CINXE.COM

The performance of artificial intelligence-driven technologies in diagnosing mental disorders: an umbrella review | npj Digital Medicine

<!DOCTYPE html> <html lang="en" class="grade-c"> <head> <title>The performance of artificial intelligence-driven technologies in diagnosing mental disorders: an umbrella review | npj Digital Medicine</title> <link rel="alternate" type="application/rss+xml" href="https://www.nature.com/npjdigitalmed.rss"/> <link rel="preconnect" href="https://cmp.nature.com" crossorigin> <meta http-equiv="X-UA-Compatible" content="IE=edge"> <meta name="applicable-device" content="pc,mobile"> <meta name="viewport" content="width=device-width,initial-scale=1.0,maximum-scale=5,user-scalable=yes"> <meta name="360-site-verification" content="5a2dc4ab3fcb9b0393241ffbbb490480" /> <script data-test="dataLayer"> window.dataLayer = [{"content":{"category":{"contentType":"review article","legacy":{"webtrendsPrimaryArticleType":"reviews","webtrendsSubjectTerms":"diseases;health-care;medical-research;psychiatric-disorders","webtrendsContentCategory":null,"webtrendsContentCollection":null,"webtrendsContentGroup":"npj Digital Medicine","webtrendsContentGroupType":null,"webtrendsContentSubGroup":"Review Article","status":null}},"article":{"doi":"10.1038/s41746-022-00631-8"},"attributes":{"cms":null,"deliveryPlatform":"oscar","copyright":{"open":true,"legacy":{"webtrendsLicenceType":"http://creativecommons.org/licenses/by/4.0/"}}},"contentInfo":{"authors":["Alaa Abd-alrazaq","Dari Alhuwail","Jens Schneider","Carla T. Toro","Arfan Ahmed","Mahmood Alzubaidi","Mohannad Alajlani","Mowafa Househ"],"publishedAt":1657152000,"publishedAtString":"2022-07-07","title":"The performance of artificial intelligence-driven technologies in diagnosing mental disorders: an umbrella review","legacy":null,"publishedAtTime":null,"documentType":"aplusplus","subjects":"Diseases,Health care,Medical research,Psychiatric disorders"},"journal":{"pcode":"npjdigitalmed","title":"npj digital medicine","volume":"5","issue":"1","id":41746,"publishingModel":"Open Access"},"authorization":{"status":true},"features":[{"name":"furtherReadingSection","present":true}],"collection":null},"page":{"category":{"pageType":"article"},"attributes":{"template":"mosaic","featureFlags":[{"name":"nature-onwards-journey","active":false}],"testGroup":null},"search":null},"privacy":{},"version":"1.0.0","product":null,"session":null,"user":null,"backHalfContent":true,"country":"SG","hasBody":true,"uneditedManuscript":false,"twitterId":["o3xnx","o43y9","o3ef7"],"baiduId":"d38bce82bcb44717ccc29a90c4b781ea","japan":false}]; window.dataLayer.push({ ga4MeasurementId: 'G-ERRNTNZ807', ga360TrackingId: 'UA-71668177-1', twitterId: ['3xnx', 'o43y9', 'o3ef7'], baiduId: 'd38bce82bcb44717ccc29a90c4b781ea', ga4ServerUrl: 'https://collect.nature.com', imprint: 'nature' }); </script> <script> (function(w, d) { w.config = w.config || {}; w.config.mustardcut = false; if (w.matchMedia && w.matchMedia('only print, only all and (prefers-color-scheme: no-preference), only all and (prefers-color-scheme: light), only all and (prefers-color-scheme: dark)').matches) { w.config.mustardcut = true; d.classList.add('js'); d.classList.remove('grade-c'); d.classList.remove('no-js'); } })(window, document.documentElement); </script> <style>@media only print, only all and (prefers-color-scheme: no-preference), only all and (prefers-color-scheme: light), only all and (prefers-color-scheme: dark) { .c-card--major .c-card__title,.u-h1,.u-h2,h1,h2{font-family:-apple-system,BlinkMacSystemFont,Segoe UI,Roboto,Oxygen-Sans,Ubuntu,Cantarell,Helvetica Neue,sans-serif}.c-article-editorial-summary__container .c-article-editorial-summary__article-title,.c-card__title,.c-reading-companion__figure-title,.u-h3,.u-h4,h3,h4,h5,h6{letter-spacing:-.0117156rem}html{text-size-adjust:100%;box-sizing:border-box;font-size:100%;height:100%;line-height:1.15;overflow-y:scroll}body{background:#eee;color:#222;font-family:-apple-system,BlinkMacSystemFont,Segoe UI,Roboto,Oxygen-Sans,Ubuntu,Cantarell,Helvetica Neue,sans-serif;font-size:1.125rem;line-height:1.76;margin:0;min-height:100%}details,main{display:block}h1{font-size:2em;margin:.67em 0}a,sup{vertical-align:baseline}a{background-color:transparent;color:#069;overflow-wrap:break-word;text-decoration:underline;text-decoration-skip-ink:auto;word-break:break-word}b{font-weight:bolder}sup{font-size:75%;line-height:0;position:relative;top:-.5em}img{border:0;height:auto;max-width:100%;vertical-align:middle}button,input,select{font-family:inherit;font-size:100%;line-height:1.15;margin:0}button,input{overflow:visible}button,select{text-transform:none}[type=submit],button{-webkit-appearance:button}[type=checkbox]{box-sizing:border-box;padding:0}summary{display:list-item}[hidden]{display:none}.c-card--major .c-card__title,.u-h1,.u-h2,button,h1,h2{font-family:-apple-system,BlinkMacSystemFont,Segoe UI,Roboto,Oxygen-Sans,Ubuntu,Cantarell,Helvetica Neue,sans-serif}button{border-radius:0;cursor:pointer}.c-card--major .c-card__title,.u-h1,.u-h2,h1,h2{font-weight:700}h1{font-size:2rem;letter-spacing:-.0390625rem;line-height:2.25rem}.c-card--major .c-card__title,.u-h2,h2{font-size:1.5rem;letter-spacing:-.0117156rem;line-height:1.6rem}.u-h3{letter-spacing:-.0117156rem}.c-article-editorial-summary__container .c-article-editorial-summary__article-title,.c-card__title,.c-reading-companion__figure-title,.u-h3,.u-h4,h3,h4,h5,h6{font-family:-apple-system,BlinkMacSystemFont,Segoe UI,Roboto,Oxygen-Sans,Ubuntu,Cantarell,Helvetica Neue,sans-serif;font-size:1.25rem;font-weight:700;line-height:1.4rem}.c-article-editorial-summary__container .c-article-editorial-summary__article-title,.c-reading-companion__figure-title,.u-h4,h3,h4,h5,h6{letter-spacing:-.0117156rem}.c-reading-companion__figure-title,.u-h4,h4{font-size:1.125rem}button:focus{outline:3px solid #fece3e;will-change:transform}input+label{padding-left:.5em}nav ol,nav ul{list-style:none none}p:empty{display:none}.sans-serif{font-family:-apple-system,BlinkMacSystemFont,Segoe UI,Roboto,Oxygen-Sans,Ubuntu,Cantarell,Helvetica Neue,sans-serif}.article-page{background:#fff}.c-article-header{font-family:-apple-system,BlinkMacSystemFont,Segoe UI,Roboto,Oxygen-Sans,Ubuntu,Cantarell,Helvetica Neue,sans-serif;margin-bottom:40px}.c-article-identifiers{color:#6f6f6f;display:flex;flex-wrap:wrap;font-size:1rem;line-height:1.3;list-style:none;margin:0 0 8px;padding:0}.c-article-identifiers__item{border-right:1px solid #6f6f6f;list-style:none;margin-right:8px;padding-right:8px}.c-article-identifiers__item:last-child{border-right:0;margin-right:0;padding-right:0}.c-article-title{font-size:1.5rem;line-height:1.25;margin:0 0 16px}@media only screen and (min-width:768px){.c-article-title{font-size:1.875rem;line-height:1.2}}.c-article-author-list{display:inline;font-size:1rem;list-style:none;margin:0 8px 0 0;padding:0;width:100%}.c-article-author-list__item{display:inline;padding-right:0}.c-article-author-list svg{margin-left:4px}.c-article-author-list__show-more{display:none;margin-right:4px}.c-article-author-list__button,.js .c-article-author-list__item--hide,.js .c-article-author-list__show-more{display:none}.js .c-article-author-list--long .c-article-author-list__show-more,.js .c-article-author-list--long+.c-article-author-list__button{display:inline}@media only screen and (max-width:539px){.js .c-article-author-list__item--hide-small-screen{display:none}.js .c-article-author-list--short .c-article-author-list__show-more,.js .c-article-author-list--short+.c-article-author-list__button{display:inline}}#uptodate-client,.js .c-article-author-list--expanded .c-article-author-list__show-more{display:none!important}.js .c-article-author-list--expanded .c-article-author-list__item--hide-small-screen{display:inline!important}.c-article-author-list__button,.c-button-author-list{background:#ebf1f5;border:4px solid #ebf1f5;border-radius:20px;color:#666;font-size:.875rem;line-height:1.4;padding:2px 11px 2px 8px;text-decoration:none}.c-article-author-list__button svg,.c-button-author-list svg{margin:1px 4px 0 0}.c-article-author-list__button:hover,.c-button-author-list:hover{background:#069;border-color:transparent;color:#fff}.c-article-info-details{font-size:1rem;margin-bottom:8px;margin-top:16px}.c-article-info-details__cite-as{border-left:1px solid #6f6f6f;margin-left:8px;padding-left:8px}.c-article-metrics-bar{display:flex;flex-wrap:wrap;font-size:1rem;line-height:1.3}.c-article-metrics-bar__wrapper{margin:16px 0}.c-article-metrics-bar__item{align-items:baseline;border-right:1px solid #6f6f6f;margin-right:8px}.c-article-metrics-bar__item:last-child{border-right:0}.c-article-metrics-bar__count{font-weight:700;margin:0}.c-article-metrics-bar__label{color:#626262;font-style:normal;font-weight:400;margin:0 10px 0 5px}.c-article-metrics-bar__details{margin:0}.c-article-main-column{font-family:-apple-system,BlinkMacSystemFont,Segoe UI,Roboto,Oxygen-Sans,Ubuntu,Cantarell,Helvetica Neue,sans-serif;margin-right:8.6%;width:60.2%}@media only screen and (max-width:1023px){.c-article-main-column{margin-right:0;width:100%}}.c-article-extras{float:left;font-family:-apple-system,BlinkMacSystemFont,Segoe UI,Roboto,Oxygen-Sans,Ubuntu,Cantarell,Helvetica Neue,sans-serif;width:31.2%}@media only screen and (max-width:1023px){.c-article-extras{display:none}}.c-article-associated-content__container .c-article-associated-content__title,.c-article-section__title{border-bottom:2px solid #d5d5d5;font-size:1.25rem;margin:0;padding-bottom:8px}@media only screen and (min-width:768px){.c-article-associated-content__container .c-article-associated-content__title,.c-article-section__title{font-size:1.5rem;line-height:1.24}}.c-article-associated-content__container .c-article-associated-content__title{margin-bottom:8px}.c-article-body p{margin-bottom:24px;margin-top:0}.c-article-section{clear:both}.c-article-section__content{margin-bottom:40px;padding-top:8px}@media only screen and (max-width:1023px){.c-article-section__content{padding-left:0}}.c-article-authors-search{margin-bottom:24px;margin-top:0}.c-article-authors-search__item,.c-article-authors-search__title{font-family:-apple-system,BlinkMacSystemFont,Segoe UI,Roboto,Oxygen-Sans,Ubuntu,Cantarell,Helvetica Neue,sans-serif}.c-article-authors-search__title{color:#626262;font-size:1.05rem;font-weight:700;margin:0;padding:0}.c-article-authors-search__item{font-size:1rem}.c-article-authors-search__text{margin:0}.c-article-license__badge,c-card__section{margin-top:8px}.c-code-block{border:1px solid #eee;font-family:monospace;margin:0 0 24px;padding:20px}.c-code-block__heading{font-weight:400;margin-bottom:16px}.c-code-block__line{display:block;overflow-wrap:break-word;white-space:pre-wrap}.c-article-share-box__no-sharelink-info{font-size:.813rem;font-weight:700;margin-bottom:24px;padding-top:4px}.c-article-share-box__only-read-input{border:1px solid #d5d5d5;box-sizing:content-box;display:inline-block;font-size:.875rem;font-weight:700;height:24px;margin-bottom:8px;padding:8px 10px}.c-article-share-box__button--link-like{background-color:transparent;border:0;color:#069;cursor:pointer;font-size:.875rem;margin-bottom:8px;margin-left:10px}.c-article-editorial-summary__container{font-family:-apple-system,BlinkMacSystemFont,Segoe UI,Roboto,Oxygen-Sans,Ubuntu,Cantarell,Helvetica Neue,sans-serif;font-size:1rem}.c-article-editorial-summary__container .c-article-editorial-summary__content p:last-child{margin-bottom:0}.c-article-editorial-summary__container .c-article-editorial-summary__content--less{max-height:9.5rem;overflow:hidden}.c-article-editorial-summary__container .c-article-editorial-summary__button{background-color:#fff;border:0;color:#069;font-size:.875rem;margin-bottom:16px}.c-article-editorial-summary__container .c-article-editorial-summary__button.active,.c-article-editorial-summary__container .c-article-editorial-summary__button.hover,.c-article-editorial-summary__container .c-article-editorial-summary__button:active,.c-article-editorial-summary__container .c-article-editorial-summary__button:hover{text-decoration:underline;text-decoration-skip-ink:auto}.c-article-associated-content__container .c-article-associated-content__collection-label{font-size:.875rem;line-height:1.4}.c-article-associated-content__container .c-article-associated-content__collection-title{line-height:1.3}.c-context-bar{box-shadow:0 0 10px 0 rgba(51,51,51,.2);position:relative;width:100%}.c-context-bar__title{display:none}.c-reading-companion{clear:both;min-height:389px}.c-reading-companion__sticky{max-width:389px}.c-reading-companion__scroll-pane{margin:0;min-height:200px;overflow:hidden auto}.c-reading-companion__tabs{display:flex;flex-flow:row nowrap;font-size:1rem;list-style:none;margin:0 0 8px;padding:0}.c-reading-companion__tabs>li{flex-grow:1}.c-reading-companion__tab{background-color:#eee;border:1px solid #d5d5d5;border-image:initial;border-left-width:0;color:#069;font-size:1rem;padding:8px 8px 8px 15px;text-align:left;width:100%}.c-reading-companion__tabs li:first-child .c-reading-companion__tab{border-left-width:1px}.c-reading-companion__tab--active{background-color:#fff;border-bottom:1px solid #fff;color:#222;font-weight:700}.c-reading-companion__sections-list{list-style:none;padding:0}.c-reading-companion__figures-list,.c-reading-companion__references-list{list-style:none;min-height:389px;padding:0}.c-reading-companion__sections-list{margin:0 0 8px;min-height:50px}.c-reading-companion__section-item{font-size:1rem;padding:0}.c-reading-companion__section-item a{display:block;line-height:1.5;overflow:hidden;padding:8px 0 8px 16px;text-overflow:ellipsis;white-space:nowrap}.c-reading-companion__figure-item{border-top:1px solid #d5d5d5;font-size:1rem;padding:16px 8px 16px 0}.c-reading-companion__figure-item:first-child{border-top:none;padding-top:8px}.c-reading-companion__reference-item{border-top:1px solid #d5d5d5;font-size:1rem;padding:8px 8px 8px 16px}.c-reading-companion__reference-item:first-child{border-top:none}.c-reading-companion__reference-item a{word-break:break-word}.c-reading-companion__reference-citation{display:inline}.c-reading-companion__reference-links{font-size:.813rem;font-weight:700;list-style:none;margin:8px 0 0;padding:0;text-align:right}.c-reading-companion__reference-links>a{display:inline-block;padding-left:8px}.c-reading-companion__reference-links>a:first-child{display:inline-block;padding-left:0}.c-reading-companion__figure-title{display:block;margin:0 0 8px}.c-reading-companion__figure-links{display:flex;justify-content:space-between;margin:8px 0 0}.c-reading-companion__figure-links>a{align-items:center;display:flex}.c-reading-companion__figure-full-link svg{height:.8em;margin-left:2px}.c-reading-companion__panel{border-top:none;display:none;margin-top:0;padding-top:0}.c-cod,.c-reading-companion__panel--active{display:block}.c-cod{font-size:1rem;width:100%}.c-cod__form{background:#ebf0f3}.c-cod__prompt{font-size:1.125rem;line-height:1.3;margin:0 0 24px}.c-cod__label{display:block;margin:0 0 4px}.c-cod__row{display:flex;margin:0 0 16px}.c-cod__row:last-child{margin:0}.c-cod__input{border:1px solid #d5d5d5;border-radius:2px;flex-basis:75%;flex-shrink:0;margin:0;padding:13px}.c-cod__input--submit{background-color:#069;border:1px solid #069;color:#fff;flex-shrink:1;margin-left:8px;transition:background-color .2s ease-out 0s,color .2s ease-out 0s}.c-cod__input--submit-single{flex-basis:100%;flex-shrink:0;margin:0}.c-cod__input--submit:focus,.c-cod__input--submit:hover{background-color:#fff;color:#069}.c-pdf-download__link .u-icon{padding-top:2px}.c-pdf-download{display:flex;margin-bottom:16px;max-height:48px}@media only screen and (min-width:540px){.c-pdf-download{max-height:none}}@media only screen and (min-width:1024px){.c-pdf-download{max-height:48px}}.c-pdf-download__link{display:flex;flex:1 1 0%}.c-pdf-download__link:hover{text-decoration:none}.c-pdf-download__text{padding-right:4px}@media only screen and (max-width:539px){.c-pdf-download__text{text-transform:capitalize}}@media only screen and (min-width:540px){.c-pdf-download__text{padding-right:8px}}.c-context-bar--sticky .c-pdf-download{display:block;margin-bottom:0;white-space:nowrap}@media only screen and (max-width:539px){.c-pdf-download .u-sticky-visually-hidden{clip:rect(0,0,0,0);border:0;height:1px;margin:-100%;overflow:hidden;padding:0;position:absolute!important;width:1px}}.c-pdf-container{display:flex;justify-content:flex-end}@media only screen and (max-width:539px){.c-pdf-container .c-pdf-download{display:flex;flex-basis:100%}}.c-pdf-container .c-pdf-download+.c-pdf-download{margin-left:16px}.c-article-extras .c-pdf-container .c-pdf-download{width:100%}.c-article-extras .c-pdf-container .c-pdf-download+.c-pdf-download{margin-left:0}@media only screen and (min-width:540px){.c-context-bar--sticky .c-pdf-download__link{align-items:center;flex:1 1 183px}}@media only screen and (max-width:320px){.c-context-bar--sticky .c-pdf-download__link{padding:16px}}.article-page--commercial .c-article-main-column .c-pdf-button__container .c-pdf-download{display:none}@media only screen and (max-width:1023px){.article-page--commercial .c-article-main-column .c-pdf-button__container .c-pdf-download{display:block}}.c-status-message--success{border-bottom:2px solid #00b8b0;justify-content:center;margin-bottom:16px;padding-bottom:8px}.c-recommendations-list__item .c-card{flex-basis:100%}.c-recommendations-list__item .c-card__image{align-items:baseline;flex:1 1 40%;margin:0 0 0 16px;max-width:150px}.c-recommendations-list__item .c-card__image img{border:1px solid #cedbe0;height:auto;min-height:0;position:static}@media only screen and (max-width:1023px){.c-recommendations-list__item .c-card__image{display:none}}.c-card__layout{display:flex;flex:1 1 auto;justify-content:space-between}.c-card__title-recommendation{-webkit-box-orient:vertical;-webkit-line-clamp:4;display:-webkit-box;font-size:1rem;font-weight:700;line-height:1.4;margin:0 0 8px;max-height:5.6em;overflow:hidden!important;text-overflow:ellipsis}.c-card__title-recommendation .c-card__link{color:inherit}.c-card__title-recommendation .c-card__link:hover{text-decoration:underline}.c-card__title-recommendation .MathJax_Display{display:inline!important}.c-card__link:not(.c-card__link--no-block-link):before{z-index:1}.c-article-metrics__heading a,.c-article-metrics__posts .c-card__title a,.c-article-recommendations-card__link{color:inherit}.c-recommendations-column-switch .c-meta{margin-top:auto}.c-article-recommendations-card__meta-type,.c-meta .c-meta__item:first-child{font-weight:700}.c-article-body .c-article-recommendations-card__authors{display:none;font-family:-apple-system,BlinkMacSystemFont,Segoe UI,Roboto,Oxygen-Sans,Ubuntu,Cantarell,Helvetica Neue,sans-serif;font-size:.875rem;line-height:1.5;margin:0 0 8px}@media only screen and (max-width:539px){.c-article-body .c-article-recommendations-card__authors{display:block;margin:0}}.c-article-metrics__posts .c-card__title{font-size:1.05rem}.c-article-metrics__posts .c-card__title+span{color:#6f6f6f;font-size:1rem}p{overflow-wrap:break-word;word-break:break-word}.c-ad{text-align:center}@media only screen and (min-width:320px){.c-ad{padding:8px}}.c-ad--728x90{background-color:#ccc;display:none}.c-ad--728x90 .c-ad__inner{min-height:calc(1.5em + 94px)}@media only screen and (min-width:768px){.js .c-ad--728x90{display:none}}.c-ad__label{color:#333;font-family:-apple-system,BlinkMacSystemFont,Segoe UI,Roboto,Oxygen-Sans,Ubuntu,Cantarell,Helvetica Neue,sans-serif;font-size:.875rem;font-weight:400;line-height:1.5;margin-bottom:4px}.c-author-list{color:#6f6f6f;font-family:inherit;font-size:1rem;line-height:inherit;list-style:none;margin:0;padding:0}.c-author-list>li,.c-breadcrumbs>li,.c-footer__links>li,.js .c-author-list,.u-list-comma-separated>li,.u-list-inline>li{display:inline}.c-author-list>li:not(:first-child):not(:last-child):before{content:", "}.c-author-list>li:not(:only-child):last-child:before{content:" & "}.c-author-list--compact{font-size:.875rem;line-height:1.4}.c-author-list--truncated>li:not(:only-child):last-child:before{content:" ... "}.js .c-author-list__hide{display:none;visibility:hidden}.js .c-author-list__hide:first-child+*{margin-block-start:0}.c-meta{color:inherit;font-family:-apple-system,BlinkMacSystemFont,Segoe UI,Roboto,Oxygen-Sans,Ubuntu,Cantarell,Helvetica Neue,sans-serif;font-size:.875rem;line-height:1.4;list-style:none;margin:0;padding:0}.c-meta--large{font-size:1rem}.c-meta--large .c-meta__item{margin-bottom:8px}.c-meta__item{display:inline-block;margin-bottom:4px}.c-meta__item:not(:last-child){border-right:1px solid #d5d5d5;margin-right:4px;padding-right:4px}@media only screen and (max-width:539px){.c-meta__item--block-sm-max{display:block}.c-meta__item--block-sm-max:not(:last-child){border-right:none;margin-right:0;padding-right:0}}@media only screen and (min-width:1024px){.c-meta__item--block-at-lg{display:block}.c-meta__item--block-at-lg:not(:last-child){border-right:none;margin-right:0;padding-right:0}}.c-meta__type{font-weight:700;text-transform:none}.c-skip-link{background:#069;bottom:auto;color:#fff;font-family:-apple-system,BlinkMacSystemFont,Segoe UI,Roboto,Oxygen-Sans,Ubuntu,Cantarell,Helvetica Neue,sans-serif;font-size:.875rem;padding:8px;position:absolute;text-align:center;transform:translateY(-100%);z-index:9999}@media (prefers-reduced-motion:reduce){.c-skip-link{transition:top .3s ease-in-out 0s}}@media print{.c-skip-link{display:none}}.c-skip-link:link{color:#fff}.c-status-message{align-items:center;box-sizing:border-box;display:flex;font-family:-apple-system,BlinkMacSystemFont,Segoe UI,Roboto,Oxygen-Sans,Ubuntu,Cantarell,Helvetica Neue,sans-serif;font-size:1rem;position:relative;width:100%}.c-card__summary>p:last-child,.c-status-message :last-child{margin-bottom:0}.c-status-message--boxed{background-color:#fff;border:1px solid #eee;border-radius:2px;line-height:1.4;padding:16px}.c-status-message__heading{font-family:-apple-system,BlinkMacSystemFont,Segoe UI,Roboto,Oxygen-Sans,Ubuntu,Cantarell,Helvetica Neue,sans-serif;font-size:1rem;font-weight:700}.c-status-message__icon{fill:currentcolor;display:inline-block;flex:0 0 auto;height:1.5em;margin-right:8px;transform:translate(0);vertical-align:text-top;width:1.5em}.c-status-message__icon--top{align-self:flex-start}.c-status-message--info .c-status-message__icon{color:#003f8d}.c-status-message--boxed.c-status-message--info{border-bottom:4px solid #003f8d}.c-status-message--error .c-status-message__icon{color:#c40606}.c-status-message--boxed.c-status-message--error{border-bottom:4px solid #c40606}.c-status-message--success .c-status-message__icon{color:#00b8b0}.c-status-message--boxed.c-status-message--success{border-bottom:4px solid #00b8b0}.c-status-message--warning .c-status-message__icon{color:#edbc53}.c-status-message--boxed.c-status-message--warning{border-bottom:4px solid #edbc53}.c-breadcrumbs{color:#000;font-family:-apple-system,BlinkMacSystemFont,Segoe UI,Roboto,Oxygen-Sans,Ubuntu,Cantarell,Helvetica Neue,sans-serif;font-size:1rem;list-style:none;margin:0;padding:0}.c-breadcrumbs__link{color:#666}svg.c-breadcrumbs__chevron{fill:#888;height:10px;margin:4px 4px 0;width:10px}@media only screen and (max-width:539px){.c-breadcrumbs .c-breadcrumbs__item{display:none}.c-breadcrumbs .c-breadcrumbs__item:last-child,.c-breadcrumbs .c-breadcrumbs__item:nth-last-child(2){display:inline}}.c-card{background-color:transparent;border:0;box-shadow:none;display:flex;flex-direction:column;font-size:14px;min-width:0;overflow:hidden;padding:0;position:relative}.c-card--no-shape{background:0 0;border:0;box-shadow:none}.c-card__image{display:flex;justify-content:center;overflow:hidden;padding-bottom:56.25%;position:relative}@supports (aspect-ratio:1/1){.c-card__image{padding-bottom:0}}.c-card__image img{left:0;min-height:100%;min-width:100%;position:absolute}@supports ((-o-object-fit:cover) or (object-fit:cover)){.c-card__image img{height:100%;object-fit:cover;width:100%}}.c-card__body{flex:1 1 auto;padding:16px}.c-card--no-shape .c-card__body{padding:0}.c-card--no-shape .c-card__body:not(:first-child){padding-top:16px}.c-card__title{letter-spacing:-.01875rem;margin-bottom:8px;margin-top:0}[lang=de] .c-card__title{hyphens:auto}.c-card__summary{line-height:1.4}.c-card__summary>p{margin-bottom:5px}.c-card__summary a{text-decoration:underline}.c-card__link:not(.c-card__link--no-block-link):before{bottom:0;content:"";left:0;position:absolute;right:0;top:0}.c-card--flush .c-card__body{padding:0}.c-card--major{font-size:1rem}.c-card--dark{background-color:#29303c;border-width:0;color:#e3e4e5}.c-card--dark .c-card__title{color:#fff}.c-card--dark .c-card__link,.c-card--dark .c-card__summary a{color:inherit}.c-header{background-color:#fff;border-bottom:5px solid #000;font-size:1rem;line-height:1.4;margin-bottom:16px}.c-header__row{padding:0;position:relative}.c-header__row:not(:last-child){border-bottom:1px solid #eee}.c-header__split{align-items:center;display:flex;justify-content:space-between}.c-header__logo-container{flex:1 1 0px;line-height:0;margin:8px 24px 8px 0}.c-header__logo{transform:translateZ(0)}.c-header__logo img{max-height:32px}.c-header__container{margin:0 auto;max-width:1280px}.c-header__menu{align-items:center;display:flex;flex:0 1 auto;flex-wrap:wrap;font-weight:700;gap:8px 8px;line-height:1.4;list-style:none;margin:0 -8px;padding:0}@media print{.c-header__menu{display:none}}@media only screen and (max-width:1023px){.c-header__menu--hide-lg-max{display:none;visibility:hidden}}.c-header__menu--global{font-weight:400;justify-content:flex-end}.c-header__menu--global svg{display:none;visibility:hidden}.c-header__menu--global svg:first-child+*{margin-block-start:0}@media only screen and (min-width:540px){.c-header__menu--global svg{display:block;visibility:visible}}.c-header__menu--journal{font-size:.875rem;margin:8px 0 8px -8px}@media only screen and (min-width:540px){.c-header__menu--journal{flex-wrap:nowrap;font-size:1rem}}.c-header__item{padding-bottom:0;padding-top:0;position:static}.c-header__item--pipe{border-left:2px solid #eee;padding-left:8px}.c-header__item--padding{padding-bottom:8px;padding-top:8px}@media only screen and (min-width:540px){.c-header__item--dropdown-menu{position:relative}}@media only screen and (min-width:1024px){.c-header__item--hide-lg{display:none;visibility:hidden}}@media only screen and (max-width:767px){.c-header__item--hide-md-max{display:none;visibility:hidden}.c-header__item--hide-md-max:first-child+*{margin-block-start:0}}.c-header__link{align-items:center;color:inherit;display:inline-flex;gap:4px 4px;padding:8px;white-space:nowrap}.c-header__link svg{transition-duration:.2s}.c-header__show-text{display:none;visibility:hidden}.has-tethered .c-header__heading--js-hide:first-child+*{margin-block-start:0}@media only screen and (min-width:540px){.c-header__show-text{display:inline;visibility:visible}}.c-header__dropdown{background-color:#000;border-bottom:1px solid #2f2f2f;color:#eee;font-size:.875rem;line-height:1.2;padding:16px 0}@media print{.c-header__dropdown{display:none}}.c-header__heading{display:inline-block;font-family:-apple-system,BlinkMacSystemFont,Segoe UI,Roboto,Oxygen-Sans,Ubuntu,Cantarell,Helvetica Neue,sans-serif;font-size:1.25rem;font-weight:400;line-height:1.4;margin-bottom:8px}.c-header__heading--keyline{border-top:1px solid;border-color:#2f2f2f;margin-top:16px;padding-top:16px;width:100%}.c-header__list{display:flex;flex-wrap:wrap;gap:0 16px;list-style:none;margin:0 -8px}.c-header__flush{margin:0 -8px}.c-header__visually-hidden{clip:rect(0,0,0,0);border:0;height:1px;margin:-100%;overflow:hidden;padding:0;position:absolute!important;width:1px}.c-header__search-form{margin-bottom:8px}.c-header__search-layout{display:flex;flex-wrap:wrap;gap:16px 16px}.c-header__search-layout>:first-child{flex:999 1 auto}.c-header__search-layout>*{flex:1 1 auto}.c-header__search-layout--max-width{max-width:720px}.c-header__search-button{align-items:center;background-color:transparent;background-image:none;border:1px solid #fff;border-radius:2px;color:#fff;cursor:pointer;display:flex;font-family:sans-serif;font-size:1rem;justify-content:center;line-height:1.15;margin:0;padding:8px 16px;position:relative;text-decoration:none;transition:all .25s ease 0s,color .25s ease 0s,border-color .25s ease 0s;width:100%}.u-button svg,.u-button--primary svg{fill:currentcolor}.c-header__input,.c-header__select{border:1px solid;border-radius:3px;box-sizing:border-box;font-size:1rem;padding:8px 16px;width:100%}.c-header__select{-webkit-appearance:none;background-image:url("data:image/svg+xml,%3Csvg height='16' viewBox='0 0 16 16' width='16' xmlns='http://www.w3.org/2000/svg'%3E%3Cpath d='m5.58578644 3-3.29289322-3.29289322c-.39052429-.39052429-.39052429-1.02368927 0-1.41421356s1.02368927-.39052429 1.41421356 0l4 4c.39052429.39052429.39052429 1.02368927 0 1.41421356l-4 4c-.39052429.39052429-1.02368927.39052429-1.41421356 0s-.39052429-1.02368927 0-1.41421356z' fill='%23333' fill-rule='evenodd' transform='matrix(0 1 -1 0 11 3)'/%3E%3C/svg%3E");background-position:right .7em top 50%;background-repeat:no-repeat;background-size:1em;box-shadow:0 1px 0 1px rgba(0,0,0,.04);display:block;margin:0;max-width:100%;min-width:150px}@media only screen and (min-width:540px){.c-header__menu--journal .c-header__item--dropdown-menu:last-child .c-header__dropdown.has-tethered{left:auto;right:0}}@media only screen and (min-width:768px){.c-header__menu--journal .c-header__item--dropdown-menu:last-child .c-header__dropdown.has-tethered{left:0;right:auto}}.c-header__dropdown.has-tethered{border-bottom:0;border-radius:0 0 2px 2px;left:0;position:absolute;top:100%;transform:translateY(5px);width:100%;z-index:1}@media only screen and (min-width:540px){.c-header__dropdown.has-tethered{transform:translateY(8px);width:auto}}@media only screen and (min-width:768px){.c-header__dropdown.has-tethered{min-width:225px}}.c-header__dropdown--full-width.has-tethered{padding:32px 0 24px;transform:none;width:100%}.has-tethered .c-header__heading--js-hide{display:none;visibility:hidden}.has-tethered .c-header__list--js-stack{flex-direction:column}.has-tethered .c-header__item--keyline,.has-tethered .c-header__list~.c-header__list .c-header__item:first-child{border-top:1px solid #d5d5d5;margin-top:8px;padding-top:8px}.c-header__item--snid-account-widget{display:flex}.c-header__container{padding:0 4px}.c-header__list{padding:0 12px}.c-header__menu .c-header__link{font-size:14px}.c-header__item--snid-account-widget .c-header__link{padding:8px}.c-header__menu--journal{margin-left:0}@media only screen and (min-width:540px){.c-header__container{padding:0 16px}.c-header__menu--journal{margin-left:-8px}.c-header__menu .c-header__link{font-size:16px}.c-header__link--search{gap:13px 13px}}.u-button{align-items:center;background-color:transparent;background-image:none;border:1px solid #069;border-radius:2px;color:#069;cursor:pointer;display:inline-flex;font-family:sans-serif;font-size:1rem;justify-content:center;line-height:1.3;margin:0;padding:8px;position:relative;text-decoration:none;transition:all .25s ease 0s,color .25s ease 0s,border-color .25s ease 0s;width:auto}.u-button--primary{background-color:#069;background-image:none;border:1px solid #069;color:#fff}.u-button--full-width{display:flex;width:100%}.u-display-none{display:none}.js .u-js-hide,.u-hide{display:none;visibility:hidden}.u-hide:first-child+*{margin-block-start:0}.u-visually-hidden{clip:rect(0,0,0,0);border:0;height:1px;margin:-100%;overflow:hidden;padding:0;position:absolute!important;width:1px}@media print{.u-hide-print{display:none}}@media only screen and (min-width:1024px){.u-hide-at-lg{display:none;visibility:hidden}.u-hide-at-lg:first-child+*{margin-block-start:0}}.u-clearfix:after,.u-clearfix:before{content:"";display:table}.u-clearfix:after{clear:both}.u-color-open-access{color:#b74616}.u-float-left{float:left}.u-icon{fill:currentcolor;display:inline-block;height:1em;transform:translate(0);vertical-align:text-top;width:1em}.u-full-height{height:100%}.u-link-inherit{color:inherit}.u-list-reset{list-style:none;margin:0;padding:0}.u-sans-serif{font-family:-apple-system,BlinkMacSystemFont,Segoe UI,Roboto,Oxygen-Sans,Ubuntu,Cantarell,Helvetica Neue,sans-serif}.u-text-bold{font-weight:700}.u-container{margin:0 auto;max-width:1280px;padding:0 16px}.u-justify-content-space-between{justify-content:space-between}.u-mt-32{margin-top:32px}.u-mb-8{margin-bottom:8px}.u-mb-16{margin-bottom:16px}.u-mb-24{margin-bottom:24px}.u-mb-32{margin-bottom:32px}.c-nature-box svg+.c-article__button-text,.u-ml-8{margin-left:8px}.u-pa-16{padding:16px}html *,html :after,html :before{box-sizing:inherit}.c-article-section__title,.c-article-title{font-weight:700}.c-card__title{line-height:1.4em}.c-article__button{background-color:#069;border:1px solid #069;border-radius:2px;color:#fff;display:flex;font-family:-apple-system,BlinkMacSystemFont,Segoe UI,Roboto,Oxygen-Sans,Ubuntu,Cantarell,Helvetica Neue,sans-serif;font-size:.875rem;line-height:1.4;margin-bottom:16px;padding:13px;transition:background-color .2s ease-out 0s,color .2s ease-out 0s}.c-article__button,.c-article__button:hover{text-decoration:none}.c-article__button--inverted,.c-article__button:hover{background-color:#fff;color:#069}.c-article__button--inverted:hover{background-color:#069;color:#fff}.c-header__link{text-decoration:inherit}.grade-c-hide{display:block}.u-lazy-ad-wrapper{background-color:#ccc;display:none;min-height:137px}@media only screen and (min-width:768px){.u-lazy-ad-wrapper{display:block}}.c-nature-box{background-color:#fff;border:1px solid #d5d5d5;border-radius:2px;box-shadow:0 0 5px 0 rgba(51,51,51,.1);line-height:1.3;margin-bottom:24px;padding:16px 16px 3px}.c-nature-box__text{font-size:1rem;margin-bottom:16px}.c-nature-box .c-pdf-download{margin-bottom:16px!important}.c-nature-box--version{background-color:#eee}.c-nature-box__wrapper{transform:translateZ(0)}.c-nature-box__wrapper--placeholder{min-height:165px}.c-pdf-download__link{padding:13px 24px} } </style> <link data-test="critical-css-handler" data-inline-css-source="critical-css" rel="stylesheet" href="/static/css/enhanced-article-c2d4d414fd.css" media="print" onload="this.media='only print, only all and (prefers-color-scheme: no-preference), only all and (prefers-color-scheme: light), only all and (prefers-color-scheme: dark)';this.onload=null"> <noscript> <link rel="stylesheet" type="text/css" href="/static/css/enhanced-article-c2d4d414fd.css" media="only print, only all and (prefers-color-scheme: no-preference), only all and (prefers-color-scheme: light), only all and (prefers-color-scheme: dark)"> </noscript> <link rel="stylesheet" type="text/css" href="/static/css/article-print-122346e276.css" media="print"> <link rel="apple-touch-icon" sizes="180x180" href=/static/images/favicons/nature/apple-touch-icon-f39cb19454.png> <link rel="icon" type="image/png" sizes="48x48" href=/static/images/favicons/nature/favicon-48x48-b52890008c.png> <link rel="icon" type="image/png" sizes="32x32" href=/static/images/favicons/nature/favicon-32x32-3fe59ece92.png> <link rel="icon" type="image/png" sizes="16x16" href=/static/images/favicons/nature/favicon-16x16-951651ab72.png> <link rel="manifest" href=/static/manifest.json crossorigin="use-credentials"> <link rel="mask-icon" href=/static/images/favicons/nature/safari-pinned-tab-69bff48fe6.svg color="#000000"> <link rel="shortcut icon" href=/static/images/favicons/nature/favicon.ico> <meta name="msapplication-TileColor" content="#000000"> <meta name="msapplication-config" content=/static/browserconfig.xml> <meta name="theme-color" content="#000000"> <meta name="application-name" content="Nature"> <script> (function () { if ( typeof window.CustomEvent === "function" ) return false; function CustomEvent ( event, params ) { params = params || { bubbles: false, cancelable: false, detail: null }; var evt = document.createEvent( 'CustomEvent' ); evt.initCustomEvent( event, params.bubbles, params.cancelable, params.detail ); return evt; } CustomEvent.prototype = window.Event.prototype; window.CustomEvent = CustomEvent; })(); </script> <!-- Google Tag Manager --> <script data-test="gtm-head"> window.initGTM = function() { if (window.config.mustardcut) { (function (w, d, s, l, i) { w[l] = w[l] || []; w[l].push({'gtm.start': new Date().getTime(), event: 'gtm.js'}); var f = d.getElementsByTagName(s)[0], j = d.createElement(s), dl = l != 'dataLayer' ? '&l=' + l : ''; j.async = true; j.src = 'https://www.googletagmanager.com/gtm.js?id=' + i + dl; f.parentNode.insertBefore(j, f); })(window, document, 'script', 'dataLayer', 'GTM-MRVXSHQ'); } } </script> <!-- End Google Tag Manager --> <script> (function(w,d,t) { function cc() { var h = w.location.hostname; if (h.indexOf('preview-www.nature.com') > -1) return; var e = d.createElement(t), s = d.getElementsByTagName(t)[0]; if (h.indexOf('nature.com') > -1) { if (h.indexOf('test-www.nature.com') > -1) { e.src = 'https://cmp.nature.com/production_live/en/consent-bundle-8-74.js'; e.setAttribute('onload', "initGTM(window,document,'script','dataLayer','GTM-MRVXSHQ')"); } else { e.src = 'https://cmp.nature.com/production_live/en/consent-bundle-8-74.js'; e.setAttribute('onload', "initGTM(window,document,'script','dataLayer','GTM-MRVXSHQ')"); } } else { e.src = '/static/js/cookie-consent-es5-bundle-cb57c2c98a.js'; e.setAttribute('data-consent', h); } s.insertAdjacentElement('afterend', e); } cc(); })(window,document,'script'); </script> <script id="js-position0"> (function(w, d) { w.idpVerifyPrefix = 'https://verify.nature.com'; w.ra21Host = 'https://wayf.springernature.com'; var moduleSupport = (function() { return 'noModule' in d.createElement('script'); })(); if (w.config.mustardcut === true) { w.loader = { index: 0, registered: [], scripts: [ {src: '/static/js/global-article-es6-bundle-c8a573ca90.js', test: 'global-article-js', module: true}, {src: '/static/js/global-article-es5-bundle-d17603b9e9.js', test: 'global-article-js', nomodule: true}, {src: '/static/js/shared-es6-bundle-606cb67187.js', test: 'shared-js', module: true}, {src: '/static/js/shared-es5-bundle-e919764a53.js', test: 'shared-js', nomodule: true}, {src: '/static/js/header-150-es6-bundle-5bb959eaa1.js', test: 'header-150-js', module: true}, {src: '/static/js/header-150-es5-bundle-994fde5b1d.js', test: 'header-150-js', nomodule: true} ].filter(function (s) { if (s.src === null) return false; if (moduleSupport && s.nomodule) return false; return !