CINXE.COM
Search results for: modal structure
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: modal structure</title> <meta name="description" content="Search results for: modal structure"> <meta name="keywords" content="modal structure"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="modal structure" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="modal structure"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 7982</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: modal structure</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7982</span> The Complete Modal Derivatives</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sebastian%20Andersen">Sebastian Andersen</a>, <a href="https://publications.waset.org/abstracts/search?q=Peter%20N.%20Poulsen"> Peter N. Poulsen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The use of basis projection in the structural dynamic analysis is frequently applied. The purpose of the method is to improve the computational efficiency, while maintaining a high solution accuracy, by projection the governing equations onto a small set of carefully selected basis vectors. The present work considers basis projection in kinematic nonlinear systems with a focus on two widely used basis vectors; the system mode shapes and their modal derivatives. Particularly the latter basis vectors are given special attention since only approximate modal derivatives have been used until now. In the present work the complete modal derivatives, derived from perturbation methods, are presented and compared to the previously applied approximate modal derivatives. The correctness of the complete modal derivatives is illustrated by use of an example of a harmonically loaded kinematic nonlinear structure modeled by beam elements. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=basis%20projection" title="basis projection">basis projection</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title=" finite element method"> finite element method</a>, <a href="https://publications.waset.org/abstracts/search?q=kinematic%20nonlinearities" title=" kinematic nonlinearities"> kinematic nonlinearities</a>, <a href="https://publications.waset.org/abstracts/search?q=modal%20derivatives" title=" modal derivatives"> modal derivatives</a> </p> <a href="https://publications.waset.org/abstracts/92260/the-complete-modal-derivatives" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92260.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">237</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7981</span> Experimental Modal Analysis of Reinforced Concrete Square Slabs </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20S.%20Ahmed">M. S. Ahmed</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20A.%20Mohammad"> F. A. Mohammad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this paper is to perform experimental modal analysis (EMA) of reinforced concrete (RC) square slabs. EMA is the process of determining the modal parameters (Natural Frequencies, damping factors, modal vectors) of a structure from a set of frequency response functions FRFs (curve fitting). Although experimental modal analysis (or modal testing) has grown steadily in popularity since the advent of the digital FFT spectrum analyzer in the early 1970’s, studying all members and materials using such method have not yet been well documented. Therefore, in this work, experimental tests were conducted on RC square specimens (0.6m x 0.6m with 40 mm). Experimental analysis is based on freely supported boundary condition. Moreover, impact testing as a fast and economical means of finding the modes of vibration of a structure was used during the experiments. In addition, Pico Scope 6 device and MATLAB software were used to acquire data, analyze and plot Frequency Response Function (FRF). The experimental natural frequencies which were extracted from measurements exhibit good agreement with analytical predictions. It is showed that EMA method can be usefully employed to perform the dynamic behavior of RC slabs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=natural%20frequencies" title="natural frequencies">natural frequencies</a>, <a href="https://publications.waset.org/abstracts/search?q=mode%20shapes" title=" mode shapes"> mode shapes</a>, <a href="https://publications.waset.org/abstracts/search?q=modal%20analysis" title=" modal analysis"> modal analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=RC%20slabs" title=" RC slabs"> RC slabs</a> </p> <a href="https://publications.waset.org/abstracts/16946/experimental-modal-analysis-of-reinforced-concrete-square-slabs" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16946.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">408</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7980</span> Experimental Analysis of Structure Borne Noise in an Enclosure</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Waziralilah%20N.%20Fathiah">Waziralilah N. Fathiah</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Aminudin"> A. Aminudin</a>, <a href="https://publications.waset.org/abstracts/search?q=U.%20Alyaa%20Hashim"> U. Alyaa Hashim</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Vikneshvaran%20D.%20Shakirah%20Shukor"> T. Vikneshvaran D. Shakirah Shukor</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the experimental analysis conducted on a structure borne noise in a rectangular enclosure prototype made by joining of sheet aluminum metal and plywood. The study is significant as many did not realized the annoyance caused by structural borne-noise. In this study, modal analysis is carried out to seek the structure’s behaviour in order to identify the characteristics of enclosure in frequency domain ranging from 0 Hz to 200 Hz. Here, numbers of modes are identified and the characteristic of mode shape is categorized. Modal experiment is used to diagnose the structural behaviour while microphone is used to diagnose the sound. Spectral testing is performed on the enclosure. It is acoustically excited using shaker and as it vibrates, the vibrational and noise responses sensed by tri-axis accelerometer and microphone sensors are recorded respectively. Experimental works is performed on each node lies on the gridded surface of the enclosure. Both experimental measurement is carried out simultaneously. The modal experimental results of the modal modes are validated by simulation performed using MSC Nastran software. In pursuance of reducing the structure borne-noise, mitigation method is used whereby the stiffener plates are perpendicularly placed on the sheet aluminum metal. By using this method, reduction in structure borne-noise is successfully made at the end of the study. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=enclosure" title="enclosure">enclosure</a>, <a href="https://publications.waset.org/abstracts/search?q=modal%20analysis" title=" modal analysis"> modal analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=sound%20analysis" title=" sound analysis"> sound analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=structure%20borne-noise" title=" structure borne-noise"> structure borne-noise</a> </p> <a href="https://publications.waset.org/abstracts/63244/experimental-analysis-of-structure-borne-noise-in-an-enclosure" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63244.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">436</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7979</span> Cancellation of Transducer Effects from Frequency Response Functions: Experimental Case Study on the Steel Plate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20Zamani">P. Zamani</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Taleshi%20Anbouhi"> A. Taleshi Anbouhi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20R.%20Ashory"> M. R. Ashory</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Mohajerzadeh"> S. Mohajerzadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20M.%20Khatibi"> M. M. Khatibi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Modal analysis is a developing science in the experimental evaluation of dynamic properties of the structures. Mechanical devices such as accelerometers are one of the sources of lack of quality in measuring modal testing parameters. In this paper, eliminating the accelerometer’s mass effect of the frequency response of the structure is studied. So, a strategy is used for eliminating the mass effect by using sensitivity analysis. In this method, the amount of mass change and the place to measure the structure’s response with least error in frequency correction is chosen. Experimental modal testing is carried out on a steel plate and the effect of accelerometer’s mass is omitted using this strategy. Finally, a good agreement is achieved between numerical and experimental results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=accelerometer%20mass" title="accelerometer mass">accelerometer mass</a>, <a href="https://publications.waset.org/abstracts/search?q=frequency%20response%20function" title=" frequency response function"> frequency response function</a>, <a href="https://publications.waset.org/abstracts/search?q=modal%20analysis" title=" modal analysis"> modal analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=sensitivity%20analysis" title=" sensitivity analysis"> sensitivity analysis</a> </p> <a href="https://publications.waset.org/abstracts/29375/cancellation-of-transducer-effects-from-frequency-response-functions-experimental-case-study-on-the-steel-plate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29375.