CINXE.COM
Angle bisector theorem - Wikipedia
<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available" lang="en" dir="ltr"> <head> <meta charset="UTF-8"> <title>Angle bisector theorem - Wikipedia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )enwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy", "wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"49a78fb8-1f47-4c76-af48-5049f1f13576","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Angle_bisector_theorem","wgTitle":"Angle bisector theorem","wgCurRevisionId":1250225422,"wgRevisionId":1250225422,"wgArticleId":2401128,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["Articles with short description","Short description is different from Wikidata","Articles to be expanded from September 2020","All articles to be expanded","Articles containing proofs","Elementary geometry","Theorems about triangles"],"wgPageViewLanguage":"en","wgPageContentLanguage":"en","wgPageContentModel":"wikitext","wgRelevantPageName":"Angle_bisector_theorem","wgRelevantArticleId":2401128,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true, "wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{"status":{"levels":1}}},"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"en","pageLanguageDir":"ltr","pageVariantFallbacks":"en"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":10000,"wgRelatedArticlesCompat":[],"wgCentralAuthMobileDomain":false,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q925854","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false, "wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.math.styles":"ready","ext.cite.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","jquery.makeCollapsible.styles":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","mediawiki.page.media","ext.scribunto.logs","site","mediawiki.page.ready","jquery.makeCollapsible","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.ReferenceTooltips","ext.gadget.switcher","ext.urlShortener.toolbar","ext.centralauth.centralautologin", "mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=en&modules=ext.cite.styles%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cjquery.makeCollapsible.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&only=styles&skin=vector-2022"> <script async="" src="/w/load.php?lang=en&modules=startup&only=scripts&raw=1&skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=en&modules=site.styles&only=styles&skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.4"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/d/d1/Triangle_ABC_with_bisector_AD.svg/1200px-Triangle_ABC_with_bisector_AD.svg.png"> <meta property="og:image:width" content="1200"> <meta property="og:image:height" content="975"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/d/d1/Triangle_ABC_with_bisector_AD.svg/800px-Triangle_ABC_with_bisector_AD.svg.png"> <meta property="og:image:width" content="800"> <meta property="og:image:height" content="650"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/d/d1/Triangle_ABC_with_bisector_AD.svg/640px-Triangle_ABC_with_bisector_AD.svg.png"> <meta property="og:image:width" content="640"> <meta property="og:image:height" content="520"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Angle bisector theorem - Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//en.m.wikipedia.org/wiki/Angle_bisector_theorem"> <link rel="alternate" type="application/x-wiki" title="Edit this page" href="/w/index.php?title=Angle_bisector_theorem&action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (en)"> <link rel="EditURI" type="application/rsd+xml" href="//en.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://en.wikipedia.org/wiki/Angle_bisector_theorem"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en"> <link rel="alternate" type="application/atom+xml" title="Wikipedia Atom feed" href="/w/index.php?title=Special:RecentChanges&feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Angle_bisector_theorem rootpage-Angle_bisector_theorem skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Jump to content</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Main menu" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Main menu</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Main menu</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">hide</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigation </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Main_Page" title="Visit the main page [z]" accesskey="z"><span>Main page</span></a></li><li id="n-contents" class="mw-list-item"><a href="/wiki/Wikipedia:Contents" title="Guides to browsing Wikipedia"><span>Contents</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Portal:Current_events" title="Articles related to current events"><span>Current events</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Special:Random" title="Visit a randomly selected article [x]" accesskey="x"><span>Random article</span></a></li><li id="n-aboutsite" class="mw-list-item"><a href="/wiki/Wikipedia:About" title="Learn about Wikipedia and how it works"><span>About Wikipedia</span></a></li><li id="n-contactpage" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us" title="How to contact Wikipedia"><span>Contact us</span></a></li> </ul> </div> </div> <div id="p-interaction" class="vector-menu mw-portlet mw-portlet-interaction" > <div class="vector-menu-heading"> Contribute </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-help" class="mw-list-item"><a href="/wiki/Help:Contents" title="Guidance on how to use and edit Wikipedia"><span>Help</span></a></li><li id="n-introduction" class="mw-list-item"><a href="/wiki/Help:Introduction" title="Learn how to edit Wikipedia"><span>Learn to edit</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:Community_portal" title="The hub for editors"><span>Community portal</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Special:RecentChanges" title="A list of recent changes to Wikipedia [r]" accesskey="r"><span>Recent changes</span></a></li><li id="n-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_upload_wizard" title="Add images or other media for use on Wikipedia"><span>Upload file</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Main_Page" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="The Free Encyclopedia" src="/static/images/mobile/copyright/wikipedia-tagline-en.svg" width="117" height="13" style="width: 7.3125em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Special:Search" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Search Wikipedia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia" aria-label="Search Wikipedia" autocapitalize="sentences" title="Search Wikipedia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Personal tools"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page's font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Appearance" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Appearance</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_en.wikipedia.org&uselang=en" class=""><span>Donate</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:CreateAccount&returnto=Angle+bisector+theorem" title="You are encouraged to create an account and log in; however, it is not mandatory" class=""><span>Create account</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:UserLogin&returnto=Angle+bisector+theorem" title="You're encouraged to log in; however, it's not mandatory. [o]" accesskey="o" class=""><span>Log in</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Log in and more options" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Personal tools" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Personal tools</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="User menu" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_en.wikipedia.org&uselang=en"><span>Donate</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:CreateAccount&returnto=Angle+bisector+theorem" title="You are encouraged to create an account and log in; however, it is not mandatory"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Create account</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:UserLogin&returnto=Angle+bisector+theorem" title="You're encouraged to log in; however, it's not mandatory. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Log in</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pages for logged out editors <a href="/wiki/Help:Introduction" aria-label="Learn more about editing"><span>learn more</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Special:MyContributions" title="A list of edits made from this IP address [y]" accesskey="y"><span>Contributions</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Special:MyTalk" title="Discussion about edits from this IP address [n]" accesskey="n"><span>Talk</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Contents" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Contents</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">hide</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">(Top)</div> </a> </li> <li id="toc-Theorem" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Theorem"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>Theorem</span> </div> </a> <ul id="toc-Theorem-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Proofs" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Proofs"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Proofs</span> </div> </a> <button aria-controls="toc-Proofs-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Proofs subsection</span> </button> <ul id="toc-Proofs-sublist" class="vector-toc-list"> <li id="toc-Proof_using_similar_triangles" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Proof_using_similar_triangles"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.1</span> <span>Proof using similar triangles</span> </div> </a> <ul id="toc-Proof_using_similar_triangles-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Proof_using_Law_of_Sines" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Proof_using_Law_of_Sines"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.2</span> <span>Proof using Law of Sines</span> </div> </a> <ul id="toc-Proof_using_Law_of_Sines-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Proof_using_triangle_altitudes" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Proof_using_triangle_altitudes"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.3</span> <span>Proof using triangle altitudes</span> </div> </a> <ul id="toc-Proof_using_triangle_altitudes-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Proof_using_triangle_areas" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Proof_using_triangle_areas"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.4</span> <span>Proof using triangle areas</span> </div> </a> <ul id="toc-Proof_using_triangle_areas-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Length_of_the_angle_bisector" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Length_of_the_angle_bisector"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Length of the angle bisector</span> </div> </a> <ul id="toc-Length_of_the_angle_bisector-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Exterior_angle_bisectors" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Exterior_angle_bisectors"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Exterior angle bisectors</span> </div> </a> <ul id="toc-Exterior_angle_bisectors-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-History" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#History"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>History</span> </div> </a> <ul id="toc-History-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Applications" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Applications"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>Applications</span> </div> </a> <ul id="toc-Applications-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-References" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#References"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>References</span> </div> </a> <ul id="toc-References-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Further_reading" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Further_reading"> <div class="vector-toc-text"> <span class="vector-toc-numb">8</span> <span>Further reading</span> </div> </a> <ul id="toc-Further_reading-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-External_links" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#External_links"> <div class="vector-toc-text"> <span class="vector-toc-numb">9</span> <span>External links</span> </div> </a> <ul id="toc-External_links-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Angle bisector theorem</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Go to an article in another language. Available in 23 languages" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-23" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">23 languages</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://ar.wikipedia.org/wiki/%D9%85%D8%A8%D8%B1%D9%87%D9%86%D8%A9_%D9%85%D9%86%D8%B5%D9%81_%D8%A7%D9%84%D8%B2%D8%A7%D9%88%D9%8A%D8%A9" title="مبرهنة منصف الزاوية – Arabic" lang="ar" hreflang="ar" data-title="مبرهنة منصف الزاوية" data-language-autonym="العربية" data-language-local-name="Arabic" class="interlanguage-link-target"><span>العربية</span></a></li><li class="interlanguage-link interwiki-de mw-list-item"><a href="https://de.wikipedia.org/wiki/Winkelhalbierendensatz_(Dreieck)" title="Winkelhalbierendensatz (Dreieck) – German" lang="de" hreflang="de" data-title="Winkelhalbierendensatz (Dreieck)" data-language-autonym="Deutsch" data-language-local-name="German" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-el mw-list-item"><a href="https://el.wikipedia.org/wiki/%CE%98%CE%B5%CF%8E%CF%81%CE%B7%CE%BC%CE%B1_%CE%B4%CE%B9%CF%87%CE%BF%CF%84%CF%8C%CE%BC%CE%BF%CF%85" title="Θεώρημα διχοτόμου – Greek" lang="el" hreflang="el" data-title="Θεώρημα διχοτόμου" data-language-autonym="Ελληνικά" data-language-local-name="Greek" class="interlanguage-link-target"><span>Ελληνικά</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/Teorema_de_la_bisectriz" title="Teorema de la bisectriz – Spanish" lang="es" hreflang="es" data-title="Teorema de la bisectriz" data-language-autonym="Español" data-language-local-name="Spanish" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://fa.wikipedia.org/wiki/%D9%82%D8%B6%DB%8C%D9%87_%D9%86%DB%8C%D9%85%D8%B3%D8%A7%D8%B2_%D8%B2%D8%A7%D9%88%DB%8C%D9%87" title="قضیه نیمساز زاویه – Persian" lang="fa" hreflang="fa" data-title="قضیه نیمساز زاویه" data-language-autonym="فارسی" data-language-local-name="Persian" class="interlanguage-link-target"><span>فارسی</span></a></li><li class="interlanguage-link interwiki-hi mw-list-item"><a href="https://hi.wikipedia.org/wiki/%E0%A4%95%E0%A5%8B%E0%A4%A3_%E0%A4%B8%E0%A4%AE%E0%A4%A6%E0%A5%8D%E0%A4%B5%E0%A4%BF%E0%A4%AD%E0%A4%BE%E0%A4%9C%E0%A4%95_%E0%A4%AA%E0%A5%8D%E0%A4%B0%E0%A4%AE%E0%A5%87%E0%A4%AF" title="कोण समद्विभाजक प्रमेय – Hindi" lang="hi" hreflang="hi" data-title="कोण समद्विभाजक प्रमेय" data-language-autonym="हिन्दी" data-language-local-name="Hindi" class="interlanguage-link-target"><span>हिन्दी</span></a></li><li