CINXE.COM
Roulette - Wikipedia
<!DOCTYPE html> <html class="client-nojs skin-theme-clientpref-day mf-expand-sections-clientpref-0 mf-font-size-clientpref-small mw-mf-amc-clientpref-0" lang="en" dir="ltr"> <head> <meta charset="UTF-8"> <title>Roulette - Wikipedia</title> <script>(function(){var className="client-js skin-theme-clientpref-day mf-expand-sections-clientpref-0 mf-font-size-clientpref-small mw-mf-amc-clientpref-0";var cookie=document.cookie.match(/(?:^|; )enwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy","wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"dd40d168-2699-4e0c-abf6-28b434e14de5","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Roulette","wgTitle":"Roulette","wgCurRevisionId":1253716659,"wgRevisionId":1253716659,"wgArticleId":26487,"wgIsArticle": true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgPageViewLanguage":"en","wgPageContentLanguage":"en","wgPageContentModel":"wikitext","wgRelevantPageName":"Roulette","wgRelevantArticleId":26487,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{"status":{"levels":1}}},"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"en","pageLanguageDir":"ltr","pageVariantFallbacks":"en"},"wgMFMode":"stable","wgMFAmc":false,"wgMFAmcOutreachActive":false,"wgMFAmcOutreachUserEligible":false,"wgMFLazyLoadImages":true,"wgMFEditNoticesFeatureConflict":false,"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false,"nearby":true},"wgMFIsSupportedEditRequest":true,"wgMFScriptPath":"", "wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":50000,"wgRelatedArticlesCompat":[],"wgEditSubmitButtonLabelPublish":true,"wgSectionTranslationMissingLanguages":[{"lang":"ace","autonym":"Acèh","dir":"ltr"},{"lang":"ady","autonym":"адыгабзэ","dir":"ltr"},{"lang":"alt","autonym":"алтай тил","dir":"ltr"},{"lang":"am","autonym":"አማርኛ","dir":"ltr"},{"lang":"ami","autonym":"Pangcah","dir":"ltr"},{"lang":"an","autonym":"aragonés","dir":"ltr"},{"lang":"ang","autonym":"Ænglisc","dir":"ltr"},{"lang":"ann","autonym":"Obolo","dir":"ltr"},{"lang":"anp","autonym":"अंगिका","dir":"ltr"},{"lang":"ary","autonym":"الدارجة","dir":"rtl"},{"lang":"arz","autonym":"مصرى","dir":"rtl"},{"lang":"as","autonym":"অসমীয়া","dir":"ltr"},{"lang":"av","autonym":"авар","dir":"ltr"},{"lang":"avk","autonym":"Kotava","dir":"ltr"},{"lang":"awa","autonym":"अवधी","dir":"ltr"},{"lang":"ay","autonym":"Aymar aru","dir":"ltr"},{"lang":"az", "autonym":"azərbaycanca","dir":"ltr"},{"lang":"azb","autonym":"تۆرکجه","dir":"rtl"},{"lang":"ba","autonym":"башҡортса","dir":"ltr"},{"lang":"ban","autonym":"Basa Bali","dir":"ltr"},{"lang":"bbc","autonym":"Batak Toba","dir":"ltr"},{"lang":"bcl","autonym":"Bikol Central","dir":"ltr"},{"lang":"bdr","autonym":"Bajau Sama","dir":"ltr"},{"lang":"be","autonym":"беларуская","dir":"ltr"},{"lang":"bho","autonym":"भोजपुरी","dir":"ltr"},{"lang":"bi","autonym":"Bislama","dir":"ltr"},{"lang":"bjn","autonym":"Banjar","dir":"ltr"},{"lang":"blk","autonym":"ပအိုဝ်ႏဘာႏသာႏ","dir":"ltr"},{"lang":"bm","autonym":"bamanankan","dir":"ltr"},{"lang":"bn","autonym":"বাংলা","dir":"ltr"},{"lang":"bo","autonym":"བོད་ཡིག","dir":"ltr"},{"lang":"bpy","autonym":"বিষ্ণুপ্রিয়া মণিপুরী","dir":"ltr"},{"lang":"br","autonym":"brezhoneg","dir":"ltr"},{"lang":"bs","autonym":"bosanski","dir":"ltr"}, {"lang":"btm","autonym":"Batak Mandailing","dir":"ltr"},{"lang":"bug","autonym":"Basa Ugi","dir":"ltr"},{"lang":"cdo","autonym":"閩東語 / Mìng-dĕ̤ng-ngṳ̄","dir":"ltr"},{"lang":"ce","autonym":"нохчийн","dir":"ltr"},{"lang":"ceb","autonym":"Cebuano","dir":"ltr"},{"lang":"ch","autonym":"Chamoru","dir":"ltr"},{"lang":"chr","autonym":"ᏣᎳᎩ","dir":"ltr"},{"lang":"co","autonym":"corsu","dir":"ltr"},{"lang":"cr","autonym":"Nēhiyawēwin / ᓀᐦᐃᔭᐍᐏᐣ","dir":"ltr"},{"lang":"crh","autonym":"qırımtatarca","dir":"ltr"},{"lang":"cu","autonym":"словѣньскъ / ⰔⰎⰑⰂⰡⰐⰠⰔⰍⰟ","dir":"ltr"},{"lang":"cy","autonym":"Cymraeg","dir":"ltr"},{"lang":"dag","autonym":"dagbanli","dir":"ltr"},{"lang":"dga","autonym":"Dagaare","dir":"ltr"},{"lang":"din","autonym":"Thuɔŋjäŋ","dir":"ltr"},{"lang":"diq","autonym":"Zazaki","dir":"ltr"},{"lang":"dsb","autonym":"dolnoserbski","dir":"ltr"},{"lang":"dtp","autonym":"Kadazandusun","dir":"ltr"},{"lang":"dv", "autonym":"ދިވެހިބަސް","dir":"rtl"},{"lang":"dz","autonym":"ཇོང་ཁ","dir":"ltr"},{"lang":"ee","autonym":"eʋegbe","dir":"ltr"},{"lang":"fat","autonym":"mfantse","dir":"ltr"},{"lang":"ff","autonym":"Fulfulde","dir":"ltr"},{"lang":"fj","autonym":"Na Vosa Vakaviti","dir":"ltr"},{"lang":"fo","autonym":"føroyskt","dir":"ltr"},{"lang":"fon","autonym":"fɔ̀ngbè","dir":"ltr"},{"lang":"frp","autonym":"arpetan","dir":"ltr"},{"lang":"frr","autonym":"Nordfriisk","dir":"ltr"},{"lang":"fur","autonym":"furlan","dir":"ltr"},{"lang":"fy","autonym":"Frysk","dir":"ltr"},{"lang":"gag","autonym":"Gagauz","dir":"ltr"},{"lang":"gan","autonym":"贛語","dir":"ltr"},{"lang":"gcr","autonym":"kriyòl gwiyannen","dir":"ltr"},{"lang":"gl","autonym":"galego","dir":"ltr"},{"lang":"glk","autonym":"گیلکی","dir":"rtl"},{"lang":"gn","autonym":"Avañe'ẽ","dir":"ltr"},{"lang":"gom","autonym":"गोंयची कोंकणी / Gõychi Konknni","dir":"ltr"},{"lang":"gor","autonym": "Bahasa Hulontalo","dir":"ltr"},{"lang":"gpe","autonym":"Ghanaian Pidgin","dir":"ltr"},{"lang":"gu","autonym":"ગુજરાતી","dir":"ltr"},{"lang":"guc","autonym":"wayuunaiki","dir":"ltr"},{"lang":"gur","autonym":"farefare","dir":"ltr"},{"lang":"guw","autonym":"gungbe","dir":"ltr"},{"lang":"gv","autonym":"Gaelg","dir":"ltr"},{"lang":"ha","autonym":"Hausa","dir":"ltr"},{"lang":"hak","autonym":"客家語 / Hak-kâ-ngî","dir":"ltr"},{"lang":"haw","autonym":"Hawaiʻi","dir":"ltr"},{"lang":"hi","autonym":"हिन्दी","dir":"ltr"},{"lang":"hif","autonym":"Fiji Hindi","dir":"ltr"},{"lang":"hsb","autonym":"hornjoserbsce","dir":"ltr"},{"lang":"ht","autonym":"Kreyòl ayisyen","dir":"ltr"},{"lang":"hy","autonym":"հայերեն","dir":"ltr"},{"lang":"hyw","autonym":"Արեւմտահայերէն","dir":"ltr"},{"lang":"ia","autonym":"interlingua","dir":"ltr"},{"lang":"iba","autonym":"Jaku Iban","dir":"ltr"},{"lang":"ie","autonym":"Interlingue","dir":"ltr"},{"lang":"ig","autonym": "Igbo","dir":"ltr"},{"lang":"igl","autonym":"Igala","dir":"ltr"},{"lang":"ilo","autonym":"Ilokano","dir":"ltr"},{"lang":"is","autonym":"íslenska","dir":"ltr"},{"lang":"iu","autonym":"ᐃᓄᒃᑎᑐᑦ / inuktitut","dir":"ltr"},{"lang":"jam","autonym":"Patois","dir":"ltr"},{"lang":"jv","autonym":"Jawa","dir":"ltr"},{"lang":"ka","autonym":"ქართული","dir":"ltr"},{"lang":"kaa","autonym":"Qaraqalpaqsha","dir":"ltr"},{"lang":"kab","autonym":"Taqbaylit","dir":"ltr"},{"lang":"kbd","autonym":"адыгэбзэ","dir":"ltr"},{"lang":"kbp","autonym":"Kabɩyɛ","dir":"ltr"},{"lang":"kcg","autonym":"Tyap","dir":"ltr"},{"lang":"kg","autonym":"Kongo","dir":"ltr"},{"lang":"kge","autonym":"Kumoring","dir":"ltr"},{"lang":"ki","autonym":"Gĩkũyũ","dir":"ltr"},{"lang":"kk","autonym":"қазақша","dir":"ltr"},{"lang":"kl","autonym":"kalaallisut","dir":"ltr"},{"lang":"km","autonym":"ភាសាខ្មែរ","dir":"ltr"},{"lang":"kn","autonym":"ಕನ್ನಡ","dir":"ltr"},{"lang": "koi","autonym":"перем коми","dir":"ltr"},{"lang":"krc","autonym":"къарачай-малкъар","dir":"ltr"},{"lang":"ks","autonym":"कॉशुर / کٲشُر","dir":"rtl"},{"lang":"ku","autonym":"kurdî","dir":"ltr"},{"lang":"kus","autonym":"Kʋsaal","dir":"ltr"},{"lang":"kv","autonym":"коми","dir":"ltr"},{"lang":"kw","autonym":"kernowek","dir":"ltr"},{"lang":"ky","autonym":"кыргызча","dir":"ltr"},{"lang":"lad","autonym":"Ladino","dir":"ltr"},{"lang":"lez","autonym":"лезги","dir":"ltr"},{"lang":"lg","autonym":"Luganda","dir":"ltr"},{"lang":"li","autonym":"Limburgs","dir":"ltr"},{"lang":"lij","autonym":"Ligure","dir":"ltr"},{"lang":"lld","autonym":"Ladin","dir":"ltr"},{"lang":"lmo","autonym":"lombard","dir":"ltr"},{"lang":"ln","autonym":"lingála","dir":"ltr"},{"lang":"lo","autonym":"ລາວ","dir":"ltr"},{"lang":"ltg","autonym":"latgaļu","dir":"ltr"},{"lang":"mad","autonym":"Madhurâ","dir":"ltr"},{"lang":"mai","autonym":"मैथिली","dir": "ltr"},{"lang":"map-bms","autonym":"Basa Banyumasan","dir":"ltr"},{"lang":"mdf","autonym":"мокшень","dir":"ltr"},{"lang":"mg","autonym":"Malagasy","dir":"ltr"},{"lang":"mhr","autonym":"олык марий","dir":"ltr"},{"lang":"mi","autonym":"Māori","dir":"ltr"},{"lang":"min","autonym":"Minangkabau","dir":"ltr"},{"lang":"mk","autonym":"македонски","dir":"ltr"},{"lang":"ml","autonym":"മലയാളം","dir":"ltr"},{"lang":"mn","autonym":"монгол","dir":"ltr"},{"lang":"mni","autonym":"ꯃꯤꯇꯩ ꯂꯣꯟ","dir":"ltr"},{"lang":"mnw","autonym":"ဘာသာမန်","dir":"ltr"},{"lang":"mos","autonym":"moore","dir":"ltr"},{"lang":"mr","autonym":"मराठी","dir":"ltr"},{"lang":"mrj","autonym":"кырык мары","dir":"ltr"},{"lang":"ms","autonym":"Bahasa Melayu","dir":"ltr"},{"lang":"mt","autonym":"Malti","dir":"ltr"},{"lang":"mwl","autonym":"Mirandés","dir":"ltr"},{"lang":"my","autonym":"မြန်မာဘာသာ","dir":"ltr"},{"lang":"myv", "autonym":"эрзянь","dir":"ltr"},{"lang":"mzn","autonym":"مازِرونی","dir":"rtl"},{"lang":"nah","autonym":"Nāhuatl","dir":"ltr"},{"lang":"nan","autonym":"閩南語 / Bân-lâm-gú","dir":"ltr"},{"lang":"nap","autonym":"Napulitano","dir":"ltr"},{"lang":"nb","autonym":"norsk bokmål","dir":"ltr"},{"lang":"nds","autonym":"Plattdüütsch","dir":"ltr"},{"lang":"nds-nl","autonym":"Nedersaksies","dir":"ltr"},{"lang":"ne","autonym":"नेपाली","dir":"ltr"},{"lang":"new","autonym":"नेपाल भाषा","dir":"ltr"},{"lang":"nia","autonym":"Li Niha","dir":"ltr"},{"lang":"nqo","autonym":"ߒߞߏ","dir":"rtl"},{"lang":"nr","autonym":"isiNdebele seSewula","dir":"ltr"},{"lang":"nso","autonym":"Sesotho sa Leboa","dir":"ltr"},{"lang":"ny","autonym":"Chi-Chewa","dir":"ltr"},{"lang":"oc","autonym":"occitan","dir":"ltr"},{"lang":"om","autonym":"Oromoo","dir":"ltr"},{"lang":"or","autonym":"ଓଡ଼ିଆ","dir":"ltr"},{"lang":"os","autonym":"ирон","dir":"ltr"},{"lang": "pa","autonym":"ਪੰਜਾਬੀ","dir":"ltr"},{"lang":"pag","autonym":"Pangasinan","dir":"ltr"},{"lang":"pam","autonym":"Kapampangan","dir":"ltr"},{"lang":"pap","autonym":"Papiamentu","dir":"ltr"},{"lang":"pcd","autonym":"Picard","dir":"ltr"},{"lang":"pcm","autonym":"Naijá","dir":"ltr"},{"lang":"pdc","autonym":"Deitsch","dir":"ltr"},{"lang":"pms","autonym":"Piemontèis","dir":"ltr"},{"lang":"pnb","autonym":"پنجابی","dir":"rtl"},{"lang":"ps","autonym":"پښتو","dir":"rtl"},{"lang":"pwn","autonym":"pinayuanan","dir":"ltr"},{"lang":"qu","autonym":"Runa Simi","dir":"ltr"},{"lang":"rm","autonym":"rumantsch","dir":"ltr"},{"lang":"rn","autonym":"ikirundi","dir":"ltr"},{"lang":"rsk","autonym":"руски","dir":"ltr"},{"lang":"rue","autonym":"русиньскый","dir":"ltr"},{"lang":"rup","autonym":"armãneashti","dir":"ltr"},{"lang":"rw","autonym":"Ikinyarwanda","dir":"ltr"},{"lang":"sa","autonym":"संस्कृतम्","dir":"ltr"},{"lang":"sah","autonym": "саха тыла","dir":"ltr"},{"lang":"sat","autonym":"ᱥᱟᱱᱛᱟᱲᱤ","dir":"ltr"},{"lang":"sc","autonym":"sardu","dir":"ltr"},{"lang":"scn","autonym":"sicilianu","dir":"ltr"},{"lang":"sco","autonym":"Scots","dir":"ltr"},{"lang":"sd","autonym":"سنڌي","dir":"rtl"},{"lang":"se","autonym":"davvisámegiella","dir":"ltr"},{"lang":"sg","autonym":"Sängö","dir":"ltr"},{"lang":"sgs","autonym":"žemaitėška","dir":"ltr"},{"lang":"sh","autonym":"srpskohrvatski / српскохрватски","dir":"ltr"},{"lang":"shi","autonym":"Taclḥit","dir":"ltr"},{"lang":"shn","autonym":"ၽႃႇသႃႇတႆး ","dir":"ltr"},{"lang":"si","autonym":"සිංහල","dir":"ltr"},{"lang":"skr","autonym":"سرائیکی","dir":"rtl"},{"lang":"sm","autonym":"Gagana Samoa","dir":"ltr"},{"lang":"smn","autonym":"anarâškielâ","dir":"ltr"},{"lang":"sn","autonym":"chiShona","dir":"ltr"},{"lang":"so","autonym":"Soomaaliga","dir":"ltr"},{"lang":"sq","autonym":"shqip","dir":"ltr"},{"lang":"srn" ,"autonym":"Sranantongo","dir":"ltr"},{"lang":"ss","autonym":"SiSwati","dir":"ltr"},{"lang":"st","autonym":"Sesotho","dir":"ltr"},{"lang":"stq","autonym":"Seeltersk","dir":"ltr"},{"lang":"su","autonym":"Sunda","dir":"ltr"},{"lang":"sw","autonym":"Kiswahili","dir":"ltr"},{"lang":"szl","autonym":"ślůnski","dir":"ltr"},{"lang":"ta","autonym":"தமிழ்","dir":"ltr"},{"lang":"tay","autonym":"Tayal","dir":"ltr"},{"lang":"tcy","autonym":"ತುಳು","dir":"ltr"},{"lang":"tdd","autonym":"ᥖᥭᥰ ᥖᥬᥲ ᥑᥨᥒᥰ","dir":"ltr"},{"lang":"te","autonym":"తెలుగు","dir":"ltr"},{"lang":"tet","autonym":"tetun","dir":"ltr"},{"lang":"tg","autonym":"тоҷикӣ","dir":"ltr"},{"lang":"ti","autonym":"ትግርኛ","dir":"ltr"},{"lang":"tk","autonym":"Türkmençe","dir":"ltr"},{"lang":"tl","autonym":"Tagalog","dir":"ltr"},{"lang":"tly","autonym":"tolışi","dir":"ltr"},{"lang":"tn","autonym":"Setswana","dir":"ltr"},{"lang":"to","autonym":"lea faka-Tonga","dir":"ltr"},{"lang": "tpi","autonym":"Tok Pisin","dir":"ltr"},{"lang":"trv","autonym":"Seediq","dir":"ltr"},{"lang":"ts","autonym":"Xitsonga","dir":"ltr"},{"lang":"tt","autonym":"татарча / tatarça","dir":"ltr"},{"lang":"tum","autonym":"chiTumbuka","dir":"ltr"},{"lang":"tw","autonym":"Twi","dir":"ltr"},{"lang":"ty","autonym":"reo tahiti","dir":"ltr"},{"lang":"tyv","autonym":"тыва дыл","dir":"ltr"},{"lang":"udm","autonym":"удмурт","dir":"ltr"},{"lang":"ur","autonym":"اردو","dir":"rtl"},{"lang":"uz","autonym":"oʻzbekcha / ўзбекча","dir":"ltr"},{"lang":"ve","autonym":"Tshivenda","dir":"ltr"},{"lang":"vec","autonym":"vèneto","dir":"ltr"},{"lang":"vep","autonym":"vepsän kel’","dir":"ltr"},{"lang":"vls","autonym":"West-Vlams","dir":"ltr"},{"lang":"vo","autonym":"Volapük","dir":"ltr"},{"lang":"vro","autonym":"võro","dir":"ltr"},{"lang":"wa","autonym":"walon","dir":"ltr"},{"lang":"war","autonym":"Winaray","dir":"ltr"},{"lang":"wo","autonym":"Wolof","dir":"ltr"},{"lang":"xal", "autonym":"хальмг","dir":"ltr"},{"lang":"xh","autonym":"isiXhosa","dir":"ltr"},{"lang":"xmf","autonym":"მარგალური","dir":"ltr"},{"lang":"yi","autonym":"ייִדיש","dir":"rtl"},{"lang":"yo","autonym":"Yorùbá","dir":"ltr"},{"lang":"yue","autonym":"粵語","dir":"ltr"},{"lang":"za","autonym":"Vahcuengh","dir":"ltr"},{"lang":"zgh","autonym":"ⵜⴰⵎⴰⵣⵉⵖⵜ ⵜⴰⵏⴰⵡⴰⵢⵜ","dir":"ltr"}],"wgSectionTranslationTargetLanguages":["ace","ady","alt","am","ami","an","ang","ann","anp","ar","ary","arz","as","ast","av","avk","awa","ay","az","azb","ba","ban","bar","bbc","bcl","bdr","be","bew","bg","bho","bi","bjn","blk","bm","bn","bo","bpy","br","bs","btm","bug","ca","cdo","ce","ceb","ch","chr","ckb","co","cr","crh","cs","cu","cy","da","dag","de","dga","din","diq","dsb","dtp","dv","dz","ee","el","eml","eo","es","et","eu","fa","fat","ff","fi","fj","fo","fon","fr","frp","frr","fur","fy","gag","gan","gcr","gl","glk","gn","gom","gor","gpe","gu","guc","gur", "guw","gv","ha","hak","haw","he","hi","hif","hr","hsb","ht","hu","hy","hyw","ia","iba","ie","ig","igl","ilo","io","is","it","iu","ja","jam","jv","ka","kaa","kab","kbd","kbp","kcg","kg","kge","ki","kk","kl","km","kn","ko","koi","krc","ks","ku","kus","kv","kw","ky","lad","lb","lez","lg","li","lij","lld","lmo","ln","lo","lt","ltg","lv","mad","mai","map-bms","mdf","mg","mhr","mi","min","mk","ml","mn","mni","mnw","mos","mr","mrj","ms","mt","mwl","my","myv","mzn","nah","nan","nap","nb","nds","nds-nl","ne","new","nia","nl","nn","nqo","nr","nso","ny","oc","om","or","os","pa","pag","pam","pap","pcd","pcm","pdc","pl","pms","pnb","ps","pt","pwn","qu","rm","rn","ro","rsk","rue","rup","rw","sa","sah","sat","sc","scn","sco","sd","se","sg","sgs","sh","shi","shn","si","sk","skr","sl","sm","smn","sn","so","sq","sr","srn","ss","st","stq","su","sv","sw","szl","ta","tay","tcy","tdd","te","tet","tg","th","ti","tk","tl","tly","tn","to","tpi","tr","trv","ts","tt","tum","tw","ty","tyv","udm","ur","uz","ve", "vec","vep","vi","vls","vo","vro","wa","war","wo","wuu","xal","xh","xmf","yi","yo","yue","za","zgh","zh","zu"],"isLanguageSearcherCXEntrypointEnabled":true,"mintEntrypointLanguages":["ace","ast","azb","bcl","bjn","bh","crh","ff","fon","ig","is","ki","ks","lmo","min","sat","ss","tn","vec"],"wgWikibaseItemId":"Q190975","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false,"wgMinervaPermissions":{"watchable":true,"watch":false},"wgMinervaFeatures":{"beta":false,"donate":true,"mobileOptionsLink":true,"categories":false,"pageIssues":true,"talkAtTop":true,"historyInPageActions":false,"overflowSubmenu":false,"tabsOnSpecials":true,"personalMenu":false,"mainMenuExpanded":false,"echo":true,"nightMode":true},"wgMinervaDownloadNamespaces":[0]}; RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.cite.styles":"ready","ext.math.styles":"ready","skins.minerva.styles":"ready","skins.minerva.content.styles.images":"ready","mediawiki.hlist":"ready","skins.minerva.codex.styles":"ready","skins.minerva.icons":"ready","skins.minerva.amc.styles":"ready","ext.wikimediamessages.styles":"ready","mobile.init.styles":"ready","ext.relatedArticles.styles":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","mediawiki.page.media","site","mediawiki.page.ready","skins.minerva.scripts","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.switcher","ext.urlShortener.toolbar","ext.centralauth.centralautologin","ext.popups","mobile.init","ext.echo.centralauth","ext.relatedArticles.readMore.bootstrap","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming", "ext.cx.eventlogging.campaigns","ext.cx.entrypoints.mffrequentlanguages","ext.cx.entrypoints.languagesearcher.init","mw.externalguidance.init","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=en&modules=ext.cite.styles%7Cext.math.styles%7Cext.relatedArticles.styles%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cmediawiki.hlist%7Cmobile.init.styles%7Cskins.minerva.amc.styles%7Cskins.minerva.codex.styles%7Cskins.minerva.content.styles.images%7Cskins.minerva.icons%2Cstyles%7Cwikibase.client.init&only=styles&skin=minerva"> <script async="" src="/w/load.php?lang=en&modules=startup&only=scripts&raw=1&skin=minerva"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=en&modules=site.styles&only=styles&skin=minerva"> <meta name="generator" content="MediaWiki 1.44.0-wmf.5"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta name="theme-color" content="#eaecf0"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/5/5d/13-02-27-spielbank-wiesbaden-by-RalfR-094.jpg/1200px-13-02-27-spielbank-wiesbaden-by-RalfR-094.jpg"> <meta property="og:image:width" content="1200"> <meta property="og:image:height" content="797"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/5/5d/13-02-27-spielbank-wiesbaden-by-RalfR-094.jpg/800px-13-02-27-spielbank-wiesbaden-by-RalfR-094.jpg"> <meta property="og:image:width" content="800"> <meta property="og:image:height" content="531"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/5/5d/13-02-27-spielbank-wiesbaden-by-RalfR-094.jpg/640px-13-02-27-spielbank-wiesbaden-by-RalfR-094.jpg"> <meta property="og:image:width" content="640"> <meta property="og:image:height" content="425"> <meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes, minimum-scale=0.25, maximum-scale=5.0"> <meta property="og:title" content="Roulette - Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="manifest" href="/w/api.php?action=webapp-manifest"> <link rel="alternate" type="application/x-wiki" title="Edit this page" href="/w/index.php?title=Roulette&action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (en)"> <link rel="EditURI" type="application/rsd+xml" href="//en.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://en.wikipedia.org/wiki/Roulette"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Roulette rootpage-Roulette stable issues-group-B skin-minerva action-view skin--responsive mw-mf-amc-disabled mw-mf"><div id="mw-mf-viewport"> <div id="mw-mf-page-center"> <a class="mw-mf-page-center__mask" href="#"></a> <header class="header-container header-chrome"> <div class="minerva-header"> <nav class="navigation-drawer toggle-list view-border-box"> <input type="checkbox" id="main-menu-input" class="toggle-list__checkbox" role="button" aria-haspopup="true" aria-expanded="false" aria-labelledby="mw-mf-main-menu-button"> <label role="button" for="main-menu-input" id="mw-mf-main-menu-button" aria-hidden="true" data-event-name="ui.mainmenu" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet toggle-list__toggle"> <span class="minerva-icon minerva-icon--menu"></span> <span></span> </label> <div id="mw-mf-page-left" class="menu view-border-box"> <ul id="p-navigation" class="toggle-list__list"> <li class="toggle-list-item "> <a class="toggle-list-item__anchor menu__item--home" href="/wiki/Main_Page" data-mw="interface"> <span class="minerva-icon minerva-icon--home"></span> <span class="toggle-list-item__label">Home</span> </a> </li> <li class="toggle-list-item "> <a class="toggle-list-item__anchor menu__item--random" href="/wiki/Special:Random" data-mw="interface"> <span class="minerva-icon minerva-icon--die"></span> <span class="toggle-list-item__label">Random</span> </a> </li> <li class="toggle-list-item skin-minerva-list-item-jsonly"> <a class="toggle-list-item__anchor menu__item--nearby" href="/wiki/Special:Nearby" data-event-name="menu.nearby" data-mw="interface"> <span class="minerva-icon minerva-icon--mapPin"></span> <span class="toggle-list-item__label">Nearby</span> </a> </li> </ul> <ul id="p-personal" class="toggle-list__list"> <li class="toggle-list-item "> <a class="toggle-list-item__anchor menu__item--login" href="/w/index.php?title=Special:UserLogin&returnto=Roulette" data-event-name="menu.login" data-mw="interface"> <span class="minerva-icon minerva-icon--logIn"></span> <span class="toggle-list-item__label">Log in</span> </a> </li> </ul> <ul id="pt-preferences" class="toggle-list__list"> <li class="toggle-list-item skin-minerva-list-item-jsonly"> <a class="toggle-list-item__anchor menu__item--settings" href="/w/index.php?title=Special:MobileOptions&returnto=Roulette" data-event-name="menu.settings" data-mw="interface"> <span class="minerva-icon minerva-icon--settings"></span> <span class="toggle-list-item__label">Settings</span> </a> </li> </ul> <ul id="p-donation" class="toggle-list__list"> <li class="toggle-list-item "> <a class="toggle-list-item__anchor menu__item--donate" href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_en.wikipedia.org&uselang=en&wmf_key=minerva" data-event-name="menu.donate" data-mw="interface"> <span class="minerva-icon minerva-icon--heart"></span> <span class="toggle-list-item__label">Donate</span> </a> </li> </ul> <ul class="hlist"> <li class="toggle-list-item "> <a class="toggle-list-item__anchor menu__item--about" href="/wiki/Wikipedia:About" data-mw="interface"> <span class="toggle-list-item__label">About Wikipedia</span> </a> </li> <li class="toggle-list-item "> <a class="toggle-list-item__anchor menu__item--disclaimers" href="/wiki/Wikipedia:General_disclaimer" data-mw="interface"> <span class="toggle-list-item__label">Disclaimers</span> </a> </li> </ul> </div> <label class="main-menu-mask" for="main-menu-input"></label> </nav> <div class="branding-box"> <a href="/wiki/Main_Page"> <span><img src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" alt="Wikipedia" width="120" height="18" style="width: 7.5em; height: 1.125em;"/> </span> </a> </div> <form action="/w/index.php" method="get" class="minerva-search-form"> <div class="search-box"> <input type="hidden" name="title" value="Special:Search"/> <input class="search skin-minerva-search-trigger" id="searchInput" type="search" name="search" placeholder="Search Wikipedia" aria-label="Search Wikipedia" autocapitalize="sentences" title="Search Wikipedia [f]" accesskey="f"> <span class="search-box-icon-overlay"><span class="minerva-icon minerva-icon--search"></span> </span> </div> <button id="searchIcon" class="cdx-button cdx-button--size-large cdx-button--icon-only cdx-button--weight-quiet skin-minerva-search-trigger"> <span class="minerva-icon minerva-icon--search"></span> <span>Search</span> </button> </form> <nav class="minerva-user-navigation" aria-label="User navigation"> </nav> </div> </header> <main id="content" class="mw-body"> <div class="banner-container"> <div id="siteNotice"></div> </div> <div class="pre-content heading-holder"> <div class="page-heading"> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Roulette</span></h1> <div class="tagline"></div> </div> <ul id="p-associated-pages" class="minerva__tab-container"> <li class="minerva__tab selected"> <a class="minerva__tab-text" href="/wiki/Roulette" rel="" data-event-name="tabs.subject">Article</a> </li> <li class="minerva__tab "> <a class="minerva__tab-text" href="/wiki/Talk:Roulette" rel="discussion" data-event-name="tabs.talk">Talk</a> </li> </ul> <nav class="page-actions-menu"> <ul id="p-views" class="page-actions-menu__list"> <li id="language-selector" class="page-actions-menu__list-item"> <a role="button" href="#p-lang" data-mw="interface" data-event-name="menu.languages" title="Language" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet language-selector"> <span class="minerva-icon minerva-icon--language"></span> <span>Language</span> </a> </li> <li id="page-actions-watch" class="page-actions-menu__list-item"> <a role="button" id="ca-watch" href="/w/index.php?title=Special:UserLogin&returnto=Roulette" data-event-name="menu.watch" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet menu__item--page-actions-watch"> <span class="minerva-icon minerva-icon--star"></span> <span>Watch</span> </a> </li> <li id="page-actions-edit" class="page-actions-menu__list-item"> <a role="button" id="ca-edit" href="/w/index.php?title=Roulette&action=edit" data-event-name="menu.edit" data-mw="interface" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet edit-page menu__item--page-actions-edit"> <span class="minerva-icon minerva-icon--edit"></span> <span>Edit</span> </a> </li> </ul> </nav> <!