(!moduleSupport && s.module); }), register: function (value) { this.registered.push(value); }, ready: function () { if (this.registered.length === this.scripts.length) { this.registered.forEach(function (fn) { if (typeof fn === 'function') { setTimeout(fn, 0); } }); this.ready = function () {}; } }, insert: function (s) { var t = d.getElementById('js-position' + this.index); if (t && t.insertAdjacentElement) { t.insertAdjacentElement('afterend', s); } else { d.head.appendChild(s); } ++this.index; }, createScript: function (script, beforeLoad) { var s = d.createElement('script'); s.id = 'js-position' + (this.index + 1); s.setAttribute('data-test', script.test); if (beforeLoad) { s.defer = 'defer'; s.onload = function () { if (script.noinit) { loader.register(true); } if (d.readyState === 'interactive' || d.readyState === 'complete') { loader.ready(); } }; } else { s.async = 'async'; } s.src = script.src; return s; }, init: function () { this.scripts.forEach(function (s) { loader.insert(loader.createScript(s, true)); }); d.addEventListener('DOMContentLoaded', function () { loader.ready(); var conditionalScripts; conditionalScripts = [ {match: 'div[data-pan-container]', src: '/static/js/pan-zoom-es6-bundle-464a2af269.js', test: 'pan-zoom-js', module: true }, {match: 'div[data-pan-container]', src: '/static/js/pan-zoom-es5-bundle-98fb9b653b.js', test: 'pan-zoom-js', nomodule: true }, {match: 'math,span.mathjax-tex', src: '/static/js/math-es6-bundle-23597ae350.js', test: 'math-js', module: true}, {match: 'math,span.mathjax-tex', src: '/static/js/math-es5-bundle-6532c6f78b.js', test: 'math-js', nomodule: true} ]; if (conditionalScripts) { conditionalScripts.filter(function (script) { return !!document.querySelector(script.match) && !((moduleSupport && script.nomodule) || (!moduleSupport && script.module)); }).forEach(function (script) { loader.insert(loader.createScript(script)); }); } }, false); } }; loader.init(); } })(window, document); </script> <meta name="robots" content="noarchive"> <meta name="access" content="Yes"> <link rel="search" href="https://www.nature.com/search"> <link rel="search" href="https://www.nature.com/opensearch/opensearch.xml" type="application/opensearchdescription+xml" title="nature.com"> <link rel="search" href="https://www.nature.com/opensearch/request" type="application/sru+xml" title="nature.com"> <script type="application/ld+json">{"mainEntity":{"headline":"The performance of artificial intelligence-driven technologies in diagnosing mental disorders: an umbrella review","description":"Artificial intelligence (AI) has been successfully exploited in diagnosing many mental disorders. Numerous systematic reviews summarize the evidence on the accuracy of AI models in diagnosing different mental disorders. This umbrella review aims to synthesize results of previous systematic reviews on the performance of AI models in diagnosing mental disorders. To identify relevant systematic reviews, we searched 11 electronic databases, checked the reference list of the included reviews, and checked the reviews that cited the included reviews. Two reviewers independently selected the relevant reviews, extracted the data from them, and appraised their quality. We synthesized the extracted data using the narrative approach. We included 15 systematic reviews of 852 citations identified. The included reviews assessed the performance of AI models in diagnosing Alzheimer’s disease (n = 7), mild cognitive impairment (n = 6), schizophrenia (n = 3), bipolar disease (n = 2), autism spectrum disorder (n = 1), obsessive-compulsive disorder (n = 1), post-traumatic stress disorder (n = 1), and psychotic disorders (n = 1). The performance of the AI models in diagnosing these mental disorders ranged between 21% and 100%. AI technologies offer great promise in diagnosing mental health disorders. The reported performance metrics paint a vivid picture of a bright future for AI in this field. Healthcare professionals in the field should cautiously and consciously begin to explore the opportunities of AI-based tools for their daily routine. It would also be encouraging to see a greater number of meta-analyses and further systematic reviews on performance of AI models in diagnosing other common mental disorders such as depression and anxiety.","datePublished":"2022-07-07T00:00:00Z","dateModified":"2022-07-07T00:00:00Z","pageStart":"1","pageEnd":"12","license":"http://creativecommons.org/licenses/by/4.0/","sameAs":"https://doi.org/10.1038/s41746-022-00631-8","keywords":["Diseases","Health care","Medical research","Psychiatric disorders","Medicine/Public Health","general","Biomedicine","Biotechnology"],"image":["https://media.springernature.com/lw1200/springer-static/image/art%3A10.1038%2Fs41746-022-00631-8/MediaObjects/41746_2022_631_Fig1_HTML.png","https://media.springernature.com/lw1200/springer-static/image/art%3A10.1038%2Fs41746-022-00631-8/MediaObjects/41746_2022_631_Fig2_HTML.png"],"isPartOf":{"name":"npj Digital Medicine","issn":["2398-6352"],"volumeNumber":"5","@type":["Periodical","PublicationVolume"]},"publisher":{"name":"Nature Publishing Group UK","logo":{"url":"https://www.springernature.com/app-sn/public/images/logo-springernature.png","@type":"ImageObject"},"@type":"Organization"},"author":[{"name":"Alaa Abd-alrazaq","url":"http://orcid.org/0000-0001-7695-4626","affiliation":[{"name":"Weill Cornell Medicine-Qatar","address":{"name":"AI Center for Precision Health, Weill Cornell Medicine-Qatar, Doha, Qatar","@type":"PostalAddress"},"@type":"Organization"}],"@type":"Person"},{"name":"Dari Alhuwail","affiliation":[{"name":"Kuwait University","address":{"name":"Information Science Department, Kuwait University, Alshadadiya, Kuwait","@type":"PostalAddress"},"@type":"Organization"},{"name":"Dasman Diabetes Institute","address":{"name":"Health Informatics Unit, Dasman Diabetes Institute, Kuwait city, Kuwait","@type":"PostalAddress"},"@type":"Organization"}],"@type":"Person"},{"name":"Jens Schneider","affiliation":[{"name":"Hamad Bin Khalifa University, Qatar Foundation","address":{"name":"Division of Information and Computing Technology, College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar","@type":"PostalAddress"},"@type":"Organization"}],"@type":"Person"},{"name":"Carla T. Toro","url":"http://orcid.org/0000-0001-6351-1340","affiliation":[{"name":"Hamad Bin Khalifa University, Qatar Foundation","address":{"name":"Division of Information and Computing Technology, College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar","@type":"PostalAddress"},"@type":"Organization"}],"@type":"Person"},{"name":"Arfan Ahmed","url":"http://orcid.org/0000-0002-4025-5767","affiliation":[{"name":"Weill Cornell Medicine-Qatar","address":{"name":"AI Center for Precision Health, Weill Cornell Medicine-Qatar, Doha, Qatar","@type":"PostalAddress"},"@type":"Organization"}],"@type":"Person"},{"name":"Mahmood Alzubaidi","url":"http://orcid.org/0000-0002-6082-7873","affiliation":[{"name":"Hamad Bin Khalifa University, Qatar Foundation","address":{"name":"Division of Information and Computing Technology, College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar","@type":"PostalAddress"},"@type":"Organization"}],"@type":"Person"},{"name":"Mohannad Alajlani","affiliation":[{"name":"University of Warwick","address":{"name":"Institute of Digital Healthcare, University of Warwick, Warwick, UK","@type":"PostalAddress"},"@type":"Organization"}],"@type":"Person"},{"name":"Mowafa Househ","url":"http://orcid.org/0000-0002-3648-6271","affiliation":[{"name":"Hamad Bin Khalifa University, Qatar Foundation","address":{"name":"Division of Information and Computing Technology, College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar","@type":"PostalAddress"},"@type":"Organization"}],"email":"mhouseh@hbku.edu.qa","@type":"Person"}],"isAccessibleForFree":true,"@type":"ScholarlyArticle"},"@context":"https://schema.org","@type":"WebPage"}</script> <link rel="canonical" href="https://www.nature.com/articles/s41746-022-00631-8"> <meta name="journal_id" content="41746"/> <meta name="dc.title" content="The performance of artificial intelligence-driven technologies in diagnosing mental disorders: an umbrella review"/> <meta name="dc.source" content="npj Digital Medicine 2022 5:1"/> <meta name="dc.format" content="text/html"/> <meta name="dc.publisher" content="Nature Publishing Group"/> <meta name="dc.date" content="2022-07-07"/> <meta name="dc.type" content="ReviewPaper"/> <meta name="dc.language" content="En"/> <meta name="dc.copyright" content="2022 The Author(s)"/> <meta name="dc.rights" content="2022 The Author(s)"/> <meta name="dc.rightsAgent" content="journalpermissions@springernature.com"/> <meta name="dc.description" content="Artificial intelligence (AI) has been successfully exploited in diagnosing many mental disorders. Numerous systematic reviews summarize the evidence on the accuracy of AI models in diagnosing different mental disorders. This umbrella review aims to synthesize results of previous systematic reviews on the performance of AI models in diagnosing mental disorders. To identify relevant systematic reviews, we searched 11 electronic databases, checked the reference list of the included reviews, and checked the reviews that cited the included reviews. Two reviewers independently selected the relevant reviews, extracted the data from them, and appraised their quality. We synthesized the extracted data using the narrative approach. We included 15 systematic reviews of 852 citations identified. The included reviews assessed the performance of AI models in diagnosing Alzheimer&#8217;s disease (n&#8201;=&#8201;7), mild cognitive impairment (n&#8201;=&#8201;6), schizophrenia (n&#8201;=&#8201;3), bipolar disease (n&#8201;=&#8201;2), autism spectrum disorder (n&#8201;=&#8201;1), obsessive-compulsive disorder (n&#8201;=&#8201;1), post-traumatic stress disorder (n&#8201;=&#8201;1), and psychotic disorders (n&#8201;=&#8201;1). The performance of the AI models in diagnosing these mental disorders ranged between 21% and 100%. AI technologies offer great promise in diagnosing mental health disorders. The reported performance metrics paint a vivid picture of a bright future for AI in this field. Healthcare professionals in the field should cautiously and consciously begin to explore the opportunities of AI-based tools for their daily routine. It would also be encouraging to see a greater number of meta-analyses and further systematic reviews on performance of AI models in diagnosing other common mental disorders such as depression and anxiety."/> <meta name="prism.issn" content="2398-6352"/> <meta name="prism.publicationName" content="npj Digital Medicine"/> <meta name="prism.publicationDate" content="2022-07-07"/> <meta name="prism.volume" content="5"/> <meta name="prism.number" content="1"/> <meta name="prism.section" content="ReviewPaper"/> <meta name="prism.startingPage" content="1"/> <meta name="prism.endingPage" content="12"/> <meta name="prism.copyright" content="2022 The Author(s)"/> <meta name="prism.rightsAgent" content="journalpermissions@springernature.com"/> <meta name="prism.url" content="https://www.nature.com/articles/s41746-022-00631-8"/> <meta name="prism.doi" content="doi:10.1038/s41746-022-00631-8"/> <meta name="citation_pdf_url" content="https://www.nature.com/articles/s41746-022-00631-8.pdf"/> <meta name="citation_fulltext_html_url" content="https://www.nature.com/articles/s41746-022-00631-8"/> <meta name="citation_journal_title" content="npj Digital Medicine"/> <meta name="citation_journal_abbrev" content="npj Digit. Med."/> <meta name="citation_publisher" content="Nature Publishing Group"/> <meta name="citation_issn" content="2398-6352"/> <meta name="citation_title" content="The performance of artificial intelligence-driven technologies in diagnosing mental disorders: an umbrella review"/> <meta name="citation_volume" content="5"/> <meta name="citation_issue" content="1"/> <meta name="citation_online_date" content="2022/07/07"/> <meta name="citation_firstpage" content="1"/> <meta name="citation_lastpage" content="12"/> <meta name="citation_article_type" content="Review Article"/> <meta name="citation_fulltext_world_readable" content=""/> <meta name="citation_language" content="en"/> <meta name="dc.identifier" content="doi:10.1038/s41746-022-00631-8"/> <meta name="DOI" content="10.1038/s41746-022-00631-8"/> <meta name="size" content="254724"/> <meta name="citation_doi" content="10.1038/s41746-022-00631-8"/> <meta name="citation_springer_api_url" content="http://api.springer.com/xmldata/jats?q=doi:10.1038/s41746-022-00631-8&amp;api_key="/> <meta name="description" content="Artificial intelligence (AI) has been successfully exploited in diagnosing many mental disorders. Numerous systematic reviews summarize the evidence on the accuracy of AI models in diagnosing different mental disorders. This umbrella review aims to synthesize results of previous systematic reviews on the performance of AI models in diagnosing mental disorders. To identify relevant systematic reviews, we searched 11 electronic databases, checked the reference list of the included reviews, and checked the reviews that cited the included reviews. Two reviewers independently selected the relevant reviews, extracted the data from them, and appraised their quality. We synthesized the extracted data using the narrative approach. We included 15 systematic reviews of 852 citations identified. The included reviews assessed the performance of AI models in diagnosing Alzheimer&#8217;s disease (n&#8201;=&#8201;7), mild cognitive impairment (n&#8201;=&#8201;6), schizophrenia (n&#8201;=&#8201;3), bipolar disease (n&#8201;=&#8201;2), autism spectrum disorder (n&#8201;=&#8201;1), obsessive-compulsive disorder (n&#8201;=&#8201;1), post-traumatic stress disorder (n&#8201;=&#8201;1), and psychotic disorders (n&#8201;=&#8201;1). The performance of the AI models in diagnosing these mental disorders ranged between 21% and 100%. AI technologies offer great promise in diagnosing mental health disorders. The reported performance metrics paint a vivid picture of a bright future for AI in this field. Healthcare professionals in the field should cautiously and consciously begin to explore the opportunities of AI-based tools for their daily routine. It would also be encouraging to see a greater number of meta-analyses and further systematic reviews on performance of AI models in diagnosing other common mental disorders such as depression and anxiety."/> <meta name="dc.creator" content="Abd-alrazaq, Alaa"/> <meta name="dc.creator" content="Alhuwail, Dari"/> <meta name="dc.creator" content="Schneider, Jens"/> <meta name="dc.creator" content="Toro, Carla T."/> <meta name="dc.creator" content="Ahmed, Arfan"/> <meta name="dc.creator" content="Alzubaidi, Mahmood"/> <meta name="dc.creator" content="Alajlani, Mohannad"/> <meta name="dc.creator" content="Househ, Mowafa"/> <meta name="dc.subject" content="Diseases"/> <meta name="dc.subject" content="Health care"/> <meta name="dc.subject" content="Medical research"/> <meta name="dc.subject" content="Psychiatric disorders"/> <meta name="citation_reference" content="citation_journal_title=Transl. Psychiatry; citation_title=Deep learning in mental health outcome research: a scoping review; citation_author=C Su, Z Xu, J Pathak, F Wang; citation_volume=10; citation_publication_date=2020; citation_doi=10.1038/s41398-020-0780-3; citation_id=CR1"/> <meta name="citation_reference" content="citation_journal_title=Soc. Sci. Med.; citation_title=The relationship between physical and mental health: a mediation analysis; citation_author=J Ohrnberger, E Fichera, M Sutton; citation_volume=195; citation_publication_date=2017; citation_pages=42-49; citation_doi=10.1016/j.socscimed.2017.11.008; citation_id=CR2"/> <meta name="citation_reference" content="citation_journal_title=Curr. Psychiatry Rep.; citation_title=Global burden of disease and the impact of mental and addictive disorders; citation_author=J Rehm, KD Shield; citation_volume=21; citation_publication_date=2019; citation_doi=10.1007/s11920-019-0997-0; citation_id=CR3"/> <meta name="citation_reference" content="Roland, J., Lawrance, E., Insel, T. &amp; Christensen, H. The digital mental health revolution: transforming care through innovation and scale-up., (Doha, Qatar, 2020)."/> <meta name="citation_reference" content="citation_journal_title=Biol. Psychiatry. Cogn. Neurosci. Neuroimaging; citation_title=Machine learning for precision psychiatry: opportunities and challenges; citation_author=D Bzdok, A Meyer-Lindenberg; citation_volume=3; citation_publication_date=2018; citation_pages=223-230; citation_id=CR5"/> <meta name="citation_reference" content="citation_journal_title=npj Digital Med.; citation_title=New tests, new tools: mobile and connected technologies in advancing psychiatric diagnosis; citation_author=LW Roberts, S Chan, J Torous; citation_volume=1; citation_publication_date=2018; citation_doi=10.1038/s41746-017-0006-0; citation_id=CR6"/> <meta name="citation_reference" content="citation_journal_title=J. Med. Internet Res.; citation_title=Artificial intelligence in the fight against COVID-19: scoping review; citation_author=A Abd-Alrazaq; citation_volume=22; citation_publication_date=2020; citation_pages=e20756; citation_doi=10.2196/20756; citation_id=CR7"/> <meta name="citation_reference" content="citation_journal_title=J. Med Internet Res; citation_title=Your robot therapist will see you now: ethical implications of embodied artificial intelligence in psychiatry, psychology, and psychotherapy; citation_author=A Fiske, P Henningsen, A Buyx; citation_volume=21; citation_publication_date=2019; citation_pages=e13216; citation_doi=10.2196/13216; citation_id=CR8"/> <meta name="citation_reference" content="citation_journal_title=Telemed. J. e-Health. Off. J. Am. Telemed. Assoc.; citation_title=Social robots for people with aging and dementia: a systematic review of literature; citation_author=S G&#243;ngora Alonso; citation_volume=25; citation_publication_date=2019; citation_pages=533-540; citation_id=CR9"/> <meta name="citation_reference" content="citation_journal_title=JMIR Ment. health; citation_title=Ethical issues for direct-to-consumer digital psychotherapy apps: addressing accountability, data protection, and consent; citation_author=N Martinez-Martin, K Kreitmair; citation_volume=5; citation_publication_date=2018; citation_pages=e32; citation_doi=10.2196/mental.9423; citation_id=CR10"/> <meta name="citation_reference" content="citation_journal_title=BMJ; citation_title=Sixty seconds on&#8230; sex with robots; citation_author=I Torjesen; citation_volume=358; citation_publication_date=2017; citation_pages=j3353; citation_doi=10.1136/bmj.j3353; citation_id=CR11"/> <meta name="citation_reference" content="citation_journal_title=Behav. Neurol.; citation_title=Optimizing neuropsychological assessments for cognitive, behavioral, and functional impairment classification: a machine learning study; citation_author=P Battista, C Salvatore, I Castiglioni; citation_volume=2017; citation_publication_date=2017; citation_pages=1850909; citation_doi=10.1155/2017/1850909; citation_id=CR12"/> <meta name="citation_reference" content="citation_journal_title=Hum. Brain Mapp.; citation_title=Using deep autoencoders to identify abnormal brain structural patterns in neuropsychiatric disorders: a large-scale multi-sample study; citation_author=WHL Pinaya, A Mechelli, JR Sato; citation_volume=40; citation_publication_date=2019; citation_pages=944-954; citation_doi=10.1002/hbm.24423; citation_id=CR13"/> <meta name="citation_reference" content="citation_journal_title=NeuroImage; citation_title=Towards person-centered neuroimaging markers for resilience and vulnerability in bipolar disorder; citation_author=S Frangou, D Dima, J Jogia; citation_volume=145; citation_publication_date=2017; citation_pages=230-237; citation_doi=10.1016/j.neuroimage.2016.08.066; citation_id=CR14"/> <meta name="citation_reference" content="citation_journal_title=J. Neuroimaging Off. J. Am. Soc. Neuroimaging; citation_title=Adaptive identification of cortical and subcortical imaging markers of early life stress and posttraumatic stress disorder; citation_author=LE Salminen; citation_volume=29; citation_publication_date=2019; citation_pages=335-343; citation_doi=10.1111/jon.12600; citation_id=CR15"/> <meta name="citation_reference" content="citation_journal_title=Sci. Rep.; citation_title=A neural marker of obsessive-compulsive disorder from whole-brain functional connectivity; citation_author=Y Takagi; citation_volume=7; citation_publication_date=2017; citation_doi=10.1038/s41598-017-07792-7; citation_id=CR16"/> <meta name="citation_reference" content="citation_journal_title=Alzheimer&#8217;s Dement. Diagnosis Assess. Dis. Monit.; citation_title=Machine learning of neuroimaging for assisted diagnosis of cognitive impairment and dementia: a systematic review; citation_author=E Pellegrini; citation_volume=10; citation_publication_date=2018; citation_pages=519-535; citation_id=CR17"/> <meta name="citation_reference" content="Billeci, L., Badolato, A., Bachi, L. &amp; Tonacci, A. Machine learning for the classification of alzheimer&#8217;s disease and its prodromal stage using brain diffusion tensor imaging data: a systematic review. 8, https://doi.org/10.3390/pr8091071 (2020)."/> <meta name="citation_reference" content="citation_journal_title=Front. Aging Neurosci.; citation_title=Random forest algorithm for the classification of neuroimaging data in Alzheimer&#8217;s disease: a systematic review; citation_author=A Sarica, A Cerasa, A Quattrone; citation_volume=9; citation_publication_date=2017; citation_pages=329; citation_doi=10.3389/fnagi.2017.00329; citation_id=CR19"/> <meta name="citation_reference" content="citation_journal_title=Computer Methods Prog. Biomedicine; citation_title=Deep learning to detect Alzheimer&#8217;s disease from neuroimaging: a systematic literature review; citation_author=MA Ebrahimighahnavieh, S Luo, R Chiong; citation_volume=187; citation_publication_date=2020; citation_pages=105242; citation_doi=10.1016/j.cmpb.2019.105242; citation_id=CR20"/> <meta name="citation_reference" content="citation_journal_title=J. Am. Med. Inform. Assoc.; citation_title=A systematic literature review of automatic Alzheimer&#8217;s disease detection from speech and language; citation_author=U Petti, S Baker, A Korhonen; citation_volume=27; citation_publication_date=2020; citation_pages=1784-1797; citation_doi=10.1093/jamia/ocaa174; citation_id=CR21"/> <meta name="citation_reference" content="citation_journal_title=Neurosci. Biobehav. Rev.; citation_title=Artificial intelligence and neuropsychological measures: the case of Alzheimer&#8217;s disease; citation_author=P Battista; citation_volume=114; citation_publication_date=2020; citation_pages=211-228; citation_doi=10.1016/j.neubiorev.2020.04.026; citation_id=CR22"/> <meta name="citation_reference" content="citation_journal_title=Diagnostics; citation_title=The role of EEG in the diagnosis, prognosis and clinical correlations of dementia with lewy bodies-a systematic review; citation_author=ZK Law; citation_volume=10; citation_publication_date=2020; citation_pages=20; citation_doi=10.3390/diagnostics10090616; citation_id=CR23"/> <meta name="citation_reference" content="citation_journal_title=Neuropsychiatr. Dis. Treat.; citation_title=Machine learning techniques in a structural and functional MRI diagnostic approach in schizophrenia: a systematic review; citation_author=R Filippis; citation_volume=15; citation_publication_date=2019; citation_pages=1605-1627; citation_doi=10.2147/NDT.S202418; citation_id=CR24"/> <meta name="citation_reference" content="citation_journal_title=Front. psychiatry Front. Res. Found.; citation_title=Application of support vector machine on fMRI data as biomarkers in schizophrenia diagnosis: a systematic review; citation_author=L Steardo; citation_volume=11; citation_publication_date=2020; citation_pages=588; citation_doi=10.3389/fpsyt.2020.00588; citation_id=CR25"/> <meta name="citation_reference" content="citation_journal_title=Mol. Psychiatry; citation_title=Machine learning for genetic prediction of psychiatric disorders: a systematic review; citation_author=M Bracher-Smith, K Crawford, V Escott-Price; citation_volume=26; citation_publication_date=2020; citation_pages=26; citation_id=CR26"/> <meta name="citation_reference" content="citation_journal_title=Neurosci. Biobehav. Rev.; citation_title=The impact of machine learning techniques in the study of bipolar disorder: a systematic review; citation_author=D Librenza-Garcia; citation_volume=80; citation_publication_date=2017; citation_pages=538-554; citation_doi=10.1016/j.neubiorev.2017.07.004; citation_id=CR27"/> <meta name="citation_reference" content="citation_journal_title=JMIR Ment. Health; citation_title=Accuracy of machine learning algorithms for the diagnosis of autism spectrum disorder: systematic review and meta-analysis of brain magnetic resonance imaging studies; citation_author=SJ Moon; citation_volume=6; citation_publication_date=2019; citation_pages=e14108; citation_doi=10.2196/14108; citation_id=CR28"/> <meta name="citation_reference" content="citation_journal_title=J. Psychiatr. Res.; citation_title=The use of machine learning techniques in trauma-related disorders: a systematic review; citation_author=LF Ramos-Lima; citation_volume=121; citation_publication_date=2020; citation_pages=159-172; citation_doi=10.1016/j.jpsychires.2019.12.001; citation_id=CR29"/> <meta name="citation_reference" content="citation_journal_title=Prog. Neuropsychopharmacol. Biol. Psychiatry; citation_title=Diagnostic neuroimaging markers of obsessive-compulsive disorder: Initial evidence from structural and functional MRI studies; citation_author=W Bruin, D Denys, G Wingen; citation_volume=91; citation_publication_date=2019; citation_pages=49-59; citation_doi=10.1016/j.pnpbp.2018.08.005; citation_id=CR30"/> <meta name="citation_reference" content="citation_journal_title=Biol. Psychiatry; citation_title=Individualized diagnostic and prognostic models for patients with psychosis risk syndromes: a meta-analytic view on the state of the art; citation_author=R Sanfelici, DB Dwyer, LA Antonucci, N Koutsouleris; citation_volume=88; citation_publication_date=2020; citation_pages=349-360; citation_doi=10.1016/j.biopsych.2020.02.009; citation_id=CR31"/> <meta name="citation_reference" content="American Psychological Association. Alzheimer&#8217;s disease, https://dictionary.apa.org/alzheimers-disease (2022)."/> <meta name="citation_reference" content="American Psychological Association. Mild cognitive impairment (MCI), https://dictionary.apa.org/mild-cognitive-impairment (2022)."/> <meta name="citation_reference" content="American Psychological Association. Schizophrenia, https://dictionary.apa.org/schizophrenia (2022)."/> <meta name="citation_reference" content="American Psychological Association. Bipolar disorder, https://dictionary.apa.org/bipolar-disorders (2022)."/> <meta name="citation_reference" content="American Psychological Association. Autism spectrum disorder https://dictionary.apa.org/autism-spectrum-disorder (2022)."/> <meta name="citation_reference" content="American Psychological Association. Posttraumatic stress disorder https://dictionary.apa.org/posttraumatic-stress-disorder (2022)."/> <meta name="citation_reference" content="American Psychological Association. Obsessive compulsive disorder, https://dictionary.apa.org/obsessive-compulsive-disorder (2022)."/> <meta name="citation_reference" content="American Psychological Association. Psychotic disorders https://dictionary.apa.org/psychotic-disorders (2022)."/> <meta name="citation_reference" content="citation_journal_title=Lancet; citation_title=Schizophrenia; citation_author=MJ Owen, A Sawa, PB Mortensen; citation_volume=388; citation_publication_date=2016; citation_pages=86-97; citation_doi=10.1016/S0140-6736(15)01121-6; citation_id=CR40"/> <meta name="citation_reference" content="citation_journal_title=IEEE Technol. Soc. Mag.; citation_title=If technology is a parasite masquerading as a symbiont&#8212;are we the host?; citation_author=J Robbins; citation_volume=38; citation_publication_date=2019; citation_pages=24-33; citation_doi=10.1109/MTS.2019.2930267; citation_id=CR41"/> <meta name="citation_reference" content="citation_journal_title=Integr. Psychol. Behav. Sci.; citation_title=The parasitic nature of social AI: sharing minds with the mindless; citation_author=HS S&#230;tra; citation_volume=54; citation_publication_date=2020; citation_pages=308-326; citation_doi=10.1007/s12124-020-09523-6; citation_id=CR42"/> <meta name="citation_reference" content="Aromataris, E. et al. Methodology for JBI umbrella reviews. 1&#8211;34 https://nursing.lsuhsc.edu/JBI/docs/ReviewersManuals/Umbrella%20Reviews.pdf (2014)."/> <meta name="citation_reference" content="Altman, D. G. Practical statistics for medical research. (CRC press, 1990)."/> <meta name="citation_author" content="Abd-alrazaq, Alaa"/> <meta name="citation_author_institution" content="AI Center for Precision Health, Weill Cornell Medicine-Qatar, Doha, Qatar"/> <meta name="citation_author" content="Alhuwail, Dari"/> <meta name="citation_author_institution" content="Information Science Department, Kuwait University, Alshadadiya, Kuwait"/> <meta name="citation_author_institution" content="Health Informatics Unit, Dasman Diabetes Institute, Kuwait city, Kuwait"/> <meta name="citation_author" content="Schneider, Jens"/> <meta name="citation_author_institution" content="Division of Information and Computing Technology, College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar"/> <meta name="citation_author" content="Toro, Carla T."/> <meta name="citation_author_institution" content="Division of Information and Computing Technology, College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar"/> <meta name="citation_author" content="Ahmed, Arfan"/> <meta name="citation_author_institution" content="AI Center for Precision Health, Weill Cornell Medicine-Qatar, Doha, Qatar"/> <meta name="citation_author" content="Alzubaidi, Mahmood"/> <meta name="citation_author_institution" content="Division of Information and Computing Technology, College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar"/> <meta name="citation_author" content="Alajlani, Mohannad"/> <meta name="citation_author_institution" content="Institute of Digital Healthcare, University of Warwick, Warwick, UK"/> <meta name="citation_author" content="Househ, Mowafa"/> <meta name="citation_author_institution" content="Division of Information and Computing Technology, College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar"/> <meta name="access_endpoint" content="https://www.nature.com/platform/readcube-access"/> <meta name="twitter:site" content="@npjDigitalMed"/> <meta name="twitter:card" content="summary_large_image"/> <meta name="twitter:image:alt" content="Content cover image"/> <meta name="twitter:title" content="The performance of artificial intelligence-driven technologies in diagnosing mental disorders: an umbrella review"/> <meta name="twitter:description" content="npj Digital Medicine - The performance of artificial intelligence-driven technologies in diagnosing mental disorders: an umbrella review"/> <meta name="twitter:image" content="https://media.springernature.com/full/springer-static/image/art%3A10.1038%2Fs41746-022-00631-8/MediaObjects/41746_2022_631_Fig1_HTML.png"/> <meta property="og:url" content="https://www.nature.com/articles/s41746-022-00631-8"/> <meta property="og:type" content="article"/> <meta property="og:site_name" content="Nature"/> <meta property="og:title" content="The performance of artificial intelligence-driven technologies in diagnosing mental disorders: an umbrella review - npj Digital Medicine"/> <meta property="og:image" content="https://media.springernature.com/m685/springer-static/image/art%3A10.1038%2Fs41746-022-00631-8/MediaObjects/41746_2022_631_Fig1_HTML.png"/> <script> window.eligibleForRa21 = 'false'; </script> </head> <body class="article-page"> <noscript><iframe src="https://www.googletagmanager.com/ns.html?id=GTM-MRVXSHQ" height="0" width="0" style="display:none;visibility:hidden"></iframe></noscript> <div class="position-relative cleared z-index-50 background-white" data-test="top-containers"> <a class="c-skip-link" href="#content">Skip to main content</a> <div class="c-grade-c-banner u-hide"> <div class="c-grade-c-banner__container"> <p>Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.</p> </div> </div> <div class="u-hide u-show-following-ad"></div> <aside class="c-ad c-ad--728x90"> <div class="c-ad__inner" data-container-type="banner-advert"> <p class="c-ad__label">Advertisement</p> <div id="div-gpt-ad-top-1" class="div-gpt-ad advert leaderboard js-ad text-center hide-print grade-c-hide" data-ad-type="top" data-test="top-ad" data-pa11y-ignore data-gpt data-gpt-unitpath="/285/npjdigitalmed.nature.com/article" data-gpt-sizes="728x90" data-gpt-targeting="type=article;pos=top;artid=s41746-022-00631-8;doi=10.1038/s41746-022-00631-8;subjmeta=308,476,692,699,700;kwrd=Diseases,Health+care,Medical+research,Psychiatric+disorders"> <noscript> <a href="//pubads.g.doubleclick.net/gampad/jump?iu=/285/npjdigitalmed.nature.com/article&amp;sz=728x90&amp;c=-34319110&amp;t=pos%3Dtop%26type%3Darticle%26artid%3Ds41746-022-00631-8%26doi%3D10.1038/s41746-022-00631-8%26subjmeta%3D308,476,692,699,700%26kwrd%3DDiseases,Health+care,Medical+research,Psychiatric+disorders"> <img data-test="gpt-advert-fallback-img" src="//pubads.g.doubleclick.net/gampad/ad?iu=/285/npjdigitalmed.nature.com/article&amp;sz=728x90&amp;c=-34319110&amp;t=pos%3Dtop%26type%3Darticle%26artid%3Ds41746-022-00631-8%26doi%3D10.1038/s41746-022-00631-8%26subjmeta%3D308,476,692,699,700%26kwrd%3DDiseases,Health+care,Medical+research,Psychiatric+disorders" alt="Advertisement" width="728" height="90"></a> </noscript> </div> </div> </aside> <header class="c-header" id="header" data-header data-track-component="nature-150-split-header" style="border-color:#e30613"> <div class="c-header__row"> <div class="c-header__container"> <div class="c-header__split"> <div class="c-header__logo-container"> <a href="/npjdigitalmed" data-track="click" data-track-action="home" data-track-label="image"> <picture class="c-header__logo"> <source srcset="https://media.springernature.com/full/nature-cms/uploads/product/npjdigitalmed/header-f049ee6256184b0642aec5ae3c943e37.svg" media="(min-width: 875px)"> <img src="https://media.springernature.com/full/nature-cms/uploads/product/npjdigitalmed/header-f049ee6256184b0642aec5ae3c943e37.svg" height="32" alt="npj Digital Medicine"> </picture> </a> </div> <ul class="c-header__menu c-header__menu--global"> <li class="c-header__item c-header__item--padding c-header__item--hide-md-max"> <a class="c-header__link" href="https://www.nature.com/siteindex" data-test="siteindex-link" data-track="click" data-track-action="open nature research index" data-track-label="link"> <span>View all journals</span> </a> </li> <li class="c-header__item c-header__item--padding c-header__item--pipe"> <a class="c-header__link c-header__link--search" href="#search-menu" data-header-expander data-test="search-link" data-track="click" data-track-action="open search tray" data-track-label="button"> <svg role="img" aria-hidden="true" focusable="false" height="22" width="22" viewBox="0 0 18 18" xmlns="http://www.w3.org/2000/svg"><path d="M16.48 15.455c.283.282.29.749.007 1.032a.738.738 0 01-1.032-.007l-3.045-3.044a7 7 0 111.026-1.026zM8 14A6 6 0 108 2a6 6 0 000 12z"/></svg><span>Search</span> </a> </li> <li class="c-header__item c-header__item--padding c-header__item--snid-account-widget c-header__item--pipe"> <a class="c-header__link eds-c-header__link" id="identity-account-widget" data-track="click_login" data-track-context="header" href='https://idp.nature.com/auth/personal/springernature?redirect_uri=https://www.nature.com/articles/s41746-022-00631-8?error=cookies_not_supported&code=6c5258a1-a4c1-4e3f-a1cc-55538b45fa72'><span class="eds-c-header__widget-fragment-title">Log in</span></a> </li> </ul> </div> </div> </div> <div class="c-header__row"> <div class="c-header__container" data-test="navigation-row"> <div class="c-header__split"> <ul class="c-header__menu c-header__menu--journal"> <li class="c-header__item c-header__item--dropdown-menu" data-test="explore-content-button"> <a href="#explore" class="c-header__link" data-header-expander data-test="menu-button--explore" data-track="click" data-track-action="open explore expander" data-track-label="button"> <span><span class="c-header__show-text">Explore</span> content</span><svg role="img" aria-hidden="true" focusable="false" height="16" viewBox="0 0 16 16" width="16" xmlns="http://www.w3.org/2000/svg"><path d="m5.58578644 3-3.29289322-3.29289322c-.39052429-.39052429-.39052429-1.02368927 0-1.41421356s1.02368927-.39052429 1.41421356 0l4 4c.39052429.39052429.39052429 1.02368927 0 1.41421356l-4 4c-.39052429.39052429-1.02368927.39052429-1.41421356 0s-.39052429-1.02368927 0-1.41421356z" transform="matrix(0 1 -1 0 11 3)"/></svg> </a> </li> <li class="c-header__item c-header__item--dropdown-menu"> <a href="#about-the-journal" class="c-header__link" data-header-expander data-test="menu-button--about-the-journal" data-track="click" data-track-action="open about the journal expander" data-track-label="button"> <span>About <span class="c-header__show-text">the journal</span></span><svg role="img" aria-hidden="true" focusable="false" height="16" viewBox="0 0 16 16" width="16" xmlns="http://www.w3.org/2000/svg"><path d="m5.58578644 3-3.29289322-3.29289322c-.39052429-.39052429-.39052429-1.02368927 0-1.41421356s1.02368927-.39052429 1.41421356 0l4 4c.39052429.39052429.39052429 1.02368927 0 1.41421356l-4 4c-.39052429.39052429-1.02368927.39052429-1.41421356 0s-.39052429-1.02368927 0-1.41421356z" transform="matrix(0 1 -1 0 11 3)"/></svg> </a> </li> <li class="c-header__item c-header__item--dropdown-menu" data-test="publish-with-us-button"> <a href="#publish-with-us" class="c-header__link c-header__link--dropdown-menu" data-header-expander data-test="menu-button--publish" data-track="click" data-track-action="open publish with us expander" data-track-label="button"> <span>Publish <span class="c-header__show-text">with us</span></span><svg role="img" aria-hidden="true" focusable="false" height="16" viewBox="0 0 16 16" width="16" xmlns="http://www.w3.org/2000/svg"><path d="m5.58578644 3-3.29289322-3.29289322c-.39052429-.39052429-.39052429-1.02368927 0-1.41421356s1.02368927-.39052429 1.41421356 0l4 4c.39052429.39052429.39052429 1.02368927 0 1.41421356l-4 4c-.39052429.39052429-1.02368927.39052429-1.41421356 0s-.39052429-1.02368927 0-1.41421356z" transform="matrix(0 1 -1 0 11 3)"/></svg> </a> </li> </ul> <ul class="c-header__menu c-header__menu--hide-lg-max"> <li class="c-header__item"> <a class="c-header__link" href="https://idp.nature.com/auth/personal/springernature?redirect_uri&#x3D;https%3A%2F%2Fwww.nature.com%2Fmy-account%2Falerts%2Fsubscribe-journal%3Flist-id%3D387%26journal-link%3Dhttps%253A%252F%252Fwww.nature.com%252Fnpjdigitalmed%252F" rel="nofollow" data-track="click" data-track-action="Sign up for alerts" data-track-label="link (desktop site header)" data-track-external> <span>Sign up for alerts</span><svg role="img" aria-hidden="true" focusable="false" height="18" viewBox="0 