CINXE.COM

Search results for: casting defects

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <script> var _paq = window._paq = window._paq || []; /* tracker methods like "setCustomDimension" should be called before "trackPageView" */ _paq.push(['trackPageView']); _paq.push(['enableLinkTracking']); (function() { var u="//matomo.waset.org/"; _paq.push(['setTrackerUrl', u+'matomo.php']); _paq.push(['setSiteId', '2']); var d=document, g=d.createElement('script'), s=d.getElementsByTagName('script')[0]; g.async=true; g.src=u+'matomo.js'; s.parentNode.insertBefore(g,s); })(); </script> <!-- End Matomo Code --> <title>Search results for: casting defects</title> <meta name="description" content="Search results for: casting defects"> <meta name="keywords" content="casting defects"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="casting defects" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2025/2026/2027">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="casting defects"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 939</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: casting defects</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">939</span> A Review on Parametric Optimization of Casting Processes Using Optimization Techniques</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bhrugesh%20Radadiya">Bhrugesh Radadiya</a>, <a href="https://publications.waset.org/abstracts/search?q=Jaydeep%20Shah"> Jaydeep Shah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In Indian foundry industry, there is a need of defect free casting with minimum production cost in short lead time. Casting defect is a very large issue in foundry shop which increases the rejection rate of casting and wastage of materials. The various parameters influences on casting process such as mold machine related parameters, green sand related parameters, cast metal related parameters, mold related parameters and shake out related parameters. The mold related parameters are most influences on casting defects in sand casting process. This paper review the casting produced by foundry with shrinkage and blow holes as a major defects was analyzed and identified that mold related parameters such as mold temperature, pouring temperature and runner size were not properly set in sand casting process. These parameters were optimized using different optimization techniques such as Taguchi method, Response surface methodology, Genetic algorithm and Teaching-learning based optimization algorithm. Finally, concluded that a Teaching-learning based optimization algorithm give better result than other optimization techniques. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=casting%20defects" title="casting defects">casting defects</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20algorithm" title=" genetic algorithm"> genetic algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=parametric%20optimization" title=" parametric optimization"> parametric optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=Taguchi%20method" title=" Taguchi method"> Taguchi method</a>, <a href="https://publications.waset.org/abstracts/search?q=TLBO%20algorithm" title=" TLBO algorithm"> TLBO algorithm</a> </p> <a href="https://publications.waset.org/abstracts/21826/a-review-on-parametric-optimization-of-casting-processes-using-optimization-techniques" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21826.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">736</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">938</span> Development of a Robot Assisted Centrifugal Casting Machine for Manufacturing Multi-Layer Journal Bearing and High-Tech Machine Components</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Syed%20Ali%20Molla">Mohammad Syed Ali Molla</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Azim"> Mohammed Azim</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Esharuzzaman"> Mohammad Esharuzzaman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Centrifugal-casting machine is used in manufacturing special machine components like multi-layer journal bearing used in all internal combustion engine, steam, gas turbine and air craft turboengine where isotropic properties and high precisions are desired. Moreover, this machine can be used in manufacturing thin wall hightech machine components like cylinder liners and piston rings of IC engine and other machine parts like sleeves, and bushes. Heavy-duty machine component like railway wheel can also be prepared by centrifugal casting. A lot of technological developments are required in casting process for production of good casted machine body and machine parts. Usually defects like blowholes, surface roughness, chilled surface etc. are found in sand casted machine parts. But these can be removed by centrifugal casting machine using rotating metallic die. Moreover, die rotation, its temperature control, and good pouring practice can contribute to the quality of casting because of the fact that the soundness of a casting in large part depends upon how the metal enters into the mold or dies and solidifies. Poor pouring practice leads to variety of casting defects such as temperature loss, low quality casting, excessive turbulence, over pouring etc. Besides these, handling of molten metal is very unsecured and dangerous for the workers. In order to get rid of all these problems, the need of an automatic pouring device arises. In this research work, a robot assisted pouring device and a centrifugal casting machine are designed, developed constructed and tested experimentally which are found to work satisfactorily. The robot assisted pouring device is further modified and developed for using it in actual metal casting process. Lot of settings and tests are required to control the system and ultimately it can be used in automation of centrifugal casting machine to produce high-tech machine parts with desired precision. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bearing" title="bearing">bearing</a>, <a href="https://publications.waset.org/abstracts/search?q=centrifugal%20casting" title=" centrifugal casting"> centrifugal casting</a>, <a href="https://publications.waset.org/abstracts/search?q=cylinder%20liners" title=" cylinder liners"> cylinder liners</a>, <a href="https://publications.waset.org/abstracts/search?q=robot" title=" robot"> robot</a> </p> <a href="https://publications.waset.org/abstracts/40197/development-of-a-robot-assisted-centrifugal-casting-machine-for-manufacturing-multi-layer-journal-bearing-and-high-tech-machine-components" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40197.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">418</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">937</span> Effect of the Mould Rotational Speed on the Quality of Centrifugal Castings</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20El-Sayed">M. A. El-Sayed</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20A.%20Aziz"> S. A. Aziz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Centrifugal casting is a standard casting technique for the manufacture of hollow, intricate and sound castings without the use of cores. The molten metal or alloy poured into the rotating mold forms a hollow casting as the centrifugal forces lift the liquid along the mold inner surface. The rotational speed of the die was suggested to greatly affect the manner in which the molten metal flows within the mould and consequently the probability of the formation of a uniform cylinder. In this work the flow of the liquid metal at various speeds and its effect during casting were studied. The results suggested that there was a critical range for the speed, within which the produced castings exhibited best uniformity and maximum mechanical properties. When a mould was rotated at speeds below or beyond the critical range defects were found in the final castings, which affected the uniformity and significantly lowered the mechanical properties. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=centrifugal%20casting" title="centrifugal casting">centrifugal casting</a>, <a href="https://publications.waset.org/abstracts/search?q=rotational%20speed" title=" rotational speed"> rotational speed</a>, <a href="https://publications.waset.org/abstracts/search?q=critical%20speed%20range" title=" critical speed range"> critical speed range</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a> </p> <a href="https://publications.waset.org/abstracts/6659/effect-of-the-mould-rotational-speed-on-the-quality-of-centrifugal-castings" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6659.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">452</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">936</span> Fundamental Research Dissension between Hot and Cold Chamber High Pressure Die Casting</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sahil%20Kumar">Sahil Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Surinder%20Pal"> Surinder Pal</a>, <a href="https://publications.waset.org/abstracts/search?q=Rahul%20Kapoor"> Rahul Kapoor</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper is focused on to define the basic difference between hot and cold chamber high pressure die casting process which is not fully defined in a research before paper which we have studied. The pressure die casting is basically defined into two types (1) Hot chamber Die Casting (2) Cold chamber Die Casting. Cold chamber die casting is used for casting alloys that require high pressure and have a high melting temperature, such as brass, aluminum, magnesium, copper based alloys and other high melting point nonferrous alloys. Hot chamber die casting is suitable for casting zinc, tin, lead, and low melting point alloys. In hot chamber die casting machine, the molten metal is an integral pan of the machine. It mainly consists of hot chamber and gooseneck type metal container made of cast iron. This machine is mainly used for low melting alloys and alloys of metals like zinc, lead etc. Metals and alloys having a high melting point and those which are having an affinity for iron cannot be cast by this machine, which could otherwise attack the shot sleeve and damage the machine. