CINXE.COM
Search results for: transfer function
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: transfer function</title> <meta name="description" content="Search results for: transfer function"> <meta name="keywords" content="transfer function"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="transfer function" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="transfer function"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 7503</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: transfer function</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7503</span> A Transfer Function Representation of Thermo-Acoustic Dynamics for Combustors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Myunggon%20Yoon">Myunggon Yoon</a>, <a href="https://publications.waset.org/abstracts/search?q=Jung-Ho%20Moon"> Jung-Ho Moon</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we present a transfer function representation of a general one-dimensional combustor. The input of the transfer function is a heat rate perturbation of a burner and the output is a flow velocity perturbation at the burner. This paper considers a general combustor model composed of multiple cans with different cross sectional areas, along with a non-zero flow rate. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=combustor" title="combustor">combustor</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamics" title=" dynamics"> dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=thermoacoustics" title=" thermoacoustics"> thermoacoustics</a>, <a href="https://publications.waset.org/abstracts/search?q=transfer%20function" title=" transfer function"> transfer function</a> </p> <a href="https://publications.waset.org/abstracts/61439/a-transfer-function-representation-of-thermo-acoustic-dynamics-for-combustors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61439.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">381</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7502</span> Nonlinear Triad Interactions in Magnetohydrodynamic Plasma Turbulence</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yasser%20Rammah">Yasser Rammah</a>, <a href="https://publications.waset.org/abstracts/search?q=Wolf-Christian%20Mueller"> Wolf-Christian Mueller</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nonlinear triad interactions in incompressible three-dimensional magnetohydrodynamic (3D-MHD) turbulence are studied by analyzing data from high-resolution direct numerical simulations of decaying isotropic (5123 grid points) and forced anisotropic (10242 x256 grid points) turbulence. An accurate numerical approach toward analyzing nonlinear turbulent energy transfer function and triad interactions is presented. It involves the direct numerical examination of every wavenumber triad that is associated with the nonlinear terms in the differential equations of MHD in the inertial range of turbulence. The technique allows us to compute the spectral energy transfer and energy fluxes, as well as the spectral locality property of energy transfer function. To this end, the geometrical shape of each underlying wavenumber triad that contributes to the statistical transfer density function is examined to infer the locality of the energy transfer. Results show that the total energy transfer is local via nonlocal triad interactions in decaying macroscopically isotropic MHD turbulence. In anisotropic MHD, turbulence subject to a strong mean magnetic field the nonlinear transfer is generally weaker and exhibits a moderate increase of nonlocality in both perpendicular and parallel directions compared to the isotropic case. These results support the recent mathematical findings, which also claim the locality of nonlinear energy transfer in MHD turbulence. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=magnetohydrodynamic%20%28MHD%29%20turbulence" title="magnetohydrodynamic (MHD) turbulence">magnetohydrodynamic (MHD) turbulence</a>, <a href="https://publications.waset.org/abstracts/search?q=transfer%20density%20function" title=" transfer density function"> transfer density function</a>, <a href="https://publications.waset.org/abstracts/search?q=locality%20function" title=" locality function"> locality function</a>, <a href="https://publications.waset.org/abstracts/search?q=direct%20numerical%20simulation%20%28DNS%29" title=" direct numerical simulation (DNS)"> direct numerical simulation (DNS)</a> </p> <a href="https://publications.waset.org/abstracts/38684/nonlinear-triad-interactions-in-magnetohydrodynamic-plasma-turbulence" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38684.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">385</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7501</span> Heat Transfer Studies on CNT Nanofluids in a Turbulent Flow Heat Exchanger</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=W.%20Rashmi">W. Rashmi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Khalid"> M. Khalid</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20Seiksan"> O. Seiksan</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Saidur"> R. Saidur</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20F.%20Ismail"> A. F. Ismail</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nanofluids have received much more attention since its discovery. They are believed to be promising coolants in heat transfer applications due to their enhanced thermal conductivity and heat transfer characteristics. In this study, the enhancement in heat transfer of CNT-nanofluids under turbulent flow conditions is investigated experimentally. Carbon nanotube (CNTs) concentration was varied between 0.051-0.085 wt%. The nanofluid suspension was stabilized by gum arabic (GA) through a process of homogenisation and sonication. The flow rates of cold fluid (water) is varied from 1.7-3 L/min and flow rates of the hot fluid is varied between 2-3.5 L/min. Thermal conductivity, density and viscosity of the nanofluids were also measured as a function of temperature and CNT concentration. The experimental results are validated with theoretical correlations for turbulent flow available in the literature. Results showed an enhancement in heat transfer range between 9-67% as a function of temperature and CNT concentration. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanofluids" title="nanofluids">nanofluids</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20nanotubes%20%28CNT%29" title=" carbon nanotubes (CNT)"> carbon nanotubes (CNT)</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer%20enhancement" title=" heat transfer enhancement"> heat transfer enhancement</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer" title=" heat transfer"> heat transfer</a> </p> <a href="https://publications.waset.org/abstracts/13300/heat-transfer-studies-on-cnt-nanofluids-in-a-turbulent-flow-heat-exchanger" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13300.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">500</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7500</span> Robust Stabilization against Unknown Consensus Network</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Myung-Gon%20Yoon">Myung-Gon Yoon</a>, <a href="https://publications.waset.org/abstracts/search?q=Jung-Ho%20Moon"> Jung-Ho Moon</a>, <a href="https://publications.waset.org/abstracts/search?q=Tae%20Kwon%20Ha"> Tae Kwon Ha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper considers a robust stabilization problem of a single agent in a multi-agent consensus system composed of identical agents, when the network topology of the system is completely unknown. It is shown that the transfer function of an agent in a consensus system can be described as a multiplicative perturbation of the isolated agent transfer function in frequency domain. Applying known robust stabilization results, we present sufficient conditions for a robust stabilization of an agent against unknown network topology. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=single%20agent%20control" title="single agent control">single agent control</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-agent%20system" title=" multi-agent system"> multi-agent system</a>, <a href="https://publications.waset.org/abstracts/search?q=transfer%20function" title=" transfer function"> transfer function</a>, <a href="https://publications.waset.org/abstracts/search?q=graph%20angle" title=" graph angle"> graph angle</a> </p> <a href="https://publications.waset.org/abstracts/11150/robust-stabilization-against-unknown-consensus-network" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11150.