0 18 18" width="18" xmlns="http://www.w3.org/2000/svg"><path d="m4 10h2.5c.27614237 0 .5.2238576.5.5s-.22385763.5-.5.5h-3.08578644l-1.12132034 1.1213203c-.18753638.1875364-.29289322.4418903-.29289322.7071068v.1715729h14v-.1715729c0-.2652165-.1053568-.5195704-.2928932-.7071068l-1.7071068-1.7071067v-3.4142136c0-2.76142375-2.2385763-5-5-5-2.76142375 0-5 2.23857625-5 5zm3 4c0 1.1045695.8954305 2 2 2s2-.8954305 2-2zm-5 0c-.55228475 0-1-.4477153-1-1v-.1715729c0-.530433.21071368-1.0391408.58578644-1.4142135l1.41421356-1.4142136v-3c0-3.3137085 2.6862915-6 6-6s6 2.6862915 6 6v3l1.4142136 1.4142136c.3750727.3750727.5857864.8837805.5857864 1.4142135v.1715729c0 .5522847-.4477153 1-1 1h-4c0 1.6568542-1.3431458 3-3 3-1.65685425 0-3-1.3431458-3-3z" fill="#222"/></svg> </a> </li> <li class="c-header__item c-header__item--pipe"> <a class="c-header__link" href="https://www.nature.com/npjdigitalmed.rss" data-track="click" data-track-action="rss feed" data-track-label="link"> <span>RSS feed</span> </a> </li> </ul> </div> </div> </div> </header> <nav class="u-mb-16" aria-label="breadcrumbs"> <div class="u-container"> <ol class="c-breadcrumbs" itemscope itemtype="https://schema.org/BreadcrumbList"> <li class="c-breadcrumbs__item" id="breadcrumb0" itemprop="itemListElement" itemscope itemtype="https://schema.org/ListItem"><a class="c-breadcrumbs__link" href="/" itemprop="item" data-track="click" data-track-action="breadcrumb" data-track-category="header" data-track-label="link:nature"><span itemprop="name">nature</span></a><meta itemprop="position" content="1"> <svg class="c-breadcrumbs__chevron" role="img" aria-hidden="true" focusable="false" height="10" viewBox="0 0 10 10" width="10" xmlns="http://www.w3.org/2000/svg"> <path d="m5.96738168 4.70639573 2.39518594-2.41447274c.37913917-.38219212.98637524-.38972225 1.35419292-.01894278.37750606.38054586.37784436.99719163-.00013556 1.37821513l-4.03074001 4.06319683c-.37758093.38062133-.98937525.38100976-1.367372-.00003075l-4.03091981-4.06337806c-.37759778-.38063832-.38381821-.99150444-.01600053-1.3622839.37750607-.38054587.98772445-.38240057 1.37006824.00302197l2.39538588 2.4146743.96295325.98624457z" fill="#666" fill-rule="evenodd" transform="matrix(0 -1 1 0 0 10)"/> </svg> </li><li class="c-breadcrumbs__item" id="breadcrumb1" itemprop="itemListElement" itemscope itemtype="https://schema.org/ListItem"><a class="c-breadcrumbs__link" href="/npjdigitalmed" itemprop="item" data-track="click" data-track-action="breadcrumb" data-track-category="header" data-track-label="link:npj digital medicine"><span itemprop="name">npj digital medicine</span></a><meta itemprop="position" content="2"> <svg class="c-breadcrumbs__chevron" role="img" aria-hidden="true" focusable="false" height="10" viewBox="0 0 10 10" width="10" xmlns="http://www.w3.org/2000/svg"> <path d="m5.96738168 4.70639573 2.39518594-2.41447274c.37913917-.38219212.98637524-.38972225 1.35419292-.01894278.37750606.38054586.37784436.99719163-.00013556 1.37821513l-4.03074001 4.06319683c-.37758093.38062133-.98937525.38100976-1.367372-.00003075l-4.03091981-4.06337806c-.37759778-.38063832-.38381821-.99150444-.01600053-1.3622839.37750607-.38054587.98772445-.38240057 1.37006824.00302197l2.39538588 2.4146743.96295325.98624457z" fill="#666" fill-rule="evenodd" transform="matrix(0 -1 1 0 0 10)"/> </svg> </li><li class="c-breadcrumbs__item" id="breadcrumb2" itemprop="itemListElement" itemscope itemtype="https://schema.org/ListItem"><a class="c-breadcrumbs__link" href="/npjdigitalmed/articles?type&#x3D;review-article" itemprop="item" data-track="click" data-track-action="breadcrumb" data-track-category="header" data-track-label="link:review articles"><span itemprop="name">review articles</span></a><meta itemprop="position" content="3"> <svg class="c-breadcrumbs__chevron" role="img" aria-hidden="true" focusable="false" height="10" viewBox="0 0 10 10" width="10" xmlns="http://www.w3.org/2000/svg"> <path d="m5.96738168 4.70639573 2.39518594-2.41447274c.37913917-.38219212.98637524-.38972225 1.35419292-.01894278.37750606.38054586.37784436.99719163-.00013556 1.37821513l-4.03074001 4.06319683c-.37758093.38062133-.98937525.38100976-1.367372-.00003075l-4.03091981-4.06337806c-.37759778-.38063832-.38381821-.99150444-.01600053-1.3622839.37750607-.38054587.98772445-.38240057 1.37006824.00302197l2.39538588 2.4146743.96295325.98624457z" fill="#666" fill-rule="evenodd" transform="matrix(0 -1 1 0 0 10)"/> </svg> </li><li class="c-breadcrumbs__item" id="breadcrumb3" itemprop="itemListElement" itemscope itemtype="https://schema.org/ListItem"> <span itemprop="name">article</span><meta itemprop="position" content="4"></li> </ol> </div> </nav> </div> <div class="u-container u-mt-32 u-mb-32 u-clearfix" id="content" data-component="article-container" data-container-type="article"> <main class="c-article-main-column u-float-left js-main-column" data-track-component="article body"> <div class="c-context-bar u-hide" data-test="context-bar" data-context-bar aria-hidden="true"> <div class="c-context-bar__container u-container" data-track-context="sticky banner"> <div class="c-context-bar__title"> The performance of artificial intelligence-driven technologies in diagnosing mental disorders: an umbrella review </div> <div class="c-pdf-download u-clear-both js-pdf-download"> <a href="/articles/s41746-022-00631-8.pdf" class="u-button u-button--full-width u-button--primary u-justify-content-space-between c-pdf-download__link" data-article-pdf="true" data-readcube-pdf-url="true" data-test="download-pdf" data-draft-ignore="true" data-track="content_download" data-track-type="article pdf download" data-track-action="download pdf" data-track-label="link" data-track-external download> <span class="c-pdf-download__text">Download PDF</span> <svg aria-hidden="true" focusable="false" width="16" height="16" class="u-icon"><use xlink:href="#icon-download"/></svg> </a> </div> </div> </div> <article lang="en"> <div class="c-pdf-button__container u-mb-16 u-hide-at-lg js-context-bar-sticky-point-mobile"> <div class="c-pdf-container" data-track-context="article body"> <div class="c-pdf-download u-clear-both js-pdf-download"> <a href="/articles/s41746-022-00631-8.pdf" class="u-button u-button--full-width u-button--primary u-justify-content-space-between c-pdf-download__link" data-article-pdf="true" data-readcube-pdf-url="true" data-test="download-pdf" data-draft-ignore="true" data-track="content_download" data-track-type="article pdf download" data-track-action="download pdf" data-track-label="link" data-track-external download> <span class="c-pdf-download__text">Download PDF</span> <svg aria-hidden="true" focusable="false" width="16" height="16" class="u-icon"><use xlink:href="#icon-download"/></svg> </a> </div> </div> </div> <div class="c-article-header"> <header> <ul class="c-article-identifiers" data-test="article-identifier"> <li class="c-article-identifiers__item" data-test="article-category">Review Article</li> <li class="c-article-identifiers__item"> <a href="https://www.springernature.com/gp/open-research/about/the-fundamentals-of-open-access-and-open-research" data-track="click" data-track-action="open access" data-track-label="link" class="u-color-open-access" data-test="open-access">Open access</a> </li> <li class="c-article-identifiers__item">Published: <time datetime="2022-07-07">07 July 2022</time></li> </ul> <h1 class="c-article-title" data-test="article-title" data-article-title="">The performance of artificial intelligence-driven technologies in diagnosing mental disorders: an umbrella review</h1> <ul class="c-article-author-list c-article-author-list--short" data-test="authors-list" data-component-authors-activator="authors-list"><li class="c-article-author-list__item"><a data-test="author-name" data-track="click" data-track-action="open author" data-track-label="link" href="#auth-Alaa-Abd_alrazaq-Aff1" data-author-popup="auth-Alaa-Abd_alrazaq-Aff1" data-author-search="Abd-alrazaq, Alaa">Alaa Abd-alrazaq</a><span class="u-js-hide">  <a class="js-orcid" href="http://orcid.org/0000-0001-7695-4626"><span class="u-visually-hidden">ORCID: </span>orcid.org/0000-0001-7695-4626</a></span><sup class="u-js-hide"><a href="#Aff1">1</a></sup>, </li><li class="c-article-author-list__item"><a data-test="author-name" data-track="click" data-track-action="open author" data-track-label="link" href="#auth-Dari-Alhuwail-Aff2-Aff3" data-author-popup="auth-Dari-Alhuwail-Aff2-Aff3" data-author-search="Alhuwail, Dari">Dari Alhuwail</a><sup class="u-js-hide"><a href="#Aff2">2</a>,<a href="#Aff3">3</a></sup>, </li><li class="c-article-author-list__item c-article-author-list__item--hide-small-screen"><a data-test="author-name" data-track="click" data-track-action="open author" data-track-label="link" href="#auth-Jens-Schneider-Aff4" data-author-popup="auth-Jens-Schneider-Aff4" data-author-search="Schneider, Jens">Jens Schneider</a><sup class="u-js-hide"><a href="#Aff4">4</a></sup>, </li><li class="c-article-author-list__item c-article-author-list__item--hide-small-screen"><a data-test="author-name" data-track="click" data-track-action="open author" data-track-label="link" href="#auth-Carla_T_-Toro-Aff4" data-author-popup="auth-Carla_T_-Toro-Aff4" data-author-search="Toro, Carla T.">Carla T. Toro</a><span class="u-js-hide">  <a class="js-orcid" href="http://orcid.org/0000-0001-6351-1340"><span class="u-visually-hidden">ORCID: </span>orcid.org/0000-0001-6351-1340</a></span><sup class="u-js-hide"><a href="#Aff4">4</a></sup>, </li><li class="c-article-author-list__item c-article-author-list__item--hide-small-screen"><a data-test="author-name" data-track="click" data-track-action="open author" data-track-label="link" href="#auth-Arfan-Ahmed-Aff1" data-author-popup="auth-Arfan-Ahmed-Aff1" data-author-search="Ahmed, Arfan">Arfan Ahmed</a><span class="u-js-hide">  <a class="js-orcid" href="http://orcid.org/0000-0002-4025-5767"><span class="u-visually-hidden">ORCID: </span>orcid.org/0000-0002-4025-5767</a></span><sup class="u-js-hide"><a href="#Aff1">1</a></sup>, </li><li class="c-article-author-list__item c-article-author-list__item--hide-small-screen"><a data-test="author-name" data-track="click" data-track-action="open author" data-track-label="link" href="#auth-Mahmood-Alzubaidi-Aff4" data-author-popup="auth-Mahmood-Alzubaidi-Aff4" data-author-search="Alzubaidi, Mahmood">Mahmood Alzubaidi</a><span class="u-js-hide">  <a class="js-orcid" href="http://orcid.org/0000-0002-6082-7873"><span class="u-visually-hidden">ORCID: </span>orcid.org/0000-0002-6082-7873</a></span><sup class="u-js-hide"><a href="#Aff4">4</a></sup>, </li><li class="c-article-author-list__item c-article-author-list__item--hide-small-screen"><a data-test="author-name" data-track="click" data-track-action="open author" data-track-label="link" href="#auth-Mohannad-Alajlani-Aff5" data-author-popup="auth-Mohannad-Alajlani-Aff5" data-author-search="Alajlani, Mohannad">Mohannad Alajlani</a><sup class="u-js-hide"><a href="#Aff5">5</a></sup> &amp; </li><li class="c-article-author-list__show-more" aria-label="Show all 8 authors for this article" title="Show all 8 authors for this article">…</li><li class="c-article-author-list__item"><a data-test="author-name" data-track="click" data-track-action="open author" data-track-label="link" href="#auth-Mowafa-Househ-Aff4" data-author-popup="auth-Mowafa-Househ-Aff4" data-author-search="Househ, Mowafa" data-corresp-id="c1">Mowafa Househ<svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-mail-medium"></use></svg></a><span class="u-js-hide">  <a class="js-orcid" href="http://orcid.org/0000-0002-3648-6271"><span class="u-visually-hidden">ORCID: </span>orcid.org/0000-0002-3648-6271</a></span><sup class="u-js-hide"><a href="#Aff4">4</a></sup> </li></ul><button aria-expanded="false" class="c-article-author-list__button"><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-down-medium"></use></svg><span>Show authors</span></button> <p class="c-article-info-details" data-container-section="info"> <a data-test="journal-link" href="/npjdigitalmed" data-track="click" data-track-action="journal homepage" data-track-category="article body" data-track-label="link"><i data-test="journal-title">npj Digital Medicine</i></a> <b data-test="journal-volume"><span class="u-visually-hidden">volume</span> 5</b>, Article number: <span data-test="article-number">87</span> (<span data-test="article-publication-year">2022</span>) <a href="#citeas" class="c-article-info-details__cite-as u-hide-print" data-track="click" data-track-action="cite this article" data-track-label="link">Cite this article</a> </p> <div class="c-article-metrics-bar__wrapper u-clear-both"> <ul class="c-article-metrics-bar u-list-reset"> <li class=" c-article-metrics-bar__item" data-test="access-count"> <p class="c-article-metrics-bar__count">19k <span class="c-article-metrics-bar__label">Accesses</span></p> </li> <li class="c-article-metrics-bar__item" data-test="citation-count"> <p class="c-article-metrics-bar__count">30 <span class="c-article-metrics-bar__label">Citations</span></p> </li> <li class="c-article-metrics-bar__item" data-test="altmetric-score"> <p class="c-article-metrics-bar__count">27 <span class="c-article-metrics-bar__label">Altmetric</span></p> </li> <li class="c-article-metrics-bar__item"> <p class="c-article-metrics-bar__details"><a href="/articles/s41746-022-00631-8/metrics" data-track="click" data-track-action="view metrics" data-track-label="link" rel="nofollow">Metrics <span class="u-visually-hidden">details</span></a></p> </li> </ul> </div> </header> <div class="u-js-hide" data-component="article-subject-links"> <h3 class="c-article__sub-heading">Subjects</h3> <ul class="c-article-subject-list"> <li class="c-article-subject-list__subject"><a href="/subjects/diseases" data-track="click" data-track-action="view subject" data-track-label="link">Diseases</a></li><li class="c-article-subject-list__subject"><a href="/subjects/health-care" data-track="click" data-track-action="view subject" data-track-label="link">Health care</a></li><li class="c-article-subject-list__subject"><a href="/subjects/medical-research" data-track="click" data-track-action="view subject" data-track-label="link">Medical research</a></li><li class="c-article-subject-list__subject"><a href="/subjects/psychiatric-disorders" data-track="click" data-track-action="view subject" data-track-label="link">Psychiatric disorders</a></li> </ul> </div> </div> <div class="c-article-body"> <section aria-labelledby="Abs1" data-title="Abstract" lang="en"><div class="c-article-section" id="Abs1-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="Abs1">Abstract</h2><div class="c-article-section__content" id="Abs1-content"><p>Artificial intelligence (AI) has been successfully exploited in diagnosing many mental disorders. Numerous systematic reviews summarize the evidence on the accuracy of AI models in diagnosing different mental disorders. This umbrella review aims to synthesize results of previous systematic reviews on the performance of AI models in diagnosing mental disorders. To identify relevant systematic reviews, we searched 11 electronic databases, checked the reference list of the included reviews, and checked the reviews that cited the included reviews. Two reviewers independently selected the relevant reviews, extracted the data from them, and appraised their quality. We synthesized the extracted data using the narrative approach. We included 15 systematic reviews of 852 citations identified. The included reviews assessed the performance of AI models in diagnosing Alzheimer’s disease (<i>n</i> = 7), mild cognitive impairment (<i>n</i> = 6), schizophrenia (<i>n</i> = 3), bipolar disease (<i>n</i> = 2), autism spectrum disorder (<i>n</i> = 1), obsessive-compulsive disorder (<i>n</i> = 1), post-traumatic stress disorder (<i>n</i> = 1), and psychotic disorders (<i>n</i> = 1). The performance of the AI models in diagnosing these mental disorders ranged between 21% and 100%. AI technologies offer great promise in diagnosing mental health disorders. The reported performance metrics paint a vivid picture of a bright future for AI in this field. Healthcare professionals in the field should cautiously and consciously begin to explore the opportunities of AI-based tools for their daily routine. It would also be encouraging to see a greater number of meta-analyses and further systematic reviews on performance of AI models in diagnosing other common mental disorders such as depression and anxiety.</p></div></div></section> <section aria-labelledby="inline-recommendations" data-title="Inline Recommendations" class="c-article-recommendations" data-track-component="inline-recommendations"> <h3 class="c-article-recommendations-title" id="inline-recommendations">Similar content being viewed by others</h3> <div class="c-article-recommendations-list"> <div class="c-article-recommendations-list__item"> <article class="c-article-recommendations-card" itemscope itemtype="http://schema.org/ScholarlyArticle"> <div class="c-article-recommendations-card__img"><img src="https://media.springernature.com/w215h120/springer-static/image/art%3A10.1038%2Fs44184-023-00035-w/MediaObjects/44184_2023_35_Fig1_HTML.png" loading="lazy" alt=""></div> <div class="c-article-recommendations-card__main"> <h3 class="c-article-recommendations-card__heading" itemprop="name headline"> <a class="c-article-recommendations-card__link" itemprop="url" href="https://www.nature.com/articles/s44184-023-00035-w?fromPaywallRec=false" data-track="select_recommendations_1" data-track-context="inline recommendations" data-track-action="click recommendations inline - 1" data-track-label="10.1038/s44184-023-00035-w">Systematic review of machine learning in PTSD studies for automated diagnosis evaluation </a> </h3> <div class="c-article-meta-recommendations" data-test="recommendation-info"> <span class="c-article-meta-recommendations__item-type">Article</span> <span class="c-article-meta-recommendations__access-type">Open access</span> <span class="c-article-meta-recommendations__date">27 September 2023</span> </div> </div> </article> </div> <div class="c-article-recommendations-list__item"> <article class="c-article-recommendations-card" itemscope itemtype="http://schema.org/ScholarlyArticle"> <div class="c-article-recommendations-card__img"><img src="https://media.springernature.com/w215h120/springer-static/image/art%3A10.1038%2Fs41746-023-00868-x/MediaObjects/41746_2023_868_Fig1_HTML.png" loading="lazy" alt=""></div> <div class="c-article-recommendations-card__main"> <h3 class="c-article-recommendations-card__heading" itemprop="name headline"> <a class="c-article-recommendations-card__link" itemprop="url" href="https://www.nature.com/articles/s41746-023-00868-x?fromPaywallRec=false" data-track="select_recommendations_2" data-track-context="inline recommendations" data-track-action="click recommendations inline - 2" data-track-label="10.1038/s41746-023-00868-x">Challenges of implementing computer-aided diagnostic models for neuroimages in a clinical setting </a> </h3> <div class="c-article-meta-recommendations" data-test="recommendation-info"> <span class="c-article-meta-recommendations__item-type">Article</span> <span class="c-article-meta-recommendations__access-type">Open access</span> <span class="c-article-meta-recommendations__date">13 July 2023</span> </div> </div> </article> </div> <div class="c-article-recommendations-list__item"> <article class="c-article-recommendations-card" itemscope itemtype="http://schema.org/ScholarlyArticle"> <div class="c-article-recommendations-card__img"><img src="https://media.springernature.com/w215h120/springer-static/image/art%3A10.1038%2Fs41746-023-00828-5/MediaObjects/41746_2023_828_Fig1_HTML.png" loading="lazy" alt=""></div> <div class="c-article-recommendations-card__main"> <h3 class="c-article-recommendations-card__heading" itemprop="name headline"> <a class="c-article-recommendations-card__link" itemprop="url" href="https://www.nature.com/articles/s41746-023-00828-5?fromPaywallRec=false" data-track="select_recommendations_3" data-track-context="inline recommendations" data-track-action="click recommendations inline - 3" data-track-label="10.1038/s41746-023-00828-5">Systematic review and meta-analysis of performance of wearable artificial intelligence in detecting and predicting depression </a> </h3> <div class="c-article-meta-recommendations" data-test="recommendation-info"> <span class="c-article-meta-recommendations__item-type">Article</span> <span class="c-article-meta-recommendations__access-type">Open access</span> <span class="c-article-meta-recommendations__date">05 May 2023</span> </div> </div> </article> </div> </div> </section> <script> window.dataLayer = window.dataLayer || []; window.dataLayer.push({ recommendations: { recommender: 'semantic', model: 'specter', policy_id: 'NA', timestamp: 1739800966, embedded_user: 'null' } }); </script> <div class="main-content"> <section data-title="Introduction"><div class="c-article-section" id="Sec1-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="Sec1">Introduction</h2><div class="c-article-section__content" id="Sec1-content"><p>Mental disorders affect a person’s psychological, social, behavioral, and emotional wellbeing<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 1" title="Su, C., Xu, Z., Pathak, J. &amp; Wang, F. Deep learning in mental health outcome research: a scoping review. Transl. Psychiatry 10, 116 (2020)." href="/articles/s41746-022-00631-8#ref-CR1" id="ref-link-section-d489083572e496">1</a></sup>. The impact of mental disorders is not exclusive to the mind; one’s mental health state affects physical wellbeing and vice-versa<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2" title="Ohrnberger, J., Fichera, E. &amp; Sutton, M. The relationship between physical and mental health: a mediation analysis. Soc. Sci. Med. 195, 42–49 (2017)." href="/articles/s41746-022-00631-8#ref-CR2" id="ref-link-section-d489083572e500">2</a></sup>. Globally, mental disorders account for 7% of all total disability-adjusted life years (DALYs) and affect more than 1 billion people, especially those living in high and upper-middle-income nations<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 3" title="Rehm, J. &amp; Shield, K. D. Global burden of disease and the impact of mental and addictive disorders. Curr. Psychiatry Rep. 21, 10 (2019)." href="/articles/s41746-022-00631-8#ref-CR3" id="ref-link-section-d489083572e504">3</a></sup>. This burden is further exacerbated by the fact that up to 50% and 90% of people with mental disorders receive no treatment in high-income countries and low resource settings, respectively<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 4" title="Roland, J., Lawrance, E., Insel, T. &amp; Christensen, H. The digital mental health revolution: transforming care through innovation and scale-up., (Doha, Qatar, 2020)." href="/articles/s41746-022-00631-8#ref-CR4" id="ref-link-section-d489083572e508">4</a></sup>.</p><p>Diagnosing mental disorders is complicated by heterogeneity in clinical presentation, symptomatology, and fluctuations in the course of illness, further compounded by gaps in our understanding of etiological mechanisms. Current practices to diagnose mental disorders rely on frameworks outlined in the Diagnostic and Statistical Manual of Mental Disorders (DSM-5) and the International Classification of Diseases (ICD-11) manual. Diagnosis is based entirely on subjective accounts from patients on the one hand and observations and interpretations made by clinicians on the other; objective measures are still not available<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 5" title="Bzdok, D. &amp; Meyer-Lindenberg, A. Machine learning for precision psychiatry: opportunities and challenges. Biol. Psychiatry. Cogn. Neurosci. Neuroimaging 3, 223–230 (2018)." href="/articles/s41746-022-00631-8#ref-CR5" id="ref-link-section-d489083572e515">5</a></sup>. Furthermore, diagnosing mental disorders can be time- and resource-intensive via administering diagnostic tools, conducting interviews with relatives or caregivers, and taking health histories.</p><p>Digital health tools and technologies offer great opportunities to support and augment diagnostic and interventional aspects of psychiatric care<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 6" title="Roberts, L. W., Chan, S. &amp; Torous, J. New tests, new tools: mobile and connected technologies in advancing psychiatric diagnosis. npj Digital Med. 1, 20176 (2018)." href="/articles/s41746-022-00631-8#ref-CR6" id="ref-link-section-d489083572e522">6</a></sup>. A leading and popular form of such digital technologies is artificial intelligence (AI), which enables machines to learn complex, latent rules and provide actionable conclusions through understanding queries and sifting through and connecting mountains of data points<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 7" title="Abd-Alrazaq, A. et al. Artificial intelligence in the fight against COVID-19: scoping review. J. Med. Internet Res. 22, e20756 (2020)." href="/articles/s41746-022-00631-8#ref-CR7" id="ref-link-section-d489083572e526">7</a></sup>. Advances in the use of AI for diagnostic and therapeutic mental health interventions are on the rise with multiple examples including social bots to support dementia care, sexual disorders, and even virtual psychotherapists<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="Fiske, A., Henningsen, P. &amp; Buyx, A. Your robot therapist will see you now: ethical implications of embodied artificial intelligence in psychiatry, psychology, and psychotherapy. J. Med Internet Res 21, e13216 (2019)." href="#ref-CR8" id="ref-link-section-d489083572e530">8</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="Góngora Alonso, S. et al. Social robots for people with aging and dementia: a systematic review of literature. Telemed. J. e-Health. Off. J. Am. Telemed. Assoc. 25, 533–540 (2019)." href="#ref-CR9" id="ref-link-section-d489083572e530_1">9</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="Martinez-Martin, N. &amp; Kreitmair, K. Ethical issues for direct-to-consumer digital psychotherapy apps: addressing accountability, data protection, and consent. JMIR Ment. health 5, e32 (2018)." href="#ref-CR10" id="ref-link-section-d489083572e530_2">10</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 11" title="Torjesen, I. Sixty seconds on… sex with robots. BMJ 358, j3353 (2017)." href="/articles/s41746-022-00631-8#ref-CR11" id="ref-link-section-d489083572e533">11</a></sup>. AI has great potential to reshape our understanding of mental disorders and how to diagnose them. Leveraging AI to study and make sense of complex patterns and interactions between one’s genes, brain, behaviors, and experiences present an unprecedented opportunity to improve early mental illness detection and personalize treatment options<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 5" title="Bzdok, D. &amp; Meyer-Lindenberg, A. Machine learning for precision psychiatry: opportunities and challenges. Biol. Psychiatry. Cogn. Neurosci. Neuroimaging 3, 223–230 (2018)." href="/articles/s41746-022-00631-8#ref-CR5" id="ref-link-section-d489083572e537">5</a></sup>.</p><p>There have been a wealth of studies examining the accuracy of AI models in diagnosing mental disorders such as Alzheimer’s Disease (AD)<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 12" title="Battista, P., Salvatore, C. &amp; Castiglioni, I. Optimizing neuropsychological assessments for cognitive, behavioral, and functional impairment classification: a machine learning study. Behav. Neurol. 2017, 1850909 (2017)." href="/articles/s41746-022-00631-8#ref-CR12" id="ref-link-section-d489083572e544">12</a></sup>, schizophrenia (SCZ)<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 13" title="Pinaya, W. H. L., Mechelli, A. &amp; Sato, J. R. Using deep autoencoders to identify abnormal brain structural patterns in neuropsychiatric disorders: a large-scale multi-sample study. Hum. Brain Mapp. 40, 944–954 (2019)." href="/articles/s41746-022-00631-8#ref-CR13" id="ref-link-section-d489083572e548">13</a></sup>, bipolar disorders (BD)<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 14" title="Frangou, S., Dima, D. &amp; Jogia, J. Towards person-centered neuroimaging markers for resilience and vulnerability in bipolar disorder. NeuroImage 145, 230–237 (2017)." href="/articles/s41746-022-00631-8#ref-CR14" id="ref-link-section-d489083572e552">14</a></sup>, posttraumatic stress disorders (PTSD)<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 15" title="Salminen, L. E. et al. Adaptive identification of cortical and subcortical imaging markers of early life stress and posttraumatic stress disorder. J. Neuroimaging Off. J. Am. Soc. Neuroimaging 29, 335–343 (2019)." href="/articles/s41746-022-00631-8#ref-CR15" id="ref-link-section-d489083572e556">15</a></sup>, and obsessive-compulsive disorder (OCD)<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 16" title="Takagi, Y. et al. A neural marker of obsessive-compulsive disorder from whole-brain functional connectivity. Sci. Rep. 7, 7538 (2017)." href="/articles/s41746-022-00631-8#ref-CR16" id="ref-link-section-d489083572e560">16</a></sup>. Numerous systematic reviews summarize the evidence resulting from these studies. Although conducting an umbrella review (i.e., a review of systematic reviews) is important to draw more accurate and comprehensive conclusions on a particular topic, to our knowledge, no previous umbrella reviews were published to summarize the evidence about diagnostic performance of AI models for mental disorders. This umbrella review aims to synthesize the previously published evidence on the performance of AI models in diagnosing mental disorders.</p></div></div></section><section data-title="Results"><div class="c-article-section" id="Sec2-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="Sec2">Results</h2><div class="c-article-section__content" id="Sec2-content"><h3 class="c-article__sub-heading" id="Sec3">Search Results</h3><p>As presented in Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41746-022-00631-8#Fig1">1</a>, we identified a total of 852 citations from searching the bibliographic databases. The software EndNote identified and removed 344 duplicates of the retrieved citations. Screening titles and abstracts of the remaining 508 citations led to excluding 446 citations. By reading the full text of the remaining 62 publications, we excluded 48 publications. An additional systematic review was identified through checking the list of the included reviews. In total, 15 systematic reviews were included in the current review<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="Pellegrini, E. et al. Machine learning of neuroimaging for assisted diagnosis of cognitive impairment and dementia: a systematic review. Alzheimer’s Dement. Diagnosis Assess. Dis. Monit. 10, 519–535 (2018)." href="#ref-CR17" id="ref-link-section-d489083572e579">17</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="Billeci, L., Badolato, A., Bachi, L. &amp; Tonacci, A. Machine learning for the classification of alzheimer’s disease and its prodromal stage using brain diffusion tensor imaging data: a systematic review. 8, &#xA; https://doi.org/10.3390/pr8091071&#xA; &#xA; (2020)." href="#ref-CR18" id="ref-link-section-d489083572e579_1">18</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="Sarica, A., Cerasa, A. &amp; Quattrone, A. Random forest algorithm for the classification of neuroimaging data in Alzheimer’s disease: a systematic review. Front. Aging Neurosci. 9, 329 (2017)." href="#ref-CR19" id="ref-link-section-d489083572e579_2">19</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="Ebrahimighahnavieh, M. A., Luo, S. &amp; Chiong, R. Deep learning to detect Alzheimer’s disease from neuroimaging: a systematic literature review. Computer Methods Prog. Biomedicine 187, 105242 (2020)." href="#ref-CR20" id="ref-link-section-d489083572e579_3">20</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="Petti, U., Baker, S. &amp; Korhonen, A. A systematic literature review of automatic Alzheimer’s disease detection from speech and language. J. Am. Med. Inform. Assoc. 27, 1784–1797 (2020)." href="#ref-CR21" id="ref-link-section-d489083572e579_4">21</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="Battista, P. et al. Artificial intelligence and neuropsychological measures: the case of Alzheimer’s disease. Neurosci. Biobehav. Rev. 114, 211–228 (2020)." href="#ref-CR22" id="ref-link-section-d489083572e579_5">22</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="Law, Z. K. et al. The role of EEG in the diagnosis, prognosis and clinical correlations of dementia with lewy bodies-a systematic review. Diagnostics 10, 20 (2020)." href="#ref-CR23" id="ref-link-section-d489083572e579_6">23</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="de Filippis, R. et al. Machine learning techniques in a structural and functional MRI diagnostic approach in schizophrenia: a systematic review. Neuropsychiatr. Dis. Treat. 15, 1605–1627 (2019)." href="#ref-CR24" id="ref-link-section-d489083572e579_7">24</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="Steardo, L. Jr et al. Application of support vector machine on fMRI data as biomarkers in schizophrenia diagnosis: a systematic review. Front. psychiatry Front. Res. Found. 11, 588 (2020)." href="#ref-CR25" id="ref-link-section-d489083572e579_8">25</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="Bracher-Smith, M., Crawford, K. &amp; Escott-Price, V. Machine learning for genetic prediction of psychiatric disorders: a systematic review. Mol. Psychiatry 26, 26 (2020)." href="#ref-CR26" id="ref-link-section-d489083572e579_9">26</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="Librenza-Garcia, D. et al. The impact of machine learning techniques in the study of bipolar disorder: a systematic review. Neurosci. Biobehav. Rev. 80, 538–554 (2017)." href="#ref-CR27" id="ref-link-section-d489083572e579_10">27</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="Moon, S. J. et al. Accuracy of machine learning algorithms for the diagnosis of autism spectrum disorder: systematic review and meta-analysis of brain magnetic resonance imaging studies. JMIR Ment. Health 6, e14108 (2019)." href="#ref-CR28" id="ref-link-section-d489083572e579_11">28</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="Ramos-Lima, L. F. et al. The use of machine learning techniques in trauma-related disorders: a systematic review. J. Psychiatr. Res. 121, 159–172 (2020)." href="#ref-CR29" id="ref-link-section-d489083572e579_12">29</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="Bruin, W., Denys, D. &amp; van Wingen, G. Diagnostic neuroimaging markers of obsessive-compulsive disorder: Initial evidence from structural and functional MRI studies. Prog. Neuropsychopharmacol. Biol. Psychiatry 91, 49–59 (2019)." href="#ref-CR30" id="ref-link-section-d489083572e579_13">30</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 31" title="Sanfelici, R., Dwyer, D. B., Antonucci, L. A. &amp; Koutsouleris, N. Individualized diagnostic and prognostic models for patients with psychosis risk syndromes: a meta-analytic view on the state of the art. Biol. Psychiatry 88, 349–360 (2020)." href="/articles/s41746-022-00631-8#ref-CR31" id="ref-link-section-d489083572e582">31</a></sup>.</p><div class="c-article-section__figure js-c-reading-companion-figures-item" data-test="figure" data-container-section="figure" id="figure-1" data-title="Flow chart of the study selection process: 852 citations were retrieved from searching the databases."><figure><figcaption><b id="Fig1" class="c-article-section__figure-caption" data-test="figure-caption-text">Fig. 1: Flow chart of the study selection process: 852 citations were retrieved from searching the databases.</b></figcaption><div class="c-article-section__figure-content"><div class="c-article-section__figure-item"><a class="c-article-section__figure-link" data-test="img-link" data-track="click" data-track-label="image" data-track-action="view figure" href="/articles/s41746-022-00631-8/figures/1" rel="nofollow"><picture><source type="image/webp" srcset="//media.springernature.com/lw685/springer-static/image/art%3A10.1038%2Fs41746-022-00631-8/MediaObjects/41746_2022_631_Fig1_HTML.png?as=webp"><img aria-describedby="Fig1" src="//media.springernature.com/lw685/springer-static/image/art%3A10.1038%2Fs41746-022-00631-8/MediaObjects/41746_2022_631_Fig1_HTML.png" alt="figure 1" loading="lazy" width="685" height="640"></picture></a></div><div class="c-article-section__figure-description" data-test="bottom-caption" id="figure-1-desc"><p>Of these, 344 duplicates were removed. Screening titles and abstracts of the remaining citations led to excluding 446 citations. By reading the full text of the remaining 62 publications, we excluded 48 publications. An additional systematic review was identified by checking the list of the included reviews. In total, 15 systematic reviews were included in the current.</p></div></div><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="article-link" data-track="click" data-track-label="button" data-track-action="view figure" href="/articles/s41746-022-00631-8/figures/1" data-track-dest="link:Figure1 Full size image" aria-label="Full size image figure 1" rel="nofollow"><span>Full size image</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div><h3 class="c-article__sub-heading" id="Sec4">Characteristics of included reviews</h3><p>Interestingly, the included reviews were published between 2017 and 2020, and more than half of them (<i>n</i> = 8) were published in 2020 (Table <a data-track="click" data-track-label="link" data-track-action="table anchor" href="/articles/s41746-022-00631-8#Tab1">1</a>). The included reviews were conducted in 7 different countries, but more than half of them were conducted in Italy (<i>n</i> = 5) and the United Kingdom (<i>n</i> = 4). All included reviews were articles in peer-reviewed journals. Only four reviews had a registered protocol. All studies except one stated that they followed Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines.</p><div class="c-article-table" data-test="inline-table" data-container-section="table" id="table-1"><figure><figcaption class="c-article-table__figcaption"><b id="Tab1" data-test="table-caption">Table 1 Meta-data of the included reviews.