elasticity and stimuli-induced changes in mechanical, optical, or electrical properties offer a unique advantage in designing and creating new dynamically functional components for sensing, micro-actuation, colour changes, information, and mass transport. To harness the vast potential of soft solids, a thorough understanding of their reactions when exposed to liquids is needed. Attempts to study the interactions between soft solids and liquids have largely focused on the wetting of soft solids and its resulting deformation at equilibrium or in a quasi-static state. Here, we consider the frequently encountered case of unsteady wetting of a liquid on a soft solid and show that transient deformation of the solid is necessary to understand unsteady wetting behaviours. We find that the initial spreading of the liquid occurs uninterrupted in the absence of solid deformation. This is followed by intermittent spreading, in which transient deformation of the solid at the three-phase contact line (CL) causes the CL motion to alternate alternation between CL sticking and slipping. We identify the spreading rate of liquids and the viscoelastic reacting rate of soft solids as the two competing factors in dictating intermittent spreading. We formulate and validate experimentally the conditions required for the contact line to transition from sticking to slipping. By considering the growing deformation of soft solids as dynamic surface heterogeneities, our proposed conditions for stick-slip transition in unsteady wetting on soft solids broaden the classical theory on wetting hysteresis on rigid solids. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.07043v1-abstract-full').style.display = 'none'; document.getElementById('2211.07043v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.07094">arXiv:2210.07094</a> <span> [<a href="https://arxiv.org/pdf/2210.07094">pdf</a>, <a href="https://arxiv.org/format/2210.07094">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.cpc.2023.108842">10.1016/j.cpc.2023.108842 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> DeepFlame: A deep learning empowered open-source platform for reacting flow simulations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Mao%2C+R">Runze Mao</a>, <a href="/search/physics?searchtype=author&query=Lin%2C+M">Minqi Lin</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+Y">Yan Zhang</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+T">Tianhan Zhang</a>, <a href="/search/physics?searchtype=author&query=Xu%2C+Z+J">Zhi-Qin John Xu</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+Z+X">Zhi X. Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.07094v2-abstract-short" style="display: inline;"> In this work, we introduce DeepFlame, an open-source C++ platform with the capabilities of utilising machine learning algorithms and pre-trained models to solve for reactive flows. We combine the individual strengths of the computational fluid dynamics library OpenFOAM, machine learning framework Torch, and chemical kinetics program Cantera. The complexity of cross-library function and data interf… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.07094v2-abstract-full').style.display = 'inline'; document.getElementById('2210.07094v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.07094v2-abstract-full" style="display: none;"> In this work, we introduce DeepFlame, an open-source C++ platform with the capabilities of utilising machine learning algorithms and pre-trained models to solve for reactive flows. We combine the individual strengths of the computational fluid dynamics library OpenFOAM, machine learning framework Torch, and chemical kinetics program Cantera. The complexity of cross-library function and data interfacing (the core of DeepFlame) is minimised to achieve a simple and clear workflow for code maintenance, extension and upgrading. As a demonstration, we apply our recent work on deep learning for predicting chemical kinetics (Zhang et al. Combust. Flame vol. 245 pp. 112319, 2022) to highlight the potential of machine learning in accelerating reacting flow simulation. A thorough code validation is conducted via a broad range of canonical cases to assess its accuracy and efficiency. The results demonstrate that the convection-diffusion-reaction algorithms implemented in DeepFlame are robust and accurate for both steady-state and transient processes. In addition, a number of methods aiming to further improve the computational efficiency, e.g. dynamic load balancing and adaptive mesh refinement, are explored. Their performances are also evaluated and reported. With the deep learning method implemented in this work, a speed-up of two orders of magnitude is achieved in a simple hydrogen ignition case when performed on a medium-end graphics processing unit (GPU). Further gain in computational efficiency is expected for hydrocarbon and other complex fuels. A similar level of acceleration is obtained on an AI-specific chip - deep computing unit (DCU), highlighting the potential of DeepFlame in leveraging the next-generation computing architecture and hardware. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.07094v2-abstract-full').style.display = 'none'; document.getElementById('2210.07094v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.04380">arXiv:2210.04380</a> <span> [<a href="https://arxiv.org/pdf/2210.04380">pdf</a>, <a href="https://arxiv.org/format/2210.04380">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> </div> <p class="title is-5 mathjax"> A general efficiency relation for molecular machines </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Lin%2C+M+M">Milo M Lin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.04380v1-abstract-short" style="display: inline;"> Living systems efficiently use chemical fuel to do work, process information, and assemble patterns despite thermal noise. Whether high efficiency arises from general principles or specific fine-tuning is unknown. Here, applying a recent mapping from nonequilibrium systems to battery-resistor circuits, I derive an analytic expression for the efficiency of any dissipative molecular machine driven b… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.04380v1-abstract-full').style.display = 'inline'; document.getElementById('2210.04380v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.04380v1-abstract-full" style="display: none;"> Living systems efficiently use chemical fuel to do work, process information, and assemble patterns despite thermal noise. Whether high efficiency arises from general principles or specific fine-tuning is unknown. Here, applying a recent mapping from nonequilibrium systems to battery-resistor circuits, I derive an analytic expression for the efficiency of any dissipative molecular machine driven by one or a series of chemical potential differences. This expression disentangles the chemical potential from the machine's details, whose effect on the efficiency is fully specified by a constant called the load resistance. The efficiency passes through a switch-like inflection point if the balance between chemical potential and load resistance exceeds thermal noise. Therefore, dissipative chemical engines qualitatively differ from heat engines, which lack threshold behavior. This explains all-or-none dynein stepping with increasing ATP concentration observed in single-molecule experiments. These results indicate that biomolecular energy transduction is efficient not because of idosyncratic optimization of the biomolecules themselves, but rather because the concentration of chemical fuel is kept above a threshold level within cells. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.04380v1-abstract-full').style.display = 'none'; document.getElementById('2210.04380v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.14551">arXiv:2209.14551</a> <span> [<a href="https://arxiv.org/pdf/2209.14551">pdf</a>, <a href="https://arxiv.org/format/2209.14551">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Data Analysis, Statistics and Probability">physics.data-an</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/2632-2153/acc0d6">10.1088/2632-2153/acc0d6 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Quaternion-based machine learning on topological quantum systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Lin%2C+M">Min-Ruei Lin</a>, <a href="/search/physics?searchtype=author&query=Li%2C+W">Wan-Ju Li</a>, <a href="/search/physics?searchtype=author&query=Huang%2C+S">Shin-Ming Huang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.14551v2-abstract-short" style="display: inline;"> Topological phase classifications have been intensively studied via machine-learning techniques where different forms of the training data are proposed in order to maximize the information extracted from the systems of interests. Due to the complexity in quantum physics, advanced mathematical architecture should be considered in designing machines. In this work, we incorporate quaternion algebras… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.14551v2-abstract-full').style.display = 'inline'; document.getElementById('2209.14551v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.14551v2-abstract-full" style="display: none;"> Topological phase classifications have been intensively studied via machine-learning techniques where different forms of the training data are proposed in order to maximize the information extracted from the systems of interests. Due to the complexity in quantum physics, advanced mathematical architecture should be considered in designing machines. In this work, we incorporate quaternion algebras into data analysis either in the frame of supervised and unsupervised learning to classify two-dimensional Chern insulators. For the unsupervised-learning aspect, we apply the principal component analysis (PCA) on the quaternion-transformed eigenstates to distinguish topological phases. For the supervised-learning aspect, we construct our machine by adding one quaternion convolutional layer on top of a conventional convolutional neural network. The machine takes quaternion-transformed configurations as inputs and successfully classify all distinct topological phases, even for those states that have different distributuions from those states seen by the machine during the training process. Our work demonstrates the power of quaternion algebras on extracting crucial features from the targeted data and the advantages of quaternion-based neural networks than conventional ones in the tasks of topological phase classifications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.14551v2-abstract-full').style.display = 'none'; document.getElementById('2209.14551v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 13 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> 2023 Mach. Learn.: Sci. Technol. 4 015032 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.13691">arXiv:2209.13691</a> <span> [<a href="https://arxiv.org/pdf/2209.13691">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-023-38513-6">10.1038/s41467-023-38513-6 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Rehybridization dynamics into the pericyclic minimum of an electrcyclic reaction imaged in real-time </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Liu%2C+Y">Yusong Liu</a>, <a href="/search/physics?searchtype=author&query=Sanchez%2C+D+M">David M. Sanchez</a>, <a href="/search/physics?searchtype=author&query=Ware%2C+M+R">Matthew R. Ware</a>, <a href="/search/physics?searchtype=author&query=Champenois%2C+E+G">Elio G. Champenois</a>, <a href="/search/physics?searchtype=author&query=Yang%2C+J">Jie Yang</a>, <a href="/search/physics?searchtype=author&query=Nunes%2C+J+P+F">J. Pedro F. Nunes</a>, <a href="/search/physics?searchtype=author&query=Attar%2C+A">Andrew Attar</a>, <a href="/search/physics?searchtype=author&query=Centurion%2C+M">Martin Centurion</a>, <a href="/search/physics?searchtype=author&query=Cryan%2C+J+P">James P. Cryan</a>, <a href="/search/physics?searchtype=author&query=Forbes%2C+R+G">Ruaridh G. Forbes</a>, <a href="/search/physics?searchtype=author&query=Hegazy%2C+K">Kareem Hegazy</a>, <a href="/search/physics?searchtype=author&query=Hoffmann%2C+M+C">Matthias C. Hoffmann</a>, <a href="/search/physics?searchtype=author&query=Ji%2C+F">Fuhao Ji</a>, <a href="/search/physics?searchtype=author&query=Lin%2C+M">Ming-Fu Lin</a>, <a href="/search/physics?searchtype=author&query=Luo%2C+D">Duan Luo</a>, <a href="/search/physics?searchtype=author&query=Saha%2C+S+K">Sajib K. Saha</a>, <a href="/search/physics?searchtype=author&query=Shen%2C+X">Xiaozhe Shen</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+X">Xijie Wang</a>, <a href="/search/physics?searchtype=author&query=Mart%C3%ADnez%2C+T+J">Todd J. Mart铆nez</a>, <a href="/search/physics?searchtype=author&query=Wolf%2C+T+J+A">Thomas J. A. Wolf</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.13691v1-abstract-short" style="display: inline;"> Electrocyclic reactions are characterized by the concerted formation and cleavage of both 蟽 and 蟺 bonds through a cyclic structure. This structure is known as a pericyclic transition state for thermal reactions and a pericyclic minimum in the excited state for photochemical reactions. However, the structure of the pericyclic geometry has yet to be observed experimentally. We use a combination of u… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.13691v1-abstract-full').style.display = 'inline'; document.getElementById('2209.13691v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.13691v1-abstract-full" style="display: none;"> Electrocyclic reactions are characterized by the concerted formation and cleavage of both 蟽 and 蟺 bonds through a cyclic structure. This structure is known as a pericyclic transition state for thermal reactions and a pericyclic minimum in the excited state for photochemical reactions. However, the structure of the pericyclic geometry has yet to be observed experimentally. We use a combination of ultrafast electron diffraction and excited state wavepacket simulations to image structural dynamics through the pericyclic minimum of a photochemical electrocyclic ring-opening reaction in the molecule 伪-terpinene. The structural motion into the pericyclic minimum is dominated by rehybridization of two carbon atoms, which is required for the transformation from two to three conjugated 蟺 bonds. The 蟽 bond dissociation largely happens after internal conversion from the pericyclic minimum to the electronic ground state. These findings may be transferrable to electrocyclic reactions in general. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.13691v1-abstract-full').style.display = 'none'; document.getElementById('2209.13691v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Combined manuscript and supplementary information</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.12898">arXiv:2209.12898</a> <span> [<a href="https://arxiv.org/pdf/2209.12898">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1364/OL.477713">10.1364/OL.477713 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Optical Neural Ordinary Differential Equations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Zhao%2C+Y">Yun Zhao</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+H">Hang Chen</a>, <a href="/search/physics?searchtype=author&query=Lin%2C+M">Min Lin</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+H">Haiou Zhang</a>, <a href="/search/physics?searchtype=author&query=Yan%2C+T">Tao Yan</a>, <a href="/search/physics?searchtype=author&query=Lin%2C+X">Xing Lin</a>, <a href="/search/physics?searchtype=author&query=Huang%2C+R">Ruqi Huang</a>, <a href="/search/physics?searchtype=author&query=Dai%2C+Q">Qionghai Dai</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.12898v1-abstract-short" style="display: inline;"> Increasing the layer number of on-chip photonic neural networks (PNNs) is essential to improve its model performance. However, the successively cascading of network hidden layers results in larger integrated photonic chip areas. To address this issue, we propose the optical neural ordinary differential equations (ON-ODE) architecture that parameterizes the continuous dynamics of hidden layers with… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.12898v1-abstract-full').style.display = 'inline'; document.getElementById('2209.12898v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.12898v1-abstract-full" style="display: none;"> Increasing the layer number of on-chip photonic neural networks (PNNs) is essential to improve its model performance. However, the successively cascading of network hidden layers results in larger integrated photonic chip areas. To address this issue, we propose the optical neural ordinary differential equations (ON-ODE) architecture that parameterizes the continuous dynamics of hidden layers with optical ODE solvers. The ON-ODE comprises the PNNs followed by the photonic integrator and optical feedback loop, which can be configured to represent residual neural networks (ResNet) and recurrent neural networks with effectively reduced chip area occupancy. For the interference-based optoelectronic nonlinear hidden layer, the numerical experiments demonstrate that the single hidden layer ON-ODE can achieve approximately the same accuracy as the two-layer optical ResNet in image classification tasks. Besides, the ONODE improves the model classification accuracy for the diffraction-based all-optical linear hidden layer. The time-dependent dynamics property of ON-ODE is further applied for trajectory prediction with high accuracy. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.12898v1-abstract-full').style.display = 'none'; document.getElementById('2209.12898v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.09372">arXiv:2209.09372</a> <span> [<a href="https://arxiv.org/pdf/2209.09372">pdf</a>, <a href="https://arxiv.org/format/2209.09372">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Subcellular Processes">q-bio.SC</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Biomolecules">q-bio.BM</span> </div> </div> <p class="title is-5 mathjax"> Thermodynamic force thresholds biomolecular behavior </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Lin%2C+M+M">Milo M. Lin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.09372v1-abstract-short" style="display: inline;"> In living systems, collective molecular behavior is driven by thermodynamic forces in the form of chemical gradients. Leveraging recent advances in the field of nonequilibrium physics, I show that increasing the thermodynamic force alone can induce qualitatively new behavior. To demonstrate this principle, general equations governing kinetic proofreading and microtubule assembly are derived. These… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.09372v1-abstract-full').style.display = 'inline'; document.getElementById('2209.09372v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.09372v1-abstract-full" style="display: none;"> In living systems, collective molecular behavior is driven by thermodynamic forces in the form of chemical gradients. Leveraging recent advances in the field of nonequilibrium physics, I show that increasing the thermodynamic force alone can induce qualitatively new behavior. To demonstrate this principle, general equations governing kinetic proofreading and microtubule assembly are derived. These equations show that new capabilities, including catalytic regulation of steady-state behavior and exponential enhancement of molecular discrimination, are only possible if the system is driven sufficiently far from equilibrium, and can emerge sharply at a threshold force. Regardless of design parameters, these results reveal that the thermodynamic force sets fundamental performance limits on tuning sensitivity, error, and waste. Experimental data show that these biomolecular processes operate at the limits allowed by theory. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.09372v1-abstract-full').style.display = 'none'; document.getElementById('2209.09372v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">MSC Class:</span> 92-10 <span class="has-text-black-bis has-text-weight-semibold">ACM Class:</span> J.3 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.08868">arXiv:2209.08868</a> <span> [<a href="https://arxiv.org/pdf/2209.08868">pdf</a>, <a href="https://arxiv.org/format/2209.08868">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Distributed, Parallel, and Cluster Computing">cs.DC</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> </div> <p class="title is-5 mathjax"> Snowmass 2021 Computational Frontier CompF4 Topical Group Report: Storage and Processing Resource Access </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Bhimji%2C+W">W. Bhimji</a>, <a href="/search/physics?searchtype=author&query=Carder%2C+D">D. Carder</a>, <a href="/search/physics?searchtype=author&query=Dart%2C+E">E. Dart</a>, <a href="/search/physics?searchtype=author&query=Duarte%2C+J">J. Duarte</a>, <a href="/search/physics?searchtype=author&query=Fisk%2C+I">I. Fisk</a>, <a href="/search/physics?searchtype=author&query=Gardner%2C+R">R. Gardner</a>, <a href="/search/physics?searchtype=author&query=Guok%2C+C">C. Guok</a>, <a href="/search/physics?searchtype=author&query=Jayatilaka%2C+B">B. Jayatilaka</a>, <a href="/search/physics?searchtype=author&query=Lehman%2C+T">T. Lehman</a>, <a href="/search/physics?searchtype=author&query=Lin%2C+M">M. Lin</a>, <a href="/search/physics?searchtype=author&query=Maltzahn%2C+C">C. Maltzahn</a>, <a href="/search/physics?searchtype=author&query=McKee%2C+S">S. McKee</a>, <a href="/search/physics?searchtype=author&query=Neubauer%2C+M+S">M. S. Neubauer</a>, <a href="/search/physics?searchtype=author&query=Rind%2C+O">O. Rind</a>, <a href="/search/physics?searchtype=author&query=Shadura%2C+O">O. Shadura</a>, <a href="/search/physics?searchtype=author&query=Tran%2C+N+V">N. V. Tran</a>, <a href="/search/physics?searchtype=author&query=van+Gemmeren%2C+P">P. van Gemmeren</a>, <a href="/search/physics?searchtype=author&query=Watts%2C+G">G. Watts</a>, <a href="/search/physics?searchtype=author&query=Weaver%2C+B+A">B. A. Weaver</a>, <a href="/search/physics?searchtype=author&query=W%C3%BCrthwein%2C+F">F. W眉rthwein</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.08868v2-abstract-short" style="display: inline;"> Computing plays a significant role in all areas of high energy