CINXE.COM
Search results for: wind tunnel test
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: wind tunnel test</title> <meta name="description" content="Search results for: wind tunnel test"> <meta name="keywords" content="wind tunnel test"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="wind tunnel test" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="wind tunnel test"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 10448</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: wind tunnel test</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10448</span> Study on Shape Coefficient of Large Statue Building Based on CFD</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wang%20Guangda">Wang Guangda</a>, <a href="https://publications.waset.org/abstracts/search?q=Ma%20Jun"> Ma Jun</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhao%20Caiqi"> Zhao Caiqi</a>, <a href="https://publications.waset.org/abstracts/search?q=Pan%20Rui"> Pan Rui</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Wind load is the main control load of large statue structures. Due to the irregular plane and elevation and uneven outer contour, statues’ shape coefficient can not pick up from the current code. Currently a common practice is based on wind tunnel test. But this method is time-consuming and high cost. In this paper, based on the fundamental theory of CFD, using fluid dynamics software of Fluent 15.0, a few large statue structure of 40 to 70m high, which are located in china , including large fairy statues and large Buddha statues, are analyzed by numerical wind tunnel. The results are contrasted with the recommended values in load code and the wind tunnel test results respectively. Results show that the shape coefficient has a good reliability by the numerical wind tunnel method of this kind of building. This will has a certain reference value of wind load values for large statues’ structure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=large%20statue%20structure" title="large statue structure">large statue structure</a>, <a href="https://publications.waset.org/abstracts/search?q=shape%20coefficient" title=" shape coefficient"> shape coefficient</a>, <a href="https://publications.waset.org/abstracts/search?q=irregular%20structure" title=" irregular structure"> irregular structure</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20tunnel%20test" title=" wind tunnel test"> wind tunnel test</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20wind%20tunnel%20simulation" title=" numerical wind tunnel simulation"> numerical wind tunnel simulation</a> </p> <a href="https://publications.waset.org/abstracts/31038/study-on-shape-coefficient-of-large-statue-building-based-on-cfd" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31038.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">375</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10447</span> Experimental Investigation of Tip-Speed-Ratio Effects on Wake Dynamics of Horizontal-Axis Wind Turbine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Paul%20Bayron">Paul Bayron</a>, <a href="https://publications.waset.org/abstracts/search?q=Richard%20Kelso"> Richard Kelso</a>, <a href="https://publications.waset.org/abstracts/search?q=Rey%20Chin"> Rey Chin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Wind tunnel experiments were performed in the KC closed-circuit wind tunnel in the University of Adelaide to study the influence of tip-speed-ratio ( <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hotwire%20anemometry" title="hotwire anemometry">hotwire anemometry</a>, <a href="https://publications.waset.org/abstracts/search?q=wake%20dynamics" title=" wake dynamics"> wake dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20tunnel" title=" wind tunnel"> wind tunnel</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20turbines" title=" wind turbines"> wind turbines</a> </p> <a href="https://publications.waset.org/abstracts/137158/experimental-investigation-of-tip-speed-ratio-effects-on-wake-dynamics-of-horizontal-axis-wind-turbine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/137158.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">216</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10446</span> Analysis of Simple Mechanisms to Continuously Vary Mach Number in a Supersonic Wind Tunnel Facility</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Prateek%20Kishore">Prateek Kishore</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20M.%20Muruganandam"> T. M. Muruganandam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Supersonic wind tunnel nozzles are generally capable of producing a constant Mach number flow in the test section of the wind tunnel. As a result, most of the supersonic vehicles are widely designed using steady state flow characteristics which may have errors while facing unsteady situations. This study aims to explore the possibility of varying the Mach number of the flow during wind tunnel operation. The nozzle walls are restricted to be inflexible for cooling near the throat due to high stagnation temperature requirement of the flow to simulate the conditions as experienced by the vehicle. Two simple independent mechanisms, rotation and translation of nozzle walls have been analyzed and the nozzle ranges have been optimized to vary the Mach number from Mach 2 to Mach 5 using minimum number of nozzles in the wind tunnel. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=method%20of%20characteristics" title="method of characteristics">method of characteristics</a>, <a href="https://publications.waset.org/abstracts/search?q=nozzle" title=" nozzle"> nozzle</a>, <a href="https://publications.waset.org/abstracts/search?q=supersonic%20wind%20tunnel" title=" supersonic wind tunnel"> supersonic wind tunnel</a>, <a href="https://publications.waset.org/abstracts/search?q=variable%20mach%20number" title=" variable mach number"> variable mach number</a> </p> <a href="https://publications.waset.org/abstracts/66454/analysis-of-simple-mechanisms-to-continuously-vary-mach-number-in-a-supersonic-wind-tunnel-facility" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66454.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">295</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10445</span> Aerodynamic Analysis of Vehicles in the Wind Tunnel and Water Tunnel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Elmo%20Thiago%20Lins%20C%C3%B6uras%20Ford">Elmo Thiago Lins Cöuras Ford</a>, <a href="https://publications.waset.org/abstracts/search?q=Valentina%20Alessandra%20Carvalho%20do%20Vale"> Valentina Alessandra Carvalho do Vale</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The simulation in wind tunnel is used thoroughly to model real situations of drainages of air. Besides the automotive industry, a great number of applications can be numbered: dispersion of pollutant, studies of pedestrians comfort and dispersion of particles. This work had the objective of visualizing the characteristics aerodynamics of two automobiles in different ways. To accomplish that drainage of air a fan that generated a speed exists (measured with anemometer of hot thread) of 4,1m/s and 4,95m/s. To visualize the path of the air through the cars, in the wind tunnel, smoke was used, obtained with it burns of vegetable oil. For “to do smoke” vegetable oil was used, that was burned for a tension of 20 V generated by a thread of 2,5 mm. The cars were placed inside of the wind tunnel with the drainage of “air-smoke” and photographed, registering like this the path lines around them, in the 3 different speeds. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aerodynamics" title="aerodynamics">aerodynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=vehicle%20drag" title=" vehicle drag"> vehicle drag</a>, <a href="https://publications.waset.org/abstracts/search?q=vegetable%20oil" title=" vegetable oil"> vegetable oil</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20tunnel" title=" wind tunnel "> wind tunnel </a> </p> <a href="https://publications.waset.org/abstracts/18356/aerodynamic-analysis-of-vehicles-in-the-wind-tunnel-and-water-tunnel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18356.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">602</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10444</span> Implementation of a Low-Cost Instrumentation for an Open Cycle Wind Tunnel to Evaluate Pressure Coefficient </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cristian%20P.%20Topa">Cristian P. Topa</a>, <a href="https://publications.waset.org/abstracts/search?q=Esteban%20A.%20Valencia"> Esteban A. Valencia</a>, <a href="https://publications.waset.org/abstracts/search?q=Victor%20H.%20Hidalgo"> Victor H. Hidalgo</a>, <a href="https://publications.waset.org/abstracts/search?q=Marco%20A.