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">452</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7499</span> A New Analytic Solution for the Heat Conduction with Time-Dependent Heat Transfer Coefficient</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Te%20Wen%20Tu">Te Wen Tu</a>, <a href="https://publications.waset.org/abstracts/search?q=Sen%20Yung%20Lee"> Sen Yung Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An alternative approach is proposed to develop the analytic solution for one dimensional heat conduction with one mixed type boundary condition and general time-dependent heat transfer coefficient. In this study, the physic meaning of the solution procedure is revealed. It is shown that the shifting function takes the physic meaning of the reciprocal of Biot function in the initial time. Numerical results show the accuracy of this study. Comparing with those given in the existing literature, the difference is less than 0.3%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=analytic%20solution" title="analytic solution">analytic solution</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer%20coefficient" title=" heat transfer coefficient"> heat transfer coefficient</a>, <a href="https://publications.waset.org/abstracts/search?q=shifting%20function%20method" title=" shifting function method"> shifting function method</a>, <a href="https://publications.waset.org/abstracts/search?q=time-dependent%20boundary%20condition" title=" time-dependent boundary condition"> time-dependent boundary condition</a> </p> <a href="https://publications.waset.org/abstracts/7436/a-new-analytic-solution-for-the-heat-conduction-with-time-dependent-heat-transfer-coefficient" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7436.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">431</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7498</span> System Identification and Controller Design for a DC Electrical Motor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Armel%20Asongu%20Nkembi">Armel Asongu Nkembi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmad%20Fawad"> Ahmad Fawad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this paper is to determine in a concise way the transfer function that characterizes a DC electrical motor with a helix. In practice it can be obtained by applying a particular input to the system and then, based on the observation of its output, determine an approximation to the transfer function of the system. In our case, we use a step input and find the transfer function parameters that give the simulated first-order time response. The simulation of the system is done using MATLAB/Simulink. In order to determine the parameters, we assume a first order system and use the Broida approximation to determine the parameters and then its Mean Square Error (MSE). Furthermore, we design a PID controller for the control process first in the continuous time domain and tune it using the Ziegler-Nichols open loop process. We then digitize the controller to obtain a digital controller since most systems are implemented using computers, which are digital in nature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=transfer%20function" title="transfer function">transfer function</a>, <a href="https://publications.waset.org/abstracts/search?q=step%20input" title=" step input"> step input</a>, <a href="https://publications.waset.org/abstracts/search?q=MATLAB" title=" MATLAB"> MATLAB</a>, <a href="https://publications.waset.org/abstracts/search?q=Simulink" title=" Simulink"> Simulink</a>, <a href="https://publications.waset.org/abstracts/search?q=DC%20electrical%20motor" title=" DC electrical motor"> DC electrical motor</a>, <a href="https://publications.waset.org/abstracts/search?q=PID%20controller" title=" PID controller"> PID controller</a>, <a href="https://publications.waset.org/abstracts/search?q=open-loop%20process" title=" open-loop process"> open-loop process</a>, <a href="https://publications.waset.org/abstracts/search?q=mean%20square%20process" title=" mean square process"> mean square process</a>, <a href="https://publications.waset.org/abstracts/search?q=digital%20controller" title=" digital controller"> digital controller</a>, <a href="https://publications.waset.org/abstracts/search?q=Ziegler-Nichols" title=" Ziegler-Nichols"> Ziegler-Nichols</a> </p> <a href="https://publications.waset.org/abstracts/186025/system-identification-and-controller-design-for-a-dc-electrical-motor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/186025.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">55</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7497</span> Analytical Design of Fractional-Order PI Controller for Decoupling Control System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Truong%20Nguyen%20Luan%20Vu">Truong Nguyen Luan Vu</a>, <a href="https://publications.waset.org/abstracts/search?q=Le%20Hieu%20Giang"> Le Hieu Giang</a>, <a href="https://publications.waset.org/abstracts/search?q=Le%20Linh"> Le Linh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The FOPI controller is proposed based on the main properties of the decoupling control scheme, as well as the fractional calculus. By using the simplified decoupling technique, the transfer function of decoupled apparent process is firstly separated into a set of n equivalent independent processes in terms of a ratio of the diagonal elements of original open-loop transfer function to those of dynamic relative gain array and the fraction – order PI controller is then developed for each control loops due to the Bode’s ideal transfer function that gives the desired fractional closed-loop response in the frequency domain. The simulation studies were carried out to evaluate the proposed design approach in a fair compared with the other existing methods in accordance with the structured singular value (SSV) theory that used to measure the robust stability of control systems under multiplicative output uncertainty. The simulation results indicate that the proposed method consistently performs well with fast and well-balanced closed-loop time responses. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ideal%20transfer%20function%20of%20bode" title="ideal transfer function of bode">ideal transfer function of bode</a>, <a href="https://publications.waset.org/abstracts/search?q=fractional%20calculus" title=" fractional calculus"> fractional calculus</a>, <a href="https://publications.waset.org/abstracts/search?q=fractional%20order%20proportional%20integral%20%28FOPI%29%20controller" title=" fractional order proportional integral (FOPI) controller"> fractional order proportional integral (FOPI) controller</a>, <a href="https://publications.waset.org/abstracts/search?q=decoupling%20control%20system" title=" decoupling control system"> decoupling control system</a> </p> <a href="https://publications.waset.org/abstracts/50475/analytical-design-of-fractional-order-pi-controller-for-decoupling-control-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50475.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">331</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7496</span> Heat Transfer and Diffusion Modelling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20Whalley">R. Whalley</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The heat transfer modelling for a diffusion process will be considered. Difficulties in computing the time-distance dynamics of the representation will be addressed. Incomplete and irrational Laplace function will be identified as the computational issue. Alternative approaches to the response evaluation process will be provided. An illustration application problem will be presented. Graphical results confirming the theoretical procedures employed will be provided. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heat" title="heat">heat</a>, <a href="https://publications.waset.org/abstracts/search?q=transfer" title=" transfer"> transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=diffusion" title=" diffusion"> diffusion</a>, <a href="https://publications.waset.org/abstracts/search?q=modelling" title=" modelling"> modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=computation" title=" computation"> computation</a> </p> <a href="https://publications.waset.org/abstracts/22315/heat-transfer-and-diffusion-modelling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22315.