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hot%20chamber%20die%20casting" title="hot chamber die casting">hot chamber die casting</a>, <a href="https://publications.waset.org/abstracts/search?q=cold%20chamber%20die%20casting" title=" cold chamber die casting"> cold chamber die casting</a>, <a href="https://publications.waset.org/abstracts/search?q=metals%20and%20alloys" title=" metals and alloys"> metals and alloys</a>, <a href="https://publications.waset.org/abstracts/search?q=casting%20technology" title=" casting technology"> casting technology</a> </p> <a href="https://publications.waset.org/abstracts/25342/fundamental-research-dissension-between-hot-and-cold-chamber-high-pressure-die-casting" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25342.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">624</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">935</span> Analyzing Defects with Failure Assessment Diagrams of Gas Pipelines</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alfred%20Hasanaj">Alfred Hasanaj </a>, <a href="https://publications.waset.org/abstracts/search?q=Ardit%20Gjeta"> Ardit Gjeta</a>, <a href="https://publications.waset.org/abstracts/search?q=Miranda%20Kullolli"> Miranda Kullolli</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The approach in analyzing defects on different pipe lines is conducted through Failure Assessment Diagram (FAD). These methods of analyses have further extended in recent years. This approach is used to identify and stress out a solution for the defects which randomly occur with gas pipes such are corrosion defects, gauge defects, and combination of defects where gauge and dents are included. Few of the defects are to be analyzed in this paper where our main focus will be the fracture of cast Iron pipes, elastic-plastic failure and plastic collapse of X52 steel pipes for gas transport. We need to conduct a calculation of probability of the defects in order to predict and avoid such costly defects. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=defects" title="defects">defects</a>, <a href="https://publications.waset.org/abstracts/search?q=failure%20assessment%20diagrams" title=" failure assessment diagrams"> failure assessment diagrams</a>, <a href="https://publications.waset.org/abstracts/search?q=steel%20pipes" title=" steel pipes"> steel pipes</a>, <a href="https://publications.waset.org/abstracts/search?q=safety%20factor" title=" safety factor "> safety factor </a> </p> <a href="https://publications.waset.org/abstracts/9044/analyzing-defects-with-failure-assessment-diagrams-of-gas-pipelines" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9044.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">449</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">934</span> The Interaction of Adjacent Defects and the Effect on the Failure Pressure of the Corroded Pipeline</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=W.%20Wang">W. Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Zhang"> Y. Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Shuai"> J. Shuai</a>, <a href="https://publications.waset.org/abstracts/search?q=Z.%20Lv"> Z. Lv</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The interaction between defects has an essential influence on the bearing capacity of pipelines. This work developed the finite element model of pipelines containing adjacent defects, which includes longitudinally aligned, circumferentially aligned, and diagonally aligned defects. The relationships between spacing and geometries of defects and the failure pressure of pipelines, and the interaction between defects are investigated. The results show that the orientation of defects is an influential factor in the failure pressure of the pipeline. The influence of defect spacing on the failure pressure of the pipeline is non-linear, and the relationship presents different trends depending on the orientation of defects. The increase of defect geometry will weaken the failure pressure of the pipeline, and for the interaction between defects, the increase of defect depth will enhance it, and the increase of defect length will weaken it. According to the research on the interaction rule between defects with different orientations, the interacting coefficients under different orientations of defects are compared. It is determined that the diagonally aligned defects with the overlap of longitudinal projections are the most obvious arrangement of interaction between defects, and the limited distance of interaction between defects is proposed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pipeline" title="pipeline">pipeline</a>, <a href="https://publications.waset.org/abstracts/search?q=adjacent%20defects" title=" adjacent defects"> adjacent defects</a>, <a href="https://publications.waset.org/abstracts/search?q=interaction%20between%20defects" title=" interaction between defects"> interaction between defects</a>, <a href="https://publications.waset.org/abstracts/search?q=failure%20pressure" title=" failure pressure"> failure pressure</a> </p> <a href="https://publications.waset.org/abstracts/155026/the-interaction-of-adjacent-defects-and-the-effect-on-the-failure-pressure-of-the-corroded-pipeline" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/155026.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">242</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">933</span> Simulation of Die Casting Process in an Industrial Helical Gearbox Flange Die</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mehdi%20Modabberifar">Mehdi Modabberifar</a>, <a href="https://publications.waset.org/abstracts/search?q=Behrouz%20Raad"> Behrouz Raad</a>, <a href="https://publications.waset.org/abstracts/search?q=Bahman%20Mirzakhani"> Bahman Mirzakhani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Flanges are widely used for connecting valves, pipes and other industrial devices such as gearboxes. Method of producing a flange has a considerable impact on the manner of their involvement with the industrial engines and gearboxes. By Using die casting instead of sand casting and machining for manufacturing flanges, production speed and dimensional accuracy of the parts increases. Also, in die casting, obtained dimensions are close to final dimensions and hence the need for machining flanges after die casting process decreases which makes a significant savings in raw materials and improves the mechanical properties of flanges. In this paper, a typical die of an industrial helical gearbox flange (size ISO 50) was designed and die casting process for producing this type of flange was simulated using ProCAST software. The results of simulation were used for optimizing die design. Finally, using the results of the analysis, optimized die was built. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=die%20casting" title="die casting">die casting</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element" title=" finite element"> finite element</a>, <a href="https://publications.waset.org/abstracts/search?q=flange" title=" flange"> flange</a>, <a href="https://publications.waset.org/abstracts/search?q=helical%20gearbox" title=" helical gearbox"> helical gearbox</a> </p> <a href="https://publications.waset.org/abstracts/7659/simulation-of-die-casting-process-in-an-industrial-helical-gearbox-flange-die" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7659.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">374</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">932</span> Processes and Application of Casting Simulation and Its Software’s</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Surinder%20Pal">Surinder Pal</a>, <a href="https://publications.waset.org/abstracts/search?q=Ajay%20Gupta"> Ajay Gupta</a>, <a href="https://publications.waset.org/abstracts/search?q=Johny%20Khajuria"> Johny Khajuria</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Casting simulation helps visualize mold filling and casting solidification; predict related defects like cold shut, shrinkage porosity and hard spots; and optimize the casting design to achieve the desired quality with high yield. Flow and solidification of molten metals are, however, a very complex phenomenon that is difficult to simulate correctly by conventional computational techniques, especially when the part geometry is intricate and the required inputs (like thermo-physical properties and heat transfer coefficients) are not available. Simulation software is based on the process of modeling a real phenomenon with a set of mathematical formulas. It is, essentially, a program that allows the user to observe an operation through simulation without actually performing that operation. Simulation software is used widely to design equipment so that the final product will be as close to design specs as possible without expensive in process modification. Simulation software with real-time response is often used in gaming, but it also has important industrial applications. When the penalty for improper operation is costly, such as airplane pilots, nuclear power plant operators, or chemical plant operators, a mockup of the actual control panel is connected to a real-time simulation of the physical response, giving valuable training experience without fear of a disastrous outcome. The all casting simulation software has own requirements, like magma cast has only best for crack simulation. The latest generation software Auto CAST developed at IIT Bombay provides a host of functions to support method engineers, including part thickness visualization, core design, multi-cavity mold design with common gating and feeding, application of various feed aids (feeder sleeves, chills, padding, etc.), simulation of mold filling and casting solidification, automatic optimization of feeders and gating driven by the desired quality level, and what-if cost analysis. IIT Bombay has developed a set of applications for the foundry industry to improve casting yield and quality. Casting simulation is a fast and efficient solution for process for advanced tool which is the result of more than 20 years of collaboration with major industrial partners and academic institutions around the world. In this paper the process of casting simulation is studied. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=casting%20simulation%20software%E2%80%99s" title="casting simulation software’s">casting simulation software’s</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation%20technique%E2%80%99s" title=" simulation technique’s"> simulation technique’s</a>, <a href="https://publications.waset.org/abstracts/search?q=casting%20simulation" title=" casting simulation"> casting simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=processes" title=" processes"> processes</a> </p> <a href="https://publications.waset.org/abstracts/25332/processes-and-application-of-casting-simulation-and-its-softwares" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25332.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">478</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">931</span> Processing Design of Miniature Casting Incorporating Stereolithography Technologies</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pei-Hsing%20Huang">Pei-Hsing Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Wei-Ju%20Huang"> Wei-Ju Huang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Investment casting is commonly used in the production of metallic components with complex shapes, due to its high dimensional precision, good surface finish, and low cost. However, the process is cumbersome, and the period between trial casting and final production can be very long, thereby limiting business opportunities and competitiveness. In this study, we replaced conventional wax injection with stereolithography (SLA) 3D printing to speed up the trial process and reduce costs. We also used silicone molds to further reduce costs to avoid the high costs imposed by photosensitive resin. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=investment%20casting" title="investment casting">investment casting</a>, <a href="https://publications.waset.org/abstracts/search?q=stereolithography" title=" stereolithography"> stereolithography</a>, <a href="https://publications.waset.org/abstracts/search?q=wax%20molding" title=" wax molding"> wax molding</a>, <a href="https://publications.waset.org/abstracts/search?q=3D%20printing" title=" 3D printing"> 3D printing</a> </p> <a href="https://publications.waset.org/abstracts/69971/processing-design-of-miniature-casting-incorporating-stereolithography-technologies" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69971.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">412</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">930</span> Full-Scale 3D Simulation of the Electroslag Rapid Remelting Process </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=E.%20Karimi-Sibaki">E. Karimi-Sibaki</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Kharicha"> A. Kharicha</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Wu"> M. Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Ludwig"> A. Ludwig</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The standard electroslag remelting (ESR) process can ideally control the solidification of an ingot and produce homogeneous structure with minimum defects. However, the melt rate of electrode is rather low that makes the whole process uneconomical especially to produce small ingot sizes. In contrast, continuous casting is an economical process to produce small ingots such as billets at high casting speed. Unfortunately, deep liquid melt pool forms in the billet ingot of continuous casting that leads to center porosity and segregation. As such, continuous casting is not suitable to produce segregation prone alloys like tool steel or several super alloys. On the other hand, the electro slag rapid remelting (ESRR) process has advantages of both traditional ESR and continuous casting processes to produce billets. In the ESRR process, a T-shaped mold is used including a graphite ring that takes major amount of current through the mold. There are only a few reports available in the literature discussing about this topic. The research on the ESRR process is currently ongoing aiming to improve the design of the T-shaped mold, to decrease overall heat loss in the process, and to obtain a higher temperature at metal meniscus. In the present study, a 3D model is proposed to investigate the electromagnetic, thermal, and flow fields in the whole process as well as solidification of the billet ingot. We performed a fully coupled numerical simulation to explore the influence of the electromagnetically driven flow (MHD) on the thermal field in the slag and ingot. The main goal is to obtain some fundamental understanding of the formation of melt pool of the solidifying billet ingot in the ESRR process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=billet%20ingot" title="billet ingot">billet ingot</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetohydrodynamics%20%28mhd%29" title=" magnetohydrodynamics (mhd)"> magnetohydrodynamics (mhd)</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20simulation" title=" numerical simulation"> numerical simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=remelting" title=" remelting"> remelting</a>, <a href="https://publications.waset.org/abstracts/search?q=solidification" title=" solidification"> solidification</a>, <a href="https://publications.waset.org/abstracts/search?q=t-shaped%20mold." title=" t-shaped mold. "> t-shaped mold. </a> </p> <a href="https://publications.waset.org/abstracts/66855/full-scale-3d-simulation-of-the-electroslag-rapid-remelting-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66855.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">299</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">929</span> Quality Improvement of the Sand Moulding Process in Foundries Using Six Sigma Technique</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cindy%20Sithole">Cindy Sithole</a>, <a href="https://publications.waset.org/abstracts/search?q=Didier%20Nyembwe"> Didier Nyembwe</a>, <a href="https://publications.waset.org/abstracts/search?q=Peter%20Olubambi"> Peter Olubambi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The sand casting process involves pattern making, mould making, metal pouring and shake out. Every step in the sand moulding process is very critical for production of good quality castings. However, waste generated during the sand moulding operation and lack of quality are matters that influences performance inefficiencies and lack of competitiveness in South African foundries. Defects produced from the sand moulding process are only visible in the final product (casting) which results in increased number of scrap, reduced sales and increases cost in the foundry. The purpose of this Research is to propose six sigma technique (DMAIC, Define, Measure, Analyze, Improve and Control) intervention in sand moulding foundries and to reduce variation caused by deficiencies in the sand moulding process in South African foundries. Its objective is to create sustainability and enhance productivity in the South African foundry industry. Six sigma is a data driven method to process improvement that aims to eliminate variation in business processes using statistical control methods .Six sigma focuses on business performance improvement through quality initiative using the seven basic tools of quality by Ishikawa. The objectives of six sigma are to eliminate features that affects productivity, profit and meeting customers’ demands. Six sigma has become one of the most important tools/techniques for attaining competitive advantage. Competitive advantage for sand casting foundries in South Africa means improved plant maintenance processes, improved product quality and proper utilization of resources especially scarce resources. Defects such as sand inclusion, Flashes and sand burn on were some of the defects that were identified as resulting from the sand moulding process inefficiencies using six sigma technique. The courses were we found to be wrong design of the mould due to the pattern used and poor ramming of the moulding sand in a foundry. Six sigma tools such as the voice of customer, the Fishbone, the voice of the process and process mapping were used to define the problem in the foundry and to outline the critical to quality elements. The SIPOC (Supplier Input Process Output Customer) Diagram was also employed to ensure that the material and process parameters were achieved to ensure quality improvement in a foundry. The process capability of the sand moulding process was measured to understand the current performance to enable improvement. The Expected results of this research are; reduced sand moulding process variation, increased productivity and competitive advantage. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=defects" title="defects">defects</a>, <a href="https://publications.waset.org/abstracts/search?q=foundries" title=" foundries"> foundries</a>, <a href="https://publications.waset.org/abstracts/search?q=quality%20improvement" title=" quality improvement"> quality improvement</a>, <a href="https://publications.waset.org/abstracts/search?q=sand%20moulding" title=" sand moulding"> sand moulding</a>, <a href="https://publications.waset.org/abstracts/search?q=six%20sigma%20%28DMAIC%29" title=" six sigma (DMAIC)"> six sigma (DMAIC)</a> </p> <a href="https://publications.waset.org/abstracts/84326/quality-improvement-of-the-sand-moulding-process-in-foundries-using-six-sigma-technique" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84326.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">199</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">928</span> Automatic Detection of Defects in Ornamental Limestone Using Wavelets</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maria%20C.%20Proen%C3%A7a">Maria C. Proença</a>, <a href="https://publications.waset.org/abstracts/search?q=Marco%20Aniceto"> Marco Aniceto</a>, <a href="https://publications.waset.org/abstracts/search?q=Pedro%20N.%20Santos"> Pedro N. Santos</a>, <a href="https://publications.waset.org/abstracts/search?q=Jos%C3%A9%20C.%20Freitas"> José C. Freitas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A methodology based on wavelets is proposed for the automatic location and delimitation of defects in limestone plates. Natural defects include dark colored spots, crystal zones trapped in the stone, areas of abnormal contrast colors, cracks or fracture lines, and fossil patterns. Although some of these may or may not be considered as defects according to the intended use of the plate, the goal is to pair each stone with a map of defects that can be overlaid on a computer display. These layers of defects constitute a database that will allow the preliminary selection of matching tiles of a particular variety, with specific dimensions, for a requirement of N square meters, to be done on a desktop computer rather than by a two-hour search in the storage park, with human operators manipulating stone plates as large as 3 m x 2 m, weighing about one ton. Accident risks and work times are reduced, with a consequent increase in productivity. The base for the algorithm is wavelet decomposition executed in two instances of the original image, to detect both hypotheses &ndash; dark and clear defects. The existence and/or size of these defects are the gauge to classify the quality grade of the stone products. The tuning of parameters that are possible in the framework of the wavelets corresponds to different levels of accuracy in the drawing of the contours and selection of the defects size, which allows for the use of the map of defects to cut a selected stone into tiles with minimum waste, according the dimension of defects allowed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=automatic%20detection" title="automatic detection">automatic detection</a>, <a href="https://publications.waset.org/abstracts/search?q=defects" title=" defects"> defects</a>, <a href="https://publications.waset.org/abstracts/search?q=fracture%20lines" title=" fracture lines"> fracture lines</a>, <a href="https://publications.waset.org/abstracts/search?q=wavelets" title=" wavelets"> wavelets</a> </p> <a href="https://publications.waset.org/abstracts/39096/automatic-detection-of-defects-in-ornamental-limestone-using-wavelets" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39096.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">254</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">927</span> Prediction of Solidification Behavior of Al Alloy in a Cube Mold Cavity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20P.%20Yadav">N. P. Yadav</a>, <a href="https://publications.waset.org/abstracts/search?q=Deepti%20Verma"> Deepti Verma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper focuses on the mathematical modeling for solidification of Al alloy in a cube mould cavity to study the solidification behavior of casting process. The parametric investigation of solidification process inside the cavity was performed by using computational solidification/melting model coupled with Volume of fluid (VOF) model. The implicit filling algorithm is used in this study to understand the overall process from the filling stage to solidification in a model metal casting process. The model is validated with past studied at same conditions. The solidification process are analyzed by including the effect of pouring velocity and temperature of liquid metal, effect of wall temperature as well natural convection from the wall and geometry of the cavity. These studies show the possibility of various defects during solidification process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=buoyancy%20driven%20flow" title="buoyancy driven flow">buoyancy driven flow</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20convection%20driven%20flow" title=" natural convection driven flow"> natural convection driven flow</a>, <a href="https://publications.waset.org/abstracts/search?q=residual%20flow" title=" residual flow"> residual flow</a>, <a href="https://publications.waset.org/abstracts/search?q=secondary%20flow" title=" secondary flow"> secondary flow</a>, <a href="https://publications.waset.org/abstracts/search?q=volume%20of%20fluid" title=" volume of fluid"> volume of fluid</a> </p> <a href="https://publications.waset.org/abstracts/41251/prediction-of-solidification-behavior-of-al-alloy-in-a-cube-mold-cavity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41251.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">425</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">926</span> Reduction of Defects Using Seven Quality Control Tools for Productivity Improvement at Automobile Company</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdul%20Sattar%20Jamali">Abdul Sattar Jamali</a>, <a href="https://publications.waset.org/abstracts/search?q=Imdad%20Ali%20Memon"> Imdad Ali Memon</a>, <a href="https://publications.waset.org/abstracts/search?q=Maqsood%20Ahmed%20Memon"> Maqsood Ahmed Memon</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Quality of production near to zero defects is an objective of every manufacturing and service organization. In order to maintain and improve the quality by reduction in defects, Statistical tools are being used by any organizations. There are many statistical tools are available to assess the quality. Keeping in view the importance of many statistical tools, traditional 7QC tools has been used in any manufacturing and automobile Industry. Therefore, the 7QC tools have been successfully applied at one of the Automobile Company Pakistan. Preliminary survey has been done for the implementation of 7QC tool in the assembly line of Automobile Industry. During preliminary survey two inspection points were decided to collect the data, which are Chassis line and trim line. The data for defects at Chassis line and trim line were collected for reduction in defects which ultimately improve productivity. Every 7QC tools has its benefits observed from the results. The flow charts developed for better understanding about inspection point for data collection. The check sheets developed for helps for defects data collection. Histogram represents the severity level of defects. Pareto charts show the cumulative effect of defects. The Cause and Effect diagrams developed for finding the root causes of each defects. Scatter diagram developed the relation of defects increasing or decreasing. The P-Control charts developed for showing out of control points beyond the limits for corrective actions. The successful implementation of 7QC tools at the inspection points at Automobile Industry concluded that the considerable amount of reduction on defects level, as in Chassis line from 132 defects to 13 defects. The total 90% defects were reduced in Chassis Line. In Trim line defects were reduced from 157 defects to 28 defects. The total 82% defects were reduced in Trim Line. As the Automobile Company exercised only few of the 7 QC tools, not fully getting the fruits by the application of 7 QC tools. Therefore, it is suggested the company may need to manage a mechanism for the application of 7 QC tools at every section. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=check%20sheet" title="check sheet">check sheet</a>, <a href="https://publications.waset.org/abstracts/search?q=cause%20and%20effect%20diagram" title=" cause and effect diagram"> cause and effect diagram</a>, <a href="https://publications.waset.org/abstracts/search?q=control%20chart" title=" control chart"> control chart</a>, <a href="https://publications.waset.org/abstracts/search?q=histogram" title=" histogram"> histogram</a> </p> <a href="https://publications.waset.org/abstracts/54358/reduction-of-defects-using-seven-quality-control-tools-for-productivity-improvement-at-automobile-company" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54358.