</b></figcaption><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="table-link" data-track="click" data-track-action="view table" data-track-label="button" rel="nofollow" href="/articles/s41746-022-00631-8/tables/1" aria-label="Full size table 1"><span>Full size table</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div><p>With regards to the eligibility criteria, the included studies focused on diagnosing 10 mental disorders, namely: Alzheimer’s disease (AD) (<i>n</i> = 7), mild cognitive impairment (MCI) (<i>n</i> = 6), and Schizophrenia (SCZ) (<i>n</i> = 3) (Table <a data-track="click" data-track-label="link" data-track-action="table anchor" href="/articles/s41746-022-00631-8#Tab2">2</a>). While seven reviews focused on any AI approach, another seven reviews focused merely on supervised machine learning (SML), and one review focused on deep learning (DL). SML uses labeled datasets to train algorithms in order to predict or label new, unforeseen examples, SML is used for classification and regression purposes. UML analyzes unlabeled data to discover hidden features, patterns, and relationships in data. Clustering, association, and dimensionality reduction are three major applications of unsupervised learning models. It is worth mentioning that most deep learning applications are based on supervised learning. More than half of the reviews (<i>n</i> = 8) focused on neuroimaging data for diagnosing mental disorders. While seven reviews restricted the search to studies in the English language, there was no language restriction imposed in six studies. Eight studies applied time restrictions to the search while the remaining studies did not.</p><div class="c-article-table" data-test="inline-table" data-container-section="table" id="table-2"><figure><figcaption class="c-article-table__figcaption"><b id="Tab2" data-test="table-caption">Table 2 Eligibility criteria of the included reviews.</b></figcaption><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="table-link" data-track="click" data-track-action="view table" data-track-label="button" rel="nofollow" href="/articles/s41746-022-00631-8/tables/2" aria-label="Full size table 2"><span>Full size table</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div><p>Varied numbers of electronic databases were searched in the included reviews. The most common databases used in the included reviews are MEDLINE (<i>n</i> = 13), Web of Science (<i>n</i> = 7), EMBASE (<i>n</i> = 6), PsycINFO (<i>n</i> = 5), and Scopus (<i>n</i> = 4) (Table <a data-track="click" data-track-label="link" data-track-action="table anchor" href="/articles/s41746-022-00631-8#Tab3">3</a>). Eight studies used either backward reference list checking (<i>n</i> = 7) or forward reference list checking (<i>n</i> = 1) to identify further studies. Two independent reviewers carried out the study selection process in twelve reviews, performed data extraction in four reviews, and assessed study quality in two reviews. The quality of studies was assessed in nine reviews using six different tools such as a revised tool for Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) and Jadad rating system. Four reviews synthesized the data using meta-analysis.</p><div class="c-article-table" data-test="inline-table" data-container-section="table" id="table-3"><figure><figcaption class="c-article-table__figcaption"><b id="Tab3" data-test="table-caption">Table 3 Search sources, study selection, data extraction, quality assessment, and data synthesis in the included reviews.</b></figcaption><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="table-link" data-track="click" data-track-action="view table" data-track-label="button" rel="nofollow" href="/articles/s41746-022-00631-8/tables/3" aria-label="Full size table 3"><span>Full size table</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div><p>The number of retrieved studies in the included reviews ranged from 52 to 7,991 (Table <a data-track="click" data-track-label="link" data-track-action="table anchor" href="/articles/s41746-022-00631-8#Tab4">4</a>). The number of included studies in the included reviews varied between twelve to 114. The size of data sets used to train and validate models in the included studies ranged between 10 and 7,026 data points. The included studies in the included reviews used different types of data to train and validate models, namely: neuroimaging data (<i>n</i> = 13), neuropsychological data (<i>n</i> = 6), genetic data (<i>n</i> = 4), and Electroencephalography (EEG) measures (<i>n</i> = 4). As shown in Table <a data-track="click" data-track-label="link" data-track-action="table anchor" href="/articles/s41746-022-00631-8#Tab5">5</a>, many methods were used in the included studies, and the most common ones were Support Vector Machine (SVM) (<i>n</i> = 13), Random Forest (RF) (<i>n</i> = 10), Naïve Bayes (NB) (<i>n</i> = 7), <i>k</i>-Nearest Neighbors (k-NN) (<i>n</i> = 5), and Linear Discriminant Analysis (LDA) (<i>n</i> = 5). The models in the included reviews were validated using only internal validation methods (<i>n</i> = 6) or both internal and external validation methods (<i>n</i> = 3).</p><div class="c-article-table" data-test="inline-table" data-container-section="table" id="table-4"><figure><figcaption class="c-article-table__figcaption"><b id="Tab4" data-test="table-caption">Table 4 Search results and dataset features in the included studies in the included reviews.</b></figcaption><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="table-link" data-track="click" data-track-action="view table" data-track-label="button" rel="nofollow" href="/articles/s41746-022-00631-8/tables/4" aria-label="Full size table 4"><span>Full size table</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div><div class="c-article-table" data-test="inline-table" data-container-section="table" id="table-5"><figure><figcaption class="c-article-table__figcaption"><b id="Tab5" data-test="table-caption">Table 5 Features of models in the included studies in the included reviews.</b></figcaption><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="table-link" data-track="click" data-track-action="view table" data-track-label="button" rel="nofollow" href="/articles/s41746-022-00631-8/tables/5" aria-label="Full size table 5"><span>Full size table</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div><h3 class="c-article__sub-heading" id="Sec5">Results of study quality appraisal</h3><p>Two thirds of the included reviews clearly stated the review question or aim by identifying the AI approach of interest and its aim, the target disease, and type of data for the model development (Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41746-022-00631-8#Fig2">2</a>). The eligibility criteria were detailed, clear, and matched the review question in 13 reviews. Six studies showed a clear and adequate search strategy that contained all search terms related to the topic, Subject Headings, and limits. Less than half (<i>n</i> = 7) of the included reviews used adequate search sources such as searching multiple major databases and backward and forward reference list checking. Only five reviews assessed the quality of the included studies using a tool suitable for the review question. The quality assessment was carried out by two or more reviewers independently in only a single review. In three reviews, bias and errors in data extraction were minimal, given that at least two reviewers independently extracted the data using a piloted tool. Publication bias and its potential impact on the findings were assessed in only one review. All included reviews used an adequate approach for data synthesis and provided relevant research and practical implications based on the findings. Supplementary Table <a data-track="click" data-track-label="link" data-track-action="supplementary material anchor" href="/articles/s41746-022-00631-8#MOESM2">1</a> shows reviewers’ judgments about each appraisal item for each included review.</p><div class="c-article-section__figure js-c-reading-companion-figures-item" data-test="figure" data-container-section="figure" id="figure-2" data-title="Review authors’ judgments about each appraisal item: The quality of the included reviews was assessed against appraisal items."><figure><figcaption><b id="Fig2" class="c-article-section__figure-caption" data-test="figure-caption-text">Fig. 2: Review authors’ judgments about each appraisal item: The quality of the included reviews was assessed against appraisal items.</b></figcaption><div class="c-article-section__figure-content"><div class="c-article-section__figure-item"><a class="c-article-section__figure-link" data-test="img-link" data-track="click" data-track-label="image" data-track-action="view figure" href="/articles/s41746-022-00631-8/figures/2" rel="nofollow"><picture><source type="image/webp" srcset="//media.springernature.com/lw685/springer-static/image/art%3A10.1038%2Fs41746-022-00631-8/MediaObjects/41746_2022_631_Fig2_HTML.png?as=webp"><img aria-describedby="Fig2" src="//media.springernature.com/lw685/springer-static/image/art%3A10.1038%2Fs41746-022-00631-8/MediaObjects/41746_2022_631_Fig2_HTML.png" alt="figure 2" loading="lazy" width="685" height="355"></picture></a></div><div class="c-article-section__figure-description" data-test="bottom-caption" id="figure-2-desc"><p>Yes (green) refers that study meets the item, thereby, it has a good quality in terms of that item. No (red) refers that study did not meet the item, thereby, it has poor quality in terms of that item. Unclear (yellow) refers that we could not appraise the study in terms of the item due to the lack of reported information. Not applicable (gray) refers that the appraisal item is not applicable to the systematic review as it does not include a feature that the item assesses.</p></div></div><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="article-link" data-track="click" data-track-label="button" data-track-action="view figure" href="/articles/s41746-022-00631-8/figures/2" data-track-dest="link:Figure2 Full size image" aria-label="Full size image figure 2" rel="nofollow"><span>Full size image</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div><h3 class="c-article__sub-heading" id="Sec6">Results of studies</h3><p>The included reviews assessed the performance of AI models in diagnosing 8 mental disorders: Alzheimer’s disease, mild cognitive impairment, schizophrenia, autism spectrum disorder, bipolar disease, obsessive-compulsive disorder, post-traumatic stress disorder, and psychotic disorders. The performance of the AI models in diagnosing these mental disorders is presented in the next subsections.</p><p>Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by an ongoing decline in brain functions such as memory, executive functions, and language processing<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 32" title="American Psychological Association. Alzheimer’s disease, &#xA; https://dictionary.apa.org/alzheimers-disease&#xA; &#xA; (2022)." href="/articles/s41746-022-00631-8#ref-CR32" id="ref-link-section-d489083572e4082">32</a></sup>. Four reviews assessed the performance of AI classifiers in differentiating AD from healthy control (HC) using neuroimaging data<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="Pellegrini, E. et al. Machine learning of neuroimaging for assisted diagnosis of cognitive impairment and dementia: a systematic review. Alzheimer’s Dement. Diagnosis Assess. Dis. Monit. 10, 519–535 (2018)." href="#ref-CR17" id="ref-link-section-d489083572e4086">17</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="Billeci, L., Badolato, A., Bachi, L. &amp; Tonacci, A. Machine learning for the classification of alzheimer’s disease and its prodromal stage using brain diffusion tensor imaging data: a systematic review. 8, &#xA; https://doi.org/10.3390/pr8091071&#xA; &#xA; (2020)." href="#ref-CR18" id="ref-link-section-d489083572e4086_1">18</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="Sarica, A., Cerasa, A. &amp; Quattrone, A. Random forest algorithm for the classification of neuroimaging data in Alzheimer’s disease: a systematic review. Front. Aging Neurosci. 9, 329 (2017)." href="#ref-CR19" id="ref-link-section-d489083572e4086_2">19</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 20" title="Ebrahimighahnavieh, M. A., Luo, S. &amp; Chiong, R. Deep learning to detect Alzheimer’s disease from neuroimaging: a systematic literature review. Computer Methods Prog. Biomedicine 187, 105242 (2020)." href="/articles/s41746-022-00631-8#ref-CR20" id="ref-link-section-d489083572e4089">20</a></sup> (Table <a data-track="click" data-track-label="link" data-track-action="table anchor" href="/articles/s41746-022-00631-8#Tab6">6</a>). The number of mutual studies was five between Pellegrini et al.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 17" title="Pellegrini, E. et al. Machine learning of neuroimaging for assisted diagnosis of cognitive impairment and dementia: a systematic review. Alzheimer’s Dement. Diagnosis Assess. Dis. Monit. 10, 519–535 (2018)." href="/articles/s41746-022-00631-8#ref-CR17" id="ref-link-section-d489083572e4096">17</a></sup> and Ebrahimighahnavieh et al.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 20" title="Ebrahimighahnavieh, M. A., Luo, S. &amp; Chiong, R. Deep learning to detect Alzheimer’s disease from neuroimaging: a systematic literature review. Computer Methods Prog. Biomedicine 187, 105242 (2020)." href="/articles/s41746-022-00631-8#ref-CR20" id="ref-link-section-d489083572e4100">20</a></sup> and four between Pellegrini et al.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 17" title="Pellegrini, E. et al. Machine learning of neuroimaging for assisted diagnosis of cognitive impairment and dementia: a systematic review. Alzheimer’s Dement. Diagnosis Assess. Dis. Monit. 10, 519–535 (2018)." href="/articles/s41746-022-00631-8#ref-CR17" id="ref-link-section-d489083572e4105">17</a></sup> and Sarica et al.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 19" title="Sarica, A., Cerasa, A. &amp; Quattrone, A. Random forest algorithm for the classification of neuroimaging data in Alzheimer’s disease: a systematic review. Front. Aging Neurosci. 9, 329 (2017)." href="/articles/s41746-022-00631-8#ref-CR19" id="ref-link-section-d489083572e4109">19</a></sup>. Accuracy, sensitivity, and specificity of the classifiers in these four reviews ranged from 56% to 100%, 37.3% to 100%, and 55% to 100%, respectively (Table <a data-track="click" data-track-label="link" data-track-action="table anchor" href="/articles/s41746-022-00631-8#Tab6">6</a>). None of these reviews pooled the results using meta-analysis due to the high heterogeneity in the used classifiers, data types, data features, and types of validation.</p><div class="c-article-table" data-test="inline-table" data-container-section="table" id="table-6"><figure><figcaption class="c-article-table__figcaption"><b id="Tab6" data-test="table-caption">Table 6 Classifier performance in differentiating AD from HC.</b></figcaption><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="table-link" data-track="click" data-track-action="view table" data-track-label="button" rel="nofollow" href="/articles/s41746-022-00631-8/tables/6" aria-label="Full size table 6"><span>Full size table</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div><p>Two other reviews examined the performance of AI classifiers in differentiating AD from HC using neuropsychological data<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 21" title="Petti, U., Baker, S. &amp; Korhonen, A. A systematic literature review of automatic Alzheimer’s disease detection from speech and language. J. Am. Med. Inform. Assoc. 27, 1784–1797 (2020)." href="/articles/s41746-022-00631-8#ref-CR21" id="ref-link-section-d489083572e4481">21</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 22" title="Battista, P. et al. Artificial intelligence and neuropsychological measures: the case of Alzheimer’s disease. Neurosci. Biobehav. Rev. 114, 211–228 (2020)." href="/articles/s41746-022-00631-8#ref-CR22" id="ref-link-section-d489083572e4484">22</a></sup>. There are four mutual studies between the two reviews. Accuracy of the classifiers in these reviews ranged from 68% to 100% (Table <a data-track="click" data-track-label="link" data-track-action="table anchor" href="/articles/s41746-022-00631-8#Tab6">6</a>). One of these reviews meta-analyzed sensitivities and specificities reported in eleven studies and showed a pooled sensitivity of 92% and a pooled specificity of 86%<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 22" title="Battista, P. et al. Artificial intelligence and neuropsychological measures: the case of Alzheimer’s disease. Neurosci. Biobehav. Rev. 114, 211–228 (2020)." href="/articles/s41746-022-00631-8#ref-CR22" id="ref-link-section-d489083572e4491">22</a></sup>.</p><p>Three reviews examined the performance of AI classifiers in differentiating AD from mild cognitive impairment (MCI) using neuroimaging data<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 17" title="Pellegrini, E. et al. Machine learning of neuroimaging for assisted diagnosis of cognitive impairment and dementia: a systematic review. Alzheimer’s Dement. Diagnosis Assess. Dis. Monit. 10, 519–535 (2018)." href="/articles/s41746-022-00631-8#ref-CR17" id="ref-link-section-d489083572e4498">17</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 18" title="Billeci, L., Badolato, A., Bachi, L. &amp; Tonacci, A. Machine learning for the classification of alzheimer’s disease and its prodromal stage using brain diffusion tensor imaging data: a systematic review. 8, &#xA; https://doi.org/10.3390/pr8091071&#xA; &#xA; (2020)." href="/articles/s41746-022-00631-8#ref-CR18" id="ref-link-section-d489083572e4501">18</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 20" title="Ebrahimighahnavieh, M. A., Luo, S. &amp; Chiong, R. Deep learning to detect Alzheimer’s disease from neuroimaging: a systematic literature review. Computer Methods Prog. Biomedicine 187, 105242 (2020)." href="/articles/s41746-022-00631-8#ref-CR20" id="ref-link-section-d489083572e4504">20</a></sup> (Table <a data-track="click" data-track-label="link" data-track-action="table anchor" href="/articles/s41746-022-00631-8#Tab7">7</a>). There are five mutual studies between Pellegrini et al.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 17" title="Pellegrini, E. et al. Machine learning of neuroimaging for assisted diagnosis of cognitive impairment and dementia: a systematic review. Alzheimer’s Dement. Diagnosis Assess. Dis. Monit. 10, 519–535 (2018)." href="/articles/s41746-022-00631-8#ref-CR17" id="ref-link-section-d489083572e4511">17</a></sup> and Ebrahimighahnavieh et al.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 20" title="Ebrahimighahnavieh, M. A., Luo, S. &amp; Chiong, R. Deep learning to detect Alzheimer’s disease from neuroimaging: a systematic literature review. Computer Methods Prog. Biomedicine 187, 105242 (2020)." href="/articles/s41746-022-00631-8#ref-CR20" id="ref-link-section-d489083572e4515">20</a></sup>. Accuracy, sensitivity, and specificity of the classifiers in these three reviews ranged from 56% to 100%, 40.3% to 100%, and 67% to 100%, respectively (Table <a data-track="click" data-track-label="link" data-track-action="table anchor" href="/articles/s41746-022-00631-8#Tab7">7</a>). None of these reviews pooled the results using meta-analysis due to the high heterogeneity. One other review examined the performance of AI classifiers in differentiating AD from MCI using neuropsychological data<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 21" title="Petti, U., Baker, S. &amp; Korhonen, A. A systematic literature review of automatic Alzheimer’s disease detection from speech and language. J. Am. Med. Inform. Assoc. 27, 1784–1797 (2020)." href="/articles/s41746-022-00631-8#ref-CR21" id="ref-link-section-d489083572e4523">21</a></sup>. Accuracy of the classifiers in that review varied between 68% to 86% (Table <a data-track="click" data-track-label="link" data-track-action="table anchor" href="/articles/s41746-022-00631-8#Tab7">7</a>).</p><div class="c-article-table" data-test="inline-table" data-container-section="table" id="table-7"><figure><figcaption class="c-article-table__figcaption"><b id="Tab7" data-test="table-caption">Table 7 Classifier performance in differentiating AD from MCI.</b></figcaption><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="table-link" data-track="click" data-track-action="view table" data-track-label="button" rel="nofollow" href="/articles/s41746-022-00631-8/tables/7" aria-label="Full size table 7"><span>Full size table</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div><p>One review assessed the performance of AI classifiers in differentiating AD from Lewy body dementia (LBD) using EEG measures<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 23" title="Law, Z. K. et al. The role of EEG in the diagnosis, prognosis and clinical correlations of dementia with lewy bodies-a systematic review. Diagnostics 10, 20 (2020)." href="/articles/s41746-022-00631-8#ref-CR23" id="ref-link-section-d489083572e4820">23</a></sup>. Accuracy, sensitivity, specificity, and AUC of the classifiers in this review ranged from 66% to 100%, 76% to 100%, 77% to 100%, and 78% to 93%, respectively.</p><p>Mild cognitive impairment (MCI) refers to deterioration in cognitive functions (e.g., memory, thinking, and language) that is detectable but it is less severe than the deterioration in patients with AD<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 33" title="American Psychological Association. Mild cognitive impairment (MCI), &#xA; https://dictionary.apa.org/mild-cognitive-impairment&#xA; &#xA; (2022)." href="/articles/s41746-022-00631-8#ref-CR33" id="ref-link-section-d489083572e4827">33</a></sup>. MCI represents a transitional stage between the expected cognitive decline associated with normal aging and the more severe decline of dementia<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 33" title="American Psychological Association. Mild cognitive impairment (MCI), &#xA; https://dictionary.apa.org/mild-cognitive-impairment&#xA; &#xA; (2022)." href="/articles/s41746-022-00631-8#ref-CR33" id="ref-link-section-d489083572e4831">33</a></sup>. Four reviews assessed the performance of AI classifiers in differentiating MCI from HC using neuroimaging data<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="Pellegrini, E. et al. Machine learning of neuroimaging for assisted diagnosis of cognitive impairment and dementia: a systematic review. Alzheimer’s Dement. Diagnosis Assess. Dis. Monit. 10, 519–535 (2018)." href="#ref-CR17" id="ref-link-section-d489083572e4835">17</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="Billeci, L., Badolato, A., Bachi, L. &amp; Tonacci, A. Machine learning for the classification of alzheimer’s disease and its prodromal stage using brain diffusion tensor imaging data: a systematic review. 8, &#xA; https://doi.org/10.3390/pr8091071&#xA; &#xA; (2020)." href="#ref-CR18" id="ref-link-section-d489083572e4835_1">18</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="Sarica, A., Cerasa, A. &amp; Quattrone, A. Random forest algorithm for the classification of neuroimaging data in Alzheimer’s disease: a systematic review. Front. Aging Neurosci. 9, 329 (2017)." href="#ref-CR19" id="ref-link-section-d489083572e4835_2">19</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 20" title="Ebrahimighahnavieh, M. A., Luo, S. &amp; Chiong, R. Deep learning to detect Alzheimer’s disease from neuroimaging: a systematic literature review. Computer Methods Prog. Biomedicine 187, 105242 (2020)." href="/articles/s41746-022-00631-8#ref-CR20" id="ref-link-section-d489083572e4838">20</a></sup> (Table <a data-track="click" data-track-label="link" data-track-action="table anchor" href="/articles/s41746-022-00631-8#Tab8">8</a>). The number of mutual studies was five between Pellegrini et al.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 17" title="Pellegrini, E. et al. Machine learning of neuroimaging for assisted diagnosis of cognitive impairment and dementia: a systematic review. Alzheimer’s Dement. Diagnosis Assess. Dis. Monit. 10, 519–535 (2018)." href="/articles/s41746-022-00631-8#ref-CR17" id="ref-link-section-d489083572e4845">17</a></sup> and Ebrahimighahnavieh et al.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 20" title="Ebrahimighahnavieh, M. A., Luo, S. &amp; Chiong, R. Deep learning to detect Alzheimer’s disease from neuroimaging: a systematic literature review. Computer Methods Prog. Biomedicine 187, 105242 (2020)." href="/articles/s41746-022-00631-8#ref-CR20" id="ref-link-section-d489083572e4850">20</a></sup> and four between Pellegrini et al.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 17" title="Pellegrini, E. et al. Machine learning of neuroimaging for assisted diagnosis of cognitive impairment and dementia: a systematic review. Alzheimer’s Dement. Diagnosis Assess. Dis. Monit. 10, 519–535 (2018)." href="/articles/s41746-022-00631-8#ref-CR17" id="ref-link-section-d489083572e4854">17</a></sup> and Sarica et al.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 19" title="Sarica, A., Cerasa, A. &amp; Quattrone, A. Random forest algorithm for the classification of neuroimaging data in Alzheimer’s disease: a systematic review. Front. Aging Neurosci. 9, 329 (2017)." href="/articles/s41746-022-00631-8#ref-CR19" id="ref-link-section-d489083572e4858">19</a></sup>. Accuracy, sensitivity, and specificity of the classifiers in these four reviews ranged from 47% to 99.2%, 24.3% to 98.3%, and 47.1% to 97%, respectively (Table <a data-track="click" data-track-label="link" data-track-action="table anchor" href="/articles/s41746-022-00631-8#Tab8">8</a>). None of these reviews pooled the results using meta-analysis due to the high heterogeneity.</p><div class="c-article-table" data-test="inline-table" data-container-section="table" id="table-8"><figure><figcaption class="c-article-table__figcaption"><b id="Tab8" data-test="table-caption">Table 8 Classifier performance in differentiating MCI from HC.</b></figcaption><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="table-link" data-track="click" data-track-action="view table" data-track-label="button" rel="nofollow" href="/articles/s41746-022-00631-8/tables/8" aria-label="Full size table 8"><span>Full size table</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div><p>Two other reviews examined the performance of AI classifiers in differentiating MCI from HC using neuropsychological data<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 21" title="Petti, U., Baker, S. &amp; Korhonen, A. A systematic literature review of automatic Alzheimer’s disease detection from speech and language. J. Am. Med. Inform. Assoc. 27, 1784–1797 (2020)." href="/articles/s41746-022-00631-8#ref-CR21" id="ref-link-section-d489083572e5230">21</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 22" title="Battista, P. et al. Artificial intelligence and neuropsychological measures: the case of Alzheimer’s disease. Neurosci. Biobehav. Rev. 114, 211–228 (2020)." href="/articles/s41746-022-00631-8#ref-CR22" id="ref-link-section-d489083572e5233">22</a></sup>. Four studies were mutual studies between the two reviews. Accuracy of the classifiers in these reviews ranged from 60% to 98% (Table <a data-track="click" data-track-label="link" data-track-action="table anchor" href="/articles/s41746-022-00631-8#Tab8">8</a>). Only one of these reviews meta-analyzed sensitivities and specificities reported in nine studies and showed pooled sensitivity and specificity of 83% each<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 22" title="Battista, P. et al. Artificial intelligence and neuropsychological measures: the case of Alzheimer’s disease. Neurosci. Biobehav. Rev. 114, 211–228 (2020)." href="/articles/s41746-022-00631-8#ref-CR22" id="ref-link-section-d489083572e5240">22</a></sup>.</p><p>Three reviews examined the performance of AI classifiers in differentiating MCI converting to AD (MCIc) from MCI non-converting to AD (MCInc) using neuroimaging data<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 17" title="Pellegrini, E. et al. Machine learning of neuroimaging for assisted diagnosis of cognitive impairment and dementia: a systematic review. Alzheimer’s Dement. Diagnosis Assess. Dis. Monit. 10, 519–535 (2018)." href="/articles/s41746-022-00631-8#ref-CR17" id="ref-link-section-d489083572e5247">17</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 19" title="Sarica, A., Cerasa, A. &amp; Quattrone, A. Random forest algorithm for the classification of neuroimaging data in Alzheimer’s disease: a systematic review. Front. Aging Neurosci. 9, 329 (2017)." href="/articles/s41746-022-00631-8#ref-CR19" id="ref-link-section-d489083572e5250">19</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 20" title="Ebrahimighahnavieh, M. A., Luo, S. &amp; Chiong, R. Deep learning to detect Alzheimer’s disease from neuroimaging: a systematic literature review. Computer Methods Prog. Biomedicine 187, 105242 (2020)." href="/articles/s41746-022-00631-8#ref-CR20" id="ref-link-section-d489083572e5253">20</a></sup> (Table <a data-track="click" data-track-label="link" data-track-action="table anchor" href="/articles/s41746-022-00631-8#Tab9">9</a>). The number of mutual studies was five between Pellegrini et al.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 17" title="Pellegrini, E. et al. Machine learning of neuroimaging for assisted diagnosis of cognitive impairment and dementia: a systematic review. Alzheimer’s Dement. Diagnosis Assess. Dis. Monit. 10, 519–535 (2018)." href="/articles/s41746-022-00631-8#ref-CR17" id="ref-link-section-d489083572e5260">17</a></sup> and Ebrahimighahnavieh et al<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 20" title="Ebrahimighahnavieh, M. A., Luo, S. &amp; Chiong, R. Deep learning to detect Alzheimer’s disease from neuroimaging: a systematic literature review. Computer Methods Prog. Biomedicine 187, 105242 (2020)." href="/articles/s41746-022-00631-8#ref-CR20" id="ref-link-section-d489083572e5264">20</a></sup> and four between Pellegrini et al.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 17" title="Pellegrini, E. et al. Machine learning of neuroimaging for assisted diagnosis of cognitive impairment and dementia: a systematic review. Alzheimer’s Dement. Diagnosis Assess. Dis. Monit. 10, 519–535 (2018)." href="/articles/s41746-022-00631-8#ref-CR17" id="ref-link-section-d489083572e5268">17</a></sup> and Sarica et al.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 19" title="Sarica, A., Cerasa, A. &amp; Quattrone, A. Random forest algorithm for the classification of neuroimaging data in Alzheimer’s disease: a systematic review. Front. Aging Neurosci. 9, 329 (2017)." href="/articles/s41746-022-00631-8#ref-CR19" id="ref-link-section-d489083572e5273">19</a></sup>. Accuracy, sensitivity, and specificity of the classifiers in these three reviews ranged from 47% to 96.2%, 42.1% to 99%, and 51.2% to 95.2%, respectively (Table <a data-track="click" data-track-label="link" data-track-action="table anchor" href="/articles/s41746-022-00631-8#Tab10">10</a>). None of these reviews pooled the results using meta-analysis due to the high heterogeneity.</p><div class="c-article-table" data-test="inline-table" data-container-section="table" id="table-9"><figure><figcaption class="c-article-table__figcaption"><b id="Tab9" data-test="table-caption">Table 9 Classifier performance in differentiating MCIc from MCInc.</b></figcaption><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="table-link" data-track="click" data-track-action="view table" data-track-label="button" rel="nofollow" href="/articles/s41746-022-00631-8/tables/9" aria-label="Full size table 9"><span>Full size table</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div><div class="c-article-table" data-test="inline-table" data-container-section="table" id="table-10"><figure><figcaption class="c-article-table__figcaption"><b id="Tab10" data-test="table-caption">Table 10 Classifier performance in differentiating SCZ from HC.</b></figcaption><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="table-link" data-track="click" data-track-action="view table" data-track-label="button" rel="nofollow" href="/articles/s41746-022-00631-8/tables/10" aria-label="Full size table 10"><span>Full size table</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div><p>Another review examined the performance of AI classifiers in differentiating MCIc from MCInc using neuropsychological data<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 22" title="Battista, P. et al. Artificial intelligence and neuropsychological measures: the case of Alzheimer’s disease. Neurosci. Biobehav. Rev. 114, 211–228 (2020)." href="/articles/s41746-022-00631-8#ref-CR22" id="ref-link-section-d489083572e5816">22</a></sup>. Accuracy, sensitivity, specificity, and AUC of the classifiers in this review ranged from 61% to 85%, 50% to 91%, 48% to 91%, and 67% to 93%, respectively. This review meta-analyzed sensitivities and specificities reported in ten studies and showed a pooled sensitivity of 73% and a pooled specificity of 69%.</p><p>Schizophrenia (SCZ) is a long-term serious mental disorder, in which patients are not able to differentiate between their thoughts from reality due to disturbances in cognition, emotional responsiveness, and behavior<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 34" title="American Psychological Association. Schizophrenia, &#xA; https://dictionary.apa.org/schizophrenia&#xA; &#xA; (2022)." href="/articles/s41746-022-00631-8#ref-CR34" id="ref-link-section-d489083572e5823">34</a></sup>. Two reviews investigated the performance of AI classifiers in differentiating SCZ from HC using neuroimaging data<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 24" title="de Filippis, R. et al. Machine learning techniques in a structural and functional MRI diagnostic approach in schizophrenia: a systematic review. Neuropsychiatr. Dis. Treat. 15, 1605–1627 (2019)." href="/articles/s41746-022-00631-8#ref-CR24" id="ref-link-section-d489083572e5827">24</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 25" title="Steardo, L. Jr et al. Application of support vector machine on fMRI data as biomarkers in schizophrenia diagnosis: a systematic review. Front. psychiatry Front. Res. Found. 11, 588 (2020)." href="/articles/s41746-022-00631-8#ref-CR25" id="ref-link-section-d489083572e5830">25</a></sup>. There are 15 mutual studies between the two reviews. Accuracy, sensitivity, and specificity of the classifiers in the two reviews ranged from 61% to 99.3%, 57.9% to 100%, and 40.9% to 98.6%, respectively (Table <a data-track="click" data-track-label="link" data-track-action="table anchor" href="/articles/s41746-022-00631-8#Tab10">10</a>). None of these reviews pooled the results using meta-analysis. One review examined the performance of AI classifiers in differentiating SCZ from HC using genetic data<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 26" title="Bracher-Smith, M., Crawford, K. &amp; Escott-Price, V. Machine learning for genetic prediction of psychiatric disorders: a systematic review. Mol. Psychiatry 26, 26 (2020)." href="/articles/s41746-022-00631-8#ref-CR26" id="ref-link-section-d489083572e5837">26</a></sup>. Accuracy and AUC of the classifiers in this review ranged from 40% to 86% and 54% to 95%, respectively.</p><p>Bipolar disorder is a mood disorder that is characterized by mood fluctuations between symptoms of mania or hypomania and depression<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 35" title="American Psychological Association. Bipolar disorder, &#xA; https://dictionary.apa.org/bipolar-disorders&#xA; &#xA; (2022)." href="/articles/s41746-022-00631-8#ref-CR35" id="ref-link-section-d489083572e5845">35</a></sup>. One review assessed the performance of AI classifiers in differentiating bipolar BD from HC using neuroimaging data<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 27" title="Librenza-Garcia, D. et al. The impact of machine learning techniques in the study of bipolar disorder: a systematic review. Neurosci. Biobehav. Rev. 80, 538–554 (2017)." href="/articles/s41746-022-00631-8#ref-CR27" id="ref-link-section-d489083572e5849">27</a></sup>. Accuracy, sensitivity, and specificity of the classifiers ranged from 55% to 100%, 40% to 100%, and 49% to 100%, respectively (Table <a data-track="click" data-track-label="link" data-track-action="table anchor" href="/articles/s41746-022-00631-8#Tab11">11</a>). This review examined the performance of AI classifiers in differentiating BD from HC using neuropsychological data<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 27" title="Librenza-Garcia, D. et al. The impact of machine learning techniques in the study of bipolar disorder: a systematic review. Neurosci. Biobehav. Rev. 80, 538–554 (2017)." href="/articles/s41746-022-00631-8#ref-CR27" id="ref-link-section-d489083572e5856">27</a></sup>. Accuracy of classifiers varied between 71% and 96.4% (Table <a data-track="click" data-track-label="link" data-track-action="table anchor" href="/articles/s41746-022-00631-8#Tab11">11</a>). This review also investigated the performance of AI classifiers in differentiating BD from major depressive disorder using neuroimaging data. Accuracy, sensitivity, and specificity of the classifiers ranged from 54.76% to 92.1% (<i>n</i> = 7), 57.9 to 83% (<i>n</i> = 3), and 52.1 to 90.9% (<i>n</i> = 3), respectively. Another review used genetic data and AI classifiers to differentiate BD from HC<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 26" title="Bracher-Smith, M., Crawford, K. &amp; Escott-Price, V. Machine learning for genetic prediction of psychiatric disorders: a systematic review. Mol. Psychiatry 26, 26 (2020)." href="/articles/s41746-022-00631-8#ref-CR26" id="ref-link-section-d489083572e5873">26</a></sup>. Accuracy and AUC of the classifiers ranged from 54% to 77% and 48% to 65%, respectively (Table <a data-track="click" data-track-label="link" data-track-action="table anchor" href="/articles/s41746-022-00631-8#Tab11">11</a>).</p><div class="c-article-table" data-test="inline-table" data-container-section="table" id="table-11"><figure><figcaption class="c-article-table__figcaption"><b id="Tab11" data-test="table-caption">Table 11 Classifier performance in differentiating BD from HC.