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">446</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7978</span> A Simple Approach to Reliability Assessment of Structures via Anomaly Detection</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rims%20Janeliukstis">Rims Janeliukstis</a>, <a href="https://publications.waset.org/abstracts/search?q=Deniss%20Mironovs"> Deniss Mironovs</a>, <a href="https://publications.waset.org/abstracts/search?q=Andrejs%20Kovalovs"> Andrejs Kovalovs</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Operational Modal Analysis (OMA) is widely applied as a method for Structural Health Monitoring for structural damage identification and assessment by tracking the changes of the identified modal parameters over time. Unfortunately, modal parameters also depend on such external factors as temperature and loads. Any structural condition assessment using modal parameters should be done taking into consideration those external factors, otherwise there is a high chance of false positives. A method of structural reliability assessment based on anomaly detection technique called Machalanobis Squared Distance (MSD) is proposed. It requires a set of reference conditions to learn healthy state of a structure, which all future parameters are compared to. In this study, structural modal parameters (natural frequency and mode shape), as well as ambient temperature and loads acting on the structure are used as features. Numerical tests were performed on a finite element model of a carbon fibre reinforced polymer composite beam with delamination damage at various locations and of various severities. The advantages of the demonstrated approach include relatively few computational steps, ability to distinguish between healthy and damaged conditions and discriminate between different damage severities. It is anticipated to be promising in reliability assessment of massively produced structural parts. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=operational%20modal%20analysis" title="operational modal analysis">operational modal analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=reliability%20assessment" title=" reliability assessment"> reliability assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=anomaly%20detection" title=" anomaly detection"> anomaly detection</a>, <a href="https://publications.waset.org/abstracts/search?q=damage" title=" damage"> damage</a>, <a href="https://publications.waset.org/abstracts/search?q=mahalanobis%20squared%20distance" title=" mahalanobis squared distance"> mahalanobis squared distance</a> </p> <a href="https://publications.waset.org/abstracts/148382/a-simple-approach-to-reliability-assessment-of-structures-via-anomaly-detection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/148382.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">114</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7977</span> Model Updating Based on Modal Parameters Using Hybrid Pattern Search Technique</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20Guo">N. Guo</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Xu"> C. Xu</a>, <a href="https://publications.waset.org/abstracts/search?q=Z.%20C.%20Yang"> Z. C. Yang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to ensure the high reliability of an aircraft, the accurate structural dynamics analysis has become an indispensable part in the design of an aircraft structure. Therefore, the structural finite element model which can be used to accurately calculate the structural dynamics and their transfer relations is the prerequisite in structural dynamic design. A dynamic finite element model updating method is presented to correct the uncertain parameters of the finite element model of a structure using measured modal parameters. The coordinate modal assurance criterion is used to evaluate the correlation level at each coordinate over the experimental and the analytical mode shapes. Then, the weighted summation of the natural frequency residual and the coordinate modal assurance criterion residual is used as the objective function. Moreover, the hybrid pattern search (HPS) optimization technique, which synthesizes the advantages of pattern search (PS) optimization technique and genetic algorithm (GA), is introduced to solve the dynamic FE model updating problem. A numerical simulation and a model updating experiment for GARTEUR aircraft model are performed to validate the feasibility and effectiveness of the present dynamic model updating method, respectively. The updated results show that the proposed method can be successfully used to modify the incorrect parameters with good robustness. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=model%20updating" title="model updating">model updating</a>, <a href="https://publications.waset.org/abstracts/search?q=modal%20parameter" title=" modal parameter"> modal parameter</a>, <a href="https://publications.waset.org/abstracts/search?q=coordinate%20modal%20assurance%20criterion" title=" coordinate modal assurance criterion"> coordinate modal assurance criterion</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20genetic%2Fpattern%20search" title=" hybrid genetic/pattern search"> hybrid genetic/pattern search</a> </p> <a href="https://publications.waset.org/abstracts/98650/model-updating-based-on-modal-parameters-using-hybrid-pattern-search-technique" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/98650.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">161</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7976</span> Theoretical Modal Analysis of Freely and Simply Supported RC Slabs</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20S.%20Ahmed">M. S. Ahmed</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20A.%20Mohammad"> F. A. Mohammad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper focuses on the dynamic behavior of reinforced concrete (RC) slabs. Therefore, the theoretical modal analysis was performed using two different types of boundary conditions. Modal analysis method is the most important dynamic analyses. The analysis would be modal case when there is no external force on the structure. By using this method in this paper, the effects of freely and simply supported boundary conditions on the frequencies and mode shapes of RC square slabs are studied. ANSYS software was employed to derive the finite element model to determine the natural frequencies and mode shapes of the slabs. Then, the obtained results through numerical analysis (finite element analysis) would be compared with an exact solution. The main goal of the research study is to predict how the boundary conditions change the behavior of the slab structures prior to performing experimental modal analysis. Based on the results, it is concluded that simply support boundary condition has obvious influence to increase the natural frequencies and change the shape of mode when it is compared with freely supported boundary condition of slabs. This means that such support conditions have direct influence on the dynamic behavior of the slabs. Thus, it is suggested to use free-free boundary condition in experimental modal analysis to precisely reflect the properties of the structure. By using free-free boundary conditions, the influence of poorly defined supports is interrupted. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=natural%20frequencies" title="natural frequencies">natural frequencies</a>, <a href="https://publications.waset.org/abstracts/search?q=mode%20shapes" title=" mode shapes"> mode shapes</a>, <a href="https://publications.waset.org/abstracts/search?q=modal%20analysis" title=" modal analysis"> modal analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=ANSYS%20software" title=" ANSYS software"> ANSYS software</a>, <a href="https://publications.waset.org/abstracts/search?q=RC%20slabs" title=" RC slabs"> RC slabs</a> </p> <a href="https://publications.waset.org/abstracts/17461/theoretical-modal-analysis-of-freely-and-simply-supported-rc-slabs" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17461.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">457</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7975</span> On the Accuracy of Basic Modal Displacement Method Considering Various Earthquakes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seyed%20Sadegh%20Naseralavi">Seyed Sadegh Naseralavi</a>, <a href="https://publications.waset.org/abstracts/search?q=Sadegh%20Balaghi"> Sadegh Balaghi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ehsan%20Khojastehfar"> Ehsan Khojastehfar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Time history seismic analysis is supposed to be the most accurate method to predict the seismic demand of structures. On the other hand, the required computational time of this method toward achieving the result is its main deficiency. While being applied in optimization process, in which the structure must be analyzed thousands of time, reducing the required computational time of seismic analysis of structures makes the optimization algorithms more practical. Apparently, the invented approximate methods produce some amount of errors in comparison with exact time history analysis but the recently proposed method namely, Complete Quadratic Combination (CQC) and Sum Root of the Sum of Squares (SRSS) drastically reduces the computational time by combination of peak responses in each mode. In the present research, the Basic Modal Displacement (BMD) method is introduced and applied towards estimation of seismic demand of main structure. Seismic demand of sampled structure is estimated by calculation of modal displacement of basic structure (in which the modal displacement has been calculated). Shear steel sampled structures are selected as case studies. The error applying the introduced method is calculated by comparison of the estimated seismic demands with exact time history dynamic analysis. The efficiency of the proposed method is demonstrated by application of three types of earthquakes (in view of time of peak ground acceleration). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=time%20history%20dynamic%20analysis" title="time history dynamic analysis">time history dynamic analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=basic%20modal%20displacement" title=" basic modal displacement"> basic modal displacement</a>, <a href="https://publications.waset.org/abstracts/search?q=earthquake-induced%20demands" title=" earthquake-induced demands"> earthquake-induced demands</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20steel%20structures" title=" shear steel structures"> shear steel structures</a> </p> <a href="https://publications.waset.org/abstracts/51518/on-the-accuracy-of-basic-modal-displacement-method-considering-various-earthquakes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51518.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">355</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7974</span> Numerical and Experimental Investigations of Cantilever Rectangular Plate Structure on Subsonic Flutter</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mevl%C3%BCt%20Burak%20Dalm%C4%B1%C5%9F">Mevlüt Burak Dalmış</a>, <a href="https://publications.waset.org/abstracts/search?q=Kemal%20Yaman"> Kemal Yaman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, flutter characteristics of cantilever rectangular plate structure under incompressible flow regime are investigated by comparing the results of commercial flutter analysis program ZAERO<sup>©</sup> with wind tunnel tests conducted in Ankara Wind Tunnel (ART). A rectangular polycarbonate (PC) plate, 5x125x1000 mm in dimensions, is used for both numerical and experimental investigations. Analysis and test results are very compatible with each other. A comparison between two different solution methods (<em>g</em> and <em>k-method</em>) of ZAERO<sup>©</sup> is also done. It is seen that, <em>k-method</em> gives closer result than the other one. However, g-method results are on conservative side and it is better to use conservative results namely g-method results. Even if the modal analysis results are used for the flutter analysis for this simple structure, a modal test should be conducted in order to validate the modal analysis results to have accurate flutter analysis results for more complicated structures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flutter" title="flutter">flutter</a>, <a href="https://publications.waset.org/abstracts/search?q=plate" title=" plate"> plate</a>, <a href="https://publications.waset.org/abstracts/search?q=subsonic%20flow" title=" subsonic flow"> subsonic flow</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20tunnel" title=" wind tunnel"> wind tunnel</a> </p> <a href="https://publications.waset.org/abstracts/35131/numerical-and-experimental-investigations-of-cantilever-rectangular-plate-structure-on-subsonic-flutter" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35131.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">518</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7973</span> Numerical Verification of a Backfill-Rectangular Tank-Fluid System </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ramazan%20Livao%C4%9Flu">Ramazan Livaoğlu</a>, <a href="https://publications.waset.org/abstracts/search?q=Tufan%20%C3%87ak%C4%B1r"> Tufan Çakır</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The performance of rectangular tanks during earthquakes has been observed to depend significantly on the existence of water in the container and the presence of the backfill acting on tank wall. Therefore, in design of rectangular tanks, the topics of fluid-structure-backfill interactions and determination of modal characteristics of the interaction system have traditionally been one of the great theoretical and practical controversy. Although finite element method has been and will continue to be used to a significant extent in treating the response of the system, experimental verification of numerical models remains prerequisite for their adoption and reliable application in practice. Thus, in this study, the numerical and experimental investigations were performed on the backfill-exterior wall-fluid interaction system. Firstly, three dimensional finite element model (3D-FEM) was developed to acquire modal frequencies and mode shapes of the system by means of ANSYS. Secondly, a series of in-situ tests were fulfilled to define modal characteristics of same system to determine the applicability of the FEM to a real physical situation under field conditions. Finally, comparing the theoretical predictions from the model to results from experimental measurement, a close agreement was found between theory and experiment. Thus, it can be easily stated that experimental verification provides strong support for the use of proposed model in further investigations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fluid-structure%20interaction" title="fluid-structure interaction">fluid-structure interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=modal%20analysis" title=" modal analysis"> modal analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=rectangular%20tank" title=" rectangular tank"> rectangular tank</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20structure%20interaction" title=" soil structure interaction"> soil structure interaction</a> </p> <a href="https://publications.waset.org/abstracts/9340/numerical-verification-of-a-backfill-rectangular-tank-fluid-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9340.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">392</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7972</span> Basic Modal Displacements (BMD) for Optimizing the Buildings Subjected to Earthquakes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seyed%20Sadegh%20Naseralavi">Seyed Sadegh Naseralavi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohsen%20Khatibinia"> Mohsen Khatibinia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In structural optimizations through meta-heuristic algorithms, analyses of structures are performed for many times. For this reason, performing the analyses in a time saving way is precious. The importance of the point is more accentuated in time-history analyses which take much time. To this aim, peak picking methods also known as spectrum analyses are generally utilized. However, such methods do not have the required accuracy either done by square root of sum of squares (SRSS) or complete quadratic combination (CQC) rules. The paper presents an efficient technique for evaluating the dynamic responses during the optimization process with high speed and accuracy. In the method, first by using a static equivalent of the earthquake, an initial design is obtained. Then, the displacements in the modal coordinates are achieved. The displacements are herein called basic modal displacements (MBD). For each new design of the structure, the responses can be derived by well scaling each of the MBD along the time and amplitude and superposing them together using the corresponding modal matrices. To illustrate the efficiency of the method, an optimization problems is studied. The results show that the proposed approach is a suitable replacement for the conventional time history and spectrum analyses in such problems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=basic%20modal%20displacements" title="basic modal displacements">basic modal displacements</a>, <a href="https://publications.waset.org/abstracts/search?q=earthquake" title=" earthquake"> earthquake</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=spectrum" title=" spectrum"> spectrum</a> </p> <a href="https://publications.waset.org/abstracts/29240/basic-modal-displacements-bmd-for-optimizing-the-buildings-subjected-to-earthquakes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29240.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">361</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7971</span> Study of Seismic Damage Reinforced Concrete Frames in Variable Height with Logistic Statistic Function Distribution</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20Zarfam">P. Zarfam</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Mansouri%20Baghbaderani"> M. Mansouri Baghbaderani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In seismic design, the proper reaction to the earthquake and the correct and accurate prediction of its subsequent effects on the structure are critical. Choose a proper probability distribution, which gives a more realistic probability of the structure's damage rate, is essential in damage discussions. With the development of design based on performance, analytical method of modal push over as an inexpensive, efficacious, and quick one in the estimation of the structures' seismic response is broadly used in engineering contexts. In this research three concrete frames of 3, 6, and 13 stories are analyzed in non-linear modal push over by 30 different earthquake records by OpenSEES software, then the detriment indexes of roof's displacement and relative displacement ratio of the stories are calculated by two parameters: peak ground acceleration and spectra acceleration. These indexes are used to establish the value of damage relations with log-normal distribution and logistics distribution. Finally the value of these relations is compared and the effect of height on the mentioned damage relations is studied, too. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=modal%20pushover%20analysis" title="modal pushover analysis">modal pushover analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=concrete%20structure" title=" concrete structure"> concrete structure</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20damage" title=" seismic damage"> seismic damage</a>, <a href="https://publications.waset.org/abstracts/search?q=log-normal%20distribution" title=" log-normal distribution"> log-normal distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=logistic%20distribution" title=" logistic distribution"> logistic distribution</a> </p> <a href="https://publications.waset.org/abstracts/38163/study-of-seismic-damage-reinforced-concrete-frames-in-variable-height-with-logistic-statistic-function-distribution" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38163.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">246</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7970</span> Highly Sensitive Fiber-Optic Curvature Sensor Based on Four Mode Fiber</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Qihang%20Zeng">Qihang Zeng</a>, <a href="https://publications.waset.org/abstracts/search?q=Wei%20Xu"> Wei Xu</a>, <a href="https://publications.waset.org/abstracts/search?q=Ying%20Shen"> Ying Shen</a>, <a href="https://publications.waset.org/abstracts/search?q=Changyuan%20Yu"> Changyuan Yu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, a highly sensitive fiber-optic curvature sensor based on four mode fiber (FMF) is presented and investigated. The proposed sensing structure is constructed by fusing a section of FMF into two standard single mode fibers (SMFs) concatenated with two no core fiber (NCF), i.e., SMF-NCF-FMF-NCF-SMF structure is fabricated. The length of the NCF is very short about 1 millimeter acting as exciting/recoupling the light from/into the core of the SMF, while the FMF is with 3 centimeters long supporting four eigenmodes including LP₀₁, LP₁₁, LP₂₁ and LP₀₂. High core modes in FMF can be effectively stimulated owing to mismatched mode field distribution and the mainly sensing principle is based on modal interferometer spectrum analysis. Different curvatures induce different strains on the FMF such that affecting the modal excitation, resulting spectrum shifts. One can get the curvature value by tracking the wavelength shifting. Experiments have been done to address the sensing performance, which is about 7.8 nm/m⁻¹ within a range of 1.90 m⁻¹~3.18 m⁻¹. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=curvature" title="curvature">curvature</a>, <a href="https://publications.waset.org/abstracts/search?q=four%20mode%20fiber" title=" four mode fiber"> four mode fiber</a>, <a href="https://publications.waset.org/abstracts/search?q=highly%20sensitive" title=" highly sensitive"> highly sensitive</a>, <a href="https://publications.waset.org/abstracts/search?q=modal%20interferometer" title=" modal interferometer"> modal interferometer</a> </p> <a href="https://publications.waset.org/abstracts/99798/highly-sensitive-fiber-optic-curvature-sensor-based-on-four-mode-fiber" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/99798.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">191</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7969</span> Variations of the Modal Characteristics of the Feeding Stage with Different Preloaded Linear Guide</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jui-Pui%20Hung">Jui-Pui Hung</a>, <a href="https://publications.waset.org/abstracts/search?q=Yong-Run%20Chen"> Yong-Run Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Wei-Cheng%20Shih"> Wei-Cheng Shih</a>, <a href="https://publications.waset.org/abstracts/search?q=Chun-Wei%20Lin"> Chun-Wei Lin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study was aimed to assess the variations of the modal characteristics of the feeding stage with different linear guide modulus. The dynamic characteristics of the feeding stage were characterized in terms of the modal stiffness, modal frequency and modal damping, which are assessed from the vibration tests. According to the experimental measurements, the actual preload of the linear guide modulus was found to deviate from the rated values as setting in factory. This may be due to the assemblage errors of guide modules. For the stage with linear guides, the dynamic stiffness was affected to change by the preload set on the rolling balls. The variation of the dynamic stiffness at first and second modes is 20.8 and 10.5%, respectively when the linear guide preload is adjusted from medium and high amount. But the modal damping ratio is reduced by 8.97 and 9.65%, respectively. For high-frequency mode, the modal stiffness increases by 171.2% and the damping ratio reduced by 34.4%. Current results demonstrate the importance in the determining the preloaded amount of linear guide modulus in practical application. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=contact%20stiffness" title="contact stiffness">contact stiffness</a>, <a href="https://publications.waset.org/abstracts/search?q=feeding%20stage" title=" feeding stage"> feeding stage</a>, <a href="https://publications.waset.org/abstracts/search?q=linear%20guides" title=" linear guides"> linear guides</a>, <a href="https://publications.waset.org/abstracts/search?q=modal%20characteristics" title=" modal characteristics"> modal characteristics</a>, <a href="https://publications.waset.org/abstracts/search?q=pre-load" title=" pre-load"> pre-load</a> </p> <a href="https://publications.waset.org/abstracts/51628/variations-of-the-modal-characteristics-of-the-feeding-stage-with-different-preloaded-linear-guide" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51628.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">430</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7968</span> The Use of Corpora in Improving Modal Verb Treatment in English as Foreign Language Textbooks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lexi%20Li">Lexi Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Vanessa%20H.%20K.%20Pang"> Vanessa H. K. Pang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study aims to demonstrate how native and learner corpora can be used to enhance modal verb treatment in EFL textbooks in mainland China. It contributes to a corpus-informed and learner-centered design of grammar presentation in EFL textbooks that enhances the authenticity and appropriateness of textbook language for target learners. The linguistic focus is will, would, can, could, may, might, shall, should, must. The native corpus is the spoken component of BNC2014 (hereafter BNCS2014). The spoken part is chosen because pedagogical purpose of the textbooks is communication-oriented. Using the standard query option of CQPweb, 5% of each of the nine modals was sampled from BNCS2014. The learner corpus is the POS-tagged Ten-thousand English Compositions of Chinese Learners (TECCL). All the essays under the 'secondary school' section were selected. A series of five secondary coursebooks comprise the textbook corpus. All the data in both the learner and the textbook corpora are retrieved through the concordance functions of WordSmith Tools (version, 5.0). Data analysis was divided into two parts. The first part compared the patterns of modal verbs in the textbook corpus and BNC2014 with respect to distributional features, semantic functions, and co-occurring constructions to examine whether the textbooks reflect the authentic use of English. Secondly, the learner corpus was analyzed in terms of the use (distributional features, semantic functions, and co-occurring constructions) and the misuse (syntactic errors, e.g., she can sings*.) of the nine modal verbs to uncover potential difficulties that confront learners. The analysis of distribution indicates several discrepancies between the textbook corpus and BNCS2014. The first four most frequent modal verbs in BNCS2014 are can, would, will, could, while can, will, should, could are the top four in the textbooks. Most strikingly, there is an unusually high proportion of can (41.1%) in the textbooks. The results on different meanings shows that will, would and must are the most problematic. For example, for will, the textbooks contain 20% more occurrences of 'volition' and 20% less of 'prediction' than those in BNCS2014. Regarding co-occurring structures, the textbooks over-represented the structure 'modal +do' across the nine modal verbs. Another major finding is that the structure of 'modal +have done' that frequently co-occur with could, would, should, and must is underused in textbooks. Besides, these four modal verbs are the most difficult for learners, as the error analysis shows. This study demonstrates how the synergy of native and learner corpora can be harnessed to improve EFL textbook presentation of modal verbs in a way that textbooks can provide not only authentic language used in natural discourse but also appropriate design tailed for the needs of target learners. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=English%20as%20Foreign%20Language" title="English as Foreign Language">English as Foreign Language</a>, <a href="https://publications.waset.org/abstracts/search?q=EFL%20textbooks" title=" EFL textbooks"> EFL textbooks</a>, <a href="https://publications.waset.org/abstracts/search?q=learner%20corpus" title=" learner corpus"> learner corpus</a>, <a href="https://publications.waset.org/abstracts/search?q=modal%20verbs" title=" modal verbs"> modal verbs</a>, <a href="https://publications.waset.org/abstracts/search?q=native%20corpus" title=" native corpus"> native corpus</a> </p> <a href="https://publications.waset.org/abstracts/109495/the-use-of-corpora-in-improving-modal-verb-treatment-in-english-as-foreign-language-textbooks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/109495.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">143</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7967</span> Modal Density Influence on Modal Complexity Quantification in Dynamic Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fabrizio%20Iezzi">Fabrizio Iezzi</a>, <a href="https://publications.waset.org/abstracts/search?q=Claudio%20Valente"> Claudio Valente</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The viscous damping in dynamic systems can be proportional or non-proportional. In the first case, the mode shapes are real whereas in the second case they are complex. From an engineering point of view, the complexity of the mode shapes is important in order to quantify the non-proportional damping. Different indices exist to provide estimates of the modal complexity. These indices are or not zero, depending whether the mode shapes are not or are complex. The modal density problem arises in the experimental identification when the dynamic systems have close modal frequencies. Depending on the entity of this closeness, the mode shapes can hold fictitious imaginary quantities that affect the values of the modal complexity indices. The results are the failing in the identification of the real or complex mode shapes and then of the proportional or non-proportional damping. The paper aims to show the influence of the modal density on the values of these indices in case of both proportional and non-proportional damping. Theoretical and pseudo-experimental solutions are compared to analyze the problem according to an appropriate mechanical system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=complex%20mode%20shapes" title="complex mode shapes">complex mode shapes</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20systems%20identification" title=" dynamic systems identification"> dynamic systems identification</a>, <a href="https://publications.waset.org/abstracts/search?q=modal%20density" title=" modal density"> modal density</a>, <a href="https://publications.waset.org/abstracts/search?q=non-proportional%20damping" title=" non-proportional damping"> non-proportional damping</a> </p> <a href="https://publications.waset.org/abstracts/52803/modal-density-influence-on-modal-complexity-quantification-in-dynamic-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52803.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">387</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7966</span> The Cracks Propagation Monitoring of a Cantilever Beam Using Modal Analysis </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Morteza%20Raki">Morteza Raki</a>, <a href="https://publications.waset.org/abstracts/search?q=Abolghasem%20Zabihollah"> Abolghasem Zabihollah</a>, <a href="https://publications.waset.org/abstracts/search?q=Omid%20Askari"> Omid Askari </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cantilever beam is a simplified sample of a lot of mechanical components used in a wide range of applications, including many industries such as gas turbine blade. Due to the nature of the operating conditions, beams are subject to variety of damages especially crack propagates. Crack propagation may lead to catastrophic failure during operation. Therefore, online detection of crack presence and its propagation is very important and may reduce possible significant cost of the whole system failure. This paper aims to investigate the effect of cracks presence and crack propagation on one end fixed beam`s vibration. A finite element model will be developed for the blade in which the modal response of the structure with and without crack will be studied. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=blade" title="blade">blade</a>, <a href="https://publications.waset.org/abstracts/search?q=crack%20propagation" title=" crack propagation"> crack propagation</a>, <a href="https://publications.waset.org/abstracts/search?q=health%20monitoring" title=" health monitoring"> health monitoring</a>, <a href="https://publications.waset.org/abstracts/search?q=modal%20analysis" title=" modal analysis"> modal analysis</a> </p> <a href="https://publications.waset.org/abstracts/48812/the-cracks-propagation-monitoring-of-a-cantilever-beam-using-modal-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48812.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">344</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7965</span> Pseudo Modal Operating Deflection Shape Based Estimation Technique of Mode Shape Using Time History Modal Assurance Criterion</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Doyoung%20Kim">Doyoung Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyo%20Seon%20Park"> Hyo Seon Park</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Studies of System Identification(SI) based on Structural Health Monitoring(SHM) have actively conducted for structural safety. Recently SI techniques have been rapidly developed with output-only SI paradigm for estimating modal parameters. The features of these output-only SI methods consist of Frequency Domain Decomposition(FDD) and Stochastic Subspace Identification(SSI) are using the algorithms based on orthogonal decomposition such as singular value decomposition(SVD). But the SVD leads to high level of computational complexity to estimate modal parameters. This paper proposes the technique to estimate mode shape with lower computational cost. This technique shows pseudo modal Operating Deflections Shape(ODS) through bandpass filter and suggests time history Modal Assurance Criterion(MAC). Finally, mode shape could be estimated from pseudo modal ODS and time history MAC. Analytical simulations of vibration measurement were performed and the results with mode shape and computation time between representative SI method and proposed method were compared. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=modal%20assurance%20criterion" title="modal assurance criterion">modal assurance criterion</a>, <a href="https://publications.waset.org/abstracts/search?q=mode%20shape" title=" mode shape"> mode shape</a>, <a href="https://publications.waset.org/abstracts/search?q=operating%20deflection%20shape" title=" operating deflection shape"> operating deflection shape</a>, <a href="https://publications.waset.org/abstracts/search?q=system%20identification" title=" system identification"> system identification</a> </p> <a href="https://publications.waset.org/abstracts/52251/pseudo-modal-operating-deflection-shape-based-estimation-technique-of-mode-shape-using-time-history-modal-assurance-criterion" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52251.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">410</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7964</span> Study on the Dynamic Characteristics Change of Welded Beam Due to Vibration Aging</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20H.%20Bae">S. H. Bae</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20W.%20Cho"> D. W. Cho</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20B.%20Jeong"> W. B. Jeong</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20R.%20Cho"> J. R. Cho</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fatigue fracture of an aluminum welded structure is a phenomenon frequently occurring from pores in a weld. In order to grasp the state of the welded structure in operation in real time, the acceleration signal of the structure is measured. At this time, the vibration characteristic of the signal according to the fatigue load is an important parameter of the state diagnosis. This paper was an experimental study on the variation of vibration characteristics of welded beams with vibration aging (especially bending vibration). First simple beams were produced according to welding conditions. Each beam was vibrated and measured beam's PSD (power spectral density) according to the degree of aging. Also, modal testing was conducted to compare the transfer functions of welded beams. Testing result shows that the natural frequencies of the beam changed with the vibration aging due to the change of stiffness in welding part and its stiffness was estimated by the finite element method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=modal%20testing" title="modal testing">modal testing</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20frequency" title=" natural frequency"> natural frequency</a>, <a href="https://publications.waset.org/abstracts/search?q=vibration%20aging" title=" vibration aging"> vibration aging</a>, <a href="https://publications.waset.org/abstracts/search?q=welded%20structure" title=" welded structure"> welded structure</a> </p> <a href="https://publications.waset.org/abstracts/79035/study-on-the-dynamic-characteristics-change-of-welded-beam-due-to-vibration-aging" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79035.