%20Martinez"> Marco A. Martinez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Wind tunnel experiments for aerodynamic profiles display numerous advantages, such as: clean steady laminar flow, controlled environmental conditions, streamlines visualization, and real data acquisition. However, the experiment instrumentation usually is expensive, and hence, each test implies a incremented in design cost. The aim of this work is to select and implement a low-cost static pressure data acquisition system for a NACA 2412 airfoil in an open cycle wind tunnel. This work compares wind tunnel experiment with Computational Fluid Dynamics (CFD) simulation and parametric analysis. The experiment was evaluated at Reynolds of 1.65 <em>e<sup>5</sup></em>, with increasing angles from -5° to 15°. The comparison between the approaches show good enough accuracy, between the experiment and CFD, additional parametric analysis results differ widely from the other methods, which complies with the lack of accuracy of the lateral approach due its simplicity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wind%20tunnel" title="wind tunnel">wind tunnel</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20cost%20instrumentation" title=" low cost instrumentation"> low cost instrumentation</a>, <a href="https://publications.waset.org/abstracts/search?q=experimental%20testing" title=" experimental testing"> experimental testing</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD%20simulation" title=" CFD simulation"> CFD simulation</a> </p> <a href="https://publications.waset.org/abstracts/88363/implementation-of-a-low-cost-instrumentation-for-an-open-cycle-wind-tunnel-to-evaluate-pressure-coefficient" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/88363.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">180</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10443</span> Measurement of Turbulence with PITOT Static Tube in Low Speed Subsonic Wind Tunnel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gopikrishnan">Gopikrishnan</a>, <a href="https://publications.waset.org/abstracts/search?q=Bharathiraja"> Bharathiraja</a>, <a href="https://publications.waset.org/abstracts/search?q=Boopalan"> Boopalan</a>, <a href="https://publications.waset.org/abstracts/search?q=Jensin%20Joshua"> Jensin Joshua</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Pitot static tube has proven their values and practicability in measuring velocity of fluids for many years. With the aim of extensive usage of such Pitot tube systems, one of the major enabling technologies is to use the design and fabricate a high sensitive pitot tube for the purpose of calibration of the subsonic wind tunnel. Calibration of wind tunnel is carried out by using different instruments to measure variety of parameters. Using too many instruments inside the tunnel may not only affect the fluid flow but also lead to drag or losses. So, it is essential to replace the different system with a single system that would give all the required information. This model of high sensitive Pitot tube has been designed to ease the calibration process. It minimizes the use of different instruments and this single system is capable of calibrating the wind tunnel test section. This Pitot static tube is completely digitalized and so that the velocity data`s can be collected directly from the instrument. Since the turbulence factors are dependent on velocity, the data’s that are collected from the pitot static tube are then processed and the level of turbulence in the fluid flow is calculated. It is also capable of measuring the pressure distribution inside the wind tunnel and the flow angularity of the fluid. Thus, the well-designed high sensitive Pitot static tube is utilized in calibrating the tunnel and also for the measurement of turbulence. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pitot%20static%20tube" title="pitot static tube">pitot static tube</a>, <a href="https://publications.waset.org/abstracts/search?q=turbulence" title=" turbulence"> turbulence</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20tunnel" title=" wind tunnel"> wind tunnel</a>, <a href="https://publications.waset.org/abstracts/search?q=velocity" title=" velocity "> velocity </a> </p> <a href="https://publications.waset.org/abstracts/20145/measurement-of-turbulence-with-pitot-static-tube-in-low-speed-subsonic-wind-tunnel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20145.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">526</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10442</span> Influences of High Rise Buildings on Local Air Flow Characteristics on External Surfaces of Neighboring Buildings</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Meral%20Yucel">Meral Yucel</a>, <a href="https://publications.waset.org/abstracts/search?q=Vildan%20Ok"> Vildan Ok</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study indicates the wind effects of 49-storey height four towers on a high-density urban area-consisting of 10-12 storey height buildings called Goztepe in Istanbul, Turkey. For this purpose, four towers and close environments are modeled in 1/500 scale for wind tunnel test. Three neighboring buildings are chosen to find out the pressure coefficient changes on the surfaces of the buildings according to the construction order of these four towers and wind directions. Results were compared with the 'TS 498 Wind Standard of Tall Buildings in Istanbul' which is prepared by Istanbul Metropolitan Municipality in 2009. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=high%20rise%20buildings" title="high rise buildings">high rise buildings</a>, <a href="https://publications.waset.org/abstracts/search?q=pressure%20coefficients" title=" pressure coefficients"> pressure coefficients</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20tunnel%20experiments" title=" wind tunnel experiments"> wind tunnel experiments</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20standard%20of%20tall%20buildings" title=" wind standard of tall buildings"> wind standard of tall buildings</a> </p> <a href="https://publications.waset.org/abstracts/9456/influences-of-high-rise-buildings-on-local-air-flow-characteristics-on-external-surfaces-of-neighboring-buildings" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9456.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">281</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10441</span> An Experimental Investigation into Fluid Forces on Road Vehicles in Unsteady Flows</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Sumida">M. Sumida</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Morita"> S. Morita</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this research, the effect of unsteady flows acting on road vehicles was experimentally investigated, using an advanced and recently introduced wind tunnel. The aims of this study were to extract the characteristics of fluid forces acting on road vehicles under unsteady wind conditions and obtain new information on drag forces in a practical on-road test. We applied pulsating wind as a representative example of the atmospheric fluctuations that vehicles encounter on the road. That is, we considered the case where the vehicles are moving at constant speed in the air, with large wind oscillations. The experimental tests were performed on the Ahmed-type test model, which is a simplified vehicle model. This model was chosen because of its simplicity and the data accumulated under steady wind conditions. The experiments were carried out with a time-averaged Reynolds number of Re = 4.16x10⁵ and a pulsation period of T = 1.5 s, with amplitude of η = 0.235. Unsteady fluid forces of drag and lift were obtained utilizing a multi-component load cell. It was observed that the unsteady aerodynamic forces differ significantly from those under steady wind conditions. They exhibit a phase shift and an enhanced response to the wind oscillations. Furthermore, their behavior depends on the slant angle of the rear shape of the model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20body" title="Ahmed body">Ahmed body</a>, <a href="https://publications.waset.org/abstracts/search?q=automotive%20aerodynamics" title=" automotive aerodynamics"> automotive aerodynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=unsteady%20wind" title=" unsteady wind"> unsteady wind</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20tunnel%20test" title=" wind tunnel test"> wind tunnel test</a> </p> <a href="https://publications.waset.org/abstracts/74663/an-experimental-investigation-into-fluid-forces-on-road-vehicles-in-unsteady-flows" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74663.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">293</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10440</span> Experimental Study of Flag Flutter in Uniform Flow</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Sadeghi">A. Sadeghi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Sedghi"> M. Sedghi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20R.