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">335</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">925</span> Investment Casting Conditions with Tourmaline In-Situ</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kageeporn%20Wongpreedee">Kageeporn Wongpreedee</a>, <a href="https://publications.waset.org/abstracts/search?q=Bongkot%20Phichaikamjornwut"> Bongkot Phichaikamjornwut</a>, <a href="https://publications.waset.org/abstracts/search?q=Duangkhae%20Bootkul"> Duangkhae Bootkul</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The technique of stone in place casting had been established in jewelry production for two decades. However, the process were not widely used since it was limited to precious stones with high hardness and high stabililty at high temperature. This experiment were tested on tourmaline which is semi-precious gemstone having less hardness and less stability comparing to precious stones. The experiment were designed into two parts. The first part is to understand the phenomena of tourmaline under the heating conditions. Natural tourmaline stones were investigated and compared inclusions inside stones tested at temperature of 500 °C, 600 °C, and 700 °C. The second part is to cast the treated tourmaline with ion-implanation under the stones in place casting conditions. The results showed that stones were able to tolerate as much as at 700 °C showing the growths of inclusions inside the stones. The second part of this experiment were compared tourmaline with ion-implantation and natural tourmaline using on stones in place casting process at different stone setting types. The results showed that the cracks and inclustions of both treat and natural tourmaline with stones in place casting were propagate due to high stress of metal contractions. The stones with ion-implatation were more likely tolerate to cracks and inclusion propagations inside the stones. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=stone%20in%20place%20casting" title="stone in place casting">stone in place casting</a>, <a href="https://publications.waset.org/abstracts/search?q=tourmaline" title=" tourmaline"> tourmaline</a>, <a href="https://publications.waset.org/abstracts/search?q=ion%20implantation" title=" ion implantation"> ion implantation</a>, <a href="https://publications.waset.org/abstracts/search?q=metal%20contraction" title=" metal contraction"> metal contraction</a> </p> <a href="https://publications.waset.org/abstracts/57747/investment-casting-conditions-with-tourmaline-in-situ" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57747.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">222</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">924</span> Taguchi Approach for the Optimization of the Stitching Defects of Knitted Garments</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adel%20El-Hadidy">Adel El-Hadidy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> For any industry, the production and quality management or wastages reductions have major impingement on overall factory economy. This work discusses the quality improvement of garment industry by applying Pareto analysis, cause and effect diagram and Taguchi experimental design. The main purpose of the work is to reduce the stitching defects, which will also minimize the rejection and reworks rate. Application of Pareto chart, fish bone diagram and Process Sigma Level/and or Performance Level tools helps solving those problems on priority basis. Among all, only sewing, defects are responsible form 69.3% to 97.3 % of total defects. Process Sigma level has been improved from 0.79 to 1.3 and performance rate improved, from F to D level. The results showed that the new set of sewing parameters was superior to the original one. It can be seen that fabric size has the largest effect on the sewing defects and that needle size has the smallest effect on the stitching defects. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=garment" title="garment">garment</a>, <a href="https://publications.waset.org/abstracts/search?q=sewing%20defects" title=" sewing defects"> sewing defects</a>, <a href="https://publications.waset.org/abstracts/search?q=cost%20of%20rework" title=" cost of rework"> cost of rework</a>, <a href="https://publications.waset.org/abstracts/search?q=DMAIC" title=" DMAIC"> DMAIC</a>, <a href="https://publications.waset.org/abstracts/search?q=sigma%20level" title=" sigma level"> sigma level</a>, <a href="https://publications.waset.org/abstracts/search?q=cause%20and%20effect%20diagram" title=" cause and effect diagram"> cause and effect diagram</a>, <a href="https://publications.waset.org/abstracts/search?q=Pareto%20analysis" title=" Pareto analysis"> Pareto analysis</a> </p> <a href="https://publications.waset.org/abstracts/95883/taguchi-approach-for-the-optimization-of-the-stitching-defects-of-knitted-garments" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/95883.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">173</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">923</span> The Effect of Increase in Aluminium Content on Fluidity of ZA Alloys Processed by Centrifugal Casting</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20N.%20Jyothi">P. N. Jyothi</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Shailesh%20Rao"> A. Shailesh Rao</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20C.%20Jagath"> M. C. Jagath</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Channakeshavalu"> K. Channakeshavalu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Uses of ZA alloys as bearing material have been increased due to their superior mechanical properties, wear characteristics and tribological properties. Among ZA alloys, ZA 27 alloy has higher strength, low density with excellent bearing and wear characteristics. From the past research work, it is observed that in continuous casting as Al content increases, the fluidity also increases. In present work, ZA 8, ZA 12 and ZA 27 alloys have been processed through centrifugal casting process at 600 rotational speed of the mould. Uniform full cylinder is casted with ZA 8 alloy. For ZA 12 and ZA 27 alloys where the Al content is higher, cast tubes were not complete and uniform. The reason is Al may be acting as a refiner and reduce the melt flow in the rotating mould. This is mainly due to macro-segregation of Al, which has occurred due to difference in densities of Al and Zn. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=centrifugal%20casting" title="centrifugal casting">centrifugal casting</a>, <a href="https://publications.waset.org/abstracts/search?q=metal%20flow" title=" metal flow"> metal flow</a>, <a href="https://publications.waset.org/abstracts/search?q=characterization" title=" characterization"> characterization</a>, <a href="https://publications.waset.org/abstracts/search?q=systems%20engineering" title=" systems engineering"> systems engineering</a> </p> <a href="https://publications.waset.org/abstracts/4057/the-effect-of-increase-in-aluminium-content-on-fluidity-of-za-alloys-processed-by-centrifugal-casting" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4057.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">333</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">922</span> Deviations and Defects of the Sub-Task’s Requirements in Construction Projects</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdullah%20Almusharraf">Abdullah Almusharraf</a>, <a href="https://publications.waset.org/abstracts/search?q=Andrew%20Whyte"> Andrew Whyte</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The sub-task pattern in terms of the deviations and defects should be identified and understand in order to improve the quality practices in construction projects. Therefore, the sub-task susceptibility to exposure to deviations and defects have been evaluated and classified via six classifications that have proposed in this study. 34 case studies on specific sub-task (from compression member in construction concrete structure) have been collected from seven construction projects in order to examined study’s classifications. The study revealed that the sub-task has high sensitive to deviation where (91%) of the cases recorded as deviations, however, only (19%) of cases recorded as defects. Another findings were that the actual work during the execution process has high source of deviation for this sub-task (74%) while only (26%) of the deviation source was due to both design documentations with the actual work. These findings significantly imply that it could be used the study’s classifications to determine the pattern of each sub-task and develop the proactive actions to overcome issues of the sub-task deviations and defects. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sub-tasks" title="sub-tasks">sub-tasks</a>, <a href="https://publications.waset.org/abstracts/search?q=deviations" title=" deviations"> deviations</a>, <a href="https://publications.waset.org/abstracts/search?q=defects" title=" defects"> defects</a>, <a href="https://publications.waset.org/abstracts/search?q=quality" title=" quality"> quality</a>, <a href="https://publications.waset.org/abstracts/search?q=construction%20projects" title=" construction projects"> construction projects</a> </p> <a href="https://publications.waset.org/abstracts/17500/deviations-and-defects-of-the-sub-tasks-requirements-in-construction-projects" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17500.