physics. The Snowmass 2021 CompF4 topical group's scope is facilities R&D, where we consider "facilities" as the computing hardware and software infrastructure inside the data centers plus the networking between data centers, irrespective of who owns them, and what policies are applied for using them. In other words, it includes commer… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.08868v2-abstract-full').style.display = 'inline'; document.getElementById('2209.08868v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.08868v2-abstract-full" style="display: none;"> Computing plays a significant role in all areas of high energy physics. The Snowmass 2021 CompF4 topical group's scope is facilities R&D, where we consider "facilities" as the computing hardware and software infrastructure inside the data centers plus the networking between data centers, irrespective of who owns them, and what policies are applied for using them. In other words, it includes commercial clouds, federally funded High Performance Computing (HPC) systems for all of science, and systems funded explicitly for a given experimental or theoretical program. This topical group report summarizes the findings and recommendations for the storage, processing, networking and associated software service infrastructures for future high energy physics research, based on the discussions organized through the Snowmass 2021 community study. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.08868v2-abstract-full').style.display = 'none'; document.getElementById('2209.08868v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Snowmass 2021 Computational Frontier CompF4 topical group report. v2: Expanded introduction. Updated author list. 52 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.07722">arXiv:2209.07722</a> <span> [<a href="https://arxiv.org/pdf/2209.07722">pdf</a>, <a href="https://arxiv.org/format/2209.07722">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1142/9789811267949_0009">10.1142/9789811267949_0009 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Decoration of graphene nanoribbons by $5d$ transition-metal elements </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Li%2C+W">Wei-Bang Li</a>, <a href="/search/physics?searchtype=author&query=Lin%2C+K">Kuang-I Lin</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+Y">Yu-Ming Wang</a>, <a href="/search/physics?searchtype=author&query=Chung%2C+H">Hsien-Ching Chung</a>, <a href="/search/physics?searchtype=author&query=Lin%2C+M">Ming-Fa Lin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.07722v2-abstract-short" style="display: inline;"> Graphene is a famous truly two-dimensional (2D) material, possessing a cone-like energy structure near the Fermi level and treated as a gapless semiconductor. Its unique properties trigger researchers to find applications of it. The gapless feature shrinks the development of graphene nanoelectronics. Making one-dimensional (1D) strips of graphene nanoribbons (GNRs) could be one of the promising ro… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.07722v2-abstract-full').style.display = 'inline'; document.getElementById('2209.07722v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.07722v2-abstract-full" style="display: none;"> Graphene is a famous truly two-dimensional (2D) material, possessing a cone-like energy structure near the Fermi level and treated as a gapless semiconductor. Its unique properties trigger researchers to find applications of it. The gapless feature shrinks the development of graphene nanoelectronics. Making one-dimensional (1D) strips of graphene nanoribbons (GNRs) could be one of the promising routes to modulating the electronic and optical properties of graphene. The electronic and optical properties of GNRs are highly sensitive to the edge and width. The tunability in electronic and optical properties further implies the possibilities of GNR application. However, the dangling bonds at ribbon edges remain an open question in GNR systems. Various passivation at the ribbon edge might change the essential physical properties. In this work, $5d$ transition-metal elements are considered as the guest atoms at the edges. The geometric structure, energy bands, density of states, charge distribution, and optical transitions are discussed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.07722v2-abstract-full').style.display = 'none'; document.getElementById('2209.07722v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Chemical Modifications of Graphene-Like Materials, pp. 307-333 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2207.05472">arXiv:2207.05472</a> <span> [<a href="https://arxiv.org/pdf/2207.05472">pdf</a>, <a href="https://arxiv.org/format/2207.05472">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic and Molecular Clusters">physics.atm-clus</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> </div> <p class="title is-5 mathjax"> Enhanced ultrafast X-ray diffraction by transient resonances </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Kuschel%2C+S">Stephan Kuschel</a>, <a href="/search/physics?searchtype=author&query=Ho%2C+P+J">Phay J. Ho</a>, <a href="/search/physics?searchtype=author&query=Haddad%2C+A+A">Andre Al Haddad</a>, <a href="/search/physics?searchtype=author&query=Zimmermann%2C+F">Felix Zimmermann</a>, <a href="/search/physics?searchtype=author&query=Flueckiger%2C+L">Leonie Flueckiger</a>, <a href="/search/physics?searchtype=author&query=Ware%2C+M+R">Matthew R. Ware</a>, <a href="/search/physics?searchtype=author&query=Duris%2C+J">Joseph Duris</a>, <a href="/search/physics?searchtype=author&query=MacArthur%2C+J+P">James P. MacArthur</a>, <a href="/search/physics?searchtype=author&query=Lutman%2C+A">Alberto Lutman</a>, <a href="/search/physics?searchtype=author&query=Lin%2C+M">Ming-Fu Lin</a>, <a href="/search/physics?searchtype=author&query=Li%2C+X">Xiang Li</a>, <a href="/search/physics?searchtype=author&query=Nakahara%2C+K">Kazutaka Nakahara</a>, <a href="/search/physics?searchtype=author&query=Aldrich%2C+J+W">Jeff W. Aldrich</a>, <a href="/search/physics?searchtype=author&query=Walter%2C+P">Peter Walter</a>, <a href="/search/physics?searchtype=author&query=Young%2C+L">Linda Young</a>, <a href="/search/physics?searchtype=author&query=Bostedt%2C+C">Christoph Bostedt</a>, <a href="/search/physics?searchtype=author&query=Marinelli%2C+A">Agostino Marinelli</a>, <a href="/search/physics?searchtype=author&query=Gorkhover%2C+T">Tais Gorkhover</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2207.05472v1-abstract-short" style="display: inline;"> Diffraction-before-destruction imaging with single ultrashort X-ray pulses has the potential to visualise non-equilibrium processes, such as chemical reactions, at the nanoscale with sub-femtosecond resolution in the native environment without the need of crystallization. Here, a nanospecimen partially diffracts a single X-ray flash before sample damage occurs. The structural information of the sa… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.05472v1-abstract-full').style.display = 'inline'; document.getElementById('2207.05472v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2207.05472v1-abstract-full" style="display: none;"> Diffraction-before-destruction imaging with single ultrashort X-ray pulses has the potential to visualise non-equilibrium processes, such as chemical reactions, at the nanoscale with sub-femtosecond resolution in the native environment without the need of