</b></figcaption><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="table-link" data-track="click" data-track-action="view table" data-track-label="button" rel="nofollow" href="/articles/s41746-022-00631-8/tables/11" aria-label="Full size table 11"><span>Full size table</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div><p>Autism spectrum disorder (ASD) is a group of disorders (e.g., autism, childhood disintegrative disorder, and Asperger’s disorder) that starts usually in the preschool period and is characterized by difficulties or impairment in communication and social interaction<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 36" title="American Psychological Association. Autism spectrum disorder &#xA; https://dictionary.apa.org/autism-spectrum-disorder&#xA; &#xA; (2022)." href="/articles/s41746-022-00631-8#ref-CR36" id="ref-link-section-d489083572e6139">36</a></sup>. One review investigated the performance of AI classifiers in differentiating ASD from HC using neuroimaging data<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 28" title="Moon, S. J. et al. Accuracy of machine learning algorithms for the diagnosis of autism spectrum disorder: systematic review and meta-analysis of brain magnetic resonance imaging studies. JMIR Ment. Health 6, e14108 (2019)." href="/articles/s41746-022-00631-8#ref-CR28" id="ref-link-section-d489083572e6143">28</a></sup>. Accuracy, sensitivity, and specificity of the classifiers in the review ranged from 45% to 97%, 24% to 100%, and 21% to 100%, respectively (Table <a data-track="click" data-track-label="link" data-track-action="table anchor" href="/articles/s41746-022-00631-8#Tab12">12</a>). The review meta-analyzed sensitivities and specificities of AI classifiers based on structured MRI (sMRI) in 11 studies. The review found a pooled sensitivity of 83%, a pooled specificity of 84%, a pooled AUC of 90%<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 28" title="Moon, S. J. et al. Accuracy of machine learning algorithms for the diagnosis of autism spectrum disorder: systematic review and meta-analysis of brain magnetic resonance imaging studies. JMIR Ment. Health 6, e14108 (2019)." href="/articles/s41746-022-00631-8#ref-CR28" id="ref-link-section-d489083572e6150">28</a></sup>. The review also meta-analyzed sensitivities and specificities of deep neural network-based classifiers in one study (five samples) that used functional MRI (fMRI) as a predictor. The review found a pooled sensitivity of 69%, a pooled specificity of 66%, and a pooled AUC of 71%<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 28" title="Moon, S. J. et al. Accuracy of machine learning algorithms for the diagnosis of autism spectrum disorder: systematic review and meta-analysis of brain magnetic resonance imaging studies. JMIR Ment. Health 6, e14108 (2019)." href="/articles/s41746-022-00631-8#ref-CR28" id="ref-link-section-d489083572e6154">28</a></sup>.</p><div class="c-article-table" data-test="inline-table" data-container-section="table" id="table-12"><figure><figcaption class="c-article-table__figcaption"><b id="Tab12" data-test="table-caption">Table 12 Classifier performance in differentiating ASD from HC.</b></figcaption><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="table-link" data-track="click" data-track-action="view table" data-track-label="button" rel="nofollow" href="/articles/s41746-022-00631-8/tables/12" aria-label="Full size table 12"><span>Full size table</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div><p>The review assessed the performance of AI classifiers in differentiating ASD from HC using a neuropsychological test (behavior traits)<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 28" title="Moon, S. J. et al. Accuracy of machine learning algorithms for the diagnosis of autism spectrum disorder: systematic review and meta-analysis of brain magnetic resonance imaging studies. JMIR Ment. Health 6, e14108 (2019)." href="/articles/s41746-022-00631-8#ref-CR28" id="ref-link-section-d489083572e6464">28</a></sup>. Accuracy, sensitivity, and specificity of the classifiers in the review ranged from 78.1% to 100%, 64% to 100%, and 48% to 97%, respectively (Table <a data-track="click" data-track-label="link" data-track-action="table anchor" href="/articles/s41746-022-00631-8#Tab12">12</a>). Further, the review tested the performance of AI classifiers in differentiating ASD from HC using biochemical features<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 28" title="Moon, S. J. et al. Accuracy of machine learning algorithms for the diagnosis of autism spectrum disorder: systematic review and meta-analysis of brain magnetic resonance imaging studies. JMIR Ment. Health 6, e14108 (2019)." href="/articles/s41746-022-00631-8#ref-CR28" id="ref-link-section-d489083572e6471">28</a></sup>. Accuracy, sensitivity, and specificity of the classifiers in the review ranged from 75% to 94%, 77% to 94%, and 67% to 93%, respectively (Table <a data-track="click" data-track-label="link" data-track-action="table anchor" href="/articles/s41746-022-00631-8#Tab12">12</a>). The review also examined the performance of AI classifiers in differentiating ASD from HC using EEG measures<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 28" title="Moon, S. J. et al. Accuracy of machine learning algorithms for the diagnosis of autism spectrum disorder: systematic review and meta-analysis of brain magnetic resonance imaging studies. JMIR Ment. Health 6, e14108 (2019)." href="/articles/s41746-022-00631-8#ref-CR28" id="ref-link-section-d489083572e6478">28</a></sup>. Accuracy, sensitivity, and specificity of the classifiers in the review ranged from 85% to 100%, 94% to 97%, and 81% to 94%, respectively (Table <a data-track="click" data-track-label="link" data-track-action="table anchor" href="/articles/s41746-022-00631-8#Tab12">12</a>). The review did not conduct a meta-analysis for the above-mentioned results due to heterogeneity between samples<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 28" title="Moon, S. J. et al. Accuracy of machine learning algorithms for the diagnosis of autism spectrum disorder: systematic review and meta-analysis of brain magnetic resonance imaging studies. JMIR Ment. Health 6, e14108 (2019)." href="/articles/s41746-022-00631-8#ref-CR28" id="ref-link-section-d489083572e6486">28</a></sup>.</p><p>Posttraumatic stress disorder (PTSD) refers to feelings of fear, anxiety, irritability, terror, or guilty that result from remembering very stressful, life-threatening, frightening, distressing events that a patient lived through or witnessed in the past<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 37" title="American Psychological Association. Posttraumatic stress disorder &#xA; https://dictionary.apa.org/posttraumatic-stress-disorder&#xA; &#xA; (2022)." href="/articles/s41746-022-00631-8#ref-CR37" id="ref-link-section-d489083572e6493">37</a></sup>. One review examined the performance of AI classifiers in differentiating PTSD from HC<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 29" title="Ramos-Lima, L. F. et al. The use of machine learning techniques in trauma-related disorders: a systematic review. J. Psychiatr. Res. 121, 159–172 (2020)." href="/articles/s41746-022-00631-8#ref-CR29" id="ref-link-section-d489083572e6497">29</a></sup>. Accuracy of the classifiers using neuroimaging data varied between 89.2% and 92.3% (<i>n</i> = 3). The review also assessed the performance of AI classifiers in differentiating PTSD from trauma-exposed controls<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 29" title="Ramos-Lima, L. F. et al. The use of machine learning techniques in trauma-related disorders: a systematic review. J. Psychiatr. Res. 121, 159–172 (2020)." href="/articles/s41746-022-00631-8#ref-CR29" id="ref-link-section-d489083572e6504">29</a></sup>. Accuracy of the classifiers using neuroimaging data varied between 67% and 83.6% (<i>n</i> = 4). Meta-analysis was not carried out in the review.</p><p>Obsessive-compulsive disorder (OCD) is a mental health condition in which an individual has frequent intrusive thoughts that lead him or her to perform repetitive behaviors, which may affect daily activities and cause severe distress<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 38" title="American Psychological Association. Obsessive compulsive disorder, &#xA; https://dictionary.apa.org/obsessive-compulsive-disorder&#xA; &#xA; (2022)." href="/articles/s41746-022-00631-8#ref-CR38" id="ref-link-section-d489083572e6514">38</a></sup>. One review assessed the performance of supervised machine learning classifiers in distinguishing OCD from HC using neuroimaging data<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 30" title="Bruin, W., Denys, D. &amp; van Wingen, G. Diagnostic neuroimaging markers of obsessive-compulsive disorder: Initial evidence from structural and functional MRI studies. Prog. Neuropsychopharmacol. Biol. Psychiatry 91, 49–59 (2019)." href="/articles/s41746-022-00631-8#ref-CR30" id="ref-link-section-d489083572e6518">30</a></sup>. Accuracy, sensitivity, and specificity of the classifiers in the review ranged from 66% to 100% (<i>n</i> = 11), 74.1% to 96.2% (<i>n</i> = 6), and 72.7% to 95% (<i>n</i> = 6), respectively. The review did not pool the results using meta-analysis.</p><p>Psychotic disorders are a group of mental disorders in which a patient has incorrect perceptions, thoughts, and inferences about external reality although there is contrary evidence<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 39" title="American Psychological Association. Psychotic disorders &#xA; https://dictionary.apa.org/psychotic-disorders&#xA; &#xA; (2022)." href="/articles/s41746-022-00631-8#ref-CR39" id="ref-link-section-d489083572e6534">39</a></sup>. One review examined the performance of AI classifiers in differentiating patients with a high risk of developing psychotic disorders from HC using neuroimaging data or neuropsychological tests<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 31" title="Sanfelici, R., Dwyer, D. B., Antonucci, L. A. &amp; Koutsouleris, N. Individualized diagnostic and prognostic models for patients with psychosis risk syndromes: a meta-analytic view on the state of the art. Biol. Psychiatry 88, 349–360 (2020)." href="/articles/s41746-022-00631-8#ref-CR31" id="ref-link-section-d489083572e6538">31</a></sup>. Sensitivity and specificity of the classifiers in the review ranged from 60% to 96% (<i>n</i> = 12) and 47% to 94 (<i>n</i> = 12), respectively. The review meta-analyzed sensitivities and specificities of AI classifiers in 12 studies and found a pooled sensitivity of 78% and a pooled specificity of 77%<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 31" title="Sanfelici, R., Dwyer, D. B., Antonucci, L. A. &amp; Koutsouleris, N. Individualized diagnostic and prognostic models for patients with psychosis risk syndromes: a meta-analytic view on the state of the art. Biol. Psychiatry 88, 349–360 (2020)." href="/articles/s41746-022-00631-8#ref-CR31" id="ref-link-section-d489083572e6548">31</a></sup>.</p></div></div></section><section data-title="Discussion"><div class="c-article-section" id="Sec7-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="Sec7">Discussion</h2><div class="c-article-section__content" id="Sec7-content"><p>This umbrella review provides an evidence map of the state of the art of AI technologies in diagnosing mental health disorders. The 15 included systematic reviews focused on diagnosing 8 mental disorders. Considering the probability for MCI to progress into clinically diagnosed AD paired with our still limited understanding of contributing factors, it is hardly surprising that more than 200 original studies and 40% of the included reviews focused on AD and MCI.</p><p>We also observe that the reported pooled sensitivity of 92% and specificity of 86% for classifying AD vs. HC is higher than for classifying MCI vs. HC (83% pooled sensitivity and specificity), and both are higher than for classifying MCIc vs. MCInc (73% pooled sensitivity and 69% specificity)<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 22" title="Battista, P. et al. Artificial intelligence and neuropsychological measures: the case of Alzheimer’s disease. Neurosci. Biobehav. Rev. 114, 211–228 (2020)." href="/articles/s41746-022-00631-8#ref-CR22" id="ref-link-section-d489083572e6564">22</a></sup>. This may be attributed to the fact that AD is a neurodegenerative disease, thereby, there is a continuum ranging from AD on one extreme to HC on the other. Accordingly, discerning extremal cases seems intuitively easier than between more similar stages. This is in line with the reported performances for differentiating PTSD from HC being higher than from trauma-exposed controls<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 29" title="Ramos-Lima, L. F. et al. The use of machine learning techniques in trauma-related disorders: a systematic review. J. Psychiatr. Res. 121, 159–172 (2020)." href="/articles/s41746-022-00631-8#ref-CR29" id="ref-link-section-d489083572e6568">29</a></sup>. However, we would also like to point out that the same review reports methods with better performance than the pooled sensitivities and specificities quoted above. This raises the question if such pooling is meaningful from the point of a user, since it obfuscates the existence of better diagnostic tools in the same review.</p><p>For classifying SCZ vs. HC, we observe that neuroimaging data tends to lead to better-performing classifiers than genetic data. Unsurprisingly, using genetic data alone leads to significantly lower performance, reflecting that both genetic and environmental factors causing SCZ are described in the literature<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 40" title="Owen, M. J., Sawa, A. &amp; Mortensen, P. B. Schizophrenia. Lancet 388, 86–97 (2016)." href="/articles/s41746-022-00631-8#ref-CR40" id="ref-link-section-d489083572e6575">40</a></sup>. Likewise, classifying BD from HC using genetic data alone shows lower performance. It is interesting to note that for BD vs. HC, neuropsychological data seems to achieve decent accuracy (71%-96.4%) more reliably than neuroimaging data (55%-100%). However, this may also be a result of low sample count (<i>n</i> = 3 using neuropsychological data, <i>n</i> = 8 using neuroimaging data).</p><p>For discriminating ASD from HC, most data types can support methods with good accuracy but using biochemical features or EEG measures lead to a significantly increased sensitivity and specificity. Structured MRI leads to better-pooled specificities and sensitivities when compared to functional MRI. This can be attributed to two reasons: (1) sMRI findings resulted from pooling 12 samples from 10 different studies while fMRI resulted from five samples from only two studies, and (2) the deep neural network (DNN) was used as a classifier in the fMRI studies whereas it was used as a classifier in only one sMRI study<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 28" title="Moon, S. J. et al. Accuracy of machine learning algorithms for the diagnosis of autism spectrum disorder: systematic review and meta-analysis of brain magnetic resonance imaging studies. JMIR Ment. Health 6, e14108 (2019)." href="/articles/s41746-022-00631-8#ref-CR28" id="ref-link-section-d489083572e6588">28</a></sup>.</p><p>One review showed promising results regarding the performance of AI models in distinguishing OCD from HC using neuroimaging data. These results should be interpreted carefully for three reasons. First, these results are based on studies with small samples (i.e., 20-172). Second, most included studies used cross validation methods to assess the performance of their models, which is not the most suitable method when the sample size is small. Third, large heterogeneity in OCD patients and the classification features in the included studies.</p><p>We found acceptable pooled sensitivity (78%) and pooled specificity (77%) for differentiating patients with a high risk of developing psychotic disorders from HC. However, the authors of that review could not draw a definitive conclusion about applicability of AI models due to high clinical and methodological heterogeneity in meta-analyzed studies.</p><p>Reporting practices in the original literature continue to severely hinder statistical meta-analysis of results. On the one hand, the reported up-to-perfect performance for many tasks by the included studies signals a new age of AI, where, given the right modality and amount of data impressive results are reported tasks with real-world significance. However, considering that many original studies seemingly choose performance metrics at random could suggest a definition of success by choice of metric rather than by the task at hand. This, in turn, leaves us with an ambivalent feeling regarding the usefulness of attempts of such analyses (as, e.g., performed by Battista et al.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 22" title="Battista, P. et al. Artificial intelligence and neuropsychological measures: the case of Alzheimer’s disease. Neurosci. Biobehav. Rev. 114, 211–228 (2020)." href="/articles/s41746-022-00631-8#ref-CR22" id="ref-link-section-d489083572e6602">22</a></sup>). Between two competing methods that (a) are properly validated with a large enough cohort, (b) have shown sufficient generalization (e.g., in the form of an external validation) and that (c) use the same data modality, the one with the better performance should be chosen. This underscores the importance of following proper reporting practices, since statistical evaluation (from a clinical, not technological point of view) otherwise seems moot.</p><p>The included reviews focused on the performance of AI models in diagnosing 8 mental disorders. However, our search process did not pick up on systematic reviews for several other mental disorders, such as major depressive disorder (MDD), anxiety, eating disorders, and personality disorders. Thus, there is a need to conduct systematic reviews to synthesize the evidence on performance of AI models in diagnosing such mental disorders.</p><p>The systematic review of AI studies differentiating high-risk psychosis cases with healthy controls<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 31" title="Sanfelici, R., Dwyer, D. B., Antonucci, L. A. &amp; Koutsouleris, N. Individualized diagnostic and prognostic models for patients with psychosis risk syndromes: a meta-analytic view on the state of the art. Biol. Psychiatry 88, 349–360 (2020)." href="/articles/s41746-022-00631-8#ref-CR31" id="ref-link-section-d489083572e6612">31</a></sup> is a case example of where the field could benefit from more research. The benefits of early diagnosis could offer the opportunity for intervention prior to full development of a psychotic disorder. Further studies could focus on at-risk groups or identifying ‘at-risk’ for other disorders such as anxiety and MDD and possibly broaden data source types to those that are more accessible and practical than neuroimaging data.</p><p>Neuroimaging data for AI models seemed to dominate in the systematic reviews included in this review. In spite of the promising performance of these AI models, we question the practicality of incorporating neuroimaging data into routine diagnostic practice due to it being a resource-intensive procedure. By contrast, AI models of neuropsychological, genetic, and EEG tests could offer exciting opportunities to complement and improve existing diagnostic processes in mental healthcare.</p><p>According to the performance reported in the included studies, AI shows a great potential to lead to accelerated, accurate, and more objective diagnoses. The findings in this review strongly suggest that AI is on the jump into clinical use. We believe it is therefore important to educate practitioners exploring the potential for new diagnostic and therapeutic methods as they shift their focus as in so many other jobs that now begin utilizing AI<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 8" title="Fiske, A., Henningsen, P. &amp; Buyx, A. Your robot therapist will see you now: ethical implications of embodied artificial intelligence in psychiatry, psychology, and psychotherapy. J. Med Internet Res 21, e13216 (2019)." href="/articles/s41746-022-00631-8#ref-CR8" id="ref-link-section-d489083572e6623">8</a></sup>; this exploratory use should be ethical and cautious. The availability of high-quality AI solutions may even pave the way for an entirely new medical specialization. More important for reliable AI-based classifiers than sample sizes, however, are reproducibility and generality. For a method to be reproducible, data and code must be made available, such that other research teams can verify the code and ensure that the method is free from oversights. For a method to be general, it must deliver results similar to the reported ones on new, previously unseen data. Currently, single site cross-validation is the most common approach; however, validation of new models would benefit greatly from replication using data from external samples.</p><p>Many original studies focus on the technical/algorithmic aspects rather than the choice of data modality. This is a consequence of the fact that (supervised) AI is extremely data-hungry, yet high-quality, labeled data is a scarce and expensive resource. It represents a significant amount of effort and manpower. This dependence of contemporary AI on humans dedicating time to first gather and clean, then feed it with data has been likened to a parasitic relationship<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 41" title="Robbins, J. If technology is a parasite masquerading as a symbiont—are we the host? IEEE Technol. Soc. Mag. 38, 24–33 (2019)." href="/articles/s41746-022-00631-8#ref-CR41" id="ref-link-section-d489083572e6630">41</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 42" title="Sætra, H. S. The parasitic nature of social AI: sharing minds with the mindless. Integr. Psychol. Behav. Sci. 54, 308–326 (2020)." href="/articles/s41746-022-00631-8#ref-CR42" id="ref-link-section-d489083572e6633">42</a></sup>. As the AI grows, it promises higher utility to humans, which are thus motivated to sift through more data. The temptation to achieve results with the data at hand instead of a thorough investigation into which modality offers the best results is understandably high.</p><p>The main limitation of this review is that the data was not synthesized statistically. We could not synthesize the data statistically for three reasons. Firstly, the included reviews were inconsistent in reporting the results of classifier performance. Secondly, most reviews did not extract or present data that is necessary for assessing classifier performance and aggregating the data statistically (i.e., true positive, false positive, true negative, and false negative). Lastly and most importantly, there was high heterogeneity in the AI classifiers (e.g., SVM, DT, RF, CNN, K-NN), data types (e.g., neuroimaging data, genetic data, demographic data), data features (e.g., axial diffusivity, radial diffusivity, mean diffusivity, fractional anisotropy), target mental disorder, model validation approach, and measures of classifier performance reported in the included reviews.</p><p>We also do not present the range of performance metrics for classification tasks that were reported by less than three studies. For example, we do not report the classifier performance of AI approaches in distinguishing anorexia nervosa from healthy controls as it was assessed by only one study in one of the included reviews<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 26" title="Bracher-Smith, M., Crawford, K. &amp; Escott-Price, V. Machine learning for genetic prediction of psychiatric disorders: a systematic review. Mol. Psychiatry 26, 26 (2020)." href="/articles/s41746-022-00631-8#ref-CR26" id="ref-link-section-d489083572e6643">26</a></sup>. Another limitation of this review is that we did not exclude the mutual primary studies between reviews. Therefore, there may be some duplicates in the ranges of classifier performance reported in our review. However, we declared the number of mutual studies between reviews when we aggregated ranges from more than two reviews. We did not exclude reviews based on their quality because most included reviews were judged as low quality in at least four appraisal items. Quality-based exclusion would therefore have resulted in including too few reviews in this work.</p><p>To conclude, AI shows a great potential to lead to accelerated, accurate, and more objective diagnoses of mental health disorders. The findings in this review strongly suggest that AI is on the jump into clinical use. Up-to-perfect performance is reported in many of the included studies, but much of that performance depends on the correct choice of data modality paired with correct technical choices (e.g., AI algorithms and methods). While AI promises a valid path for impartial and objective classification of mental disorders, practitioners in any field need to understand the basic aspect and behavior of their tools. We therefore believe that ethical considerations will gain importance in the future as well. With these considerations in mind, we recommend that healthcare professionals in the field (e.g., psychiatrists, psychologists) cautiously and consciously begin to explore the opportunities of AI-based tools for their daily routine. This recommendation is based on the potential we see in the technology reviewed in this study and the hope for rigorous evaluation in a clinical environment.</p></div></div></section><section data-title="Methods"><div class="c-article-section" id="Sec8-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="Sec8">Methods</h2><div class="c-article-section__content" id="Sec8-content"><p>An umbrella review was conducted and reported in keeping with the Joanna Briggs Institute’s (JBI) guidelines for umbrella reviews<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 43" title="Aromataris, E. et al. Methodology for JBI umbrella reviews. 1–34 &#xA; https://nursing.lsuhsc.edu/JBI/docs/ReviewersManuals/Umbrella%20Reviews.pdf&#xA; &#xA; (2014)." href="/articles/s41746-022-00631-8#ref-CR43" id="ref-link-section-d489083572e6658">43</a></sup>. The protocol for this review is registered at PROSPERO (ID: CRD42021231558).</p><h3 class="c-article__sub-heading" id="Sec9">Search strategy</h3><p>We utilized the following bibliographic databases in our search: MEDLINE (via Ovid), PsycInfo (via EBSCO), CINAHL (EBSCO), IEEE Xplore, ACM Digital Library, Scopus, Cochrane Database of Systematic Reviews, DARE, and the PROSPERO register, JBI Evidence Synthesis, and Epistemonikos. These databases were searched on August 12, 2021 by the lead author. When applicable, we set auto alerts to conduct an automatic search weekly for 12 weeks (ending on December 12, 2021). We also searched the search engine “Google Scholar” to identify gray literature. We checked only the first 50 hits given that Google Scholar retrieved a massive number of hits and order them based on their relevancy. To identify further studies of relevance to the review, we screened the reference lists of included reviews (i.e., backward reference list checking) and identified and screened systematic reviews that cited the included reviews (i.e., forward reference list checking).</p><p>We developed the search query by consulting two experts in digital mental health and by checking systematic reviews of relevance to the review. These terms were chosen based on the target population (i.e., mental disorders), target intervention (i.e., AI-based approaches), and target study design (i.e., systematic review). Supplementary Table <a data-track="click" data-track-label="link" data-track-action="supplementary material anchor" href="/articles/s41746-022-00631-8#MOESM2">2</a> presents the detailed search query used for searching each database.</p><h3 class="c-article__sub-heading" id="Sec10">Study eligibility criteria</h3><p>This review included systematic reviews that focused on the performance of AI-based approaches in diagnosing mental disorders regardless of data type (e.g., neuroimaging data, neuropsychological data, demographical data, and clinical data), year of publication, and country of publication. We excluded systematic reviews that focused on AI-based approaches for predicting outcomes of intervention or prognosis of mental disorders. We also excluded reviews that did not show at least one of the following measures of classifier performance: accuracy, sensitivity, specificity, or area under the curve (AUC). Further, we excluded primary studies, scoping reviews, literature reviews, rapid reviews, criterial reviews, and other types of reviews. While systematic reviews published as journal articles, conference proceedings, and dissertations were included, we excluded conference abstracts and posters, commentaries, preprints, proposals, and editorials. We considered systematic reviews published only in the English language.</p><h3 class="c-article__sub-heading" id="Sec11">Study selection</h3><p>We followed two steps to identify the relevant reviews. In the first step, two reviewers (AA and MH) independently checked the titles and abstracts of all identified studies. In the second step, the full texts of studies included from the first step were read by the two reviewers independently. In both steps, the two reviewers resolved any disagreements through discussion and consensus.</p><h3 class="c-article__sub-heading" id="Sec12">Data extraction</h3><p>We developed a form to precisely and systematically extract the data from the included reviews (Supplementary Table <a data-track="click" data-track-label="link" data-track-action="supplementary material anchor" href="/articles/s41746-022-00631-8#MOESM2">3</a>). The form was pilot-tested using two included reviews. Two reviewers (AA &amp; MH) independently extracted data from the included reviews using Microsoft Excel. Any disagreements between the reviewers were resolved through discussion and consensus.</p><h3 class="c-article__sub-heading" id="Sec13">Study quality appraisal</h3><p>Two reviewers (AA and MH) independently assessed the quality of the included reviews using Joanna Briggs Institute Critical Appraisal Checklist for Systematic Reviews and Research Syntheses<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 43" title="Aromataris, E. et al. Methodology for JBI umbrella reviews. 1–34 &#xA; https://nursing.lsuhsc.edu/JBI/docs/ReviewersManuals/Umbrella%20Reviews.pdf&#xA; &#xA; (2014)." href="/articles/s41746-022-00631-8#ref-CR43" id="ref-link-section-d489083572e6711">43</a></sup>. Any disagreements between the reviewers were resolved through discussion and consensus. Inter-rater agreement between the reviewers was very good (0.85)<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 44" title="Altman, D. G. Practical statistics for medical research. (CRC press, 1990)." href="/articles/s41746-022-00631-8#ref-CR44" id="ref-link-section-d489083572e6715">44</a></sup>.</p><h3 class="c-article__sub-heading" id="Sec14">Data synthesis</h3><p>We synthesized the extracted data using the narrative approach. Specifically, results of the included reviews were grouped based on the target mental disorders that the AI classifiers distinguish. The results in each group were further aggregated based on the data types used to diagnose the target mental disorder. Given the high heterogeneity in the AI classifiers, data types, target mental disorder, and measures of classifier performance reported in the included reviews, we could not synthesize the results statistically. Therefore, we reported the range of results of measures of classifier performance. In addition, results that were reported by fewer than three primary studies in the included reviews are not reported in our review.</p><h3 class="c-article__sub-heading" id="Sec15">Reporting summary</h3><p>Further information on research design is available in the <a data-track="click" data-track-label="link" data-track-action="supplementary material anchor" href="/articles/s41746-022-00631-8#MOESM1">Nature Research Reporting Summary</a> linked to this article.</p></div></div></section> </div> <div class="u-mt-32"> <section data-title="Data availability"><div class="c-article-section" id="data-availability-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="data-availability">Data availability</h2><div class="c-article-section__content" id="data-availability-content"> <p>The data that support the findings of this study are available from the corresponding author upon reasonable request.</p> </div></div></section><div id="MagazineFulltextArticleBodySuffix"><section aria-labelledby="Bib1" data-title="References"><div class="c-article-section" id="Bib1-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="Bib1">References</h2><div class="c-article-section__content" id="Bib1-content"><div data-container-section="references"><ol class="c-article-references" data-track-component="outbound reference" data-track-context="references section"><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="1."><p class="c-article-references__text" id="ref-CR1">Su, C., Xu, Z., Pathak, J. &amp; Wang, F. Deep learning in mental health outcome research: a scoping review. <i>Transl. Psychiatry</i> <b>10</b>, 116 (2020).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1038/s41398-020-0780-3" data-track-item_id="10.1038/s41398-020-0780-3" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1038%2Fs41398-020-0780-3" aria-label="Article reference 1" data-doi="10.1038/s41398-020-0780-3">Article</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 1" href="http://scholar.google.com/scholar_lookup?&amp;title=Deep%20learning%20in%20mental%20health%20outcome%20research%3A%20a%20scoping%20review&amp;journal=Transl.%20Psychiatry&amp;doi=10.1038%2Fs41398-020-0780-3&amp;volume=10&amp;publication_year=2020&amp;author=Su%2CC&amp;author=Xu%2CZ&amp;author=Pathak%2CJ&amp;author=Wang%2CF"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="2."><p class="c-article-references__text" id="ref-CR2">Ohrnberger, J., Fichera, E. &amp; Sutton, M. The relationship between physical and mental health: a mediation analysis. <i>Soc. Sci. Med.</i> <b>195</b>, 42–49 (2017).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.socscimed.2017.11.008" data-track-item_id="10.1016/j.socscimed.2017.11.008" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.socscimed.2017.11.008" aria-label="Article reference 2" data-doi="10.1016/j.socscimed.2017.11.008">Article</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 2" href="http://scholar.google.com/scholar_lookup?&amp;title=The%20relationship%20between%20physical%20and%20mental%20health%3A%20a%20mediation%20analysis&amp;journal=Soc.%20Sci.%20Med.&amp;doi=10.1016%2Fj.socscimed.2017.11.008&amp;volume=195&amp;pages=42-49&amp;publication_year=2017&amp;author=Ohrnberger%2CJ&amp;author=Fichera%2CE&amp;author=Sutton%2CM"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="3."><p class="c-article-references__text" id="ref-CR3">Rehm, J. &amp; Shield, K. D. Global burden of disease and the impact of mental and addictive disorders. <i>Curr. Psychiatry Rep.</i> <b>21</b>, 10 (2019).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="noopener" data-track-label="10.1007/s11920-019-0997-0" data-track-item_id="10.1007/s11920-019-0997-0" data-track-value="article reference" data-track-action="article reference" href="https://link.springer.com/doi/10.1007/s11920-019-0997-0" aria-label="Article reference 3" data-doi="10.1007/s11920-019-0997-0">Article</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 3" href="http://scholar.google.com/scholar_lookup?&amp;title=Global%20burden%20of%20disease%20and%20the%20impact%20of%20mental%20and%20addictive%20disorders&amp;journal=Curr.%20Psychiatry%20Rep.&amp;doi=10.1007%2Fs11920-019-0997-0&amp;volume=21&amp;publication_year=2019&amp;author=Rehm%2CJ&amp;author=Shield%2CKD"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="4."><p class="c-article-references__text" id="ref-CR4">Roland, J., Lawrance, E., Insel, T. &amp; Christensen, H. The digital mental health revolution: transforming care through innovation and scale-up., (Doha, Qatar, 2020).</p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="5."><p class="c-article-references__text" id="ref-CR5">Bzdok, D. &amp; Meyer-Lindenberg, A. Machine learning for precision psychiatry: opportunities and challenges. <i>Biol. Psychiatry. Cogn. Neurosci. Neuroimaging</i> <b>3</b>, 223–230 (2018).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=29486863" aria-label="PubMed reference 5">PubMed</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 5" href="http://scholar.google.com/scholar_lookup?&amp;title=Machine%20learning%20for%20precision%20psychiatry%3A%20opportunities%20and%20challenges&amp;journal=Biol.%20Psychiatry.%20Cogn.%20Neurosci.%20Neuroimaging&amp;volume=3&amp;pages=223-230&amp;publication_year=2018&amp;author=Bzdok%2CD&amp;author=Meyer-Lindenberg%2CA"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="6."><p class="c-article-references__text" id="ref-CR6">Roberts, L. W., Chan, S. &amp; Torous, J. New tests, new tools: mobile and connected technologies in advancing psychiatric diagnosis. <i>npj Digital Med.</i> <b>1</b>, 20176 (2018).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1038/s41746-017-0006-0" data-track-item_id="10.1038/s41746-017-0006-0" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1038%2Fs41746-017-0006-0" aria-label="Article reference 6" data-doi="10.1038/s41746-017-0006-0">Article</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 6" href="http://scholar.google.com/scholar_lookup?&amp;title=New%20tests%2C%20new%20tools%3A%20mobile%20and%20connected%20technologies%20in%20advancing%20psychiatric%20diagnosis&amp;journal=npj%20Digital%20Med.&amp;doi=10.1038%2Fs41746-017-0006-0&amp;volume=1&amp;publication_year=2018&amp;author=Roberts%2CLW&amp;author=Chan%2CS&amp;author=Torous%2CJ"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="7."><p class="c-article-references__text" id="ref-CR7">Abd-Alrazaq, A. et al. Artificial intelligence in the fight against COVID-19: scoping review. <i>J. Med. Internet Res.</i> <b>22</b>, e20756 (2020).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.2196/20756" data-track-item_id="10.2196/20756" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.2196%2F20756" aria-label="Article reference 7" data-doi="10.2196/20756">Article</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 7" href="http://scholar.google.com/scholar_lookup?&amp;title=Artificial%20intelligence%20in%20the%20fight%20against%20COVID-19%3A%20scoping%20review&amp;journal=J.%20Med.%20Internet%20Res.&amp;doi=10.2196%2F20756&amp;volume=22&amp;publication_year=2020&amp;author=Abd-Alrazaq%2CA"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="8."><p class="c-article-references__text" id="ref-CR8">Fiske, A., Henningsen, P. &amp; Buyx, A. Your robot therapist will see you now: ethical implications of embodied artificial intelligence in psychiatry, psychology, and psychotherapy. <i>J. Med Internet Res</i> <b>21</b>, e13216 (2019).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.2196/13216" data-track-item_id="10.2196/13216" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.2196%2F13216" aria-label="Article reference 8" data-doi="10.2196/13216">Article</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 8" href="http://scholar.google.com/scholar_lookup?