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">553</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7495</span> Patent License of Transfer Technology: Challenges and Opportunities in Indonesia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Agung%20Sujatmiko">Agung Sujatmiko</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the purposes of patent licensing was to transfer technology from developed countries to developing countries. For this reason, the role of the patent license agreement was very important and had a function as a tool to achieve technological development. This goal was very good, but in fact, many problems and obstacles arose in its implementation, so the technology transfer that had been implemented had not given good results. For this reason, it was necessary to find a solution so that technology could switch properly. The problem approach used the statutory and conceptual approaches. The analysis used was deductive by analyzing general laws and regulations and then concluding. Several regulations related to technology transfer were the main source to find answers to why technology transfer was difficult to achieve and what caused it. Once the cause was known, a solution would be sought. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=license" title="license">license</a>, <a href="https://publications.waset.org/abstracts/search?q=patent" title=" patent"> patent</a>, <a href="https://publications.waset.org/abstracts/search?q=technology" title=" technology"> technology</a>, <a href="https://publications.waset.org/abstracts/search?q=tie%20in%20clause" title=" tie in clause"> tie in clause</a> </p> <a href="https://publications.waset.org/abstracts/168971/patent-license-of-transfer-technology-challenges-and-opportunities-in-indonesia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168971.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">95</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7494</span> Image Enhancement of Histological Slides by Using Nonlinear Transfer Function</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=D.%20Suman">D. Suman</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Nikitha"> B. Nikitha</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Sarvani"> J. Sarvani</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Archana"> V. Archana</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Histological slides provide clinical diagnostic information about the subjects from the ancient times. Even with the advent of high resolution imaging cameras the image tend to have some background noise which makes the analysis complex. A study of the histological slides is done by using a nonlinear transfer function based image enhancement method. The method processes the raw, color images acquired from the biological microscope, which, in general, is associated with background noise. The images usually appearing blurred does not convey the intended information. In this regard, an enhancement method is proposed and implemented on 50 histological slides of human tissue by using nonlinear transfer function method. The histological image is converted into HSV color image. The luminance value of the image is enhanced (V component) because change in the H and S components could change the color balance between HSV components. The HSV image is divided into smaller blocks for carrying out the dynamic range compression by using a linear transformation function. Each pixel in the block is enhanced based on the contrast of the center pixel and its neighborhood. After the processing the V component, the HSV image is transformed into a colour image. The study has shown improvement of the characteristics of the image so that the significant details of the histological images were improved. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=HSV%20space" title="HSV space">HSV space</a>, <a href="https://publications.waset.org/abstracts/search?q=histology" title=" histology"> histology</a>, <a href="https://publications.waset.org/abstracts/search?q=enhancement" title=" enhancement"> enhancement</a>, <a href="https://publications.waset.org/abstracts/search?q=image" title=" image"> image</a> </p> <a href="https://publications.waset.org/abstracts/12167/image-enhancement-of-histological-slides-by-using-nonlinear-transfer-function" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12167.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">329</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7493</span> Fractional Order Sallen-Key Filters</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Soltan">Ahmed Soltan</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20G.%20Radwan"> Ahmed G. Radwan</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20M.%20Soliman"> Ahmed M. Soliman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work aims to generalize the integer order Sallen-Key filters into the fractional-order domain. The analysis in the case of two different fractional-order elements introduced where the general transfer function becomes four terms which are unusual in the conventional case. In addition, the effect of the transfer function parameters on the filter poles and hence the stability is introduced and closed forms for the filter critical frequencies are driven. Finally, different examples of the fractional order Sallen-Key filter design are presented with circuit simulations using ADS where a great matching between the numerical and simulation results is obtained. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sallen-Key" title="Sallen-Key">Sallen-Key</a>, <a href="https://publications.waset.org/abstracts/search?q=fractance" title=" fractance"> fractance</a>, <a href="https://publications.waset.org/abstracts/search?q=stability" title=" stability"> stability</a>, <a href="https://publications.waset.org/abstracts/search?q=low-pass%20filter" title=" low-pass filter"> low-pass filter</a>, <a href="https://publications.waset.org/abstracts/search?q=analog%20filter" title=" analog filter"> analog filter</a> </p> <a href="https://publications.waset.org/abstracts/2170/fractional-order-sallen-key-filters" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2170.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">715</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7492</span> Development of Numerical Method for Mass Transfer across the Moving Membrane with Selective Permeability: Approximation of the Membrane Shape by Level Set Method for Numerical Integral</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Suguru%20Miyauchi">Suguru Miyauchi</a>, <a href="https://publications.waset.org/abstracts/search?q=Toshiyuki%20Hayase"> Toshiyuki Hayase</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Biological membranes have selective permeability, and the capsules or cells enclosed by the membrane show the deformation by the osmotic flow. This mass transport phenomenon is observed everywhere in a living body. For the understanding of the mass transfer in a body, it is necessary to consider the mass transfer phenomenon across the membrane as well as the deformation of the membrane by a flow. To our knowledge, in the numerical analysis, the method for mass transfer across the moving membrane has not been established due to the difficulty of the treating of the mass flux permeating through the moving membrane with selective permeability. In the existing methods for the mass transfer across the membrane, the approximate delta function is used to communicate the quantities on the interface. The methods can reproduce the permeation of the solute, but cannot reproduce the non-permeation. Moreover, the computational accuracy decreases with decreasing of the permeable coefficient of the membrane. This study aims to develop the numerical method capable of treating three-dimensional problems of mass transfer across the moving flexible membrane. One of the authors developed the numerical method with high accuracy based on the finite element method. This method can capture the discontinuity on the membrane sharply due to the consideration of the jumps in concentration and concentration gradient in the finite element discretization. The formulation of the method takes into account the membrane movement, and both permeable and non-permeable membranes can be treated. However, searching the cross points of the membrane and fluid element boundaries and splitting the fluid element into sub-elements are needed for the numerical integral. Therefore, cumbersome operation is required for a three-dimensional problem. In this paper, we proposed an improved method to avoid the search and split operations, and confirmed its effectiveness. The membrane shape was treated implicitly by introducing the level set function. As the construction of the level set function, the membrane shape in one fluid element was expressed by the shape function of the finite element method. By the numerical experiment, it was found that the shape function with third order appropriately reproduces the membrane shapes. The same level of accuracy compared with the previous method using search and split operations was achieved by using a number of sampling points of the numerical integral. The effectiveness of the method was confirmed by solving several model problems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title="finite element method">finite element method</a>, <a href="https://publications.waset.org/abstracts/search?q=level%20set%20method" title=" level set method"> level set method</a>, <a href="https://publications.waset.org/abstracts/search?q=mass%20transfer" title=" mass transfer"> mass transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=membrane%20permeability" title=" membrane permeability"> membrane permeability</a> </p> <a href="https://publications.waset.org/abstracts/57272/development-of-numerical-method-for-mass-transfer-across-the-moving-membrane-with-selective-permeability-approximation-of-the-membrane-shape-by-level-set-method-for-numerical-integral" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57272.