%20Emami%20Azadi"> M. R. Emami Azadi</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Gharraei%20Khosroshahi"> R. Gharraei Khosroshahi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Flags are objects with very low bending stiffness and under wind forces start to vibrate and finally to flutter. Even in lower velocities of wind their flutter can be seen. In this research physical property of fabric is determined by performing tensile tests. Then with performing laboratory experiments in wind tunnel, determination of initial flapping speed and also study of displacement amplitude at leech and calculation of their frequency would be targeted. Laboratory tests are performed in a wind tunnel and with different velocities of wind flow for specimens with different dimensions. The results show that extension of specimens' width increase flutter initiation velocity and increase of specimen length decreases it. Also by increasing wind velocity displacement amplitude at leech of specimens are decreased. This displacement has a straight relation with specimens' length and width. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flag" title="flag">flag</a>, <a href="https://publications.waset.org/abstracts/search?q=flutter" title=" flutter"> flutter</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20velocity" title=" wind velocity"> wind velocity</a>, <a href="https://publications.waset.org/abstracts/search?q=flutter%20amplitudes" title=" flutter amplitudes"> flutter amplitudes</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20tunnel" title=" wind tunnel"> wind tunnel</a> </p> <a href="https://publications.waset.org/abstracts/20004/experimental-study-of-flag-flutter-in-uniform-flow" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20004.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">435</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10439</span> Experimental Investigation of Cup Anemometer under Static and Dynamic Wind Direction Changes: Evaluation of Directional Sensitivity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vaibhav%20Rana">Vaibhav Rana</a>, <a href="https://publications.waset.org/abstracts/search?q=Nicholas%20Balaresque"> Nicholas Balaresque</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The 3-cup anemometer is the most commonly used instrument for wind speed measurement and, consequently, for the wind resource assessment. Though the cup anemometer shows accurate measurement under quasi-static conditions, there is uncertainty in the measurement when subjected to field measurement. Sensitivity to the angle of attacks with respect to horizontal plane, dynamic response, and non-linear behavior in calibration due to friction. The presented work aimed to identify the sensitivity of anemometer to non-horizontal flow. The cup anemometer was investigated under low wind speed wind tunnel, first under the static flow direction changes and second under the dynamic direction changes, at a different angle of attacks, under the similar conditions of reference wind tunnel speeds. The cup anemometer response under both conditions was evaluated and compared. The results showed the anemometer under dynamic wind direction changes is highly sensitive compared to static conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wind%20energy" title="wind energy">wind energy</a>, <a href="https://publications.waset.org/abstracts/search?q=cup%20anemometer" title=" cup anemometer"> cup anemometer</a>, <a href="https://publications.waset.org/abstracts/search?q=directional%20sensitivity" title=" directional sensitivity"> directional sensitivity</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20behavior" title=" dynamic behavior"> dynamic behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20tunnel" title=" wind tunnel"> wind tunnel</a> </p> <a href="https://publications.waset.org/abstracts/130976/experimental-investigation-of-cup-anemometer-under-static-and-dynamic-wind-direction-changes-evaluation-of-directional-sensitivity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/130976.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">148</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10438</span> Aerodynamics and Aeroelastics Studies of Hanger Bridge with H-Beam Profile Using Wind Tunnel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Matza%20Gusto%20Andika">Matza Gusto Andika</a>, <a href="https://publications.waset.org/abstracts/search?q=Malinda%20Sabrina"> Malinda Sabrina</a>, <a href="https://publications.waset.org/abstracts/search?q=Syarie%20Fatunnisa"> Syarie Fatunnisa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aerodynamic and aeroelastics studies on the hanger bridge profile are important to analyze the aerodynamic phenomenon and Aeroelastics stability of hanger. Wind tunnel tests were conducted on a model of H-beam profile from hanger bridge. The purpose of this study is to investigate steady aerodynamic characteristics such as lift coefficient (Cl), drag coefficient (Cd), and moment coefficient (Cm) under the different angle of attack for preliminary prediction of aeroelastics stability problems. After investigation the steady aerodynamics characteristics from the model, dynamic testing is also conducted in wind tunnel to know the aeroelastics phenomenon which occurs at the H-beam hanger bridge profile. The studies show that the torsional vortex induced vibration occur when the wind speed is 7.32 m/s until 9.19 m/s with maximum amplitude occur when the wind speed is 8.41 m/s. The result of wind tunnel testing is matching to hanger vibration where occur in the field, so wind tunnel studies has successful to model the problem. In order that the H-beam profile is not good enough for the hanger bridge and need to be modified to minimize the Aeroelastics problem. The modification can be done with structure dynamics modification or aerodynamics modification. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aerodynamics" title="aerodynamics">aerodynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=aeroelastic" title=" aeroelastic"> aeroelastic</a>, <a href="https://publications.waset.org/abstracts/search?q=hanger%20bridge" title=" hanger bridge"> hanger bridge</a>, <a href="https://publications.waset.org/abstracts/search?q=h-beam%20profile" title=" h-beam profile"> h-beam profile</a>, <a href="https://publications.waset.org/abstracts/search?q=vortex%20induced%20vibration" title=" vortex induced vibration"> vortex induced vibration</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20tunnel" title=" wind tunnel"> wind tunnel</a> </p> <a href="https://publications.waset.org/abstracts/52637/aerodynamics-and-aeroelastics-studies-of-hanger-bridge-with-h-beam-profile-using-wind-tunnel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52637.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">350</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10437</span> Designing a Low Speed Wind Tunnel for Investigating Effects of Blockage Ratio on Heat Transfer of a Non-Circular Tube</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arash%20Mirabdolah%20Lavasani">Arash Mirabdolah Lavasani</a>, <a href="https://publications.waset.org/abstracts/search?q=Taher%20Maarefdoost"> Taher Maarefdoost</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Effect of blockage ratio on heat transfer from non-circular tube is studied experimentally. For doing this experiment a suction type low speed wind tunnel with test section dimension of 14×14×40 and velocity in rage of 7-20 m/s was designed. The blockage ratios varied between 1.5 to 7 and Reynolds number based on equivalent diameter varies in range of 7.5×103 to 17.5×103. The results show that by increasing blockage ratio from 1.5 to 7, drag coefficient of the cam shaped tube decreased about 55 percent. By increasing Reynolds number, Nusselt number of the cam shaped tube increases about 40 to 48 percent in all ranges of blockage ratios. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wind%20tunnel" title="wind tunnel">wind tunnel</a>, <a href="https://publications.waset.org/abstracts/search?q=non-circular%20tube" title=" non-circular tube"> non-circular tube</a>, <a href="https://publications.waset.org/abstracts/search?q=blockage%20ratio" title=" blockage ratio"> blockage ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=experimental%20heat%20transfer" title=" experimental heat transfer"> experimental heat transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=cross-flow" title=" cross-flow"> cross-flow</a> </p> <a href="https://publications.waset.org/abstracts/12528/designing-a-low-speed-wind-tunnel-for-investigating-effects-of-blockage-ratio-on-heat-transfer-of-a-non-circular-tube" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12528.