-- version 1.0.2 (change every time you update a partial) --> <div id="mw-content-subtitle"></div> </div> <div id="bodyContent" class="content"> <div id="mw-content-text" class="mw-body-content"><script>function mfTempOpenSection(id){var block=document.getElementById("mf-section-"+id);block.className+=" open-block";block.previousSibling.className+=" open-block";}</script><div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"><section class="mf-section-0" id="mf-section-0"> <style data-mw-deduplicate="TemplateStyles:r1236090951">.mw-parser-output .hatnote{font-style:italic}.mw-parser-output div.hatnote{padding-left:1.6em;margin-bottom:0.5em}.mw-parser-output .hatnote i{font-style:normal}.mw-parser-output .hatnote+link+.hatnote{margin-top:-0.5em}@media print{body.ns-0 .mw-parser-output .hatnote{display:none!important}}</style><div role="note" class="hatnote navigation-not-searchable">This article is about the casino game. For other uses, see <a href="/wiki/Roulette_(disambiguation)" class="mw-disambig" title="Roulette (disambiguation)">Roulette (disambiguation)</a>.</div> <p class="mw-empty-elt"> </p> <p><b>Roulette</b> (named after the <a href="/wiki/French_language" title="French language">French</a> word meaning "little wheel") is a <a href="/wiki/Casino" title="Casino">casino</a> game which was likely developed from the <a href="/wiki/Italy" title="Italy">Italian</a> game <a href="/wiki/Biribi" title="Biribi">Biribi</a>. In the game, a player may choose to place a bet on a single number, various groupings of numbers, the color red or black, whether the number is odd or even, or if the number is high or low. </p><figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:13-02-27-spielbank-wiesbaden-by-RalfR-094.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/5/5d/13-02-27-spielbank-wiesbaden-by-RalfR-094.jpg/220px-13-02-27-spielbank-wiesbaden-by-RalfR-094.jpg" decoding="async" width="220" height="146" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/5/5d/13-02-27-spielbank-wiesbaden-by-RalfR-094.jpg/330px-13-02-27-spielbank-wiesbaden-by-RalfR-094.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/5/5d/13-02-27-spielbank-wiesbaden-by-RalfR-094.jpg/440px-13-02-27-spielbank-wiesbaden-by-RalfR-094.jpg 2x" data-file-width="4288" data-file-height="2848"></a><figcaption>Roulette ball</figcaption></figure> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Gwendolen_Harleth.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/3/3f/Gwendolen_Harleth.jpg/170px-Gwendolen_Harleth.jpg" decoding="async" width="170" height="254" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/3/3f/Gwendolen_Harleth.jpg/255px-Gwendolen_Harleth.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/3/3f/Gwendolen_Harleth.jpg/340px-Gwendolen_Harleth.jpg 2x" data-file-width="1372" data-file-height="2050"></a><figcaption>"Gwendolen at the roulette table" – 1910 illustration to <a href="/wiki/George_Eliot" title="George Eliot">George Eliot</a>'s <i><a href="/wiki/Daniel_Deronda" title="Daniel Deronda">Daniel Deronda</a></i></figcaption></figure> <p>To determine the winning number, a <a href="/wiki/Croupier" title="Croupier">croupier</a> spins a wheel in one direction, then spins a ball in the opposite direction around a tilted circular track running around the outer edge of the wheel. The ball eventually loses <a href="/wiki/Momentum" title="Momentum">momentum</a>, passes through an area of deflectors, and falls onto the wheel and into one of the colored and numbered pockets on the wheel. The winnings are then paid to anyone who has placed a successful bet. </p> <div id="toc" class="toc" role="navigation" aria-labelledby="mw-toc-heading"><input type="checkbox" role="button" id="toctogglecheckbox" class="toctogglecheckbox" style="display:none"><div class="toctitle" lang="en" dir="ltr"><h2 id="mw-toc-heading">Contents</h2><span class="toctogglespan"><label class="toctogglelabel" for="toctogglecheckbox"></label></span></div> <ul> <li class="toclevel-1 tocsection-1"><a href="#History"><span class="tocnumber">1</span> <span class="toctext">History</span></a></li> <li class="toclevel-1 tocsection-2"><a href="#Rules_of_play_against_a_casino"><span class="tocnumber">2</span> <span class="toctext">Rules of play against a casino</span></a> <ul> <li class="toclevel-2 tocsection-3"><a href="#California_Roulette"><span class="tocnumber">2.1</span> <span class="toctext">California Roulette</span></a></li> </ul> </li> <li class="toclevel-1 tocsection-4"><a href="#Roulette_wheel_number_sequence"><span class="tocnumber">3</span> <span class="toctext">Roulette wheel number sequence</span></a></li> <li class="toclevel-1 tocsection-5"><a href="#Roulette_table_layout"><span class="tocnumber">4</span> <span class="toctext">Roulette table layout</span></a></li> <li class="toclevel-1 tocsection-6"><a href="#Types_of_bets"><span class="tocnumber">5</span> <span class="toctext">Types of bets</span></a> <ul> <li class="toclevel-2 tocsection-7"><a href="#Inside_bets"><span class="tocnumber">5.1</span> <span class="toctext">Inside bets</span></a></li> <li class="toclevel-2 tocsection-8"><a href="#Outside_bets"><span class="tocnumber">5.2</span> <span class="toctext">Outside bets</span></a></li> </ul> </li> <li class="toclevel-1 tocsection-9"><a href="#Bet_odds_table"><span class="tocnumber">6</span> <span class="toctext">Bet odds table</span></a></li> <li class="toclevel-1 tocsection-10"><a href="#House_edge"><span class="tocnumber">7</span> <span class="toctext">House edge</span></a></li> <li class="toclevel-1 tocsection-11"><a href="#Mathematical_model"><span class="tocnumber">8</span> <span class="toctext">Mathematical model</span></a> <ul> <li class="toclevel-2 tocsection-12"><a href="#Simplified_mathematical_model"><span class="tocnumber">8.1</span> <span class="toctext">Simplified mathematical model</span></a></li> </ul> </li> <li class="toclevel-1 tocsection-13"><a href="#Called_(or_call)_bets_or_announced_bets"><span class="tocnumber">9</span> <span class="toctext">Called (or call) bets or announced bets</span></a> <ul> <li class="toclevel-2 tocsection-14"><a href="#Voisins_du_z%C3%A9ro_(neighbors_of_zero)"><span class="tocnumber">9.1</span> <span class="toctext">Voisins du zéro (<i>neighbors of zero</i>)</span></a></li> <li class="toclevel-2 tocsection-15"><a href="#Jeu_z%C3%A9ro_(zero_game)"><span class="tocnumber">9.2</span> <span class="toctext">Jeu zéro (<i>zero game</i>)</span></a></li> <li class="toclevel-2 tocsection-16"><a href="#Le_tiers_du_cylindre_(third_of_the_wheel)"><span class="tocnumber">9.3</span> <span class="toctext">Le tiers du cylindre (<i>third of the wheel</i>)</span></a></li> <li class="toclevel-2 tocsection-17"><a href="#Orphelins_(orphans)"><span class="tocnumber">9.4</span> <span class="toctext">Orphelins (<i>orphans</i>)</span></a></li> <li class="toclevel-2 tocsection-18"><a href="#..._and_the_neighbors"><span class="tocnumber">9.5</span> <span class="toctext">... and the neighbors</span></a></li> <li class="toclevel-2 tocsection-19"><a href="#Final_bets"><span class="tocnumber">9.6</span> <span class="toctext">Final bets</span></a></li> <li class="toclevel-2 tocsection-20"><a href="#Full_completes/maximums"><span class="tocnumber">9.7</span> <span class="toctext">Full completes/maximums</span></a></li> </ul> </li> <li class="toclevel-1 tocsection-21"><a href="#Betting_strategies_and_tactics"><span class="tocnumber">10</span> <span class="toctext">Betting strategies and tactics</span></a> <ul> <li class="toclevel-2 tocsection-22"><a href="#Prediction_methods"><span class="tocnumber">10.1</span> <span class="toctext">Prediction methods</span></a></li> <li class="toclevel-2 tocsection-23"><a href="#Specific_betting_systems"><span class="tocnumber">10.2</span> <span class="toctext">Specific betting systems</span></a></li> <li class="toclevel-2 tocsection-24"><a href="#Types_of_betting_system"><span class="tocnumber">10.3</span> <span class="toctext">Types of betting system</span></a></li> <li class="toclevel-2 tocsection-25"><a href="#Reverse_Martingale_system"><span class="tocnumber">10.4</span> <span class="toctext">Reverse Martingale system</span></a></li> <li class="toclevel-2 tocsection-26"><a href="#Labouch%C3%A8re_system"><span class="tocnumber">10.5</span> <span class="toctext">Labouchère system</span></a></li> <li class="toclevel-2 tocsection-27"><a href="#D'Alembert_system"><span class="tocnumber">10.6</span> <span class="toctext">D'Alembert system</span></a></li> <li class="toclevel-2 tocsection-28"><a href="#Other_systems"><span class="tocnumber">10.7</span> <span class="toctext">Other systems</span></a></li> </ul> </li> <li class="toclevel-1 tocsection-29"><a href="#Notable_winnings"><span class="tocnumber">11</span> <span class="toctext">Notable winnings</span></a></li> <li class="toclevel-1 tocsection-30"><a href="#See_also"><span class="tocnumber">12</span> <span class="toctext">See also</span></a></li> <li class="toclevel-1 tocsection-31"><a href="#Notes"><span class="tocnumber">13</span> <span class="toctext">Notes</span></a></li> <li class="toclevel-1 tocsection-32"><a href="#External_links"><span class="tocnumber">14</span> <span class="toctext">External links</span></a></li> </ul> </div> </section><div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(1)"><span class="indicator mf-icon mf-icon-expand mf-icon--small"></span><h2 id="History">History</h2><span class="mw-editsection"> <a role="button" href="/w/index.php?title=Roulette&action=edit&section=1" title="Edit section: History" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div><section class="mf-section-1 collapsible-block" id="mf-section-1"> <figure class="mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:EO_Wheel.jpg" class="mw-file-description"><noscript><img src="//upload.wikimedia.org/wikipedia/en/thumb/7/76/EO_Wheel.jpg/190px-EO_Wheel.jpg" decoding="async" width="190" height="273" class="mw-file-element" data-file-width="1171" data-file-height="1685"></noscript><span class="lazy-image-placeholder" style="width: 190px;height: 273px;" data-src="//upload.wikimedia.org/wikipedia/en/thumb/7/76/EO_Wheel.jpg/190px-EO_Wheel.jpg" data-width="190" data-height="273" data-srcset="//upload.wikimedia.org/wikipedia/en/thumb/7/76/EO_Wheel.jpg/285px-EO_Wheel.jpg 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/7/76/EO_Wheel.jpg/380px-EO_Wheel.jpg 2x" data-class="mw-file-element"> </span></a><figcaption>18th-century E.O. wheel with gamblers</figcaption></figure> <p>The first form of roulette was devised in 18th-century <a href="/wiki/France" title="France">France</a>. Many historians believe <a href="/wiki/Blaise_Pascal" title="Blaise Pascal">Blaise Pascal</a> introduced a primitive form of roulette in the 17th century in his search for a <a href="/wiki/Perpetual_motion_machine" class="mw-redirect" title="Perpetual motion machine">perpetual motion machine</a>.<sup id="cite_ref-1" class="reference"><a href="#cite_note-1"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup> The roulette mechanism is a hybrid of a gaming wheel invented in 1720 and the Italian game <a href="/wiki/Biribi" title="Biribi">Biribi</a>.<sup id="cite_ref-2" class="reference"><a href="#cite_note-2"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup> A primitive form of roulette, known as 'EO' (Even/Odd), was played in England in the late 18th century using a gaming wheel similar to that used in roulette.<sup id="cite_ref-3" class="reference"><a href="#cite_note-3"><span class="cite-bracket">[</span>3<span class="cite-bracket">]</span></a></sup> </p><p>The game has been played in its present form since as early as 1796 in <a href="/wiki/Paris" title="Paris">Paris</a>. An early description of the roulette game in its current form is found in a French novel <i>La Roulette, ou le Jour</i> by Jaques Lablee, which describes a roulette wheel in the <a href="/wiki/Palais_Royal" class="mw-redirect" title="Palais Royal">Palais Royal</a> in Paris in 1796. The description included the house pockets: "There are exactly two slots reserved for the bank, whence it derives its sole mathematical advantage." It then goes on to describe the layout with "two betting spaces containing the bank's two numbers, zero and double zero". The book was published in 1801. An even earlier reference to a game of this name was published in regulations for <a href="/wiki/New_France" title="New France">New France</a> (<a href="/wiki/Qu%C3%A9bec" class="mw-redirect" title="Québec">Québec</a>) in 1758, which banned the games of "dice, hoca, <a href="/wiki/Faro_(banking_game)" title="Faro (banking game)">faro</a>, and roulette".<sup id="cite_ref-4" class="reference"><a href="#cite_note-4"><span class="cite-bracket">[</span>4<span class="cite-bracket">]</span></a></sup> </p><p>The roulette wheels used in the casinos of Paris in the late 1790s had red for the single zero and black for the double zero. To avoid confusion, the color green was selected for the zeros in roulette wheels starting in the 1800s. </p> <figure class="mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:Flemish_characters_by_James_Gillray_(2).jpg" class="mw-file-description"><noscript><img src="//upload.wikimedia.org/wikipedia/commons/thumb/d/d3/Flemish_characters_by_James_Gillray_%282%29.jpg/250px-Flemish_characters_by_James_Gillray_%282%29.jpg" decoding="async" width="250" height="167" class="mw-file-element" data-file-width="2400" data-file-height="1604"></noscript><span class="lazy-image-placeholder" style="width: 250px;height: 167px;" data-src="//upload.wikimedia.org/wikipedia/commons/thumb/d/d3/Flemish_characters_by_James_Gillray_%282%29.jpg/250px-Flemish_characters_by_James_Gillray_%282%29.jpg" data-width="250" data-height="167" data-srcset="//upload.wikimedia.org/wikipedia/commons/thumb/d/d3/Flemish_characters_by_James_Gillray_%282%29.jpg/375px-Flemish_characters_by_James_Gillray_%282%29.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/d/d3/Flemish_characters_by_James_Gillray_%282%29.jpg/500px-Flemish_characters_by_James_Gillray_%282%29.jpg 2x" data-class="mw-file-element"> </span></a><figcaption> A <a href="/wiki/Caricature" title="Caricature">caricature</a> by <a href="/wiki/James_Gillray" title="James Gillray">James Gillray</a>, 1822</figcaption></figure> <p>In 1843, in the German spa casino town of <a href="/wiki/Bad_Homburg" title="Bad Homburg">Bad Homburg</a>, fellow Frenchmen <a href="/wiki/Fran%C3%A7ois_and_Louis_Blanc" class="mw-redirect" title="François and Louis Blanc">François and Louis Blanc</a> introduced the single <i>0</i> style roulette wheel in order to compete against other casinos offering the traditional wheel with single and double zero house pockets. </p><p>In some forms of early American roulette wheels, there were numbers 1 to 28, plus a single zero, a double zero, and an American Eagle. The Eagle slot, which was a symbol of American liberty, was a house slot that brought the casino an extra edge. Soon, the tradition vanished and since then the wheel features only numbered slots. According to Hoyle "the single 0, the double 0, and the eagle are never bars; but when the ball falls into either of them, the banker sweeps every thing upon the table, except what may happen to be bet on either one of them, when he pays twenty-seven for one, which is the amount paid for all sums bet upon any single figure".<sup id="cite_ref-5" class="reference"><a href="#cite_note-5"><span class="cite-bracket">[</span>5<span class="cite-bracket">]</span></a></sup> </p> <figure class="mw-halign-left" typeof="mw:File/Thumb"><a href="/wiki/File:1800_French_Roulette_Table_001.jpg" class="mw-file-description"><noscript><img src="//upload.wikimedia.org/wikipedia/commons/thumb/9/9a/1800_French_Roulette_Table_001.jpg/250px-1800_French_Roulette_Table_001.jpg" decoding="async" width="250" height="129" class="mw-file-element" data-file-width="1514" data-file-height="779"></noscript><span class="lazy-image-placeholder" style="width: 250px;height: 129px;" data-src="//upload.wikimedia.org/wikipedia/commons/thumb/9/9a/1800_French_Roulette_Table_001.jpg/250px-1800_French_Roulette_Table_001.jpg" data-width="250" data-height="129" data-srcset="//upload.wikimedia.org/wikipedia/commons/thumb/9/9a/1800_French_Roulette_Table_001.jpg/375px-1800_French_Roulette_Table_001.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/9/9a/1800_French_Roulette_Table_001.jpg/500px-1800_French_Roulette_Table_001.jpg 2x" data-class="mw-file-element"> </span></a><figcaption>1800s engraving of the French roulette</figcaption></figure> <p>In the 19th century, roulette spread all over Europe and the US, becoming one of the most popular casino games. When the German government abolished gambling in the 1860s, the Blanc family moved to the last legal remaining casino operation in Europe at <a href="/wiki/Monte_Carlo" title="Monte Carlo">Monte Carlo</a>, where they established a gambling mecca for the elite of Europe. It was here that the single zero roulette wheel became the premier game, and over the years was exported around the world, except in the United States where the double zero wheel remained dominant. </p> <figure class="mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:Early_Western_Makeshift_Game.jpg" class="mw-file-description"><noscript><img src="//upload.wikimedia.org/wikipedia/en/thumb/d/d3/Early_Western_Makeshift_Game.jpg/280px-Early_Western_Makeshift_Game.jpg" decoding="async" width="280" height="165" class="mw-file-element" data-file-width="1334" data-file-height="786"></noscript><span class="lazy-image-placeholder" style="width: 280px;height: 165px;" data-src="//upload.wikimedia.org/wikipedia/en/thumb/d/d3/Early_Western_Makeshift_Game.jpg/280px-Early_Western_Makeshift_Game.jpg" data-width="280" data-height="165" data-srcset="//upload.wikimedia.org/wikipedia/en/thumb/d/d3/Early_Western_Makeshift_Game.jpg/420px-Early_Western_Makeshift_Game.jpg 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/d/d3/Early_Western_Makeshift_Game.jpg/560px-Early_Western_Makeshift_Game.jpg 2x" data-class="mw-file-element"> </span></a><figcaption>Early American West makeshift game</figcaption></figure> <p>In the United States, the French double zero wheel made its way up the <a href="/wiki/Mississippi" title="Mississippi">Mississippi</a> from <a href="/wiki/New_Orleans" title="New Orleans">New Orleans</a>, and then westward. It was here, because of rampant cheating by both operators and gamblers, that the wheel was eventually placed on top of the table to prevent devices from being hidden in the table or wheel, and the betting layout was simplified. This eventually evolved into the American-style roulette game. The American game was developed in the gambling dens across the new territories where makeshift games had been set up, whereas the French game evolved with style and leisure in Monte Carlo. </p><p>During the first part of the 20th century, the only casino towns of note were Monte Carlo with the traditional single zero French wheel, and <a href="/wiki/Las_Vegas_Valley" title="Las Vegas Valley">Las Vegas</a> with the American double zero wheel. In the 1970s, casinos began to flourish around the world. In 1996 the first online casino, generally believed to be <a href="/wiki/InterCasino" title="InterCasino">InterCasino</a>, made it possible to play roulette online.<sup id="cite_ref-6" class="reference"><a href="#cite_note-6"><span class="cite-bracket">[</span>6<span class="cite-bracket">]</span></a></sup> By 2008, there were several hundred casinos worldwide offering roulette games. The double zero wheel is found in the U.S., Canada, South America, and the Caribbean, while the single zero wheel is predominant elsewhere. </p> </section><div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(2)"><span class="indicator mf-icon mf-icon-expand mf-icon--small"></span><h2 id="Rules_of_play_against_a_casino">Rules of play against a casino</h2><span class="mw-editsection"> <a role="button" href="/w/index.php?title=Roulette&action=edit&section=2" title="Edit section: Rules of play against a casino" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div><section class="mf-section-2 collapsible-block" id="mf-section-2"> <figure class="mw-halign-left" typeof="mw:File/Thumb"><a href="/wiki/File:Roulette_wheel.jpg" class="mw-file-description"><noscript><img src="//upload.wikimedia.org/wikipedia/commons/thumb/2/26/Roulette_wheel.jpg/220px-Roulette_wheel.jpg" decoding="async" width="220" height="153" class="mw-file-element" data-file-width="921" data-file-height="639"></noscript><span class="lazy-image-placeholder" style="width: 220px;height: 153px;" data-src="//upload.wikimedia.org/wikipedia/commons/thumb/2/26/Roulette_wheel.jpg/220px-Roulette_wheel.jpg" data-width="220" data-height="153" data-srcset="//upload.wikimedia.org/wikipedia/commons/thumb/2/26/Roulette_wheel.jpg/330px-Roulette_wheel.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/2/26/Roulette_wheel.jpg/440px-Roulette_wheel.jpg 2x" data-class="mw-file-element"> </span></a><figcaption>Roulette with red 12 as the winner</figcaption></figure> <p>Roulette players have a variety of betting options. "Inside" bets involve selecting either the exact number on which the ball will land, or a small group of numbers adjacent to each other on the layout. "Outside" bets, by contrast, allow players to select a larger group of numbers based on properties such as their color or parity (odd/even). The payout odds for each type of bet are based on its <a href="/wiki/Probability" title="Probability">probability</a>. </p><p>The roulette table usually imposes minimum and maximum bets, and these rules usually apply separately for all of a player's inside and outside bets for each spin. For inside bets at roulette tables, some casinos may use separate roulette table chips of various colors to distinguish players at the table. Players can continue to place bets as the ball spins around the wheel until the dealer announces "no more bets" or "rien ne va plus". </p> <figure typeof="mw:File/Thumb"><a href="/wiki/File:13-02-27-spielbank-wiesbaden-by-RalfR-085.jpg" class="mw-file-description"><noscript><img src="//upload.wikimedia.org/wikipedia/commons/thumb/7/74/13-02-27-spielbank-wiesbaden-by-RalfR-085.jpg/220px-13-02-27-spielbank-wiesbaden-by-RalfR-085.jpg" decoding="async" width="220" height="146" class="mw-file-element" data-file-width="4288" data-file-height="2848"></noscript><span class="lazy-image-placeholder" style="width: 220px;height: 146px;" data-src="//upload.wikimedia.org/wikipedia/commons/thumb/7/74/13-02-27-spielbank-wiesbaden-by-RalfR-085.jpg/220px-13-02-27-spielbank-wiesbaden-by-RalfR-085.jpg" data-width="220" data-height="146" data-srcset="//upload.wikimedia.org/wikipedia/commons/thumb/7/74/13-02-27-spielbank-wiesbaden-by-RalfR-085.jpg/330px-13-02-27-spielbank-wiesbaden-by-RalfR-085.