class="interlanguage-link interwiki-id mw-list-item"><a href="https://id.wikipedia.org/wiki/Teorema_garis_bagi_segitiga" title="Teorema garis bagi segitiga – Indonesian" lang="id" hreflang="id" data-title="Teorema garis bagi segitiga" data-language-autonym="Bahasa Indonesia" data-language-local-name="Indonesian" class="interlanguage-link-target"><span>Bahasa Indonesia</span></a></li><li class="interlanguage-link interwiki-it mw-list-item"><a href="https://it.wikipedia.org/wiki/Teorema_della_bisettrice" title="Teorema della bisettrice – Italian" lang="it" hreflang="it" data-title="Teorema della bisettrice" data-language-autonym="Italiano" data-language-local-name="Italian" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-he mw-list-item"><a href="https://he.wikipedia.org/wiki/%D7%9E%D7%A9%D7%A4%D7%98_%D7%97%D7%95%D7%A6%D7%94_%D7%94%D7%96%D7%95%D7%95%D7%99%D7%AA" title="משפט חוצה הזווית – Hebrew" lang="he" hreflang="he" data-title="משפט חוצה הזווית" data-language-autonym="עברית" data-language-local-name="Hebrew" class="interlanguage-link-target"><span>עברית</span></a></li><li class="interlanguage-link interwiki-hu mw-list-item"><a href="https://hu.wikipedia.org/wiki/Sz%C3%B6gfelez%C5%91t%C3%A9tel" title="Szögfelezőtétel – Hungarian" lang="hu" hreflang="hu" data-title="Szögfelezőtétel" data-language-autonym="Magyar" data-language-local-name="Hungarian" class="interlanguage-link-target"><span>Magyar</span></a></li><li class="interlanguage-link interwiki-mk mw-list-item"><a href="https://mk.wikipedia.org/wiki/%D0%A2%D0%B5%D0%BE%D1%80%D0%B5%D0%BC%D0%B0_%D0%B7%D0%B0_%D1%81%D0%B8%D0%BC%D0%B5%D1%82%D1%80%D0%B0%D0%BB%D0%B0_%D0%BD%D0%B0_%D0%B0%D0%B3%D0%BE%D0%BB" title="Теорема за симетрала на агол – Macedonian" lang="mk" hreflang="mk" data-title="Теорема за симетрала на агол" data-language-autonym="Македонски" data-language-local-name="Macedonian" class="interlanguage-link-target"><span>Македонски</span></a></li><li class="interlanguage-link interwiki-nl mw-list-item"><a href="https://nl.wikipedia.org/wiki/Bissectricestelling" title="Bissectricestelling – Dutch" lang="nl" hreflang="nl" data-title="Bissectricestelling" data-language-autonym="Nederlands" data-language-local-name="Dutch" class="interlanguage-link-target"><span>Nederlands</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E8%A7%92%E3%81%AE%E4%BA%8C%E7%AD%89%E5%88%86%E7%B7%9A%E3%81%AE%E5%AE%9A%E7%90%86" title="角の二等分線の定理 – Japanese" lang="ja" hreflang="ja" data-title="角の二等分線の定理" data-language-autonym="日本語" data-language-local-name="Japanese" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-no mw-list-item"><a href="https://no.wikipedia.org/wiki/Halveringslinjesetningen" title="Halveringslinjesetningen – Norwegian Bokmål" lang="nb" hreflang="nb" data-title="Halveringslinjesetningen" data-language-autonym="Norsk bokmål" data-language-local-name="Norwegian Bokmål" class="interlanguage-link-target"><span>Norsk bokmål</span></a></li><li class="interlanguage-link interwiki-km mw-list-item"><a href="https://km.wikipedia.org/wiki/%E1%9E%91%E1%9F%92%E1%9E%9A%E1%9E%B9%E1%9E%9F%E1%9F%92%E1%9E%8F%E1%9E%B8%E1%9E%94%E1%9E%91%E1%9E%80%E1%9E%93%E1%9F%92%E1%9E%9B%E1%9F%87%E1%9E%94%E1%9E%93%E1%9F%92%E1%9E%91%E1%9E%B6%E1%9E%8F%E1%9F%8B%E1%9E%96%E1%9E%BB%E1%9F%87%E1%9E%98%E1%9E%BB%E1%9F%86" title="ទ្រឹស្តីបទកន្លះបន្ទាត់ពុះមុំ – Khmer" lang="km" hreflang="km" data-title="ទ្រឹស្តីបទកន្លះបន្ទាត់ពុះមុំ" data-language-autonym="ភាសាខ្មែរ" data-language-local-name="Khmer" class="interlanguage-link-target"><span>ភាសាខ្មែរ</span></a></li><li class="interlanguage-link interwiki-pl mw-list-item"><a href="https://pl.wikipedia.org/wiki/Twierdzenie_o_dwusiecznej_k%C4%85ta_wewn%C4%99trznego_w_tr%C3%B3jk%C4%85cie" title="Twierdzenie o dwusiecznej kąta wewnętrznego w trójkącie – Polish" lang="pl" hreflang="pl" data-title="Twierdzenie o dwusiecznej kąta wewnętrznego w trójkącie" data-language-autonym="Polski" data-language-local-name="Polish" class="interlanguage-link-target"><span>Polski</span></a></li><li class="interlanguage-link interwiki-ro mw-list-item"><a href="https://ro.wikipedia.org/wiki/Teorema_bisectoarei" title="Teorema bisectoarei – Romanian" lang="ro" hreflang="ro" data-title="Teorema bisectoarei" data-language-autonym="Română" data-language-local-name="Romanian" class="interlanguage-link-target"><span>Română</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/%D0%A2%D0%B5%D0%BE%D1%80%D0%B5%D0%BC%D0%B0_%D0%BE_%D0%B1%D0%B8%D1%81%D1%81%D0%B5%D0%BA%D1%82%D1%80%D0%B8%D1%81%D0%B5" title="Теорема о биссектрисе – Russian" lang="ru" hreflang="ru" data-title="Теорема о биссектрисе" data-language-autonym="Русский" data-language-local-name="Russian" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-sl mw-list-item"><a href="https://sl.wikipedia.org/wiki/Izrek_o_simetrali_kota" title="Izrek o simetrali kota – Slovenian" lang="sl" hreflang="sl" data-title="Izrek o simetrali kota" data-language-autonym="Slovenščina" data-language-local-name="Slovenian" class="interlanguage-link-target"><span>Slovenščina</span></a></li><li class="interlanguage-link interwiki-ta mw-list-item"><a href="https://ta.wikipedia.org/wiki/%E0%AE%95%E0%AF%8B%E0%AE%A3_%E0%AE%87%E0%AE%B0%E0%AF%81%E0%AE%9A%E0%AE%AE%E0%AE%B5%E0%AF%86%E0%AE%9F%E0%AF%8D%E0%AE%9F%E0%AE%BF%E0%AE%A4%E0%AF%8D_%E0%AE%A4%E0%AF%87%E0%AE%B1%E0%AF%8D%E0%AE%B1%E0%AE%AE%E0%AF%8D" title="கோண இருசமவெட்டித் தேற்றம் – Tamil" lang="ta" hreflang="ta" data-title="கோண இருசமவெட்டித் தேற்றம்" data-language-autonym="தமிழ்" data-language-local-name="Tamil" class="interlanguage-link-target"><span>தமிழ்</span></a></li><li class="interlanguage-link interwiki-tr mw-list-item"><a href="https://tr.wikipedia.org/wiki/A%C3%A7%C4%B1ortay_teoremi" title="Açıortay teoremi – Turkish" lang="tr" hreflang="tr" data-title="Açıortay teoremi" data-language-autonym="Türkçe" data-language-local-name="Turkish" class="interlanguage-link-target"><span>Türkçe</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%A2%D0%B5%D0%BE%D1%80%D0%B5%D0%BC%D0%B0_%D0%BF%D1%80%D0%BE_%D0%B1%D1%96%D1%81%D0%B5%D0%BA%D1%82%D1%80%D0%B8%D1%81%D1%83" title="Теорема про бісектрису – Ukrainian" lang="uk" hreflang="uk" data-title="Теорема про бісектрису" data-language-autonym="Українська" data-language-local-name="Ukrainian" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/%E8%A7%92%E5%B9%B3%E5%88%86%E7%B7%9A%E5%AE%9A%E7%90%86" title="角平分線定理 – Chinese" lang="zh" hreflang="zh" data-title="角平分線定理" data-language-autonym="中文" data-language-local-name="Chinese" class="interlanguage-link-target"><span>中文</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q925854#sitelinks-wikipedia" title="Edit interlanguage links" class="wbc-editpage">Edit links</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Namespaces"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Angle_bisector_theorem" title="View the content page [c]" accesskey="c"><span>Article</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Talk:Angle_bisector_theorem" rel="discussion" title="Discuss improvements to the content page [t]" accesskey="t"><span>Talk</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Change language variant" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">English</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Views"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Angle_bisector_theorem"><span>Read</span></a></li><li id="ca-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Angle_bisector_theorem&action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Angle_bisector_theorem&action=history" title="Past revisions of this page [h]" accesskey="h"><span>View history</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Tools" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Tools</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Tools</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">hide</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="More options" > <div class="vector-menu-heading"> Actions </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Angle_bisector_theorem"><span>Read</span></a></li><li id="ca-more-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Angle_bisector_theorem&action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Angle_bisector_theorem&action=history"><span>View history</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> General </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Special:WhatLinksHere/Angle_bisector_theorem" title="List of all English Wikipedia pages containing links to this page [j]" accesskey="j"><span>What links here</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Special:RecentChangesLinked/Angle_bisector_theorem" rel="nofollow" title="Recent changes in pages linked from this page [k]" accesskey="k"><span>Related changes</span></a></li><li id="t-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_Upload_Wizard" title="Upload files [u]" accesskey="u"><span>Upload file</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Special:SpecialPages" title="A list of all special pages [q]" accesskey="q"><span>Special pages</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Angle_bisector_theorem&oldid=1250225422" title="Permanent link to this revision of this page"><span>Permanent link</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Angle_bisector_theorem&action=info" title="More information about this page"><span>Page information</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Special:CiteThisPage&page=Angle_bisector_theorem&id=1250225422&wpFormIdentifier=titleform" title="Information on how to cite this page"><span>Cite this page</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Special:UrlShortener&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FAngle_bisector_theorem"><span>Get shortened URL</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Special:QrCode&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FAngle_bisector_theorem"><span>Download QR code</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Print/export </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Special:DownloadAsPdf&page=Angle_bisector_theorem&action=show-download-screen" title="Download this page as a PDF file"><span>Download as PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Angle_bisector_theorem&printable=yes" title="Printable version of this page [p]" accesskey="p"><span>Printable version</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> In other projects </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="wb-otherproject-link wb-otherproject-commons mw-list-item"><a href="https://commons.wikimedia.org/wiki/Category:Angle_bisector_theorem" hreflang="en"><span>Wikimedia Commons</span></a></li><li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q925854" title="Structured data on this page hosted by Wikidata [g]" accesskey="g"><span>Wikidata item</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Appearance</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">hide</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">From Wikipedia, the free encyclopedia</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"><div class="shortdescription nomobile noexcerpt noprint searchaux" style="display:none">Geometrical theorem relating the lengths of two segments that divide a triangle</div> <figure class="mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:Triangle_ABC_with_bisector_AD.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/d/d1/Triangle_ABC_with_bisector_AD.svg/240px-Triangle_ABC_with_bisector_AD.svg.png" decoding="async" width="240" height="195" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/d/d1/Triangle_ABC_with_bisector_AD.svg/360px-Triangle_ABC_with_bisector_AD.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/d/d1/Triangle_ABC_with_bisector_AD.svg/480px-Triangle_ABC_with_bisector_AD.svg.png 2x" data-file-width="197" data-file-height="160" /></a><figcaption>The theorem states for any triangle <span class="texhtml">∠ <i>DAB</i></span> and <span class="texhtml">∠ <i>DAC</i></span> where AD is a bisector, then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |BD|:|CD|=|AB|:|AC|.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>B</mi> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>:</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>C</mi> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>A</mi> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>:</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>A</mi> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |BD|:|CD|=|AB|:|AC|.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f15f433833d6c35febc6dba994b3a67e724cf559" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:27.19ex; height:2.843ex;" alt="{\displaystyle |BD|:|CD|=|AB|:|AC|.}"></span></figcaption></figure> <p>In <a href="/wiki/Geometry" title="Geometry">geometry</a>, the <b>angle bisector theorem</b> is concerned with the relative <a href="/wiki/Length" title="Length">lengths</a> of the two <a href="/wiki/Line_segment" title="Line segment">segments</a> that a <a href="/wiki/Triangle" title="Triangle">triangle</a>'s side is divided into by a <a href="/wiki/Line_(geometry)" title="Line (geometry)">line</a> that <a href="/wiki/Bisection" title="Bisection">bisects</a> the opposite <a href="/wiki/Angle" title="Angle">angle</a>. It equates their relative lengths to the relative lengths of the other two sides of the triangle. </p><p>Note that this theorem is not to be confused with the <a href="/wiki/Inscribed_angle#Theorem" title="Inscribed angle">Inscribed Angle Theorem</a>, which also involves angle bisection (but of an angle of a triangle inscribed in a circle). </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="Theorem">Theorem</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Angle_bisector_theorem&action=edit&section=1" title="Edit section: Theorem"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Consider a triangle <span class="texhtml">△<i>ABC</i></span>. Let the <a href="/wiki/Bisection#Angle_bisector" title="Bisection">angle bisector</a> of angle <span class="texhtml">∠ <i>A</i></span> <a href="/wiki/Line-line_intersection" class="mw-redirect" title="Line-line intersection">intersect</a> side <span class="texhtml mvar" style="font-style:italic;"><span style="text-decoration:overline;">BC</span></span> at a point <span class="texhtml mvar" style="font-style:italic;">D</span> between <span class="texhtml mvar" style="font-style:italic;">B</span> and <span class="texhtml mvar" style="font-style:italic;">C</span>. The angle bisector theorem states that the ratio of the length of the <a href="/wiki/Line_segment" title="Line segment">line segment</a> <span class="texhtml mvar" style="font-style:italic;"><span style="text-decoration:overline;">BD</span></span> to the length of segment <span class="texhtml mvar" style="font-style:italic;"><span style="text-decoration:overline;">CD</span></span> is equal to the ratio of the length of side <span class="texhtml mvar" style="font-style:italic;"><span style="text-decoration:overline;">AB</span></span> to the length of side <span class="texhtml mvar" style="font-style:italic;"><span