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">348</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10436</span> Effects of Wind Load on the Tank Structures with Various Shapes and Aspect Ratios</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Doo%20Byong%20Bae">Doo Byong Bae</a>, <a href="https://publications.waset.org/abstracts/search?q=Jae%20Jun%20Yoo"> Jae Jun Yoo</a>, <a href="https://publications.waset.org/abstracts/search?q=Il%20Gyu%20Park"> Il Gyu Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Choi%20Seowon"> Choi Seowon</a>, <a href="https://publications.waset.org/abstracts/search?q=Oh%20Chang%20Kook"> Oh Chang Kook</a> </p> <p class="card-text"><strong>Abstract:</strong></p> There are several wind load provisions to evaluate the wind response on tank structures such as API, Euro-code, etc. the assessment of wind action applying these provisions is made by performing the finite element analysis using both linear bifurcation analysis and geometrically nonlinear analysis. By comparing the pressure patterns obtained from the analysis with the results of wind tunnel test, most appropriate wind load criteria will be recommended. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wind%20load" title="wind load">wind load</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20analysis" title=" finite element analysis"> finite element analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=linear%20bifurcation%20analysis" title=" linear bifurcation analysis"> linear bifurcation analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=geometrically%20nonlinear%20analysis" title=" geometrically nonlinear analysis"> geometrically nonlinear analysis</a> </p> <a href="https://publications.waset.org/abstracts/45923/effects-of-wind-load-on-the-tank-structures-with-various-shapes-and-aspect-ratios" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45923.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">637</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10435</span> Numerical and Experimental Investigations of Cantilever Rectangular Plate Structure on Subsonic Flutter</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mevl%C3%BCt%20Burak%20Dalm%C4%B1%C5%9F">Mevlüt Burak Dalmış</a>, <a href="https://publications.waset.org/abstracts/search?q=Kemal%20Yaman"> Kemal Yaman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, flutter characteristics of cantilever rectangular plate structure under incompressible flow regime are investigated by comparing the results of commercial flutter analysis program ZAERO<sup>©</sup> with wind tunnel tests conducted in Ankara Wind Tunnel (ART). A rectangular polycarbonate (PC) plate, 5x125x1000 mm in dimensions, is used for both numerical and experimental investigations. Analysis and test results are very compatible with each other. A comparison between two different solution methods (<em>g</em> and <em>k-method</em>) of ZAERO<sup>©</sup> is also done. It is seen that, <em>k-method</em> gives closer result than the other one. However, g-method results are on conservative side and it is better to use conservative results namely g-method results. Even if the modal analysis results are used for the flutter analysis for this simple structure, a modal test should be conducted in order to validate the modal analysis results to have accurate flutter analysis results for more complicated structures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flutter" title="flutter">flutter</a>, <a href="https://publications.waset.org/abstracts/search?q=plate" title=" plate"> plate</a>, <a href="https://publications.waset.org/abstracts/search?q=subsonic%20flow" title=" subsonic flow"> subsonic flow</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20tunnel" title=" wind tunnel"> wind tunnel</a> </p> <a href="https://publications.waset.org/abstracts/35131/numerical-and-experimental-investigations-of-cantilever-rectangular-plate-structure-on-subsonic-flutter" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35131.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">518</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10434</span> CFD Simulation Research on a Double Diffuser for Wind Turbines</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Krzysztof%20Skiba">Krzysztof Skiba</a>, <a href="https://publications.waset.org/abstracts/search?q=Zdzislaw%20Kaminski"> Zdzislaw Kaminski</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Wind power is based on a variety of construction solutions to convert wind energy into electrical energy. These constructions are constrained by the correlation between their energy conversion efficiency and the area they occupy. Their energy conversion efficiency can be improved by wind tunnel tests of a rotor as a diffuser to optimize shapes of aerodynamic elements, to adapt these elements to changing conditions and to increase airflow intensity. This paper discusses the results of computer simulations and aerodynamic analyzes of this innovative diffuser design. The research aims at determining the aerodynamic phenomena triggered by the airflow inside this construction, and developing a design to improve the efficiency of the wind turbine. The research results enable us to design a diffuser with a double Venturi nozzle and specially shaped blades. The design of this type uses Bernoulli’s law on the behavior of the flowing medium in the tunnel of a decreasing diameter. The air flowing along the tunnel changes its velocity so the rotor inside such a decreased tunnel diameter rotates faster in this airflow than does the wind outside this tunnel, which makes the turbine more efficient. Additionally, airflow velocity is improved by applying aerodynamic rings with extended trailing edges to achieve controlled turbulent vortices. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wind%20turbine" title="wind turbine">wind turbine</a>, <a href="https://publications.waset.org/abstracts/search?q=renewable%20energy" title=" renewable energy"> renewable energy</a>, <a href="https://publications.waset.org/abstracts/search?q=cfd" title=" cfd"> cfd</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20analysis" title=" numerical analysis"> numerical analysis</a> </p> <a href="https://publications.waset.org/abstracts/50081/cfd-simulation-research-on-a-double-diffuser-for-wind-turbines" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50081.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">310</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10433</span> Studies on Performance of an Airfoil and Its Simulation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rajendra%20Roul">Rajendra Roul</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main objective of the project is to bring attention towards the performance of an aerofoil when exposed to the fluid medium inside the wind tunnel. This project aims at involvement of civil as well as mechanical engineering thereby making itself as a multidisciplinary project. The airfoil of desired size is taken into consideration for the project to carry out effectively. An aerofoil is the shape of the wing or blade of propeller, rotor or turbine. Lot of experiment have been carried out through wind-tunnel keeping aerofoil as a reference object to make a future forecast regarding the design of turbine blade, car and aircraft. Lift and drag now become the major identification factor for any design industry which shows that wind tunnel testing along with software analysis (ANSYS) becomes the mandatory task for any researchers to forecast an aerodynamics design. This project is an initiative towards the mitigation of drag, better lift and analysis of wake surface profile by investigating the surface pressure distribution. The readings has been taken on airfoil model in Wind Tunnel Testing Machine (WTTM) at different air velocity 20m/sec, 25m/sec, 30m/sec and different angle of attack 00,50,100,150,200. Air velocity and pressures are measured in several ways in wind tunnel testing machine by use to measuring instruments like Anemometer and Multi tube manometer. Moreover to make the analysis more accurate Ansys fluent contribution become substantial and subsequently the CFD simulation results. Analysis on an Aerofoil have a wide spectrum of application other than aerodynamics including wind loads in the design of buildings and bridges for structural engineers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wind-tunnel" title="wind-tunnel">wind-tunnel</a>, <a href="https://publications.waset.org/abstracts/search?q=aerofoil" title=" aerofoil"> aerofoil</a>, <a href="https://publications.waset.org/abstracts/search?q=Ansys" title=" Ansys"> Ansys</a>, <a href="https://publications.waset.org/abstracts/search?q=multitube%20manometer" title=" multitube manometer"> multitube manometer</a> </p> <a href="https://publications.waset.org/abstracts/21596/studies-on-performance-of-an-airfoil-and-its-simulation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21596.