&amp;title=Your%20robot%20therapist%20will%20see%20you%20now%3A%20ethical%20implications%20of%20embodied%20artificial%20intelligence%20in%20psychiatry%2C%20psychology%2C%20and%20psychotherapy&amp;journal=J.%20Med%20Internet%20Res&amp;doi=10.2196%2F13216&amp;volume=21&amp;publication_year=2019&amp;author=Fiske%2CA&amp;author=Henningsen%2CP&amp;author=Buyx%2CA"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="9."><p class="c-article-references__text" id="ref-CR9">Góngora Alonso, S. et al. Social robots for people with aging and dementia: a systematic review of literature. <i>Telemed. J. e-Health. Off. J. Am. Telemed. Assoc.</i> <b>25</b>, 533–540 (2019).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 9" href="http://scholar.google.com/scholar_lookup?&amp;title=Social%20robots%20for%20people%20with%20aging%20and%20dementia%3A%20a%20systematic%20review%20of%20literature&amp;journal=Telemed.%20J.%20e-Health.%20Off.%20J.%20Am.%20Telemed.%20Assoc.&amp;volume=25&amp;pages=533-540&amp;publication_year=2019&amp;author=G%C3%B3ngora%20Alonso%2CS"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="10."><p class="c-article-references__text" id="ref-CR10">Martinez-Martin, N. &amp; Kreitmair, K. Ethical issues for direct-to-consumer digital psychotherapy apps: addressing accountability, data protection, and consent. <i>JMIR Ment. health</i> <b>5</b>, e32 (2018).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.2196/mental.9423" data-track-item_id="10.2196/mental.9423" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.2196%2Fmental.9423" aria-label="Article reference 10" data-doi="10.2196/mental.9423">Article</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 10" href="http://scholar.google.com/scholar_lookup?&amp;title=Ethical%20issues%20for%20direct-to-consumer%20digital%20psychotherapy%20apps%3A%20addressing%20accountability%2C%20data%20protection%2C%20and%20consent&amp;journal=JMIR%20Ment.%20health&amp;doi=10.2196%2Fmental.9423&amp;volume=5&amp;publication_year=2018&amp;author=Martinez-Martin%2CN&amp;author=Kreitmair%2CK"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="11."><p class="c-article-references__text" id="ref-CR11">Torjesen, I. Sixty seconds on… sex with robots. <i>BMJ</i> <b>358</b>, j3353 (2017).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1136/bmj.j3353" data-track-item_id="10.1136/bmj.j3353" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1136%2Fbmj.j3353" aria-label="Article reference 11" data-doi="10.1136/bmj.j3353">Article</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 11" href="http://scholar.google.com/scholar_lookup?&amp;title=Sixty%20seconds%20on%E2%80%A6%20sex%20with%20robots&amp;journal=BMJ&amp;doi=10.1136%2Fbmj.j3353&amp;volume=358&amp;publication_year=2017&amp;author=Torjesen%2CI"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="12."><p class="c-article-references__text" id="ref-CR12">Battista, P., Salvatore, C. &amp; Castiglioni, I. Optimizing neuropsychological assessments for cognitive, behavioral, and functional impairment classification: a machine learning study. <i>Behav. Neurol.</i> <b>2017</b>, 1850909 (2017).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1155/2017/1850909" data-track-item_id="10.1155/2017/1850909" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1155%2F2017%2F1850909" aria-label="Article reference 12" data-doi="10.1155/2017/1850909">Article</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 12" href="http://scholar.google.com/scholar_lookup?&amp;title=Optimizing%20neuropsychological%20assessments%20for%20cognitive%2C%20behavioral%2C%20and%20functional%20impairment%20classification%3A%20a%20machine%20learning%20study&amp;journal=Behav.%20Neurol.&amp;doi=10.1155%2F2017%2F1850909&amp;volume=2017&amp;publication_year=2017&amp;author=Battista%2CP&amp;author=Salvatore%2CC&amp;author=Castiglioni%2CI"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="13."><p class="c-article-references__text" id="ref-CR13">Pinaya, W. H. L., Mechelli, A. &amp; Sato, J. R. Using deep autoencoders to identify abnormal brain structural patterns in neuropsychiatric disorders: a large-scale multi-sample study. <i>Hum. Brain Mapp.</i> <b>40</b>, 944–954 (2019).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1002/hbm.24423" data-track-item_id="10.1002/hbm.24423" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1002%2Fhbm.24423" aria-label="Article reference 13" data-doi="10.1002/hbm.24423">Article</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 13" href="http://scholar.google.com/scholar_lookup?&amp;title=Using%20deep%20autoencoders%20to%20identify%20abnormal%20brain%20structural%20patterns%20in%20neuropsychiatric%20disorders%3A%20a%20large-scale%20multi-sample%20study&amp;journal=Hum.%20Brain%20Mapp.&amp;doi=10.1002%2Fhbm.24423&amp;volume=40&amp;pages=944-954&amp;publication_year=2019&amp;author=Pinaya%2CWHL&amp;author=Mechelli%2CA&amp;author=Sato%2CJR"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="14."><p class="c-article-references__text" id="ref-CR14">Frangou, S., Dima, D. &amp; Jogia, J. Towards person-centered neuroimaging markers for resilience and vulnerability in bipolar disorder. <i>NeuroImage</i> <b>145</b>, 230–237 (2017).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.neuroimage.2016.08.066" data-track-item_id="10.1016/j.neuroimage.2016.08.066" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.neuroimage.2016.08.066" aria-label="Article reference 14" data-doi="10.1016/j.neuroimage.2016.08.066">Article</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 14" href="http://scholar.google.com/scholar_lookup?&amp;title=Towards%20person-centered%20neuroimaging%20markers%20for%20resilience%20and%20vulnerability%20in%20bipolar%20disorder&amp;journal=NeuroImage&amp;doi=10.1016%2Fj.neuroimage.2016.08.066&amp;volume=145&amp;pages=230-237&amp;publication_year=2017&amp;author=Frangou%2CS&amp;author=Dima%2CD&amp;author=Jogia%2CJ"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="15."><p class="c-article-references__text" id="ref-CR15">Salminen, L. E. et al. Adaptive identification of cortical and subcortical imaging markers of early life stress and posttraumatic stress disorder. <i>J. Neuroimaging Off. J. Am. Soc. Neuroimaging</i> <b>29</b>, 335–343 (2019).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1111/jon.12600" data-track-item_id="10.1111/jon.12600" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1111%2Fjon.12600" aria-label="Article reference 15" data-doi="10.1111/jon.12600">Article</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 15" href="http://scholar.google.com/scholar_lookup?&amp;title=Adaptive%20identification%20of%20cortical%20and%20subcortical%20imaging%20markers%20of%20early%20life%20stress%20and%20posttraumatic%20stress%20disorder&amp;journal=J.%20Neuroimaging%20Off.%20J.%20Am.%20Soc.%20Neuroimaging&amp;doi=10.1111%2Fjon.12600&amp;volume=29&amp;pages=335-343&amp;publication_year=2019&amp;author=Salminen%2CLE"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="16."><p class="c-article-references__text" id="ref-CR16">Takagi, Y. et al. A neural marker of obsessive-compulsive disorder from whole-brain functional connectivity. <i>Sci. Rep.</i> <b>7</b>, 7538 (2017).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1038/s41598-017-07792-7" data-track-item_id="10.1038/s41598-017-07792-7" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1038%2Fs41598-017-07792-7" aria-label="Article reference 16" data-doi="10.1038/s41598-017-07792-7">Article</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 16" href="http://scholar.google.com/scholar_lookup?&amp;title=A%20neural%20marker%20of%20obsessive-compulsive%20disorder%20from%20whole-brain%20functional%20connectivity&amp;journal=Sci.%20Rep.&amp;doi=10.1038%2Fs41598-017-07792-7&amp;volume=7&amp;publication_year=2017&amp;author=Takagi%2CY"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="17."><p class="c-article-references__text" id="ref-CR17">Pellegrini, E. et al. Machine learning of neuroimaging for assisted diagnosis of cognitive impairment and dementia: a systematic review. <i>Alzheimer’s Dement. Diagnosis Assess. Dis. Monit.</i> <b>10</b>, 519–535 (2018).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 17" href="http://scholar.google.com/scholar_lookup?&amp;title=Machine%20learning%20of%20neuroimaging%20for%20assisted%20diagnosis%20of%20cognitive%20impairment%20and%20dementia%3A%20a%20systematic%20review&amp;journal=Alzheimer%E2%80%99s%20Dement.%20Diagnosis%20Assess.%20Dis.%20Monit.&amp;volume=10&amp;pages=519-535&amp;publication_year=2018&amp;author=Pellegrini%2CE"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="18."><p class="c-article-references__text" id="ref-CR18">Billeci, L., Badolato, A., Bachi, L. &amp; Tonacci, A. Machine learning for the classification of alzheimer’s disease and its prodromal stage using brain diffusion tensor imaging data: a systematic review. <b>8</b>, <a href="https://doi.org/10.3390/pr8091071" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.3390/pr8091071">https://doi.org/10.3390/pr8091071</a> (2020).</p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="19."><p class="c-article-references__text" id="ref-CR19">Sarica, A., Cerasa, A. &amp; Quattrone, A. Random forest algorithm for the classification of neuroimaging data in Alzheimer’s disease: a systematic review. <i>Front. Aging Neurosci.</i> <b>9</b>, 329 (2017).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.3389/fnagi.2017.00329" data-track-item_id="10.3389/fnagi.2017.00329" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.3389%2Ffnagi.2017.00329" aria-label="Article reference 19" data-doi="10.3389/fnagi.2017.00329">Article</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 19" href="http://scholar.google.com/scholar_lookup?&amp;title=Random%20forest%20algorithm%20for%20the%20classification%20of%20neuroimaging%20data%20in%20Alzheimer%E2%80%99s%20disease%3A%20a%20systematic%20review&amp;journal=Front.%20Aging%20Neurosci.&amp;doi=10.3389%2Ffnagi.2017.00329&amp;volume=9&amp;publication_year=2017&amp;author=Sarica%2CA&amp;author=Cerasa%2CA&amp;author=Quattrone%2CA"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="20."><p class="c-article-references__text" id="ref-CR20">Ebrahimighahnavieh, M. A., Luo, S. &amp; Chiong, R. Deep learning to detect Alzheimer’s disease from neuroimaging: a systematic literature review. <i>Computer Methods Prog. Biomedicine</i> <b>187</b>, 105242 (2020).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.cmpb.2019.105242" data-track-item_id="10.1016/j.cmpb.2019.105242" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.cmpb.2019.105242" aria-label="Article reference 20" data-doi="10.1016/j.cmpb.2019.105242">Article</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 20" href="http://scholar.google.com/scholar_lookup?&amp;title=Deep%20learning%20to%20detect%20Alzheimer%E2%80%99s%20disease%20from%20neuroimaging%3A%20a%20systematic%20literature%20review&amp;journal=Computer%20Methods%20Prog.%20Biomedicine&amp;doi=10.1016%2Fj.cmpb.2019.105242&amp;volume=187&amp;publication_year=2020&amp;author=Ebrahimighahnavieh%2CMA&amp;author=Luo%2CS&amp;author=Chiong%2CR"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="21."><p class="c-article-references__text" id="ref-CR21">Petti, U., Baker, S. &amp; Korhonen, A. A systematic literature review of automatic Alzheimer’s disease detection from speech and language. <i>J. Am. Med. Inform. Assoc.</i> <b>27</b>, 1784–1797 (2020).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1093/jamia/ocaa174" data-track-item_id="10.1093/jamia/ocaa174" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1093%2Fjamia%2Focaa174" aria-label="Article reference 21" data-doi="10.1093/jamia/ocaa174">Article</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 21" href="http://scholar.google.com/scholar_lookup?&amp;title=A%20systematic%20literature%20review%20of%20automatic%20Alzheimer%E2%80%99s%20disease%20detection%20from%20speech%20and%20language&amp;journal=J.%20Am.%20Med.%20Inform.%20Assoc.&amp;doi=10.1093%2Fjamia%2Focaa174&amp;volume=27&amp;pages=1784-1797&amp;publication_year=2020&amp;author=Petti%2CU&amp;author=Baker%2CS&amp;author=Korhonen%2CA"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="22."><p class="c-article-references__text" id="ref-CR22">Battista, P. et al. Artificial intelligence and neuropsychological measures: the case of Alzheimer’s disease. <i>Neurosci. Biobehav. Rev.</i> <b>114</b>, 211–228 (2020).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.neubiorev.2020.04.026" data-track-item_id="10.1016/j.neubiorev.2020.04.026" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.neubiorev.2020.04.026" aria-label="Article reference 22" data-doi="10.1016/j.neubiorev.2020.04.026">Article</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 22" href="http://scholar.google.com/scholar_lookup?&amp;title=Artificial%20intelligence%20and%20neuropsychological%20measures%3A%20the%20case%20of%20Alzheimer%E2%80%99s%20disease&amp;journal=Neurosci.%20Biobehav.%20Rev.&amp;doi=10.1016%2Fj.neubiorev.2020.04.026&amp;volume=114&amp;pages=211-228&amp;publication_year=2020&amp;author=Battista%2CP"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="23."><p class="c-article-references__text" id="ref-CR23">Law, Z. K. et al. The role of EEG in the diagnosis, prognosis and clinical correlations of dementia with lewy bodies-a systematic review. <i>Diagnostics</i> <b>10</b>, 20 (2020).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.3390/diagnostics10090616" data-track-item_id="10.3390/diagnostics10090616" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.3390%2Fdiagnostics10090616" aria-label="Article reference 23" data-doi="10.3390/diagnostics10090616">Article</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 23" href="http://scholar.google.com/scholar_lookup?&amp;title=The%20role%20of%20EEG%20in%20the%20diagnosis%2C%20prognosis%20and%20clinical%20correlations%20of%20dementia%20with%20lewy%20bodies-a%20systematic%20review&amp;journal=Diagnostics&amp;doi=10.3390%2Fdiagnostics10090616&amp;volume=10&amp;publication_year=2020&amp;author=Law%2CZK"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="24."><p class="c-article-references__text" id="ref-CR24">de Filippis, R. et al. Machine learning techniques in a structural and functional MRI diagnostic approach in schizophrenia: a systematic review. <i>Neuropsychiatr. Dis. Treat.</i> <b>15</b>, 1605–1627 (2019).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.2147/NDT.S202418" data-track-item_id="10.2147/NDT.S202418" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.2147%2FNDT.S202418" aria-label="Article reference 24" data-doi="10.2147/NDT.S202418">Article</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 24" href="http://scholar.google.com/scholar_lookup?&amp;title=Machine%20learning%20techniques%20in%20a%20structural%20and%20functional%20MRI%20diagnostic%20approach%20in%20schizophrenia%3A%20a%20systematic%20review&amp;journal=Neuropsychiatr.%20Dis.%20Treat.&amp;doi=10.2147%2FNDT.S202418&amp;volume=15&amp;pages=1605-1627&amp;publication_year=2019&amp;author=Filippis%2CR"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="25."><p class="c-article-references__text" id="ref-CR25">Steardo, L. Jr et al. Application of support vector machine on fMRI data as biomarkers in schizophrenia diagnosis: a systematic review. <i>Front. psychiatry Front. Res. Found.</i> <b>11</b>, 588 (2020).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.3389/fpsyt.2020.00588" data-track-item_id="10.3389/fpsyt.2020.00588" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.3389%2Ffpsyt.2020.00588" aria-label="Article reference 25" data-doi="10.3389/fpsyt.2020.00588">Article</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 25" href="http://scholar.google.com/scholar_lookup?&amp;title=Application%20of%20support%20vector%20machine%20on%20fMRI%20data%20as%20biomarkers%20in%20schizophrenia%20diagnosis%3A%20a%20systematic%20review&amp;journal=Front.%20psychiatry%20Front.%20Res.%20Found.&amp;doi=10.3389%2Ffpsyt.2020.00588&amp;volume=11&amp;publication_year=2020&amp;author=Steardo%2CL"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="26."><p class="c-article-references__text" id="ref-CR26">Bracher-Smith, M., Crawford, K. &amp; Escott-Price, V. Machine learning for genetic prediction of psychiatric disorders: a systematic review. <i>Mol. Psychiatry</i> <b>26</b>, 26 (2020).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 26" href="http://scholar.google.com/scholar_lookup?&amp;title=Machine%20learning%20for%20genetic%20prediction%20of%20psychiatric%20disorders%3A%20a%20systematic%20review&amp;journal=Mol.%20Psychiatry&amp;volume=26&amp;publication_year=2020&amp;author=Bracher-Smith%2CM&amp;author=Crawford%2CK&amp;author=Escott-Price%2CV"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="27."><p class="c-article-references__text" id="ref-CR27">Librenza-Garcia, D. et al. The impact of machine learning techniques in the study of bipolar disorder: a systematic review. <i>Neurosci. Biobehav. Rev.</i> <b>80</b>, 538–554 (2017).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.neubiorev.2017.07.004" data-track-item_id="10.1016/j.neubiorev.2017.07.004" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.neubiorev.2017.07.004" aria-label="Article reference 27" data-doi="10.1016/j.neubiorev.2017.07.004">Article</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 27" href="http://scholar.google.com/scholar_lookup?&amp;title=The%20impact%20of%20machine%20learning%20techniques%20in%20the%20study%20of%20bipolar%20disorder%3A%20a%20systematic%20review&amp;journal=Neurosci.%20Biobehav.%20Rev.&amp;doi=10.1016%2Fj.neubiorev.2017.07.004&amp;volume=80&amp;pages=538-554&amp;publication_year=2017&amp;author=Librenza-Garcia%2CD"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="28."><p class="c-article-references__text" id="ref-CR28">Moon, S. J. et al. Accuracy of machine learning algorithms for the diagnosis of autism spectrum disorder: systematic review and meta-analysis of brain magnetic resonance imaging studies. <i>JMIR Ment. Health</i> <b>6</b>, e14108 (2019).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.2196/14108" data-track-item_id="10.2196/14108" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.2196%2F14108" aria-label="Article reference 28" data-doi="10.2196/14108">Article</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 28" href="http://scholar.google.com/scholar_lookup?&amp;title=Accuracy%20of%20machine%20learning%20algorithms%20for%20the%20diagnosis%20of%20autism%20spectrum%20disorder%3A%20systematic%20review%20and%20meta-analysis%20of%20brain%20magnetic%20resonance%20imaging%20studies&amp;journal=JMIR%20Ment.%20Health&amp;doi=10.2196%2F14108&amp;volume=6&amp;publication_year=2019&amp;author=Moon%2CSJ"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="29."><p class="c-article-references__text" id="ref-CR29">Ramos-Lima, L. F. et al. The use of machine learning techniques in trauma-related disorders: a systematic review. <i>J. Psychiatr. Res.</i> <b>121</b>, 159–172 (2020).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.jpsychires.2019.12.001" data-track-item_id="10.1016/j.jpsychires.2019.12.001" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.jpsychires.2019.12.001" aria-label="Article reference 29" data-doi="10.1016/j.jpsychires.2019.12.001">Article</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 29" href="http://scholar.google.com/scholar_lookup?&amp;title=The%20use%20of%20machine%20learning%20techniques%20in%20trauma-related%20disorders%3A%20a%20systematic%20review&amp;journal=J.%20Psychiatr.%20Res.&amp;doi=10.1016%2Fj.jpsychires.2019.12.001&amp;volume=121&amp;pages=159-172&amp;publication_year=2020&amp;author=Ramos-Lima%2CLF"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="30."><p class="c-article-references__text" id="ref-CR30">Bruin, W., Denys, D. &amp; van Wingen, G. Diagnostic neuroimaging markers of obsessive-compulsive disorder: Initial evidence from structural and functional MRI studies. <i>Prog. Neuropsychopharmacol. Biol. Psychiatry</i> <b>91</b>, 49–59 (2019).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.pnpbp.2018.08.005" data-track-item_id="10.1016/j.pnpbp.2018.08.005" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.pnpbp.2018.08.005" aria-label="Article reference 30" data-doi="10.1016/j.pnpbp.2018.08.005">Article</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 30" href="http://scholar.google.com/scholar_lookup?&amp;title=Diagnostic%20neuroimaging%20markers%20of%20obsessive-compulsive%20disorder%3A%20Initial%20evidence%20from%20structural%20and%20functional%20MRI%20studies&amp;journal=Prog.%20Neuropsychopharmacol.%20Biol.%20Psychiatry&amp;doi=10.1016%2Fj.pnpbp.2018.08.005&amp;volume=91&amp;pages=49-59&amp;publication_year=2019&amp;author=Bruin%2CW&amp;author=Denys%2CD&amp;author=Wingen%2CG"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="31."><p class="c-article-references__text" id="ref-CR31">Sanfelici, R., Dwyer, D. B., Antonucci, L. A. &amp; Koutsouleris, N. Individualized diagnostic and prognostic models for patients with psychosis risk syndromes: a meta-analytic view on the state of the art. <i>Biol. Psychiatry</i> <b>88</b>, 349–360 (2020).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.biopsych.2020.02.009" data-track-item_id="10.1016/j.biopsych.2020.02.009" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.biopsych.2020.02.009" aria-label="Article reference 31" data-doi="10.1016/j.biopsych.2020.02.009">Article</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 31" href="http://scholar.google.com/scholar_lookup?&amp;title=Individualized%20diagnostic%20and%20prognostic%20models%20for%20patients%20with%20psychosis%20risk%20syndromes%3A%20a%20meta-analytic%20view%20on%20the%20state%20of%20the%20art&amp;journal=Biol.%20Psychiatry&amp;doi=10.1016%2Fj.biopsych.2020.02.009&amp;volume=88&amp;pages=349-360&amp;publication_year=2020&amp;author=Sanfelici%2CR&amp;author=Dwyer%2CDB&amp;author=Antonucci%2CLA&amp;author=Koutsouleris%2CN"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="32."><p class="c-article-references__text" id="ref-CR32">American Psychological Association. <i>Alzheimer’s disease</i>, <a href="https://dictionary.apa.org/alzheimers-disease" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="https://dictionary.apa.org/alzheimers-disease">https://dictionary.apa.org/alzheimers-disease</a> (2022).</p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="33."><p class="c-article-references__text" id="ref-CR33">American Psychological Association. <i>Mild cognitive impairment (MCI)</i>, <a href="https://dictionary.apa.org/mild-cognitive-impairment" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="https://dictionary.apa.org/mild-cognitive-impairment">https://dictionary.apa.org/mild-cognitive-impairment</a> (2022).</p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="34."><p class="c-article-references__text" id="ref-CR34">American Psychological Association. <i>Schizophrenia</i>, <a href="https://dictionary.apa.org/schizophrenia" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="https://dictionary.apa.org/schizophrenia">https://dictionary.apa.org/schizophrenia</a> (2022).</p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="35."><p class="c-article-references__text" id="ref-CR35">American Psychological Association. <i>Bipolar disorder</i>, <a href="https://dictionary.apa.org/bipolar-disorders" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="https://dictionary.apa.org/bipolar-disorders">https://dictionary.apa.org/bipolar-disorders</a> (2022).</p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="36."><p class="c-article-references__text" id="ref-CR36">American Psychological Association. <i>Autism spectrum disorder</i> <a href="https://dictionary.apa.org/autism-spectrum-disorder" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="https://dictionary.apa.org/autism-spectrum-disorder">https://dictionary.apa.org/autism-spectrum-disorder</a> (2022).</p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="37."><p class="c-article-references__text" id="ref-CR37">American Psychological Association. <i>Posttraumatic stress disorder</i> <a href="https://dictionary.apa.org/posttraumatic-stress-disorder" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="https://dictionary.apa.org/posttraumatic-stress-disorder">https://dictionary.apa.org/posttraumatic-stress-disorder</a> (2022).</p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="38."><p class="c-article-references__text" id="ref-CR38">American Psychological Association. <i>Obsessive compulsive disorder</i>, <a href="https://dictionary.apa.org/obsessive-compulsive-disorder" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="https://dictionary.apa.org/obsessive-compulsive-disorder">https://dictionary.apa.org/obsessive-compulsive-disorder</a> (2022).</p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="39."><p class="c-article-references__text" id="ref-CR39">American Psychological Association. <i>Psychotic disorders</i> <a href="https://dictionary.apa.org/psychotic-disorders" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="https://dictionary.apa.org/psychotic-disorders">https://dictionary.apa.org/psychotic-disorders</a> (2022).</p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="40."><p class="c-article-references__text" id="ref-CR40">Owen, M. J., Sawa, A. &amp; Mortensen, P. B. Schizophrenia. <i>Lancet</i> <b>388</b>, 86–97 (2016).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/S0140-6736(15)01121-6" data-track-item_id="10.1016/S0140-6736(15)01121-6" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2FS0140-6736%2815%2901121-6" aria-label="Article reference 40" data-doi="10.1016/S0140-6736(15)01121-6">Article</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 40" href="http://scholar.google.com/scholar_lookup?&amp;title=Schizophrenia&amp;journal=Lancet&amp;doi=10.1016%2FS0140-6736%2815%2901121-6&amp;volume=388&amp;pages=86-97&amp;publication_year=2016&amp;author=Owen%2CMJ&amp;author=Sawa%2CA&amp;author=Mortensen%2CPB"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="41."><p class="c-article-references__text" id="ref-CR41">Robbins, J. If technology is a parasite masquerading as a symbiont—are we the host? <i>IEEE Technol. Soc. Mag.</i> <b>38</b>, 24–33 (2019).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1109/MTS.2019.2930267" data-track-item_id="10.1109/MTS.2019.2930267" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1109%2FMTS.2019.2930267" aria-label="Article reference 41" data-doi="10.1109/MTS.2019.2930267">Article</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 41" href="http://scholar.google.com/scholar_lookup?&amp;title=If%20technology%20is%20a%20parasite%20masquerading%20as%20a%20symbiont%E2%80%94are%20we%20the%20host%3F&amp;journal=IEEE%20Technol.%20Soc.%20Mag.&amp;doi=10.1109%2FMTS.2019.2930267&amp;volume=38&amp;pages=24-33&amp;publication_year=2019&amp;author=Robbins%2CJ"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="42."><p class="c-article-references__text" id="ref-CR42">Sætra, H. S. The parasitic nature of social AI: sharing minds with the mindless. <i>Integr. Psychol. Behav. Sci.</i> <b>54</b>, 308–326 (2020).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="noopener" data-track-label="10.1007/s12124-020-09523-6" data-track-item_id="10.1007/s12124-020-09523-6" data-track-value="article reference" data-track-action="article reference" href="https://link.springer.com/doi/10.1007/s12124-020-09523-6" aria-label="Article reference 42" data-doi="10.1007/s12124-020-09523-6">Article</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 42" href="http://scholar.google.com/scholar_lookup?&amp;title=The%20parasitic%20nature%20of%20social%20AI%3A%20sharing%20minds%20with%20the%20mindless&amp;journal=Integr.%20Psychol.%20Behav.%20Sci.&amp;doi=10.1007%2Fs12124-020-09523-6&amp;volume=54&amp;pages=308-326&amp;publication_year=2020&amp;author=S%C3%A6tra%2CHS"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="43."><p class="c-article-references__text" id="ref-CR43">Aromataris, E. et al. Methodology for JBI umbrella reviews. 1–34 <a href="https://nursing.lsuhsc.edu/JBI/docs/ReviewersManuals/Umbrella%20Reviews.pdf" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="https://nursing.lsuhsc.edu/JBI/docs/ReviewersManuals/Umbrella%20Reviews.pdf">https://nursing.lsuhsc.edu/JBI/docs/ReviewersManuals/Umbrella%20Reviews.pdf</a> (2014).</p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="44."><p class="c-article-references__text" id="ref-CR44">Altman, D. G. <i>Practical statistics for medical research</i>. (CRC press, 1990).</p></li></ol><p class="c-article-references__download u-hide-print"><a data-track="click" data-track-action="download citation references" data-track-label="link" rel="nofollow" href="https://citation-needed.springer.com/v2/references/10.1038/s41746-022-00631-8?format=refman&amp;flavour=references">Download references<svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-download-medium"></use></svg></a></p></div></div></div></section></div><section data-title="Acknowledgements"><div class="c-article-section" id="Ack1-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="Ack1">Acknowledgements</h2><div class="c-article-section__content" id="Ack1-content"><p>Open Access funding provided by the Qatar National Library.</p></div></div></section><section aria-labelledby="author-information" data-title="Author information"><div class="c-article-section" id="author-information-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="author-information">Author information</h2><div class="c-article-section__content" id="author-information-content"><h3 class="c-article__sub-heading" id="affiliations">Authors and Affiliations</h3><ol class="c-article-author-affiliation__list"><li id="Aff1"><p class="c-article-author-affiliation__address">AI Center for Precision Health, Weill Cornell Medicine-Qatar, Doha, Qatar</p><p class="c-article-author-affiliation__authors-list">Alaa Abd-alrazaq &amp; Arfan Ahmed</p></li><li id="Aff2"><p class="c-article-author-affiliation__address">Information Science Department, Kuwait University, Alshadadiya, Kuwait</p><p class="c-article-author-affiliation__authors-list">Dari Alhuwail</p></li><li id="Aff3"><p class="c-article-author-affiliation__address">Health Informatics Unit, Dasman Diabetes Institute, Kuwait city, Kuwait</p><p class="c-article-author-affiliation__authors-list">Dari Alhuwail</p></li><li id="Aff4"><p class="c-article-author-affiliation__address">Division of Information and Computing Technology, College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar</p><p class="c-article-author-affiliation__authors-list">Jens Schneider, Carla T. Toro, Mahmood Alzubaidi &amp; Mowafa Househ</p></li><li id="Aff5"><p class="c-article-author-affiliation__address">Institute of Digital Healthcare, University of Warwick, Warwick, UK</p><p class="c-article-author-affiliation__authors-list">Mohannad Alajlani</p></li></ol><div class="u-js-hide u-hide-print" data-test="author-info"><span class="c-article__sub-heading">Authors</span><ol class="c-article-authors-search u-list-reset"><li id="auth-Alaa-Abd_alrazaq-Aff1"><span class="c-article-authors-search__title u-h3 js-search-name">Alaa Abd-alrazaq</span><div class="c-article-authors-search__list"><div class="c-article-authors-search__item c-article-authors-search__list-item--left"><a href="/search?author=Alaa%20Abd-alrazaq" class="c-article-button" data-track="click" data-track-action="author link - publication" data-track-label="link" rel="nofollow">View author publications</a></div><div class="c-article-authors-search__item c-article-authors-search__list-item--right"><p class="search-in-title-js c-article-authors-search__text">You can also search for this author in <span class="c-article-identifiers"><a class="c-article-identifiers__item" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&amp;term=Alaa%20Abd-alrazaq" data-track="click" data-track-action="author link - pubmed" data-track-label="link" rel="nofollow">PubMed</a><span class="u-hide"> </span><a class="c-article-identifiers__item" href="http://scholar.google.co.uk/scholar?as_q=&amp;num=10&amp;btnG=Search+Scholar&amp;as_epq=&amp;as_oq=&amp;as_eq=&amp;as_occt=any&amp;as_sauthors=%22Alaa%20Abd-alrazaq%22&amp;as_publication=&amp;as_ylo=&amp;as_yhi=&amp;as_allsubj=all&amp;hl=en" data-track="click" data-track-action="author link - scholar" data-track-label="link" rel="nofollow">Google Scholar</a></span></p></div></div></li><li id="auth-Dari-Alhuwail-Aff2-Aff3"><span class="c-article-authors-search__title u-h3 js-search-name">Dari Alhuwail</span><div class="c-article-authors-search__list"><div class="c-article-authors-search__item c-article-authors-search__list-item--left"><a href="/search?author=Dari%20Alhuwail" class="c-article-button" data-track="click" data-track-action="author link - publication" data-track-label="link" rel="nofollow">View author publications</a></div><div class="c-article-authors-search__item c-article-authors-search__list-item--right"><p class="search-in-title-js c-article-authors-search__text">You can also search for this author in <span class="c-article-identifiers"><a class="c-article-identifiers__item" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&amp;term=Dari%20Alhuwail" data-track="click" data-track-action="author link - pubmed" data-track-label="link" rel="nofollow">PubMed</a><span class="u-hide"> </span><a class="c-article-identifiers__item" href="http://scholar.google.co.uk/scholar?as_q=&amp;num=10&amp;btnG=Search+Scholar&amp;as_epq=&amp;as_oq=&amp;as_eq=&amp;as_occt=any&amp;as_sauthors=%22Dari%20Alhuwail%22&amp;as_publication=&amp;as_ylo=&amp;as_yhi=&amp;as_allsubj=all&amp;hl=en" data-track="click" data-track-action="author link - scholar" data-track-label="link" rel="nofollow">Google Scholar</a></span></p></div></div></li><li id="auth-Jens-Schneider-Aff4"><span class="c-article-authors-search__title u-h3 js-search-name">Jens Schneider</span><div class="c-article-authors-search__list"><div class="c-article-authors-search__item c-article-authors-search__list-item--left"><a href="/search?author=Jens%20Schneider" class="c-article-button" data-track="click" data-track-action="author link - publication" data-track-label="link" rel="nofollow">View author publications</a></div><div class="c-article-authors-search__item c-article-authors-search__list-item--right"><p class="search-in-title-js c-article-authors-search__text">You can also search for this author in <span class="c-article-identifiers"><a class="c-article-identifiers__item" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&amp;term=Jens%20Schneider" data-track="click" data-track-action="author link - pubmed" data-track-label="link" rel="nofollow">PubMed</a><span class="u-hide"> </span><a class="c-article-identifiers__item" href="http://scholar.google.co.uk/scholar?as_q=&amp;num=10&amp;btnG=Search+Scholar&amp;as_epq=&amp;as_oq=&amp;as_eq=&amp;as_occt=any&amp;as_sauthors=%22Jens%20Schneider%22&amp;as_publication=&amp;as_ylo=&amp;as_yhi=&amp;as_allsubj=all&amp;hl=en" data-track="click" data-track-action="author link - scholar" data-track-label="link" rel="nofollow">Google Scholar</a></span></p></div></div></li><li id="auth-Carla_T_-Toro-Aff4"><span class="c-article-authors-search__title u-h3 js-search-name">Carla T. Toro</span><div class="c-article-authors-search__list"><div class="c-article-authors-search__item c-article-authors-search__list-item--left"><a href="/search?author=Carla%20T.%20Toro" class="c-article-button" data-track="click" data-track-action="author link - publication" data-track-label="link" rel="nofollow">View author publications</a></div><div class="c-article-authors-search__item c-article-authors-search__list-item--right"><p class="search-in-title-js c-article-authors-search__text">You can also search for this author in <span class="c-article-identifiers"><a class="c-article-identifiers__item" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&amp;term=Carla%20T.%20Toro" data-track="click" data-track-action="author link - pubmed" data-track-label="link" rel="nofollow">PubMed</a><span class="u-hide"> </span><a class="c-article-identifiers__item" href="http://scholar.google.co.uk/scholar?as_q=&amp;num=10&amp;btnG=Search+Scholar&amp;as_epq=&amp;as_oq=&amp;as_eq=&amp;as_occt=any&amp;as_sauthors=%22Carla%20T.