style="text-decoration:overline;">AC</span></span>: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {|BD|}{|CD|}}={\frac {|BA|}{|CA|}},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>B</mi> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mrow> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>C</mi> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>B</mi> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mrow> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>C</mi> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mrow> </mfrac> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {|BD|}{|CD|}}={\frac {|BA|}{|CA|}},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7a7ae136848411bcb44c28be7e90e63bcd20ec01" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:15.205ex; height:6.509ex;" alt="{\displaystyle {\frac {|BD|}{|CD|}}={\frac {|BA|}{|CA|}},}"></span></dd></dl> <p>and <a href="/wiki/Conversely" class="mw-redirect" title="Conversely">conversely</a>, if a point <span class="texhtml mvar" style="font-style:italic;">D</span> on the side <span class="texhtml mvar" style="font-style:italic;"><span style="text-decoration:overline;">BC</span></span> of <span class="texhtml">△<i>ABC</i></span> divides <span class="texhtml mvar" style="font-style:italic;"><span style="text-decoration:overline;">BC</span></span> in the same ratio as the sides <span class="texhtml mvar" style="font-style:italic;"><span style="text-decoration:overline;">AB</span></span> and <span class="texhtml mvar" style="font-style:italic;"><span style="text-decoration:overline;">AC</span></span>, then <span class="texhtml mvar" style="font-style:italic;"><span style="text-decoration:overline;">AD</span></span> is the angle bisector of angle <span class="texhtml">∠ <i>A</i></span>. </p><p>The generalized angle bisector theorem states that if <span class="texhtml mvar" style="font-style:italic;">D</span> lies on the line <span class="texhtml mvar" style="font-style:italic;"><span style="text-decoration:overline;">BC</span></span>, then </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {|BD|}{|CD|}}={\frac {|BA|\sin \angle DAB}{|CA|\sin \angle DAC}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>B</mi> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mrow> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>C</mi> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>B</mi> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>sin</mi> <mo>⁡<!-- --></mo> <mi mathvariant="normal">∠<!-- ∠ --></mi> <mi>D</mi> <mi>A</mi> <mi>B</mi> </mrow> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>C</mi> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>sin</mi> <mo>⁡<!-- --></mo> <mi mathvariant="normal">∠<!-- ∠ --></mi> <mi>D</mi> <mi>A</mi> <mi>C</mi> </mrow> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {|BD|}{|CD|}}={\frac {|BA|\sin \angle DAB}{|CA|\sin \angle DAC}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6144d5c6e0e1fa55a3b0f60ed5f821cb90029aaf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:25.947ex; height:6.509ex;" alt="{\displaystyle {\frac {|BD|}{|CD|}}={\frac {|BA|\sin \angle DAB}{|CA|\sin \angle DAC}}.}"></span></dd></dl> <p>This reduces to the previous version if <span class="texhtml mvar" style="font-style:italic;"><span style="text-decoration:overline;">AD</span></span> is the bisector of <span class="texhtml">∠ <i>BAC</i></span>. When <span class="texhtml mvar" style="font-style:italic;">D</span> is external to the segment <span class="texhtml mvar" style="font-style:italic;"><span style="text-decoration:overline;">BC</span></span>, directed line segments and directed angles must be used in the calculation. </p><p>The angle bisector theorem is commonly used when the angle bisectors and side lengths are known. It can be used in a calculation or in a proof. </p><p>An immediate consequence of the theorem is that the angle bisector of the vertex angle of an isosceles triangle will also bisect the opposite side. </p> <div class="mw-heading mw-heading2"><h2 id="Proofs">Proofs</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Angle_bisector_theorem&action=edit&section=2" title="Edit section: Proofs"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>There exist many different ways of proving the angle bisector theorem. A few of them are shown below. </p> <div class="mw-heading mw-heading3"><h3 id="Proof_using_similar_triangles">Proof using similar triangles</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Angle_bisector_theorem&action=edit&section=3" title="Edit section: Proof using similar triangles"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure typeof="mw:File/Thumb"><a href="/wiki/File:Animated_illustration_of_angle_bisector_theorem.gif" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/a/ae/Animated_illustration_of_angle_bisector_theorem.gif/600px-Animated_illustration_of_angle_bisector_theorem.gif" decoding="async" width="600" height="363" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/a/ae/Animated_illustration_of_angle_bisector_theorem.gif 1.5x" data-file-width="800" data-file-height="484" /></a><figcaption>Animated illustration of the angle bisector theorem.</figcaption></figure> <p>As shown in the accompanying animation, the theorem can be proved using similar triangles. In the version illustrated here, the triangle <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \triangle ABC}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">△<!-- △ --></mi> <mi>A</mi> <mi>B</mi> <mi>C</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \triangle ABC}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/821677f03b63c3c2e448dffc2ae9c8eea31d9d48" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.339ex; height:2.176ex;" alt="{\displaystyle \triangle ABC}"></span> gets reflected across a line that is perpendicular to the angle bisector <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle AD}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mi>D</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle AD}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9c03200251ae17334cf1fe01f399cd5aaa7fcffb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.667ex; height:2.176ex;" alt="{\displaystyle AD}"></span>, resulting in the triangle <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \triangle AB_{2}C_{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">△<!-- △ --></mi> <mi>A</mi> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <msub> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \triangle AB_{2}C_{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a9c501c1cf824b093e22b9d9dcce6778cc865581" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:9.343ex; height:2.509ex;" alt="{\displaystyle \triangle AB_{2}C_{2}}"></span> with bisector <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle AD_{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <msub> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle AD_{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/47c82a8366cf544a37174053e6d11d7268c27530" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:4.722ex; height:2.509ex;" alt="{\displaystyle AD_{2}}"></span>. The fact that the bisection-produced angles <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \angle BAD}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">∠<!-- ∠ --></mi> <mi>B</mi> <mi>A</mi> <mi>D</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \angle BAD}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/06256aa25762ee6818d0ff04b26ff2116b5bbb3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.109ex; height:2.176ex;" alt="{\displaystyle \angle BAD}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \angle CAD}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">∠<!-- ∠ --></mi> <mi>C</mi> <mi>A</mi> <mi>D</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \angle CAD}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bf7fb69e15084cdbb1d6bd93311ed41ed65e76ef" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.112ex; height:2.176ex;" alt="{\displaystyle \angle CAD}"></span> are equal means that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle BAC_{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>B</mi> <mi>A</mi> <msub> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle BAC_{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/401ed0ed326b950a8542c9b3a1356ad20a6d7412" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:6.223ex; height:2.509ex;" alt="{\displaystyle BAC_{2}}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle CAB_{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>C</mi> <mi>A</mi> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle CAB_{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e5e9c2d8046b6828dbbb10b6bf267c07c653e658" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:6.328ex; height:2.509ex;" alt="{\displaystyle CAB_{2}}"></span> are straight lines. This allows the construction of triangle <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \triangle C_{2}BC}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">△<!-- △ --></mi> <msub> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mi>B</mi> <mi>C</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \triangle C_{2}BC}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8a51934fec9350a785815767b3c78046130681a6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:8.312ex; height:2.509ex;" alt="{\displaystyle \triangle C_{2}BC}"></span> that is similar to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \triangle ABD}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">△<!-- △ --></mi> <mi>A</mi> <mi>B</mi> <mi>D</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \triangle ABD}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/06a58977c380ed00aa14f2d4a5a885bb5b220769" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.497ex; height:2.176ex;" alt="{\displaystyle \triangle ABD}"></span>. Because the ratios between corresponding sides of similar triangles are all equal, it follows that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |AB|/|AC_{2}|=|BD|/|CD|}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>A</mi> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>A</mi> <msub> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>B</mi> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>C</mi> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |AB|/|AC_{2}|=|BD|/|CD|}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/51bc274b0ba225f1da42ecf7fa48cb45babd29ed" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:25.943ex; height:2.843ex;" alt="{\displaystyle |AB|/|AC_{2}|=|BD|/|CD|}"></span>. However, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle AC_{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <msub> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle AC_{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9b5833ed5ea5dfa640f1f6ecbeb381ecbc1af3ed" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:4.459ex; height:2.509ex;" alt="{\displaystyle AC_{2}}"></span> was constructed as a reflection of the line <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle AC}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mi>C</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle AC}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b930d133ca536a071bec52a9acc4b05482890d53" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.509ex; height:2.176ex;" alt="{\displaystyle AC}"></span>, and so those two lines are of equal length. Therefore, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |AB|/|AC|=|BD|/|CD|}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>A</mi> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>A</mi> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>B</mi> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>C</mi> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |AB|/|AC|=|BD|/|CD|}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7fb49b6da027ab570d8e7e63ef4989246f6d630f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:24.994ex; height:2.843ex;" alt="{\displaystyle |AB|/|AC|=|BD|/|CD|}"></span>, yielding the result stated by the theorem. </p> <div class="mw-heading mw-heading3"><h3 id="Proof_using_Law_of_Sines">Proof using Law of Sines</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Angle_bisector_theorem&action=edit&section=4" title="Edit section: Proof using Law of Sines"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In the above diagram, use the <a href="/wiki/Law_of_sines" title="Law of sines">law of sines</a> on triangles <span class="texhtml">△<i>ABD</i></span> and <span class="texhtml">△<i>ACD</i></span>: </p> <table role="presentation" style="border-collapse:collapse; margin:0 0 0 1.6em; border:none;"><tbody><tr><td style="vertical-align:middle; border:none; padding:0;" class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {|AB|}{|BD|}}={\frac {\sin \angle ADB}{\sin \angle DAB}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>A</mi> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mrow> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>B</mi> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>sin</mi> <mo>⁡<!-- --></mo> <mi mathvariant="normal">∠<!-- ∠ --></mi> <mi>A</mi> <mi>D</mi> <mi>B</mi> </mrow> <mrow> <mi>sin</mi> <mo>⁡<!-- --></mo> <mi mathvariant="normal">∠<!-- ∠ --></mi> <mi>D</mi> <mi>A</mi> <mi>B</mi> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {|AB|}{|BD|}}={\frac {\sin \angle ADB}{\sin \angle DAB}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6c6fb6255fc8dc1f1d6f964109e5504a72fc2a1d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:20.105ex; height:6.509ex;" alt="{\displaystyle {\frac {|AB|}{|BD|}}={\frac {\sin \angle ADB}{\sin \angle DAB}}}"></span></td> <td style="vertical-align:middle; width:99%; border:none; padding:0;"></td> <td style="vertical-align:middle; border:none; padding:0;" class="nowrap"><b>(<span id="math_1" class="reference nourlexpansion" style="font-weight:bold;">1</span>)</b></td></tr></tbody></table> <table role="presentation" style="border-collapse:collapse; margin:0 0 0 1.6em; border:none;"><tbody><tr><td style="vertical-align:middle; border:none; padding:0;" class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {|AC|}{|CD|}}={\frac {\sin \angle ADC}{\sin \angle DAC}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>A</mi> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mrow> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>C</mi> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>sin</mi> <mo>⁡<!-- --></mo> <mi mathvariant="normal">∠<!-- ∠ --></mi> <mi>A</mi> <mi>D</mi> <mi>C</mi> </mrow> <mrow> <mi>sin</mi> <mo>⁡<!-- --></mo> <mi mathvariant="normal">∠<!