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/7/74/13-02-27-spielbank-wiesbaden-by-RalfR-085.jpg/440px-13-02-27-spielbank-wiesbaden-by-RalfR-085.jpg 2x" data-class="mw-file-element"> </span></a><figcaption>Croupier's rake pushing chips across a roulette layout</figcaption></figure> <p>When a winning number and color is determined by the roulette wheel, the dealer will place a marker, also known as a <i>dolly</i>, on that number on the roulette table layout. When the dolly is on the table, no players may place bets, collect bets or remove any bets from the table. The dealer will then sweep away all losing bets either by hand or by rake, and determine the payouts for the remaining inside and outside winning bets. When the dealer is finished making payouts, the dolly is removed from the board and players may collect their winnings and make new bets. Winning chips remain on the board until picked up by a player. </p> <div class="mw-heading mw-heading3"><h3 id="California_Roulette">California Roulette</h3><span class="mw-editsection"> <a role="button" href="/w/index.php?title=Roulette&action=edit&section=3" title="Edit section: California Roulette" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <p>In 2004, California legalized a form of roulette known as California Roulette.<sup id="cite_ref-7" class="reference"><a href="#cite_note-7"><span class="cite-bracket">[</span>7<span class="cite-bracket">]</span></a></sup> By law, the game must use cards and not slots on the roulette wheel to pick the winning number. </p> </section><div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(3)"><span class="indicator mf-icon mf-icon-expand mf-icon--small"></span><h2 id="Roulette_wheel_number_sequence">Roulette wheel number sequence</h2><span class="mw-editsection"> <a role="button" href="/w/index.php?title=Roulette&action=edit&section=4" title="Edit section: Roulette wheel number sequence" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div><section class="mf-section-3 collapsible-block" id="mf-section-3"> <p>The pockets of the roulette wheel are numbered from 0 to 36. </p><p>In number ranges from 1 to 10 and 19 to 28, odd numbers are red and even are black. In ranges from 11 to 18 and 29 to 36, odd numbers are black and even are red. </p><p>There is a green pocket numbered 0 (zero). In American roulette, there is a second green pocket marked 00. Pocket number order on the roulette wheel adheres to the following clockwise sequence in most casinos:<sup class="noprint Inline-Template Template-Fact" style="white-space:nowrap;">[<i><a href="/wiki/Wikipedia:Citation_needed" title="Wikipedia:Citation needed"><span title="This claim needs references to reliable sources. (August 2011)">citation needed</span></a></i>]</sup> </p> <dl><dt>Single-zero wheel</dt> <dd>0-32-15-19-4-21-2-25-17-34-6-27-13-36-11-30-8-23-10-5-24-16-33-1-20-14-31-9-22-18-29-7-28-12-35-3-26</dd> <dt>Double-zero wheel</dt> <dd>0-28-9-26-30-11-7-20-32-17-5-22-34-15-3-24-36-13-1-00-27-10-25-29-12-8-19-31-18-6-21-33-16-4-23-35-14-2</dd> <dt>Triple-zero wheel</dt> <dd>0-000-00-32-15-19-4-21-2-25-17-34-6-27-13-36-11-30-8-23-10-5-24-16-33-1-20-14-31-9-22-18-29-7-28-12-35-3-26</dd></dl> </section><div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(4)"><span class="indicator mf-icon mf-icon-expand mf-icon--small"></span><h2 id="Roulette_table_layout">Roulette table layout</h2><span class="mw-editsection"> <a role="button" href="/w/index.php?title=Roulette&action=edit&section=5" title="Edit section: Roulette table layout" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div><section class="mf-section-4 collapsible-block" id="mf-section-4"> <style data-mw-deduplicate="TemplateStyles:r1251242444">.mw-parser-output .ambox{border:1px solid #a2a9b1;border-left:10px solid #36c;background-color:#fbfbfb;box-sizing:border-box}.mw-parser-output .ambox+link+.ambox,.mw-parser-output .ambox+link+style+.ambox,.mw-parser-output .ambox+link+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+style+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+link+.ambox{margin-top:-1px}html body.mediawiki .mw-parser-output .ambox.mbox-small-left{margin:4px 1em 4px 0;overflow:hidden;width:238px;border-collapse:collapse;font-size:88%;line-height:1.25em}.mw-parser-output .ambox-speedy{border-left:10px solid #b32424;background-color:#fee7e6}.mw-parser-output .ambox-delete{border-left:10px solid #b32424}.mw-parser-output .ambox-content{border-left:10px solid #f28500}.mw-parser-output .ambox-style{border-left:10px solid #fc3}.mw-parser-output .ambox-move{border-left:10px solid #9932cc}.mw-parser-output .ambox-protection{border-left:10px solid #a2a9b1}.mw-parser-output .ambox .mbox-text{border:none;padding:0.25em 0.5em;width:100%}.mw-parser-output .ambox .mbox-image{border:none;padding:2px 0 2px 0.5em;text-align:center}.mw-parser-output .ambox .mbox-imageright{border:none;padding:2px 0.5em 2px 0;text-align:center}.mw-parser-output .ambox .mbox-empty-cell{border:none;padding:0;width:1px}.mw-parser-output .ambox .mbox-image-div{width:52px}@media(min-width:720px){.mw-parser-output .ambox{margin:0 10%}}@media print{body.ns-0 .mw-parser-output .ambox{display:none!important}}</style><table class="box-Disputed plainlinks metadata ambox ambox-content ambox-disputed" role="presentation"><tbody><tr><td class="mbox-text"><div class="mbox-text-span">This section's <b>factual accuracy is <a href="/wiki/Wikipedia:Accuracy_dispute" title="Wikipedia:Accuracy dispute">disputed</a></b>.<span class="hide-when-compact"> Relevant discussion may be found on the <a href="/wiki/Talk:Roulette#Disputed" title="Talk:Roulette">talk page</a>. Please help to ensure that disputed statements are <a href="/wiki/Wikipedia:Reliable_sources" title="Wikipedia:Reliable sources">reliably sourced</a>.</span> <span class="date-container"><i>(<span class="date">July 2022</span>)</i></span><span class="hide-when-compact"><i> (<small><a href="/wiki/Help:Maintenance_template_removal" title="Help:Maintenance template removal">Learn how and when to remove this message</a></small>)</i></span></div></td></tr></tbody></table> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:French_Layout-Single_Zero_Wheel.jpg" class="mw-file-description"><noscript><img src="//upload.wikimedia.org/wikipedia/en/thumb/a/ac/French_Layout-Single_Zero_Wheel.jpg/170px-French_Layout-Single_Zero_Wheel.jpg" decoding="async" width="170" height="467" class="mw-file-element" data-file-width="546" data-file-height="1500"></noscript><span class="lazy-image-placeholder" style="width: 170px;height: 467px;" data-src="//upload.wikimedia.org/wikipedia/en/thumb/a/ac/French_Layout-Single_Zero_Wheel.jpg/170px-French_Layout-Single_Zero_Wheel.jpg" data-width="170" data-height="467" data-srcset="//upload.wikimedia.org/wikipedia/en/thumb/a/ac/French_Layout-Single_Zero_Wheel.jpg/255px-French_Layout-Single_Zero_Wheel.jpg 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/a/ac/French_Layout-Single_Zero_Wheel.jpg/340px-French_Layout-Single_Zero_Wheel.jpg 2x" data-class="mw-file-element"> </span></a><figcaption>French style layout, French single zero wheel</figcaption></figure> <p>The cloth-covered betting area on a roulette table is known as the <i>layout</i>. The layout is either single-zero or double-zero. </p><p>The European-style layout has a single zero, and the American style layout is usually a double-zero. The American-style roulette table with a wheel at one end is now used in most casinos because it has a higher house edge compared to a European layout.<sup id="cite_ref-8" class="reference"><a href="#cite_note-8"><span class="cite-bracket">[</span>8<span class="cite-bracket">]</span></a></sup> </p><p>The French style table with a wheel in the centre and a layout on either side is rarely found outside of Monte Carlo. </p> </section><div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(5)"><span class="indicator mf-icon mf-icon-expand mf-icon--small"></span><h2 id="Types_of_bets">Types of bets</h2><span class="mw-editsection"> <a role="button" href="/w/index.php?title=Roulette&action=edit&section=6" title="Edit section: Types of bets" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div><section class="mf-section-5 collapsible-block" id="mf-section-5"> <p>In roulette, bets can be either <i>inside</i> or <i>outside</i>.<sup id="cite_ref-9" class="reference"><a href="#cite_note-9"><span class="cite-bracket">[</span>9<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Inside_bets">Inside bets</h3><span class="mw-editsection"> <a role="button" href="/w/index.php?title=Roulette&action=edit&section=7" title="Edit section: Inside bets" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <table class="wikitable plainrowheaders"> <tbody><tr> <th>Name </th> <th>Description </th> <th>Chip placement </th></tr> <tr> <td>Straight/single </td> <td>Bet on a single number </td> <td>Entirely within the square for the chosen number </td></tr> <tr> <td>Split </td> <td>Bet on two vertically/horizontally adjacent numbers (e.g. 14-17 or 8–9) </td> <td>On the edge shared by the numbers </td></tr> <tr> <td>Street </td> <td>Bet on three consecutive numbers in a horizontal line (e.g. 7-8-9) </td> <td>On the outer edge of the number at either end of the line </td></tr> <tr> <td>Corner/square </td> <td>Bet on four numbers that meet at one corner (e.g. 10-11-13-14) </td> <td>On the common corner </td></tr> <tr> <td>Six line/double street </td> <td>Bet on six consecutive numbers that form two horizontal lines (e.g. 31-32-33-34-35-36) </td> <td>On the outer corner shared by the two leftmost or the two rightmost numbers </td></tr> <tr> <td>Trio/basket </td> <td>A three-number bet that involves at least one zero: 0-1-2 (either layout); 0-2-3 (single-zero only); 0-00-2 and 00-2-3 (double-zero only) </td> <td>On the corner shared by the three chosen numbers </td></tr> <tr> <td>First four </td> <td>Bet on 0-1-2-3 (single-zero layout only) </td> <td>On the outer corner shared by 0-1 or 0-3 </td></tr> <tr> <td>Top line </td> <td>Bet on 0-00-1-2-3 (double-zero layout only) </td> <td>On the outer corner shared by 0-1 or 00-3 </td></tr></tbody></table> <div class="mw-heading mw-heading3"><h3 id="Outside_bets">Outside bets</h3><span class="mw-editsection"> <a role="button" href="/w/index.php?title=Roulette&action=edit&section=8" title="Edit section: Outside bets" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <p>Outside bets typically have smaller payouts with better odds at winning. Except as noted, all of these bets lose if a zero comes up. </p> <dl><dt>1 to 18 (low or <i>manque</i>), or 19 to 36 (high or <i>passe</i>)</dt> <dd>A bet that the number will be in the chosen range.</dd> <dt>Red or black (<i>rouge ou noir</i>)</dt> <dd>A bet that the number will be the chosen color.</dd> <dt>Even or odd (<i>pair ou impair</i>)</dt> <dd>A bet that the number will be of the chosen type.</dd> <dt>Dozen bet</dt> <dd>A bet that the number will be in the chosen dozen: first (1-12, <i>Première douzaine</i> or P12), second (13-24, <i>Moyenne douzaine</i> or M12), or third (25-36, <i>Dernière douzaine</i> or D12).</dd> <dt>Column bet</dt> <dd>A bet that the number will be in the chosen vertical column of 12 numbers, such as 1-4-7-10 on down to 34. The chip is placed on the space below the final number in this sequence.</dd> <dt>Snake bet</dt> <dd>A special bet that covers the numbers 1, 5, 9, 12, 14, 16, 19, 23, 27, 30, 32, and 34. It has the same payout as the dozen bet and takes its name from the zig-zagging, snakelike pattern traced out by these numbers. The snake bet is not available in all casinos; when it is allowed, the chip is placed on the lower corner of the 34 square that borders the 19-36 betting box. Some layouts mark the bet with a two-headed snake that winds from 1 to 34, and the bet can be placed on the head at either end of the body.</dd></dl> <p>In the United Kingdom, the farthest outside bets (low/high, red/black, even/odd) result in the player losing only half of their bet if a zero comes up. </p> </section><div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(6)"><span class="indicator mf-icon mf-icon-expand mf-icon--small"></span><h2 id="Bet_odds_table">Bet odds table</h2><span class="mw-editsection"> <a role="button" href="/w/index.php?title=Roulette&action=edit&section=9" title="Edit section: Bet odds table" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div><section class="mf-section-6 collapsible-block" id="mf-section-6"> <p>The expected value of a $1 bet (except for the special case of top line bets), for American and European roulette, can be calculated as </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\text{expected value}}={\frac {1}{n}}(36-n)={\frac {36}{n}}-1,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtext>expected value</mtext> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>n</mi> </mfrac> </mrow> <mo stretchy="false">(</mo> <mn>36</mn> <mo>−<!-- − --></mo> <mi>n</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>36</mn> <mi>n</mi> </mfrac> </mrow> <mo>−<!-- − --></mo> <mn>1</mn> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\text{expected value}}={\frac {1}{n}}(36-n)={\frac {36}{n}}-1,}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1f0b84f180be08889fe8844f6f7872815d7b3650" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:39.397ex; height:5.176ex;" alt="{\displaystyle {\text{expected value}}={\frac {1}{n}}(36-n)={\frac {36}{n}}-1,}"></noscript><span class="lazy-image-placeholder" style="width: 39.397ex;height: 5.176ex;vertical-align: -1.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1f0b84f180be08889fe8844f6f7872815d7b3650" data-alt="{\displaystyle {\text{expected value}}={\frac {1}{n}}(36-n)={\frac {36}{n}}-1,}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span></dd></dl> <p>where <i>n</i> is the number of pockets in the wheel. </p><p>The initial bet is returned in addition to the mentioned payout: it can be easily demonstrated that this payout formula would lead to a zero <a href="/wiki/Expected_value" title="Expected value">expected value</a> of profit if there were only 36 numbers (that is, the casino would break even). Having 37 or more numbers gives the casino its edge. </p> <table class="wikitable"> <tbody><tr> <th rowspan="2">Bet name </th> <th rowspan="2">Winning spaces </th> <th rowspan="2">Payout </th> <th colspan="2">French </th> <th colspan="2">American </th></tr> <tr> <th><a href="/wiki/Odds" title="Odds">Odds</a> against winning </th> <th>Expected value<br>(on $1 bet) </th> <th><a href="/wiki/Odds" title="Odds">Odds</a> against winning </th> <th>Expected value<br>(on $1 bet) </th></tr> <tr> <td>0 </td> <td>0 </td> <td>35 to 1 </td> <td>36 to 1 </td> <td>−$0.027 </td> <td>37 to 1 </td> <td>−$0.053 </td></tr> <tr> <td>00 </td> <td>00 </td> <td>35 to 1 </td> <td> </td> <td> </td> <td>37 to 1 </td> <td>−$0.053 </td></tr> <tr> <td>Straight up </td> <td>Any single number </td> <td>35 to 1 </td> <td>36 to 1 </td> <td>−$0.027 </td> <td>37 to 1 </td> <td>−$0.053 </td></tr> <tr> <td>Row </td> <td>0, 00 </td> <td>17 to 1 </td> <td> </td> <td> </td> <td>18 to 1 </td> <td>−$0.053 </td></tr> <tr> <td>Split </td> <td>Any two adjoining numbers vertical or horizontal </td> <td>17 to 1 </td> <td><style data-mw-deduplicate="TemplateStyles:r1154941027">.mw-parser-output .frac{white-space:nowrap}.mw-parser-output .frac .num,.mw-parser-output .frac .den{font-size:80%;line-height:0;vertical-align:super}.mw-parser-output .frac .den{vertical-align:sub}.mw-parser-output .sr-only{border:0;clip:rect(0,0,0,0);clip-path:polygon(0px 0px,0px 0px,0px 0px);height:1px;margin:-1px;overflow:hidden;padding:0;position:absolute;width:1px}</style><span class="frac">17<span class="sr-only">+</span><span class="num">1</span>⁄<span class="den">2</span></span> to 1 </td> <td>−$0.027 </td> <td>18 to 1 </td> <td>−$0.053 </td></tr> <tr> <td>Street </td> <td>Any three numbers horizontal (1, 2, 3 or 4, 5, 6, etc.) </td> <td>11 to 1 </td> <td><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1154941027"><span class="frac">11<span class="sr-only">+</span><span class="num">1</span>⁄<span class="den">3</span></span> to 1 </td> <td>−$0.027 </td> <td><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1154941027"><span class="frac">11<span class="sr-only">+</span><span class="num">2</span>⁄<span class="den">3</span></span> to 1 </td> <td>−$0.053 </td></tr> <tr> <td>Corner </td> <td>Any four adjoining numbers in a block (1, 2, 4, 5 or 17, 18, 20, 21, etc.) </td> <td>8 to 1 </td> <td><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1154941027"><span class="frac">8<span class="sr-only">+</span><span class="num">1</span>⁄<span class="den">4</span></span> to 1 </td> <td>−$0.027 </td> <td><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1154941027"><span class="frac">8<span class="sr-only">+</span><span class="num">1</span>⁄<span class="den">2</span></span> to 1 </td> <td>−$0.053 </td></tr> <tr> <td>Top line (US) </td> <td>0, 00, 1, 2, 3 </td> <td>6 to 1 </td> <td> </td> <td> </td> <td><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1154941027"><span class="frac">6<span class="sr-only">+</span><span class="num">3</span>⁄<span class="den">5</span></span> to 1 </td> <td>−$0.079 </td></tr> <tr> <td>Top line (European) </td> <td>0, 1, 2, 3 </td> <td>8 to 1 </td> <td><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1154941027"><span class="frac">8<span class="sr-only">+</span><span class="num">1</span>⁄<span class="den">4</span></span> to 1 </td> <td>−$0.027 </td> <td> </td> <td> </td></tr> <tr> <td>Double street </td> <td>Any six numbers from two horizontal rows (1, 2, 3, 4, 5, 6 or 28, 29, 30, 31, 32, 33 etc.) </td> <td>5 to 1 </td> <td><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1154941027"><span class="frac">5<span class="sr-only">+</span><span class="num">1</span>⁄<span class="den">6</span></span> to 1 </td> <td>−$0.027 </td> <td><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1154941027"><span class="frac">5<span class="sr-only">+</span><span class="num">1</span>⁄<span class="den">3</span></span> to 1 </td> <td>−$0.053 </td></tr> <tr> <td>1st column </td> <td>1, 4, 7, 10, 13, 16, 19, 22, 25, 28, 31, 34 </td> <td>2 to 1 </td> <td><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1154941027"><span class="frac">2<span class="sr-only">+</span><span class="num">1</span>⁄<span class="den">12</span></span> to 1 </td> <td>−$0.027 </td> <td><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1154941027"><span class="frac">2<span class="sr-only">+</span><span class="num">1</span>⁄<span class="den">6</span></span> to 1 </td> <td>−$0.053 </td></tr> <tr> <td>2nd column </td> <td>2, 5, 8, 11, 14, 17, 20, 23, 26, 29, 32, 35 </td> <td>2 to 1 </td> <td><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1154941027"><span class="frac">2<span class="sr-only">+</span><span class="num">1</span>⁄<span class="den">12</span></span> to 1 </td> <td>−$0.027 </td> <td><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1154941027"><span class="frac">2<span class="sr-only">+</span><span class="num">1</span>⁄<span class="den">6</span></span> to 1 </td> <td>−$0.053 </td></tr> <tr> <td>3rd column </td> <td>3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36 </td> <td>2 to 1 </td> <td><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1154941027"><span class="frac">2<span class="sr-only">+</span><span class="num">1</span>⁄<span class="den">12</span></span> to 1 </td> <td>−$0.027 </td> <td><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1154941027"><span class="frac">2<span class="sr-only">+</span><span class="num">1</span>⁄<span class="den">6</span></span> to 1 </td> <td>−$0.053 </td></tr> <tr> <td>1st dozen </td> <td>1 through 12 </td> <td>2 to 1 </td> <td><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1154941027"><span class="frac">2<span class="sr-only">+</span><span class="num">1</span>⁄<span class="den">12</span></span> to 1 </td> <td>−$0.027 </td> <td><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1154941027"><span class="frac">2<span class="sr-only">+</span><span class="num">1</span>⁄<span class="den">6</span></span> to 1 </td> <td>−$0.053 </td></tr> <tr> <td>2nd dozen </td> <td>13 through 24 </td> <td>2 to 1 </td> <td><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1154941027"><span class="frac">2<span class="sr-only">+</span><span class="num">1</span>⁄<span class="den">12</span></span> to 1 </td> <td>−$0.027 </td> <td><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1154941027"><span class="frac">2<span class="sr-only">+</span><span class="num">1</span>⁄<span class="den">6</span></span> to 1 </td> <td>−$0.053 </td></tr> <tr> <td>3rd dozen </td> <td>25 through 36 </td> <td>2 to 1 </td> <td><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1154941027"><span class="frac">2<span class="sr-only">+</span><span class="num">1</span>⁄<span class="den">12</span></span> to 1 </td> <td>−$0.027 </td> <td><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1154941027"><span class="frac">2<span class="sr-only">+</span><span class="num">1</span>⁄<span class="den">6</span></span> to 1 </td> <td>−$0.053 </td></tr> <tr> <td>Odd </td> <td>1, 3, 5, ..., 35 </td> <td>1 to 1 </td> <td><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1154941027"><span class="frac">1<span class="sr-only">+</span><span class="num">1</span>⁄<span class="den">18</span></span> to 1 </td> <td>−$0.027 </td> <td><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1154941027"><span class="frac">1<span class="sr-only">+</span><span class="num">1</span>⁄<span class="den">9</span></span> to 1 </td> <td>−$0.053 </td></tr> <tr> <td>Even </td> <td>2, 4, 6, ..., 36 </td> <td>1 to 1 </td> <td><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1154941027"><span class="frac">1<span class="sr-only">+</span><span class="num">1</span>⁄<span class="den">18</span></span> to 1 </td> <td>−$0.027 </td> <td><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1154941027"><span class="frac">1<span class="sr-only">+</span><span class="num">1</span>⁄<span class="den">9</span></span> to 1 </td> <td>−$0.053 </td></tr> <tr> <td>Red </td> <td>32, 19, 21, 25, 34, 27, 36, 30, 23, 5, 16, 1, 14, 9, 18, 7, 12, 3 </td> <td>1 to 1 </td> <td><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1154941027"><span class="frac">1<span class="sr-only">+</span><span class="num">1</span>⁄<span class="den">18</span></span> to 1 </td> <td>−$0.027 </td> <td><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1154941027"><span class="frac">1<span class="sr-only">+</span><span class="num">1</span>⁄<span class="den">9</span></span> to 1 </td> <td>−$0.053 </td></tr> <tr> <td>Black </td> <td>15, 4, 2, 17, 6, 13, 11, 8, 10, 24, 33, 20, 31, 22, 29, 28, 35, 26 </td> <td>1 to 1 </td> <td><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1154941027"><span class="frac">1<span class="sr-only">+</span><span class="num">1</span>⁄<span class="den">18</span></span> to 1 </td> <td>−$0.027 </td> <td><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1154941027"><span class="frac">1<span class="sr-only">+</span><span class="num">1</span>⁄<span class="den">9</span></span> to 1 </td> <td>−$0.053 </td></tr> <tr> <td>1 to 18 </td> <td>1, 2, 3, ..., 18 </td> <td>1 to 1 </td> <td><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1154941027"><span class="frac">1<span class="sr-only">+</span><span class="num">1</span>⁄<span class="den">18</span></span> to 1 </td> <td>−$0.027 </td> <td><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1154941027"><span class="frac">1<span class="sr-only">+</span><span class="num">1</span>⁄<span class="den">9</span></span> to 1 </td> <td>−$0.053 </td></tr> <tr> <td>19 to 36 </td> <td>19, 20, 21, ..., 36 </td> <td>1 to 1 </td> <td><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1154941027"><span class="frac">1<span class="sr-only">+</span><span class="num">1</span>⁄<span class="den">18</span></span> to 1 </td> <td>−$0.027 </td> <td><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1154941027"><span class="frac">1<span class="sr-only">+</span><span class="num">1</span>⁄<span class="den">9</span></span> to 1 </td> <td>−$0.053 </td></tr></tbody></table> <p>Top line (0, 00, 1, 2, 3) has a different expected value because of <a href="/wiki/Approximation" title="Approximation">approximation</a> of the correct <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1154941027"><span class="frac">6<span class="sr-only">+</span><span class="num">1</span>⁄<span class="den">5</span></span>-to-1 payout obtained by the formula to 6-to-1. The values 0 and 00 are not odd or even, or high or low. </p><p><a href="/wiki/En_prison" title="En prison">En prison</a> rules, when used, reduce the house advantage. </p> </section><div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(7)"><span class="indicator mf-icon mf-icon-expand mf-icon--small"></span><h2 id="House_edge">House edge</h2><span class="mw-editsection"> <a role="button" href="/w/index.php?title=Roulette&action=edit&section=10" title="Edit section: House edge" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div><section class="mf-section-7 collapsible-block" id="mf-section-7"> <p>The <i>house average</i> or <i>house edge</i> or <i>house advantage</i> (also called the <i><a href="/wiki/Expected_value" title="Expected value">expected value</a></i>) is the amount the player loses relative to any bet made, on average. If a player bets on a single number in the American game there is a probability of <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1154941027"><span class="frac"><span class="num">1</span>⁄<span class="den">38</span></span> that the player wins 35 times the bet, and a <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1154941027"><span class="frac"><span class="num">37</span>⁄<span class="den">38</span></span> chance that the player loses their bet. The expected value is: </p> <dl><dd>−1 × <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1154941027"><span class="frac"><span class="num">37</span>⁄<span class="den">38</span></span> + 35 × <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1154941027"><span class="frac"><span class="num">1</span>⁄<span class="den">38</span></span> = −0.0526 (5.26% house edge)</dd></dl> <p>For European roulette, a single number wins <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1154941027"><span class="frac"><span class="num">1</span>⁄<span class="den">37</span></span> and loses <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1154941027"><span class="frac"><span class="num">36</span>⁄<span class="den">37</span></span>: </p> <dl><dd>−1 × <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1154941027"><span class="frac"><span class="num">36</span>⁄<span class="den">37</span></span> + 35 × <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1154941027"><span class="frac"><span class="num">1</span>⁄<span class="den">37</span></span> = −0.0270 (2.70% house edge)</dd></dl> <p>For triple-zero wheels, a single number wins <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1154941027"><span class="frac"><span class="num">1</span>⁄<span class="den">39</span></span> and loses <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1154941027"><span class="frac"><span class="num">38</span>⁄<span class="den">39</span></span>: </p> <dl><dd>−1 × <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1154941027"><span class="frac"><span class="num">38</span>⁄<span class="den">39</span></span> + 35 × <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1154941027"><span class="frac"><span class="num">1</span>⁄<span class="den">39</span></span> = −0.0769 (7.69% house edge)</dd></dl> </section><div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(8)"><span class="indicator mf-icon mf-icon-expand mf-icon--small"></span><h2 id="Mathematical_model">Mathematical model</h2><span class="mw-editsection"> <a role="button" href="/w/index.php?title=Roulette&action=edit&section=11" title="Edit section: Mathematical model" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div><section class="mf-section-8 collapsible-block" id="mf-section-8"> <p>As an example, the European roulette model, that is, roulette with only one zero, can be examined. Since this roulette has 37 cells with equal odds of hitting, this is a final model of field probability <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \left(\Omega ,2^{\Omega },\mathbb {P} \right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mrow> <mo>(</mo> <mrow> <mi mathvariant="normal">Ω<!