crystallization. Here, a nanospecimen partially diffracts a single X-ray flash before sample damage occurs. The structural information of the sample can be reconstructed from the coherent X-ray interference image. State-of-art spatial resolution of such snapshots from individual heavy element nanoparticles is limited to a few nanometers. Further improvement of spatial resolution requires higher image brightness which is ultimately limited by bleaching effects of the sample. We compared snapshots from individual 100 nm Xe nanoparticles as a function of the X-ray pulse duration and incoming X-ray intensity in the vicinity of the Xe M-shell resonance. Surprisingly, images recorded with few femtosecond and sub-femtosecond pulses are up to 10 times brighter than the static linear model predicts. Our Monte-Carlo simulation and statistical analysis of the entire data set confirms these findings and attributes the effect to transient resonances. Our simulation suggests that ultrafast form factor changes during the exposure can increase the brightness of X-ray images by several orders of magnitude. Our study guides the way towards imaging with unprecedented combination of spatial and temporal resolution at the nanoscale. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.05472v1-abstract-full').style.display = 'none'; document.getElementById('2207.05472v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2207.04355">arXiv:2207.04355</a> <span> [<a href="https://arxiv.org/pdf/2207.04355">pdf</a>, <a href="https://arxiv.org/format/2207.04355">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/ac7de9">10.3847/1538-4357/ac7de9 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Revealing the drag instability in one-fluid nonideal MHD simulations of a 1D isothermal C-shock </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Gu%2C+P">Pin-Gao Gu</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+C">Che-Yu Chen</a>, <a href="/search/physics?searchtype=author&query=Shen%2C+E">Emma Shen</a>, <a href="/search/physics?searchtype=author&query=Yen%2C+C">Chien-Chang Yen</a>, <a href="/search/physics?searchtype=author&query=Lin%2C+M">Min-Kai Lin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2207.04355v2-abstract-short" style="display: inline;"> C-type shocks are believed to be ubiquitous in turbulent molecular clouds thanks to ambipolar diffusion. We investigate whether the drag instability in 1D isothermal C-shocks, inferred from the local linear theory of Gu & Chen, can appear in non-ideal magnetohydrodynamic simulations. Two C-shock models (with narrow and broad steady-state shock widths) are considered to represent the typical enviro… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.04355v2-abstract-full').style.display = 'inline'; document.getElementById('2207.04355v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2207.04355v2-abstract-full" style="display: none;"> C-type shocks are believed to be ubiquitous in turbulent molecular clouds thanks to ambipolar diffusion. We investigate whether the drag instability in 1D isothermal C-shocks, inferred from the local linear theory of Gu & Chen, can appear in non-ideal magnetohydrodynamic simulations. Two C-shock models (with narrow and broad steady-state shock widths) are considered to represent the typical environment of star-forming clouds. The ionization-recombination equilibrium is adopted for the one-fluid approach. In the 1D simulation, the inflow gas is continuously perturbed by a sinusoidal density fluctuation with a constant frequency. The perturbations clearly grow after entering the C-shock region until they start being damped at the transition to the postshock region. We show that the profiles of a predominant Fourier mode extracted locally from the simulated growing perturbation match those of the growing mode derived from the linear analysis. Moreover, the local growth rate and wave frequency derived from the predominant mode generally agree with those from the linear theory. Therefore, we confirm the presence of the drag instability in simulated 1D isothermal C-shocks. We also explore the nonlinear behavior of the instability by imposing larger-amplitude perturbations to the simulation. We find that the drag instability is subject to wave steepening, leading to saturated perturbation growth. Issues concerning local analysis, nonlinear effects, one-fluid approach, and astrophysical applications are discussed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.04355v2-abstract-full').style.display = 'none'; document.getElementById('2207.04355v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 10 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> ApJ 2022, 935, 95 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2207.01133">arXiv:2207.01133</a> <span> [<a href="https://arxiv.org/pdf/2207.01133">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> High-Capacity Rechargeable $Li/Cl_2$ Batteries with Graphite Positive Electrodes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Zhu%2C+G">Guanzhou Zhu</a>, <a href="/search/physics?searchtype=author&query=Liang%2C+P">Peng Liang</a>, <a href="/search/physics?searchtype=author&query=Huang%2C+C">Cheng-Liang Huang</a>, <a href="/search/physics?searchtype=author&query=Huang%2C+C">Cheng-Chia Huang</a>, <a href="/search/physics?searchtype=author&query=Li%2C+Y">Yuan-Yao Li</a>, <a href="/search/physics?searchtype=author&query=Wu%2C+S">Shu-Chi Wu</a>, <a href="/search/physics?searchtype=author&query=Li%2C+J">Jiachen Li</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+F">Feifei Wang</a>, <a href="/search/physics?searchtype=author&query=Tian%2C+X">Xin Tian</a>, <a href="/search/physics?searchtype=author&query=Huang%2C+W">Wei-Hsiang Huang</a>, <a href="/search/physics?searchtype=author&query=Jiang%2C+S">Shi-Kai Jiang</a>, <a href="/search/physics?searchtype=author&query=Hung%2C+W">Wei-Hsuan Hung</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+H">Hui Chen</a>, <a href="/search/physics?searchtype=author&query=Lin%2C+M">Meng-Chang Lin</a>, <a href="/search/physics?searchtype=author&query=Hwang%2C+B">Bing-Joe Hwang</a>, <a href="/search/physics?searchtype=author&query=Dai%2C+H">Hongjie Dai</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2207.01133v1-abstract-short" style="display: inline;"> Developing new types of high-capacity and high-energy density rechargeable battery is important to future generations of consumer electronics, electric vehicles, and mass energy storage applications. Recently we reported ~ 3.5 V sodium/chlorine $(Na/Cl_2)$ and lithium/chlorine $(Li/Cl_2)$ batteries with up to 1200 mAh $g^{-1}$ reversible capacity, using either a Na or Li metal as the negative elec… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.01133v1-abstract-full').style.display = 'inline'; document.getElementById('2207.01133v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2207.01133v1-abstract-full" style="display: none;"> Developing new types of high-capacity and high-energy density rechargeable battery is important to future generations of consumer electronics, electric vehicles, and mass energy storage applications. Recently we reported ~ 3.5 V sodium/chlorine $(Na/Cl_2)$ and lithium/chlorine $(Li/Cl_2)$ batteries with up to 1200 mAh $g^{-1}$ reversible capacity, using either a Na or Li metal as the negative electrode, an amorphous carbon nanosphere (aCNS) as the positive electrode, and aluminum chloride $(AlCl_3)$ dissolved in thionyl chloride $(SOCl_2)$ with fluoride-based additives as the electrolyte. The high surface area and large pore volume of aCNS in the positive electrode facilitated NaCl or LiCl deposition and trapping of $Cl_2$ for reversible $NaCl/Cl_2$ or $LiCl/Cl_2$ redox reactions and battery discharge/charge cycling. Here we report an initially low surface area/porosity graphite (DGr) material as the positive electrode in a $Li/Cl_2$ battery, attaining high battery performance after activation in carbon dioxide $(CO_2)$ at 1000 掳C (DGr_ac) with the first discharge capacity ~ 1910 mAh $g^{-1}$ and a cycling capacity up to 1200 mAh $g^{-1}$. Ex situ Raman spectroscopy and X-ray diffraction (XRD) revealed the evolution of graphite over battery cycling, including intercalation/de-intercalation and exfoliation that generated sufficient pores for hosting $LiCl/Cl_2$ redox. This work opens up widely available, low-cost graphitic materials for high-capacity alkali metal/$Cl_2$ batteries. Lastly, we employed mass spectrometry to probe the $Cl_2$ trapped in the graphitic positive electrode, shedding light into the $Li/Cl_2$ battery operation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.01133v1-abstract-full').style.display = 'none'; document.getElementById('2207.01133v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">37 pages, 16 figures, 1 table</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2206.11162">arXiv:2206.11162</a> <span> [<a href="https://arxiv.org/pdf/2206.11162">pdf</a>, <a href="https://arxiv.org/format/2206.11162">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> 1D finite-width graphene nanoribbon systems: alkalization and hydrogenation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Li%2C+W">Wei-Bang Li</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+Y">Yu-Ming Wang</a>, <a href="/search/physics?searchtype=author&query=Chung%2C+H">Hsien-Ching Chung</a>, <a href="/search/physics?searchtype=author&query=Lin%2C+M">Ming-Fa Lin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2206.11162v1-abstract-short" style="display: inline;"> Graphene is the first truly two-dimensional (2D) material, possessing a cone-like energy spectrum near the Fermi energy and treated as a gapless semiconductor. Its unique properties trigger researchers to find more applications of it, such as high carrier mobility at room temperature, superior thermoconductivity, high modulus and tensile strength, high transparency, and anomalous quantum Hall effe… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.11162v1-abstract-full').style.display = 'inline'; document.getElementById('2206.11162v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2206.11162v1-abstract-full" style="display: none;"> Graphene is the first truly two-dimensional (2D) material, possessing a cone-like energy spectrum near the Fermi energy and treated as a gapless semiconductor. Its unique properties trigger researchers to find more applications of it, such as high carrier mobility at room temperature, superior thermoconductivity, high modulus and tensile strength, high transparency, and anomalous quantum Hall effect. However, the gapless feature limits the development of graphene nanoelectronics. Making one-dimensional (1D) strips of graphene (i.e., graphene nanoribbons (GNRs)) could be one of the most promising approaches to modulating the electronic and optical properties of graphene. The electronic and optical properties have been theoretically predicted and experimentally verified highly sensitive to the edge and width. The tunable electronic and optical properties further imply the possibilities of GNR application. Recently, the dangling bond problem is under consideration in the GNR system. Various passivation at the ribbon edge might change the physical properties. In this work, some passivation conditions are studied, such as alkalization and hydrogenation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.11162v1-abstract-full').style.display = 'none'; document.getElementById('2206.11162v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2206.08762">arXiv:2206.08762</a> <span> [<a href="https://arxiv.org/pdf/2206.08762">pdf</a>, <a href="https://arxiv.org/format/2206.08762">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1201/9781003367215-4">10.1201/9781003367215-4 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Na-intercalation compounds and Na-ion batteries </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Li%2C+W">Wei-Bang Li</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+Y">Yu-Ming Wang</a>, <a href="/search/physics?searchtype=author&query=Chung%2C+H">Hsien-Ching Chung</a>, <a href="/search/physics?searchtype=author&query=Lin%2C+M">Ming-Fa Lin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2206.08762v1-abstract-short" style="display: inline;"> The widely use of lithium-ion (Li-ion) batteries in various fields, from portable products to large-scale energy storage systems, has revolutionized our daily life. The 2019 Nobel Prize in Chemistry has been awarded to John B. Goodenough, M. Stanley Whittingham, and Akira Yoshino for their contributions in developing Li-ion batteries. Although Li-ion batteries are currently on-growing research top… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.08762v1-abstract-full').style.display = 'inline'; document.getElementById('2206.08762v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2206.08762v1-abstract-full" style="display: none;"> The widely use of lithium-ion (Li-ion) batteries in various fields, from portable products to large-scale energy storage systems, has revolutionized our daily life. The 2019 Nobel Prize in Chemistry has been awarded to John B. Goodenough, M. Stanley Whittingham, and Akira Yoshino for their contributions in developing Li-ion batteries. Although Li-ion batteries are currently on-growing research topics, lithium availability is still a problem for mass production. In contrast to lithium, sodium resources are almost unlimited on Earth, and sodium is one of the most abundant elements in the Earth's crust. Hence, sodium-ion (Na-ion) batteries as a counterpart of Li-ion batteries have the potential to serve as the next-generation batteries. In this work, a brief history and recent development of Na-ion batteries are described. The fundamental physical and electronic properties, such as geometric structures, band structure, density of states, and spatial charge distributions, of Na-intercalation compounds are discussed. The outlook of Na-ion batteries is given at the last. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.08762v1-abstract-full').style.display = 'none'; document.getElementById('2206.08762v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Energy Storage and Conversion Materials, pp. 51-74 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2205.13205">arXiv:2205.13205</a> <span> [<a href="https://arxiv.org/pdf/2205.13205">pdf</a>, <a href="https://arxiv.org/ps/2205.13205">ps</a>, <a href="https://arxiv.org/format/2205.13205">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> $O(N^2)$ Universal Antisymmetry in Fermionic Neural Networks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Pang%2C+T">Tianyu Pang</a>, <a href="/search/physics?searchtype=author&query=Yan%2C+S">Shuicheng Yan</a>, <a href="/search/physics?searchtype=author&query=Lin%2C+M">Min Lin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2205.13205v2-abstract-short" style="display: inline;"> Fermionic neural network (FermiNet) is a recently proposed wavefunction Ansatz, which is used in variational Monte Carlo (VMC) methods to solve the many-electron Schr枚dinger equation. FermiNet proposes permutation-equivariant architectures, on which a Slater determinant is applied to induce antisymmetry. FermiNet is proved to have universal approximation capability with a single determinant, namel… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.13205v2-abstract-full').style.display = 'inline'; document.getElementById('2205.13205v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2205.13205v2-abstract-full" style="display: none;"> Fermionic neural network (FermiNet) is a recently proposed wavefunction Ansatz, which is used in variational Monte Carlo (VMC) methods to solve the many-electron Schr枚dinger equation. FermiNet proposes permutation-equivariant architectures, on which a Slater determinant is applied to induce antisymmetry. FermiNet is proved to have universal approximation capability with a single determinant, namely, it suffices to represent any antisymmetric function given sufficient parameters. However, the asymptotic computational bottleneck comes from the Slater determinant, which scales with $O(N^3)$ for $N$ electrons. In this paper, we substitute the Slater determinant with a pairwise antisymmetry construction, which is easy to implement and can reduce the computational cost to $O(N^2)$. We formally prove that the pairwise construction built upon permutation-equivariant architectures can universally represent any antisymmetric function. Besides, this universality can be achieved via continuous approximators when we aim to represent ground-state wavefunctions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.13205v2-abstract-full').style.display = 'none'; document.getElementById('2205.13205v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">ICML 2022 AI for Science Workshop</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2204.11669">arXiv:2204.11669</a> <span> [<a href="https://arxiv.org/pdf/2204.11669">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Image and Video Processing">eess.IV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Medical Physics">physics.med-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41746-023-00859-y">10.1038/s41746-023-00859-y <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Deep-learning-enabled Brain Hemodynamic Mapping Using Resting-state fMRI </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Hou%2C+X">Xirui Hou</a>, <a href="/search/physics?searchtype=author&query=Guo%2C+P">Pengfei Guo</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+P">Puyang Wang</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+P">Peiying Liu</a>, <a href="/search/physics?searchtype=author&query=Lin%2C+D+D+M">Doris D. M. Lin</a>, <a href="/search/physics?searchtype=author&query=Fan%2C+H">Hongli Fan</a>, <a href="/search/physics?searchtype=author&query=Li%2C+Y">Yang Li</a>, <a href="/search/physics?searchtype=author&query=Wei%2C+Z">Zhiliang Wei</a>, <a href="/search/physics?searchtype=author&query=Lin%2C+Z">Zixuan Lin</a>, <a href="/search/physics?searchtype=author&query=Jiang%2C+D">Dengrong Jiang</a>, <a href="/search/physics?searchtype=author&query=Jin%2C+J">Jin Jin</a>, <a href="/search/physics?searchtype=author&query=Kelly%2C+C">Catherine Kelly</a>, <a href="/search/physics?searchtype=author&query=Pillai%2C+J+J">Jay J. Pillai</a>, <a href="/search/physics?searchtype=author&query=Huang%2C+J">Judy Huang</a>, <a href="/search/physics?searchtype=author&query=Pinho%2C+M+C">Marco C. Pinho</a>, <a href="/search/physics?searchtype=author&query=Thomas%2C+B+P">Binu P. Thomas</a>, <a href="/search/physics?searchtype=author&query=Welch%2C+B+G">Babu G. Welch</a>, <a href="/search/physics?searchtype=author&query=Park%2C+D+C">Denise C. Park</a>, <a href="/search/physics?searchtype=author&query=Patel%2C+V+M">Vishal M. Patel</a>, <a href="/search/physics?searchtype=author&query=Hillis%2C+A+E">Argye E. Hillis</a>, <a href="/search/physics?searchtype=author&query=Lu%2C+H">Hanzhang Lu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2204.11669v1-abstract-short" style="display: inline;"> Cerebrovascular disease is a leading cause of death globally. Prevention and early intervention are known to be the most effective forms of its management. Non-invasive imaging methods hold great promises for early stratification, but at present lack the sensitivity for personalized prognosis. Resting-state functional magnetic resonance imaging (rs-fMRI), a powerful tool previously used for mappin… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.11669v1-abstract-full').style.display = 'inline'; document.getElementById('2204.11669v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2204.11669v1-abstract-full" style="display: none;"> Cerebrovascular disease is a leading cause of death globally. Prevention and early intervention are known to be the most effective forms of its management. Non-invasive imaging methods hold great promises for early stratification, but at present lack the sensitivity for personalized prognosis. Resting-state functional magnetic resonance imaging (rs-fMRI), a powerful tool previously used for mapping neural activity, is available in most hospitals. Here we show that rs-fMRI can be used to map cerebral hemodynamic function and delineate impairment. By exploiting time variations in breathing pattern during rs-fMRI, deep learning enables reproducible mapping of cerebrovascular reactivity (CVR) and bolus arrive time (BAT) of the human brain using resting-state CO2 fluctuations as a natural 'contrast media'. The deep-learning network was trained with CVR and BAT maps obtained with a reference method of CO2-inhalation MRI, which included data from young and older healthy subjects and patients with Moyamoya disease and brain tumors. We demonstrate the performance of deep-learning cerebrovascular mapping in the detection of vascular abnormalities, evaluation of revascularization effects, and vascular alterations in normal aging. In addition, cerebrovascular maps obtained with the proposed method exhibited excellent reproducibility in both healthy volunteers and stroke patients. Deep-learning resting-state vascular imaging has the potential to become a useful tool in clinical cerebrovascular imaging. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.11669v1-abstract-full').style.display = 'none'; document.getElementById('2204.11669v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 April, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> npj Digital Medicine (2023) 116 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2204.01145">arXiv:2204.01145</a> <span> [<a href="https://arxiv.org/pdf/2204.01145">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Direct visualization of ultrafast lattice ordering triggered by an electron-hole plasma in 2D perovskites </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Zhang%2C+H">Hao Zhang</a>, <a href="/search/physics?searchtype=author&query=Li%2C+W">Wenbin Li</a>, <a href="/search/physics?searchtype=author&query=Essman%2C+J">Joseph Essman</a>, <a href="/search/physics?searchtype=author&query=Quarti%2C+C">Claudio Quarti</a>, <a href="/search/physics?searchtype=author&query=Metcalf%2C+I">Isaac Metcalf</a>, <a href="/search/physics?searchtype=author&query=Chiang%2C+W">Wei-Yi Chiang</a>, <a href="/search/physics?searchtype=author&query=Sidhik%2C+S">Siraj Sidhik</a>, <a href="/search/physics?searchtype=author&query=Hou%2C+J">Jin