-- ∠ --></mi> <mi>D</mi> <mi>A</mi> <mi>C</mi> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {|AC|}{|CD|}}={\frac {\sin \angle ADC}{\sin \angle DAC}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/72378d138176eac0c46e47672b0df4f297bd7c98" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:20.109ex; height:6.509ex;" alt="{\displaystyle {\frac {|AC|}{|CD|}}={\frac {\sin \angle ADC}{\sin \angle DAC}}}"></span></td> <td style="vertical-align:middle; width:99%; border:none; padding:0;"></td> <td style="vertical-align:middle; border:none; padding:0;" class="nowrap"><b>(<span id="math_2" class="reference nourlexpansion" style="font-weight:bold;">2</span>)</b></td></tr></tbody></table> <p>Angles <span class="texhtml">∠ <i>ADB</i></span> and <span class="texhtml">∠ <i>ADC</i></span> form a linear pair, that is, they are adjacent <a href="/wiki/Supplementary_angles" class="mw-redirect" title="Supplementary angles">supplementary angles</a>. Since supplementary angles have equal sines, </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\sin \angle ADB}={\sin \angle ADC}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi>sin</mi> <mo>⁡<!-- --></mo> <mi mathvariant="normal">∠<!-- ∠ --></mi> <mi>A</mi> <mi>D</mi> <mi>B</mi> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>sin</mi> <mo>⁡<!-- --></mo> <mi mathvariant="normal">∠<!-- ∠ --></mi> <mi>A</mi> <mi>D</mi> <mi>C</mi> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\sin \angle ADB}={\sin \angle ADC}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/74be28d2ce6d2228af8d843130a8e270b590dc84" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:24.452ex; height:2.176ex;" alt="{\displaystyle {\sin \angle ADB}={\sin \angle ADC}.}"></span></dd></dl> <p>Angles <span class="texhtml">∠ <i>DAB</i></span> and <span class="texhtml">∠ <i>DAC</i></span> are equal. Therefore, the right hand sides of equations (<b><a href="#math_1">1</a></b>) and (<b><a href="#math_2">2</a></b>) are equal, so their left hand sides must also be equal. </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {|BD|}{|CD|}}={\frac {|AB|}{|AC|}},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>B</mi> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mrow> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>C</mi> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>A</mi> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mrow> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>A</mi> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mrow> </mfrac> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {|BD|}{|CD|}}={\frac {|AB|}{|AC|}},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0d13b275e89267c6a9ccc6e7a6b39e92dfe890b8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:15.205ex; height:6.509ex;" alt="{\displaystyle {\frac {|BD|}{|CD|}}={\frac {|AB|}{|AC|}},}"></span></dd></dl> <p>which is the angle bisector theorem. </p><p>If angles <span class="texhtml">∠ <i>DAB</i>, ∠ <i>DAC</i></span> are unequal, equations (<b><a href="#math_1">1</a></b>) and (<b><a href="#math_2">2</a></b>) can be re-written as: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {{\frac {|AB|}{|BD|}}\sin \angle DAB=\sin \angle ADB},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>A</mi> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mrow> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>B</mi> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mrow> </mfrac> </mrow> <mi>sin</mi> <mo>⁡<!-- --></mo> <mi mathvariant="normal">∠<!-- ∠ --></mi> <mi>D</mi> <mi>A</mi> <mi>B</mi> <mo>=</mo> <mi>sin</mi> <mo>⁡<!-- --></mo> <mi mathvariant="normal">∠<!-- ∠ --></mi> <mi>A</mi> <mi>D</mi> <mi>B</mi> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {{\frac {|AB|}{|BD|}}\sin \angle DAB=\sin \angle ADB},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6a2853208d358d1eb188bc38e28e7fc73db0589c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:30.655ex; height:6.509ex;" alt="{\displaystyle {{\frac {|AB|}{|BD|}}\sin \angle DAB=\sin \angle ADB},}"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {{\frac {|AC|}{|CD|}}\sin \angle DAC=\sin \angle ADC}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>A</mi> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mrow> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>C</mi> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mrow> </mfrac> </mrow> <mi>sin</mi> <mo>⁡<!-- --></mo> <mi mathvariant="normal">∠<!-- ∠ --></mi> <mi>D</mi> <mi>A</mi> <mi>C</mi> <mo>=</mo> <mi>sin</mi> <mo>⁡<!-- --></mo> <mi mathvariant="normal">∠<!-- ∠ --></mi> <mi>A</mi> <mi>D</mi> <mi>C</mi> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {{\frac {|AC|}{|CD|}}\sin \angle DAC=\sin \angle ADC}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b64ba2f9f6c051ab41ab43605f2b8d381bd5d4da" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:30.662ex; height:6.509ex;" alt="{\displaystyle {{\frac {|AC|}{|CD|}}\sin \angle DAC=\sin \angle ADC}.}"></span></dd></dl> <p>Angles <span class="texhtml">∠ <i>ADB</i>, ∠ <i>ADC</i></span> are still supplementary, so the right hand sides of these equations are still equal, so we obtain: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {{\frac {|AB|}{|BD|}}\sin \angle DAB={\frac {|AC|}{|CD|}}\sin \angle DAC},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>A</mi> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mrow> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>B</mi> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mrow> </mfrac> </mrow> <mi>sin</mi> <mo>⁡<!-- --></mo> <mi mathvariant="normal">∠<!-- ∠ --></mi> <mi>D</mi> <mi>A</mi> <mi>B</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>A</mi> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mrow> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>C</mi> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mrow> </mfrac> </mrow> <mi>sin</mi> <mo>⁡<!-- --></mo> <mi mathvariant="normal">∠<!-- ∠ --></mi> <mi>D</mi> <mi>A</mi> <mi>C</mi> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {{\frac {|AB|}{|BD|}}\sin \angle DAB={\frac {|AC|}{|CD|}}\sin \angle DAC},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c372998c1ef4f94d81ca46544208189f9dbb7fed" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:36.865ex; height:6.509ex;" alt="{\displaystyle {{\frac {|AB|}{|BD|}}\sin \angle DAB={\frac {|AC|}{|CD|}}\sin \angle DAC},}"></span></dd></dl> <p>which rearranges to the "generalized" version of the theorem. </p> <div class="mw-heading mw-heading3"><h3 id="Proof_using_triangle_altitudes">Proof using triangle altitudes</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Angle_bisector_theorem&action=edit&section=5" title="Edit section: Proof using triangle altitudes"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-halign-right" typeof="mw:File"><a href="/wiki/File:Bisekt.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/9/9a/Bisekt.svg/400px-Bisekt.svg.png" decoding="async" width="400" height="335" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/9/9a/Bisekt.svg/600px-Bisekt.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/9/9a/Bisekt.svg/800px-Bisekt.svg.png 2x" data-file-width="800" data-file-height="670" /></a><figcaption></figcaption></figure> <p>Let <span class="texhtml mvar" style="font-style:italic;">D</span> be a point on the line <span class="texhtml mvar" style="font-style:italic;">BC</span>, not equal to <span class="texhtml mvar" style="font-style:italic;">B</span> or <span class="texhtml mvar" style="font-style:italic;">C</span> and such that <span class="texhtml mvar" style="font-style:italic;"><span style="text-decoration:overline;">AD</span></span> is not an <a href="/wiki/Altitude_(triangle)" title="Altitude (triangle)">altitude</a> of triangle <span class="texhtml">△<i>ABC</i></span>. </p><p>Let <span class="texhtml"><i>B</i><sub>1</sub></span> be the base (foot) of the altitude in the triangle <span class="texhtml">△<i>ABD</i></span> through <span class="texhtml mvar" style="font-style:italic;">B</span> and let <span class="texhtml"><i>C</i><sub>1</sub></span> be the base of the altitude in the triangle <span class="texhtml">△<i>ACD</i></span> through <span class="texhtml mvar" style="font-style:italic;">C</span>. Then, if <span class="texhtml mvar" style="font-style:italic;">D</span> is strictly between <span class="texhtml mvar" style="font-style:italic;">B</span> and <span class="texhtml mvar" style="font-style:italic;">C</span>, one and only one of <span class="texhtml"><i>B</i><sub>1</sub></span> or <span class="texhtml"><i>C</i><sub>1</sub></span> lies inside <span class="texhtml">△<i>ABC</i></span> and it can be assumed <a href="/wiki/Without_loss_of_generality" title="Without loss of generality">without loss of generality</a> that <span class="texhtml"><i>B</i><sub>1</sub></span> does. This case is depicted in the adjacent diagram. If <span class="texhtml mvar" style="font-style:italic;">D</span> lies outside of segment <span class="texhtml mvar" style="font-style:italic;"><span style="text-decoration:overline;">BC</span></span>, then neither <span class="texhtml"><i>B</i><sub>1</sub></span> nor <span class="texhtml"><i>C</i><sub>1</sub></span> lies inside the triangle. </p><p><span class="texhtml">∠ <i>DB</i><sub>1</sub><i>B</i>, ∠ <i>DC</i><sub>1</sub><i>C</i></span> are right angles, while the angles <span class="texhtml">∠ <i>B</i><sub>1</sub><i>DB</i>, ∠ <i>C</i><sub>1</sub><i>DC</i></span> are congruent if <span class="texhtml mvar" style="font-style:italic;">D</span> lies on the segment <span class="texhtml mvar" style="font-style:italic;"><span style="text-decoration:overline;">BC</span></span> (that is, between <span class="texhtml mvar" style="font-style:italic;">B</span> and <span class="texhtml mvar" style="font-style:italic;">C</span>) and they are identical in the other cases being considered, so the triangles <span class="texhtml">△<i>DB</i><sub>1</sub><i>B</i>, △<i>DC</i><sub>1</sub><i>C</i></span> are similar (AAA), which implies that: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {|BD|}{|CD|}}={\frac {|BB_{1}|}{|CC_{1}|}}={\frac {|AB|\sin \angle BAD}{|AC|\sin \angle CAD}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>B</mi> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mrow> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>C</mi> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>B</mi> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mrow> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>C</mi> <msub> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>A</mi> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>sin</mi> <mo>⁡<!-- --></mo> <mi mathvariant="normal">∠<!-- ∠ --></mi> <mi>B</mi> <mi>A</mi> <mi>D</mi> </mrow> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>A</mi> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>sin</mi> <mo>⁡<!-- --></mo> <mi mathvariant="normal">∠<!-- ∠ --></mi> <mi>C</mi> <mi>A</mi> <mi>D</mi> </mrow> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {|BD|}{|CD|}}={\frac {|BB_{1}|}{|CC_{1}|}}={\frac {|AB|\sin \angle BAD}{|AC|\sin \angle CAD}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e3d3c7fec16456247e35831636db99b57c6e6f1c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:35.757ex; height:6.509ex;" alt="{\displaystyle {\frac {|BD|}{|CD|}}={\frac {|BB_{1}|}{|CC_{1}|}}={\frac {|AB|\sin \angle BAD}{|AC|\sin \angle CAD}}.}"></span></dd></dl> <p>If <span class="texhtml mvar" style="font-style:italic;">D</span> is the foot of an altitude, then, </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {|BD|}{|AB|}}=\sin \angle \ BAD{\text{ and }}{\frac {|CD|}{|AC|}}=\sin \angle \ DAC,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>B</mi> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mrow> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>A</mi> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mrow> </mfrac> </mrow> <mo>=</mo> <mi>sin</mi> <mo>⁡<!-- --></mo> <mi mathvariant="normal">∠<!-- ∠ --></mi> <mtext> </mtext> <mi>B</mi> <mi>A</mi> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext> and </mtext> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>C</mi> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mrow> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>A</mi> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mrow> </mfrac> </mrow> <mo>=</mo> <mi>sin</mi> <mo>⁡<!-- --></mo> <mi mathvariant="normal">∠<!-- ∠ --></mi> <mtext> </mtext> <mi>D</mi> <mi>A</mi> <mi>C</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {|BD|}{|AB|}}=\sin \angle \ BAD{\text{ and }}{\frac {|CD|}{|AC|}}=\sin \angle \ DAC,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b78acdc91fdf87bd2791710dbb21e5ffd0beff29" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:45.259ex; height:6.509ex;" alt="{\displaystyle {\frac {|BD|}{|AB|}}=\sin \angle \ BAD{\text{ and }}{\frac {|CD|}{|AC|}}=\sin \angle \ DAC,}"></span></dd></dl> <p>and the generalized form follows. </p> <div class="mw-heading mw-heading3"><h3 id="Proof_using_triangle_areas">Proof using triangle areas</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Angle_bisector_theorem&action=edit&section=6" title="Edit section: Proof using triangle areas"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Angle_bisector_proof.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/4/40/Angle_bisector_proof.svg/330px-Angle_bisector_proof.svg.png" decoding="async" width="330" height="219" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/40/Angle_bisector_proof.svg/495px-Angle_bisector_proof.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/40/Angle_bisector_proof.svg/660px-Angle_bisector_proof.svg.png 2x" data-file-width="397" data-file-height="263" /></a><figcaption><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \alpha ={\frac {\angle BAC}{2}}=\angle BAD=\angle CAD}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>α<!-- α --></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">∠<!-- ∠ --></mi> <mi>B</mi> <mi>A</mi> <mi>C</mi> </mrow> <mn>2</mn> </mfrac> </mrow> <mo>=</mo> <mi mathvariant="normal">∠<!-- ∠ --></mi> <mi>B</mi> <mi>A</mi> <mi>D</mi> <mo>=</mo> <mi mathvariant="normal">∠<!-- ∠ --></mi> <mi>C</mi> <mi>A</mi> <mi>D</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \alpha ={\frac {\angle BAC}{2}}=\angle BAD=\angle CAD}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5cba08b12cae3aa411dabc023d114ac87915e09f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:30.756ex; height:3.676ex;" alt="{\textstyle \alpha ={\frac {\angle BAC}{2}}=\angle BAD=\angle CAD}"></span></figcaption></figure> <p>A quick proof can be obtained by looking at the ratio of the areas of the two triangles <span class="texhtml">△<i>BAD</i>, △<i>CAD</i></span>, which are created by the angle bisector in <span class="texhtml mvar" style="font-style:italic;">A</span>. Computing those areas twice using <a href="/wiki/Triangle#Computing_the_sides_and_angles" title="Triangle">different formulas</a>, that is <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tfrac {1}{2}}gh}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mstyle> </mrow> <mi>g</mi> <mi>h</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tfrac {1}{2}}gh}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/20ac4794720031a9a2edcac065bb3ca6500a9828" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:4.113ex; height:3.509ex;" alt="{\displaystyle {\tfrac {1}{2}}gh}"></span> with base <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d3556280e66fe2c0d0140df20935a6f057381d77" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.116ex; height:2.009ex;" alt="{\displaystyle g}"></span> and altitude <span class="texhtml mvar" style="font-style:italic;">h</span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tfrac {1}{2}}ab\sin(\gamma )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mstyle> </mrow> <mi>a</mi> <mi>b</mi> <mi>sin</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>γ<!