-- Ω --></mi> <mo>,</mo> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">Ω<!-- Ω --></mi> </mrow> </msup> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">P</mi> </mrow> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \left(\Omega ,2^{\Omega },\mathbb {P} \right)}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6a711350195b008d0b80bb4e2db306f1c4db4196" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:9.877ex; height:3.343ex;" alt="{\textstyle \left(\Omega ,2^{\Omega },\mathbb {P} \right)}"></noscript><span class="lazy-image-placeholder" style="width: 9.877ex;height: 3.343ex;vertical-align: -1.005ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6a711350195b008d0b80bb4e2db306f1c4db4196" data-alt="{\textstyle \left(\Omega ,2^{\Omega },\mathbb {P} \right)}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span>, where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Omega =\{0,\ldots ,36\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">Ω<!-- Ω --></mi> <mo>=</mo> <mo fence="false" stretchy="false">{</mo> <mn>0</mn> <mo>,</mo> <mo>…<!-- … --></mo> <mo>,</mo> <mn>36</mn> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Omega =\{0,\ldots ,36\}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2e09d8f394b01080cf95c8c5b77d2011878b1a0f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:15.767ex; height:2.843ex;" alt="{\displaystyle \Omega =\{0,\ldots ,36\}}"></noscript><span class="lazy-image-placeholder" style="width: 15.767ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2e09d8f394b01080cf95c8c5b77d2011878b1a0f" data-alt="{\displaystyle \Omega =\{0,\ldots ,36\}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \mathbb {P} (A)={\frac {|A|}{37}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">P</mi> </mrow> <mo stretchy="false">(</mo> <mi>A</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mrow> <mn>37</mn> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \mathbb {P} (A)={\frac {|A|}{37}}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6132a665ea9e1d6287b65ff9b677bb544fe7375d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:11.055ex; height:4.343ex;" alt="{\textstyle \mathbb {P} (A)={\frac {|A|}{37}}}"></noscript><span class="lazy-image-placeholder" style="width: 11.055ex;height: 4.343ex;vertical-align: -1.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6132a665ea9e1d6287b65ff9b677bb544fe7375d" data-alt="{\textstyle \mathbb {P} (A)={\frac {|A|}{37}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> for all <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A\in 2^{\Omega }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>∈<!-- ∈ --></mo> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">Ω<!-- Ω --></mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A\in 2^{\Omega }}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e4bf03d85a3293fe08c3a241961d733502cde6a7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.165ex; height:2.676ex;" alt="{\displaystyle A\in 2^{\Omega }}"></noscript><span class="lazy-image-placeholder" style="width: 7.165ex;height: 2.676ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e4bf03d85a3293fe08c3a241961d733502cde6a7" data-alt="{\displaystyle A\in 2^{\Omega }}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span>. </p><p>Call the bet <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4611d85173cd3b508e67077d4a1252c9c05abca2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.499ex; height:2.176ex;" alt="{\displaystyle S}"></noscript><span class="lazy-image-placeholder" style="width: 1.499ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4611d85173cd3b508e67077d4a1252c9c05abca2" data-alt="{\displaystyle S}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> a triple <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (A,r,\xi )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>A</mi> <mo>,</mo> <mi>r</mi> <mo>,</mo> <mi>ξ<!-- ξ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (A,r,\xi )}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/435563029109bbf82981f4b5cd57c77a387e3ed2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.699ex; height:2.843ex;" alt="{\displaystyle (A,r,\xi )}"></noscript><span class="lazy-image-placeholder" style="width: 7.699ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/435563029109bbf82981f4b5cd57c77a387e3ed2" data-alt="{\displaystyle (A,r,\xi )}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span>, where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></noscript><span class="lazy-image-placeholder" style="width: 1.743ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" data-alt="{\displaystyle A}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> is the set of chosen numbers, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r\in \mathbb {R} _{+}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>r</mi> <mo>∈<!-- ∈ --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r\in \mathbb {R} _{+}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/81631ebd2f93c83e54a78492a21fc36691388e7a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:7.078ex; height:2.509ex;" alt="{\displaystyle r\in \mathbb {R} _{+}}"></noscript><span class="lazy-image-placeholder" style="width: 7.078ex;height: 2.509ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/81631ebd2f93c83e54a78492a21fc36691388e7a" data-alt="{\displaystyle r\in \mathbb {R} _{+}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> is the size of the bet, and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \xi :\Omega \to \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>ξ<!-- ξ --></mi> <mo>:</mo> <mi mathvariant="normal">Ω<!-- Ω --></mi> <mo stretchy="false">→<!-- → --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \xi :\Omega \to \mathbb {R} }</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/78900f715657de260bc04eab01ffc4456f145714" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:9.937ex; height:2.509ex;" alt="{\displaystyle \xi :\Omega \to \mathbb {R} }"></noscript><span class="lazy-image-placeholder" style="width: 9.937ex;height: 2.509ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/78900f715657de260bc04eab01ffc4456f145714" data-alt="{\displaystyle \xi :\Omega \to \mathbb {R} }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> determines the return of the bet.<sup id="cite_ref-10" class="reference"><a href="#cite_note-10"><span class="cite-bracket">[</span>10<span class="cite-bracket">]</span></a></sup> </p><p>The rules of European roulette have 10 types of bets. First the 'Straight Up' bet can be imagined. In this case, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S=(\{\omega _{0}\},r,\xi )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> <mo>=</mo> <mo stretchy="false">(</mo> <mo fence="false" stretchy="false">{</mo> <msub> <mi>ω<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo fence="false" stretchy="false">}</mo> <mo>,</mo> <mi>r</mi> <mo>,</mo> <mi>ξ<!-- ξ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S=(\{\omega _{0}\},r,\xi )}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0166bd85f49857c97cdc3429c1a2471f0d657579" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:15.379ex; height:2.843ex;" alt="{\displaystyle S=(\{\omega _{0}\},r,\xi )}"></noscript><span class="lazy-image-placeholder" style="width: 15.379ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0166bd85f49857c97cdc3429c1a2471f0d657579" data-alt="{\displaystyle S=(\{\omega _{0}\},r,\xi )}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span>, for some <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \omega _{0}\in \Omega }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>ω<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>∈<!-- ∈ --></mo> <mi mathvariant="normal">Ω<!-- Ω --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \omega _{0}\in \Omega }</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4d1de1d33a82320fc985bad5cf8316ac340372a3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:7.019ex; height:2.509ex;" alt="{\displaystyle \omega _{0}\in \Omega }"></noscript><span class="lazy-image-placeholder" style="width: 7.019ex;height: 2.509ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4d1de1d33a82320fc985bad5cf8316ac340372a3" data-alt="{\displaystyle \omega _{0}\in \Omega }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span>, and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \xi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>ξ<!-- ξ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \xi }</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e0b461aaf61091abd5d2c808931c48b8ff9647db" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.03ex; height:2.509ex;" alt="{\displaystyle \xi }"></noscript><span class="lazy-image-placeholder" style="width: 1.03ex;height: 2.509ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e0b461aaf61091abd5d2c808931c48b8ff9647db" data-alt="{\displaystyle \xi }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> is determined by </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \xi (\omega )={\begin{cases}-r,&\omega \neq \omega _{0}\\35\cdot r,&\omega =\omega _{0}\end{cases}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>ξ<!-- ξ --></mi> <mo stretchy="false">(</mo> <mi>ω<!-- ω --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>{</mo> <mtable columnalign="left left" rowspacing=".2em" columnspacing="1em" displaystyle="false"> <mtr> <mtd> <mo>−<!-- − --></mo> <mi>r</mi> <mo>,</mo> </mtd> <mtd> <mi>ω<!-- ω --></mi> <mo>≠<!-- ≠ --></mo> <msub> <mi>ω<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <mn>35</mn> <mo>⋅<!-- ⋅ --></mo> <mi>r</mi> <mo>,</mo> </mtd> <mtd> <mi>ω<!-- ω --></mi> <mo>=</mo> <msub> <mi>ω<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mtd> </mtr> </mtable> <mo fence="true" stretchy="true" symmetric="true"></mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \xi (\omega )={\begin{cases}-r,&\omega \neq \omega _{0}\\35\cdot r,&\omega =\omega _{0}\end{cases}}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0ff3101dc7614d58f15c6062c5ab98a6f9b8b8f1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:24.945ex; height:6.176ex;" alt="{\displaystyle \xi (\omega )={\begin{cases}-r,&\omega \neq \omega _{0}\\35\cdot r,&\omega =\omega _{0}\end{cases}}}"></noscript><span class="lazy-image-placeholder" style="width: 24.945ex;height: 6.176ex;vertical-align: -2.505ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0ff3101dc7614d58f15c6062c5ab98a6f9b8b8f1" data-alt="{\displaystyle \xi (\omega )={\begin{cases}-r,&\omega \neq \omega _{0}\\35\cdot r,&\omega =\omega _{0}\end{cases}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span></dd></dl> <p>The bet's expected net return, or profitability, is equal to </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M[\xi ]={\frac {1}{37}}\sum _{\omega \in \Omega }\xi (\omega )={\frac {1}{37}}\left(\xi (\omega _{0})+\sum _{\omega \neq \omega _{0}}\xi (\omega )\right)={\frac {1}{37}}\left(35\cdot r-36\cdot r\right)=-{\frac {r}{37}}\approx -0.027r.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>M</mi> <mo stretchy="false">[</mo> <mi>ξ<!-- ξ --></mi> <mo stretchy="false">]</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>37</mn> </mfrac> </mrow> <munder> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>ω<!-- ω --></mi> <mo>∈<!-- ∈ --></mo> <mi mathvariant="normal">Ω<!-- Ω --></mi> </mrow> </munder> <mi>ξ<!-- ξ --></mi> <mo stretchy="false">(</mo> <mi>ω<!-- ω --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>37</mn> </mfrac> </mrow> <mrow> <mo>(</mo> <mrow> <mi>ξ<!-- ξ --></mi> <mo stretchy="false">(</mo> <msub> <mi>ω<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>+</mo> <munder> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>ω<!-- ω --></mi> <mo>≠<!-- ≠ --></mo> <msub> <mi>ω<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mrow> </munder> <mi>ξ<!-- ξ --></mi> <mo stretchy="false">(</mo> <mi>ω<!-- ω --></mi> <mo stretchy="false">)</mo> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>37</mn> </mfrac> </mrow> <mrow> <mo>(</mo> <mrow> <mn>35</mn> <mo>⋅<!-- ⋅ --></mo> <mi>r</mi> <mo>−<!-- − --></mo> <mn>36</mn> <mo>⋅<!-- ⋅ --></mo> <mi>r</mi> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>r</mi> <mn>37</mn> </mfrac> </mrow> <mo>≈<!-- ≈ --></mo> <mo>−<!-- − --></mo> <mn>0.027</mn> <mi>r</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M[\xi ]={\frac {1}{37}}\sum _{\omega \in \Omega }\xi (\omega )={\frac {1}{37}}\left(\xi (\omega _{0})+\sum _{\omega \neq \omega _{0}}\xi (\omega )\right)={\frac {1}{37}}\left(35\cdot r-36\cdot r\right)=-{\frac {r}{37}}\approx -0.027r.}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f4fe6cbec5394942eae7b7a706a44358ee493b3d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.505ex; width:88.143ex; height:7.843ex;" alt="{\displaystyle M[\xi ]={\frac {1}{37}}\sum _{\omega \in \Omega }\xi (\omega )={\frac {1}{37}}\left(\xi (\omega _{0})+\sum _{\omega \neq \omega _{0}}\xi (\omega )\right)={\frac {1}{37}}\left(35\cdot r-36\cdot r\right)=-{\frac {r}{37}}\approx -0.027r.}"></noscript><span class="lazy-image-placeholder" style="width: 88.143ex;height: 7.843ex;vertical-align: -3.505ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f4fe6cbec5394942eae7b7a706a44358ee493b3d" data-alt="{\displaystyle M[\xi ]={\frac {1}{37}}\sum _{\omega \in \Omega }\xi (\omega )={\frac {1}{37}}\left(\xi (\omega _{0})+\sum _{\omega \neq \omega _{0}}\xi (\omega )\right)={\frac {1}{37}}\left(35\cdot r-36\cdot r\right)=-{\frac {r}{37}}\approx -0.027r.}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span></dd></dl> <p>Without details, for a bet, black (or red), the rule is determined as </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \xi (\omega )={\begin{cases}-r,&\omega {\text{ is red}}\\-r,&\omega =0\\r,&\omega {\text{ is black}}\end{cases}},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>ξ<!-- ξ --></mi> <mo stretchy="false">(</mo> <mi>ω<!-- ω --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>{</mo> <mtable columnalign="left left" rowspacing=".2em" columnspacing="1em" displaystyle="false"> <mtr> <mtd> <mo>−<!-- − --></mo> <mi>r</mi> <mo>,</mo> </mtd> <mtd> <mi>ω<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mtext> is red</mtext> </mrow> </mtd> </mtr> <mtr> <mtd> <mo>−<!-- − --></mo> <mi>r</mi> <mo>,</mo> </mtd> <mtd> <mi>ω<!-- ω --></mi> <mo>=</mo> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mi>r</mi> <mo>,</mo> </mtd> <mtd> <mi>ω<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mtext> is black</mtext> </mrow> </mtd> </mtr> </mtable> <mo fence="true" stretchy="true" symmetric="true"></mo> </mrow> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \xi (\omega )={\begin{cases}-r,&\omega {\text{ is red}}\\-r,&\omega =0\\r,&\omega {\text{ is black}}\end{cases}},}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8bc35797122e94ff9a83b3cd254d0ac7d755bea7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.671ex; width:26.206ex; height:8.509ex;" alt="{\displaystyle \xi (\omega )={\begin{cases}-r,&\omega {\text{ is red}}\\-r,&\omega =0\\r,&\omega {\text{ is black}}\end{cases}},}"></noscript><span class="lazy-image-placeholder" style="width: 26.206ex;height: 8.509ex;vertical-align: -3.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8bc35797122e94ff9a83b3cd254d0ac7d755bea7" data-alt="{\displaystyle \xi (\omega )={\begin{cases}-r,&\omega {\text{ is red}}\\-r,&\omega =0\\r,&\omega {\text{ is black}}\end{cases}},}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span></dd></dl> <p>and the profitability </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M[\xi ]={\frac {1}{37}}(18\cdot r-18\cdot r-r)=-{\frac {r}{37}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>M</mi> <mo stretchy="false">[</mo> <mi>ξ<!-- ξ --></mi> <mo stretchy="false">]</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>37</mn> </mfrac> </mrow> <mo stretchy="false">(</mo> <mn>18</mn> <mo>⋅<!-- ⋅ --></mo> <mi>r</mi> <mo>−<!-- − --></mo> <mn>18</mn> <mo>⋅<!-- ⋅ --></mo> <mi>r</mi> <mo>−<!-- − --></mo> <mi>r</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>r</mi> <mn>37</mn> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M[\xi ]={\frac {1}{37}}(18\cdot r-18\cdot r-r)=-{\frac {r}{37}}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3a70a9d762fcb33361a532e17cf7c6be32fa5a8c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:37.737ex; height:5.343ex;" alt="{\displaystyle M[\xi ]={\frac {1}{37}}(18\cdot r-18\cdot r-r)=-{\frac {r}{37}}}"></noscript><span class="lazy-image-placeholder" style="width: 37.737ex;height: 5.343ex;vertical-align: -2.005ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3a70a9d762fcb33361a532e17cf7c6be32fa5a8c" data-alt="{\displaystyle M[\xi ]={\frac {1}{37}}(18\cdot r-18\cdot r-r)=-{\frac {r}{37}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span>.</dd></dl> <p>For similar reasons it is simple to see that the profitability is also equal for all remaining types of bets. <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle -{\frac {r}{37}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>r</mi> <mn>37</mn> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle -{\frac {r}{37}}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e987718a7228273431483b9158246fc3cbcf7c03" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:4.288ex; height:3.343ex;" alt="{\textstyle -{\frac {r}{37}}}"></noscript><span class="lazy-image-placeholder" style="width: 4.288ex;height: 3.343ex;vertical-align: -1.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e987718a7228273431483b9158246fc3cbcf7c03" data-alt="{\textstyle -{\frac {r}{37}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span>.<sup id="cite_ref-11" class="reference"><a href="#cite_note-11"><span class="cite-bracket">[</span>11<span class="cite-bracket">]</span></a></sup> </p><p>In reality this means that, the more bets a player makes, the more they are going to lose independent of the strategies (combinations of bet types or size of bets) that they employ: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sum _{n=1}^{\infty }M[\xi _{n}]=-{\frac {1}{37}}\sum _{n=1}^{\infty }r_{n}\to -\infty .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </munderover> <mi>M</mi> <mo stretchy="false">[</mo> <msub> <mi>ξ<!-- ξ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">]</mo> <mo>=</mo> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>37</mn> </mfrac> </mrow> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </munderover> <msub> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">→<!-- → --></mo> <mo>−<!-- − --></mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sum _{n=1}^{\infty }M[\xi _{n}]=-{\frac {1}{37}}\sum _{n=1}^{\infty }r_{n}\to -\infty .}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/542aa6c267e5a28fcc825a0179034bc4e5e182f5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:32.572ex; height:6.843ex;" alt="{\displaystyle \sum _{n=1}^{\infty }M[\xi _{n}]=-{\frac {1}{37}}\sum _{n=1}^{\infty }r_{n}\to -\infty .}"></noscript><span class="lazy-image-placeholder" style="width: 32.572ex;height: 6.843ex;vertical-align: -3.005ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/542aa6c267e5a28fcc825a0179034bc4e5e182f5" data-alt="{\displaystyle \sum _{n=1}^{\infty }M[\xi _{n}]=-{\frac {1}{37}}\sum _{n=1}^{\infty }r_{n}\to -\infty .}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span></dd></dl> <p>Here, the profit margin for the roulette owner is equal to approximately 2.7%. Nevertheless, several roulette strategy systems have been developed despite the losing odds. These systems can not change the odds of the game in favor of the player. </p><p>The odds for the player in American roulette are even worse, as the bet profitability is at worst <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle -{\frac {3}{38}}r\approx -0.0789r}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>3</mn> <mn>38</mn> </mfrac> </mrow> <mi>r</mi> <mo>≈<!-- ≈ --></mo> <mo>−<!-- − --></mo> <mn>0.0789</mn> <mi>r</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle -{\frac {3}{38}}r\approx -0.0789r}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dcb94ea31172d61cf249ded99cc926ebc7d1e610" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:17.751ex; height:3.676ex;" alt="{\textstyle -{\frac {3}{38}}r\approx -0.0789r}"></noscript><span class="lazy-image-placeholder" style="width: 17.751ex;height: 3.676ex;vertical-align: -1.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dcb94ea31172d61cf249ded99cc926ebc7d1e610" data-alt="{\textstyle -{\frac {3}{38}}r\approx -0.0789r}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span>, and never better than <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle -{\frac {r}{19}}\approx -0.0526r}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>r</mi> <mn>19</mn> </mfrac> </mrow> <mo>≈<!