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">449</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">921</span> Accuracy of a 3D-Printed Polymer Model for Producing Casting Mold</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ariangelo%20Hauer%20Dias%20Filho">Ariangelo Hauer Dias Filho</a>, <a href="https://publications.waset.org/abstracts/search?q=Gustavo%20Antoni%C3%A1comi%20de%20Carvalho"> Gustavo Antoniácomi de Carvalho</a>, <a href="https://publications.waset.org/abstracts/search?q=Benjamim%20de%20Melo%20Carvalho"> Benjamim de Melo Carvalho</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The work´s purpose was to evaluate the possibility of manufacturing casting tools utilizing Fused Filament Fabrication, a 3D printing technique, without any post-processing on the printed part. Taguchi Orthogonal array was used to evaluate the influence of extrusion temperature, bed temperature, layer height, and infill on the dimensional accuracy of a 3D-Printed Polymer Model. A Zeiss T-SCAN CS 3D Scanner was used for dimensional evaluation of the printed parts within the limit of ±0,2 mm. The mold capabilities were tested with the printed model to check how it would interact with the green sand. With little adjustments in the 3D model, it was possible to produce rapid tools without the need for post-processing for iron casting. The results are important for reducing time and cost in the development of such tools. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=additive%20manufacturing" title="additive manufacturing">additive manufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=Taguchi%20method" title=" Taguchi method"> Taguchi method</a>, <a href="https://publications.waset.org/abstracts/search?q=rapid%20tooling" title=" rapid tooling"> rapid tooling</a>, <a href="https://publications.waset.org/abstracts/search?q=fused%20filament%20fabrication" title=" fused filament fabrication"> fused filament fabrication</a>, <a href="https://publications.waset.org/abstracts/search?q=casting%20mold" title=" casting mold"> casting mold</a> </p> <a href="https://publications.waset.org/abstracts/152307/accuracy-of-a-3d-printed-polymer-model-for-producing-casting-mold" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152307.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">152</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">920</span> Mesoscopic Defects of Forming and Induced Properties on the Impact of a Composite Glass/Polyester</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bachir%20Kacimi">Bachir Kacimi</a>, <a href="https://publications.waset.org/abstracts/search?q=Fatiha%20Teklal"> Fatiha Teklal</a>, <a href="https://publications.waset.org/abstracts/search?q=Arezki%20Djebbar"> Arezki Djebbar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Forming processes induce residual deformations on the reinforcement and sometimes lead to mesoscopic defects, which are more recurrent than macroscopic defects during the manufacture of complex structural parts. This study deals with the influence of the fabric shear and buckles defects, which appear during draping processes of composite, on the impact behavior of a glass fiber reinforced polymer. To achieve this aim, we produced several specimens with different amplitude of deformations (shear) and defects on the fabric using a specific bench. The specimens were manufactured using the contact molding and tested with several impact energies. The results and measurements made on tested specimens were compared to those of the healthy material. The results showed that the buckle defects have a negative effect on elastic parameters and revealed a larger damage with significant out-of-plane mode relatively to the healthy composite material. This effect is the consequence of a local fiber impoverishment and a disorganization of the fibrous network, with a reorientation of the fibers following the out-of-plane buckling of the yarns, in the area where the defects are located. For the material with calibrated shear of the reinforcement, the increased local fiber rate due to the shear deformations and the contribution to stiffness of the transverse yarns led to an increase in mechanical properties. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Defects" title="Defects">Defects</a>, <a href="https://publications.waset.org/abstracts/search?q=Forming" title=" Forming"> Forming</a>, <a href="https://publications.waset.org/abstracts/search?q=Impact" title=" Impact"> Impact</a>, <a href="https://publications.waset.org/abstracts/search?q=Induced%20properties" title=" Induced properties"> Induced properties</a>, <a href="https://publications.waset.org/abstracts/search?q=Textiles" title=" Textiles"> Textiles</a> </p> <a href="https://publications.waset.org/abstracts/116162/mesoscopic-defects-of-forming-and-induced-properties-on-the-impact-of-a-composite-glasspolyester" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/116162.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">146</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">919</span> Porosities Comparison between Production and Simulation in Motorcycle Fuel Caps of Aluminum High Pressure Die Casting</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20Meethum">P. Meethum</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Suvanjumrat"> C. Suvanjumrat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Many aluminum motorcycle parts produced by a high pressure die casting. Some parts such as fuel caps were a thin and complex shape. This part risked for porosities and blisters on surface if it only depended on an experience of mold makers for mold design. This research attempted to use CAST-DESIGNER software simulated the high pressure die casting process with the same process parameters of a motorcycle fuel cap production. The simulated results were compared with fuel cap products and expressed the same porosity and blister locations on cap surface. An average of absolute difference of simulated results was obtained 0.094 mm when compared the simulated porosity and blister defect sizes on the fuel cap surfaces with the experimental micro photography. This comparison confirmed an accuracy of software and will use the setting parameters to improve fuel cap molds in the further work. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aluminum" title="aluminum">aluminum</a>, <a href="https://publications.waset.org/abstracts/search?q=die%20casting" title=" die casting"> die casting</a>, <a href="https://publications.waset.org/abstracts/search?q=fuel%20cap" title=" fuel cap"> fuel cap</a>, <a href="https://publications.waset.org/abstracts/search?q=motorcycle" title=" motorcycle"> motorcycle</a> </p> <a href="https://publications.waset.org/abstracts/16969/porosities-comparison-between-production-and-simulation-in-motorcycle-fuel-caps-of-aluminum-high-pressure-die-casting" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16969.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">370</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">918</span> A Metallography Study of Secondary A226 Aluminium Alloy Used in Automotive Industries </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lenka%20Hurtalov%C3%A1">Lenka Hurtalová</a>, <a href="https://publications.waset.org/abstracts/search?q=Eva%20Tillov%C3%A1"> Eva Tillová</a>, <a href="https://publications.waset.org/abstracts/search?q=M%C3%A1ria%20Chalupov%C3%A1"> Mária Chalupová</a>, <a href="https://publications.waset.org/abstracts/search?q=Juraj%20Belan"> Juraj Belan</a>, <a href="https://publications.waset.org/abstracts/search?q=Milan%20Uhr%C3%AD%C4%8Dik"> Milan Uhríčik</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The secondary alloy A226 is used for many automotive casting produced by mould casting and high pressure die-casting. This alloy has excellent castability, good mechanical properties and cost-effectiveness. Production of primary aluminium alloys belong to heavy source fouling of life environs. The European Union calls for the emission reduction and reduction in energy consumption, therefore, increase production of recycled (secondary) aluminium cast alloys. The contribution is deal with influence of recycling on the quality of the casting made from A226 in automotive industry. The properties of the casting made from secondary aluminium alloys were compared with the required properties of primary aluminium alloys. The effect of recycling on microstructure was observed using combination different analytical techniques (light microscopy upon black-white etching, scanning electron microscopy-SEM upon deep etching and energy dispersive X-ray analysis-EDX). These techniques were used for the identification of the various structure parameters, which was used to compare secondary alloy microstructure with primary alloy microstructure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=A226%20secondary%20aluminium%20alloy" title="A226 secondary aluminium alloy">A226 secondary aluminium alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20etching" title=" deep etching"> deep etching</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=recycling%20foundry%20aluminium%20alloy" title=" recycling foundry aluminium alloy"> recycling foundry aluminium alloy</a> </p> <a href="https://publications.waset.org/abstracts/20090/a-metallography-study-of-secondary-a226-aluminium-alloy-used-in-automotive-industries" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20090.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">547</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">917</span> In-Situ Defect Detection of Additive Manufactured Parts</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aswin%20T.%20M.">Aswin T. M.</a>, <a href="https://publications.waset.org/abstracts/search?q=Dhinnesh%20S."> Dhinnesh S.</a>, <a href="https://publications.waset.org/abstracts/search?q=Guru%20Prasath%20K.%20S."> Guru Prasath K. S.</a>, <a href="https://publications.waset.org/abstracts/search?q=Hasina%20M."> Hasina M.</a>, <a href="https://publications.waset.org/abstracts/search?q=Rajamani%20R."> Rajamani R.