-- γ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tfrac {1}{2}}ab\sin(\gamma )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0b25b8721d080709deb8aff6b5f0a7341f443f59" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:10.2ex; height:3.509ex;" alt="{\displaystyle {\tfrac {1}{2}}ab\sin(\gamma )}"></span> with sides <span class="texhtml mvar" style="font-style:italic;">a, b</span> and their enclosed angle <span class="texhtml mvar" style="font-style:italic;">γ</span>, will yield the desired result. </p><p>Let <span class="texhtml mvar" style="font-style:italic;">h</span> denote the height of the triangles on base <span class="texhtml mvar" style="font-style:italic;"><span style="text-decoration:overline;">BC</span></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \alpha }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>α<!-- α --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \alpha }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b79333175c8b3f0840bfb4ec41b8072c83ea88d3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.488ex; height:1.676ex;" alt="{\displaystyle \alpha }"></span> be half of the angle in <span class="texhtml mvar" style="font-style:italic;">A</span>. Then </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {|\triangle ABD|}{|\triangle ACD|}}={\frac {{\frac {1}{2}}|BD|h}{{\frac {1}{2}}|CD|h}}={\frac {|BD|}{|CD|}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi mathvariant="normal">△<!-- △ --></mi> <mi>A</mi> <mi>B</mi> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mrow> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi mathvariant="normal">△<!-- △ --></mi> <mi>A</mi> <mi>C</mi> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>B</mi> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>h</mi> </mrow> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>C</mi> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>h</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>B</mi> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mrow> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>C</mi> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {|\triangle ABD|}{|\triangle ACD|}}={\frac {{\frac {1}{2}}|BD|h}{{\frac {1}{2}}|CD|h}}={\frac {|BD|}{|CD|}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e3babc17b69933ca72b53881b95a74085acd09e2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.338ex; width:30.464ex; height:7.843ex;" alt="{\displaystyle {\frac {|\triangle ABD|}{|\triangle ACD|}}={\frac {{\frac {1}{2}}|BD|h}{{\frac {1}{2}}|CD|h}}={\frac {|BD|}{|CD|}}}"></span></dd></dl> <p>and </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {|\triangle ABD|}{|\triangle ACD|}}={\frac {{\frac {1}{2}}|AB||AD|\sin(\alpha )}{{\frac {1}{2}}|AC||AD|\sin(\alpha )}}={\frac {|AB|}{|AC|}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi mathvariant="normal">△<!-- △ --></mi> <mi>A</mi> <mi>B</mi> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mrow> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi mathvariant="normal">△<!-- △ --></mi> <mi>A</mi> <mi>C</mi> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>A</mi> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>A</mi> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>sin</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>α<!-- α --></mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>A</mi> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>A</mi> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>sin</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>α<!-- α --></mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>A</mi> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mrow> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>A</mi> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {|\triangle ABD|}{|\triangle ACD|}}={\frac {{\frac {1}{2}}|AB||AD|\sin(\alpha )}{{\frac {1}{2}}|AC||AD|\sin(\alpha )}}={\frac {|AB|}{|AC|}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/804f00f66e469b0cd130a572b1af85f050a79064" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.338ex; width:40.264ex; height:7.843ex;" alt="{\displaystyle {\frac {|\triangle ABD|}{|\triangle ACD|}}={\frac {{\frac {1}{2}}|AB||AD|\sin(\alpha )}{{\frac {1}{2}}|AC||AD|\sin(\alpha )}}={\frac {|AB|}{|AC|}}}"></span></dd></dl> <p>yields </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {|BD|}{|CD|}}={\frac {|AB|}{|AC|}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>B</mi> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mrow> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>C</mi> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>A</mi> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mrow> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>A</mi> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mrow> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {|BD|}{|CD|}}={\frac {|AB|}{|AC|}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ebaeaff7c89672f39a9223d0a27d0c30deb848b4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:15.205ex; height:6.509ex;" alt="{\displaystyle {\frac {|BD|}{|CD|}}={\frac {|AB|}{|AC|}}.}"></span></dd></dl> <div class="mw-heading mw-heading2"><h2 id="Length_of_the_angle_bisector">Length of the angle bisector</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Angle_bisector_theorem&action=edit&section=7" title="Edit section: Length of the angle bisector"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Stewarts_theorem.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/c/cd/Stewarts_theorem.svg/220px-Stewarts_theorem.svg.png" decoding="async" width="220" height="172" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/c/cd/Stewarts_theorem.svg/330px-Stewarts_theorem.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/c/cd/Stewarts_theorem.svg/440px-Stewarts_theorem.svg.png 2x" data-file-width="512" data-file-height="401" /></a><figcaption>Diagram of Stewart's theorem</figcaption></figure> <p>The length of the angle bisector <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e85ff03cbe0c7341af6b982e47e9f90d235c66ab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.216ex; height:2.176ex;" alt="{\displaystyle d}"></span> can be found by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle d^{2}=bc-mn=mn(k^{2}-1)=bc\left(1-{\frac {1}{k^{2}}}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <msup> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mi>b</mi> <mi>c</mi> <mo>−<!-- − --></mo> <mi>m</mi> <mi>n</mi> <mo>=</mo> <mi>m</mi> <mi>n</mi> <mo stretchy="false">(</mo> <msup> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>−<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>=</mo> <mi>b</mi> <mi>c</mi> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msup> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle d^{2}=bc-mn=mn(k^{2}-1)=bc\left(1-{\frac {1}{k^{2}}}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/01d3a7c942463bc21f6156bc1285b878b1fd00be" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:43.054ex; height:4.843ex;" alt="{\textstyle d^{2}=bc-mn=mn(k^{2}-1)=bc\left(1-{\frac {1}{k^{2}}}\right)}"></span>, </p><p>where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k={\frac {b}{n}}={\frac {c}{m}}={\frac {b+c}{a}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>k</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>b</mi> <mi>n</mi> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>c</mi> <mi>m</mi> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>b</mi> <mo>+</mo> <mi>c</mi> </mrow> <mi>a</mi> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k={\frac {b}{n}}={\frac {c}{m}}={\frac {b+c}{a}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/122c41e452f87500df8c56ebf809e28b68ffc100" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:21.295ex; height:5.343ex;" alt="{\displaystyle k={\frac {b}{n}}={\frac {c}{m}}={\frac {b+c}{a}}}"></span> is the constant of proportionality from the angle bisector theorem. </p><p><b>Proof</b>: By <a href="/wiki/Stewart%27s_theorem" title="Stewart's theorem">Stewart's theorem</a>, we have </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}b^{2}m+c^{2}n&=a(d^{2}+mn)\\(kn)^{2}m+(km)^{2}n&=a(d^{2}+mn)\\k^{2}(m+n)mn&=(m+n)(d^{2}+mn)\\k^{2}mn&=d^{2}+mn\\(k^{2}-1)mn&=d^{2}\\\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi>m</mi> <mo>+</mo> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi>n</mi> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi>a</mi> <mo stretchy="false">(</mo> <msup> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mi>m</mi> <mi>n</mi> <mo stretchy="false">)</mo> </mtd> </mtr> <mtr> <mtd> <mo stretchy="false">(</mo> <mi>k</mi> <mi>n</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi>m</mi> <mo>+</mo> <mo stretchy="false">(</mo> <mi>k</mi> <mi>m</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi>n</mi> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi>a</mi> <mo stretchy="false">(</mo> <msup> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mi>m</mi> <mi>n</mi> <mo stretchy="false">)</mo> </mtd> </mtr> <mtr> <mtd> <msup> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mi>m</mi> <mo>+</mo> <mi>n</mi> <mo stretchy="false">)</mo> <mi>m</mi> <mi>n</mi> </mtd> <mtd> <mi></mi> <mo>=</mo> <mo stretchy="false">(</mo> <mi>m</mi> <mo>+</mo> <mi>n</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <msup> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mi>m</mi> <mi>n</mi> <mo stretchy="false">)</mo> </mtd> </mtr> <mtr> <mtd> <msup> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi>m</mi> <mi>n</mi> </mtd> <mtd> <mi></mi> <mo>=</mo> <msup> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mi>m</mi> <mi>n</mi> </mtd> </mtr> <mtr> <mtd> <mo stretchy="false">(</mo> <msup> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>−<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <mi>m</mi> <mi>n</mi> </mtd> <mtd> <mi></mi> <mo>=</mo> <msup> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}b^{2}m+c^{2}n&=a(d^{2}+mn)\\(kn)^{2}m+(km)^{2}n&=a(d^{2}+mn)\\k^{2}(m+n)mn&=(m+n)(d^{2}+mn)\\k^{2}mn&=d^{2}+mn\\(k^{2}-1)mn&=d^{2}\\\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d5704f907a160cff855063a46d1a1007b921c4ee" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -7.671ex; width:40.152ex; height:16.509ex;" alt="{\displaystyle {\begin{aligned}b^{2}m+c^{2}n&=a(d^{2}+mn)\\(kn)^{2}m+(km)^{2}n&=a(d^{2}+mn)\\k^{2}(m+n)mn&=(m+n)(d^{2}+mn)\\k^{2}mn&=d^{2}+mn\\(k^{2}-1)mn&=d^{2}\\\end{aligned}}}"></span> </p> <div class="mw-heading mw-heading2"><h2 id="Exterior_angle_bisectors">Exterior angle bisectors</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Angle_bisector_theorem&action=edit&section=8" title="Edit section: Exterior angle bisectors"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Aussenwinkelhalbierende2.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/9/99/Aussenwinkelhalbierende2.svg/280px-Aussenwinkelhalbierende2.svg.png" decoding="async" width="280" height="440" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/9/99/Aussenwinkelhalbierende2.svg/420px-Aussenwinkelhalbierende2.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/9/99/Aussenwinkelhalbierende2.svg/560px-Aussenwinkelhalbierende2.svg.png 2x" data-file-width="378" data-file-height="594" /></a><figcaption>exterior angle bisectors (dotted red):<br /> Points <span class="texhtml mvar" style="font-style:italic;">D, E, F</span> are collinear and the following equations for ratios hold:<br /> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tfrac {|EB|}{|EC|}}={\tfrac {|AB|}{|AC|}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>E</mi> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mrow> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>E</mi> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mrow> </mfrac> </mstyle> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>A</mi> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mrow> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>A</mi> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mrow> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tfrac {|EB|}{|EC|}}={\tfrac {|AB|}{|AC|}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9274aa2f3df976eff9c76e30847f925b5b9ab8bf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:11.586ex; height:4.843ex;" alt="{\displaystyle {\tfrac {|EB|}{|EC|}}={\tfrac {|AB|}{|AC|}}}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tfrac {|FB|}{|FA|}}={\tfrac {|CB|}{|CA|}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>F</mi> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mrow> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>F</mi> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mrow> </mfrac> </mstyle> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>C</mi> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mrow> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>C</mi> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mrow> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tfrac {|FB|}{|FA|}}={\tfrac {|CB|}{|CA|}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/27ee0569b67ac8e4385d27c0b2ea9f1731f31dc6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:11.575ex; height:4.843ex;" alt="{\displaystyle {\tfrac {|FB|}{|FA|}}={\tfrac {|CB|}{|CA|}}}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tfrac {|DA|}{|DC|}}={\tfrac {|BA|}{|BC|}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>D</mi> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mrow> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>D</mi> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mrow> </mfrac> </mstyle> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>B</mi> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mrow> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>B</mi> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mrow> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tfrac {|DA|}{|DC|}}={\tfrac {|BA|}{|BC|}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9077c779c97ecfc2a84ecce022897ac7b58e9d28" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:11.706ex; height:4.843ex;" alt="{\displaystyle {\tfrac {|DA|}{|DC|}}={\tfrac {|BA|}{|BC|}}}"></span></figcaption></figure> <p>For the exterior angle bisectors in a non-equilateral triangle there exist similar equations for the ratios of the lengths of triangle sides. More precisely if the exterior angle bisector in <span class="texhtml mvar" style="font-style:italic;">A</span> intersects the extended side <span class="texhtml mvar" style="font-style:italic;">BC</span> in <span class="texhtml mvar" style="font-style:italic;">E</span>, the exterior angle bisector in <span class="texhtml mvar" style="font-style:italic;">B</span> intersects the extended side <span class="texhtml mvar" style="font-style:italic;">AC</span> in <span class="texhtml mvar" style="font-style:italic;">D</span> and the exterior angle bisector in <span class="texhtml mvar" style="font-style:italic;">C</span> intersects the extended side <span class="texhtml