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">250</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7491</span> Effect of the Applied Bias on Miniband Structures in Dimer Fibonacci Inas/Ga1-Xinxas Superlattices</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Z.%20Aziz">Z. Aziz</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Terkhi"> S. Terkhi</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Sefir"> Y. Sefir</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Djelti"> R. Djelti</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Bentata"> S. Bentata</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The effect of a uniform electric field across multibarrier systems (InAs/InxGa1-xAs) is exhaustively explored by a computational model using exact airy function formalism and the transfer-matrix technique. In the case of biased DFHBSL structure a strong reduction in transmission properties was observed and the width of the miniband structure linearly decreases with the increase of the applied bias. This is due to the confinement of the states in the miniband structure, which becomes increasingly important (Wannier-Stark Effect). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dimer%20fibonacci%20height%20barrier%20superlattices" title="dimer fibonacci height barrier superlattices">dimer fibonacci height barrier superlattices</a>, <a href="https://publications.waset.org/abstracts/search?q=singular%20extended%20state" title=" singular extended state"> singular extended state</a>, <a href="https://publications.waset.org/abstracts/search?q=exact%20airy%20function" title=" exact airy function"> exact airy function</a>, <a href="https://publications.waset.org/abstracts/search?q=transfer%20matrix%20formalism" title=" transfer matrix formalism"> transfer matrix formalism</a> </p> <a href="https://publications.waset.org/abstracts/3930/effect-of-the-applied-bias-on-miniband-structures-in-dimer-fibonacci-inasga1-xinxas-superlattices" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3930.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">305</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7490</span> Heat Transfer Investigation in a Dimple Plate Heat Exchanger Using Ionic Liquid and Ionanofluid</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Divya%20P.%20Soman">Divya P. Soman</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Karthika"> S. Karthika</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Kalaichelvi"> P. Kalaichelvi</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20K.%20Radhakrishnan"> T. K. Radhakrishnan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Heat transfer characteristics of ionic liquid solution as cold fluid in plate heat exchanger with dimple plate geometry was studied. The ionic liquid solution used in this study was 1-butyl-3-methylimidazolium bromide in water. The present experimental study is to understand the heat transfer behavior of different 1-butyl-3-methylimidazolium bromide concentrations (0.1 and 0.2% w/w) in water. In addition, the heat transfer activity of ionanofluid as cold fluid was investigated. The ionanofluid was prepared by dispersing 0.3% w/w Al2O3 in the ionic liquid solution as base fluid. Experiments were also conducted to determine thermophysical properties of ionanofluid. The empirical correlations as a function of temperature were developed to predict the thermophysical properties. Finally, the heat transfer performance of ionic liquid solution, ionanofluid, nanofluid and water were compared. The impact of hot fluid’s (water) Reynolds number on overall heat transfer coefficient and Nusselt number of cold fluids were analyzed. The nanofluid and ionanofluid were found to possess better heat transfer behavior than water and ionic liquid solution. Heat transfer augmentation was observed for ionanofluid when compared with the base fluid (0.1% w/w ionic liquid solution). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ionic%20liquid" title="ionic liquid">ionic liquid</a>, <a href="https://publications.waset.org/abstracts/search?q=nanofluid" title=" nanofluid"> nanofluid</a>, <a href="https://publications.waset.org/abstracts/search?q=ionanofluid" title=" ionanofluid"> ionanofluid</a>, <a href="https://publications.waset.org/abstracts/search?q=dimple%20plate%20heat%20exchanger" title=" dimple plate heat exchanger"> dimple plate heat exchanger</a>, <a href="https://publications.waset.org/abstracts/search?q=Nusselt%20number" title=" Nusselt number"> Nusselt number</a>, <a href="https://publications.waset.org/abstracts/search?q=overall%20heat%20transfer%20coefficient" title=" overall heat transfer coefficient"> overall heat transfer coefficient</a> </p> <a href="https://publications.waset.org/abstracts/119319/heat-transfer-investigation-in-a-dimple-plate-heat-exchanger-using-ionic-liquid-and-ionanofluid" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/119319.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">135</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7489</span> Prediction of Terrorist Activities in Nigeria using Bayesian Neural Network with Heterogeneous Transfer Functions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tayo%20P.%20Ogundunmade">Tayo P. Ogundunmade</a>, <a href="https://publications.waset.org/abstracts/search?q=Adedayo%20A.%20Adepoju"> Adedayo A. Adepoju</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Terrorist attacks in liberal democracies bring about a few pessimistic results, for example, sabotaged public support in the governments they target, disturbing the peace of a protected environment underwritten by the state, and a limitation of individuals from adding to the advancement of the country, among others. Hence, seeking for techniques to understand the different factors involved in terrorism and how to deal with those factors in order to completely stop or reduce terrorist activities is the topmost priority of the government in every country. This research aim is to develop an efficient deep learning-based predictive model for the prediction of future terrorist activities in Nigeria, addressing low-quality prediction accuracy problems associated with the existing solution methods. The proposed predictive AI-based model as a counterterrorism tool will be useful by governments and law enforcement agencies to protect the lives of individuals in society and to improve the quality of life in general. A Heterogeneous Bayesian Neural Network (HETBNN) model was derived with Gaussian error normal distribution. Three primary transfer functions (HOTTFs), as well as two derived transfer functions (HETTFs) arising from the convolution of the HOTTFs, are namely; Symmetric Saturated Linear transfer function (SATLINS ), Hyperbolic Tangent transfer function (TANH), Hyperbolic Tangent sigmoid transfer function (TANSIG), Symmetric Saturated Linear and Hyperbolic Tangent transfer function (SATLINS-TANH) and Symmetric Saturated Linear and Hyperbolic Tangent Sigmoid transfer function (SATLINS-TANSIG). Data on the Terrorist activities in Nigeria gathered through questionnaires for the purpose of this study were used. Mean Square Error (MSE), Mean Absolute Error (MAE) and Test Error are the forecast prediction criteria. The results showed that the HETFs performed better in terms of prediction and factors associated with terrorist activities in Nigeria were determined. The proposed predictive deep learning-based model will be useful to governments and law enforcement agencies as an effective counterterrorism mechanism to understand the parameters of terrorism and to design strategies to deal with terrorism before an incident actually happens and potentially causes the loss of precious lives. The proposed predictive AI-based model will reduce the chances of terrorist activities and is particularly helpful for security agencies to predict future terrorist activities. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=activation%20functions" title="activation functions">activation functions</a>, <a href="https://publications.waset.org/abstracts/search?q=Bayesian%20neural%20network" title=" Bayesian neural network"> Bayesian neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=mean%20square%20error" title=" mean square error"> mean square error</a>, <a href="https://publications.waset.org/abstracts/search?q=test%20error" title=" test error"> test error</a>, <a href="https://publications.waset.org/abstracts/search?q=terrorism" title=" terrorism"> terrorism</a> </p> <a href="https://publications.waset.org/abstracts/147074/prediction-of-terrorist-activities-in-nigeria-using-bayesian-neural-network-with-heterogeneous-transfer-functions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/147074.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">165</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7488</span> Design of Multi-Loop Controller for Minimization of Energy Consumption in the Distillation Column</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vinayambika%20S.%20Bhat">Vinayambika S. Bhat</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Shanmuga%20Priya"> S. Shanmuga Priya</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Thirunavukkarasu"> I. Thirunavukkarasu</a>, <a href="https://publications.waset.org/abstracts/search?q=Shreeranga%20Bhat"> Shreeranga Bhat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An attempt has been made to design a decoupling controller for systems with more inputs more outputs with dead time in it. The de-coupler is designed for the chemical process industry 3×3 plant transfer function with dead time. The Quantitative Feedback Theory (QFT) based controller has also been designed here for the 2×2 distillation column transfer function. The developed control techniques were simulated using the MATLAB/Simulink. Also, the stability of the process was analyzed, together with the presence of various perturbations in it. Time domain specifications like setting time along with overshoot and oscillations were analyzed to prove the efficiency of the de-coupler method. The load disturbance rejection was tested along with its performance. The QFT control technique was synthesized based on the stability and performance specifications in the presence of uncertainty in time constant of the plant transfer function through sequential loop shaping technique. Further, the energy efficiency of the distillation column was improved by proper tuning of the controller. A distillation column consumes 3% of the total energy consumption of the world. A suitable control technique is very important from an economic point of view. The real time implementation of the process is under process in our laboratory. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=distillation" title="distillation">distillation</a>, <a href="https://publications.waset.org/abstracts/search?q=energy" title=" energy"> energy</a>, <a href="https://publications.waset.org/abstracts/search?q=MIMO%20process" title=" MIMO process"> MIMO process</a>, <a href="https://publications.waset.org/abstracts/search?q=time%20delay" title=" time delay"> time delay</a>, <a href="https://publications.waset.org/abstracts/search?q=robust%20stability" title=" robust stability"> robust stability</a> </p> <a href="https://publications.waset.org/abstracts/51536/design-of-multi-loop-controller-for-minimization-of-energy-consumption-in-the-distillation-column" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51536.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">414</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7487</span> Effect of the Applied Bias on Mini-Band Structures in Dimer Fibonacci InAs/Ga1-XInXAs Superlattices</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Z.%20Aziz">Z. Aziz</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Terkhi"> S. Terkhi</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Sefir"> Y. Sefir</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Djelti"> R. Djelti</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Bentata"> S. Bentata</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The effect of a uniform electric field across multi-barrier systems (InAs/InxGa1-xAs) is exhaustively explored by a computational model using exact Airy function formalism and the transfer-matrix technique. In the case of biased DFHBSL structure a strong reduction in transmission properties was observed and the width of the mini-band structure linearly decreases with the increase of the applied bias. This is due to the confinement of the states in the mini-band structure, which becomes increasingly important (Wannier-Stark Effect). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dimer%20fibonacci%20height%20barrier%20superlattices" title="dimer fibonacci height barrier superlattices">dimer fibonacci height barrier superlattices</a>, <a href="https://publications.waset.org/abstracts/search?q=singular%20extended%20state" title=" singular extended state"> singular extended state</a>, <a href="https://publications.waset.org/abstracts/search?q=exact%20Airy%20function%20and%20transfer%20matrix%20formalism" title=" exact Airy function and transfer matrix formalism"> exact Airy function and transfer matrix formalism</a>, <a href="https://publications.waset.org/abstracts/search?q=bioinformatics" title=" bioinformatics"> bioinformatics</a> </p> <a href="https://publications.waset.org/abstracts/2231/effect-of-the-applied-bias-on-mini-band-structures-in-dimer-fibonacci-inasga1-xinxas-superlattices" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2231.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">289</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7486</span> Formation of Miniband Structure in Dimer Fibonacci GaAs/Ga1-XAlXAs Superlattices </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aziz%20Zoubir">Aziz Zoubir</a>, <a href="https://publications.waset.org/abstracts/search?q=Sefir%20Yamina"> Sefir Yamina</a>, <a href="https://publications.waset.org/abstracts/search?q=Djelti%20Redouan"> Djelti Redouan</a>, <a href="https://publications.waset.org/abstracts/search?q=Bentata%20Samir"> Bentata Samir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The effect of a uniform electric field across multibarrier systems (GaAs/AlxGa1-xAs) is exhaustively explored by a computational model using exact Airy function formalism and the transfer-matrix technique. In the case of biased Dimer Fibonacci Height Barrier superlattices (DFHBSL) structure a strong reduction in transmission properties was observed and the width of the miniband structure linearly decreases with the increase of the applied bias. This is due to the confinement of the states in the miniband structure, which becomes increasingly important (Wannier-Stark effect). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dimer%20Fibonacci%20Height%20Barrier%20superlattices" title="Dimer Fibonacci Height Barrier superlattices">Dimer Fibonacci Height Barrier superlattices</a>, <a href="https://publications.waset.org/abstracts/search?q=singular%20extended%20states" title=" singular extended states"> singular extended states</a>, <a href="https://publications.waset.org/abstracts/search?q=exact%20Airy%20function" title=" exact Airy function"> exact Airy function</a>, <a href="https://publications.waset.org/abstracts/search?q=transfer%20matrix%20formalism" title=" transfer matrix formalism"> transfer matrix formalism</a> </p> <a href="https://publications.waset.org/abstracts/14193/formation-of-miniband-structure-in-dimer-fibonacci-gaasga1-xalxas-superlattices" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14193.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">509</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7485</span> Partial Knowledge Transfer Between the Source Problem and the Target Problem in Genetic Algorithms</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Terence%20Soule">Terence Soule</a>, <a href="https://publications.waset.org/abstracts/search?q=Tami%20Al%20Ghamdi"> Tami Al Ghamdi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> To study how the partial knowledge transfer may affect the Genetic Algorithm (GA) performance, we model the Transfer Learning (TL) process using GA as the model solver. The objective of the TL is to transfer the knowledge from one problem to another related problem. This process imitates how humans think in their daily life. In this paper, we proposed to study a case where the knowledge transferred from the S problem has less information than what the T problem needs. We sampled the transferred population using different strategies of TL. The results showed transfer part of the knowledge is helpful and speeds the GA process of finding a solution to the problem. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=transfer%20learning" title="transfer learning">transfer learning</a>, <a href="https://publications.waset.org/abstracts/search?q=partial%20transfer" title=" partial transfer"> partial transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=evolutionary%20computation" title=" evolutionary computation"> evolutionary computation</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20algorithm" title=" genetic algorithm"> genetic algorithm</a> </p> <a href="https://publications.waset.org/abstracts/147924/partial-knowledge-transfer-between-the-source-problem-and-the-target-problem-in-genetic-algorithms" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/147924.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">132</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7484</span> Multilayer Thermal Screens for Greenhouse Insulation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Clara%20Shenderey">Clara Shenderey</a>, <a href="https://publications.waset.org/abstracts/search?q=Helena%20Vitoshkin"> Helena Vitoshkin</a>, <a href="https://publications.waset.org/abstracts/search?q=Mordechai%20Barak"> Mordechai Barak</a>, <a href="https://publications.waset.org/abstracts/search?q=Avraham%20Arbel"> Avraham Arbel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Greenhouse cultivation is an energy-intensive process due to the high demands on cooling or heating according to external climatic conditions, which could be extreme in the summer or winter seasons. The thermal radiation rate inside a greenhouse depends mainly on the type of covering material and greenhouse construction. Using additional thermal screens under a greenhouse covering combined with a dehumidification system improves the insulation and could be cost-effective. Greenhouse covering material usually contains protective ultraviolet (UV) radiation additives to prevent the film wear, insect harm, and crop diseases. This paper investigates the overall heat transfer coefficient, or <em>U-value</em>, for greenhouse polyethylene covering contains UV-additives and glass covering with or without a thermal screen supplement. The hot-box method was employed to evaluate overall heat transfer coefficients experimentally as a function of the type and number of the thermal screens. The results show that the overall heat transfer coefficient decreases with increasing the number of thermal screens as a hyperbolic function. The overall heat transfer coefficient highly depends on the ability of the material to reflect thermal radiation. Using a greenhouse covering, i.e., polyethylene films or glass, in combination with high reflective thermal screens, i.e., containing about 98% of aluminum stripes or aluminum foil, the <em>U-value</em> reduces by 61%-89% in the first case, whereas by 70%-92% in the second case, depending on the number of the thermal screen. Using thermal screens made from low reflective materials may reduce the <em>U-value</em> by 30%-57%. The heat transfer coefficient is an indicator of the thermal insulation properties of the materials, which allows farmers to make decisions on the use of appropriate thermal screens depending on the external and internal climate conditions in a greenhouse. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy-saving%20thermal%20screen" title="energy-saving thermal screen">energy-saving thermal screen</a>, <a href="https://publications.waset.org/abstracts/search?q=greenhouse%20cover%20material" title=" greenhouse cover material"> greenhouse cover material</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer%20coefficient" title=" heat transfer coefficient"> heat transfer coefficient</a>, <a href="https://publications.waset.org/abstracts/search?q=hot%20box" title=" hot box"> hot box</a> </p> <a href="https://publications.waset.org/abstracts/127384/multilayer-thermal-screens-for-greenhouse-insulation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/127384.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">146</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7483</span> Transfer Learning for Protein Structure Classification at Low Resolution</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alexander%20Hudson">Alexander Hudson</a>, <a href="https://publications.waset.org/abstracts/search?q=Shaogang%20Gong"> Shaogang Gong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Structure determination is key to understanding protein function at a molecular level. Whilst significant advances have been made in predicting structure and function from amino acid sequence, researchers must still rely on expensive, time-consuming analytical methods to visualise detailed protein conformation. In this study, we demonstrate that it is possible to make accurate (≥80%) predictions of protein class and architecture from structures determined at low (>3A) resolution, using a deep convolutional neural network trained on high-resolution (≤3A) structures represented as 2D matrices. Thus, we provide proof of concept for high-speed, low-cost protein structure classification at low resolution, and a basis for extension to prediction of function. We investigate the impact of the input representation on classification performance, showing that side-chain information may not be necessary for fine-grained structure predictions. Finally, we confirm that high resolution, low-resolution and NMR-determined structures inhabit a common feature space, and thus provide a theoretical foundation for boosting with single-image super-resolution. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=transfer%20learning" title="transfer learning">transfer learning</a>, <a href="https://publications.waset.org/abstracts/search?q=protein%20distance%20maps" title=" protein distance maps"> protein distance maps</a>, <a href="https://publications.waset.org/abstracts/search?q=protein%20structure%20classification" title=" protein structure classification"> protein structure classification</a>, <a href="https://publications.waset.org/abstracts/search?q=neural%20networks" title=" neural networks"> neural networks</a> </p> <a href="https://publications.waset.org/abstracts/129704/transfer-learning-for-protein-structure-classification-at-low-resolution" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/129704.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">136</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7482</span> University-Industry Technology Transfer and Technology Transfer Offices in Emerging Economies</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jos%C3%A9%20Carlos%20Rodr%C3%ADguez">José Carlos Rodríguez</a>, <a href="https://publications.waset.org/abstracts/search?q=Mario%20G%C3%B3mez"> Mario Gómez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this paper is to get insight on the nature of university-industry technology transfer (UITT) and technology transfer offices (TTOs) activity at universities in the case of emerging economies. In relation to the process of transferring knowledge/technology in the case of emerging economies, knowledge/technology transfer in these economies are more reactive than in developed economies due to differences in maturity of technologies. It is assumed in this paper that knowledge/technology transfer is a complex phenomenon, and thus the paper contributes to get insight on the nature of UITT and TTOs creation in the case of emerging economies by using a system dynamics model of knowledge/technology transfer in these countries. The paper recognizes the differences between industrialized countries and emerging economies on these phenomena. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=university-industry%20technology%20transfer" title="university-industry technology transfer">university-industry technology transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=technology%20transfer%20offices" title=" technology transfer offices"> technology transfer offices</a>, <a href="https://publications.waset.org/abstracts/search?q=technology%20transfer%20models" title=" technology transfer models"> technology transfer models</a>, <a href="https://publications.waset.org/abstracts/search?q=emerging%20economies" title=" emerging economies"> emerging economies</a> </p> <a href="https://publications.waset.org/abstracts/88464/university-industry-technology-transfer-and-technology-transfer-offices-in-emerging-economies" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/88464.