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">483</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7963</span> Damage Identification Using Experimental Modal Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Niladri%20Sekhar%20Barma">Niladri Sekhar Barma</a>, <a href="https://publications.waset.org/abstracts/search?q=Satish%20Dhandole"> Satish Dhandole</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Damage identification in the context of safety, nowadays, has become a fundamental research interest area in the field of mechanical, civil, and aerospace engineering structures. The following research is aimed to identify damage in a mechanical beam structure and quantify the severity or extent of damage in terms of loss of stiffness, and obtain an updated analytical Finite Element (FE) model. An FE model is used for analysis, and the location of damage for single and multiple damage cases is identified numerically using the modal strain energy method and mode shape curvature method. Experimental data has been acquired with the help of an accelerometer. Fast Fourier Transform (FFT) algorithm is applied to the measured signal, and subsequently, post-processing is done in MEscopeVes software. The two sets of data, the numerical FE model and experimental results, are compared to locate the damage accurately. The extent of the damage is identified via modal frequencies using a mixed numerical-experimental technique. Mode shape comparison is performed by Modal Assurance Criteria (MAC). The analytical FE model is adjusted by the direct method of model updating. The same study has been extended to some real-life structures such as plate and GARTEUR structures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=damage%20identification" title="damage identification">damage identification</a>, <a href="https://publications.waset.org/abstracts/search?q=damage%20quantification" title=" damage quantification"> damage quantification</a>, <a href="https://publications.waset.org/abstracts/search?q=damage%20detection%20using%20modal%20analysis" title=" damage detection using modal analysis"> damage detection using modal analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20damage%20identification" title=" structural damage identification"> structural damage identification</a> </p> <a href="https://publications.waset.org/abstracts/150078/damage-identification-using-experimental-modal-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/150078.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">116</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7962</span> Influence of the 3D Printing Parameters on the Dynamic Characteristics of Composite Structures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Raza">Ali Raza</a>, <a href="https://publications.waset.org/abstracts/search?q=R%C5%ABta%20Rima%C5%A1auskien%C4%97"> Rūta Rimašauskienė</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the current work, the fused deposition modelling (FDM) technique is used to manufacture PLA reinforced with carbon fibre composite structures with two unique layer patterns, 0°\0° and 0°\90°. The purpose of the study is to investigate the dynamic characteristics of each fabricated composite structure. The Macro Fiber Composite (MFC) is embedded with 0°/0° and 0°/90° structures to investigate the effect of an MFC (M8507-P2 type) patch on vibration amplitude suppression under dynamic loading circumstances. First, modal analysis testing was performed using a Polytec 3D laser vibrometer to identify bending mode shapes, natural frequencies, and vibration amplitudes at the corresponding natural frequencies. To determine the stiffness of each structure, several loads were applied at the free end of the structure, and the deformation was recorded using a laser displacement sensor. The findings confirm that a structure with 0°\0° layers pattern was found to have more stiffness compared to a 0°\90° structure. The maximum amplitude suppression in each structure was measured using a laser displacement sensor at the first resonant frequency when the control voltage signal with optimal phase was applied to the MFC. The results confirm that the 0°/0° pattern's structure exhibits a higher displacement reduction than the 0°/90° pattern. Moreover, stiffer structures have been found to perform amplitude suppression more effectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon%20fibre%20composite" title="carbon fibre composite">carbon fibre composite</a>, <a href="https://publications.waset.org/abstracts/search?q=MFC" title=" MFC"> MFC</a>, <a href="https://publications.waset.org/abstracts/search?q=modal%20analysis%20stiffness" title=" modal analysis stiffness"> modal analysis stiffness</a>, <a href="https://publications.waset.org/abstracts/search?q=stiffness" title=" stiffness"> stiffness</a> </p> <a href="https://publications.waset.org/abstracts/181553/influence-of-the-3d-printing-parameters-on-the-dynamic-characteristics-of-composite-structures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/181553.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">63</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7961</span> Design of a Vehicle Door Structure Based on Finite Element Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tawanda%20Mushiri">Tawanda Mushiri</a>, <a href="https://publications.waset.org/abstracts/search?q=Charles%20Mbohwa"> Charles Mbohwa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The performance of door assembly is very significant for the vehicle design. In the present paper, the finite element method is used in the development processes of the door assembly. The stiffness, strength, modal characteristic, and anti-extrusion of a newly developed passenger vehicle door assembly are calculated and evaluated by several finite element analysis commercial software. The structural problems discovered by FE analysis have been modified and finally achieved the expected door structure performance target of this new vehicle. The issue in focus is to predict the performance of the door assembly by powerful finite element analysis software, and optimize the structure to meet the design targets. It is observed that this method can be used to forecast the performance of vehicle door efficiently when it’s designed. In order to reduce lead time and cost in the product development of vehicles more development will be made virtually. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=vehicle%20door" title="vehicle door">vehicle door</a>, <a href="https://publications.waset.org/abstracts/search?q=structure" title=" structure"> structure</a>, <a href="https://publications.waset.org/abstracts/search?q=strength" title=" strength"> strength</a>, <a href="https://publications.waset.org/abstracts/search?q=stiffness" title=" stiffness"> stiffness</a>, <a href="https://publications.waset.org/abstracts/search?q=modal%20characteristic" title=" modal characteristic"> modal characteristic</a>, <a href="https://publications.waset.org/abstracts/search?q=anti-extrusion" title=" anti-extrusion"> anti-extrusion</a>, <a href="https://publications.waset.org/abstracts/search?q=Finite%20Element%20Method" title=" Finite Element Method"> Finite Element Method</a> </p> <a href="https://publications.waset.org/abstracts/13002/design-of-a-vehicle-door-structure-based-on-finite-element-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13002.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">429</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7960</span> Acoustic Induced Vibration Response Analysis of Honeycomb Panel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Po-Yuan%20Tung">Po-Yuan Tung</a>, <a href="https://publications.waset.org/abstracts/search?q=Jen-Chueh%20Kuo"> Jen-Chueh Kuo</a>, <a href="https://publications.waset.org/abstracts/search?q=Chia-Ray%20Chen"> Chia-Ray Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Chien-Hsing%20Li"> Chien-Hsing Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Kuo-Liang%20Pan"> Kuo-Liang Pan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main-body structure of satellite is mainly constructed by lightweight material, it should be able to withstand certain vibration load during launches. Since various kinds of change possibility in the space, it is an extremely important work to study the random vibration response of satellite structure. This paper based on the reciprocity relationship between sound and structure response and it will try to evaluate the dynamic response of satellite main body under random acoustic load excitation. This paper will study the technical process and verify the feasibility of sonic-borne vibration analysis. One simple plate exposed to the uniform acoustic field is utilized to take some important parameters and to validate the acoustics field model of the reverberation chamber. Then import both structure and acoustic field chamber models into the vibro-acoustic coupling analysis software to predict the structure response. During the modeling process, experiment verification is performed to make sure the quality of numerical models. Finally, the surface vibration level can be calculated through the modal participation factor, and the analysis results are presented in PSD spectrum. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=vibration" title="vibration">vibration</a>, <a href="https://publications.waset.org/abstracts/search?q=acoustic" title=" acoustic"> acoustic</a>, <a href="https://publications.waset.org/abstracts/search?q=modal" title=" modal"> modal</a>, <a href="https://publications.waset.org/abstracts/search?q=honeycomb%20panel" title=" honeycomb panel"> honeycomb panel</a> </p> <a href="https://publications.waset.org/abstracts/31655/acoustic-induced-vibration-response-analysis-of-honeycomb-panel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31655.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">555</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7959</span> A Semantic Analysis of Modal Verbs in Barak Obama’s 2012 Presidential Campaign Speech</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kais%20A.%20Kadhim">Kais A. Kadhim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper is a semantic analysis of the English modals in Obama’s speech. The main objective of this study is to analyze selected modal auxiliaries identified in selected speeches of Obama’s campaign based on Coates’ (1983) semantic clusters. A total of fifteen speeches of Obama’s campaign were selected as the primary data and the modal auxiliaries selected for analysis include will, would, can, could, should, must, ought, shall, may and might. All the modal auxiliaries taken from the speeches of Barack Obama were analyzed based on the framework of Coates’ semantic clusters. Such analytical framework was carried out to examine how modal auxiliaries are used in the context of persuading people in Obama’s campaign speeches. The findings reveal that modals of intention, prediction, futurity and modals of possibility, ability, permission are mostly used in Obama’s campaign speeches. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=modals" title="modals">modals</a>, <a href="https://publications.waset.org/abstracts/search?q=meaning" title=" meaning"> meaning</a>, <a href="https://publications.waset.org/abstracts/search?q=persuasion" title=" persuasion"> persuasion</a>, <a href="https://publications.waset.org/abstracts/search?q=speech" title=" speech"> speech</a> </p> <a href="https://publications.waset.org/abstracts/13912/a-semantic-analysis-of-modal-verbs-in-barak-obamas-2012-presidential-campaign-speech" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13912.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">405</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7958</span> Numerical Modal Analysis of a Multi-Material 3D-Printed Composite Bushing and Its Application</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pawe%C5%82%20%C5%BBur">Paweł Żur</a>, <a href="https://publications.waset.org/abstracts/search?q=Alicja%20%C5%BBur"> Alicja Żur</a>, <a href="https://publications.waset.org/abstracts/search?q=Andrzej%20Baier"> Andrzej Baier</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Modal analysis is a crucial tool in the field of engineering for understanding the dynamic behavior of structures. In this study, numerical modal analysis was conducted on a multi-material 3D-printed composite bushing, which comprised a polylactic acid (PLA) outer shell and a thermoplastic polyurethane (TPU) flexible filling. The objective was to investigate the modal characteristics of the bushing and assess its potential for practical applications. The analysis involved the development of a finite element model of the bushing, which was subsequently subjected to modal analysis techniques. Natural frequencies, mode shapes, and damping ratios were determined to identify the dominant vibration modes and their corresponding responses. The numerical modal analysis provided valuable insights into the dynamic behavior of the bushing, enabling a comprehensive understanding of its structural integrity and performance. Furthermore, the study expanded its scope by investigating the entire shaft mounting of a small electric car, incorporating the 3D-printed composite bushing. The shaft mounting system was subjected to numerical modal analysis to evaluate its dynamic characteristics and potential vibrational issues. The results of the modal analysis highlighted the effectiveness of the 3D-printed composite bushing in minimizing vibrations and optimizing the performance of the shaft mounting system. The findings contribute to the broader field of composite material applications in automotive engineering and provide valuable insights for the design and optimization of similar components. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=3D%20printing" title="3D printing">3D printing</a>, <a href="https://publications.waset.org/abstracts/search?q=composite%20bushing" title=" composite bushing"> composite bushing</a>, <a href="https://publications.waset.org/abstracts/search?q=modal%20analysis" title=" modal analysis"> modal analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-material" title=" multi-material"> multi-material</a> </p> <a href="https://publications.waset.org/abstracts/168441/numerical-modal-analysis-of-a-multi-material-3d-printed-composite-bushing-and-its-application" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168441.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">109</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7957</span> Structural Damage Detection Using Sensors Optimally Located</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Carlos%20Alberto%20Riveros">Carlos Alberto Riveros</a>, <a href="https://publications.waset.org/abstracts/search?q=Edwin%20Fabi%C3%A1n%20Garc%C3%ADa"> Edwin Fabián García</a>, <a href="https://publications.waset.org/abstracts/search?q=Javier%20Enrique%20Rivero"> Javier Enrique Rivero</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The measured data obtained from sensors in continuous monitoring of civil structures are mainly used for modal identification and damage detection. Therefore when modal identification analysis is carried out the quality in the identification of the modes will highly influence the damage detection results. It is also widely recognized that the usefulness of the measured data used for modal identification and damage detection is significantly influenced by the number and locations of sensors. The objective of this study is the numerical implementation of two widely known optimum sensor placement methods in beam-like structures <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=optimum%20sensor%20placement" title="optimum sensor placement">optimum sensor placement</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20damage%20detection" title=" structural damage detection"> structural damage detection</a>, <a href="https://publications.waset.org/abstracts/search?q=modal%20identification" title=" modal identification"> modal identification</a>, <a href="https://publications.waset.org/abstracts/search?q=beam-like%20structures." title=" beam-like structures. "> beam-like structures. </a> </p> <a href="https://publications.waset.org/abstracts/15240/structural-damage-detection-using-sensors-optimally-located" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15240.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">431</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7956</span> Model Updating-Based Approach for Damage Prognosis in Frames via Modal Residual Force</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gholamreza%20Ghodrati%20Amiri">Gholamreza Ghodrati Amiri</a>, <a href="https://publications.waset.org/abstracts/search?q=Mojtaba%20Jafarian%20Abyaneh"> Mojtaba Jafarian Abyaneh</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Zare%20Hosseinzadeh"> Ali Zare Hosseinzadeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents an effective model updating strategy for damage localization and quantification in frames by defining damage detection problem as an optimization issue. A generalized version of the Modal Residual Force (MRF) is employed for presenting a new damage-sensitive cost function. Then, Grey Wolf Optimization (GWO) algorithm is utilized for solving suggested inverse problem and the global extremums are reported as damage detection results. The applicability of the presented method is investigated by studying different damage patterns on the benchmark problem of the IASC-ASCE, as well as a planar shear frame structure. The obtained results emphasize good performance of the method not only in free-noise cases, but also when the input data are contaminated with different levels of noises. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=frame" title="frame">frame</a>, <a href="https://publications.waset.org/abstracts/search?q=grey%20wolf%20optimization%20algorithm" title=" grey wolf optimization algorithm"> grey wolf optimization algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=modal%20residual%20force" title=" modal residual force"> modal residual force</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20damage%20detection" title=" structural damage detection"> structural damage detection</a> </p> <a href="https://publications.waset.org/abstracts/47524/model-updating-based-approach-for-damage-prognosis-in-frames-via-modal-residual-force" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47524.