mvar" style="font-style:italic;">AB</span> in <span class="texhtml mvar" style="font-style:italic;">F</span>, then the following equations hold:<sup id="cite_ref-1" class="reference"><a href="#cite_note-1"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {|EB|}{|EC|}}={\frac {|AB|}{|AC|}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>E</mi> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mrow> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>E</mi> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>A</mi> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mrow> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>A</mi> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {|EB|}{|EC|}}={\frac {|AB|}{|AC|}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/46e8b652a306a3836718d5803ac3871e5b5e9a89" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:14.409ex; height:6.509ex;" alt="{\displaystyle {\frac {|EB|}{|EC|}}={\frac {|AB|}{|AC|}}}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {|FB|}{|FA|}}={\frac {|CB|}{|CA|}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>F</mi> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mrow> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>F</mi> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>C</mi> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mrow> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>C</mi> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {|FB|}{|FA|}}={\frac {|CB|}{|CA|}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c700b84f66702c83e89d4b28b46b034db81064e8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:14.393ex; height:6.509ex;" alt="{\displaystyle {\frac {|FB|}{|FA|}}={\frac {|CB|}{|CA|}}}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {|DA|}{|DC|}}={\frac {|BA|}{|BC|}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>D</mi> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mrow> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>D</mi> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>B</mi> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mrow> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>B</mi> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {|DA|}{|DC|}}={\frac {|BA|}{|BC|}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/99ab4f2375d26b2f274bb23f88633d80297f67cd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:14.579ex; height:6.509ex;" alt="{\displaystyle {\frac {|DA|}{|DC|}}={\frac {|BA|}{|BC|}}}"></span></dd></dl> <p>The three points of intersection between the exterior angle bisectors and the extended triangle sides <span class="texhtml mvar" style="font-style:italic;">D, E, F</span> are collinear, that is they lie on a common line.<sup id="cite_ref-2" class="reference"><a href="#cite_note-2"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="History">History</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Angle_bisector_theorem&action=edit&section=9" title="Edit section: History"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The angle bisector theorem appears as Proposition 3 of Book VI in <a href="/wiki/Euclid%27s_Elements" title="Euclid's Elements">Euclid's Elements</a>. According to <a href="#CITEREFHeath1956">Heath (1956</a>, p. 197 (vol. 2)), the corresponding statement for an external angle bisector was given by <a href="/wiki/Robert_Simson" title="Robert Simson">Robert Simson</a> who noted that <a href="/wiki/Pappus_of_Alexandria" title="Pappus of Alexandria">Pappus</a> assumed this result without proof. Heath goes on to say that <a href="/wiki/Augustus_De_Morgan" title="Augustus De Morgan">Augustus De Morgan</a> proposed that the two statements should be combined as follows:<sup id="cite_ref-3" class="reference"><a href="#cite_note-3"><span class="cite-bracket">[</span>3<span class="cite-bracket">]</span></a></sup> </p> <dl><dd><i>If an angle of a triangle is bisected internally or externally by a straight line which cuts the opposite side or the opposite side produced, the segments of that side will have the same ratio as the other sides of the triangle; and, if a side of a triangle be divided internally or externally so that its segments have the same ratio as the other sides of the triangle, the straight line drawn from the point of section to the angular point which is opposite to the first mentioned side will bisect the interior or exterior angle at that angular point.</i></dd></dl> <div class="mw-heading mw-heading2"><h2 id="Applications">Applications</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Angle_bisector_theorem&action=edit&section=10" title="Edit section: Applications"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1251242444">.mw-parser-output .ambox{border:1px solid #a2a9b1;border-left:10px solid #36c;background-color:#fbfbfb;box-sizing:border-box}.mw-parser-output .ambox+link+.ambox,.mw-parser-output .ambox+link+style+.ambox,.mw-parser-output .ambox+link+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+style+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+link+.ambox{margin-top:-1px}html body.mediawiki .mw-parser-output .ambox.mbox-small-left{margin:4px 1em 4px 0;overflow:hidden;width:238px;border-collapse:collapse;font-size:88%;line-height:1.25em}.mw-parser-output .ambox-speedy{border-left:10px solid #b32424;background-color:#fee7e6}.mw-parser-output .ambox-delete{border-left:10px solid #b32424}.mw-parser-output .ambox-content{border-left:10px solid #f28500}.mw-parser-output .ambox-style{border-left:10px solid #fc3}.mw-parser-output .ambox-move{border-left:10px solid #9932cc}.mw-parser-output .ambox-protection{border-left:10px solid #a2a9b1}.mw-parser-output .ambox .mbox-text{border:none;padding:0.25em 0.5em;width:100%}.mw-parser-output .ambox .mbox-image{border:none;padding:2px 0 2px 0.5em;text-align:center}.mw-parser-output .ambox .mbox-imageright{border:none;padding:2px 0.5em 2px 0;text-align:center}.mw-parser-output .ambox .mbox-empty-cell{border:none;padding:0;width:1px}.mw-parser-output .ambox .mbox-image-div{width:52px}@media(min-width:720px){.mw-parser-output .ambox{margin:0 10%}}@media print{body.ns-0 .mw-parser-output .ambox{display:none!important}}</style><table class="box-Expand_section plainlinks metadata ambox mbox-small-left ambox-content" role="presentation"><tbody><tr><td class="mbox-image"><span typeof="mw:File"><a href="/wiki/File:Wiki_letter_w_cropped.svg" class="mw-file-description"><img alt="[icon]" src="//upload.wikimedia.org/wikipedia/commons/thumb/1/1c/Wiki_letter_w_cropped.svg/20px-Wiki_letter_w_cropped.svg.png" decoding="async" width="20" height="14" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/1/1c/Wiki_letter_w_cropped.svg/30px-Wiki_letter_w_cropped.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/1/1c/Wiki_letter_w_cropped.svg/40px-Wiki_letter_w_cropped.svg.png 2x" data-file-width="44" data-file-height="31" /></a></span></td><td class="mbox-text"><div class="mbox-text-span">This section <b>needs expansion</b> with: more theorems/results. You can help by <a class="external text" href="https://en.wikipedia.org/w/index.php?title=Angle_bisector_theorem&action=edit&section=">adding to it</a>. <span class="date-container"><i>(<span class="date">September 2020</span>)</i></span></div></td></tr></tbody></table> <p>This theorem has been used to prove the following theorems/results: </p> <ul><li>Coordinates of the <a href="/wiki/Incenter" title="Incenter">incenter</a> of a triangle</li> <li><a href="/wiki/Circles_of_Apollonius" title="Circles of Apollonius">Circles of Apollonius</a></li></ul> <div class="mw-heading mw-heading2"><h2 id="References">References</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Angle_bisector_theorem&action=edit&section=11" title="Edit section: References"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-references-wrap"><ol class="references"> <li id="cite_note-1"><span class="mw-cite-backlink"><b><a href="#cite_ref-1">^</a></b></span> <span class="reference-text">Alfred S. Posamentier: <i>Advanced Euclidean Geometry: Excursions for Students and Teachers</i>. Springer, 2002, <style data-mw-deduplicate="TemplateStyles:r1238218222">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free.id-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited.id-lock-limited a,.mw-parser-output .id-lock-registration.id-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription.id-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-free a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-limited a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-registration a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-subscription a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .cs1-ws-icon a{background-size:contain;padding:0 1em 0 0}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:var(--color-error,#d33)}.mw-parser-output .cs1-visible-error{color:var(--color-error,#d33)}.mw-parser-output .cs1-maint{display:none;color:#085;margin-left:0.3em}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}@media screen{.mw-parser-output .cs1-format{font-size:95%}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911f}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911f}}</style><a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/9781930190856" title="Special:BookSources/9781930190856">9781930190856</a>, pp. <a rel="nofollow" class="external text" href="https://books.google.com/books?id=9grsxFZUci8C&pg=PA4">3-4</a></span> </li> <li id="cite_note-2"><span class="mw-cite-backlink"><b><a href="#cite_ref-2">^</a></b></span> <span class="reference-text">Roger A. Johnson: <i>Advanced Euclidean Geometry</i>. Dover 2007, <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-486-46237-0" title="Special:BookSources/978-0-486-46237-0">978-0-486-46237-0</a>, p. 149 (original publication 1929 with Houghton Mifflin Company (Boston) as <i>Modern Geometry</i>).</span> </li> <li id="cite_note-3"><span class="mw-cite-backlink"><b><a href="#cite_ref-3">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHeath1956" class="citation book cs1"><a href="/wiki/T._L._Heath" class="mw-redirect" title="T. L. Heath">Heath, Thomas L.</a> (1956). <span class="id-lock-registration" title="Free registration required"><a rel="nofollow" class="external text" href="https://archive.org/details/thirteenbooksofe00eucl"><i>The Thirteen Books of Euclid's Elements</i></a></span> (2nd ed. [Facsimile. Original publication: Cambridge University Press, 1925] ed.). New York: Dover Publications.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=The+Thirteen+Books+of+Euclid%27s+Elements&rft.place=New+York&rft.edition=2nd+ed.+%5BFacsimile.+Original+publication%3A+Cambridge+University+Press%2C+1925%5D&rft.pub=Dover+Publications&rft.date=1956&rft.aulast=Heath&rft.aufirst=Thomas+L.&rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fthirteenbooksofe00eucl&rfr_id=info%3Asid%2Fen.wikipedia.org%3AAngle+bisector+theorem" class="Z3988"></span> <dl><dd>(3 vols.): <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0-486-60088-2" title="Special:BookSources/0-486-60088-2">0-486-60088-2</a> (vol. 1), <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0-486-60089-0" title="Special:BookSources/0-486-60089-0">0-486-60089-0</a> (vol. 2), <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0-486-60090-4" title="Special:BookSources/0-486-60090-4">0-486-60090-4</a> (vol. 3). Heath's authoritative translation plus extensive historical research and detailed commentary throughout the text.</dd></dl> </span></li> </ol></div> <div class="mw-heading mw-heading2"><h2 id="Further_reading">Further reading</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Angle_bisector_theorem&action=edit&section=12" title="Edit section: Further reading"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li>G.W.I.S Amarasinghe: <a rel="nofollow" class="external text" href="https://web.archive.org/web/20150113000335/http://gjarcmg.geometry-math-journal.ro/index/"><i>On the Standard Lengths of Angle Bisectors and the Angle Bisector Theorem</i></a>, Global Journal of Advanced Research on Classical and Modern Geometries, Vol 01(01), pp. 15 – 27, 2012</li></ul> <div class="mw-heading mw-heading2"><h2 id="External_links">External links</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Angle_bisector_theorem&action=edit&section=13" title="Edit section: External links"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a rel="nofollow" class="external text" href="http://www.cut-the-knot.org/Curriculum/Geometry/AngleBisectorRatio.shtml">A Property of Angle Bisectors</a> at <a href="/wiki/Cut-the-knot" class="mw-redirect" title="Cut-the-knot">cut-the-knot</a></li> <li><a rel="nofollow" class="external text" href="https://www.khanacademy.org/math/geometry/hs-geo-similarity/hs-geo-angle-bisector-theorem/v/angle-bisector-theorem-proof">Intro to angle bisector theorem</a> at <a href="/wiki/Khan_Academy" title="Khan Academy">Khan Academy</a></li></ul> <div class="navbox-styles"><style data-mw-deduplicate="TemplateStyles:r1129693374">.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:": "}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist dd dd:first-child::before,.mw-parser-output .hlist dd dt:first-child::before,.mw-parser-output .hlist dd li:first-child::before,.mw-parser-output .hlist dt dd:first-child::before,.mw-parser-output .hlist dt dt:first-child::before,.mw-parser-output .hlist dt li:first-child::before,.mw-parser-output .hlist li dd:first-child::before,.mw-parser-output .hlist li dt:first-child::before,.mw-parser-output .hlist li li:first-child::before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child::after,.mw-parser-output .hlist dd dt:last-child::after,.mw-parser-output .hlist dd li:last-child::after,.mw-parser-output .hlist dt dd:last-child::after,.mw-parser-output .hlist dt dt:last-child::after,.mw-parser-output .hlist dt li:last-child::after,.mw-parser-output .hlist li dd:last-child::after,.mw-parser-output .hlist li dt:last-child::after,.mw-parser-output .hlist li li:last-child::after{content:")";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:" ("counter(listitem)"\a0 "}</style><style data-mw-deduplicate="TemplateStyles:r1236075235">.mw-parser-output .navbox{box-sizing:border-box;border:1px solid #a2a9b1;width:100%;clear:both;font-size:88%;text-align:center;padding:1px;margin:1em auto 0}.mw-parser-output .navbox .navbox{margin-top:0}.mw-parser-output .navbox+.navbox,.mw-parser-output .navbox+.navbox-styles+.navbox{margin-top:-1px}.mw-parser-output .navbox-inner,.mw-parser-output .navbox-subgroup{width:100%}.mw-parser-output .navbox-group,.mw-parser-output .navbox-title,.mw-parser-output .navbox-abovebelow{padding:0.25em 1em;line-height:1.5em;text-align:center}.mw-parser-output .navbox-group{white-space:nowrap;text-align:right}.mw-parser-output .navbox,.mw-parser-output .navbox-subgroup{background-color:#fdfdfd}.mw-parser-output .navbox-list{line-height:1.5em;border-color:#fdfdfd}.mw-parser-output .navbox-list-with-group{text-align:left;border-left-width:2px;border-left-style:solid}.mw-parser-output tr+tr>.navbox-abovebelow,.mw-parser-output tr+tr>.navbox-group,.mw-parser-output tr+tr>.navbox-image,.mw-parser-output tr+tr>.navbox-list{border-top:2px solid #fdfdfd}.mw-parser-output .navbox-title{background-color:#ccf}.mw-parser-output .navbox-abovebelow,.mw-parser-output .navbox-group,.mw-parser-output .navbox-subgroup .navbox-title{background-color:#ddf}.mw-parser-output .navbox-subgroup .navbox-group,.mw-parser-output .navbox-subgroup .navbox-abovebelow{background-color:#e6e6ff}.mw-parser-output .navbox-even{background-color:#f7f7f7}.mw-parser-output .navbox-odd{background-color:transparent}.mw-parser-output .navbox .hlist td dl,.mw-parser-output .navbox .hlist td ol,.mw-parser-output .navbox .hlist td ul,.mw-parser-output .navbox td.hlist dl,.mw-parser-output .navbox td.hlist ol,.mw-parser-output .navbox td.hlist ul{padding:0.125em 0}.mw-parser-output .navbox .navbar{display:block;font-size:100%}.mw-parser-output .navbox-title .navbar{float:left;text-align:left;margin-right:0.5em}body.skin--responsive .mw-parser-output .navbox-image img{max-width:none!important}@media print{body.ns-0 .mw-parser-output .navbox{display:none!important}}</style></div><div role="navigation" class="navbox" aria-labelledby="Ancient_Greek_mathematics" style="padding:3px"><table class="nowraplinks mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><style data-mw-deduplicate="TemplateStyles:r1239400231">.mw-parser-output .navbar{display:inline;font-size:88%;font-weight:normal}.mw-parser-output .navbar-collapse{float:left;text-align:left}.mw-parser-output .navbar-boxtext{word-spacing:0}.mw-parser-output .navbar ul{display:inline-block;white-space:nowrap;line-height:inherit}.mw-parser-output .navbar-brackets::before{margin-right:-0.125em;content:"[ "}.mw-parser-output .navbar-brackets::after{margin-left:-0.125em;content:" ]"}.mw-parser-output .navbar li{word-spacing:-0.125em}.mw-parser-output .navbar a>span,.mw-parser-output .navbar a>abbr{text-decoration:inherit}.mw-parser-output .navbar-mini abbr{font-variant:small-caps;border-bottom:none;text-decoration:none;cursor:inherit}.mw-parser-output .navbar-ct-full{font-size:114%;margin:0 7em}.mw-parser-output .navbar-ct-mini{font-size:114%;margin:0 4em}html.skin-theme-clientpref-night .