-- ≈ --></mo> <mo>−<!-- − --></mo> <mn>0.0526</mn> <mi>r</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle -{\frac {r}{19}}\approx -0.0526r}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8bec75dd91681dd3c791b6d0253fcd5f8b41de0b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:16.703ex; height:3.343ex;" alt="{\textstyle -{\frac {r}{19}}\approx -0.0526r}"></noscript><span class="lazy-image-placeholder" style="width: 16.703ex;height: 3.343ex;vertical-align: -1.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8bec75dd91681dd3c791b6d0253fcd5f8b41de0b" data-alt="{\textstyle -{\frac {r}{19}}\approx -0.0526r}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span>.<sup class="noprint Inline-Template Template-Fact" style="white-space:nowrap;">[<i><a href="/wiki/Wikipedia:Citation_needed" title="Wikipedia:Citation needed"><span title="This claim needs references to reliable sources. (October 2024)">citation needed</span></a></i>]</sup> </p> <div class="mw-heading mw-heading3"><h3 id="Simplified_mathematical_model">Simplified mathematical model</h3><span class="mw-editsection"> <a role="button" href="/w/index.php?title=Roulette&action=edit&section=12" title="Edit section: Simplified mathematical model" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <p>For a roulette wheel with <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></noscript><span class="lazy-image-placeholder" style="width: 1.395ex;height: 1.676ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" data-alt="{\displaystyle n}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> green numbers and 36 other unique numbers, the chance of the ball landing on a given number is <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle {\frac {1}{(36+n)}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mo stretchy="false">(</mo> <mn>36</mn> <mo>+</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle {\frac {1}{(36+n)}}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/760db365cfb17a3e7f350f5686e7a0f140063c24" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:6.024ex; height:4.176ex;" alt="{\textstyle {\frac {1}{(36+n)}}}"></noscript><span class="lazy-image-placeholder" style="width: 6.024ex;height: 4.176ex;vertical-align: -1.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/760db365cfb17a3e7f350f5686e7a0f140063c24" data-alt="{\textstyle {\frac {1}{(36+n)}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span>. For a betting option with <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/81eac1e205430d1f40810df36a0edffdc367af36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:1.259ex; height:2.009ex;" alt="{\displaystyle p}"></noscript><span class="lazy-image-placeholder" style="width: 1.259ex;height: 2.009ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/81eac1e205430d1f40810df36a0edffdc367af36" data-alt="{\displaystyle p}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> numbers defining a win, the chance of winning a bet is <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle {\frac {p}{(36+n)}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>p</mi> <mrow> <mo stretchy="false">(</mo> <mn>36</mn> <mo>+</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle {\frac {p}{(36+n)}}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/23104be7eba25b28c69e5e845ab18a20715bff94" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:6.024ex; height:4.176ex;" alt="{\textstyle {\frac {p}{(36+n)}}}"></noscript><span class="lazy-image-placeholder" style="width: 6.024ex;height: 4.176ex;vertical-align: -1.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/23104be7eba25b28c69e5e845ab18a20715bff94" data-alt="{\textstyle {\frac {p}{(36+n)}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </p><p>For example, if a player bets on red, there are 18 red numbers, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p=18}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> <mo>=</mo> <mn>18</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p=18}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c78123b0034fb2c6fc7a96e047949fbc14340e3c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:6.682ex; height:2.509ex;" alt="{\displaystyle p=18}"></noscript><span class="lazy-image-placeholder" style="width: 6.682ex;height: 2.509ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c78123b0034fb2c6fc7a96e047949fbc14340e3c" data-alt="{\displaystyle p=18}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span>, so the chance of winning is <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle {\frac {18}{(36+n)}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>18</mn> <mrow> <mo stretchy="false">(</mo> <mn>36</mn> <mo>+</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle {\frac {18}{(36+n)}}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6f5aafa6f50bce7cabb66e27b0082d39be481ff1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:6.024ex; height:4.176ex;" alt="{\textstyle {\frac {18}{(36+n)}}}"></noscript><span class="lazy-image-placeholder" style="width: 6.024ex;height: 4.176ex;vertical-align: -1.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6f5aafa6f50bce7cabb66e27b0082d39be481ff1" data-alt="{\textstyle {\frac {18}{(36+n)}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span>. </p><p>The payout given by the casino for a win is based on the roulette wheel having 36 outcomes, and the payout for a bet is given by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle {\frac {36}{p}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>36</mn> <mi>p</mi> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle {\frac {36}{p}}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ac94f673101ad6f05847033f459663606230f6ac" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:2.48ex; height:3.676ex;" alt="{\textstyle {\frac {36}{p}}}"></noscript><span class="lazy-image-placeholder" style="width: 2.48ex;height: 3.676ex;vertical-align: -1.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ac94f673101ad6f05847033f459663606230f6ac" data-alt="{\textstyle {\frac {36}{p}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span>. </p><p>For example, betting on 1-12 there are 12 numbers that define a win, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p=12}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> <mo>=</mo> <mn>12</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p=12}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8d92b22e89572389136e69792204fd0482d5846e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:6.682ex; height:2.509ex;" alt="{\displaystyle p=12}"></noscript><span class="lazy-image-placeholder" style="width: 6.682ex;height: 2.509ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8d92b22e89572389136e69792204fd0482d5846e" data-alt="{\displaystyle p=12}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span>, the payout is <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle {\frac {36}{12}}=3}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>36</mn> <mn>12</mn> </mfrac> </mrow> <mo>=</mo> <mn>3</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle {\frac {36}{12}}=3}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1167c8a4eda3ea0fe2bb3fc495bec8083c3869ed" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:6.741ex; height:3.509ex;" alt="{\textstyle {\frac {36}{12}}=3}"></noscript><span class="lazy-image-placeholder" style="width: 6.741ex;height: 3.509ex;vertical-align: -1.171ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1167c8a4eda3ea0fe2bb3fc495bec8083c3869ed" data-alt="{\textstyle {\frac {36}{12}}=3}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span>, so the bettor wins 3 times their bet. </p><p>The average return on a player's bet is given by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle {\frac {p}{(36+n)}}\cdot {\frac {36}{p}}={\frac {36}{(36+n)}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>p</mi> <mrow> <mo stretchy="false">(</mo> <mn>36</mn> <mo>+</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mo>⋅<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>36</mn> <mi>p</mi> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>36</mn> <mrow> <mo stretchy="false">(</mo> <mn>36</mn> <mo>+</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle {\frac {p}{(36+n)}}\cdot {\frac {36}{p}}={\frac {36}{(36+n)}}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/10b2ae4484276542b0df176323fc3c3296fb4bc9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:19.306ex; height:4.176ex;" alt="{\textstyle {\frac {p}{(36+n)}}\cdot {\frac {36}{p}}={\frac {36}{(36+n)}}}"></noscript><span class="lazy-image-placeholder" style="width: 19.306ex;height: 4.176ex;vertical-align: -1.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/10b2ae4484276542b0df176323fc3c3296fb4bc9" data-alt="{\textstyle {\frac {p}{(36+n)}}\cdot {\frac {36}{p}}={\frac {36}{(36+n)}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </p><p>For <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n>0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>></mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n>0}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/27a6a5d982d54202a14f111cb8a49210501b2c96" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.656ex; height:2.176ex;" alt="{\displaystyle n>0}"></noscript><span class="lazy-image-placeholder" style="width: 5.656ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/27a6a5d982d54202a14f111cb8a49210501b2c96" data-alt="{\displaystyle n>0}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span>, the average return is always lower than 1, so on average a player will lose money. </p><p>With 1 green number, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n=1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n=1}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d9ec7e1edc2e6d98f5aec2a39ae5f1c99d1e1425" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.656ex; height:2.176ex;" alt="{\displaystyle n=1}"></noscript><span class="lazy-image-placeholder" style="width: 5.656ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d9ec7e1edc2e6d98f5aec2a39ae5f1c99d1e1425" data-alt="{\displaystyle n=1}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span>, the average return is <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle {\frac {36}{37}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>36</mn> <mn>37</mn> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle {\frac {36}{37}}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f1222a7ab3674385524fd808cd36e2d6aa05d4f4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:2.48ex; height:3.676ex;" alt="{\textstyle {\frac {36}{37}}}"></noscript><span class="lazy-image-placeholder" style="width: 2.48ex;height: 3.676ex;vertical-align: -1.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f1222a7ab3674385524fd808cd36e2d6aa05d4f4" data-alt="{\textstyle {\frac {36}{37}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span>, that is, after a bet the player will on average have <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle {\frac {36}{37}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>36</mn> <mn>37</mn> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle {\frac {36}{37}}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f1222a7ab3674385524fd808cd36e2d6aa05d4f4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:2.48ex; height:3.676ex;" alt="{\textstyle {\frac {36}{37}}}"></noscript><span class="lazy-image-placeholder" style="width: 2.48ex;height: 3.676ex;vertical-align: -1.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f1222a7ab3674385524fd808cd36e2d6aa05d4f4" data-alt="{\textstyle {\frac {36}{37}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> of their original bet returned to them. With 2 green numbers, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n=2}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>=</mo> <mn>2</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n=2}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a02c8bd752d2cc859747ca1f3a508281bdbc3b34" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.656ex; height:2.176ex;" alt="{\displaystyle n=2}"></noscript><span class="lazy-image-placeholder" style="width: 5.656ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a02c8bd752d2cc859747ca1f3a508281bdbc3b34" data-alt="{\displaystyle n=2}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span>, the average return is <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle {\frac {36}{38}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>36</mn> <mn>38</mn> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle {\frac {36}{38}}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/54269d310af9fd05b4024eebaa0c291e734e633f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:2.48ex; height:3.676ex;" alt="{\textstyle {\frac {36}{38}}}"></noscript><span class="lazy-image-placeholder" style="width: 2.48ex;height: 3.676ex;vertical-align: -1.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/54269d310af9fd05b4024eebaa0c291e734e633f" data-alt="{\textstyle {\frac {36}{38}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span>. With 3 green numbers, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n=3}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>=</mo> <mn>3</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n=3}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1c5a5a42ced00df920fad4ab2d4acdb960a4105b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.656ex; height:2.176ex;" alt="{\displaystyle n=3}"></noscript><span class="lazy-image-placeholder" style="width: 5.656ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1c5a5a42ced00df920fad4ab2d4acdb960a4105b" data-alt="{\displaystyle n=3}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span>, the average return is <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle {\frac {36}{39}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>36</mn> <mn>39</mn> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle {\frac {36}{39}}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8d0f562dc8b248546faa6ea495fabbf34cdde5df" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:2.48ex; height:3.676ex;" alt="{\textstyle {\frac {36}{39}}}"></noscript><span class="lazy-image-placeholder" style="width: 2.48ex;height: 3.676ex;vertical-align: -1.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8d0f562dc8b248546faa6ea495fabbf34cdde5df" data-alt="{\textstyle {\frac {36}{39}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span>. </p><p>This shows that the expected return is independent of the choice of bet. </p> </section><div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(9)"><span class="indicator mf-icon mf-icon-expand mf-icon--small"></span><h2 id="Called_(or_call)_bets_or_announced_bets"><span id="Called_.28or_call.29_bets_or_announced_bets"></span>Called (or call) bets or announced bets</h2><span class="mw-editsection"> <a role="button" href="/w/index.php?title=Roulette&action=edit&section=13" title="Edit section: Called (or call) bets or announced bets" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div><section class="mf-section-9 collapsible-block" id="mf-section-9"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1251242444"><table class="box-Unreferenced_section plainlinks metadata ambox ambox-content ambox-Unreferenced" role="presentation"><tbody><tr><td class="mbox-text"><div class="mbox-text-span">This section <b>does not <a href="/wiki/Wikipedia:Citing_sources" title="Wikipedia:Citing sources">cite</a> any <a href="/wiki/Wikipedia:Verifiability" title="Wikipedia:Verifiability">sources</a></b>.<span class="hide-when-compact"> Please help <a href="/wiki/Special:EditPage/Roulette" title="Special:EditPage/Roulette">improve this section</a> by <a href="/wiki/Help:Referencing_for_beginners" title="Help:Referencing for beginners">adding citations to reliable sources</a>. Unsourced material may be challenged and <a href="/wiki/Wikipedia:Verifiability#Burden_of_evidence" title="Wikipedia:Verifiability">removed</a>.</span> <span class="date-container"><i>(<span class="date">September 2021</span>)</i></span><span class="hide-when-compact"><i> (<small><a href="/wiki/Help:Maintenance_template_removal" title="Help:Maintenance template removal">Learn how and when to remove this message</a></small>)</i></span></div></td></tr></tbody></table> <figure class="mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:European_roulette_wheel.svg" class="mw-file-description"><noscript><img src="//upload.wikimedia.org/wikipedia/commons/thumb/7/7d/European_roulette_wheel.svg/180px-European_roulette_wheel.svg.png" decoding="async" width="180" height="180" class="mw-file-element" data-file-width="510" data-file-height="510"></noscript><span class="lazy-image-placeholder" style="width: 180px;height: 180px;" data-src="//upload.wikimedia.org/wikipedia/commons/thumb/7/7d/European_roulette_wheel.svg/180px-European_roulette_wheel.svg.png" data-width="180" data-height="180" data-srcset="//upload.wikimedia.org/wikipedia/commons/thumb/7/7d/European_roulette_wheel.svg/270px-European_roulette_wheel.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/7/7d/European_roulette_wheel.svg/360px-European_roulette_wheel.svg.png 2x" data-class="mw-file-element"> </span></a><figcaption>Traditional roulette wheel sectors</figcaption></figure> <p>Although most often named "call bets" technically these bets are more accurately referred to as "announced bets". The legal distinction between a "call bet" and an "announced bet" is that a "call bet" is a bet called by the player without placing any money on the table to cover the cost of the bet. In many jurisdictions (most notably the <a href="/wiki/United_Kingdom" title="United Kingdom">United Kingdom</a>) this is considered gambling on credit and is illegal. An "announced bet" is a bet called by the player for which they immediately place enough money to cover the amount of the bet on the table, prior to the outcome of the spin or hand in progress being known. </p><p>There are different number series in roulette that have special names attached to them. Most commonly these bets are known as "the French bets" and each covers a section of the wheel. For the sake of accuracy, zero spiel, although explained below, is not a French bet, it is more accurately "the German bet". Players at a table may bet a set amount per series (or multiples of that amount). The series are based on the way certain numbers lie next to each other on the roulette wheel. Not all casinos offer these bets, and some may offer additional bets or variations on these. </p> <div class="mw-heading mw-heading3"><h3 id="Voisins_du_zéro_(neighbors_of_zero)"><span id="Voisins_du_z.C3.A9ro_.28neighbors_of_zero.29"></span>Voisins du zéro (<i>neighbors of zero</i>)</h3><span class="mw-editsection"> <a role="button" href="/w/index.php?title=Roulette&action=edit&section=14" title="Edit section: Voisins du zéro (neighbors of zero)" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <p>This is a name, more accurately "grands voisins du zéro", for the 17 numbers that lie between 22 and 25 on the wheel, including 22 and 25 themselves. The series is 22-18-29-7-28-12-35-3-26-0-32-15-19-4-21-2-25 (on a single-zero wheel). </p><p>Nine chips or multiples thereof are bet. Two chips are placed on the 0-2-3 trio; one on the 4–7 split; one on 12–15; one on 18–21; one on 19–22; two on the 25-26-28-29 corner; and one on 32–35. </p> <div class="mw-heading mw-heading3"><h3 id="Jeu_zéro_(zero_game)"><span id="Jeu_z.C3.A9ro_.28zero_game.29"></span>Jeu zéro (<i>zero game</i>)</h3><span class="mw-editsection"> <a role="button" href="/w/index.php?title=Roulette&action=edit&section=15" title="Edit section: Jeu zéro (zero game)" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <p>Zero game, also known as zero spiel (<i>Spiel</i> is German for game or play), is the name for the numbers closest to zero. All numbers in the zero game are included in the voisins, but are placed differently. The numbers bet on are 12-35-3-26-0-32-15. </p><p>The bet consists of four chips or multiples thereof. Three chips are bet on splits and one chip straight-up: one chip on 0–3 split, one on 12–15 split, one on 32–35 split and one straight-up on number 26. </p><p>This type of bet is popular in Germany and many European casinos. It is also offered as a 5-chip bet in many Eastern European casinos. As a 5-chip bet, it is known as "zero spiel naca" and includes, in addition to the chips placed as noted above, a straight-up on number 19. </p> <div class="mw-heading mw-heading3"><h3 id="Le_tiers_du_cylindre_(third_of_the_wheel)"><span id="Le_tiers_du_cylindre_.28third_of_the_wheel.29"></span>Le tiers du cylindre (<i>third of the wheel</i>)</h3><span class="mw-editsection"> <a role="button" href="/w/index.php?title=Roulette&action=edit&section=16" title="Edit section: Le tiers du cylindre (third of the wheel)" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <p>This is the name for the 12 numbers that lie on the opposite side of the wheel between 27 and 33, including 27 and 33 themselves. On a single-zero wheel, the series is 27-13-36-11-30-8-23-10-5-24-16-33. The full name (although very rarely used, most players refer to it as "tiers") for this bet is "le tiers du cylindre" (translated from French into English meaning one third of the wheel) because it covers 12 numbers (placed as 6 splits), which is as close to <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1154941027"><span class="frac"><span class="num">1</span>⁄<span class="den">3</span></span> of the wheel as one can get. </p><p>Very popular in British casinos, tiers bets outnumber voisins and orphelins bets by a massive margin. </p><p>Six chips or multiples thereof are bet. One chip is placed on each of the following splits: 5–8, 10–11, 13–16, 23–24, 27–30, and 33–36. </p><p>The tiers bet is also called the "small series" and in some casinos (most notably in <a href="/wiki/South_Africa" title="South Africa">South Africa</a>) "series 5-8". </p><p>A variant known as "tiers 5-8-10-11" has an additional chip placed straight up on 5, 8, 10, and 11 and so is a 10-piece bet. In some places the variant is called "gioco Ferrari" with a straight up on 8, 11, 23 and 30, the bet is marked with a red G on the racetrack. </p> <div class="mw-heading mw-heading3"><h3 id="Orphelins_(orphans)"><span id="Orphelins_.28orphans.29"></span>Orphelins (<i>orphans</i>)</h3><span class="mw-editsection"> <a role="button" href="/w/index.php?title=Roulette&action=edit&section=17" title="Edit section: Orphelins (orphans)" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <p>These numbers make up the two slices of the wheel outside the tiers and voisins. They contain a total of 8 numbers, comprising 17-34-6 and 1-20-14-31-9. </p><p>Five chips or multiples thereof are bet on four splits and a straight-up: one chip is placed straight-up on 1 and one chip on each of the splits: 6–9, 14–17, 17–20, and 31–34. </p> <div class="mw-heading mw-heading3"><h3 id="..._and_the_neighbors">... and the neighbors</h3><span class="mw-editsection"> <a role="button" href="/w/index.php?title=Roulette&action=edit&section=18" title="Edit section: ... and the neighbors" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <p>A number may be backed along with the two numbers on the either side of it in a 5-chip bet. For example, "0 and the neighbors" is a 5-chip bet with one piece straight-up on 3, 26, 0, 32, and 15. Neighbors bets are often put on in combinations, for example "1, 9, 14, and the neighbors" is a 15-chip bet covering 18, 22, 33, 16 with one chip, 9, 31, 20, 1 with two chips and 14 with three chips. </p><p>Any of the above bets may be combined; e.g. "orphelins by 1 and zero and the neighbors by 1". The "...and the neighbors" is often assumed by the croupier. </p> <div class="mw-heading mw-heading3"><h3 id="Final_bets">Final bets</h3><span class="mw-editsection"> <a role="button" href="/w/index.php?title=Roulette&action=edit&section=19" title="Edit section: Final bets" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <p>Another bet offered on the single-zero game is "final", "finale", or "finals". </p><p>Final 4, for example, is a 4-chip bet and consists of one chip placed on each of the numbers ending in 4, that is 4, 14, 24, and 34. Final 7 is a 3-chip bet, one chip each on 7, 17, and 