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">414</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10432</span> Research on Aerodynamic Brake Device for High-Speed Train</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Yun">S. Yun</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Kwak"> M. Kwak </a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study is about an aerodynamic brake device for a high-speed train. In order to apply an aerodynamic brake device, an influence of the aerodynamic brake device on a high-speed train was studied aerodynamically, acoustically and dynamically. Wind tunnel test was conducted to predict an effect of braking distance reduction with a scale model of 1/30. Aerodynamic drag increases by 244% with a brake panel of a 90 degree angle. Braking distance for an emergency state was predicted to decrease by 13%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aerodynamic%20brake" title="aerodynamic brake">aerodynamic brake</a>, <a href="https://publications.waset.org/abstracts/search?q=braking%20distance" title=" braking distance"> braking distance</a>, <a href="https://publications.waset.org/abstracts/search?q=drag%20coefficient" title=" drag coefficient"> drag coefficient</a>, <a href="https://publications.waset.org/abstracts/search?q=high-speed%20train" title=" high-speed train"> high-speed train</a>, <a href="https://publications.waset.org/abstracts/search?q=wind-tunnel%20test" title=" wind-tunnel test"> wind-tunnel test</a> </p> <a href="https://publications.waset.org/abstracts/65559/research-on-aerodynamic-brake-device-for-high-speed-train" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65559.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">321</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10431</span> Investigation of Effects and Hazards of Wind Flow on Buildings in Multiple Arrangements Using CFD</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20C.%20Gupta">S. C. Gupta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The wind flow over several buildings lying in close vicinity in urban areas generates flow interference effects causing problems related to pedestrian comfort and ventilation within the buildings. This promoted a lot of research interest in the recent years. Airflow over a building creates a positive pressure zone on the upstream side and negative pressure zones (cavities or eddy zones) on the roof and all other sides. Large eddy simulation model is used along with sub-grid-scale model to numerically simulate turbulence for this purpose. The basis of flow outside the building is the pressure difference (between the wind and building interior). Wind Tunnel models are fabricated and tested in the subsonic wind tunnel. Theoretical results are compared with the experimental data. Newer configuration is tried for favorable effects in recovering static pressure values. Results obtained are seen very encouraging. The proposed exhaustive research investigation through numerical simulations and the experimental work are described and some interesting findings are brought out. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wind%20flow" title="wind flow">wind flow</a>, <a href="https://publications.waset.org/abstracts/search?q=buildings" title=" buildings"> buildings</a>, <a href="https://publications.waset.org/abstracts/search?q=static%20pressure%20wind%20tunnel%20testing" title=" static pressure wind tunnel testing"> static pressure wind tunnel testing</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD" title=" CFD"> CFD</a> </p> <a href="https://publications.waset.org/abstracts/15323/investigation-of-effects-and-hazards-of-wind-flow-on-buildings-in-multiple-arrangements-using-cfd" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15323.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">498</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10430</span> Aerodynamic Design of Three-Dimensional Bellmouth for Low-Speed Open-Circuit Wind Tunnel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Harshavardhan%20Reddy">Harshavardhan Reddy</a>, <a href="https://publications.waset.org/abstracts/search?q=Balaji%20Subramanian"> Balaji Subramanian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A systematic parametric study to find the optimum bellmouth profile by relating geometric and performance parameters to satisfy a set of specifications is reported. A careful aerodynamic design of bellmouth intake is critical to properly direct the flow with minimal losses and maximal flow uniformity into the honeycomb located inside the settling chamber of an indraft wind tunnel, thus improving the efficiency of the entire unit. Design charts for elliptically profiled bellmouths with two different contraction ratios (9 and 18) and three different test section speeds (25 m/s, 50 m/s, and 75 m/s) were presented. A significant performance improvement - especially in the Coefficient of discharge and in the flow angularity and boundary layer thickness at the honeycomb inlet - was observed when an entry corner radius (r/D = 0.08) was added to the bellmouth profile. The nonuniformity at the honeycomb inlet drops by about three times (~1% to 0.3%) when moving from square to regular octagonal cross-section. An octagonal cross-sectioned bellmouth intake with L/d = 0.55, D/d = 1.625, and r/D = 0.08 met all the four target performance specifications and is proposed as the best choice for a low-speed wind tunnel. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bellmouth%20intake" title="bellmouth intake">bellmouth intake</a>, <a href="https://publications.waset.org/abstracts/search?q=low-speed%20wind%20tunnel" title=" low-speed wind tunnel"> low-speed wind tunnel</a>, <a href="https://publications.waset.org/abstracts/search?q=coefficient%20of%20discharge" title=" coefficient of discharge"> coefficient of discharge</a>, <a href="https://publications.waset.org/abstracts/search?q=nonuniformity" title=" nonuniformity"> nonuniformity</a>, <a href="https://publications.waset.org/abstracts/search?q=flow%20angularity" title=" flow angularity"> flow angularity</a>, <a href="https://publications.waset.org/abstracts/search?q=boundary%20layer%20thickness" title=" boundary layer thickness"> boundary layer thickness</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD" title=" CFD"> CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=aerodynamics" title=" aerodynamics"> aerodynamics</a> </p> <a href="https://publications.waset.org/abstracts/152208/aerodynamic-design-of-three-dimensional-bellmouth-for-low-speed-open-circuit-wind-tunnel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152208.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">198</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10429</span> Effect of Porous Multi-Layer Envelope System on Effective Wind Pressure of Building Ventilation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ying-Chang%20Yu">Ying-Chang Yu</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuan-Lung%20Lo"> Yuan-Lung Lo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Building ventilation performance is an important indicator of indoor comfort. However, in addition to the geometry of the building or the proportion of the opening, the ventilation performance is also very much related to the actual wind pressure of the building. There are more and more contemporary building designs built with multi-layer exterior envelope. Due to ventilation and view observatory requirement, the porous outer layer of the building is commonly adopted and has a significant wind damping effect, causing the phenomenon of actual wind pressure loss. However, the relationship between the wind damping effect and the actual wind pressure is not linear. This effect can make the indoor ventilation of the building rationalized to reasonable range under the condition of high wind pressure, and also maintain a good amount of ventilation performance under the condition of low wind pressure. In this study, wind tunnel experiments were carried out to simulate the different wind pressures flow through the porous outer layer, and observe the actual wind pressure strength engage with the window layer to find the decreasing relationship between the damping effect of the porous shell and the wind pressure. Experiment specimen scale was designed to be 1:50 for testing real-world building conditions; the study found that the porous enclosure has protective shielding without affecting low-pressure ventilation. Current study observed the porous skin may damp more wind energy to ease the wind pressure under high-speed wind. Differential wind speed may drop the pressure into similar pressure level by using porous skin. The actual mechanism and value of this phenomenon will need further study in the future. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=multi-layer%20facade" title="multi-layer facade">multi-layer facade</a>, <a href="https://publications.waset.org/abstracts/search?q=porous%20media" title=" porous media"> porous media</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20damping" title=" wind damping"> wind damping</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20tunnel%20test" title=" wind tunnel test"> wind tunnel test</a>, <a href="https://publications.waset.org/abstracts/search?q=building%20ventilation" title=" building ventilation "> building ventilation </a> </p> <a href="https://publications.waset.org/abstracts/111397/effect-of-porous-multi-layer-envelope-system-on-effective-wind-pressure-of-building-ventilation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/111397.