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}@media(prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}}@media print{.mw-parser-output .navbar{display:none!important}}</style><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Ancient_Greek_mathematics" title="Template:Ancient Greek mathematics"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Ancient_Greek_mathematics" title="Template talk:Ancient Greek mathematics"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Ancient_Greek_mathematics" title="Special:EditPage/Template:Ancient Greek mathematics"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Ancient_Greek_mathematics" style="font-size:114%;margin:0 4em"><a href="/wiki/Greek_mathematics" title="Greek mathematics">Ancient Greek mathematics</a></div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/List_of_Greek_mathematicians" title="List of Greek mathematicians">Mathematicians</a><br /><a href="/wiki/Timeline_of_ancient_Greek_mathematicians" title="Timeline of ancient Greek mathematicians">(timeline)</a></th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Anaxagoras" title="Anaxagoras">Anaxagoras</a></li> <li><a href="/wiki/Anthemius_of_Tralles" title="Anthemius of Tralles">Anthemius</a></li> <li><a href="/wiki/Archytas" title="Archytas">Archytas</a></li> <li><a href="/wiki/Aristaeus_the_Elder" title="Aristaeus the Elder">Aristaeus the Elder</a></li> <li><a href="/wiki/Aristarchus_of_Samos" title="Aristarchus of Samos">Aristarchus</a></li> <li><a href="/wiki/Aristotle" title="Aristotle">Aristotle</a></li> <li><a href="/wiki/Apollonius_of_Perga" title="Apollonius of Perga">Apollonius</a></li> <li><a href="/wiki/Archimedes" title="Archimedes">Archimedes</a></li> <li><a href="/wiki/Autolycus_of_Pitane" title="Autolycus of Pitane">Autolycus</a></li> <li><a href="/wiki/Bion_of_Abdera" title="Bion of Abdera">Bion</a></li> <li><a href="/wiki/Bryson_of_Heraclea" title="Bryson of Heraclea">Bryson</a></li> <li><a href="/wiki/Callippus" title="Callippus">Callippus</a></li> <li><a href="/wiki/Carpus_of_Antioch" title="Carpus of Antioch">Carpus</a></li> <li><a href="/wiki/Chrysippus" title="Chrysippus">Chrysippus</a></li> <li><a href="/wiki/Cleomedes" title="Cleomedes">Cleomedes</a></li> <li><a href="/wiki/Conon_of_Samos" title="Conon of Samos">Conon</a></li> <li><a href="/wiki/Ctesibius" title="Ctesibius">Ctesibius</a></li> <li><a href="/wiki/Democritus" title="Democritus">Democritus</a></li> <li><a href="/wiki/Dicaearchus" title="Dicaearchus">Dicaearchus</a></li> <li><a href="/wiki/Diocles_(mathematician)" title="Diocles (mathematician)">Diocles</a></li> <li><a href="/wiki/Diophantus" title="Diophantus">Diophantus</a></li> <li><a href="/wiki/Dinostratus" title="Dinostratus">Dinostratus</a></li> <li><a href="/wiki/Dionysodorus" title="Dionysodorus">Dionysodorus</a></li> <li><a href="/wiki/Domninus_of_Larissa" title="Domninus of Larissa">Domninus</a></li> <li><a href="/wiki/Eratosthenes" title="Eratosthenes">Eratosthenes</a></li> <li><a href="/wiki/Eudemus_of_Rhodes" title="Eudemus of Rhodes">Eudemus</a></li> <li><a href="/wiki/Euclid" title="Euclid">Euclid</a></li> <li><a href="/wiki/Eudoxus_of_Cnidus" title="Eudoxus of Cnidus">Eudoxus</a></li> <li><a href="/wiki/Eutocius_of_Ascalon" title="Eutocius of Ascalon">Eutocius</a></li> <li><a href="/wiki/Geminus" title="Geminus">Geminus</a></li> <li><a href="/wiki/Heliodorus_of_Larissa" title="Heliodorus of Larissa">Heliodorus</a></li> <li><a href="/wiki/Hero_of_Alexandria" title="Hero of Alexandria">Heron</a></li> <li><a href="/wiki/Hipparchus" title="Hipparchus">Hipparchus</a></li> <li><a href="/wiki/Hippasus" title="Hippasus">Hippasus</a></li> <li><a href="/wiki/Hippias" title="Hippias">Hippias</a></li> <li><a href="/wiki/Hippocrates_of_Chios" title="Hippocrates of Chios">Hippocrates</a></li> <li><a href="/wiki/Hypatia" title="Hypatia">Hypatia</a></li> <li><a href="/wiki/Hypsicles" title="Hypsicles">Hypsicles</a></li> <li><a href="/wiki/Isidore_of_Miletus" title="Isidore of Miletus">Isidore of Miletus</a></li> <li><a href="/wiki/Leon_(mathematician)" title="Leon (mathematician)">Leon</a></li> <li><a href="/wiki/Marinus_of_Neapolis" title="Marinus of Neapolis">Marinus</a></li> <li><a href="/wiki/Menaechmus" title="Menaechmus">Menaechmus</a></li> <li><a href="/wiki/Menelaus_of_Alexandria" title="Menelaus of Alexandria">Menelaus</a></li> <li><a href="/wiki/Metrodorus_(grammarian)" title="Metrodorus (grammarian)">Metrodorus</a></li> <li><a href="/wiki/Nicomachus" title="Nicomachus">Nicomachus</a></li> <li><a href="/wiki/Nicomedes_(mathematician)" title="Nicomedes (mathematician)">Nicomedes</a></li> <li><a href="/wiki/Nicoteles_of_Cyrene" title="Nicoteles of Cyrene">Nicoteles</a></li> <li><a href="/wiki/Oenopides" title="Oenopides">Oenopides</a></li> <li><a href="/wiki/Pappus_of_Alexandria" title="Pappus of Alexandria">Pappus</a></li> <li><a href="/wiki/Perseus_(geometer)" title="Perseus (geometer)">Perseus</a></li> <li><a href="/wiki/Philolaus" title="Philolaus">Philolaus</a></li> <li><a href="/wiki/Philon" title="Philon">Philon</a></li> <li><a href="/wiki/Philonides_of_Laodicea" title="Philonides of Laodicea">Philonides</a></li> <li><a href="/wiki/Plato" title="Plato">Plato</a></li> <li><a href="/wiki/Porphyry_(philosopher)" title="Porphyry (philosopher)">Porphyry</a></li> <li><a href="/wiki/Posidonius" title="Posidonius">Posidonius</a></li> <li><a href="/wiki/Proclus" title="Proclus">Proclus</a></li> <li><a href="/wiki/Ptolemy" title="Ptolemy">Ptolemy</a></li> <li><a href="/wiki/Pythagoras" title="Pythagoras">Pythagoras</a></li> <li><a href="/wiki/Serenus_of_Antino%C3%B6polis" title="Serenus of Antinoöpolis">Serenus </a></li> <li><a href="/wiki/Simplicius_of_Cilicia" title="Simplicius of Cilicia">Simplicius</a></li> <li><a href="/wiki/Sosigenes_of_Alexandria" class="mw-redirect" title="Sosigenes of Alexandria">Sosigenes</a></li> <li><a href="/wiki/Sporus_of_Nicaea" title="Sporus of Nicaea">Sporus</a></li> <li><a href="/wiki/Thales_of_Miletus" title="Thales of Miletus">Thales</a></li> <li><a href="/wiki/Theaetetus_(mathematician)" title="Theaetetus (mathematician)">Theaetetus</a></li> <li><a href="/wiki/Theano_(philosopher)" title="Theano (philosopher)">Theano</a></li> <li><a href="/wiki/Theodorus_of_Cyrene" title="Theodorus of Cyrene">Theodorus</a></li> <li><a href="/wiki/Theodosius_of_Bithynia" title="Theodosius of Bithynia">Theodosius</a></li> <li><a href="/wiki/Theon_of_Alexandria" title="Theon of Alexandria">Theon of Alexandria</a></li> <li><a href="/wiki/Theon_of_Smyrna" title="Theon of Smyrna">Theon of Smyrna</a></li> <li><a href="/wiki/Thymaridas" title="Thymaridas">Thymaridas</a></li> <li><a href="/wiki/Xenocrates" title="Xenocrates">Xenocrates</a></li> <li><a href="/wiki/Zeno_of_Elea" title="Zeno of Elea">Zeno of Elea</a></li> <li><a href="/wiki/Zeno_of_Sidon" title="Zeno of Sidon">Zeno of Sidon</a></li> <li><a href="/wiki/Zenodorus_(mathematician)" title="Zenodorus (mathematician)">Zenodorus</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Treatises</th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><i><a href="/wiki/Almagest" title="Almagest">Almagest</a></i></li> <li><a href="/wiki/Archimedes_Palimpsest" title="Archimedes Palimpsest">Archimedes Palimpsest</a></li> <li><i><a href="/wiki/Arithmetica" title="Arithmetica">Arithmetica</a></i></li> <li><a href="/wiki/Apollonius_of_Perga#Conics" title="Apollonius of Perga"><i>Conics</i> <span style="font-size:85%;">(Apollonius)</span></a></li> <li><i><a href="/wiki/Catoptrics" title="Catoptrics">Catoptrics</a></i></li> <li><a href="/wiki/Data_(Euclid)" class="mw-redirect" title="Data (Euclid)"><i>Data</i> <span style="font-size:85%;">(Euclid)</span></a></li> <li><a href="/wiki/Euclid%27s_Elements" title="Euclid's Elements"><i>Elements</i> <span style="font-size:85%;">(Euclid)</span></a></li> <li><i><a href="/wiki/Measurement_of_a_Circle" title="Measurement of a Circle">Measurement of a Circle</a></i></li> <li><i><a href="/wiki/On_Conoids_and_Spheroids" title="On Conoids and Spheroids">On Conoids and Spheroids</a></i></li> <li><a href="/wiki/On_the_Sizes_and_Distances_(Aristarchus)" title="On the Sizes and Distances (Aristarchus)"><i>On the Sizes and Distances</i> <span style="font-size:85%;">(Aristarchus)</span></a></li> <li><a href="/wiki/On_Sizes_and_Distances_(Hipparchus)" title="On Sizes and Distances (Hipparchus)"><i>On Sizes and Distances</i> <span style="font-size:85%;">(Hipparchus)</span></a></li> <li><a href="/wiki/Autolycus_of_Pitane" title="Autolycus of Pitane"><i>On the Moving Sphere</i> <span style="font-size:85%;">(Autolycus)</span></a></li> <li><a href="/wiki/Euclid%27s_Optics" title="Euclid's Optics"><i>Optics</i> <span style="font-size:85%;">(Euclid)</span></a></li> <li><i><a href="/wiki/On_Spirals" title="On Spirals">On Spirals</a></i></li> <li><i><a href="/wiki/On_the_Sphere_and_Cylinder" title="On the Sphere and Cylinder">On the Sphere and Cylinder</a></i></li> <li><i><a href="/wiki/Ostomachion" title="Ostomachion">Ostomachion</a></i></li> <li><i><a href="/wiki/Planisphaerium" title="Planisphaerium">Planisphaerium</a></i></li> <li><a href="/wiki/Theodosius%27_Spherics" title="Theodosius' Spherics"><i>Spherics</i> <span style="font-size:85%;">(Theodosius)</span></a></li> <li><a href="/wiki/Menelaus_of_Alexandria" title="Menelaus of Alexandria"><i>Spherics</i> <span style="font-size:85%;">(Menelaus)</span></a></li> <li><i><a href="/wiki/The_Quadrature_of_the_Parabola" class="mw-redirect" title="The Quadrature of the Parabola">The Quadrature of the Parabola</a></i></li> <li><i><a href="/wiki/The_Sand_Reckoner" title="The Sand Reckoner">The Sand Reckoner</a></i></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Problems</th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Constructible_number" title="Constructible number">Constructible numbers</a> <ul><li><a href="/wiki/Angle_trisection" title="Angle trisection">Angle trisection</a></li> <li><a href="/wiki/Doubling_the_cube" title="Doubling the cube">Doubling the cube</a></li> <li><a href="/wiki/Squaring_the_circle" title="Squaring the circle">Squaring the circle</a></li></ul></li> <li><a href="/wiki/Problem_of_Apollonius" title="Problem of Apollonius">Problem of Apollonius</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Concepts<br />and definitions</th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Angle" title="Angle">Angle</a> <ul><li><a href="/wiki/Central_angle" title="Central angle">Central</a></li> <li><a href="/wiki/Inscribed_angle" title="Inscribed angle">Inscribed</a></li></ul></li> <li><a href="/wiki/Axiomatic_system" title="Axiomatic system">Axiomatic system</a> <ul><li><a href="/wiki/Axiom" title="Axiom">Axiom</a></li></ul></li> <li><a href="/wiki/Chord_(geometry)" title="Chord (geometry)">Chord</a></li> <li><a href="/wiki/Circles_of_Apollonius" title="Circles of Apollonius">Circles of Apollonius</a> <ul><li><a href="/wiki/Apollonian_circles" title="Apollonian circles">Apollonian circles</a></li> <li><a href="/wiki/Apollonian_gasket" title="Apollonian gasket">Apollonian gasket</a></li></ul></li> <li><a href="/wiki/Circumscribed_circle" title="Circumscribed circle">Circumscribed circle</a></li> <li><a href="/wiki/Commensurability_(mathematics)" title="Commensurability (mathematics)">Commensurability</a></li> <li><a href="/wiki/Diophantine_equation" title="Diophantine equation">Diophantine equation</a></li> <li><a href="https://en.wikiquote.org/wiki/Doctrine_of_proportion_(mathematics)" class="extiw" title="wikiquote:Doctrine of proportion (mathematics)">Doctrine of proportionality</a></li> <li><a href="/wiki/Euclidean_geometry" title="Euclidean geometry">Euclidean geometry</a></li> <li><a href="/wiki/Golden_ratio" title="Golden ratio">Golden ratio</a></li> <li><a href="/wiki/Greek_numerals" title="Greek numerals">Greek numerals</a></li> <li><a href="/wiki/Incircle_and_excircles_of_a_triangle" class="mw-redirect" title="Incircle and excircles of a triangle">Incircle and excircles of a triangle</a></li> <li><a href="/wiki/Method_of_exhaustion" title="Method of exhaustion">Method of exhaustion</a></li> <li><a href="/wiki/Parallel_postulate" title="Parallel postulate">Parallel postulate</a></li> <li><a href="/wiki/Platonic_solid" title="Platonic solid">Platonic solid</a></li> <li><a href="/wiki/Lune_of_Hippocrates" title="Lune of Hippocrates">Lune of Hippocrates</a></li> <li><a href="/wiki/Quadratrix_of_Hippias" title="Quadratrix of Hippias">Quadratrix of Hippias</a></li> <li><a href="/wiki/Regular_polygon" title="Regular polygon">Regular polygon</a></li> <li><a href="/wiki/Straightedge_and_compass_construction" title="Straightedge and compass construction">Straightedge and compass construction</a></li> <li><a href="/wiki/Triangle_center" title="Triangle center">Triangle center</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Results</th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:1%">In <a href="/wiki/Euclid%27s_elements" class="mw-redirect" title="Euclid's elements"><i>Elements</i></a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a class="mw-selflink selflink">Angle bisector theorem</a></li> <li><a href="/wiki/Exterior_angle_theorem" title="Exterior