%20Toro%22&amp;as_publication=&amp;as_ylo=&amp;as_yhi=&amp;as_allsubj=all&amp;hl=en" data-track="click" data-track-action="author link - scholar" data-track-label="link" rel="nofollow">Google Scholar</a></span></p></div></div></li><li id="auth-Arfan-Ahmed-Aff1"><span class="c-article-authors-search__title u-h3 js-search-name">Arfan Ahmed</span><div class="c-article-authors-search__list"><div class="c-article-authors-search__item c-article-authors-search__list-item--left"><a href="/search?author=Arfan%20Ahmed" class="c-article-button" data-track="click" data-track-action="author link - publication" data-track-label="link" rel="nofollow">View author publications</a></div><div class="c-article-authors-search__item c-article-authors-search__list-item--right"><p class="search-in-title-js c-article-authors-search__text">You can also search for this author in <span class="c-article-identifiers"><a class="c-article-identifiers__item" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&amp;term=Arfan%20Ahmed" data-track="click" data-track-action="author link - pubmed" data-track-label="link" rel="nofollow">PubMed</a><span class="u-hide"> </span><a class="c-article-identifiers__item" href="http://scholar.google.co.uk/scholar?as_q=&amp;num=10&amp;btnG=Search+Scholar&amp;as_epq=&amp;as_oq=&amp;as_eq=&amp;as_occt=any&amp;as_sauthors=%22Arfan%20Ahmed%22&amp;as_publication=&amp;as_ylo=&amp;as_yhi=&amp;as_allsubj=all&amp;hl=en" data-track="click" data-track-action="author link - scholar" data-track-label="link" rel="nofollow">Google Scholar</a></span></p></div></div></li><li id="auth-Mahmood-Alzubaidi-Aff4"><span class="c-article-authors-search__title u-h3 js-search-name">Mahmood Alzubaidi</span><div class="c-article-authors-search__list"><div class="c-article-authors-search__item c-article-authors-search__list-item--left"><a href="/search?author=Mahmood%20Alzubaidi" class="c-article-button" data-track="click" data-track-action="author link - publication" data-track-label="link" rel="nofollow">View author publications</a></div><div class="c-article-authors-search__item c-article-authors-search__list-item--right"><p class="search-in-title-js c-article-authors-search__text">You can also search for this author in <span class="c-article-identifiers"><a class="c-article-identifiers__item" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&amp;term=Mahmood%20Alzubaidi" data-track="click" data-track-action="author link - pubmed" data-track-label="link" rel="nofollow">PubMed</a><span class="u-hide"> </span><a class="c-article-identifiers__item" href="http://scholar.google.co.uk/scholar?as_q=&amp;num=10&amp;btnG=Search+Scholar&amp;as_epq=&amp;as_oq=&amp;as_eq=&amp;as_occt=any&amp;as_sauthors=%22Mahmood%20Alzubaidi%22&amp;as_publication=&amp;as_ylo=&amp;as_yhi=&amp;as_allsubj=all&amp;hl=en" data-track="click" data-track-action="author link - scholar" data-track-label="link" rel="nofollow">Google Scholar</a></span></p></div></div></li><li id="auth-Mohannad-Alajlani-Aff5"><span class="c-article-authors-search__title u-h3 js-search-name">Mohannad Alajlani</span><div class="c-article-authors-search__list"><div class="c-article-authors-search__item c-article-authors-search__list-item--left"><a href="/search?author=Mohannad%20Alajlani" class="c-article-button" data-track="click" data-track-action="author link - publication" data-track-label="link" rel="nofollow">View author publications</a></div><div class="c-article-authors-search__item c-article-authors-search__list-item--right"><p class="search-in-title-js c-article-authors-search__text">You can also search for this author in <span class="c-article-identifiers"><a class="c-article-identifiers__item" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&amp;term=Mohannad%20Alajlani" data-track="click" data-track-action="author link - pubmed" data-track-label="link" rel="nofollow">PubMed</a><span class="u-hide"> </span><a class="c-article-identifiers__item" href="http://scholar.google.co.uk/scholar?as_q=&amp;num=10&amp;btnG=Search+Scholar&amp;as_epq=&amp;as_oq=&amp;as_eq=&amp;as_occt=any&amp;as_sauthors=%22Mohannad%20Alajlani%22&amp;as_publication=&amp;as_ylo=&amp;as_yhi=&amp;as_allsubj=all&amp;hl=en" data-track="click" data-track-action="author link - scholar" data-track-label="link" rel="nofollow">Google Scholar</a></span></p></div></div></li><li id="auth-Mowafa-Househ-Aff4"><span class="c-article-authors-search__title u-h3 js-search-name">Mowafa Househ</span><div class="c-article-authors-search__list"><div class="c-article-authors-search__item c-article-authors-search__list-item--left"><a href="/search?author=Mowafa%20Househ" class="c-article-button" data-track="click" data-track-action="author link - publication" data-track-label="link" rel="nofollow">View author publications</a></div><div class="c-article-authors-search__item c-article-authors-search__list-item--right"><p class="search-in-title-js c-article-authors-search__text">You can also search for this author in <span class="c-article-identifiers"><a class="c-article-identifiers__item" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&amp;term=Mowafa%20Househ" data-track="click" data-track-action="author link - pubmed" data-track-label="link" rel="nofollow">PubMed</a><span class="u-hide"> </span><a class="c-article-identifiers__item" href="http://scholar.google.co.uk/scholar?as_q=&amp;num=10&amp;btnG=Search+Scholar&amp;as_epq=&amp;as_oq=&amp;as_eq=&amp;as_occt=any&amp;as_sauthors=%22Mowafa%20Househ%22&amp;as_publication=&amp;as_ylo=&amp;as_yhi=&amp;as_allsubj=all&amp;hl=en" data-track="click" data-track-action="author link - scholar" data-track-label="link" rel="nofollow">Google Scholar</a></span></p></div></div></li></ol></div><h3 class="c-article__sub-heading" id="contributions">Contributions</h3><p>A.A.-a. developed the protocol and conducted the search with guidance from and under the supervision of M.H. Study selection and data extraction were carried out A.A.-a. &amp; M.H. Risk of bias was assessed by A.A.-a. and C.T.T. A.A.-a. conducted data synthesis and wrote results and methods sections. D.A. wrote the introduction section. J.S., M.A. and A.A. wrote the discussion section. The article was revised critically for important intellectual content by all authors. All authors approved the manuscript for publication and agree to be accountable for all aspects of the work.</p><h3 class="c-article__sub-heading" id="corresponding-author">Corresponding author</h3><p id="corresponding-author-list">Correspondence to <a id="corresp-c1" href="mailto:mhouseh@hbku.edu.qa">Mowafa Househ</a>.</p></div></div></section><section data-title="Ethics declarations"><div class="c-article-section" id="ethics-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="ethics">Ethics declarations</h2><div class="c-article-section__content" id="ethics-content"> <h3 class="c-article__sub-heading" id="FPar1">Competing interests</h3> <p>The authors declare no competing interests.</p> </div></div></section><section data-title="Additional information"><div class="c-article-section" id="additional-information-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="additional-information">Additional information</h2><div class="c-article-section__content" id="additional-information-content"><p><b>Publisher’s note</b> Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.</p></div></div></section><section data-title="Supplementary information"><div class="c-article-section" id="Sec16-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="Sec16">Supplementary information</h2><div class="c-article-section__content" id="Sec16-content"><div data-test="supplementary-info"><div id="figshareContainer" class="c-article-figshare-container" data-test="figshare-container"></div><div class="c-article-supplementary__item" data-test="supp-item" id="MOESM1"><h3 class="c-article-supplementary__title u-h3"><a class="print-link" data-track="click" data-track-action="view supplementary info" data-test="supp-info-link" data-track-label="reporting summary" href="https://static-content.springer.com/esm/art%3A10.1038%2Fs41746-022-00631-8/MediaObjects/41746_2022_631_MOESM1_ESM.pdf" data-supp-info-image="">Reporting Summary</a></h3></div><div class="c-article-supplementary__item" data-test="supp-item" id="MOESM2"><h3 class="c-article-supplementary__title u-h3"><a class="print-link" data-track="click" data-track-action="view supplementary info" data-test="supp-info-link" data-track-label="supplementary information" href="https://static-content.springer.com/esm/art%3A10.1038%2Fs41746-022-00631-8/MediaObjects/41746_2022_631_MOESM2_ESM.pdf" data-supp-info-image="">Supplementary information</a></h3></div></div></div></div></section><section data-title="Rights and permissions"><div class="c-article-section" id="rightslink-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="rightslink">Rights and permissions</h2><div class="c-article-section__content" id="rightslink-content"> <p><b>Open Access</b> This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit <a href="http://creativecommons.org/licenses/by/4.0/" rel="license">http://creativecommons.org/licenses/by/4.0/</a>.</p> <p class="c-article-rights"><a data-track="click" data-track-action="view rights and permissions" data-track-label="link" href="https://s100.copyright.com/AppDispatchServlet?title=The%20performance%20of%20artificial%20intelligence-driven%20technologies%20in%20diagnosing%20mental%20disorders%3A%20an%20umbrella%20review&amp;author=Alaa%20Abd-alrazaq%20et%20al&amp;contentID=10.1038%2Fs41746-022-00631-8&amp;copyright=The%20Author%28s%29&amp;publication=2398-6352&amp;publicationDate=2022-07-07&amp;publisherName=SpringerNature&amp;orderBeanReset=true&amp;oa=CC%20BY">Reprints and permissions</a></p></div></div></section><section aria-labelledby="article-info" data-title="About this article"><div class="c-article-section" id="article-info-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="article-info">About this article</h2><div class="c-article-section__content" id="article-info-content"><div class="c-bibliographic-information"><div class="u-hide-print c-bibliographic-information__column c-bibliographic-information__column--border"><a data-crossmark="10.1038/s41746-022-00631-8" target="_blank" rel="noopener" href="https://crossmark.crossref.org/dialog/?doi=10.1038/s41746-022-00631-8" data-track="click" data-track-action="Click Crossmark" data-track-label="link" data-test="crossmark"><img loading="lazy" width="57" height="81" alt="Check for updates. Verify currency and authenticity via CrossMark" src=""></a></div><div class="c-bibliographic-information__column"><h3 class="c-article__sub-heading" id="citeas">Cite this article</h3><p class="c-bibliographic-information__citation">Abd-alrazaq, A., Alhuwail, D., Schneider, J. <i>et al.</i> The performance of artificial intelligence-driven technologies in diagnosing mental disorders: an umbrella review. <i>npj Digit. Med.</i> <b>5</b>, 87 (2022). https://doi.org/10.1038/s41746-022-00631-8</p><p class="c-bibliographic-information__download-citation u-hide-print"><a data-test="citation-link" data-track="click" data-track-action="download article citation" data-track-label="link" data-track-external="" rel="nofollow" href="https://citation-needed.springer.com/v2/references/10.1038/s41746-022-00631-8?format=refman&amp;flavour=citation">Download citation<svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-download-medium"></use></svg></a></p><ul class="c-bibliographic-information__list" data-test="publication-history"><li class="c-bibliographic-information__list-item"><p>Received<span class="u-hide">: </span><span class="c-bibliographic-information__value"><time datetime="2022-02-09">09 February 2022</time></span></p></li><li class="c-bibliographic-information__list-item"><p>Accepted<span class="u-hide">: </span><span class="c-bibliographic-information__value"><time datetime="2022-06-08">08 June 2022</time></span></p></li><li class="c-bibliographic-information__list-item"><p>Published<span class="u-hide">: </span><span class="c-bibliographic-information__value"><time datetime="2022-07-07">07 July 2022</time></span></p></li><li class="c-bibliographic-information__list-item c-bibliographic-information__list-item--full-width"><p><abbr title="Digital Object Identifier">DOI</abbr><span class="u-hide">: </span><span class="c-bibliographic-information__value">https://doi.org/10.1038/s41746-022-00631-8</span></p></li></ul><div data-component="share-box"><div class="c-article-share-box u-display-none" hidden=""><h3 class="c-article__sub-heading">Share this article</h3><p class="c-article-share-box__description">Anyone you share the following link with will be able to read this content:</p><button class="js-get-share-url c-article-share-box__button" type="button" id="get-share-url" data-track="click" data-track-label="button" data-track-external="" data-track-action="get shareable link">Get shareable link</button><div class="js-no-share-url-container u-display-none" hidden=""><p class="js-c-article-share-box__no-sharelink-info c-article-share-box__no-sharelink-info">Sorry, a shareable link is not currently available for this article.</p></div><div class="js-share-url-container u-display-none" hidden=""><p class="js-share-url c-article-share-box__only-read-input" id="share-url" data-track="click" data-track-label="button" data-track-action="select share url"></p><button class="js-copy-share-url c-article-share-box__button--link-like" type="button" id="copy-share-url" data-track="click" data-track-label="button" data-track-action="copy share url" data-track-external="">Copy to clipboard</button></div><p class="js-c-article-share-box__additional-info c-article-share-box__additional-info"> Provided by the Springer Nature SharedIt content-sharing initiative </p></div></div><div data-component="article-info-list"></div></div></div></div></div></section> </div> </div> </article> </main> <aside class="c-article-extras u-hide-print" aria-label="Article navigation" data-component-reading-companion data-container-type="reading-companion" data-track-component="reading companion"> <div class="js-context-bar-sticky-point-desktop" data-track-context="reading companion"> <div class="c-pdf-download u-clear-both js-pdf-download"> <a href="/articles/s41746-022-00631-8.pdf" class="u-button u-button--full-width u-button--primary u-justify-content-space-between c-pdf-download__link" data-article-pdf="true" data-readcube-pdf-url="true" data-test="download-pdf" data-draft-ignore="true" data-track="content_download" data-track-type="article pdf download" data-track-action="download pdf" data-track-label="link" data-track-external download> <span class="c-pdf-download__text">Download PDF</span> <svg aria-hidden="true" focusable="false" width="16" height="16" class="u-icon"><use xlink:href="#icon-download"/></svg> </a> </div> </div> <div class="c-reading-companion"> <div class="c-reading-companion__sticky" data-component="reading-companion-sticky" data-test="reading-companion-sticky"> <div class="c-reading-companion__panel c-reading-companion__sections c-reading-companion__panel--active" id="tabpanel-sections"> <div class="u-lazy-ad-wrapper u-mt-16 u-hide" data-component-mpu> <div class="c-ad c-ad--300x250"> <div class="c-ad__inner"> <p class="c-ad__label">Advertisement</p> <div id="div-gpt-ad-right-2" class="div-gpt-ad advert medium-rectangle js-ad text-center hide-print grade-c-hide" data-ad-type="right" data-test="right-ad" data-pa11y-ignore data-gpt data-gpt-unitpath="/285/npjdigitalmed.nature.com/article" data-gpt-sizes="300x250" data-gpt-targeting="type=article;pos=right;artid=s41746-022-00631-8;doi=10.1038/s41746-022-00631-8;subjmeta=308,476,692,699,700;kwrd=Diseases,Health+care,Medical+research,Psychiatric+disorders"> <noscript> <a href="//pubads.g.doubleclick.net/gampad/jump?iu=/285/npjdigitalmed.nature.com/article&amp;sz=300x250&amp;c=2078422427&amp;t=pos%3Dright%26type%3Darticle%26artid%3Ds41746-022-00631-8%26doi%3D10.1038/s41746-022-00631-8%26subjmeta%3D308,476,692,699,700%26kwrd%3DDiseases,Health+care,Medical+research,Psychiatric+disorders"> <img data-test="gpt-advert-fallback-img" src="//pubads.g.doubleclick.net/gampad/ad?iu=/285/npjdigitalmed.nature.com/article&amp;sz=300x250&amp;c=2078422427&amp;t=pos%3Dright%26type%3Darticle%26artid%3Ds41746-022-00631-8%26doi%3D10.1038/s41746-022-00631-8%26subjmeta%3D308,476,692,699,700%26kwrd%3DDiseases,Health+care,Medical+research,Psychiatric+disorders" alt="Advertisement" width="300" height="250"></a> </noscript> </div> </div> </div> </div> </div> <div class="c-reading-companion__panel c-reading-companion__figures c-reading-companion__panel--full-width" id="tabpanel-figures"></div> <div class="c-reading-companion__panel c-reading-companion__references c-reading-companion__panel--full-width" id="tabpanel-references"></div> </div> </div> </aside> </div> <nav class="c-header__dropdown" aria-labelledby="Explore-content" data-test="Explore-content" id="explore" data-track-component="nature-150-split-header"> <div class="c-header__container"> <h2 id="Explore-content" class="c-header__heading c-header__heading--js-hide">Explore content</h2> <ul class="c-header__list c-header__list--js-stack"> <li class="c-header__item"> <a class="c-header__link" href="/npjdigitalmed/research-articles" data-track="click" data-track-action="research articles" data-track-label="link" data-test="explore-nav-item"> Research articles </a> </li> <li class="c-header__item"> <a class="c-header__link" href="/npjdigitalmed/reviews-and-analysis" data-track="click" data-track-action="reviews &amp; analysis" data-track-label="link" data-test="explore-nav-item"> Reviews &amp; Analysis </a> </li> <li class="c-header__item"> <a class="c-header__link" href="/npjdigitalmed/news-and-comment" data-track="click" data-track-action="news &amp; comment" data-track-label="link" data-test="explore-nav-item"> News &amp; Comment </a> </li> <li class="c-header__item"> <a class="c-header__link" href="/npjdigitalmed/collections" data-track="click" data-track-action="collections" data-track-label="link" data-test="explore-nav-item"> Collections </a> </li> </ul> <ul class="c-header__list c-header__list--js-stack"> <li class="c-header__item"> <a class="c-header__link" href="https://twitter.com/npjDigitalMed" data-track="click" data-track-action="twitter" data-track-label="link">Follow us on Twitter </a> </li> <li class="c-header__item c-header__item--hide-lg"> <a class="c-header__link" href="https://www.nature.com/my-account/alerts/subscribe-journal?list-id&#x3D;387" rel="nofollow" data-track="click" data-track-action="Sign up for alerts" data-track-external data-track-label="link (mobile dropdown)">Sign up for alerts<svg role="img" aria-hidden="true" focusable="false" height="18" viewBox="0 0 18 18" width="18" xmlns="http://www.w3.org/2000/svg"><path d="m4 10h2.5c.27614237 0 .5.2238576.5.5s-.22385763.5-.5.5h-3.08578644l-1.12132034 1.1213203c-.18753638.1875364-.29289322.4418903-.29289322.7071068v.1715729h14v-.1715729c0-.2652165-.1053568-.5195704-.2928932-.7071068l-1.7071068-1.7071067v-3.4142136c0-2.76142375-2.2385763-5-5-5-2.76142375 0-5 2.23857625-5 5zm3 4c0 1.1045695.8954305 2 2 2s2-.8954305 2-2zm-5 0c-.55228475 0-1-.4477153-1-1v-.1715729c0-.530433.21071368-1.0391408.58578644-1.4142135l1.41421356-1.4142136v-3c0-3.3137085 2.6862915-6 6-6s6 2.6862915 6 6v3l1.4142136 1.4142136c.3750727.3750727.5857864.8837805.5857864 1.4142135v.1715729c0 .5522847-.4477153 1-1 1h-4c0 1.6568542-1.3431458 3-3 3-1.65685425 0-3-1.3431458-3-3z" fill="#fff"/></svg> </a> </li> <li class="c-header__item c-header__item--hide-lg"> <a class="c-header__link" href="https://www.nature.com/npjdigitalmed.rss" data-track="click" data-track-action="rss feed" data-track-label="link"> <span>RSS feed</span> </a> </li> </ul> </div> </nav> <nav class="c-header__dropdown" aria-labelledby="About-the-journal" id="about-the-journal" data-test="about-the-journal" data-track-component="nature-150-split-header"> <div class="c-header__container"> <h2 id="About-the-journal" class="c-header__heading c-header__heading--js-hide">About the journal</h2> <ul class="c-header__list c-header__list--js-stack"> <li class="c-header__item"> <a class="c-header__link" href="/npjdigitalmed/aims" data-track="click" data-track-action="aims and scope" data-track-label="link"> Aims and scope </a> </li> <li class="c-header__item"> <a class="c-header__link" href="/npjdigitalmed/content-types" data-track="click" data-track-action="content types" data-track-label="link"> Content types </a> </li> <li class="c-header__item"> <a class="c-header__link" href="/npjdigitalmed/journal-information" data-track="click" data-track-action="journal information" data-track-label="link"> Journal Information </a> </li> <li class="c-header__item"> <a class="c-header__link" href="/npjdigitalmed/editors" data-track="click" data-track-action="about the editors" data-track-label="link"> About the Editors </a> </li> <li class="c-header__item"> <a class="c-header__link" href="/npjdigitalmed/contact" data-track="click" data-track-action="contact" data-track-label="link"> Contact </a> </li> <li class="c-header__item"> <a class="c-header__link" href="/npjdigitalmed/editorial-policies" data-track="click" data-track-action="editorial policies" data-track-label="link"> Editorial policies </a> </li> <li class="c-header__item"> <a class="c-header__link" href="/npjdigitalmed/calls-for-papers" data-track="click" data-track-action="calls for papers" data-track-label="link"> Calls for Papers </a> </li> <li class="c-header__item"> <a class="c-header__link" href="/npjdigitalmed/journal-impact" data-track="click" data-track-action="journal metrics" data-track-label="link"> Journal Metrics </a> </li> <li class="c-header__item"> <a class="c-header__link" href="/npjdigitalmed/partner" data-track="click" data-track-action="about the partner" data-track-label="link"> About the Partner </a> </li> <li class="c-header__item"> <a class="c-header__link" href="/npjdigitalmed/open-access" data-track="click" data-track-action="open access" data-track-label="link"> Open Access </a> </li> <li class="c-header__item"> <a class="c-header__link" href="/npjdigitalmed/editorial-fellowship" data-track="click" data-track-action="early career researcher editorial fellowship" data-track-label="link"> Early Career Researcher Editorial Fellowship </a> </li> <li class="c-header__item"> <a class="c-header__link" href="/npjdigitalmed/vacancies" data-track="click" data-track-action="editorial team vacancies" data-track-label="link"> Editorial Team Vacancies </a> </li> </ul> </div> </nav> <nav class="c-header__dropdown" aria-labelledby="Publish-with-us-label" id="publish-with-us" data-test="publish-with-us" data-track-component="nature-150-split-header"> <div class="c-header__container"> <h2 id="Publish-with-us-label" class="c-header__heading c-header__heading--js-hide">Publish with us</h2> <ul class="c-header__list c-header__list--js-stack"> <li class="c-header__item"> <a class="c-header__link" href="/npjdigitalmed/for-authors-and-referees" data-track="click" data-track-action="for authors and referees" data-track-label="link"> For Authors and Referees </a> </li> <li class="c-header__item"> <a class="c-header__link" data-test="nature-author-services" data-track="nav_language_services" data-track-context="header publish with us dropdown menu" data-track-action="manuscript author services" data-track-label="link manuscript author services" href="https://authorservices.springernature.com/go/sn/?utm_source=For+Authors&utm_medium=Website_Nature&utm_campaign=Platform+Experimentation+2022&utm_id=PE2022"> Language editing services </a> </li> <li class="c-header__item c-header__item--keyline"> <a class="c-header__link" href="https://submission.springernature.com/new-submission/41746/3" data-track="click_submit_manuscript" data-track-context="submit link in Nature header dropdown menu" data-track-action="submit manuscript" data-track-label="link (publish with us dropdown menu)" data-track-external data-gtm-criteo="submit-manuscript">Submit manuscript<svg role="img" aria-hidden="true" focusable="false" height="18" viewBox="0 0 18 18" width="18" xmlns="http://www.w3.org/2000/svg"><path d="m15 0c1.1045695 0 2 .8954305 2 2v5.5c0 .27614237-.2238576.5-.5.5s-.5-.22385763-.5-.5v-5.5c0-.51283584-.3860402-.93550716-.8833789-.99327227l-.1166211-.00672773h-9v3c0 1.1045695-.8954305 2-2 2h-3v10c0 .5128358.38604019.9355072.88337887.9932723l.11662113.0067277h7.5c.27614237 0 .5.2238576.5.5s-.22385763.5-.5.5h-7.5c-1.1045695 0-2-.8954305-2-2v-10.17157288c0-.53043297.21071368-1.0391408.58578644-1.41421356l3.82842712-3.82842712c.37507276-.37507276.88378059-.58578644 1.41421356-.58578644zm-.5442863 8.18867991 3.3545404 3.35454039c.2508994.2508994.2538696.6596433.0035959.909917-.2429543.2429542-.6561449.2462671-.9065387-.0089489l-2.2609825-2.3045251.0010427 7.2231989c0 .3569916-.2898381.6371378-.6473715.6371378-.3470771 0-.6473715-.2852563-.6473715-.6371378l-.0010428-7.2231995-2.2611222 2.3046654c-.2531661.2580415-.6562868.2592444-.9065605.0089707-.24295423-.2429542-.24865597-.6576651.0036132-.9099343l3.3546673-3.35466731c.2509089-.25090888.6612706-.25227691.9135302-.00001728zm-.9557137-3.18867991c.2761424 0 .5.22385763.5.5s-.2238576.5-.5.5h-6c-.27614237 0-.5-.22385763-.5-.5s.22385763-.5.5-.5zm-8.5-3.587-3.587 3.587h2.587c.55228475 0 1-.44771525 1-1zm8.5 1.587c.2761424 0 .5.22385763.5.5s-.2238576.5-.5.5h-6c-.27614237 0-.5-.22385763-.5-.5s.22385763-.5.5-.5z" fill="#fff"/></svg> </a> </li> </ul> </div> </nav> <div id="search-menu" class="c-header__dropdown c-header__dropdown--full-width" data-track-component="nature-150-split-header"> <div class="c-header__container"> <h2 class="c-header__visually-hidden">Search</h2> <form class="c-header__search-form" action="/search" method="get" role="search" autocomplete="off" data-test="inline-search"> <label class="c-header__heading" for="keywords">Search articles by subject, keyword or author</label> <div class="c-header__search-layout c-header__search-layout--max-width"> <div> <input type="text" required="" class="c-header__input" id="keywords" name="q" value=""> </div> <div class="c-header__search-layout"> <div> <label for="results-from" class="c-header__visually-hidden">Show results from</label> <select id="results-from" name="journal" class="c-header__select"> <option value="" selected>All journals</option> <option value="npjdigitalmed">This journal</option> </select> </div> <div> <button type="submit" class="c-header__search-button">Search</button> </div> </div> </div> </form> <div class="c-header__flush"> <a class="c-header__link" href="/search/advanced" data-track="click" data-track-action="advanced search" data-track-label="link"> Advanced search </a> </div> <h3 class="c-header__heading c-header__heading--keyline">Quick links</h3> <ul class="c-header__list"> <li><a class="c-header__link" href="/subjects" data-track="click" data-track-action="explore articles by subject" data-track-label="link">Explore articles by subject</a></li> <li><a class="c-header__link" href="/naturecareers" data-track="click" data-track-action="find a job" data-track-label="link">Find a job</a></li> <li><a class="c-header__link" href="/authors/index.html" data-track="click" data-track-action="guide to authors" data-track-label="link">Guide to authors</a></li> <li><a class="c-header__link" href="/authors/editorial_policies/" data-track="click" data-track-action="editorial policies" data-track-label="link">Editorial policies</a></li> </ul> </div> </div> <footer class="composite-layer" itemscope itemtype="http://schema.org/Periodical"> <meta itemprop="publisher" content="Springer Nature"> <div class="u-mt-16 u-mb-16"> <div class="u-container"> <div class="u-display-flex u-flex-wrap u-justify-content-space-between"> <p class="c-meta u-ma-0 u-flex-shrink"> <span class="c-meta__item"> npj Digital Medicine (<i>npj Digit. Med.</i>) </span> <span class="c-meta__item"> <abbr title="International Standard Serial Number">ISSN</abbr> <span itemprop="onlineIssn">2398-6352</span> (online) </span> </p> </div> </div> </div> <div class="c-footer"> <div class="u-hide-print" data-track-component="footer"> <h2 class="u-visually-hidden">nature.com sitemap</h2> <div class="c-footer__container"> <div class="c-footer__grid c-footer__group--separator"> <div class="c-footer__group"> <h3 class="c-footer__heading u-mt-0">About Nature Portfolio</h3> <ul class="c-footer__list"> <li class="c-footer__item"><a class="c-footer__link" href="https://www.nature.com/npg_/company_info/index.html" data-track="click" data-track-action="about us" data-track-label="link">About us</a></li> <li class="c-footer__item"><a class="c-footer__link" href="https://www.nature.com/npg_/press_room/press_releases.html" data-track="click" data-track-action="press releases" data-track-label="link">Press releases</a></li> <li class="c-footer__item"><a class="c-footer__link" href="https://press.nature.com/" data-track="click" data-track-action="press office" data-track-label="link">Press office</a></li> <li class="c-footer__item"><a class="c-footer__link" href="https://support.nature.com/support/home" data-track="click" data-track-action="contact us" data-track-label="link">Contact us</a></li> </ul> </div> <div class="c-footer__group"> <h3 class="c-footer__heading u-mt-0">Discover content</h3> <ul class="c-footer__list"> <li class="c-footer__item"><a class="c-footer__link" href="https://www.nature.com/siteindex" data-track="click" data-track-action="journals a-z" data-track-label="link">Journals A-Z</a></li> <li class="c-footer__item"><a class="c-footer__link" href="https://www.nature.com/subjects" data-track="click" data-track-action="article by subject" data-track-label="link">Articles by subject</a></li> <li class="c-footer__item"><a class="c-footer__link" href="https://www.protocols.io/" data-track="click" data-track-action="protocols.io" data-track-label="link">protocols.io</a></li> <li class="c-footer__item"><a class="c-footer__link" href="https://www.natureindex.com/" data-track="click" data-track-action="nature index" data-track-label="link">Nature Index</a></li> </ul> </div> <div class="c-footer__group"> <h3 class="c-footer__heading u-mt-0">Publishing policies</h3> <ul class="c-footer__list"> <li class="c-footer__item"><a class="c-footer__link" href="https://www.nature.com/authors/editorial_policies" data-track="click" data-track-action="Nature portfolio policies" data-track-label="link">Nature portfolio policies</a></li> <li class="c-footer__item"><a class="c-footer__link" href="https://www.nature.com/nature-research/open-access" data-track="click" data-track-action="open access" data-track-label="link">Open access</a></li> </ul> </div> <div class="c-footer__group"> <h3 class="c-footer__heading u-mt-0">Author &amp; Researcher services</h3> <ul class="c-footer__list"> <li class="c-footer__item"><a class="c-footer__link" href="https://www.nature.com/reprints" data-track="click" data-track-action="reprints and permissions" data-track-label="link">Reprints &amp; permissions</a></li> <li class="c-footer__item"><a class="c-footer__link" href="https://www.springernature.com/gp/authors/research-data" data-track="click" data-track-action="data research service" data-track-label="link">Research data</a></li> <li class="c-footer__item"><a class="c-footer__link" href="https://authorservices.springernature.com/language-editing/" data-track="click" data-track-action="language editing" data-track-label="link">Language editing</a></li> <li class="c-footer__item"><a class="c-footer__link" href="https://authorservices.springernature.com/scientific-editing/" data-track="click" data-track-action="scientific editing" data-track-label="link">Scientific editing</a></li> <li class="c-footer__item"><a class="c-footer__link" href="https://masterclasses.nature.com/" data-track="click" data-track-action="nature masterclasses" data-track-label="link">Nature Masterclasses</a></li> <li class="c-footer__item"><a class="c-footer__link" href="https://solutions.springernature.com/" data-track="click" data-track-action="research solutions" data-track-label="link">Research Solutions</a></li> </ul> </div> <div class="c-footer__group"> <h3 class="c-footer__heading u-mt-0">Libraries &amp; institutions</h3> <ul class="c-footer__list"> <li class="c-footer__item"><a class="c-footer__link" href="https://www.springernature.com/gp/librarians/tools-services" data-track="click" data-track-action="librarian service and tools" data-track-label="link">Librarian service &amp; tools</a></li> <li class="c-footer__item"><a class="c-footer__link" href="https://www.springernature.com/gp/librarians/manage-your-account/librarianportal" data-track="click" data-track-action="librarian portal" data-track-label="link">Librarian portal</a></li> <li class="c-footer__item"><a class="c-footer__link" href="https://www.nature.com/openresearch/about-open-access/information-for-institutions" data-track="click" data-track-action="open research" data-track-label="link">Open research</a></li> <li class="c-footer__item"><a class="c-footer__link" href="https://www.springernature.com/gp/librarians/recommend-to-your-library" data-track="click" data-track-action="Recommend to library" data-track-label="link">Recommend to library</a></li> </ul> </div> <div class="c-footer__group"> <h3 class="c-footer__heading u-mt-0">Advertising &amp; partnerships</h3> <ul class="c-footer__list"> <li class="c-footer__item"><a class="c-footer__link" href="https://partnerships.nature.com/product/digital-advertising/" data-track="click" data-track-action="advertising" data-track-label="link">Advertising</a></li> <li class="c-footer__item"><a class="c-footer__link" href="https://partnerships.nature.com/" data-track="click" data-track-action="partnerships and services" data-track-label="link">Partnerships &amp; Services</a></li> <li class="c-footer__item"><a class="c-footer__link" href="https://partnerships.nature.com/media-kits/" data-track="click" data-track-action="media kits" data-track-label="link">Media kits</a> </li> <li class="c-footer__item"><a class="c-footer__link" href="https://partnerships.nature.com/product/branded-content-native-advertising/" data-track-action="branded content" data-track-label="link">Branded content</a></li> </ul> </div> <div class="c-footer__group"> <h3 class="c-footer__heading u-mt-0">Professional development</h3> <ul class="c-footer__list"> <li class="c-footer__item"><a class="c-footer__link" href="https://www.nature.com/naturecareers/" data-track="click" data-track-action="nature careers" data-track-label="link">Nature Careers</a></li> <li class="c-footer__item"><a class="c-footer__link" href="https://conferences.nature.com" data-track="click" data-track-action="nature conferences" data-track-label="link">Nature<span class="u-visually-hidden"> </span> Conferences</a></li> </ul> </div> <div class="c-footer__group"> <h3 class="c-footer__heading u-mt-0">Regional websites</h3> <ul class="c-footer__list"> <li class="c-footer__item"><a class="c-footer__link" href="https://www.nature.com/natafrica" data-track="click" data-track-action="nature africa" data-track-label="link">Nature Africa</a></li> <li class="c-footer__item"><a class="c-footer__link" href="http://www.naturechina.com" data-track="click" data-track-action="nature china" data-track-label="link">Nature China</a></li> <li class="c-footer__item"><a class="c-footer__link" href="https://www.nature.com/nindia" data-track="click" data-track-action="nature india" data-track-label="link">Nature India</a></li> <li class="c-footer__item"><a class="c-footer__link" href="https://www.nature.com/natitaly" data-track="click" data-track-action="nature Italy" data-track-label="link">Nature Italy</a></li> <li class="c-footer__item"><a class="c-footer__link" href="https://www.natureasia.com/ja-jp" data-track="click" data-track-action="nature japan" data-track-label="link">Nature Japan</a></li> <li class="c-footer__item"><a class="c-footer__link" href="https://www.nature.com/nmiddleeast" data-track="click" data-track-action="nature middle east" data-track-label="link">Nature Middle East</a></li> </ul> </div> </div> </div> <div class="c-footer__container"> <ul class="c-footer__links"> <li class="c-footer__item"><a class="c-footer__link" href="https://www.nature.com/info/privacy" data-track="click" data-track-action="privacy policy" data-track-label="link">Privacy Policy</a></li> <li class="c-footer__item"><a class="c-footer__link" href="https://www.nature.com/info/cookies" data-track="click" data-track-action="use of cookies" data-track-label="link">Use of cookies</a></li> <li class="c-footer__item"> <button class="optanon-toggle-display c-footer__link" onclick="javascript:;" data-cc-action="preferences" data-track="click" data-track-action="manage cookies" data-track-label="link">Your privacy choices/Manage cookies </button> </li> <li class="c-footer__item"><a class="c-footer__link" href="https://www.nature.com/info/legal-notice" data-track="click" data-track-action="legal notice" data-track-label="link">Legal notice</a></li> <li class="c-footer__item"><a class="c-footer__link" href="https://www.nature.com/info/accessibility-statement" data-track="click" data-track-action="accessibility statement" data-track-label="link">Accessibility statement</a></li> <li class="c-footer__item"><a class="c-footer__link" href="https://www.nature.com/info/terms-and-conditions" data-track="click" data-track-action="terms and conditions" data-track-label="link">Terms &amp; Conditions</a></li> <li class="c-footer__item"><a class="c-footer__link" href="https://www.springernature.com/ccpa" data-track="click" data-track-action="california privacy statement" data-track-label="link">Your US state privacy rights</a></li> </ul> </div> </div> <div class="c-footer__container"> <a href="https://www.springernature.com/" class="c-footer__link"> <img src="/static/images/logos/sn-logo-white-ea63208b81.svg" alt="Springer Nature" loading="lazy" width="200" height="20"/> </a> <p class="c-footer__legal" data-test="copyright">&copy; 2025 Springer Nature Limited</p> </div> </div> <div class="u-visually-hidden" aria-hidden="true"> <?xml version="1.0" encoding="UTF-8"?><!