Hou</a>, <a href="/search/physics?searchtype=author&query=Fehr%2C+A">Austin Fehr</a>, <a href="/search/physics?searchtype=author&query=Attar%2C+A">Andrew Attar</a>, <a href="/search/physics?searchtype=author&query=Lin%2C+M">Ming-Fu Lin</a>, <a href="/search/physics?searchtype=author&query=Britz%2C+A">Alexander Britz</a>, <a href="/search/physics?searchtype=author&query=Shen%2C+X">Xiaozhe Shen</a>, <a href="/search/physics?searchtype=author&query=Link%2C+S">Stephan Link</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+X">Xijie Wang</a>, <a href="/search/physics?searchtype=author&query=Bergmann%2C+U">Uwe Bergmann</a>, <a href="/search/physics?searchtype=author&query=Kanatzidis%2C+M+G">Mercouri G. Kanatzidis</a>, <a href="/search/physics?searchtype=author&query=Katan%2C+C">Claudine Katan</a>, <a href="/search/physics?searchtype=author&query=Even%2C+J">Jacky Even</a>, <a href="/search/physics?searchtype=author&query=Blancon%2C+J">Jean-Christophe Blancon</a>, <a href="/search/physics?searchtype=author&query=Mohite%2C+A+D">Aditya D. Mohite</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2204.01145v1-abstract-short" style="display: inline;"> Direct visualization of ultrafast coupling between charge carriers and lattice degrees of freedom in photo-excited semiconductors has remained a long-standing challenge and is critical for understanding the light-induced physical behavior of materials under extreme non-equilibrium conditions. Here, by monitoring the evolution of the wave-vector resolved ultrafast electron diffraction intensity fol… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.01145v1-abstract-full').style.display = 'inline'; document.getElementById('2204.01145v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2204.01145v1-abstract-full" style="display: none;"> Direct visualization of ultrafast coupling between charge carriers and lattice degrees of freedom in photo-excited semiconductors has remained a long-standing challenge and is critical for understanding the light-induced physical behavior of materials under extreme non-equilibrium conditions. Here, by monitoring the evolution of the wave-vector resolved ultrafast electron diffraction intensity following above-bandgap photo-excitation, we obtain a direct visual of the structural dynamics in monocrystalline 2D perovskites. Analysis reveals a surprising, light-induced ultrafast lattice ordering resulting from a strong interaction between hot-carriers and the perovskite lattice, which induces an in-plane octahedra rotation, towards a more symmetric phase. Correlated ultrafast spectroscopy performed at the same carrier density as ultrafast electron diffraction reveals that the creation of a hot and dense electron-hole plasma triggers lattice ordering at short timescales by modulating the crystal cohesive energy. Finally, we show that the interaction between the carrier gas and the lattice can be altered by tailoring the rigidity of the 2D perovskite by choosing the appropriate organic spacer layer. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.01145v1-abstract-full').style.display = 'none'; document.getElementById('2204.01145v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 April, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">25 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2204.00039">arXiv:2204.00039</a> <span> [<a href="https://arxiv.org/pdf/2204.00039">pdf</a>, <a href="https://arxiv.org/format/2204.00039">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> Lattice QCD and the Computational Frontier </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Boyle%2C+P">Peter Boyle</a>, <a href="/search/physics?searchtype=author&query=Bollweg%2C+D">Dennis Bollweg</a>, <a href="/search/physics?searchtype=author&query=Brower%2C+R">Richard Brower</a>, <a href="/search/physics?searchtype=author&query=Christ%2C+N">Norman Christ</a>, <a href="/search/physics?searchtype=author&query=DeTar%2C+C">Carleton DeTar</a>, <a href="/search/physics?searchtype=author&query=Edwards%2C+R">Robert Edwards</a>, <a href="/search/physics?searchtype=author&query=Gottlieb%2C+S">Steven Gottlieb</a>, <a href="/search/physics?searchtype=author&query=Izubuchi%2C+T">Taku Izubuchi</a>, <a href="/search/physics?searchtype=author&query=Joo%2C+B">Balint Joo</a>, <a href="/search/physics?searchtype=author&query=Joswig%2C+F">Fabian Joswig</a>, <a href="/search/physics?searchtype=author&query=Jung%2C+C">Chulwoo Jung</a>, <a href="/search/physics?searchtype=author&query=Kelly%2C+C">Christopher Kelly</a>, <a href="/search/physics?searchtype=author&query=Kronfeld%2C+A">Andreas Kronfeld</a>, <a href="/search/physics?searchtype=author&query=Lin%2C+M">Meifeng Lin</a>, <a href="/search/physics?searchtype=author&query=Osborn%2C+J">James Osborn</a>, <a href="/search/physics?searchtype=author&query=Portelli%2C+A">Antonin Portelli</a>, <a href="/search/physics?searchtype=author&query=Richings%2C+J">James Richings</a>, <a href="/search/physics?searchtype=author&query=Yamaguchi%2C+A">Azusa Yamaguchi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2204.00039v1-abstract-short" style="display: inline;"> The search for new physics requires a joint experimental and theoretical effort. Lattice QCD is already an essential tool for obtaining precise model-free theoretical predictions of the hadronic processes underlying many key experimental searches, such as those involving heavy flavor physics, the anomalous magnetic moment of the muon, nucleon-neutrino scattering, and rare, second-order electroweak… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.00039v1-abstract-full').style.display = 'inline'; document.getElementById('2204.00039v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2204.00039v1-abstract-full" style="display: none;"> The search for new physics requires a joint experimental and theoretical effort. Lattice QCD is already an essential tool for obtaining precise model-free theoretical predictions of the hadronic processes underlying many key experimental searches, such as those involving heavy flavor physics, the anomalous magnetic moment of the muon, nucleon-neutrino scattering, and rare, second-order electroweak processes. As experimental measurements become more precise over the next decade, lattice QCD will play an increasing role in providing the needed matching theoretical precision. Achieving the needed precision requires simulations with lattices with substantially increased resolution. As we push to finer lattice spacing we encounter an array of new challenges. They include algorithmic and software-engineering challenges, challenges in computer technology and design, and challenges in maintaining the necessary human resources. In this white paper we describe those challenges and discuss ways they are being dealt with. Overcoming them is key to supporting the community effort required to deliver the needed theoretical support for experiments in the coming decade. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.00039v1-abstract-full').style.display = 'none'; document.getElementById('2204.00039v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Contribution to Snowmass 2021. 22 pages</span> </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Lin%2C+M&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Lin%2C+M&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Lin%2C+M&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&query=Lin%2C+M&start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>