angle theorem">Exterior angle theorem</a></li> <li><a href="/wiki/Euclidean_algorithm" title="Euclidean algorithm">Euclidean algorithm</a></li> <li><a href="/wiki/Euclid%27s_theorem" title="Euclid's theorem">Euclid's theorem</a></li> <li><a href="/wiki/Geometric_mean_theorem" title="Geometric mean theorem">Geometric mean theorem</a></li> <li><a href="/wiki/Greek_geometric_algebra" class="mw-redirect" title="Greek geometric algebra">Greek geometric algebra</a></li> <li><a href="/wiki/Hinge_theorem" title="Hinge theorem">Hinge theorem</a></li> <li><a href="/wiki/Inscribed_angle_theorem" class="mw-redirect" title="Inscribed angle theorem">Inscribed angle theorem</a></li> <li><a href="/wiki/Intercept_theorem" title="Intercept theorem">Intercept theorem</a></li> <li><a href="/wiki/Intersecting_chords_theorem" title="Intersecting chords theorem">Intersecting chords theorem</a></li> <li><a href="/wiki/Intersecting_secants_theorem" title="Intersecting secants theorem">Intersecting secants theorem</a></li> <li><a href="/wiki/Law_of_cosines" title="Law of cosines">Law of cosines</a></li> <li><a href="/wiki/Pons_asinorum" title="Pons asinorum">Pons asinorum</a></li> <li><a href="/wiki/Pythagorean_theorem" title="Pythagorean theorem">Pythagorean theorem</a></li> <li><a href="/wiki/Tangent-secant_theorem" class="mw-redirect" title="Tangent-secant theorem">Tangent-secant theorem</a></li> <li><a href="/wiki/Thales%27s_theorem" title="Thales's theorem">Thales's theorem</a></li> <li><a href="/wiki/Theorem_of_the_gnomon" title="Theorem of the gnomon">Theorem of the gnomon</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Apollonius_of_Tyana" title="Apollonius of Tyana">Apollonius</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Apollonius%27s_theorem" title="Apollonius's theorem">Apollonius's theorem</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Other</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Aristarchus%27s_inequality" title="Aristarchus's inequality">Aristarchus's inequality</a></li> <li><a href="/wiki/Crossbar_theorem" title="Crossbar theorem">Crossbar theorem</a></li> <li><a href="/wiki/Heron%27s_formula" title="Heron's formula">Heron's formula</a></li> <li><a href="/wiki/Irrational_number" title="Irrational number">Irrational numbers</a></li> <li><a href="/wiki/Law_of_sines" title="Law of sines">Law of sines</a></li> <li><a href="/wiki/Menelaus%27s_theorem" title="Menelaus's theorem">Menelaus's theorem</a></li> <li><a href="/wiki/Pappus%27s_area_theorem" title="Pappus's area theorem">Pappus's area theorem</a></li> <li><a href="/wiki/Diophantus_II.VIII" title="Diophantus II.VIII">Problem II.8 of <i>Arithmetica</i></a></li> <li><a href="/wiki/Ptolemy%27s_inequality" title="Ptolemy's inequality">Ptolemy's inequality</a></li> <li><a href="/wiki/Ptolemy%27s_table_of_chords" title="Ptolemy's table of chords">Ptolemy's table of chords</a></li> <li><a href="/wiki/Ptolemy%27s_theorem" title="Ptolemy's theorem">Ptolemy's theorem</a></li> <li><a href="/wiki/Spiral_of_Theodorus" title="Spiral of Theodorus">Spiral of Theodorus</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Centers</th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Cyrene,_Libya" title="Cyrene, Libya">Cyrene</a></li> <li><a href="/wiki/Musaeum" class="mw-redirect" title="Musaeum">Mouseion of Alexandria</a></li> <li><a href="/wiki/Platonic_Academy" title="Platonic Academy">Platonic Academy</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Related</th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><td colspan="2" class="navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Ancient_Greek_astronomy" title="Ancient Greek astronomy">Ancient Greek astronomy</a></li> <li><a href="/wiki/Attic_numerals" title="Attic numerals">Attic numerals</a></li> <li><a href="/wiki/Greek_numerals" title="Greek numerals">Greek numerals</a></li> <li><a href="/wiki/Latin_translations_of_the_12th_century" title="Latin translations of the 12th century">Latin translations of the 12th century</a></li> <li><a href="/wiki/Non-Euclidean_geometry" title="Non-Euclidean geometry">Non-Euclidean geometry</a></li> <li><a href="/wiki/Philosophy_of_mathematics" title="Philosophy of mathematics">Philosophy of mathematics</a></li> <li><a href="/wiki/Neusis_construction" title="Neusis construction">Neusis construction</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">History of</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><i><a href="/wiki/A_History_of_Greek_Mathematics" title="A History of Greek Mathematics">A History of Greek Mathematics</a></i> <ul><li>by <a href="/wiki/Thomas_Heath_(classicist)" title="Thomas Heath (classicist)">Thomas Heath</a></li></ul></li> <li><a href="/wiki/History_of_algebra" title="History of algebra">algebra</a> <ul><li><a href="/wiki/Timeline_of_algebra" title="Timeline of algebra">timeline</a></li></ul></li> <li><a href="/wiki/History_of_arithmetic" class="mw-redirect" title="History of arithmetic">arithmetic</a> <ul><li><a href="/wiki/Timeline_of_numerals_and_arithmetic" title="Timeline of numerals and arithmetic">timeline</a></li></ul></li> <li><a href="/wiki/History_of_calculus" title="History of calculus">calculus</a> <ul><li><a href="/wiki/Timeline_of_calculus_and_mathematical_analysis" title="Timeline of calculus and mathematical analysis">timeline</a></li></ul></li> <li><a href="/wiki/History_of_geometry" title="History of geometry">geometry</a> <ul><li><a href="/wiki/Timeline_of_geometry" title="Timeline of geometry">timeline</a></li></ul></li> <li><a href="/wiki/History_of_logic" title="History of logic">logic</a> <ul><li><a href="/wiki/Timeline_of_mathematical_logic" title="Timeline of mathematical logic">timeline</a></li></ul></li> <li><a href="/wiki/History_of_mathematics" title="History of mathematics">mathematics</a> <ul><li><a href="/wiki/Timeline_of_mathematics" title="Timeline of mathematics">timeline</a></li></ul></li> <li><a href="/wiki/History_of_numbers" class="mw-redirect" title="History of numbers">numbers</a> <ul><li><a href="/wiki/Prehistoric_counting" title="Prehistoric counting">prehistoric counting</a></li></ul></li> <li><a href="/wiki/History_of_ancient_numeral_systems" title="History of ancient numeral systems">numeral systems</a> <ul><li><a href="/wiki/List_of_numeral_systems" title="List of numeral systems">list</a></li></ul></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Other cultures</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Mathematics_in_the_medieval_Islamic_world" title="Mathematics in the medieval Islamic world">Arabian/Islamic</a></li> <li><a href="/wiki/Babylonian_mathematics" title="Babylonian mathematics">Babylonian</a></li> <li><a href="/wiki/Chinese_mathematics" title="Chinese mathematics">Chinese</a></li> <li><a href="/wiki/Ancient_Egyptian_mathematics" title="Ancient Egyptian mathematics">Egyptian</a></li> <li><a href="/wiki/Mathematics_of_the_Incas" title="Mathematics of the Incas">Incan</a></li> <li><a href="/wiki/Indian_mathematics" title="Indian mathematics">Indian</a></li> <li><a href="/wiki/Japanese_mathematics" title="Japanese mathematics">Japanese</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><td class="navbox-abovebelow" colspan="2"><div><b><span class="nowrap"><span class="noviewer" typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/a/ad/Parthenon_from_west.jpg/16px-Parthenon_from_west.jpg" decoding="async" width="16" height="12" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/a/ad/Parthenon_from_west.jpg/24px-Parthenon_from_west.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/a/ad/Parthenon_from_west.jpg/32px-Parthenon_from_west.jpg 2x" data-file-width="2048" data-file-height="1536" /></span></span> </span><a href="/wiki/Portal:Ancient_Greece" title="Portal:Ancient Greece">Ancient Greece portal</a></b> •  <b><span class="nowrap"><span class="noviewer" typeof="mw:File"><a href="/wiki/File:Nuvola_apps_edu_mathematics_blue-p.svg" class="mw-file-description"><img alt="icon" src="//upload.wikimedia.org/wikipedia/commons/thumb/3/3e/Nuvola_apps_edu_mathematics_blue-p.svg/16px-Nuvola_apps_edu_mathematics_blue-p.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/3/3e/Nuvola_apps_edu_mathematics_blue-p.svg/24px-Nuvola_apps_edu_mathematics_blue-p.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/3/3e/Nuvola_apps_edu_mathematics_blue-p.svg/32px-Nuvola_apps_edu_mathematics_blue-p.svg.png 2x" data-file-width="128" data-file-height="128" /></a></span> </span><a href="/wiki/Portal:Mathematics" title="Portal:Mathematics">Mathematics portal</a></b></div></td></tr></tbody></table></div> <!-- NewPP limit report Parsed by mw‐web.codfw.main‐f69cdc8f6‐kpnzx Cached time: 20241124161104 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 0.485 seconds Real time usage: 0.692 seconds Preprocessor visited node count: 3941/1000000 Post‐expand include size: 57973/2097152 bytes Template argument size: 5563/2097152 bytes Highest expansion depth: 15/100 Expensive parser function count: 4/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 28050/5000000 bytes Lua time usage: 0.249/10.000 seconds Lua memory usage: 5390603/52428800 bytes Number of Wikibase entities loaded: 0/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 467.385 1 -total 24.34% 113.772 1 Template:Ancient_Greek_mathematics 23.78% 111.165 1 Template:Navbox 17.43% 81.448 1 Template:Short_description 12.75% 59.595 5 Template:ISBN 12.60% 58.879 1 Template:Expand_section 12.54% 58.609 1 Template:Cite_book 11.48% 53.679 1 Template:Ambox 10.39% 48.543 2 Template:Pagetype 9.52% 44.499 5 Template:Catalog_lookup_link --> <!-- Saved in parser cache with key enwiki:pcache:idhash:2401128-0!canonical and timestamp 20241124161104 and revision id 1250225422. Rendering was triggered because: page-view --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Retrieved from "<a dir="ltr" href="https://en.wikipedia.org/w/index.php?title=Angle_bisector_theorem&oldid=1250225422">https://en.wikipedia.org/w/index.php?title=Angle_bisector_theorem&oldid=1250225422</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Help:Category" title="Help:Category">Categories</a>: <ul><li><a href="/wiki/Category:Elementary_geometry" title="Category:Elementary geometry">Elementary geometry</a></li><li><a href="/wiki/Category:Theorems_about_triangles" title="Category:Theorems about triangles">Theorems about triangles</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Hidden categories: <ul><li><a href="/wiki/Category:Articles_with_short_description" title="Category:Articles with short description">Articles with short description</a></li><li><a href="/wiki/Category:Short_description_is_different_from_Wikidata" title="Category:Short description is different from Wikidata">Short description is different from Wikidata</a></li><li><a href="/wiki/Category:Articles_to_be_expanded_from_September_2020" title="Category:Articles to be expanded from September 2020">Articles to be expanded from September 2020</a></li><li><a href="/wiki/Category:All_articles_to_be_expanded" title="Category:All articles to be expanded">All articles to be expanded</a></li><li><a href="/wiki/Category:Articles_containing_proofs" title="Category:Articles containing proofs">Articles containing proofs</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> This page was last edited on 9 October 2024, at 04:50<span class="anonymous-show"> (UTC)</span>.</li> <li id="footer-info-copyright">Text is available under the <a href="/wiki/Wikipedia:Text_of_the_Creative_Commons_Attribution-ShareAlike_4.0_International_License" title="Wikipedia:Text of the Creative Commons Attribution-ShareAlike 4.0 International License">Creative Commons Attribution-ShareAlike 4.0 License</a>; additional terms may apply. By using this site, you agree to the <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use" class="extiw" title="foundation:Special:MyLanguage/Policy:Terms of Use">Terms of Use</a> and <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy" class="extiw" title="foundation:Special:MyLanguage/Policy:Privacy policy">Privacy Policy</a>. Wikipedia® is a registered trademark of the <a rel="nofollow" class="external text" href="https://wikimediafoundation.org/">Wikimedia Foundation, Inc.</a>, a non-profit organization.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy policy</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:About">About Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:General_disclaimer">Disclaimers</a></li> <li id="footer-places-contact"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us">Contact Wikipedia</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Developers</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/en.wikipedia.org">Statistics</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie statement</a></li> <li id="footer-places-mobileview"><a href="//en.m.wikipedia.org/w/index.php?title=Angle_bisector_theorem&mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobile view</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-f69cdc8f6-nhjc4","wgBackendResponseTime":164,"wgPageParseReport":{"limitreport":{"cputime":"0.485","walltime":"0.692","ppvisitednodes":{"value":3941,"limit":1000000},"postexpandincludesize":{"value":57973,"limit":2097152},"templateargumentsize":{"value":5563,"limit":2097152},"expansiondepth":{"value":15,"limit":100},"expensivefunctioncount":{"value":4,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":28050,"limit":5000000},"entityaccesscount":{"value":0,"limit":400},"timingprofile":["100.00% 467.385 1 -total"," 24.34% 113.772 1 Template:Ancient_Greek_mathematics"," 23.78% 111.165 1 Template:Navbox"," 17.43% 81.448 1 Template:Short_description"," 12.75% 59.595 5 Template:ISBN"," 12.60% 58.879 1 Template:Expand_section"," 12.54% 58.609 1 Template:Cite_book"," 11.48% 53.679 1 Template:Ambox"," 10.39% 48.543 2 Template:Pagetype"," 9.52% 44.499 5 Template:Catalog_lookup_link"]},"scribunto":{"limitreport-timeusage":{"value":"0.249","limit":"10.000"},"limitreport-memusage":{"value":5390603,"limit":52428800},"limitreport-logs":"anchor_id_list = table#1 {\n [\"CITEREFHeath1956\"] = 1,\n}\ntemplate_list = table#1 {\n [\"Ancient Greek mathematics\"] = 1,\n [\"Cite book\"] = 1,\n [\"EquationNote\"] = 4,\n [\"EquationRef\"] = 2,\n [\"Expand section\"] = 1,\n [\"Harvtxt\"] = 1,\n [\"ISBN\"] = 5,\n [\"Math\"] = 30,\n [\"Mvar\"] = 54,\n [\"NumBlk\"] = 2,\n [\"Overline\"] = 17,\n [\"Short description\"] = 1,\n [\"\\\\sin \\\\angle ADB\"] = 1,\n}\narticle_whitelist = table#1 {\n}\ntable#1 {\n [\"size\"] = \"tiny\",\n}\ntable#1 {\n [\"size\"] = \"tiny\",\n}\n"},"cachereport":{"origin":"mw-web.codfw.main-f69cdc8f6-kpnzx","timestamp":"20241124161104","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Angle bisector theorem","url":"https:\/\/en.wikipedia.org\/wiki\/Angle_bisector_theorem","sameAs":"http:\/\/www.wikidata.org\/entity\/Q925854","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q925854","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2005-08-07T20:22:41Z","dateModified":"2024-10-09T04:50:24Z","image":"https:\/\/upload.wikimedia.org\/wikipedia\/commons\/d\/d1\/Triangle_ABC_with_bisector_AD.svg","headline":"two segments that divide a triangle"}</script> </body> </html>