27. Final bets from final 0 (zero) to final 6 cost four chips. Final bets 7, 8 and 9 cost three chips. </p><p>Some casinos also offer split-final bets, for example final 5-8 would be a 4-chip bet, one chip each on the splits 5–8, 15–18, 25–28, and one on 35. </p> <div class="mw-heading mw-heading3"><h3 id="Full_completes/maximums"><span id="Full_completes.2Fmaximums"></span>Full completes/maximums</h3><span class="mw-editsection"> <a role="button" href="/w/index.php?title=Roulette&action=edit&section=20" title="Edit section: Full completes/maximums" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <p>A complete bet places all of the inside bets on a certain number. Full complete bets are most often bet by high rollers as <i>maximum bets</i>. </p><p>The maximum amount allowed to be wagered on a single bet in European roulette is based on a progressive betting model. If the casino allows a maximum bet of $1,000 on a 35-to-1 straight-up, then on each 17-to-1 split connected to that straight-up, $2,000 may be wagered. Each 8-to-1 corner that covers four numbers) may have $4,000 wagered on it. Each 11-to-1 street that covers three numbers may have $3,000 wagered on it. Each 5-to-1 six-line may have $6,000 wagered on it. Each $1,000 incremental bet would be represented by a marker that is used to specifically identify the player and the amount bet. </p><p>For instance, if a patron wished to place a full complete bet on 17, the player would call "17 to the maximum". This bet would require a total of 40 chips, or $40,000. To manually place the same wager, the player would need to bet: </p> <table class="wikitable" style="text-align:center;"> <caption>17 to the maximum </caption> <tbody><tr> <th>Bet type </th> <th>Number(s) bet on </th> <th>Chips </th> <th>Amount waged </th></tr> <tr> <td>Straight-up</td> <td>17</td> <td>1</td> <td>$1,000 </td></tr> <tr> <td>Split</td> <td>14-17</td> <td>2</td> <td>$2,000 </td></tr> <tr> <td>Split</td> <td>16-17</td> <td>2</td> <td>$2,000 </td></tr> <tr> <td>Split</td> <td>17-18</td> <td>2</td> <td>$2,000 </td></tr> <tr> <td>Split</td> <td>17-20</td> <td>2</td> <td>$2,000 </td></tr> <tr> <td>Street</td> <td>16-17-18</td> <td>3</td> <td>$3,000 </td></tr> <tr> <td>Corner</td> <td>13-14-16-17</td> <td>4</td> <td>$4,000 </td></tr> <tr> <td>Corner</td> <td>14-15-17-18</td> <td>4</td> <td>$4,000 </td></tr> <tr> <td>Corner</td> <td>16-17-19-20</td> <td>4</td> <td>$4,000 </td></tr> <tr> <td>Corner</td> <td>17-18-20-21</td> <td>4</td> <td>$4,000 </td></tr> <tr> <td>Six line</td> <td>13-14-15-16-17-18</td> <td>6</td> <td>$6,000 </td></tr> <tr> <td>Six line</td> <td>16-17-18-19-20-21</td> <td>6</td> <td>$6,000 </td></tr> <tr> <th>Total</th> <th></th> <th>40</th> <th>$40,000 </th></tr></tbody></table> <p>The player calls their bet to the croupier (most often after the ball has been spun) and places enough chips to cover the bet on the table within reach of the croupier. The croupier will immediately announce the bet (repeat what the player has just said), ensure that the correct monetary amount has been given while simultaneously placing a matching marker on the number on the table and the amount wagered. </p><p>The payout for this bet if the chosen number wins is 392 chips, in the case of a $1000 straight-up maximum, $40,000 bet, a payout of $392,000. The player's wagered 40 chips, as with all winning bets in roulette, are still their property and in the absence of a request to the contrary are left up to possibly win again on the next spin. </p><p>Based on the location of the numbers on the layout, the number of chips required to "complete" a number can be determined. </p> <ul><li>Zero costs 17 chips to complete and pays 235 chips.</li> <li>Number 1 and number 3 each cost 27 chips and pay 297 chips.</li> <li>Number 2 is a 36-chip bet and pays 396 chips.</li> <li>1st column numbers 4 to 31 and 3rd column numbers 6 to 33, cost 30 chips each to complete. The payout for a win on these 30-chip bets is 294 chips.</li> <li>2nd column numbers 5 to 32 cost 40 chips each to complete. The payout for a win on these numbers is 392 chips.</li> <li>Numbers 34 and 36 each cost 18 chips and pay 198 chips.</li> <li>Number 35 is a 24-chip bet which pays 264 chips.</li></ul> <p>Most typically (<a href="/wiki/Mayfair" title="Mayfair">Mayfair</a> casinos in <a href="/wiki/London" title="London">London</a> and other top-class European casinos) with these <i>maximum</i> or <i>full complete</i> bets, nothing (except the aforementioned maximum button) is ever placed on the layout even in the case of a win. Experienced gaming staff, and the type of customers playing such bets, are fully aware of the payouts and so the croupier simply makes up the correct payout, announces its value to the table inspector (floor person in the U.S.) and the customer, and then passes it to the customer, but only after a verbal authorization from the inspector has been received. </p><p>Also typically at this level of play (house rules allowing) the experienced croupier caters to the needs of the customer and will most often add the customer's winning bet to the payout, as the type of player playing these bets very rarely bets the same number two spins in succession. For example, the winning 40-chip / $40,000 bet on "17 to the maximum" pays 392 chips / $392,000. The experienced croupier would pay the player 432 chips / $432,000, that is 392 + 40, with the announcement that the payout "is with your bet down". </p><p>There are also several methods to determine the payout when a number adjacent to a chosen number is the winner, for example, player bets "23 full complete" and number 26 is the winning number. The most notable method is known as the "station" method. When paying in stations, the dealer counts the number of ways or stations that the winning number hits the complete bet. In the example above, 26 hits 4 stations - 2 different corners, 1 split and 1 six-line. The dealer takes the number 4, multiplies it by 36, making 144 with the players bet down. </p><p>In some casinos, a player may bet full complete for less than the table straight-up maximum, for example, "number 17 full complete by $25" would cost $1000, that is 40 chips each at $25 value. </p> </section><div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(10)"><span class="indicator mf-icon mf-icon-expand mf-icon--small"></span><h2 id="Betting_strategies_and_tactics">Betting strategies and tactics</h2><span class="mw-editsection"> <a role="button" href="/w/index.php?title=Roulette&action=edit&section=21" title="Edit section: Betting strategies and tactics" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div><section class="mf-section-10 collapsible-block" id="mf-section-10"> <p>Over the years, many people have tried to beat the casino, and turn roulette—a game designed to turn a profit for the house—into one on which the player expects to win. Most of the time this comes down to the use of betting systems, strategies which say that the house edge can be beaten by simply employing a special pattern of bets, often relying on the "<a href="/wiki/Gambler%27s_fallacy" title="Gambler's fallacy">Gambler's fallacy</a>", the idea that past results are any guide to the future (for example, if a roulette wheel has come up 10 times in a row on red, that red on the next spin is any more or less likely than if the last spin was black). </p><p>All betting systems that rely on patterns, when employed on casino edge games will result, on average, in the player losing money.<sup id="cite_ref-WizardOfOdds_12-0" class="reference"><a href="#cite_note-WizardOfOdds-12"><span class="cite-bracket">[</span>12<span class="cite-bracket">]</span></a></sup> In practice, players employing betting systems may win, and may indeed win very large sums of money, but the losses (which, depending on the design of the betting system, may occur quite rarely) will outweigh the wins. Certain systems, such as the Martingale, described below, are extremely risky, because the worst-case scenario (which is mathematically certain to happen, at some point) may see the player chasing losses with ever-bigger bets until they run out of money. </p><p>The American mathematician Patrick Billingsley said<sup id="cite_ref-13" class="reference"><a href="#cite_note-13"><span class="cite-bracket">[</span>13<span class="cite-bracket">]</span></a></sup><sup class="noprint Inline-Template" style="white-space:nowrap;">[<i><a href="/wiki/Wikipedia:Reliable_sources" title="Wikipedia:Reliable sources"><span title="The material near this tag may rely on an unreliable source. (August 2012)">unreliable source?</span></a></i>]</sup> that no betting system can convert a subfair game into a profitable enterprise. At least in the 1930s, some professional gamblers were able to consistently gain an edge in roulette by seeking out rigged wheels (not difficult to find at that time) and betting opposite the largest bets. </p> <div class="mw-heading mw-heading3"><h3 id="Prediction_methods">Prediction methods</h3><span class="mw-editsection"> <a role="button" href="/w/index.php?title=Roulette&action=edit&section=22" title="Edit section: Prediction methods" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <p>Whereas betting systems are essentially an attempt to beat the fact that a geometric series with initial value of 0.95 (American roulette) or 0.97 (European roulette) will inevitably over time tend to zero, <a href="/wiki/Engineer" title="Engineer">engineers</a> instead attempt to overcome the house edge through predicting the mechanical performance of the wheel, most notably by <a href="/wiki/Joseph_Jagger" title="Joseph Jagger">Joseph Jagger</a> at <a href="/wiki/Monte_Carlo" title="Monte Carlo">Monte Carlo</a> in 1873. These schemes work by determining that the ball is more likely to fall at certain numbers. If effective, they raise the return of the game above 100%, defeating the betting system problem. </p><p><a href="/wiki/Edward_O._Thorp" title="Edward O. Thorp">Edward O. Thorp</a> (the developer of card counting and an early hedge-fund pioneer) and <a href="/wiki/Claude_Shannon" title="Claude Shannon">Claude Shannon</a> (a mathematician and electronic engineer best known for his contributions to <a href="/wiki/Information_theory" title="Information theory">information theory</a>) built the first <a href="/wiki/Wearable_computer" title="Wearable computer">wearable computer</a> to predict the landing of the ball in 1961. This system worked by timing the ball and wheel, and using the information obtained to calculate the most likely <a href="/wiki/Octant_(plane_geometry)" class="mw-redirect" title="Octant (plane geometry)">octant</a> where the ball would fall. Ironically, this technique works best with an unbiased wheel though it could still be countered quite easily by simply closing the table for betting before beginning the spin. </p><p>In 1982, several casinos in Britain began to lose large sums of money at their roulette tables to teams of gamblers from the US. Upon investigation by the police, it was discovered they were using a legal system of biased wheel-section betting. As a result of this, the British roulette wheel manufacturer John Huxley manufactured a roulette wheel to counteract the problem. </p><p>The new wheel, designed by George Melas, was called "low profile" because the pockets had been drastically reduced in depth, and various other design modifications caused the ball to descend in a gradual approach to the pocket area. In 1986, when a professional gambling team headed by <a href="/wiki/Billy_Walters_(gambler)" title="Billy Walters (gambler)">Billy Walters</a> won $3.8 million using the system on an old wheel at the <a href="/wiki/Golden_Nugget_Atlantic_City_(1980-1987)" class="mw-redirect" title="Golden Nugget Atlantic City (1980-1987)">Golden Nugget</a> in <a href="/wiki/Atlantic_City" class="mw-redirect" title="Atlantic City">Atlantic City</a>, every casino in the world took notice, and within one year had switched to the new low-profile wheel. </p><p><a href="/wiki/Thomas_Bass" title="Thomas Bass">Thomas Bass</a>, in his book <i><a href="/wiki/The_Eudaemonic_Pie" title="The Eudaemonic Pie">The Eudaemonic Pie</a></i> (1985) (published as <i>The <a href="/wiki/Newtonian_Casino" class="mw-redirect" title="Newtonian Casino">Newtonian Casino</a></i> in Britain), has claimed to be able to predict wheel performance in real time. The book describes the exploits of a group of <a href="/wiki/University_of_California_Santa_Cruz" class="mw-redirect" title="University of California Santa Cruz">University of California Santa Cruz</a> students, who called themselves <i>the <a href="/wiki/Eudaemons" title="Eudaemons">Eudaemons</a></i>, who in the late 1970s used computers in their shoes to win at roulette. This is an updated and improved version of <a href="/wiki/Edward_O._Thorp" title="Edward O. Thorp">Edward O. Thorp</a>'s approach, where Newtonian Laws of Motion are applied to track the roulette ball's deceleration; hence the British title. </p><p>In the early 1990s, <a href="/wiki/Gonzalo_Garcia-Pelayo" class="mw-redirect" title="Gonzalo Garcia-Pelayo">Gonzalo Garcia-Pelayo</a> believed that casino roulette wheels were not perfectly <a href="/wiki/Random" class="mw-redirect" title="Random">random</a>, and that by recording the results and analysing them with a computer, he could gain an edge on the house by predicting that certain numbers were more likely to occur next than the 1-in-36 odds offered by the house suggested. He did this at the Casino de Madrid in <a href="/wiki/Madrid" title="Madrid">Madrid</a>, Spain, winning 600,000 euros in a single day, and one million euros in total. Legal action against him by the casino was unsuccessful, it being ruled that the casino should fix its wheel.<sup id="cite_ref-14" class="reference"><a href="#cite_note-14"><span class="cite-bracket">[</span>14<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-15" class="reference"><a href="#cite_note-15"><span class="cite-bracket">[</span>15<span class="cite-bracket">]</span></a></sup> </p><p>To defend against exploits like these, many casinos use tracking software, use wheels with new designs, rotate wheel heads, and randomly rotate pocket rings.<sup id="cite_ref-16" class="reference"><a href="#cite_note-16"><span class="cite-bracket">[</span>16<span class="cite-bracket">]</span></a></sup> </p><p>At the <a href="/wiki/The_Ritz_Hotel,_London" title="The Ritz Hotel, London">Ritz London</a> casino in March 2004, two Serbs and a Hungarian used a <a href="/wiki/Laser_scanning" title="Laser scanning">laser scanner</a> hidden inside a mobile phone linked to a computer to predict the sector of the wheel where the ball was most likely to drop. They netted £1.3m in two nights.<sup id="cite_ref-17" class="reference"><a href="#cite_note-17"><span class="cite-bracket">[</span>17<span class="cite-bracket">]</span></a></sup> They were arrested and kept on police bail for nine months, but eventually released and allowed to keep their winnings as they had not interfered with the casino equipment.<sup id="cite_ref-18" class="reference"><a href="#cite_note-18"><span class="cite-bracket">[</span>18<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Specific_betting_systems">Specific betting systems</h3><span class="mw-editsection"> <a role="button" href="/w/index.php?title=Roulette&action=edit&section=23" title="Edit section: Specific betting systems" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <p>The numerous even-money bets in roulette have inspired many players over the years to attempt to beat the game by using one or more variations of a <a href="/wiki/Martingale_(roulette_system)" class="mw-redirect" title="Martingale (roulette system)">martingale betting strategy</a>, wherein the gambler doubles the bet after every loss, so that the first win would recover all previous losses, plus win a profit equal to the original bet. The problem with this strategy is that, remembering that past results do not affect the future, it is possible for the player to lose so many times in a row, that the player, doubling and redoubling their bets, either runs out of money or hits the table limit. A large financial loss is almost certain in the long term if the player continues to employ this strategy. Another strategy is the Fibonacci system, where bets are calculated according to the <a href="/wiki/Fibonacci_sequence" title="Fibonacci sequence">Fibonacci sequence</a>. Regardless of the specific progression, no such strategy can statistically overcome the casino's advantage, since the <a href="/wiki/Expected_value" title="Expected value">expected value</a> of each allowed bet is negative. </p> <div class="mw-heading mw-heading3"><h3 id="Types_of_betting_system">Types of betting system</h3><span class="mw-editsection"> <a role="button" href="/w/index.php?title=Roulette&action=edit&section=24" title="Edit section: Types of betting system" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <p>Betting systems in roulette can be divided in to two main categories: </p> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Martingale_System_Simulation.png" class="mw-file-description"><noscript><img src="//upload.wikimedia.org/wikipedia/commons/thumb/e/ed/Martingale_System_Simulation.png/220px-Martingale_System_Simulation.png" decoding="async" width="220" height="93" class="mw-file-element" data-file-width="1112" data-file-height="470"></noscript><span class="lazy-image-placeholder" style="width: 220px;height: 93px;" data-src="//upload.wikimedia.org/wikipedia/commons/thumb/e/ed/Martingale_System_Simulation.png/220px-Martingale_System_Simulation.png" data-width="220" data-height="93" data-srcset="//upload.wikimedia.org/wikipedia/commons/thumb/e/ed/Martingale_System_Simulation.png/330px-Martingale_System_Simulation.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/e/ed/Martingale_System_Simulation.png/440px-Martingale_System_Simulation.png 2x" data-class="mw-file-element"> </span></a><figcaption>Negative progression system (e.g. Martingale)</figcaption></figure> <p><i>Negative progression</i> systems involve increasing the size of one's bet when they lose. This is the most common type of betting system. The goal of this system is to recoup losses faster so that one can return to a winning position more quickly after a losing streak. The typical shape of these systems is small but consistent wins followed by occasional catastrophic losses. Examples of negative progression systems include the Martingale system, the Fibonacci system, the Labouchère system, and the d'Alembert system. </p> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Paroli_System_Simulation.png" class="mw-file-description"><noscript><img src="//upload.wikimedia.org/wikipedia/commons/thumb/2/23/Paroli_System_Simulation.png/220px-Paroli_System_Simulation.png" decoding="async" width="220" height="93" class="mw-file-element" data-file-width="1112" data-file-height="470"></noscript><span class="lazy-image-placeholder" style="width: 220px;height: 93px;" data-src="//upload.wikimedia.org/wikipedia/commons/thumb/2/23/Paroli_System_Simulation.png/220px-Paroli_System_Simulation.png" data-width="220" data-height="93" data-srcset="//upload.wikimedia.org/wikipedia/commons/thumb/2/23/Paroli_System_Simulation.png/330px-Paroli_System_Simulation.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/2/23/Paroli_System_Simulation.png/440px-Paroli_System_Simulation.png 2x" data-class="mw-file-element"> </span></a><figcaption>Positive progression system (e.g. Paroli)</figcaption></figure> <p><i>Positive progression</i> systems involve increasing the size of one's bet when one wins. The goal of these systems is to either exacerbate the effects of winning streaks (e.g. the Paroli system) or to take advantage of changes in luck to recover more quickly from previous losses (e.g. Oscar's grind). The shape of these systems is typically small but consistent losses followed by occasional big wins. However, over the long run these wins do not compensate for the losses incurred in between.<sup id="cite_ref-19" class="reference"><a href="#cite_note-19"><span class="cite-bracket">[</span>19<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Reverse_Martingale_system">Reverse Martingale system</h3><span class="mw-editsection"> <a role="button" href="/w/index.php?title=Roulette&action=edit&section=25" title="Edit section: Reverse Martingale system" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <p>The Reverse Martingale system, also known as the Paroli system, follows the idea of the <a href="/wiki/Martingale_(roulette_system)" class="mw-redirect" title="Martingale (roulette system)">martingale betting strategy</a>, but reversed. Instead of doubling a bet after a loss the gambler doubles the bet after every win. The system creates a false feeling of eliminating the risk of betting more when losing, but, in reality, it has the same problem as the <a href="/wiki/Martingale_(betting_system)" title="Martingale (betting system)">martingale</a> strategy. By doubling bets after every win, one keeps betting everything they have won until they either stop playing, or lose it all. </p> <div class="mw-heading mw-heading3"><h3 id="Labouchère_system"><span id="Labouch.C3.A8re_system"></span>Labouchère system</h3><span class="mw-editsection"> <a role="button" href="/w/index.php?title=Roulette&action=edit&section=26" title="Edit section: Labouchère system" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Labouch%C3%A8re_system" title="Labouchère system">Labouchère system</a></div> <p>The Labouchère System is a progression betting strategy like the <a href="/wiki/Martingale_(betting_system)" title="Martingale (betting system)">martingale</a> but does not require the gambler to risk their stake as quickly with dramatic double-ups. The Labouchere System involves using a series of numbers in a line to determine the bet amount, following a win or a loss. Typically, the player adds the numbers at the front and end of the line to determine the size of the next bet. If the player wins, they cross out numbers and continue working on the smaller line. If the player loses, then they add their previous bet to the end of the line and continue to work on the longer line. This is a much more flexible progression betting system and there is much room for the player to design their initial line to their own playing preference. </p><p>This system is one that is designed so that when the player has won over a third of their bets (less than the expected 18/38), they will win. Whereas the martingale will cause ruin in the event of a long sequence of successive losses, the Labouchère system will cause bet size to grow quickly even where a losing sequence is broken by wins. This occurs because as the player loses, the average bet size in the line increases. </p><p>As with all other betting systems, the average value of this system is negative. </p> <div class="mw-heading mw-heading3"><h3 id="D'Alembert_system"><span id="D.27Alembert_system"></span>D'Alembert system</h3><span class="mw-editsection"> <a role="button" href="/w/index.php?title=Roulette&action=edit&section=27" title="Edit section: D'Alembert system" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <p>The system, also called <span title="French-language text"><i lang="fr">montant et demontant</i></span> (from French, meaning upwards and downwards), is often called a pyramid system. It is based on a mathematical equilibrium theory devised by <a href="/wiki/Jean_le_Rond_d%27Alembert" title="Jean le Rond d'Alembert">a French mathematician of the same name</a>. Like the martingale, this system is mainly applied to the even-money outside bets, and is favored by players who want to keep the amount of their bets and losses to a minimum. The betting progression is very simple: After each loss, one unit is added to the next bet, and after each win, one unit is deducted from the next bet. Starting with an initial bet of, say, 1 unit, a loss would raise the next bet to 2 units. If this is followed by a win, the next bet would be 1 units. </p><p>This betting system relies on the gambler's fallacy—that the player is more likely to lose following a win, and more likely to win following a loss. </p> <div class="mw-heading mw-heading3"><h3 id="Other_systems">Other systems</h3><span class="mw-editsection"> <a role="button" href="/w/index.php?title=Roulette&action=edit&section=28" title="Edit section: Other systems" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <p>There are numerous other betting systems that rely on this fallacy, or that attempt to follow 'streaks' (looking for patterns in randomness), varying bet size accordingly. </p><p>Many betting systems are sold online and purport to enable the player to 'beat' the odds. One such system was advertised by Jason Gillon of <a href="/wiki/Rotherham" title="Rotherham">Rotherham</a>, UK, who claimed one could 'earn £200 daily' by following his betting system, described as a 'loophole'. As the system was advertised in the UK press, it was subject to <a href="/wiki/Advertising_Standards_Authority_(United_Kingdom)" title="Advertising Standards Authority (United Kingdom)">Advertising Standards Authority</a> regulation, and following a complaint, it was ruled by the ASA that Mr. Gillon had failed to support his claims, and that he had failed to show that there was any loophole. </p> </section><div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(11)"><span class="indicator mf-icon mf-icon-expand mf-icon--small"></span><h2 id="Notable_winnings">Notable winnings</h2><span class="mw-editsection"> <a role="button" href="/w/index.php?title=Roulette&action=edit&section=29" title="Edit section: Notable winnings" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div><section class="mf-section-11 collapsible-block" id="mf-section-11"> <ul><li>In the 1960s and early 1970s, <a href="/wiki/Richard_Jarecki" title="Richard Jarecki">Richard Jarecki</a> won about $1.2 million at dozens of European casinos. He claimed that he was using a mathematical system designed on a powerful computer. In reality, he simply observed more than 10,000 spins of each roulette wheel to determine flaws in the wheels. Eventually the casinos realized that flaws in the wheels could be exploited, and replaced older wheels. The manufacture of roulette wheels has improved over time.