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">148</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10428</span> An Analytical Study of Small Unmanned Arial Vehicle Dynamic Stability Characteristics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdelhakam%20A.%20Noreldien">Abdelhakam A. Noreldien</a>, <a href="https://publications.waset.org/abstracts/search?q=Sakhr%20B.%20Abudarag"> Sakhr B. Abudarag</a>, <a href="https://publications.waset.org/abstracts/search?q=Muslim%20S.%20Eltoum"> Muslim S. Eltoum</a>, <a href="https://publications.waset.org/abstracts/search?q=Salih%20O.%20Osman"> Salih O. Osman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents an analytical study of Small Unmanned Aerial Vehicle (SUAV) dynamic stability derivatives. Simulating SUAV dynamics and analyzing its behavior at the earliest design stages is too important and more efficient design aspect. The approach suggested in this paper is using the wind tunnel experiment to collect the aerodynamic data and get the dynamic stability derivatives. AutoCAD Software was used to draw the case study (wildlife surveillance SUAV). The SUAV is scaled down to be 0.25% of the real SUAV dimensions and converted to a wind tunnel model. The model was tested in three different speeds for three different attitudes which are; pitch, roll and yaw. The wind tunnel results were then used to determine the case study stability derivative values, and hence it used to calculate the roots of the characteristic equation for both longitudinal and lateral motions. Finally, the characteristic equation roots were found and discussed in all possible cases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=model" title="model">model</a>, <a href="https://publications.waset.org/abstracts/search?q=simulating" title=" simulating"> simulating</a>, <a href="https://publications.waset.org/abstracts/search?q=SUAV" title=" SUAV"> SUAV</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20tunnel" title=" wind tunnel"> wind tunnel</a> </p> <a href="https://publications.waset.org/abstracts/37666/an-analytical-study-of-small-unmanned-arial-vehicle-dynamic-stability-characteristics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37666.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">375</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10427</span> Construction of Wind Tunnel for Aerodynamic </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Elmo%20Thiago%20Lins%20C%C3%B6uras%20Ford">Elmo Thiago Lins Cöuras Ford</a>, <a href="https://publications.waset.org/abstracts/search?q=Valentina%20Alessandra%20Carvalho%20do%20Vale"> Valentina Alessandra Carvalho do Vale</a>, <a href="https://publications.waset.org/abstracts/search?q=Jos%C3%A9%20Ubiragi%20de%20Lima%20Mendes"> José Ubiragi de Lima Mendes</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study of the aerodynamics is related to the improvement in the acting of airplanes and automobiles with the objective of being reduced the effect of the attrition of the air on structures, providing larger speeds and smaller consumption of fuel. The application of the knowledge of the aerodynamics not more limits to the aeronautical and automobile industries. In that way, being tried the new demands with relationship to the aerodynamic study in the most several areas of the engineering, this work presents the stages of the project and construction of a wind tunnel for application in aerodynamic rehearsals. Among the several configurations of existent wind tunnels, opted to build open circuit, due to smaller construction complexity and installation; operational simplicity and cost reduced. Belonging to the type blower, to take advantage of a larger efficiency of the motor; and with diffusion so that flowed him of air it wins speed before reaching the section of rehearsals. The guidelines for project were: didactic practices: study of the layer it limits and analyze of the drainages on proof bodies with different geometries. For the pressure variation in the test section a connected manometer used a pitot tube. Quantitative and qualitative results showed to be satisfactory. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wind%20tunnel" title="wind tunnel">wind tunnel</a>, <a href="https://publications.waset.org/abstracts/search?q=aerodynamics" title=" aerodynamics"> aerodynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=air" title=" air"> air</a>, <a href="https://publications.waset.org/abstracts/search?q=airplane" title=" airplane"> airplane</a> </p> <a href="https://publications.waset.org/abstracts/18670/construction-of-wind-tunnel-for-aerodynamic" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18670.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">486</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10426</span> Wind Interference Effects on Various Plan Shape Buildings Under Wind Load</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ritu%20Raj">Ritu Raj</a>, <a href="https://publications.waset.org/abstracts/search?q=Hrishikesh%20Dubey"> Hrishikesh Dubey</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the results of the experimental investigations carried out on two intricate plan shaped buildings to evaluate aerodynamic performance of the building. The purpose is to study the associated environment arising due to wind forces in isolated and interference conditions on a model of scale 1:300 with a prototype having 180m height. Experimental tests were carried out at the boundary layer wind tunnel considering isolated conditions with 0° to 180° isolated wind directions and four interference conditions of twin building (separately for both the models). The research has been undertaken in Terrain Category-II, which is the most widely available terrain in India. A comparative assessment of the two models is performed out in an attempt to comprehend the various consequences of diverse conditions that may emerge in real-life situations, as well as the discrepancies amongst them. Experimental results of wind pressure coefficients of Model-1 and Model-2 shows good agreement with various wind incidence conditions with minute difference in the magnitudes of mean Cp. On the basis of wind tunnel studies, it is distinguished that the performance of Model-2 is better than Model-1in both isolated as well as interference conditions for all wind incidences and orientations respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=interference%20factor" title="interference factor">interference factor</a>, <a href="https://publications.waset.org/abstracts/search?q=tall%20buildings" title=" tall buildings"> tall buildings</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20direction" title=" wind direction"> wind direction</a>, <a href="https://publications.waset.org/abstracts/search?q=mean%20pressure-coefficients" title=" mean pressure-coefficients"> mean pressure-coefficients</a> </p> <a href="https://publications.waset.org/abstracts/148107/wind-interference-effects-on-various-plan-shape-buildings-under-wind-load" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/148107.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">128</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10425</span> Computational Design, Simulation, and Wind Tunnel Testing of a Stabilator for a Fixed Wing Aircraft</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kartik%20Gupta">Kartik Gupta</a>, <a href="https://publications.waset.org/abstracts/search?q=Umar%20Khan"> Umar Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Mayur%20Parab"> Mayur Parab</a>, <a href="https://publications.waset.org/abstracts/search?q=Dhiraj%20Chaudhari"> Dhiraj Chaudhari</a>, <a href="https://publications.waset.org/abstracts/search?q=Afzal%20Ansari"> Afzal Ansari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The report focuses on the study related to the Design and Simulation of a stabilator (an all-movable horizontal stabilizer) for a fixed-wing aircraft. The project involves the development of a computerized direct optimization procedure for designing an aircraft all-movable stabilator. This procedure evaluates various design variables to synthesize an optimal stabilator that meets specific requirements, including performance, control, stability, strength, and flutter velocity constraints. The work signifies the CFD (Computational Fluid Dynamics) analysis of the airfoils used in the stabilator along with the CFD analysis of the Stabilizer and Stabilator of an aircraft named Thorp- T18 in software like XFLR5 and ANSYS-Fluent. A comparative analysis between a Stabilizer and Stabilator of equal surface area and under the same environmental conditions was done, and the percentage of drag reduced by the Stabilator for the same amount of lift generated as the Stabilizer was also calculated lastly, Wind tunnel testing was performed on a scale down model of the Stabilizer and Stabilator and the results of the Wind tunnel testing were compared with the results of CFD. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wind%20tunnel%20testing" title="wind tunnel testing">wind tunnel testing</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD" title=" CFD"> CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=stabilizer" title=" stabilizer"> stabilizer</a>, <a href="https://publications.waset.org/abstracts/search?q=stabilator" title=" stabilator"> stabilator</a> </p> <a href="https://publications.waset.org/abstracts/184409/computational-design-simulation-and-wind-tunnel-testing-of-a-stabilator-for-a-fixed-wing-aircraft" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/184409.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">60</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10424</span> Design for Flight Endurance and Mapping Area Enhancement of a Fixed Wing Unmanned Air Vehicle</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20Krachangthong">P. Krachangthong</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Limsumalee"> N. Limsumalee</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Sawatdipon"> L. Sawatdipon</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Sasipongpreecha"> A. Sasipongpreecha</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Pisailert"> S. Pisailert</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Thongta"> J. Thongta</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Hongkarnjanakul"> N. Hongkarnjanakul</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Thipyopas"> C. Thipyopas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The design and development of new UAV are detailed in this paper. The mission requirement is setup for enhancement of flight endurance of a fixed wing UAV. The goal is to achieve flight endurance more than 60 minutes. UAV must be able launched by hand and can be equipped with the Sony A6000 camera. The design of sizing and aerodynamic analysis is conducted. The XFLR5 program and wind tunnel test are used for determination and comparison of aerodynamic characteristics. Lift, drag and pitching moment characteristics are evaluated. Then Kreno-V UAV is designed and proved its better efficiency compared to the Heron UAV who is currently used for mapping mission of Geo-Informatics and Space Technology Development Agency (Public Organization), Thailand. The endurance is improved by 19%. Finally, Kreno-V UAV with a wing span of 2meters, the aspect ratio of 7, and V-tail shape is constructed and successfully test. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=UAV%20design" title="UAV design">UAV design</a>, <a href="https://publications.waset.org/abstracts/search?q=fixed-wing%20UAV" title=" fixed-wing UAV"> fixed-wing UAV</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20tunnel%20test" title=" wind tunnel test"> wind tunnel test</a>, <a href="https://publications.waset.org/abstracts/search?q=long%20endurance" title=" long endurance"> long endurance</a> </p> <a href="https://publications.waset.org/abstracts/39625/design-for-flight-endurance-and-mapping-area-enhancement-of-a-fixed-wing-unmanned-air-vehicle" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39625.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">392</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10423</span> Wind Energy Loss Phenomenon Over Volumized Building Envelope with Porous Air Portals</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ying-chang%20Yu">Ying-chang Yu</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuan-lung%20Lo"> Yuan-lung Lo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> More and more building envelopes consist of the construction of balconies, canopies, handrails, sun-shading, vertical planters or gardens, maintenance platforms, display devices, lightings, ornaments, and also the most commonly seen double skin system. These components form a uniform but three-dimensional disturbance structure and create a complex surface wind field in front of the actual watertight building interface. The distorted wind behavior would affect the façade performance and building ventilation. Comparing with sole windscreen walls, these three-dimensional structures perform like distributed air portal assembly, and each portal generates air turbulence and consume wind pressure and energy simultaneously. In this study, we attempted to compare the behavior of 2D porous windscreens without internal construction, porous tubular portal windscreens, porous tapered portal windscreens, and porous coned portal windscreens. The wind energy reduction phenomenon is then compared to the different distributed air portals. The experiments are conducted in a physical wind tunnel with 1:25 in scale to simulate the three-dimensional structure of a real building envelope. The experimental airflow was set up to smooth flow. The specimen is designed as a plane with a distributed tubular structure behind, and the control group uses different tubular shapes but the same fluid volume to observe the wind damping phenomenon of various geometries. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=volumized%20building%20envelope" title="volumized building envelope">volumized building envelope</a>, <a href="https://publications.waset.org/abstracts/search?q=porous%20air%20portal" title=" porous air portal"> porous air portal</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20damping" title=" wind damping"> wind damping</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20tunnel%20test" title=" wind tunnel test"> wind tunnel test</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20energy%20loss" title=" wind energy loss"> wind energy loss</a> </p> <a href="https://publications.waset.org/abstracts/129472/wind-energy-loss-phenomenon-over-volumized-building-envelope-with-porous-air-portals" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/129472.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">133</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10422</span> Affordable Aerodynamic Balance for Instrumentation in a Wind Tunnel Using Arduino</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pedro%20Ferreira">Pedro Ferreira</a>, <a href="https://publications.waset.org/abstracts/search?q=Alexandre%20Frugoli"> Alexandre Frugoli</a>, <a href="https://publications.waset.org/abstracts/search?q=Pedro%20Frugoli"> Pedro Frugoli</a>, <a href="https://publications.waset.org/abstracts/search?q=Lucio%20Leonardo"> Lucio Leonardo</a>, <a href="https://publications.waset.org/abstracts/search?q=Thais%20Cavalheri"> Thais Cavalheri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The teaching of fluid mechanics in engineering courses is, in general, a source of great difficulties for learning. The possibility of the use of experiments with didactic wind tunnels can facilitate the education of future professionals. The objective of this proposal is the development of a low-cost aerodynamic balance to be used in a didactic wind tunnel. The set is comprised of an Arduino microcontroller, programmed by an open source software, linked to load cells built by students from another project. The didactic wind tunnel is 5,0m long and the test area is 90,0 cm x 90,0 cm x 150,0 cm. The Weq® electric motor, model W-22 of 9,2 HP, moves a fan with nine blades, each blade 32,0 cm long. The Weq® frequency inverter, model WEGCFW 08 (Vector Inverter) is responsible for wind speed control and also for the motor inversion of the rotational direction. A flat-convex profile prototype of airfoil was tested by measuring the drag and lift forces for certain attack angles; the air flux conditions remained constant, monitored by a Pitot tube connected to a EXTECH® Instruments digital pressure differential manometer Model HD755. The results indicate a good agreement with the theory. The choice of all of the components of this proposal resulted in a low-cost product providing a high level of specific knowledge of mechanics of fluids, which may be a good alternative to teaching in countries with scarce educational resources. The system also allows the expansion to measure other parameters like fluid velocity, temperature, pressure as well as the possibility of automation of other functions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aerodynamic%20balance" title="aerodynamic balance">aerodynamic balance</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20tunnel" title=" wind tunnel"> wind tunnel</a>, <a href="https://publications.waset.org/abstracts/search?q=strain%20gauge" title=" strain gauge"> strain gauge</a>, <a href="https://publications.waset.org/abstracts/search?q=load%20cell" title=" load cell"> load cell</a>, <a href="https://publications.waset.org/abstracts/search?q=Arduino" title=" Arduino"> Arduino</a>, <a href="https://publications.waset.org/abstracts/search?q=low-cost%20education" title=" low-cost education"> low-cost education</a> </p> <a href="https://publications.waset.org/abstracts/51909/affordable-aerodynamic-balance-for-instrumentation-in-a-wind-tunnel-using-arduino" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51909.