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">389</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7955</span> Structural Parameter Identification of Old Steel Truss Bridges</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Bogdanovic">A. Bogdanovic</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Vitanova"> M. Vitanova</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Bojadjieva"> J. Bojadjieva</a>, <a href="https://publications.waset.org/abstracts/search?q=Z.%20Rakicevic"> Z. Rakicevic</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Sesov"> V. Sesov</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Edip"> K. Edip</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Naumovski"> N. Naumovski</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Manojlovski"> F. Manojlovski</a>, <a href="https://publications.waset.org/abstracts/search?q=A.Popovska"> A.Popovska</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Shoklarovski"> A. Shoklarovski</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Kitanovski"> T. Kitanovski</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Ivanovski"> D. Ivanovski</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Markovski"> I. Markovski</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Filipovski"> D. Filipovski</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The conditions of existing structures change in the course of time and can hardly be characterized particularly if a bridge has long been in function and there is no design documentation related to it. To define the real conditions of a structure, detailed static and dynamic analysis of the structure has to be carried out and its modal parameters have to be defined accurately. Modal analysis enables a quite accurate identification of the natural frequencies and mode shapes. Presented in this paper are the results from the performed detailed analyses of a steel truss bridge that has been in use for more than 7 decades by the military services of R.N. Macedonia and for which there is no documentation at all. Static and dynamic investigations and ambient vibration measurements were performed. The acquired data were used to identify the mode shapes that were used for comparison with the numerical model. Dynamic tests were performed to define the bridge behaviour and the damping index. Finally, based on all the conducted detailed analyses and investigations, conclusions on the conditions of the bridge structure were drawn. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ambient%20vibrations" title="ambient vibrations">ambient vibrations</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20identification" title=" dynamic identification"> dynamic identification</a>, <a href="https://publications.waset.org/abstracts/search?q=in-situ%20measurement" title=" in-situ measurement"> in-situ measurement</a>, <a href="https://publications.waset.org/abstracts/search?q=steel%20truss%20bridge" title=" steel truss bridge"> steel truss bridge</a> </p> <a href="https://publications.waset.org/abstracts/153967/structural-parameter-identification-of-old-steel-truss-bridges" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/153967.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">91</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7954</span> Application of Modal Analysis for Commissioning of a Ball Screw System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=T.%20D.%20Tran">T. D. Tran</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Schlegel"> H. Schlegel</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Neugebauer"> R. Neugebauer</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ball screws are an important component in machine tools. In mechatronic systems and machine tools, a ball screw has to work usually at a high speed. Otherwise the axial compliance of the ball screw, in combination with the inertia of the slide, the motor, the coupling and the screw, will cause an oscillation resonance, which limits the systems bandwidth and consequently influences performance of the motion controller. In this paper, the modal analysis method by measuring and analysing the vibrating parameters of the ball screw system to determine the dynamic characteristic of existing structures is used. On the one hand, the results of this study were obtained by the theoretical analysis and the modal testing of a ball screw system test station with the help of an impact hammer, respectively using excitation by motor. The experimental study showed oscillating forms of the ball screw for each frequency and obtained eigenfrequencies of the ball screw system. On the other hand, in this research a simulation with the help of the numerical modal analysis in order to analyse the oscillation and to find the eigenfrequencies of the ball screw system is used. Furthermore, the model order reduction by modal reduction and also according to Guyan is carried out. On the basis of these results a secure and also rapid commissioning of the control loops with regard to operating in their optimal function is targeted. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=modal%20analysis" title="modal analysis">modal analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=ball%20screw" title=" ball screw"> ball screw</a>, <a href="https://publications.waset.org/abstracts/search?q=controller%20system" title=" controller system"> controller system</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20tools" title=" machine tools"> machine tools</a> </p> <a href="https://publications.waset.org/abstracts/22744/application-of-modal-analysis-for-commissioning-of-a-ball-screw-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22744.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">460</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7953</span> Modal Analysis of a Cantilever Beam Using an Inexpensive Smartphone Camera: Motion Magnification Technique</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hasan%20Hassoun">Hasan Hassoun</a>, <a href="https://publications.waset.org/abstracts/search?q=Jaafar%20Hallal"> Jaafar Hallal</a>, <a href="https://publications.waset.org/abstracts/search?q=Denis%20Duhamel"> Denis Duhamel</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Hammoud"> Mohammad Hammoud</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Hage%20Diab"> Ali Hage Diab</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper aims to prove the accuracy of an inexpensive smartphone camera as a non-contact vibration sensor to recover the vibration modes of a vibrating structure such as a cantilever beam. A video of a vibrating beam is filmed using a smartphone camera and then processed by the motion magnification technique. Based on this method, the first two natural frequencies and their associated mode shapes are estimated experimentally and compared to the analytical ones. Results show a relative error of less than 4% between the experimental and analytical approaches for the first two natural frequencies of the beam. Also, for the first two-mode shapes, a Modal Assurance Criterion (MAC) value of above 0.9 between the two approaches is obtained. This slight error between the different techniques ensures the viability of a cheap smartphone camera as a non-contact vibration sensor, particularly for structures vibrating at relatively low natural frequencies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=modal%20analysis" title="modal analysis">modal analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=motion%20magnification" title=" motion magnification"> motion magnification</a>, <a href="https://publications.waset.org/abstracts/search?q=smartphone%20camera" title=" smartphone camera"> smartphone camera</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20vibration" title=" structural vibration"> structural vibration</a>, <a href="https://publications.waset.org/abstracts/search?q=vibration%20modes" title=" vibration modes"> vibration modes</a> </p> <a href="https://publications.waset.org/abstracts/127525/modal-analysis-of-a-cantilever-beam-using-an-inexpensive-smartphone-camera-motion-magnification-technique" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/127525.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">148</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=modal%20structure&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=modal%20structure&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=modal%20structure&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=modal%20structure&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=modal%20structure&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=modal%20structure&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=modal%20structure&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=modal%20structure&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=modal%20structure&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=modal%20structure&page=266">266</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=modal%20structure&page=267">267</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=modal%20structure&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>