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fused Deposition Modelling (FDM), a widely used Additive Manufacturing (AM) process, often faces challenges in the quality of the part, such as the formation of defects. The most common defects in FDM are stringing, dimensional inaccuracy, layer shifting, warping, and poor bridging. This work presents the summary of research work carried out in the field of AM, optimization of 3D printing process parameters, and techniques used for identifying defects. Also, an attempt is made to integrate machine vision with a deep learning model to continuously monitor the printing process. The system captures and analyzes layer-by-layer data of the printed part, detecting defects such as stringing, warping, and dimensional inaccuracy. FDM is extensively utilized across various sectors, including aerospace, automotive, healthcare, and consumer goods. In industries such as aerospace, where high precision and reliability are paramount, even minor defects can lead to component failures that compromise safety and performance. This highlights the critical need for real-time identification of defects produced during the printing process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=FDM" title="FDM">FDM</a>, <a href="https://publications.waset.org/abstracts/search?q=defect%20detection" title=" defect detection"> defect detection</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20vision" title=" machine vision"> machine vision</a>, <a href="https://publications.waset.org/abstracts/search?q=CNN" title=" CNN"> CNN</a> </p> <a href="https://publications.waset.org/abstracts/196649/in-situ-defect-detection-of-additive-manufactured-parts" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/196649.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">20</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">916</span> Ab-Initio Study of Native Defects in SnO Under Strain</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Albar">A. Albar</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20B.%20Granato"> D. B. Granato</a>, <a href="https://publications.waset.org/abstracts/search?q=U.%20Schwingenschlogl"> U. Schwingenschlogl</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Tin monoxide (SnO) has promising properties to be applied as a p-type semiconductor in transparent electronics. To this end, it is necessary to understand the behavior of defects in order to control them. We use density functional theory to study native defects of SnO under tensile and compressive strain. We show that Sn vacancies are more stable under tension and less stable under compression, irrespectively of the charge state. In contrast, O vacancies behave differently for different charge. It turns out that the most stable defect under compression is the +1 charged O vacancy in a Sn-rich environment and the charge neutral O interstitial in an O-rich environment. Therefore, compression can be used to transform SnO from an n-type into un-doped semiconductor. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=native%20defects" title="native defects">native defects</a>, <a href="https://publications.waset.org/abstracts/search?q=ab-initio" title=" ab-initio"> ab-initio</a>, <a href="https://publications.waset.org/abstracts/search?q=point%20defect" title=" point defect"> point defect</a>, <a href="https://publications.waset.org/abstracts/search?q=tension" title=" tension"> tension</a>, <a href="https://publications.waset.org/abstracts/search?q=compression" title=" compression"> compression</a>, <a href="https://publications.waset.org/abstracts/search?q=semiconductor" title=" semiconductor"> semiconductor</a> </p> <a href="https://publications.waset.org/abstracts/1948/ab-initio-study-of-native-defects-in-sno-under-strain" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1948.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">402</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">915</span> Development of Al-5%Cu/Si₃N₄, B₄C or BN Composites for Piston Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Lotfy">Ahmed Lotfy</a>, <a href="https://publications.waset.org/abstracts/search?q=Andrey%20V.%20Pozdniakov"> Andrey V. Pozdniakov</a>, <a href="https://publications.waset.org/abstracts/search?q=Vadim%20C.%20Zolotorevskiy"> Vadim C. Zolotorevskiy </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of this research is to provide a competitive alternative to aluminum silicon alloys used in automotive applications. This alternative was created by developing three types of composites Al-5%Cu- (B₄C, BN or Si₃N₄) particulates with a low coefficient of thermal expansion. Stir casting was used to synthesis composites containing 2, 5 and 7 wt. % of B₄C, Si₃N₄ and 2, 5 of BN followed by squeeze casting. The squeeze casting process decreased the porosity of the final composites. The composites exhibited a fairly uniform particle distribution throughout the matrix alloy. The microstructure and XRD results of the composites suggested a significant reaction occurred at the interface between the particles and alloy. Increasing the aging temperature from 200 to 250°C decreased the hardness values of the matrix and the composites and decreased the time required to reach the peak. Turner model was used to calculate the expected values of thermal expansion coefficient CTE of matrix and its composites. Deviations between calculated and experimental values of CTE were not exceeded 10%. Al-5%Cu-B₄C composites experimentally showed the lowest values of CTE (17-19)·10-6 °С-1 and (19-20) ·10-6 °С-1 in the temperature range 20-100 °С and 20-200 °С respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aluminum%20matrix%20composites" title="aluminum matrix composites">aluminum matrix composites</a>, <a href="https://publications.waset.org/abstracts/search?q=coefficient%20of%20thermal%20expansion" title=" coefficient of thermal expansion"> coefficient of thermal expansion</a>, <a href="https://publications.waset.org/abstracts/search?q=X-ray%20diffraction" title=" X-ray diffraction"> X-ray diffraction</a>, <a href="https://publications.waset.org/abstracts/search?q=squeeze%20casting" title=" squeeze casting"> squeeze casting</a>, <a href="https://publications.waset.org/abstracts/search?q=electron%20microscopy" title=" electron microscopy"> electron microscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=" title=" "> </a> </p> <a href="https://publications.waset.org/abstracts/67084/development-of-al-5cusi3n4-b4c-or-bn-composites-for-piston-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67084.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">413</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">914</span> Statistical Characteristics of Distribution of Radiation-Induced Defects under Random Generation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20Selyshchev">P. Selyshchev</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We consider fluctuations of defects density taking into account their interaction. Stochastic field of displacement generation rate gives random defect distribution. We determinate statistical characteristics (mean and dispersion) of random field of point defect distribution as function of defect generation parameters, temperature and properties of irradiated crystal. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=irradiation" title="irradiation">irradiation</a>, <a href="https://publications.waset.org/abstracts/search?q=primary%20defects" title=" primary defects"> primary defects</a>, <a href="https://publications.waset.org/abstracts/search?q=interaction" title=" interaction"> interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=fluctuations" title=" fluctuations"> fluctuations</a> </p> <a href="https://publications.waset.org/abstracts/10105/statistical-characteristics-of-distribution-of-radiation-induced-defects-under-random-generation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10105.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">351</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">913</span> Performance Evaluation of Sand Casting Manufacturing Plant with WITNESS</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aniruddha%20Joshi">Aniruddha Joshi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper discusses a simulation study of automated sand casting production system. Therefore, the first aims of this study is development of automated sand casting process model and analyze this model with a simulation software Witness. Production methodology aims to improve overall productivity through elimination of wastes and that leads to improve quality. Integration of automation with Simulation is beneficial to identify the obstacles in implementation and to take appropriate options to implement successfully. For this integration, there are different Simulation Software’s. To study this integration, with the help of “WITNESS” Simulation Software the model is created. This model is based on literature review. The input parameters are Setup Time, Number of machines, cycle time and output parameter is number of castings, avg, and time and percentage usage of machines. Obtained results are used for Statistical Analysis. This analysis concludes the optimal solution to get maximum output. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=automated%20sand%20casting%20production%20system" title="automated sand casting production system">automated sand casting production system</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=WITNESS%20software" title=" WITNESS software"> WITNESS software</a>, <a href="https://publications.waset.org/abstracts/search?q=performance%20evaluation" title=" performance evaluation"> performance evaluation</a> </p> <a href="https://publications.waset.org/abstracts/18959/performance-evaluation-of-sand-casting-manufacturing-plant-with-witness" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18959.