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">250</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7481</span> Heat and Mass Transfer of Triple Diffusive Convection in a Rotating Couple Stress Liquid Using Ginzburg-Landau Model </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sameena%20Tarannum">Sameena Tarannum</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Pranesh"> S. Pranesh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A nonlinear study of triple diffusive convection in a rotating couple stress liquid has been analysed. It is performed to study the effect of heat and mass transfer by deriving Ginzburg-Landau equation. Heat and mass transfer are quantified in terms of Nusselt number and Sherwood numbers, which are obtained as a function of thermal and solute Rayleigh numbers. The obtained Ginzburg-Landau equation is Bernoulli equation, and it has been elucidated numerically by using Mathematica. The effects of couple stress parameter, solute Rayleigh numbers, and Taylor number on the onset of convection and heat and mass transfer have been examined. It is found that the effects of couple stress parameter and Taylor number are to stabilize the system and to increase the heat and mass transfer. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=couple%20stress%20liquid" title="couple stress liquid">couple stress liquid</a>, <a href="https://publications.waset.org/abstracts/search?q=Ginzburg-Landau%20model" title=" Ginzburg-Landau model"> Ginzburg-Landau model</a>, <a href="https://publications.waset.org/abstracts/search?q=rotation" title=" rotation"> rotation</a>, <a href="https://publications.waset.org/abstracts/search?q=triple%20diffusive%20convection" title=" triple diffusive convection"> triple diffusive convection</a> </p> <a href="https://publications.waset.org/abstracts/67604/heat-and-mass-transfer-of-triple-diffusive-convection-in-a-rotating-couple-stress-liquid-using-ginzburg-landau-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67604.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">338</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7480</span> Jet Impingement Heat Transfer on a Rib-Roughened Flat Plate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20H.%20Alenezi">A. H. Alenezi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cooling by impingement jet is known to have a significant high local and average heat transfer coefficient which make it widely used in industrial cooling systems. The heat transfer characteristics of an impinging jet on rib-roughened flat plate has been investigated numerically. This paper was set out to investigate the effect of rib height on the heat transfer rate. Since the flow needs to have enough spacing after passing the rib to allow reattachment especially for high Reynolds numbers, this study focuses on finding the optimum rib height which would be the best to maximize the heat transfer rate downstream the plate. This investigation employs a round nozzle with hydraulic diameter (Dh) of 13.5 mm, Jet-to-target distance of (H/D) of 4, rib location=1.5D and and finally jet angels of 45˚ and 90˚ under the influence of Re =10,000. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=jet%20impingement" title="jet impingement">jet impingement</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD" title=" CFD"> CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=turbulence%20model" title=" turbulence model"> turbulence model</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer" title=" heat transfer"> heat transfer</a> </p> <a href="https://publications.waset.org/abstracts/57530/jet-impingement-heat-transfer-on-a-rib-roughened-flat-plate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57530.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">351</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7479</span> Computational Fluid Dynamic Modeling of Mixing Enhancement by Stimulation of Ferrofluid under Magnetic Field</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Neda%20Azimi">Neda Azimi</a>, <a href="https://publications.waset.org/abstracts/search?q=Masoud%20Rahimi"> Masoud Rahimi</a>, <a href="https://publications.waset.org/abstracts/search?q=Faezeh%20Mohammadi"> Faezeh Mohammadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Computational fluid dynamics (CFD) simulation was performed to investigate the effect of ferrofluid stimulation on hydrodynamic and mass transfer characteristics of two immiscible liquid phases in a Y-micromixer. The main purpose of this work was to develop a numerical model that is able to simulate hydrodynamic of the ferrofluid flow under magnetic field and determine its effect on mass transfer characteristics. A uniform external magnetic field was applied perpendicular to the flow direction. The volume of fluid (VOF) approach was used for simulating the multiphase flow of ferrofluid and two-immiscible liquid flows. The geometric reconstruction scheme (Geo-Reconstruct) based on piecewise linear interpolation (PLIC) was used for reconstruction of the interface in the VOF approach. The mass transfer rate was defined via an equation as a function of mass concentration gradient of the transported species and added into the phase interaction panel using the user-defined function (UDF). The magnetic field was solved numerically by Fluent MHD module based on solving the magnetic induction equation method. CFD results were validated by experimental data and good agreements have been achieved, which maximum relative error for extraction efficiency was about 7.52 %. It was showed that ferrofluid actuation by a magnetic field can be considered as an efficient mixing agent for liquid-liquid two-phase mass transfer in microdevices. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CFD%20modeling" title="CFD modeling">CFD modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrodynamic" title=" hydrodynamic"> hydrodynamic</a>, <a href="https://publications.waset.org/abstracts/search?q=micromixer" title=" micromixer"> micromixer</a>, <a href="https://publications.waset.org/abstracts/search?q=ferrofluid" title=" ferrofluid"> ferrofluid</a>, <a href="https://publications.waset.org/abstracts/search?q=mixing" title=" mixing"> mixing</a> </p> <a href="https://publications.waset.org/abstracts/102582/computational-fluid-dynamic-modeling-of-mixing-enhancement-by-stimulation-of-ferrofluid-under-magnetic-field" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/102582.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">196</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7478</span> Experimental Study of Heat Transfer Enhancement Using Protruded Rectangular Fin</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tarique%20Jamil%20Khan">Tarique Jamil Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Swapnil%20Pande"> Swapnil Pande</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The investigation deals with the study of heat transfer enhancement using protruded square fin. This study is enough to determine whether protrusion in forced convection is enough to enhance the rate of heat transfer. It includes the results after performing experiments by using a plane rectangular fin of aluminum material and the same dimension rectangular fin of the same material but having protruded circular shape extended normally. The fins made by a sand casting method. The results clearly mentioned that the protruded surface is effective enough to enhance the rate of heat transfer. This research investigates a modern fin topologies heat transfer characteristics that will clearly outdated the conventional fin to increase the rate of heat transfer. Protruded fins improve the rate of heat transfer compared to solid fin by varying shape of the protrusion in diameter and height. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer%20enhancement" title="heat transfer enhancement">heat transfer enhancement</a>, <a href="https://publications.waset.org/abstracts/search?q=forced%20convection" title=" forced convection"> forced convection</a>, <a href="https://publications.waset.org/abstracts/search?q=protruted%20fin" title=" protruted fin"> protruted fin</a>, <a href="https://publications.waset.org/abstracts/search?q=rectangular%20fin" title=" rectangular fin"> rectangular fin</a> </p> <a href="https://publications.waset.org/abstracts/56370/experimental-study-of-heat-transfer-enhancement-using-protruded-rectangular-fin" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56370.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">362</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7477</span> An Analytical and Numerical Solutions for the Thermal Analysis of a Mechanical Draft Wet Cooling Tower</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hamed%20Djalal">Hamed Djalal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The thermal analysis of the mechanical draft wet cooling tower is performed in this study by the heat and mass transfer modelization in the packing zone. After combining the heat and mass transfer laws, the mass and energy balances and by involving the Merkel assumptions; firstly, an ordinary differential equations system is derived and solved numerically by the Runge-Kutta method to determine the water and air temperatures, the humidity, and also other properties variation along the packing zone. Secondly, by making some linear assumptions for the air saturation curve, an analytical solution is formed, which is developed for the air washer calculation, but in this study, it is applied for the cooling tower to express also the previous parameters mathematically as a function of the packing height. Finally, a good agreement with experimental data is achieved by both solutions, but the numerical one seems to be the more accurate for modeling the heat and mass transfer process in the wet cooling tower. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=evaporative%20cooling" title="evaporative cooling">evaporative cooling</a>, <a href="https://publications.waset.org/abstracts/search?q=cooling%20tower" title=" cooling tower"> cooling tower</a>, <a href="https://publications.waset.org/abstracts/search?q=air%20washer" title=" air washer"> air washer</a>, <a href="https://publications.waset.org/abstracts/search?q=humidification" title=" humidification"> humidification</a>, <a href="https://publications.waset.org/abstracts/search?q=moist%20air" title=" moist air"> moist air</a>, <a href="https://publications.waset.org/abstracts/search?q=heat" title=" heat"> heat</a>, <a href="https://publications.waset.org/abstracts/search?q=and%20mass%20transfer" title=" and mass transfer"> and mass transfer</a> </p> <a href="https://publications.waset.org/abstracts/152695/an-analytical-and-numerical-solutions-for-the-thermal-analysis-of-a-mechanical-draft-wet-cooling-tower" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152695.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">101</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7476</span> Exergy Losses Relation with Driving Forces in Heat Transfer Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Ali%20Ashrafizadeh">S. Ali Ashrafizadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Amidpour"> M. Amidpour</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Hedayat"> N. Hedayat </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Driving forces along with transfer coefficient affect on heat transfer rate, on the other hand, with regard to the relation of these forces with irriversibilities they are effective on exergy losses. Therefore, the driving forces can be used as a relation between heat transfer rate, transfer coefficients and exergy losses. In this paper, first, the relation of the exergetic efficiency and resistant forces is obtained, next the relation between exergy efficiency, relative driving force, heat transfer rate and heat resistances is considered. In all cases, results are argued graphically. Finally, a case study inspected by obtained results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer" title="heat transfer">heat transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=exergy%20losses" title=" exergy losses"> exergy losses</a>, <a href="https://publications.waset.org/abstracts/search?q=exergetic%20efficiency" title=" exergetic efficiency"> exergetic efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=driving%20forces" title=" driving forces"> driving forces</a> </p> <a href="https://publications.waset.org/abstracts/30134/exergy-losses-relation-with-driving-forces-in-heat-transfer-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30134.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">606</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7475</span> Forster Energy Transfer and Optoelectronic Properties of (PFO/TiO2)/Fluorol 7GA Hybrid Thin Films</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bandar%20Ali%20Al-Asbahi">Bandar Ali Al-Asbahi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Hafizuddin%20Haji%20Jumali"> Mohammad Hafizuddin Haji Jumali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Forster energy transfer between poly (9,9'-di-n-octylfluorenyl-2,7-diyl) (PFO)/TiO2 nanoparticles (NPs) as a donor and Fluorol 7GA as an acceptor has been studied. The energy transfer parameters were calculated by using mathematical models. The dominant mechanism responsible for the energy transfer between the donor and acceptor molecules was Forster-type, as evidenced by large values of quenching rate constant, energy transfer rate constant and critical distance of energy transfer. Moreover, these composites which were used as an emissive layer in organic light emitting diodes, were investigated in terms of current density–voltage and electroluminescence spectra. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy%20transfer%20parameters" title="energy transfer parameters">energy transfer parameters</a>, <a href="https://publications.waset.org/abstracts/search?q=forster-type" title=" forster-type"> forster-type</a>, <a href="https://publications.waset.org/abstracts/search?q=electroluminescence" title=" electroluminescence"> electroluminescence</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20light%20emitting%20diodes" title=" organic light emitting diodes "> organic light emitting diodes </a> </p> <a href="https://publications.waset.org/abstracts/1635/forster-energy-transfer-and-optoelectronic-properties-of-pfotio2fluorol-7ga-hybrid-thin-films" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1635.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">426</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7474</span> Analysis of Combined Heat Transfer through the Core Materials of VIPs with Various Scattering Properties</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jaehyug%20Lee">Jaehyug Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Tae-Ho%20Song"> Tae-Ho Song</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Vacuum insulation panel (VIP) can achieve very low thermal conductivity by evacuating its inner space. Heat transfer in the core materials of highly-evacuated VIP occurs by conduction through the solid structure and radiation through the pore. The effect of various scattering modes in combined conduction-radiation in VIP is investigated through numerical analysis. The discrete ordinates interpolation method (DOIM) incorporated with the commercial code FLUENT® is employed. It is found that backward scattering is more effective in reducing the total heat transfer while isotropic scattering is almost identical with pure absorbing/emitting case of the same optical thickness. For a purely scattering medium, the results agree well with additive solution with diffusion approximation, while a modified term is added in the effect of optical thickness to backward scattering is employed. For other scattering phase functions, it is also confirmed that backwardly scattering phase function gives a lower effective thermal conductivity. Thus, the materials with backward scattering properties, with radiation shields are desirable to lower the thermal conductivity of VIPs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=combined%20conduction%20and%20radiation" title="combined conduction and radiation">combined conduction and radiation</a>, <a href="https://publications.waset.org/abstracts/search?q=discrete%20ordinates%20interpolation%20method" title=" discrete ordinates interpolation method"> discrete ordinates interpolation method</a>, <a href="https://publications.waset.org/abstracts/search?q=scattering%20phase%20function" title=" scattering phase function"> scattering phase function</a>, <a href="https://publications.waset.org/abstracts/search?q=vacuum%20insulation%20panel" title=" vacuum insulation panel"> vacuum insulation panel</a> </p> <a href="https://publications.waset.org/abstracts/19426/analysis-of-combined-heat-transfer-through-the-core-materials-of-vips-with-various-scattering-properties" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19426.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">366</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=transfer%20function&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=transfer%20function&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=transfer%20function&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=transfer%20function&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=transfer%20function&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=transfer%20function&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=transfer%20function&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=transfer%20function&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=transfer%20function&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=transfer%20function&page=250">250</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=transfer%20function&page=251">251</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=transfer%20function&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>