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">445</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10421</span> Plasma Actuator Application to Control Surfaces of a Model Aircraft</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yuta%20Moriyama">Yuta Moriyama</a>, <a href="https://publications.waset.org/abstracts/search?q=Etsuo%20Morishita"> Etsuo Morishita</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Plasma actuator is very effective to recover stall flows over an upper airfoil surface. We first manufacture the actuator, test the stability of the device by trial and error basis and find the conditions for steady operations. We visualize the flow around an airfoil in the smoke tunnel and observe the stall recovery. The plasma actuator is stationary device and has no moving parts, and it might be an ideal device to control a model aircraft. We can use the actuator not only as a stall recovery device but also as a spoiler. We put the actuator near the leading edge of an elevator of a model aircraft as a spoiler, and measure the aerodynamic forces by a three-component balance. We observe the effect of the plasma actuator on the aerodynamic forces and the device effectiveness changes depending on the angle of attack whether it is positive or negative. We also visualize the flow caused by the plasma actuator by a desk-top Schlieren photography which is otherwise very difficult in a low-speed wind tunnel experiment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aerodynamics" title="aerodynamics">aerodynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=plasma%20actuator" title=" plasma actuator"> plasma actuator</a>, <a href="https://publications.waset.org/abstracts/search?q=model%20aircraft" title=" model aircraft"> model aircraft</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20tunnel" title=" wind tunnel"> wind tunnel</a> </p> <a href="https://publications.waset.org/abstracts/84276/plasma-actuator-application-to-control-surfaces-of-a-model-aircraft" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84276.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">373</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10420</span> Dynamic Test and Numerical Analysis of Twin Tunnel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Changwon%20Kwak">Changwon Kwak</a>, <a href="https://publications.waset.org/abstracts/search?q=Innjoon%20Park"> Innjoon Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Dongin%20Jang"> Dongin Jang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Seismic load affects the behavior of underground structure like tunnel broadly. Seismic soil-structure interaction can play an important role in the dynamic behavior of tunnel. In this research, twin tunnel with flexible joint was physically modeled and the dynamic centrifuge test was performed to investigate seismic behavior of twin tunnel. Seismic waves have different frequency were exerted and the characteristics of response were obtained from the test. Test results demonstrated the amplification of peak acceleration in the longitudinal direction in seismic waves. The effect of the flexible joint was also verified. Additionally, 3-dimensional finite difference dynamic analysis was conducted and the analysis results exhibited good agreement with the test results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=3-dimensional%20finite%20difference%20dynamic%20analysis" title="3-dimensional finite difference dynamic analysis">3-dimensional finite difference dynamic analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20centrifuge%20test" title=" dynamic centrifuge test"> dynamic centrifuge test</a>, <a href="https://publications.waset.org/abstracts/search?q=flexible%20joint" title=" flexible joint"> flexible joint</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20soil-structure%20interaction" title=" seismic soil-structure interaction"> seismic soil-structure interaction</a> </p> <a href="https://publications.waset.org/abstracts/47381/dynamic-test-and-numerical-analysis-of-twin-tunnel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47381.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">258</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10419</span> Study on Accurate Calculation Method of Model Attidude on Wind Tunnel Test</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jinjun%20Jiang">Jinjun Jiang</a>, <a href="https://publications.waset.org/abstracts/search?q=Lianzhong%20Chen"> Lianzhong Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Rui%20Xu"> Rui Xu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The accurate of model attitude angel plays an important role on the aerodynamic test results in the wind tunnel test. The original method applies the spherical coordinate system transformation to obtain attitude angel calculation.The model attitude angel is obtained by coordinate transformation and spherical surface mapping applying the nominal attitude angel (the balance attitude angel in the wind tunnel coordinate system) indicated by the mechanism. First, the coordinate transformation of this method is not only complex but also difficult to establish the transformed relationship between the space coordinate systems especially after many steps of coordinate transformation, moreover it cannot realize the iterative calculation of the interference relationship between attitude angels; Second, during the calculate process to solve the problem the arc is approximately used to replace the straight line, the angel for the tangent value, and the inverse trigonometric function is applied. Therefore, in the calculation of attitude angel, the process is complex and inaccurate, which can be solved approximately when calculating small attack angel. However, with the advancing development of modern aerodynamic unsteady research, the aircraft tends to develop high or super large attack angel and unsteadyresearch field.According to engineering practice and vector theory, the concept of vector angel coordinate systemis proposed for the first time, and the vector angel coordinate system of attitude angel is established.With the iterative correction calculation and avoiding the problem of approximate and inverse trigonometric function solution, the model attitude calculation process is carried out in detail, which validates that the calculation accuracy and accuracy of model attitude angels are improved.Based on engineering and theoretical methods, a vector angel coordinate systemis established for the first time, which gives the transformation and angel definition relations between different flight attitude coordinate systems, that can accurately calculate the attitude angel of the corresponding coordinate systemand determine its direction, especially in the channel coupling calculation, the calculation of the attitude angel between the coordinate systems is only related to the angel, and has nothing to do with the change order s of the coordinate system, whichsimplifies the calculation process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=attitude%20angel" title="attitude angel">attitude angel</a>, <a href="https://publications.waset.org/abstracts/search?q=angel%20vector%20coordinate%20system" title=" angel vector coordinate system"> angel vector coordinate system</a>, <a href="https://publications.waset.org/abstracts/search?q=iterative%20calculation" title=" iterative calculation"> iterative calculation</a>, <a href="https://publications.waset.org/abstracts/search?q=spherical%20coordinate%20system" title=" spherical coordinate system"> spherical coordinate system</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20tunnel%20test" title=" wind tunnel test"> wind tunnel test</a> </p> <a href="https://publications.waset.org/abstracts/159541/study-on-accurate-calculation-method-of-model-attidude-on-wind-tunnel-test" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/159541.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">146</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=wind%20tunnel%20test&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=wind%20tunnel%20test&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=wind%20tunnel%20test&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=wind%20tunnel%20test&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=wind%20tunnel%20test&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=wind%20tunnel%20test&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=wind%20tunnel%20test&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=wind%20tunnel%20test&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=wind%20tunnel%20test&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=wind%20tunnel%20test&page=348">348</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=wind%20tunnel%20test&page=349">349</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=wind%20tunnel%20test&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>