<sup id="cite_ref-20" class="reference"><a href="#cite_note-20"><span class="cite-bracket">[</span>20<span class="cite-bracket">]</span></a></sup></li> <li>In 1963 Sean Connery, filming <a href="/wiki/From_Russia_with_Love_(film)" title="From Russia with Love (film)"><i>From Russia with Love</i></a> in Italy, attended the casino in <a href="/wiki/Saint-Vincent,_Aosta_Valley" title="Saint-Vincent, Aosta Valley">Saint-Vincent</a> and won three consecutive times on the number 17, his winnings <i>riding</i> on the second and third spins.<sup id="cite_ref-21" class="reference"><a href="#cite_note-21"><span class="cite-bracket">[</span>21<span class="cite-bracket">]</span></a></sup></li> <li>In 2004, <a href="/wiki/Ashley_Revell" title="Ashley Revell">Ashley Revell</a> of London sold all of his possessions, clothing included, and placed his entire net worth of US$135,300 on red at the <a href="/wiki/Plaza_Hotel_%26_Casino" title="Plaza Hotel & Casino">Plaza Hotel</a> in Las Vegas. The ball landed on "Red 7" and Revell walked away with $270,600.<sup id="cite_ref-BBC_22-0" class="reference"><a href="#cite_note-BBC-22"><span class="cite-bracket">[</span>22<span class="cite-bracket">]</span></a></sup></li></ul> </section><div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(12)"><span class="indicator mf-icon mf-icon-expand mf-icon--small"></span><h2 id="See_also">See also</h2><span class="mw-editsection"> <a role="button" href="/w/index.php?title=Roulette&action=edit&section=30" title="Edit section: See also" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div><section class="mf-section-12 collapsible-block" id="mf-section-12"> <ul><li><a href="/wiki/Bauernroulette" title="Bauernroulette">Bauernroulette</a></li> <li><a href="/wiki/Boule_(gambling_game)" title="Boule (gambling game)">Boule</a></li> <li><a href="/wiki/Eudaemons" title="Eudaemons">Eudaemons</a></li> <li><a href="/wiki/Monte_Carlo_Paradox" class="mw-redirect" title="Monte Carlo Paradox">Monte Carlo Paradox</a></li> <li><a href="/wiki/Russian_roulette" title="Russian roulette">Russian roulette</a></li> <li><a href="/wiki/Straperlo" title="Straperlo">Straperlo</a></li> <li><i><a href="/wiki/The_Gambler_(novel)" title="The Gambler (novel)">The Gambler</a></i>, a novel written by <a href="/wiki/Fyodor_Dostoevsky" title="Fyodor Dostoevsky">Fyodor Dostoevsky</a> inspired by his addiction to roulette</li> <li><a href="/wiki/Le_multicolore" title="Le multicolore">Le multicolore</a>; a game similar to roulette</li></ul> </section><div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(13)"><span class="indicator mf-icon mf-icon-expand mf-icon--small"></span><h2 id="Notes">Notes</h2><span class="mw-editsection"> <a role="button" href="/w/index.php?title=Roulette&action=edit&section=31" title="Edit section: Notes" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div><section class="mf-section-13 collapsible-block" id="mf-section-13"> <style data-mw-deduplicate="TemplateStyles:r1239543626">.mw-parser-output .reflist{margin-bottom:0.5em;list-style-type:decimal}@media screen{.mw-parser-output .reflist{font-size:90%}}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist"> <div class="mw-references-wrap mw-references-columns"><ol class="references"> <li id="cite_note-1"><span class="mw-cite-backlink"><b><a href="#cite_ref-1">^</a></b></span> <span class="reference-text"><style data-mw-deduplicate="TemplateStyles:r1238218222">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free.id-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited.id-lock-limited a,.mw-parser-output .id-lock-registration.id-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription.id-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-free a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-limited a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-registration a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-subscription a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .cs1-ws-icon a{background-size:contain;padding:0 1em 0 0}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:var(--color-error,#d33)}.mw-parser-output .cs1-visible-error{color:var(--color-error,#d33)}.mw-parser-output .cs1-maint{display:none;color:#085;margin-left:0.3em}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}@media screen{.mw-parser-output .cs1-format{font-size:95%}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911f}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911f}}</style><cite class="citation web cs1"><a rel="nofollow" class="external text" href="http://lemelson.mit.edu/resources/blaise-pascal">"Blaise Pascal"</a>. <i>Lemelson-MIT</i>. Massachusetts Institute of Technology<span class="reference-accessdate">. Retrieved <span class="nowrap">20 October</span> 2017</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=Lemelson-MIT&rft.atitle=Blaise+Pascal&rft_id=http%3A%2F%2Flemelson.mit.edu%2Fresources%2Fblaise-pascal&rfr_id=info%3Asid%2Fen.wikipedia.org%3ARoulette" class="Z3988"></span></span> </li> <li id="cite_note-2"><span class="mw-cite-backlink"><b><a href="#cite_ref-2">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFEpstein2009" class="citation book cs1">Epstein, Richard A. (2009). <i>The theory of gambling and statistical logic</i> (2nd ed.). London: Academic. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-12-374940-6" title="Special:BookSources/978-0-12-374940-6"><bdi>978-0-12-374940-6</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=The+theory+of+gambling+and+statistical+logic&rft.place=London&rft.edition=2nd&rft.pub=Academic&rft.date=2009&rft.isbn=978-0-12-374940-6&rft.aulast=Epstein&rft.aufirst=Richard+A.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ARoulette" class="Z3988"></span></span> </li> <li id="cite_note-3"><span class="mw-cite-backlink"><b><a href="#cite_ref-3">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://babel.hathitrust.org/cgi/pt?id=inu.30000117671929&view=1up&seq=308">"Article <i>The Game of EO</i> in The <i>Sporting Magazine</i>, February 1793, pages 274-275"</a>. 1792.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=Article+The+Game+of+EO+in+The+Sporting+Magazine%2C+February+1793%2C+pages+274-275&rft.date=1792&rft_id=https%3A%2F%2Fbabel.hathitrust.org%2Fcgi%2Fpt%3Fid%3Dinu.30000117671929%26view%3D1up%26seq%3D308&rfr_id=info%3Asid%2Fen.wikipedia.org%3ARoulette" class="Z3988"></span></span> </li> <li id="cite_note-4"><span class="mw-cite-backlink"><b><a href="#cite_ref-4">^</a></b></span> <span class="reference-text">Roulette Wheel Study, Ron Shelley, (1988)</span> </li> <li id="cite_note-5"><span class="mw-cite-backlink"><b><a href="#cite_ref-5">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTrumps" class="citation book cs1">Trumps. <i>The Modern Pocket Hoyle: Containing Al The Games Of Skill And Chance As Played In This Country At The Present Time (1868)</i>. p. 220. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-1167231667" title="Special:BookSources/978-1167231667"><bdi>978-1167231667</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=The+Modern+Pocket+Hoyle%3A+Containing+Al+The+Games+Of+Skill+And+Chance+As+Played+In+This+Country+At+The+Present+Time+%281868%29&rft.pages=220&rft.isbn=978-1167231667&rft.au=Trumps&rfr_id=info%3Asid%2Fen.wikipedia.org%3ARoulette" class="Z3988"></span></span> </li> <li id="cite_note-6"><span class="mw-cite-backlink"><b><a href="#cite_ref-6">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDoak2011" class="citation book cs1">Doak, Melissa J. (2011). <i>Gambling : what's at stake?</i> (2011 ed.). Detroit, Mich.: Gale. p. 114. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-1414448619" title="Special:BookSources/978-1414448619"><bdi>978-1414448619</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Gambling+%3A+what%27s+at+stake%3F&rft.place=Detroit%2C+Mich.&rft.pages=114&rft.edition=2011&rft.pub=Gale&rft.date=2011&rft.isbn=978-1414448619&rft.aulast=Doak&rft.aufirst=Melissa+J.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ARoulette" class="Z3988"></span></span> </li> <li id="cite_note-7"><span class="mw-cite-backlink"><b><a href="#cite_ref-7">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://web.archive.org/web/20161221190935/http://www.ag.ca.gov/gambling/pdfs/Num2Craps.pdf">"California Roulette and California Craps as House-Banked Card Games"</a> <span class="cs1-format">(PDF)</span>. Archived from <a rel="nofollow" class="external text" href="http://ag.ca.gov/gambling/pdfs/Num2Craps.pdf">the original</a> <span class="cs1-format">(PDF)</span> on 21 December 2016<span class="reference-accessdate">. Retrieved <span class="nowrap">2 January</span> 2012</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=California+Roulette+and+California+Craps+as+House-Banked+Card+Games&rft_id=http%3A%2F%2Fag.ca.gov%2Fgambling%2Fpdfs%2FNum2Craps.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3ARoulette" class="Z3988"></span></span> </li> <li id="cite_note-8"><span class="mw-cite-backlink"><b><a href="#cite_ref-8">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://www.researchgate.net/publication/231610304">"Predicting the outcome of roulette"</a>. <i>ResearchGate</i><span class="reference-accessdate">. Retrieved <span class="nowrap">24 March</span> 2021</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=ResearchGate&rft.atitle=Predicting+the+outcome+of+roulette&rft_id=https%3A%2F%2Fwww.researchgate.net%2Fpublication%2F231610304&rfr_id=info%3Asid%2Fen.wikipedia.org%3ARoulette" class="Z3988"></span></span> </li> <li id="cite_note-9"><span class="mw-cite-backlink"><b><a href="#cite_ref-9">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFScarne1986" class="citation book cs1">Scarne, John (1986). <i>Scarne's new complete guide to gambling</i> (Fully rev., expanded, updated ed.). New York: Simon & Schuster. p. 403. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0-671-63063-6" title="Special:BookSources/0-671-63063-6"><bdi>0-671-63063-6</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Scarne%27s+new+complete+guide+to+gambling&rft.place=New+York&rft.pages=403&rft.edition=Fully+rev.%2C+expanded%2C+updated&rft.pub=Simon+%26+Schuster&rft.date=1986&rft.isbn=0-671-63063-6&rft.aulast=Scarne&rft.aufirst=John&rfr_id=info%3Asid%2Fen.wikipedia.org%3ARoulette" class="Z3988"></span></span> </li> <li id="cite_note-10"><span class="mw-cite-backlink"><b><a href="#cite_ref-10">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBarboianu2008" class="citation book cs1">Barboianu, Catalin (2008). <i>Roulette Odds and Profits: The Mathematics of Complex Bets</i>. Infarom. p. 23. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/9789738752078" title="Special:BookSources/9789738752078"><bdi>9789738752078</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Roulette+Odds+and+Profits%3A+The+Mathematics+of+Complex+Bets&rft.pages=23&rft.pub=Infarom&rft.date=2008&rft.isbn=9789738752078&rft.aulast=Barboianu&rft.aufirst=Catalin&rfr_id=info%3Asid%2Fen.wikipedia.org%3ARoulette" class="Z3988"></span></span> </li> <li id="cite_note-11"><span class="mw-cite-backlink"><b><a href="#cite_ref-11">^</a></b></span> <span class="reference-text"><a href="https://en.wikibooks.org/wiki/Roulette/Math" class="extiw" title="wikibooks:Roulette/Math">Roulette Math</a>, en.wikibooks.org</span> </li> <li id="cite_note-WizardOfOdds-12"><span class="mw-cite-backlink"><b><a href="#cite_ref-WizardOfOdds_12-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://wizardofodds.com/gambling/betting-systems/">"The Truth about Betting Systems"</a>. wizardofodds.com. 15 June 2019<span class="reference-accessdate">. Retrieved <span class="nowrap">22 September</span> 2020</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=The+Truth+about+Betting+Systems&rft.pub=wizardofodds.com&rft.date=2019-06-15&rft_id=https%3A%2F%2Fwizardofodds.com%2Fgambling%2Fbetting-systems%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3ARoulette" class="Z3988"></span></span> </li> <li id="cite_note-13"><span class="mw-cite-backlink"><b><a href="#cite_ref-13">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBillingsley1986" class="citation book cs1"><a href="/wiki/Patrick_Billingsley" title="Patrick Billingsley">Billingsley, Patrick</a> (1986). <span class="id-lock-limited" title="Free access subject to limited trial, subscription normally required"><a rel="nofollow" class="external text" href="https://archive.org/details/probabilitymeasu00bill_833"><i>Probability and Measure</i></a></span> (2nd ed.). John Wiley & Sons Inc. p. <a rel="nofollow" class="external text" href="https://archive.org/details/probabilitymeasu00bill_833/page/n105">94</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/9780471804789" title="Special:BookSources/9780471804789"><bdi>9780471804789</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Probability+and+Measure&rft.pages=94&rft.edition=2nd&rft.pub=John+Wiley+%26+Sons+Inc.&rft.date=1986&rft.isbn=9780471804789&rft.aulast=Billingsley&rft.aufirst=Patrick&rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fprobabilitymeasu00bill_833&rfr_id=info%3Asid%2Fen.wikipedia.org%3ARoulette" class="Z3988"></span></span> </li> <li id="cite_note-14"><span class="mw-cite-backlink"><b><a href="#cite_ref-14">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="http://www.theage.com.au/articles/2004/06/24/1087845018860.html">"Theage.com.au"</a>. 24 June 2004.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=Theage.com.au&rft.date=2004-06-24&rft_id=http%3A%2F%2Fwww.theage.com.au%2Farticles%2F2004%2F06%2F24%2F1087845018860.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3ARoulette" class="Z3988"></span></span> </li> <li id="cite_note-15"><span class="mw-cite-backlink"><b><a href="#cite_ref-15">^</a></b></span> <span class="reference-text"><a rel="nofollow" class="external text" href="http://www.fool.com/investing/value/2006/10/10/wheel-of-fortune.aspx">Wheel of Fortune | Motley Fool</a>, fool.com</span> </li> <li id="cite_note-16"><span class="mw-cite-backlink"><b><a href="#cite_ref-16">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFZender2006" class="citation book cs1">Zender, Bill (2006). <i>Advantage Play for the Casino Executive</i>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Advantage+Play+for+the+Casino+Executive&rft.date=2006&rft.aulast=Zender&rft.aufirst=Bill&rfr_id=info%3Asid%2Fen.wikipedia.org%3ARoulette" class="Z3988"></span></span> </li> <li id="cite_note-17"><span class="mw-cite-backlink"><b><a href="#cite_ref-17">^</a></b></span> <span class="reference-text"><a rel="nofollow" class="external text" href="https://www.theguardian.com/science/2004/mar/23/sciencenews.crime">The sting: did gang really use a laser, phone and a computer to take the Ritz for £1.3m? | Science | The Guardian</a>, guardian.co.uk</span> </li> <li id="cite_note-18"><span class="mw-cite-backlink"><b><a href="#cite_ref-18">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFdu_Sautoy2011" class="citation book cs1">du Sautoy, Marcus (2011). <i>The number mysteries : a mathematical odyssey through everyday life</i> (1st Palgrave Macmillan ed.). New York: Palgrave Macmillan. p. 237. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0230113848" title="Special:BookSources/978-0230113848"><bdi>978-0230113848</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=The+number+mysteries+%3A+a+mathematical+odyssey+through+everyday+life&rft.place=New+York&rft.pages=237&rft.edition=1st+Palgrave+Macmillan&rft.pub=Palgrave+Macmillan&rft.date=2011&rft.isbn=978-0230113848&rft.aulast=du+Sautoy&rft.aufirst=Marcus&rfr_id=info%3Asid%2Fen.wikipedia.org%3ARoulette" class="Z3988"></span></span> </li> <li id="cite_note-19"><span class="mw-cite-backlink"><b><a href="#cite_ref-19">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://www.roulettestar.com/systems/">"Roulette Systems"</a>. <i>roulettestar.com</i><span class="reference-accessdate">. Retrieved <span class="nowrap">26 February</span> 2021</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=roulettestar.com&rft.atitle=Roulette+Systems&rft_id=https%3A%2F%2Fwww.roulettestar.com%2Fsystems%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3ARoulette" class="Z3988"></span></span> </li> <li id="cite_note-20"><span class="mw-cite-backlink"><b><a href="#cite_ref-20">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSlotnik2018" class="citation news cs1">Slotnik, Daniel L. (12 August 2018). <a rel="nofollow" class="external text" href="https://www.nytimes.com/2018/08/08/obituaries/richard-jarecki-doctor-who-conquered-roulette-dies-at-86.html">"Richard Jarecki, Doctor Who Conquered Roulette, Dies at 86"</a>. <i>The New York Times</i>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=The+New+York+Times&rft.atitle=Richard+Jarecki%2C+Doctor+Who+Conquered+Roulette%2C+Dies+at+86&rft.date=2018-08-12&rft.aulast=Slotnik&rft.aufirst=Daniel+L.&rft_id=https%3A%2F%2Fwww.nytimes.com%2F2018%2F08%2F08%2Fobituaries%2Frichard-jarecki-doctor-who-conquered-roulette-dies-at-86.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3ARoulette" class="Z3988"></span></span> </li> <li id="cite_note-21"><span class="mw-cite-backlink"><b><a href="#cite_ref-21">^</a></b></span> <span class="reference-text"><i>The complete illustrated guide to gambling</i> by Alan Wykes, <a href="/wiki/Doubleday_(publisher)" title="Doubleday (publisher)">Doubleday</a>, 1964, pp 226, 227. . <a href="/wiki/Internet_Archive" title="Internet Archive">Internet Archive</a> (a free registration req.) > <a rel="nofollow" class="external autonumber" href="https://archive.org/details/completeillustra00wyke/page/226/mode/2up?view=theater">[1]</a></span> </li> <li id="cite_note-BBC-22"><span class="mw-cite-backlink"><b><a href="#cite_ref-BBC_22-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="http://news.bbc.co.uk/1/hi/uk/3618883.stm">"<span class="cs1-kern-left"></span>'All or nothing' gamble succeeds"</a>. BBC. 12 April 2004<span class="reference-accessdate">. Retrieved <span class="nowrap">18 January</span> 2017</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=%27All+or+nothing%27+gamble+succeeds&rft.pub=BBC&rft.date=2004-04-12&rft_id=http%3A%2F%2Fnews.bbc.co.uk%2F1%2Fhi%2Fuk%2F3618883.stm&rfr_id=info%3Asid%2Fen.wikipedia.org%3ARoulette" class="Z3988"></span></span> </li> </ol></div></div> </section><div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(14)"><span class="indicator mf-icon mf-icon-expand mf-icon--small"></span><h2 id="External_links">External links</h2><span class="mw-editsection"> <a role="button" href="/w/index.php?title=Roulette&action=edit&section=32" title="Edit section: External links" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div><section class="mf-section-14 collapsible-block" id="mf-section-14"> <style data-mw-deduplicate="TemplateStyles:r1235681985">.mw-parser-output .side-box{margin:4px 0;box-sizing:border-box;border:1px solid #aaa;font-size:88%;line-height:1.25em;background-color:var(--background-color-interactive-subtle,#f8f9fa);display:flow-root}.mw-parser-output .side-box-abovebelow,.mw-parser-output .side-box-text{padding:0.25em 0.9em}.mw-parser-output .side-box-image{padding:2px 0 2px 0.9em;text-align:center}.mw-parser-output .side-box-imageright{padding:2px 0.9em 2px 0;text-align:center}@media(min-width:500px){.mw-parser-output .side-box-flex{display:flex;align-items:center}.mw-parser-output .side-box-text{flex:1;min-width:0}}@media(min-width:720px){.mw-parser-output .side-box{width:238px}.mw-parser-output .side-box-right{clear:right;float:right;margin-left:1em}.mw-parser-output .side-box-left{margin-right:1em}}</style><style data-mw-deduplicate="TemplateStyles:r1237033735">@media print{body.ns-0 .mw-parser-output .sistersitebox{display:none!important}}@media screen{html.skin-theme-clientpref-night .mw-parser-output .sistersitebox img[src*="Wiktionary-logo-en-v2.svg"]{background-color:white}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .sistersitebox img[src*="Wiktionary-logo-en-v2.svg"]{background-color:white}}</style><div class="side-box side-box-right plainlinks sistersitebox"><style data-mw-deduplicate="TemplateStyles:r1126788409">.mw-parser-output .plainlist ol,.mw-parser-output .plainlist ul{line-height:inherit;list-style:none;margin:0;padding:0}.mw-parser-output .plainlist ol li,.mw-parser-output .plainlist ul li{margin-bottom:0}</style> <div class="side-box-flex"> <div class="side-box-image"><span class="noviewer" typeof="mw:File"><span><noscript><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/30px-Commons-logo.svg.png" decoding="async" width="30" height="40" class="mw-file-element" data-file-width="1024" data-file-height="1376"></noscript><span class="lazy-image-placeholder" style="width: 30px;height: 40px;" data-src="//upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/30px-Commons-logo.svg.png" data-alt="" data-width="30" data-height="40" data-srcset="//upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/45px-Commons-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/59px-Commons-logo.svg.png 2x" data-class="mw-file-element"> </span></span></span></div> <div class="side-box-text plainlist">Wikimedia Commons has media related to <span style="font-weight: bold; font-style: italic;"><a href="https://commons.wikimedia.org/wiki/Category:Roulette" class="extiw" title="commons:Category:Roulette">Roulette</a></span>.</div></div> </div> <div class="navbox-styles"><style data-mw-deduplicate="TemplateStyles:r1129693374">.