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">792</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">912</span> Towards the Modeling of Lost Core Viability in High-Pressure Die Casting: A Fluid-Structure Interaction Model with 2-Phase Flow Fluid Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sebastian%20Kohlst%C3%A4dt">Sebastian Kohlstädt</a>, <a href="https://publications.waset.org/abstracts/search?q=Michael%20%20Vynnycky"> Michael Vynnycky</a>, <a href="https://publications.waset.org/abstracts/search?q=Stephan%20Goeke"> Stephan Goeke</a>, <a href="https://publications.waset.org/abstracts/search?q=Jan%20J%C3%A4ckel"> Jan Jäckel</a>, <a href="https://publications.waset.org/abstracts/search?q=Andreas%20Gebauer-Teichmann"> Andreas Gebauer-Teichmann</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper summarizes the progress in the latest computational fluid dynamics research towards the modeling in of lost core viability in high-pressure die casting. High-pressure die casting is a process that is widely employed in the automotive and neighboring industries due to its advantages in casting quality and cost efficiency. The degrees of freedom are however somewhat limited as it has been so far difficult to use lost cores in the process. This is right now changing and the deployment of lost cores is considered a future growth potential for high-pressure die casting companies. The use of this technology itself is difficult though. The strength of the core material, as chiefly salt is used, is limited and experiments have shown that the cores will not hold under all circumstances and process designs. For this purpose, the publicly available CFD library foam-extend (OpenFOAM) is used, and two additional fluid models for incompressible and compressible two-phase flow are implemented as fluid solver models into the FSI library. For this purpose, the volume-of-fluid (VOF) methodology is used. The necessity for the fluid-structure interaction (FSI) approach is shown by a simple CFD model geometry. The model is benchmarked against analytical models and experimental data. Sufficient agreement is found with the analytical models and good agreement with the experimental data. An outlook on future developments concludes the paper. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CFD" title="CFD">CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=fluid-structure%20interaction" title=" fluid-structure interaction"> fluid-structure interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=high-pressure%20die%20casting" title=" high-pressure die casting"> high-pressure die casting</a>, <a href="https://publications.waset.org/abstracts/search?q=multiphase%20flow" title=" multiphase flow"> multiphase flow</a> </p> <a href="https://publications.waset.org/abstracts/78928/towards-the-modeling-of-lost-core-viability-in-high-pressure-die-casting-a-fluid-structure-interaction-model-with-2-phase-flow-fluid-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78928.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">336</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">911</span> Effect of Low Level Laser on Healing of Congenital Septal Defects on Dogs</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hady%20Atef">Hady Atef</a>, <a href="https://publications.waset.org/abstracts/search?q=Zinab%20Helmy"> Zinab Helmy</a>, <a href="https://publications.waset.org/abstracts/search?q=Heba%20Abdeen"> Heba Abdeen</a>, <a href="https://publications.waset.org/abstracts/search?q=Mostafa%20Fadel"> Mostafa Fadel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background and purpose: After the success of the first trials of this experiment which were done on rabbits, a new study were conducted on dogs to ensure the past results; in a step forward to use low-level LASER therapy in the treatment of congenital septal defects in infants. The aim of this study was to investigate the effect of low-level LASER irradiation on congenital septal defects in dogs. Subjects and Methodology: six male dogs who have congenital septal defects in their hearts -with age ranged 6-10 months- enrolled in this study for one and half months. They were assigned into two groups: Group (A): The study group consisted of 3 canine hearts who received routine animal care associated with LASER irradiation. Group (B): The control group consisted of 3 canine hearts who received only routine animal care. Sizes of the septal defects were measured for both groups at the beginning and after the end of the study. Results: There was a significant decrease in the size of the diameter of the congenital septal defect with the study group (percentage of improvement was 42.19%) when compared with control group. Conclusion: It was concluded that low-level LASER therapy can be considered as a promising therapy for congenital heart defects in animals and to be examined on children with similar congenital lesions after then. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=laser" title="laser">laser</a>, <a href="https://publications.waset.org/abstracts/search?q=congenital%20septal%20defects" title=" congenital septal defects"> congenital septal defects</a>, <a href="https://publications.waset.org/abstracts/search?q=dogs" title=" dogs"> dogs</a>, <a href="https://publications.waset.org/abstracts/search?q=infants" title=" infants"> infants</a> </p> <a href="https://publications.waset.org/abstracts/51648/effect-of-low-level-laser-on-healing-of-congenital-septal-defects-on-dogs" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51648.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">283</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">910</span> A High-Efficiency Compact Hybrid Cold Spray Additive Manufacturing System for Automatic Repair of Workpiece Surface Defects</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wenbo%20Li">Wenbo Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Yingchun%20Xie"> Yingchun Xie</a>, <a href="https://publications.waset.org/abstracts/search?q=Hao%20Wang"> Hao Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Jie%20Mao"> Jie Mao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Large equipment components are often subjected to corrosion or wear, resulting in the formation of various irregularly shaped defects in service. These defects may cause the equipment to become completely unusable or even result in catastrophic consequences. In particular, how to batch repair these parts efficiently and accurately is an urgent challenge. Cold spray, as a solid-state deposition process, has presented many advantages like avoiding oxidation and phase transition, retaining properties of raw material, spraying at a high deposition rate (up to 6000cm3/h), as well as spraying thermally sensitive materials and gradient materials. Therefore, cold spray is becoming a highly popular technology for the defects repair of components, enabling rapid repair of defects of all sizes, thin coatings (< 0.5mm), and thick coatings (> 1 cm). In this research, a high-efficiency compact hybrid cold spray system has been developed to realize satisfactory repair for arbitrarily shaped defects. An idea of standardizing the defects (i.e., machining the defects into standard geometric cavities) and then repairing them has been proposed. First, the defect is machined into a standard geometry cavity, then repaired, and finally, the redundant coating is removed again by the machining method. Different standardized angles, heat treatment temperatures and sandblasting sequences were applied to analyze the repaired effect of defects. The characterization of porosity, adhesive strength, and hardness was complemented by the analysis of microstructure evolutions. The system automates the repair of defects of various shapes and sizes, drastically reducing labor costs and improving repair efficiency. Experimental results showed that the developed hybrid cold spray system can be applied in the repair industry. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=additive%20manufacturing" title="additive manufacturing">additive manufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=cold%20spray" title=" cold spray"> cold spray</a>, <a href="https://publications.waset.org/abstracts/search?q=defects%20repair" title=" defects repair"> defects repair</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid" title=" hybrid"> hybrid</a> </p> <a href="https://publications.waset.org/abstracts/198909/a-high-efficiency-compact-hybrid-cold-spray-additive-manufacturing-system-for-automatic-repair-of-workpiece-surface-defects" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/198909.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=casting%20defects&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=casting%20defects&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=casting%20defects&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=casting%20defects&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=casting%20defects&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=casting%20defects&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=casting%20defects&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=casting%20defects&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=casting%20defects&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=casting%20defects&amp;page=31">31</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=casting%20defects&amp;page=32">32</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=casting%20defects&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2025 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10