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:": "}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist dd dd:first-child::before,.mw-parser-output .hlist dd dt:first-child::before,.mw-parser-output .hlist dd li:first-child::before,.mw-parser-output .hlist dt dd:first-child::before,.mw-parser-output .hlist dt dt:first-child::before,.mw-parser-output .hlist dt li:first-child::before,.mw-parser-output .hlist li dd:first-child::before,.mw-parser-output .hlist li dt:first-child::before,.mw-parser-output .hlist li li:first-child::before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child::after,.mw-parser-output .hlist dd dt:last-child::after,.mw-parser-output .hlist dd li:last-child::after,.mw-parser-output .hlist dt dd:last-child::after,.mw-parser-output .hlist dt dt:last-child::after,.mw-parser-output .hlist dt li:last-child::after,.mw-parser-output .hlist li dd:last-child::after,.mw-parser-output .hlist li dt:last-child::after,.mw-parser-output .hlist li li:last-child::after{content:")";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:" ("counter(listitem)"\a0 "}</style><style data-mw-deduplicate="TemplateStyles:r1236075235">.mw-parser-output .navbox{box-sizing:border-box;border:1px solid #a2a9b1;width:100%;clear:both;font-size:88%;text-align:center;padding:1px;margin:1em auto 0}.mw-parser-output .navbox .navbox{margin-top:0}.mw-parser-output .navbox+.navbox,.mw-parser-output .navbox+.navbox-styles+.navbox{margin-top:-1px}.mw-parser-output .navbox-inner,.mw-parser-output .navbox-subgroup{width:100%}.mw-parser-output .navbox-group,.mw-parser-output .navbox-title,.mw-parser-output .navbox-abovebelow{padding:0.25em 1em;line-height:1.5em;text-align:center}.mw-parser-output .navbox-group{white-space:nowrap;text-align:right}.mw-parser-output .navbox,.mw-parser-output .navbox-subgroup{background-color:#fdfdfd}.mw-parser-output .navbox-list{line-height:1.5em;border-color:#fdfdfd}.mw-parser-output .navbox-list-with-group{text-align:left;border-left-width:2px;border-left-style:solid}.mw-parser-output tr+tr>.navbox-abovebelow,.mw-parser-output tr+tr>.navbox-group,.mw-parser-output tr+tr>.navbox-image,.mw-parser-output tr+tr>.navbox-list{border-top:2px solid #fdfdfd}.mw-parser-output .navbox-title{background-color:#ccf}.mw-parser-output .navbox-abovebelow,.mw-parser-output .navbox-group,.mw-parser-output .navbox-subgroup .navbox-title{background-color:#ddf}.mw-parser-output .navbox-subgroup .navbox-group,.mw-parser-output .navbox-subgroup .navbox-abovebelow{background-color:#e6e6ff}.mw-parser-output .navbox-even{background-color:#f7f7f7}.mw-parser-output .navbox-odd{background-color:transparent}.mw-parser-output .navbox .hlist td dl,.mw-parser-output .navbox .hlist td ol,.mw-parser-output .navbox .hlist td ul,.mw-parser-output .navbox td.hlist dl,.mw-parser-output .navbox td.hlist ol,.mw-parser-output .navbox td.hlist ul{padding:0.125em 0}.mw-parser-output .navbox .navbar{display:block;font-size:100%}.mw-parser-output .navbox-title .navbar{float:left;text-align:left;margin-right:0.5em}body.skin--responsive .mw-parser-output .navbox-image img{max-width:none!important}@media print{body.ns-0 .mw-parser-output .navbox{display:none!important}}</style></div> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236075235"><style data-mw-deduplicate="TemplateStyles:r1038841319">.mw-parser-output .tooltip-dotted{border-bottom:1px dotted;cursor:help}</style><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1038841319"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1038841319"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1038841319"></div> <!-- NewPP limit report Parsed by mw‐web.codfw.main‐5857dfdcd6‐55pvz Cached time: 20241203065741 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 0.677 seconds Real time usage: 0.910 seconds Preprocessor visited node count: 3902/1000000 Post‐expand include size: 91315/2097152 bytes Template argument size: 3643/2097152 bytes Highest expansion depth: 14/100 Expensive parser function count: 10/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 101881/5000000 bytes Lua time usage: 0.384/10.000 seconds Lua memory usage: 16375450/52428800 bytes Number of Wikibase entities loaded: 1/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 675.373 1 -total 21.71% 146.625 1 Template:Reflist 14.26% 96.329 1 Template:Commons_category 14.04% 94.824 1 Template:Sister_project 13.84% 93.468 1 Template:Side_box 13.23% 89.376 1 Template:Lang 12.93% 87.311 8 Template:Cite_web 12.22% 82.535 3 Template:Navbox 12.07% 81.504 1 Template:Gambling 10.31% 69.639 1 Template:Short_description --> <!-- Saved in parser cache with key enwiki:pcache:26487:|#|:idhash:canonical and timestamp 20241203065741 and revision id 1253716659. Rendering was triggered because: page-view --> </section></div> <!-- MobileFormatter took 0.031 seconds --><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1&useformat=mobile" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Retrieved from "<a dir="ltr" href="https://en.wikipedia.org/w/index.php?title=Roulette&oldid=1253716659">https://en.wikipedia.org/w/index.php?title=Roulette&oldid=1253716659</a>"</div></div> </div> <div class="post-content" id="page-secondary-actions"> </div> </main> <footer class="mw-footer minerva-footer" role="contentinfo"> <a class="last-modified-bar" href="/w/index.php?title=Roulette&action=history"> <div class="post-content last-modified-bar__content"> <span class="minerva-icon minerva-icon-size-medium minerva-icon--modified-history"></span> <span class="last-modified-bar__text modified-enhancement" data-user-name="Kovcszaln6" data-user-gender="male" data-timestamp="1730038687"> <span>Last edited on 27 October 2024, at 14:18</span> </span> <span class="minerva-icon minerva-icon-size-small minerva-icon--expand"></span> </div> </a> <div class="post-content footer-content"> <div id='mw-data-after-content'> <div class="read-more-container"></div> </div> <div id="p-lang"> <h4>Languages</h4> <section> <ul id="p-variants" class="minerva-languages"></ul> <ul class="minerva-languages"><li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://ar.wikipedia.org/wiki/%D8%B1%D9%88%D9%84%D9%8A%D8%AA" title="روليت – Arabic" lang="ar" hreflang="ar" data-title="روليت" data-language-autonym="العربية" data-language-local-name="Arabic" class="interlanguage-link-target"><span>العربية</span></a></li><li class="interlanguage-link interwiki-ast mw-list-item"><a href="https://ast.wikipedia.org/wiki/Ruleta" title="Ruleta – Asturian" lang="ast" hreflang="ast" data-title="Ruleta" data-language-autonym="Asturianu" data-language-local-name="Asturian" class="interlanguage-link-target"><span>Asturianu</span></a></li><li class="interlanguage-link interwiki-bg mw-list-item"><a href="https://bg.wikipedia.org/wiki/%D0%A0%D1%83%D0%BB%D0%B5%D1%82%D0%BA%D0%B0" title="Рулетка – Bulgarian" lang="bg" hreflang="bg" data-title="Рулетка" data-language-autonym="Български" data-language-local-name="Bulgarian" class="interlanguage-link-target"><span>Български</span></a></li><li class="interlanguage-link interwiki-bar mw-list-item"><a href="https://bar.wikipedia.org/wiki/Roulette" title="Roulette – Bavarian" lang="bar" hreflang="bar" data-title="Roulette" data-language-autonym="Boarisch" data-language-local-name="Bavarian" class="interlanguage-link-target"><span>Boarisch</span></a></li><li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://ca.wikipedia.org/wiki/Ruleta" title="Ruleta – Catalan" lang="ca" hreflang="ca" data-title="Ruleta" data-language-autonym="Català" data-language-local-name="Catalan" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-cs mw-list-item"><a href="https://cs.wikipedia.org/wiki/Ruleta" title="Ruleta – Czech" lang="cs" hreflang="cs" data-title="Ruleta" data-language-autonym="Čeština" data-language-local-name="Czech" class="interlanguage-link-target"><span>Čeština</span></a></li><li class="interlanguage-link interwiki-da mw-list-item"><a href="https://da.wikipedia.org/wiki/Roulette" title="Roulette – Danish" lang="da" hreflang="da" data-title="Roulette" data-language-autonym="Dansk" data-language-local-name="Danish" class="interlanguage-link-target"><span>Dansk</span></a></li><li class="interlanguage-link interwiki-de mw-list-item"><a href="https://de.wikipedia.org/wiki/Roulette" title="Roulette – German" lang="de" hreflang="de" data-title="Roulette" data-language-autonym="Deutsch" data-language-local-name="German" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-et mw-list-item"><a href="https://et.wikipedia.org/wiki/Rulett" title="Rulett – Estonian" lang="et" hreflang="et" data-title="Rulett" data-language-autonym="Eesti" data-language-local-name="Estonian" class="interlanguage-link-target"><span>Eesti</span></a></li><li class="interlanguage-link interwiki-el mw-list-item"><a href="https://el.wikipedia.org/wiki/%CE%A1%CE%BF%CF%85%CE%BB%CE%AD%CF%84%CE%B1" title="Ρουλέτα – Greek" lang="el" hreflang="el" data-title="Ρουλέτα" data-language-autonym="Ελληνικά" data-language-local-name="Greek" class="interlanguage-link-target"><span>Ελληνικά</span></a></li><li class="interlanguage-link interwiki-eml mw-list-item"><a href="https://eml.wikipedia.org/wiki/Roulette" title="Roulette – Emiliano-Romagnolo" lang="egl" hreflang="egl" data-title="Roulette" data-language-autonym="Emiliàn e rumagnòl" data-language-local-name="Emiliano-Romagnolo" class="interlanguage-link-target"><span>Emiliàn e rumagnòl</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/Ruleta" title="Ruleta – Spanish" lang="es" hreflang="es" data-title="Ruleta" data-language-autonym="Español" data-language-local-name="Spanish" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-eo mw-list-item"><a href="https://eo.wikipedia.org/wiki/Ruleto" title="Ruleto – Esperanto" lang="eo" hreflang="eo" data-title="Ruleto" data-language-autonym="Esperanto" data-language-local-name="Esperanto" class="interlanguage-link-target"><span>Esperanto</span></a></li><li class="interlanguage-link interwiki-eu mw-list-item"><a href="https://eu.wikipedia.org/wiki/Erruleta" title="Erruleta – Basque" lang="eu" hreflang="eu" data-title="Erruleta" data-language-autonym="Euskara" data-language-local-name="Basque" class="interlanguage-link-target"><span>Euskara</span></a></li><li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://fa.wikipedia.org/wiki/%D8%B1%D9%88%D9%84%D8%AA" title="رولت – Persian" lang="fa" hreflang="fa" data-title="رولت" data-language-autonym="فارسی" data-language-local-name="Persian" class="interlanguage-link-target"><span>فارسی</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/Roulette_(jeu_de_hasard)" title="Roulette (jeu de hasard) – French" lang="fr" hreflang="fr" data-title="Roulette (jeu de hasard)" data-language-autonym="Français" data-language-local-name="French" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/%EB%A3%B0%EB%A0%9B" title="룰렛 – Korean" lang="ko" hreflang="ko" data-title="룰렛" data-language-autonym="한국어" data-language-local-name="Korean" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-hr mw-list-item"><a href="https://hr.wikipedia.org/wiki/Rulet" title="Rulet – Croatian" lang="hr" hreflang="hr" data-title="Rulet" data-language-autonym="Hrvatski" data-language-local-name="Croatian" class="interlanguage-link-target"><span>Hrvatski</span></a></li><li class="interlanguage-link interwiki-io mw-list-item"><a href="https://io.wikipedia.org/wiki/Ruleto" title="Ruleto – Ido" lang="io" hreflang="io" data-title="Ruleto" data-language-autonym="Ido" data-language-local-name="Ido" class="interlanguage-link-target"><span>Ido</span></a></li><li class="interlanguage-link interwiki-id mw-list-item"><a href="https://id.wikipedia.org/wiki/Rolet" title="Rolet – Indonesian" lang="id" hreflang="id" data-title="Rolet" data-language-autonym="Bahasa Indonesia" data-language-local-name="Indonesian" class="interlanguage-link-target"><span>Bahasa Indonesia</span></a></li><li class="interlanguage-link interwiki-zu mw-list-item"><a href="https://zu.wikipedia.org/wiki/Bhonasi_ye-roulette" title="Bhonasi ye-roulette – Zulu" lang="zu" hreflang="zu" data-title="Bhonasi ye-roulette" data-language-autonym="IsiZulu" data-language-local-name="Zulu" class="interlanguage-link-target"><span>IsiZulu</span></a></li><li class="interlanguage-link interwiki-it mw-list-item"><a href="https://it.wikipedia.org/wiki/Roulette" title="Roulette – Italian" lang="it" hreflang="it" data-title="Roulette" data-language-autonym="Italiano" data-language-local-name="Italian" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-he mw-list-item"><a href="https://he.wikipedia.org/wiki/%D7%A8%D7%95%D7%9C%D7%98%D7%94" title="רולטה – Hebrew" lang="he" hreflang="he" data-title="רולטה" data-language-autonym="עברית" data-language-local-name="Hebrew" class="interlanguage-link-target"><span>עברית</span></a></li><li class="interlanguage-link interwiki-la mw-list-item"><a href="https://la.wikipedia.org/wiki/Rotula" title="Rotula – Latin" lang="la" hreflang="la" data-title="Rotula" data-language-autonym="Latina" data-language-local-name="Latin" class="interlanguage-link-target"><span>Latina</span></a></li><li class="interlanguage-link interwiki-lv mw-list-item"><a href="https://lv.wikipedia.org/wiki/Rulete" title="Rulete – Latvian" lang="lv" hreflang="lv" data-title="Rulete" data-language-autonym="Latviešu" data-language-local-name="Latvian" class="interlanguage-link-target"><span>Latviešu</span></a></li><li class="interlanguage-link interwiki-lb mw-list-item"><a href="https://lb.wikipedia.org/wiki/Roulette" title="Roulette – Luxembourgish" lang="lb" hreflang="lb" data-title="Roulette" data-language-autonym="Lëtzebuergesch" data-language-local-name="Luxembourgish" class="interlanguage-link-target"><span>Lëtzebuergesch</span></a></li><li class="interlanguage-link interwiki-lt mw-list-item"><a href="https://lt.wikipedia.org/wiki/Rulet%C4%97" title="Ruletė – Lithuanian" lang="lt" hreflang="lt" data-title="Ruletė" data-language-autonym="Lietuvių" data-language-local-name="Lithuanian" class="interlanguage-link-target"><span>Lietuvių</span></a></li><li class="interlanguage-link interwiki-hu mw-list-item"><a href="https://hu.wikipedia.org/wiki/Rulett_(szerencsej%C3%A1t%C3%A9k)" title="Rulett (szerencsejáték) – Hungarian" lang="hu" hreflang="hu" data-title="Rulett (szerencsejáték)" data-language-autonym="Magyar" data-language-local-name="Hungarian" class="interlanguage-link-target"><span>Magyar</span></a></li><li class="interlanguage-link interwiki-nl mw-list-item"><a href="https://nl.wikipedia.org/wiki/Roulette_(spel)" title="Roulette (spel) – Dutch" lang="nl" hreflang="nl" data-title="Roulette (spel)" data-language-autonym="Nederlands" data-language-local-name="Dutch" class="interlanguage-link-target"><span>Nederlands</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E3%83%AB%E3%83%BC%E3%83%AC%E3%83%83%E3%83%88" title="ルーレット – Japanese" lang="ja" hreflang="ja" data-title="ルーレット" data-language-autonym="日本語" data-language-local-name="Japanese" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-no mw-list-item"><a href="https://no.wikipedia.org/wiki/Rulett" title="Rulett – Norwegian Bokmål" lang="nb" hreflang="nb" data-title="Rulett" data-language-autonym="Norsk bokmål" data-language-local-name="Norwegian Bokmål" class="interlanguage-link-target"><span>Norsk bokmål</span></a></li><li class="interlanguage-link interwiki-nn mw-list-item"><a href="https://nn.wikipedia.org/wiki/Rulett" title="Rulett – Norwegian Nynorsk" lang="nn" hreflang="nn" data-title="Rulett" data-language-autonym="Norsk nynorsk" data-language-local-name="Norwegian Nynorsk" class="interlanguage-link-target"><span>Norsk nynorsk</span></a></li><li class="interlanguage-link interwiki-pl mw-list-item"><a href="https://pl.wikipedia.org/wiki/Ruletka_(gra)" title="Ruletka (gra) – Polish" lang="pl" hreflang="pl" data-title="Ruletka (gra)" data-language-autonym="Polski" data-language-local-name="Polish" class="interlanguage-link-target"><span>Polski</span></a></li><li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://pt.wikipedia.org/wiki/Roleta" title="Roleta – Portuguese" lang="pt" hreflang="pt" data-title="Roleta" data-language-autonym="Português" data-language-local-name="Portuguese" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-ro mw-list-item"><a href="https://ro.wikipedia.org/wiki/Rulet%C4%83_(joc)" title="Ruletă (joc) – Romanian" lang="ro" hreflang="ro" data-title="Ruletă (joc)" data-language-autonym="Română" data-language-local-name="Romanian" class="interlanguage-link-target"><span>Română</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/%D0%A0%D1%83%D0%BB%D0%B5%D1%82%D0%BA%D0%B0" title="Рулетка – Russian" lang="ru" hreflang="ru" data-title="Рулетка" data-language-autonym="Русский" data-language-local-name="Russian" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-simple mw-list-item"><a href="https://simple.wikipedia.org/wiki/Roulette" title="Roulette – Simple English" lang="en-simple" hreflang="en-simple" data-title="Roulette" data-language-autonym="Simple English" data-language-local-name="Simple English" class="interlanguage-link-target"><span>Simple English</span></a></li><li class="interlanguage-link interwiki-sk mw-list-item"><a href="https://sk.wikipedia.org/wiki/Ruleta" title="Ruleta – Slovak" lang="sk" hreflang="sk" data-title="Ruleta" data-language-autonym="Slovenčina" data-language-local-name="Slovak" class="interlanguage-link-target"><span>Slovenčina</span></a></li><li class="interlanguage-link interwiki-sl mw-list-item"><a href="https://sl.wikipedia.org/wiki/Ruleta" title="Ruleta – Slovenian" lang="sl" hreflang="sl" data-title="Ruleta" data-language-autonym="Slovenščina" data-language-local-name="Slovenian" class="interlanguage-link-target"><span>Slovenščina</span></a></li><li class="interlanguage-link interwiki-ckb mw-list-item"><a href="https://ckb.wikipedia.org/wiki/%DA%95%DB%86%D9%84%DB%8E%D8%AA" title="ڕۆلێت – Central Kurdish" lang="ckb" hreflang="ckb" data-title="ڕۆلێت" data-language-autonym="کوردی" data-language-local-name="Central Kurdish" class="interlanguage-link-target"><span>کوردی</span></a></li><li class="interlanguage-link interwiki-sr mw-list-item"><a href="https://sr.wikipedia.org/wiki/%D0%A0%D1%83%D0%BB%D0%B5%D1%82" title="Рулет – Serbian" lang="sr" hreflang="sr" data-title="Рулет" data-language-autonym="Српски / srpski" data-language-local-name="Serbian" class="interlanguage-link-target"><span>Српски / srpski</span></a></li><li class="interlanguage-link interwiki-fi mw-list-item"><a href="https://fi.wikipedia.org/wiki/Ruletti" title="Ruletti – Finnish" lang="fi" hreflang="fi" data-title="Ruletti" data-language-autonym="Suomi" data-language-local-name="Finnish" class="interlanguage-link-target"><span>Suomi</span></a></li><li class="interlanguage-link interwiki-sv mw-list-item"><a href="https://sv.wikipedia.org/wiki/Roulette" title="Roulette – Swedish" lang="sv" hreflang="sv" data-title="Roulette" data-language-autonym="Svenska" data-language-local-name="Swedish" class="interlanguage-link-target"><span>Svenska</span></a></li><li class="interlanguage-link interwiki-th mw-list-item"><a href="https://th.wikipedia.org/wiki/%E0%B8%A3%E0%B8%B9%E0%B9%80%E0%B8%A5%E0%B9%87%E0%B8%95%E0%B8%95%E0%B9%8C" title="รูเล็ตต์ – Thai" lang="th" hreflang="th" data-title="รูเล็ตต์" data-language-autonym="ไทย" data-language-local-name="Thai" class="interlanguage-link-target"><span>ไทย</span></a></li><li class="interlanguage-link interwiki-tr mw-list-item"><a href="https://tr.wikipedia.org/wiki/Rulet" title="Rulet – Turkish" lang="tr" hreflang="tr" data-title="Rulet" data-language-autonym="Türkçe" data-language-local-name="Turkish" class="interlanguage-link-target"><span>Türkçe</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%A0%D1%83%D0%BB%D0%B5%D1%82%D0%BA%D0%B0_(%D0%B0%D0%B7%D0%B0%D1%80%D1%82%D0%BD%D0%B0_%D0%B3%D1%80%D0%B0)" title="Рулетка (азартна гра) – Ukrainian" lang="uk" hreflang="uk" data-title="Рулетка (азартна гра)" data-language-autonym="Українська" data-language-local-name="Ukrainian" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-vi mw-list-item"><a href="https://vi.wikipedia.org/wiki/Roulette" title="Roulette – Vietnamese" lang="vi" hreflang="vi" data-title="Roulette" data-language-autonym="Tiếng Việt" data-language-local-name="Vietnamese" class="interlanguage-link-target"><span>Tiếng Việt</span></a></li><li class="interlanguage-link interwiki-wuu mw-list-item"><a href="https://wuu.wikipedia.org/wiki/%E8%BD%AE%E7%9B%98%EF%BC%88%E6%B8%B8%E6%88%8F%EF%BC%89" title="轮盘(游戏) – Wu" lang="wuu" hreflang="wuu" data-title="轮盘(游戏)" data-language-autonym="吴语" data-language-local-name="Wu" class="interlanguage-link-target"><span>吴语</span></a></li><li class="interlanguage-link interwiki-zh-yue mw-list-item"><a href="https://zh-yue.wikipedia.org/wiki/%E8%BC%AA%E7%9B%A4" title="輪盤 – Cantonese" lang="yue" hreflang="yue" data-title="輪盤" data-language-autonym="粵語" data-language-local-name="Cantonese" class="interlanguage-link-target"><span>粵語</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/%E8%BC%AA%E7%9B%A4" title="輪盤 – Chinese" lang="zh" hreflang="zh" data-title="輪盤" data-language-autonym="中文" data-language-local-name="Chinese" class="interlanguage-link-target"><span>中文</span></a></li><li class="interlanguage-link interwiki-bew mw-list-item"><a href="https://bew.wikipedia.org/wiki/Rol%C3%A8t" title="Rolèt – Betawi" lang="bew" hreflang="bew" data-title="Rolèt" data-language-autonym="Betawi" data-language-local-name="Betawi" class="interlanguage-link-target"><span>Betawi</span></a></li></ul> </section> </div> <div class="minerva-footer-logo"><img src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" alt="Wikipedia" width="120" height="18" style="width: 7.5em; height: 1.125em;"/> </div> <ul id="footer-info" class="footer-info hlist hlist-separated"> <li id="footer-info-lastmod"> This page was last edited on 27 October 2024, at 14:18<span class="anonymous-show"> (UTC)</span>.</li> <li id="footer-info-copyright">Content is available under <a class="external" rel="nofollow" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en">CC BY-SA 4.0</a> unless otherwise noted.</li> </ul> <ul id="footer-places" class="footer-places hlist hlist-separated"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy policy</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:About">About Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:General_disclaimer">Disclaimers</a></li> <li id="footer-places-contact"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us">Contact Wikipedia</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Developers</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/en.wikipedia.org">Statistics</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie statement</a></li> <li id="footer-places-terms-use"><a href="https://foundation.m.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use">Terms of Use</a></li> <li id="footer-places-desktop-toggle"><a id="mw-mf-display-toggle" href="//en.wikipedia.org/w/index.php?title=Roulette&mobileaction=toggle_view_desktop" data-event-name="switch_to_desktop">Desktop</a></li> </ul> </div> </footer> </div> </div> <div class="mw-notification-area" data-mw="interface"></div> <!-- v:8.3.1 --> <script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-5857dfdcd6-7n4mm","wgBackendResponseTime":265,"wgPageParseReport":{"limitreport":{"cputime":"0.677","walltime":"0.910","ppvisitednodes":{"value":3902,"limit":1000000},"postexpandincludesize":{"value":91315,"limit":2097152},"templateargumentsize":{"value":3643,"limit":2097152},"expansiondepth":{"value":14,"limit":100},"expensivefunctioncount":{"value":10,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":101881,"limit":5000000},"entityaccesscount":{"value":1,"limit":400},"timingprofile":["100.00% 675.373 1 -total"," 21.71% 146.625 1 Template:Reflist"," 14.26% 96.329 1 Template:Commons_category"," 14.04% 94.824 1 Template:Sister_project"," 13.84% 93.468 1 Template:Side_box"," 13.23% 89.376 1 Template:Lang"," 12.93% 87.311 8 Template:Cite_web"," 12.22% 82.535 3 Template:Navbox"," 12.07% 81.504 1 Template:Gambling"," 10.31% 69.639 1 Template:Short_description"]},"scribunto":{"limitreport-timeusage":{"value":"0.384","limit":"10.000"},"limitreport-memusage":{"value":16375450,"limit":52428800}},"cachereport":{"origin":"mw-web.codfw.main-5857dfdcd6-55pvz","timestamp":"20241203065741","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Roulette","url":"https:\/\/en.wikipedia.org\/wiki\/Roulette","sameAs":"http:\/\/www.wikidata.org\/entity\/Q190975","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q190975","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2002-01-05T18:16:13Z","dateModified":"2024-10-27T14:18:07Z","image":"https:\/\/upload.wikimedia.org\/wikipedia\/commons\/5\/5d\/13-02-27-spielbank-wiesbaden-by-RalfR-094.jpg","headline":"game of chance"}</script><script>(window.NORLQ=window.NORLQ||[]).push(function(){var ns,i,p,img;ns=document.getElementsByTagName('noscript');for(i=0;i<ns.length;i++){p=ns[i].nextSibling;if(p&&p.className&&p.className.indexOf('lazy-image-placeholder')>-1){img=document.createElement('img');img.setAttribute('src',p.getAttribute('data-src'));img.setAttribute('width',p.getAttribute('data-width'));img.setAttribute('height',p.getAttribute('data-height'));img.setAttribute('alt',p.getAttribute('data-alt'));p.parentNode.replaceChild(img,p);}}});</script> </body> </html>