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN" "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd"><svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="a" d="M0 .74h56.72v55.24H0z"/></defs><symbol id="icon-access" viewBox="0 0 18 18"><path d="m14 8c.5522847 0 1 .44771525 1 1v7h2.5c.2761424 0 .5.2238576.5.5v1.5h-18v-1.5c0-.2761424.22385763-.5.5-.5h2.5v-7c0-.55228475.44771525-1 1-1s1 .44771525 1 1v6.9996556h8v-6.9996556c0-.55228475.4477153-1 1-1zm-8 0 2 1v5l-2 1zm6 0v7l-2-1v-5zm-2.42653766-7.59857636 7.03554716 4.92488299c.4162533.29137735.5174853.86502537.226108 1.28127873-.1721584.24594054-.4534847.39241464-.7536934.39241464h-14.16284822c-.50810197 0-.92-.41189803-.92-.92 0-.30020869.1464741-.58153499.39241464-.75369337l7.03554714-4.92488299c.34432015-.2410241.80260453-.2410241 1.14692468 0zm-.57346234 2.03988748-3.65526982 2.55868888h7.31053962z" fill-rule="evenodd"/></symbol><symbol id="icon-account" viewBox="0 0 18 18"><path d="m10.2379028 16.9048051c1.3083556-.2032362 2.5118471-.7235183 3.5294683-1.4798399-.8731327-2.5141501-2.0638925-3.935978-3.7673711-4.3188248v-1.27684611c1.1651924-.41183641 2-1.52307546 2-2.82929429 0-1.65685425-1.3431458-3-3-3-1.65685425 0-3 1.34314575-3 3 0 1.30621883.83480763 2.41745788 2 2.82929429v1.27684611c-1.70347856.3828468-2.89423845 1.8046747-3.76737114 4.3188248 1.01762123.7563216 2.22111275 1.2766037 3.52946833 1.4798399.40563808.0629726.81921174.0951949 1.23790281.0951949s.83226473-.0322223 1.2379028-.0951949zm4.3421782-2.1721994c1.4927655-1.4532925 2.419919-3.484675 2.419919-5.7326057 0-4.418278-3.581722-8-8-8s-8 3.581722-8 8c0 2.2479307.92715352 4.2793132 2.41991895 5.7326057.75688473-2.0164459 1.83949951-3.6071894 3.48926591-4.3218837-1.14534283-.70360829-1.90918486-1.96796271-1.90918486-3.410722 0-2.209139 1.790861-4 4-4s4 1.790861 4 4c0 1.44275929-.763842 2.70711371-1.9091849 3.410722 1.6497664.7146943 2.7323812 2.3054378 3.4892659 4.3218837zm-5.580081 3.2673943c-4.97056275 0-9-4.0294373-9-9 0-4.97056275 4.02943725-9 9-9 4.9705627 0 9 4.02943725 9 9 0 4.9705627-4.0294373 9-9 9z" fill-rule="evenodd"/></symbol><symbol id="icon-alert" viewBox="0 0 18 18"><path d="m4 10h2.5c.27614237 0 .5.2238576.5.5s-.22385763.5-.5.5h-3.08578644l-1.12132034 1.1213203c-.18753638.1875364-.29289322.4418903-.29289322.7071068v.1715729h14v-.1715729c0-.2652165-.1053568-.5195704-.2928932-.7071068l-1.7071068-1.7071067v-3.4142136c0-2.76142375-2.2385763-5-5-5-2.76142375 0-5 2.23857625-5 5zm3 4c0 1.1045695.8954305 2 2 2s2-.8954305 2-2zm-5 0c-.55228475 0-1-.4477153-1-1v-.1715729c0-.530433.21071368-1.0391408.58578644-1.4142135l1.41421356-1.4142136v-3c0-3.3137085 2.6862915-6 6-6s6 2.6862915 6 6v3l1.4142136 1.4142136c.3750727.3750727.5857864.8837805.5857864 1.4142135v.1715729c0 .5522847-.4477153 1-1 1h-4c0 1.6568542-1.3431458 3-3 3-1.65685425 0-3-1.3431458-3-3z" fill-rule="evenodd"/></symbol><symbol id="icon-arrow-broad" viewBox="0 0 16 16"><path d="m6.10307866 2.97190702v7.69043288l2.44965196-2.44676915c.38776071-.38730439 1.0088052-.39493524 1.38498697-.01919617.38609051.38563612.38643641 1.01053024-.00013864 1.39665039l-4.12239817 4.11754683c-.38616704.3857126-1.01187344.3861062-1.39846576-.0000311l-4.12258206-4.11773056c-.38618426-.38572979-.39254614-1.00476697-.01636437-1.38050605.38609047-.38563611 1.01018509-.38751562 1.4012233.00306241l2.44985644 2.4469734v-8.67638639c0-.54139983.43698413-.98042709.98493125-.98159081l7.89910522-.0043627c.5451687 0 .9871152.44142642.9871152.98595351s-.4419465.98595351-.9871152.98595351z" fill-rule="evenodd" transform="matrix(-1 0 0 -1 14 15)"/></symbol><symbol id="icon-arrow-down" viewBox="0 0 16 16"><path d="m3.28337502 11.5302405 4.03074001 4.176208c.37758093.3912076.98937525.3916069 1.367372-.0000316l4.03091977-4.1763942c.3775978-.3912252.3838182-1.0190815.0160006-1.4001736-.3775061-.39113013-.9877245-.39303641-1.3700683.003106l-2.39538585 2.4818345v-11.6147896l-.00649339-.11662112c-.055753-.49733869-.46370161-.88337888-.95867408-.88337888-.49497246 0-.90292107.38604019-.95867408.88337888l-.00649338.11662112v11.6147896l-2.39518594-2.4816273c-.37913917-.39282218-.98637524-.40056175-1.35419292-.0194697-.37750607.3911302-.37784433 1.0249269.00013556 1.4165479z" fill-rule="evenodd"/></symbol><symbol id="icon-arrow-left" viewBox="0 0 16 16"><path d="m4.46975946 3.28337502-4.17620792 4.03074001c-.39120768.37758093-.39160691.98937525.0000316 1.367372l4.1763942 4.03091977c.39122514.3775978 1.01908149.3838182 1.40017357.0160006.39113012-.3775061.3930364-.9877245-.00310603-1.3700683l-2.48183446-2.39538585h11.61478958l.1166211-.00649339c.4973387-.055753.8833789-.46370161.8833789-.95867408 0-.49497246-.3860402-.90292107-.8833789-.95867408l-.1166211-.00649338h-11.61478958l2.4816273-2.39518594c.39282216-.37913917.40056173-.98637524.01946965-1.35419292-.39113012-.37750607-1.02492687-.37784433-1.41654791.00013556z" fill-rule="evenodd"/></symbol><symbol id="icon-arrow-right" viewBox="0 0 16 16"><path d="m11.5302405 12.716625 4.176208-4.03074003c.3912076-.37758093.3916069-.98937525-.0000316-1.367372l-4.1763942-4.03091981c-.3912252-.37759778-1.0190815-.38381821-1.4001736-.01600053-.39113013.37750607-.39303641.98772445.003106 1.37006824l2.4818345 2.39538588h-11.6147896l-.11662112.00649339c-.49733869.055753-.88337888.46370161-.88337888.95867408 0 .49497246.38604019.90292107.88337888.95867408l.11662112.00649338h11.6147896l-2.4816273 2.39518592c-.39282218.3791392-.40056175.9863753-.0194697 1.3541929.3911302.3775061 1.0249269.3778444 1.4165479-.0001355z" fill-rule="evenodd"/></symbol><symbol id="icon-arrow-sub" viewBox="0 0 16 16"><path d="m7.89692134 4.97190702v7.69043288l-2.44965196-2.4467692c-.38776071-.38730434-1.0088052-.39493519-1.38498697-.0191961-.38609047.3856361-.38643643 1.0105302.00013864 1.3966504l4.12239817 4.1175468c.38616704.3857126 1.01187344.3861062 1.39846576-.0000311l4.12258202-4.1177306c.3861843-.3857298.3925462-1.0047669.0163644-1.380506-.3860905-.38563612-1.0101851-.38751563-1.4012233.0030624l-2.44985643 2.4469734v-8.67638639c0-.54139983-.43698413-.98042709-.98493125-.98159081l-7.89910525-.0043627c-.54516866 0-.98711517.44142642-.98711517.98595351s.44194651.98595351.98711517.98595351z" fill-rule="evenodd"/></symbol><symbol id="icon-arrow-up" viewBox="0 0 16 16"><path d="m12.716625 4.46975946-4.03074003-4.17620792c-.37758093-.39120768-.98937525-.39160691-1.367372.0000316l-4.03091981 4.1763942c-.37759778.39122514-.38381821 1.01908149-.01600053 1.40017357.37750607.39113012.98772445.3930364 1.37006824-.00310603l2.39538588-2.48183446v11.61478958l.00649339.1166211c.055753.4973387.46370161.8833789.95867408.8833789.49497246 0 .90292107-.3860402.95867408-.8833789l.00649338-.1166211v-11.61478958l2.39518592 2.4816273c.3791392.39282216.9863753.40056173 1.3541929.01946965.3775061-.39113012.3778444-1.02492687-.0001355-1.41654791z" fill-rule="evenodd"/></symbol><symbol id="icon-article" viewBox="0 0 18 18"><path d="m13 15v-12.9906311c0-.0073595-.0019884-.0093689.0014977-.0093689l-11.00158888.00087166v13.00506804c0 .5482678.44615281.9940603.99415146.9940603h10.27350412c-.1701701-.2941734-.2675644-.6357129-.2675644-1zm-12 .0059397v-13.00506804c0-.5562408.44704472-1.00087166.99850233-1.00087166h11.00299537c.5510129 0 .9985023.45190985.9985023 1.0093689v2.9906311h3v9.9914698c0 1.1065798-.8927712 2.0085302-1.9940603 2.0085302h-12.01187942c-1.09954652 0-1.99406028-.8927712-1.99406028-1.9940603zm13-9.0059397v9c0 .5522847.4477153 1 1 1s1-.4477153 1-1v-9zm-10-2h7v4h-7zm1 1v2h5v-2zm-1 4h7v1h-7zm0 2h7v1h-7zm0 2h7v1h-7z" fill-rule="evenodd"/></symbol><symbol id="icon-audio" viewBox="0 0 18 18"><path d="m13.0957477 13.5588459c-.195279.1937043-.5119137.193729-.7072234.0000551-.1953098-.193674-.1953346-.5077061-.0000556-.7014104 1.0251004-1.0168342 1.6108711-2.3905226 1.6108711-3.85745208 0-1.46604976-.5850634-2.83898246-1.6090736-3.85566829-.1951894-.19379323-.1950192-.50782531.0003802-.70141028.1953993-.19358497.512034-.19341614.7072234.00037709 1.2094886 1.20083761 1.901635 2.8250555 1.901635 4.55670148 0 1.73268608-.6929822 3.35779608-1.9037571 4.55880738zm2.1233994 2.1025159c-.195234.193749-.5118687.1938462-.7072235.0002171-.1953548-.1936292-.1954528-.5076613-.0002189-.7014104 1.5832215-1.5711805 2.4881302-3.6939808 2.4881302-5.96012998 0-2.26581266-.9046382-4.3883241-2.487443-5.95944795-.1952117-.19377107-.1950777-.50780316.0002993-.70141031s.5120117-.19347426.7072234.00029682c1.7683321 1.75528196 2.7800854 4.12911258 2.7800854 6.66056144 0 2.53182498-1.0120556 4.90597838-2.7808529 6.66132328zm-14.21898205-3.6854911c-.5523759 0-1.00016505-.4441085-1.00016505-.991944v-3.96777631c0-.54783558.44778915-.99194407 1.00016505-.99194407h2.0003301l5.41965617-3.8393633c.44948677-.31842296 1.07413994-.21516983 1.39520191.23062232.12116339.16823446.18629727.36981184.18629727.57655577v12.01603479c0 .5478356-.44778914.9919441-1.00016505.9919441-.20845738 0-.41170538-.0645985-.58133413-.184766l-5.41965617-3.8393633zm0-.991944h2.32084805l5.68047235 4.0241292v-12.01603479l-5.68047235 4.02412928h-2.32084805z" fill-rule="evenodd"/></symbol><symbol id="icon-block" viewBox="0 0 24 24"><path d="m0 0h24v24h-24z" fill-rule="evenodd"/></symbol><symbol id="icon-book" viewBox="0 0 18 18"><path d="m4 13v-11h1v11h11v-11h-13c-.55228475 0-1 .44771525-1 1v10.2675644c.29417337-.1701701.63571286-.2675644 1-.2675644zm12 1h-13c-.55228475 0-1 .4477153-1 1s.44771525 1 1 1h13zm0 3h-13c-1.1045695 0-2-.8954305-2-2v-12c0-1.1045695.8954305-2 2-2h13c.5522847 0 1 .44771525 1 1v14c0 .5522847-.4477153 1-1 1zm-8.5-13h6c.2761424 0 .5.22385763.5.5s-.2238576.5-.5.5h-6c-.27614237 0-.5-.22385763-.5-.5s.22385763-.5.5-.5zm1 2h4c.2761424 0 .5.22385763.5.5s-.2238576.5-.5.5h-4c-.27614237 0-.5-.22385763-.5-.5s.22385763-.5.5-.5z" fill-rule="evenodd"/></symbol><symbol id="icon-broad" viewBox="0 0 24 24"><path d="m9.18274226 7.81v7.7999954l2.48162734-2.4816273c.3928221-.3928221 1.0219731-.4005617 1.4030652-.0194696.3911301.3911301.3914806 1.0249268-.0001404 1.4165479l-4.17620796 4.1762079c-.39120769.3912077-1.02508144.3916069-1.41671995-.0000316l-4.1763942-4.1763942c-.39122514-.3912251-.39767006-1.0190815-.01657798-1.4001736.39113012-.3911301 1.02337106-.3930364 1.41951349.0031061l2.48183446 2.4818344v-8.7999954c0-.54911294.4426881-.99439484.99778758-.99557515l8.00221246-.00442485c.5522847 0 1 .44771525 1 1s-.4477153 1-1 1z" fill-rule="evenodd" transform="matrix(-1 0 0 -1 20.182742 24.805206)"/></symbol><symbol id="icon-calendar" viewBox="0 0 18 18"><path d="m12.5 0c.2761424 0 .5.21505737.5.49047852v.50952148h2c1.1072288 0 2 .89451376 2 2v12c0 1.1072288-.8945138 2-2 2h-12c-1.1072288 0-2-.8945138-2-2v-12c0-1.1072288.89451376-2 2-2h1v1h-1c-.55393837 0-1 .44579254-1 1v3h14v-3c0-.55393837-.4457925-1-1-1h-2v1.50952148c0 .27088381-.2319336.49047852-.5.49047852-.2761424 0-.5-.21505737-.5-.49047852v-3.01904296c0-.27088381.2319336-.49047852.5-.49047852zm3.5 7h-14v8c0 .5539384.44579254 1 1 1h12c.5539384 0 1-.4457925 1-1zm-11 6v1h-1v-1zm3 0v1h-1v-1zm3 0v1h-1v-1zm-6-2v1h-1v-1zm3 0v1h-1v-1zm6 0v1h-1v-1zm-3 0v1h-1v-1zm-3-2v1h-1v-1zm6 0v1h-1v-1zm-3 0v1h-1v-1zm-5.5-9c.27614237 0 .5.21505737.5.49047852v.50952148h5v1h-5v1.50952148c0 .27088381-.23193359.49047852-.5.49047852-.27614237 0-.5-.21505737-.5-.49047852v-3.01904296c0-.27088381.23193359-.49047852.5-.49047852z" fill-rule="evenodd"/></symbol><symbol id="icon-cart" viewBox="0 0 18 18"><path d="m5 14c1.1045695 0 2 .8954305 2 2s-.8954305 2-2 2-2-.8954305-2-2 .8954305-2 2-2zm10 0c1.1045695 0 2 .8954305 2 2s-.8954305 2-2 2-2-.8954305-2-2 .8954305-2 2-2zm-10 1c-.55228475 0-1 .4477153-1 1s.44771525 1 1 1 1-.4477153 1-1-.44771525-1-1-1zm10 0c-.5522847 0-1 .4477153-1 1s.4477153 1 1 1 1-.4477153 1-1-.4477153-1-1-1zm-12.82032249-15c.47691417 0 .88746157.33678127.98070211.80449199l.23823144 1.19501025 13.36277974.00045554c.5522847.00001882.9999659.44774934.9999659 1.00004222 0 .07084994-.0075361.14150708-.022474.2107727l-1.2908094 5.98534344c-.1007861.46742419-.5432548.80388386-1.0571651.80388386h-10.24805106c-.59173366 0-1.07142857.4477153-1.07142857 1 0 .5128358.41361449.9355072.94647737.9932723l.1249512.0067277h10.35933776c.2749512 0 .4979349.2228539.4979349.4978051 0 .2749417-.2227336.4978951-.4976753.4980063l-10.35959736.0041886c-1.18346732 0-2.14285714-.8954305-2.14285714-2 0-.6625717.34520317-1.24989198.87690425-1.61383592l-1.63768102-8.19004794c-.01312273-.06561364-.01950005-.131011-.0196107-.19547395l-1.71961253-.00064219c-.27614237 0-.5-.22385762-.5-.5 0-.27614237.22385763-.5.5-.5zm14.53193359 2.99950224h-13.11300004l1.20580469 6.02530174c.11024034-.0163252.22327998-.02480398.33844139-.02480398h10.27064786z"/></symbol><symbol id="icon-chevron-less" viewBox="0 0 10 10"><path d="m5.58578644 4-3.29289322-3.29289322c-.39052429-.39052429-.39052429-1.02368927 0-1.41421356s1.02368927-.39052429 1.41421356 0l4 4c.39052429.39052429.39052429 1.02368927 0 1.41421356l-4 4c-.39052429.39052429-1.02368927.39052429-1.41421356 0s-.39052429-1.02368927 0-1.41421356z" fill-rule="evenodd" transform="matrix(0 -1 -1 0 9 9)"/></symbol><symbol id="icon-chevron-more" viewBox="0 0 10 10"><path d="m5.58578644 6-3.29289322-3.29289322c-.39052429-.39052429-.39052429-1.02368927 0-1.41421356s1.02368927-.39052429 1.41421356 0l4 4c.39052429.39052429.39052429 1.02368927 0 1.41421356l-4 4.00000002c-.39052429.3905243-1.02368927.3905243-1.41421356 0s-.39052429-1.02368929 0-1.41421358z" fill-rule="evenodd" transform="matrix(0 1 -1 0 11 1)"/></symbol><symbol id="icon-chevron-right" viewBox="0 0 10 10"><path d="m5.96738168 4.70639573 2.39518594-2.41447274c.37913917-.38219212.98637524-.38972225 1.35419292-.01894278.37750606.38054586.37784436.99719163-.00013556 1.37821513l-4.03074001 4.06319683c-.37758093.38062133-.98937525.38100976-1.367372-.00003075l-4.03091981-4.06337806c-.37759778-.38063832-.38381821-.99150444-.01600053-1.3622839.37750607-.38054587.98772445-.38240057 1.37006824.00302197l2.39538588 2.4146743.96295325.98624457z" fill-rule="evenodd" transform="matrix(0 -1 1 0 0 10)"/></symbol><symbol id="icon-circle-fill" viewBox="0 0 16 16"><path d="m8 14c-3.3137085 0-6-2.6862915-6-6s2.6862915-6 6-6 6 2.6862915 6 6-2.6862915 6-6 6z" fill-rule="evenodd"/></symbol><symbol id="icon-circle" viewBox="0 0 16 16"><path d="m8 12c2.209139 0 4-1.790861 4-4s-1.790861-4-4-4-4 1.790861-4 4 1.790861 4 4 4zm0 2c-3.3137085 0-6-2.6862915-6-6s2.6862915-6 6-6 6 2.6862915 6 6-2.6862915 6-6 6z" fill-rule="evenodd"/></symbol><symbol id="icon-citation" viewBox="0 0 18 18"><path d="m8.63593473 5.99995183c2.20913897 0 3.99999997 1.79084375 3.99999997 3.99996146 0 1.40730761-.7267788 2.64486871-1.8254829 3.35783281 1.6240224.6764218 2.8754442 2.0093871 3.4610603 3.6412466l-1.0763845.000006c-.5310008-1.2078237-1.5108121-2.1940153-2.7691712-2.7181346l-.79002167-.329052v-1.023992l.63016577-.4089232c.8482885-.5504661 1.3698342-1.4895187 1.3698342-2.51898361 0-1.65683828-1.3431457-2.99996146-2.99999997-2.99996146-1.65685425 0-3 1.34312318-3 2.99996146 0 1.02946491.52154569 1.96851751 1.36983419 2.51898361l.63016581.4089232v1.023992l-.79002171.329052c-1.25835905.5241193-2.23817037 1.5103109-2.76917113 2.7181346l-1.07638453-.000006c.58561612-1.6318595 1.8370379-2.9648248 3.46106024-3.6412466-1.09870405-.7129641-1.82548287-1.9505252-1.82548287-3.35783281 0-2.20911771 1.790861-3.99996146 4-3.99996146zm7.36897597-4.99995183c1.1018574 0 1.9950893.89353404 1.9950893 2.00274083v5.994422c0 1.10608317-.8926228 2.00274087-1.9950893 2.00274087l-3.0049107-.0009037v-1l3.0049107.00091329c.5490631 0 .9950893-.44783123.9950893-1.00275046v-5.994422c0-.55646537-.4450595-1.00275046-.9950893-1.00275046h-14.00982141c-.54906309 0-.99508929.44783123-.99508929 1.00275046v5.9971821c0 .66666024.33333333.99999036 1 .99999036l2-.00091329v1l-2 .0009037c-1 0-2-.99999041-2-1.99998077v-5.9971821c0-1.10608322.8926228-2.00274083 1.99508929-2.00274083zm-8.5049107 2.9999711c.27614237 0 .5.22385547.5.5 0 .2761349-.22385763.5-.5.5h-4c-.27614237 0-.5-.2238651-.5-.5 0-.27614453.22385763-.5.5-.5zm3 0c.2761424 0 .5.22385547.5.5 0 .2761349-.2238576.5-.5.5h-1c-.27614237 0-.5-.2238651-.5-.5 0-.27614453.22385763-.5.5-.5zm4 0c.2761424 0 .5.22385547.5.5 0 .2761349-.2238576.5-.5.5h-2c-.2761424 0-.5-.2238651-.5-.5 0-.27614453.2238576-.5.5-.5z" fill-rule="evenodd"/></symbol><symbol id="icon-close" viewBox="0 0 16 16"><path d="m2.29679575 12.2772478c-.39658757.3965876-.39438847 1.0328109-.00062148 1.4265779.39651227.3965123 1.03246768.3934888 1.42657791-.0006214l4.27724782-4.27724787 4.2772478 4.27724787c.3965876.3965875 1.0328109.3943884 1.4265779.0006214.3965123-.3965122.3934888-1.0324677-.0006214-1.4265779l-4.27724787-4.2772478 4.27724787-4.27724782c.3965875-.39658757.3943884-1.03281091.0006214-1.42657791-.3965122-.39651226-1.0324677-.39348875-1.4265779.00062148l-4.2772478 4.27724782-4.27724782-4.27724782c-.39658757-.39658757-1.03281091-.39438847-1.42657791-.00062148-.39651226.39651227-.39348875 1.03246768.00062148 1.42657791l4.27724782 4.27724782z" fill-rule="evenodd"/></symbol><symbol id="icon-collections" viewBox="0 0 18 18"><path d="m15 4c1.1045695 0 2 .8954305 2 2v9c0 1.1045695-.8954305 2-2 2h-8c-1.1045695 0-2-.8954305-2-2h1c0 .5128358.38604019.9355072.88337887.9932723l.11662113.0067277h8c.5128358 0 .9355072-.3860402.9932723-.8833789l.0067277-.1166211v-9c0-.51283584-.3860402-.93550716-.8833789-.99327227l-.1166211-.00672773h-1v-1zm-4-3c1.1045695 0 2 .8954305 2 2v9c0 1.1045695-.8954305 2-2 2h-8c-1.1045695 0-2-.8954305-2-2v-9c0-1.1045695.8954305-2 2-2zm0 1h-8c-.51283584 0-.93550716.38604019-.99327227.88337887l-.00672773.11662113v9c0 .5128358.38604019.9355072.88337887.9932723l.11662113.0067277h8c.5128358 0 .9355072-.3860402.9932723-.8833789l.0067277-.1166211v-9c0-.51283584-.3860402-.93550716-.8833789-.99327227zm-1.5 7c.27614237 0 .5.22385763.5.5s-.22385763.5-.5.5h-5c-.27614237 0-.5-.22385763-.5-.5s.22385763-.5.5-.5zm0-2c.27614237 0 .5.22385763.5.5s-.22385763.5-.5.5h-5c-.27614237 0-.5-.22385763-.5-.5s.22385763-.5.5-.5zm0-2c.27614237 0 .5.22385763.5.5s-.22385763.5-.5.5h-5c-.27614237 0-.5-.22385763-.5-.5s.22385763-.5.5-.5z" fill-rule="evenodd"/></symbol><symbol id="icon-compare" viewBox="0 0 18 18"><path d="m12 3c3.3137085 0 6 2.6862915 6 6s-2.6862915 6-6 6c-1.0928452 0-2.11744941-.2921742-2.99996061-.8026704-.88181407.5102749-1.90678042.8026704-3.00003939.8026704-3.3137085 0-6-2.6862915-6-6s2.6862915-6 6-6c1.09325897 0 2.11822532.29239547 3.00096303.80325037.88158756-.51107621 1.90619177-.80325037 2.99903697-.80325037zm-6 1c-2.76142375 0-5 2.23857625-5 5 0 2.7614237 2.23857625 5 5 5 .74397391 0 1.44999672-.162488 2.08451611-.4539116-1.27652344-1.1000812-2.08451611-2.7287264-2.08451611-4.5460884s.80799267-3.44600721 2.08434391-4.5463015c-.63434719-.29121054-1.34037-.4536985-2.08434391-.4536985zm6 0c-.7439739 0-1.4499967.16248796-2.08451611.45391156 1.27652341 1.10008123 2.08451611 2.72872644 2.08451611 4.54608844s-.8079927 3.4460072-2.08434391 4.5463015c.63434721.2912105 1.34037001.4536985 2.08434391.4536985 2.7614237 0 5-2.2385763 5-5 0-2.76142375-2.2385763-5-5-5zm-1.4162763 7.0005324h-3.16744736c.15614659.3572676.35283837.6927622.58425872 1.0006671h1.99892988c.23142036-.3079049.42811216-.6433995.58425876-1.0006671zm.4162763-2.0005324h-4c0 .34288501.0345146.67770871.10025909 1.0011864h3.79948181c.0657445-.32347769.1002591-.65830139.1002591-1.0011864zm-.4158423-1.99953894h-3.16831543c-.13859957.31730812-.24521946.651783-.31578599.99935097h3.79988742c-.0705665-.34756797-.1771864-.68204285-.315786-.99935097zm-1.58295822-1.999926-.08316107.06199199c-.34550042.27081213-.65446126.58611297-.91825862.93727862h2.00044041c-.28418626-.37830727-.6207872-.71499149-.99902072-.99927061z" fill-rule="evenodd"/></symbol><symbol id="icon-download-file" viewBox="0 0 18 18"><path d="m10.0046024 0c.5497429 0 1.3179837.32258606 1.707238.71184039l4.5763192 4.57631922c.3931386.39313859.7118404 1.16760135.7118404 1.71431368v8.98899651c0 1.1092806-.8945138 2.0085302-1.9940603 2.0085302h-12.01187942c-1.10128908 0-1.99406028-.8926228-1.99406028-1.9950893v-14.00982141c0-1.10185739.88743329-1.99508929 1.99961498-1.99508929zm0 1h-7.00498742c-.55709576 0-.99961498.44271433-.99961498.99508929v14.00982141c0 .5500396.44491393.9950893.99406028.9950893h12.01187942c.5463747 0 .9940603-.4506622.9940603-1.0085302v-8.98899651c0-.28393444-.2150684-.80332809-.4189472-1.0072069l-4.5763192-4.57631922c-.2038461-.20384606-.718603-.41894717-1.0001312-.41894717zm-1.5046024 4c.27614237 0 .5.21637201.5.49209595v6.14827645l1.7462789-1.77990922c.1933927-.1971171.5125222-.19455839.7001689-.0069117.1932998.19329992.1910058.50899492-.0027774.70277812l-2.59089271 2.5908927c-.19483374.1948337-.51177825.1937771-.70556873-.0000133l-2.59099079-2.5909908c-.19484111-.1948411-.19043735-.5151448-.00279066-.70279146.19329987-.19329987.50465175-.19237083.70018565.00692852l1.74638684 1.78001764v-6.14827695c0-.27177709.23193359-.49209595.5-.49209595z" fill-rule="evenodd"/></symbol><symbol id="icon-download" viewBox="0 0 16 16"><path d="m12.9975267 12.999368c.5467123 0 1.0024733.4478567 1.0024733 1.000316 0 .5563109-.4488226 1.000316-1.0024733 1.000316h-9.99505341c-.54671233 0-1.00247329-.4478567-1.00247329-1.000316 0-.5563109.44882258-1.000316 1.00247329-1.000316zm-4.9975267-11.999368c.55228475 0 1 .44497754 1 .99589209v6.80214418l2.4816273-2.48241149c.3928222-.39294628 1.0219732-.4006883 1.4030652-.01947579.3911302.39125371.3914806 1.02525073-.0001404 1.41699553l-4.17620792 4.17752758c-.39120769.3913313-1.02508144.3917306-1.41671995-.0000316l-4.17639421-4.17771394c-.39122513-.39134876-.39767006-1.01940351-.01657797-1.40061601.39113012-.39125372 1.02337105-.3931606 1.41951349.00310701l2.48183446 2.48261871v-6.80214418c0-.55001601.44386482-.99589209 1-.99589209z" fill-rule="evenodd"/></symbol><symbol id="icon-editors" viewBox="0 0 18 18"><path d="m8.72592184 2.54588137c-.48811714-.34391207-1.08343326-.54588137-1.72592184-.54588137-1.65685425 0-3 1.34314575-3 3 0 1.02947485.5215457 1.96853646 1.3698342 2.51900785l.6301658.40892721v1.02400182l-.79002171.32905522c-1.93395773.8055207-3.20997829 2.7024791-3.20997829 4.8180274v.9009805h-1v-.9009805c0-2.5479714 1.54557359-4.79153984 3.82548288-5.7411543-1.09870406-.71297106-1.82548288-1.95054399-1.82548288-3.3578652 0-2.209139 1.790861-4 4-4 1.09079823 0 2.07961816.43662103 2.80122451 1.1446278-.37707584.09278571-.7373238.22835063-1.07530267.40125357zm-2.72592184 14.45411863h-1v-.9009805c0-2.5479714 1.54557359-4.7915398 3.82548288-5.7411543-1.09870406-.71297106-1.82548288-1.95054399-1.82548288-3.3578652 0-2.209139 1.790861-4 4-4s4 1.790861 4 4c0 1.40732121-.7267788 2.64489414-1.8254829 3.3578652 2.2799093.9496145 3.8254829 3.1931829 3.8254829 5.7411543v.9009805h-1v-.9009805c0-2.1155483-1.2760206-4.0125067-3.2099783-4.8180274l-.7900217-.3290552v-1.02400184l.6301658-.40892721c.8482885-.55047139 1.3698342-1.489533 1.3698342-2.51900785 0-1.65685425-1.3431458-3-3-3-1.65685425 0-3 1.34314575-3 3 0 1.02947485.5215457 1.96853646 1.3698342 2.51900785l.6301658.40892721v1.02400184l-.79002171.3290552c-1.93395773.8055207-3.20997829 2.7024791-3.20997829 4.8180274z" fill-rule="evenodd"/></symbol><symbol id="icon-email" viewBox="0 0 18 18"><path d="m16.0049107 2c1.1018574 0 1.9950893.89706013 1.9950893 2.00585866v9.98828264c0 1.1078052-.8926228 2.0058587-1.9950893 2.0058587h-14.00982141c-1.10185739 0-1.99508929-.8970601-1.99508929-2.0058587v-9.98828264c0-1.10780515.8926228-2.00585866 1.99508929-2.00585866zm0 1h-14.00982141c-.54871518 0-.99508929.44887827-.99508929 1.00585866v9.98828264c0 .5572961.44630695 1.0058587.99508929 1.0058587h14.00982141c.5487152 0 .9950893-.4488783.9950893-1.0058587v-9.98828264c0-.55729607-.446307-1.00585866-.9950893-1.00585866zm-.0049107 2.55749512v1.44250488l-7 4-7-4v-1.44250488l7 4z" fill-rule="evenodd"/></symbol><symbol id="icon-error" viewBox="0 0 18 18"><path d="m9 0c4.9705627 0 9 4.02943725 9 9 0 4.9705627-4.0294373 9-9 9-4.97056275 0-9-4.0294373-9-9 0-4.97056275 4.02943725-9 9-9zm2.8630343 4.71100931-2.8630343 2.86303426-2.86303426-2.86303426c-.39658757-.39658757-1.03281091-.39438847-1.4265779-.00062147-.39651227.39651226-.39348876 1.03246767.00062147 1.4265779l2.86303426 2.86303426-2.86303426 2.8630343c-.39658757.3965875-.39438847 1.0328109-.00062147 1.4265779.39651226.3965122 1.03246767.3934887 1.4265779-.0006215l2.86303426-2.8630343 2.8630343 2.8630343c.3965875.3965876 1.0328109.3943885 1.4265779.0006215.3965122-.3965123.3934887-1.0324677-.0006215-1.4265779l-2.8630343-2.8630343 2.8630343-2.86303426c.3965876-.39658757.3943885-1.03281091.0006215-1.4265779-.3965123-.39651227-1.0324677-.39348876-1.4265779.00062147z" fill-rule="evenodd"/></symbol><symbol id="icon-ethics" viewBox="0 0 18 18"><path d="m6.76384967 1.41421356.83301651-.8330165c.77492941-.77492941 2.03133823-.77492941 2.80626762 0l.8330165.8330165c.3750728.37507276.8837806.58578644 1.4142136.58578644h1.3496361c1.1045695 0 2 .8954305 2 2v1.34963611c0 .53043298.2107137 1.03914081.5857864 1.41421356l.8330165.83301651c.7749295.77492941.7749295 2.03133823 0 2.80626762l-.8330165.8330165c-.3750727.3750728-.5857864.8837806-.5857864 1.4142136v1.3496361c0 1.1045695-.8954305 2-2 2h-1.3496361c-.530433 0-1.0391408.2107137-1.4142136.5857864l-.8330165.8330165c-.77492939.7749295-2.03133821.7749295-2.80626762 0l-.83301651-.8330165c-.37507275-.3750727-.88378058-.5857864-1.41421356-.5857864h-1.34963611c-1.1045695 0-2-.8954305-2-2v-1.3496361c0-.530433-.21071368-1.0391408-.58578644-1.4142136l-.8330165-.8330165c-.77492941-.77492939-.77492941-2.03133821 0-2.80626762l.8330165-.83301651c.37507276-.37507275.58578644-.88378058.58578644-1.41421356v-1.34963611c0-1.1045695.8954305-2 2-2h1.34963611c.53043298 0 1.03914081-.21071368 1.41421356-.58578644zm-1.41421356 1.58578644h-1.34963611c-.55228475 0-1 .44771525-1 1v1.34963611c0 .79564947-.31607052 1.55871121-.87867966 2.12132034l-.8330165.83301651c-.38440512.38440512-.38440512 1.00764896 0 1.39205408l.8330165.83301646c.56260914.5626092.87867966 1.3256709.87867966 2.1213204v1.3496361c0 .5522847.44771525 1 1 1h1.34963611c.79564947 0 1.55871121.3160705 2.12132034.8786797l.83301651.8330165c.38440512.3844051 1.00764896.3844051 1.39205408 0l.83301646-.8330165c.5626092-.5626092 1.3256709-.8786797 2.1213204-.8786797h1.3496361c.5522847 0 1-.4477153 1-1v-1.3496361c0-.7956495.3160705-1.5587112.8786797-2.1213204l.8330165-.83301646c.3844051-.38440512.3844051-1.00764896 0-1.39205408l-.8330165-.83301651c-.5626092-.56260913-.8786797-1.32567087-.8786797-2.12132034v-1.34963611c0-.55228475-.4477153-1-1-1h-1.3496361c-.7956495 0-1.5587112-.31607052-2.1213204-.87867966l-.83301646-.8330165c-.38440512-.38440512-1.00764896-.38440512-1.39205408 0l-.83301651.8330165c-.56260913.56260914-1.32567087.87867966-2.12132034.87867966zm3.58698944 11.4960218c-.02081224.002155-.04199226.0030286-.06345763.002542-.98766446-.0223875-1.93408568-.3063547-2.75885125-.8155622-.23496767-.1450683-.30784554-.4531483-.16277726-.688116.14506827-.2349677.45314827-.3078455.68811595-.1627773.67447084.4164161 1.44758575.6483839 2.25617384.6667123.01759529.0003988.03495764.0017019.05204365.0038639.01713363-.0017748.03452416-.0026845.05212715-.0026845 2.4852814 0 4.5-2.0147186 4.5-4.5 0-1.04888973-.3593547-2.04134635-1.0074477-2.83787157-.1742817-.21419731-.1419238-.5291218.0722736-.70340353.2141973-.17428173.5291218-.14192375.7034035.07227357.7919032.97327203 1.2317706 2.18808682 1.2317706 3.46900153 0 3.0375661-2.4624339 5.5-5.5 5.5-.02146768 0-.04261937-.0013529-.06337445-.0039782zm1.57975095-10.78419583c.2654788.07599731.419084.35281842.3430867.61829728-.0759973.26547885-.3528185.419084-.6182973.3430867-.37560116-.10752146-.76586237-.16587951-1.15568824-.17249193-2.5587807-.00064534-4.58547766 2.00216524-4.58547766 4.49928198 0 .62691557.12797645 1.23496.37274865 1.7964426.11035133.2531347-.0053975.5477984-.25853224.6581497-.25313473.1103514-.54779841-.0053975-.65814974-.2585322-.29947131-.6869568-.45606667-1.43097603-.45606667-2.1960601 0-3.05211432 2.47714695-5.50006595 5.59399617-5.49921198.48576182.00815502.96289603.0795037 1.42238033.21103795zm-1.9766658 6.41091303 2.69835-2.94655317c.1788432-.21040373.4943901-.23598862.7047939-.05714545.2104037.17884318.2359886.49439014.0571454.70479387l-3.01637681 3.34277395c-.18039088.1999106-.48669547.2210637-.69285412.0478478l-1.93095347-1.62240047c-.21213845-.17678204-.24080048-.49206439-.06401844-.70420284.17678204-.21213844.49206439-.24080048.70420284-.06401844z" fill-rule="evenodd"/></symbol><symbol id="icon-expand"><path d="M7.498 11.918a.997.997 0 0 0-.003-1.411.995.995 0 0 0-1.412-.003l-4.102 4.102v-3.51A1 1 0 0 0 .98 10.09.992.992 0 0 0 0 11.092V17c0 .554.448 1.002 1.002 1.002h5.907c.554 0 1.002-.45 1.002-1.003 0-.539-.45-.978-1.006-.978h-3.51zm3.005-5.835a.997.997 0 0 0 .003 1.412.995.995 0 0 0 1.411.003l4.103-4.103v3.51a1 1 0 0 0 1.001 1.006A.992.992 0 0 0 18 6.91V1.002A1 1 0 0 0 17 0h-5.907a1.003 1.003 0 0 0-1.002 1.003c0 .539.45.978 1.006.978h3.51z" fill-rule="evenodd"/></symbol><symbol id="icon-explore" viewBox="0 0 18 18"><path d="m9 17c4.418278 0 8-3.581722 8-8s-3.581722-8-8-8-8 3.581722-8 8 3.581722 8 8 8zm0 1c-4.97056275 0-9-4.0294373-9-9 0-4.97056275 4.02943725-9 9-9 4.9705627 0 9 4.02943725 9 9 0 4.9705627-4.0294373 9-9 9zm0-2.5c-.27614237 0-.5-.2238576-.5-.5s.22385763-.5.5-.5c2.969509 0 5.400504-2.3575119 5.497023-5.31714844.0090007-.27599565.2400359-.49243782.5160315-.48343711.2759957.0090007.4924378.2400359.4834371.51603155-.114093 3.4985237-2.9869632 6.284554-6.4964916 6.284554zm-.29090657-12.99359748c.27587424-.01216621.50937715.20161139.52154336.47748563.01216621.27587423-.20161139.50937715-.47748563.52154336-2.93195733.12930094-5.25315116 2.54886451-5.25315116 5.49456849 0 .27614237-.22385763.5-.5.5s-.5-.22385763-.5-.5c0-3.48142406 2.74307146-6.34074398 6.20909343-6.49359748zm1.13784138 8.04763908-1.2004882-1.20048821c-.19526215-.19526215-.19526215-.51184463 0-.70710678s.51184463-.19526215.70710678 0l1.20048821 1.2004882 1.6006509-4.00162734-4.50670359 1.80268144-1.80268144 4.50670359zm4.10281269-6.50378907-2.6692597 6.67314927c-.1016411.2541026-.3029834.4554449-.557086.557086l-6.67314927 2.6692597 2.66925969-6.67314926c.10164107-.25410266.30298336-.45544495.55708602-.55708602z" fill-rule="evenodd"/></symbol><symbol id="icon-filter" viewBox="0 0 16 16"><path d="m14.9738641 0c.5667192 0 1.0261359.4477136 1.0261359 1 0 .24221858-.0902161.47620768-.2538899.65849851l-5.6938314 6.34147206v5.49997973c0 .3147562-.1520673.6111434-.4104543.7999971l-2.05227171 1.4999945c-.45337535.3313696-1.09655869.2418269-1.4365902-.1999993-.13321514-.1730955-.20522717-.3836284-.20522717-.5999978v-6.99997423l-5.69383133-6.34147206c-.3731872-.41563511-.32996891-1.0473954.09653074-1.41107611.18705584-.15950448.42716133-.2474224.67571519-.2474224zm-5.9218641 8.5h-2.105v6.491l.01238459.0070843.02053271.0015705.01955278-.0070558 2.0532976-1.4990996zm-8.02585008-7.5-.01564945.00240169 5.83249953 6.49759831h2.313l5.836-6.499z"/></symbol><symbol id="icon-home" viewBox="0 0 18 18"><path d="m9 5-6 6v5h4v-4h4v4h4v-5zm7 6.5857864v4.4142136c0 .5522847-.4477153 1-1 1h-5v-4h-2v4h-5c-.55228475 0-1-.4477153-1-1v-4.4142136c-.25592232 0-.51184464-.097631-.70710678-.2928932l-.58578644-.5857864c-.39052429-.3905243-.39052429-1.02368929 0-1.41421358l8.29289322-8.29289322 8.2928932 8.29289322c.3905243.39052429.3905243 1.02368928 0 1.41421358l-.5857864.5857864c-.1952622.1952622-.4511845.2928932-.7071068.2928932zm-7-9.17157284-7.58578644 7.58578644.58578644.5857864 7-6.99999996 7 6.99999996.5857864-.5857864z" fill-rule="evenodd"/></symbol><symbol id="icon-image" viewBox="0 0 18 18"><path d="m10.0046024 0c.5497429 0 1.3179837.32258606 1.707238.71184039l4.5763192 4.57631922c.3931386.39313859.7118404 1.16760135.7118404 1.71431368v8.98899651c0 1.1092806-.8945138 2.0085302-1.9940603 2.0085302h-12.01187942c-1.10128908 0-1.99406028-.8926228-1.99406028-1.9950893v-14.00982141c0-1.10185739.88743329-1.99508929 1.99961498-1.99508929zm-3.49645283 10.1752453-3.89407257 6.7495552c.11705545.048464.24538859.0751995.37998328.0751995h10.60290092l-2.4329715-4.2154691-1.57494129 2.7288098zm8.49779013 6.8247547c.5463747 0 .9940603-.4506622.9940603-1.0085302v-8.98899651c0-.28393444-.2150684-.80332809-.4189472-1.0072069l-4.5763192-4.57631922c-.2038461-.20384606-.718603-.41894717-1.0001312-.41894717h-7.00498742c-.55709576 0-.99961498.44271433-.99961498.99508929v13.98991071l4.50814957-7.81026689 3.08089884 5.33809539 1.57494129-2.7288097 3.5875735 6.2159812zm-3.0059397-11c1.1045695 0 2 .8954305 2 2s-.8954305 2-2 2-2-.8954305-2-2 .8954305-2 2-2zm0 1c-.5522847 0-1 .44771525-1 1s.4477153 1 1 1 1-.44771525 1-1-.4477153-1-1-1z" fill-rule="evenodd"/></symbol><symbol id="icon-info" viewBox="0 0 18 18"><path d="m9 0c4.9705627 0 9 4.02943725 9 9 0 4.9705627-4.0294373 9-9 9-4.97056275 0-9-4.0294373-9-9 0-4.97056275 4.02943725-9 9-9zm0 7h-1.5l-.11662113.00672773c-.49733868.05776511-.88337887.48043643-.88337887.99327227 0 .47338693.32893365.86994729.77070917.97358929l.1126697.01968298.11662113.00672773h.5v3h-.5l-.11662113.0067277c-.42082504.0488782-.76196299.3590206-.85696816.7639815l-.01968298.1126697-.00672773.1166211.00672773.1166211c.04887817.4208251.35902055.761963.76398144.8569682l.1126697.019683.11662113.0067277h3l.1166211-.0067277c.4973387-.0577651.8833789-.4804365.8833789-.9932723 0-.4733869-.3289337-.8699473-.7707092-.9735893l-.1126697-.019683-.1166211-.0067277h-.5v-4l-.00672773-.11662113c-.04887817-.42082504-.35902055-.76196299-.76398144-.85696816l-.1126697-.01968298zm0-3.25c-.69035594 0-1.25.55964406-1.25 1.25s.55964406 1.25 1.25 1.25 1.25-.55964406 1.25-1.25-.55964406-1.25-1.25-1.25z" fill-rule="evenodd"/></symbol><symbol id="icon-institution" viewBox="0 0 18 18"><path d="m7 16.9998189v-2.0003623h4v2.0003623h2v-3.0005434h-8v3.0005434zm-3-10.00181122h-1.52632364c-.27614237 0-.5-.22389817-.5-.50009056 0-.13995446.05863589-.27350497.16166338-.36820841l1.23156713-1.13206327h-2.36690687v12.00217346h3v-2.0003623h-3v-1.0001811h3v-1.0001811h1v-4.00072448h-1zm10 0v2.00036224h-1v4.00072448h1v1.0001811h3v1.0001811h-3v2.0003623h3v-12.00217346h-2.3695309l1.2315671 1.13206327c.2033191.186892.2166633.50325042.0298051.70660631-.0946863.10304615-.2282126.16169266-.3681417.16169266zm3-3.00054336c.5522847 0 1 .44779634 1 1.00018112v13.00235456h-18v-13.00235456c0-.55238478.44771525-1.00018112 1-1.00018112h3.45499992l4.20535144-3.86558216c.19129876-.17584288.48537447-.17584288.67667324 0l4.2053514 3.86558216zm-4 3.00054336h-8v1.00018112h8zm-2 6.00108672h1v-4.00072448h-1zm-1 0v-4.00072448h-2v4.00072448zm-3 0v-4.00072448h-1v4.00072448zm8-4.00072448c.5522847 0 1 .44779634 1 1.00018112v2.00036226h-2v-2.00036226c0-.55238478.4477153-1.00018112 1-1.00018112zm-12 0c.55228475 0 1 .44779634 1 1.00018112v2.00036226h-2v-2.00036226c0-.55238478.44771525-1.00018112 1-1.00018112zm5.99868798-7.81907007-5.24205601 4.81852671h10.48411203zm.00131202 3.81834559c-.55228475 0-1-.44779634-1-1.00018112s.44771525-1.00018112 1-1.00018112 1 .44779634 1 1.00018112-.44771525 1.00018112-1 1.00018112zm-1 11.00199236v1.0001811h2v-1.0001811z" fill-rule="evenodd"/></symbol><symbol id="icon-location" viewBox="0 0 18 18"><path d="m9.39521328 16.2688008c.79596342-.7770119 1.59208152-1.6299956 2.33285652-2.5295081 1.4020032-1.7024324 2.4323601-3.3624519 2.9354918-4.871847.2228715-.66861448.3364384-1.29323246.3364384-1.8674457 0-3.3137085-2.6862915-6-6-6-3.36356866 0-6 2.60156856-6 6 0 .57421324.11356691 1.19883122.3364384 1.8674457.50313169 1.5093951 1.53348863 3.1694146 2.93549184 4.871847.74077492.8995125 1.53689309 1.7524962 2.33285648 2.5295081.13694479.1336842.26895677.2602648.39521328.3793207.12625651-.1190559.25826849-.2456365.39521328-.3793207zm-.39521328 1.7311992s-7-6-7-11c0-4 3.13400675-7 7-7 3.8659932 0 7 3.13400675 7 7 0 5-7 11-7 11zm0-8c-1.65685425 0-3-1.34314575-3-3s1.34314575-3 3-3c1.6568542 0 3 1.34314575 3 3s-1.3431458 3-3 3zm0-1c1.1045695 0 2-.8954305 2-2s-.8954305-2-2-2-2 .8954305-2 2 .8954305 2 2 2z" fill-rule="evenodd"/></symbol><symbol id="icon-minus" viewBox="0 0 16 16"><path d="m2.00087166 7h11.99825664c.5527662 0 1.0008717.44386482 1.0008717 1 0 .55228475-.4446309 1-1.0008717 1h-11.99825664c-.55276616 0-1.00087166-.44386482-1.00087166-1 0-.55228475.44463086-1 1.00087166-1z" fill-rule="evenodd"/></symbol><symbol id="icon-newsletter" viewBox="0 0 18 18"><path d="m9 11.8482489 2-1.1428571v-1.7053918h-4v1.7053918zm-3-1.7142857v-2.1339632h6v2.1339632l3-1.71428574v-6.41967746h-12v6.41967746zm10-5.3839632 1.5299989.95624934c.2923814.18273835.4700011.50320827.4700011.8479983v8.44575236c0 1.1045695-.8954305 2-2 2h-14c-1.1045695 0-2-.8954305-2-2v-8.44575236c0-.34479003.1776197-.66525995.47000106-.8479983l1.52999894-.95624934v-2.75c0-.55228475.44771525-1 1-1h12c.5522847 0 1 .44771525 1 1zm0 1.17924764v3.07075236l-7 4-7-4v-3.07075236l-1 .625v8.44575236c0 .5522847.44771525 1 1 1h14c.5522847 0 1-.4477153 1-1v-8.44575236zm-10-1.92924764h6v1h-6zm-1 2h8v1h-8z" fill-rule="evenodd"/></symbol><symbol id="icon-orcid" viewBox="0 0 18 18"><path d="m9 1c4.418278 0 8 3.581722 8 8s-3.581722 8-8 8-8-3.581722-8-8 3.581722-8 8-8zm-2.90107518 5.2732337h-1.41865256v7.1712107h1.41865256zm4.55867178.02508949h-2.99247027v7.14612121h2.91062487c.7673039 0 1.4476365-.1483432 2.0410182-.445034s1.0511995-.7152915 1.3734671-1.2558144c.3222677-.540523.4833991-1.1603247.4833991-1.85942385 0-.68545815-.1602789-1.30270225-.4808414-1.85175082-.3205625-.54904856-.7707074-.97532211-1.3504481-1.27883343-.5797408-.30351132-1.2413173-.45526471-1.9847495-.45526471zm-.1892674 1.07933542c.7877654 0 1.4143875.22336734 1.8798852.67010873.4654977.44674138.698243 1.05546001.698243 1.82617415 0 .74343221-.2310402 1.34447791-.6931277 1.80315511-.4620874.4586773-1.0750688.6880124-1.8389625.6880124h-1.46810075v-4.98745039zm-5.08652545-3.71099194c-.21825533 0-.410525.08444276-.57681478.25333081-.16628977.16888806-.24943341.36245684-.24943341.58071218 0 .22345188.08314364.41961891.24943341.58850696.16628978.16888806.35855945.25333082.57681478.25333082.233845 0 .43390938-.08314364.60019916-.24943342.16628978-.16628977.24943342-.36375592.24943342-.59240436 0-.233845-.08314364-.43131115-.24943342-.59240437s-.36635416-.24163862-.60019916-.24163862z" fill-rule="evenodd"/></symbol><symbol id="icon-plus" viewBox="0 0 16 16"><path d="m2.00087166 7h4.99912834v-4.99912834c0-.55276616.44386482-1.00087166 1-1.00087166.55228475 0 1 .44463086 1 1.00087166v4.99912834h4.9991283c.5527662 0 1.0008717.44386482 1.0008717 1 0 .55228475-.4446309 1-1.0008717 1h-4.9991283v4.9991283c0 .5527662-.44386482 1.0008717-1 1.0008717-.55228475 0-1-.4446309-1-1.0008717v-4.9991283h-4.99912834c-.55276616 0-1.00087166-.44386482-1.00087166-1 0-.55228475.44463086-1 1.00087166-1z" fill-rule="evenodd"/></symbol><symbol id="icon-print" viewBox="0 0 18 18"><path d="m16.0049107 5h-14.00982141c-.54941618 0-.99508929.4467783-.99508929.99961498v6.00077002c0 .5570958.44271433.999615.99508929.999615h1.00491071v-3h12v3h1.0049107c.5494162 0 .9950893-.4467783.9950893-.999615v-6.00077002c0-.55709576-.4427143-.99961498-.9950893-.99961498zm-2.0049107-1v-2.00208688c0-.54777062-.4519464-.99791312-1.0085302-.99791312h-7.9829396c-.55661731 0-1.0085302.44910695-1.0085302.99791312v2.00208688zm1 10v2.0018986c0 1.103521-.9019504 1.9981014-2.0085302 1.9981014h-7.9829396c-1.1092806 0-2.0085302-.8867064-2.0085302-1.9981014v-2.0018986h-1.00491071c-1.10185739 0-1.99508929-.8874333-1.99508929-1.999615v-6.00077002c0-1.10435686.8926228-1.99961498 1.99508929-1.99961498h1.00491071v-2.00208688c0-1.10341695.90195036-1.99791312 2.0085302-1.99791312h7.9829396c1.1092806 0 2.0085302.89826062 2.0085302 1.99791312v2.00208688h1.0049107c1.1018574 0 1.9950893.88743329 1.9950893 1.99961498v6.00077002c0 1.1043569-.8926228 1.999615-1.9950893 1.999615zm-1-3h-10v5.0018986c0 .5546075.44702548.9981014 1.0085302.9981014h7.9829396c.5565964 0 1.0085302-.4491701 1.0085302-.9981014zm-9 1h8v1h-8zm0 2h5v1h-5zm9-5c-.5522847 0-1-.44771525-1-1s.4477153-1 1-1 1 .44771525 1 1-.4477153 1-1 1z" fill-rule="evenodd"/></symbol><symbol id="icon-search" viewBox="0 0 22 22"><path d="M21.697 20.261a1.028 1.028 0 01.01 1.448 1.034 1.034 0 01-1.448-.01l-4.267-4.267A9.812 9.811 0 010 9.812a9.812 9.811 0 1117.43 6.182zM9.812 18.222A8.41 8.41 0 109.81 1.403a8.41 8.41 0 000 16.82z" fill-rule="evenodd"/></symbol><symbol id="icon-social-facebook" viewBox="0 0 24 24"><path d="m6.00368507 20c-1.10660471 0-2.00368507-.8945138-2.00368507-1.9940603v-12.01187942c0-1.10128908.89451376-1.99406028 1.99406028-1.99406028h12.01187942c1.1012891 0 1.9940603.89451376 1.9940603 1.99406028v12.01187942c0 1.1012891-.88679 1.9940603-2.0032184 1.9940603h-2.9570132v-6.1960818h2.0797387l.3114113-2.414723h-2.39115v-1.54164807c0-.69911803.1941355-1.1755439 1.1966615-1.1755439l1.2786739-.00055875v-2.15974763l-.2339477-.02492088c-.3441234-.03134957-.9500153-.07025255-1.6293054-.07025255-1.8435726 0-3.1057323 1.12531866-3.1057323 3.19187953v1.78079225h-2.0850778v2.414723h2.0850778v6.1960818z" fill-rule="evenodd"/></symbol><symbol id="icon-social-twitter" viewBox="0 0 24 24"><path d="m18.8767135 6.87445248c.7638174-.46908424 1.351611-1.21167363 1.6250764-2.09636345-.7135248.43394112-1.50406.74870123-2.3464594.91677702-.6695189-.73342162-1.6297913-1.19486605-2.6922204-1.19486605-2.0399895 0-3.6933555 1.69603749-3.6933555 3.78628909 0 .29642457.0314329.58673729.0942985.8617704-3.06469922-.15890802-5.78835241-1.66547825-7.60988389-3.9574208-.3174714.56076194-.49978171 1.21167363-.49978171 1.90536824 0 1.31404706.65223085 2.47224203 1.64236444 3.15218497-.60350999-.0198635-1.17401554-.1925232-1.67222562-.47366811v.04583885c0 1.83355406 1.27302891 3.36609966 2.96411421 3.71294696-.31118484.0886217-.63651445.1329326-.97441718.1329326-.2357461 0-.47149219-.0229194-.69466516-.0672303.47149219 1.5065703 1.83253297 2.6036468 3.44975116 2.632678-1.2651707 1.0160946-2.85724264 1.6196394-4.5891906 1.6196394-.29861172 0-.59093688-.0152796-.88011875-.0504227 1.63450624 1.0726291 3.57548241 1.6990934 5.66104951 1.6990934 6.79263079 0 10.50641749-5.7711113 10.50641749-10.7751859l-.0094298-.48894775c.7229547-.53478659 1.3516109-1.20250585 1.8419628-1.96190282-.6632323.30100846-1.3751855.50422736-2.1217148.59590507z" fill-rule="evenodd"/></symbol><symbol id="icon-social-youtube" viewBox="0 0 24 24"><path d="m10.1415 14.3973208-.0005625-5.19318431 4.863375 2.60554491zm9.963-7.92753362c-.6845625-.73643756-1.4518125-.73990314-1.803375-.7826454-2.518875-.18714178-6.2971875-.18714178-6.2971875-.18714178-.007875 0-3.7861875 0-6.3050625.18714178-.352125.04274226-1.1188125.04620784-1.8039375.7826454-.5394375.56084773-.7149375 1.8344515-.7149375 1.8344515s-.18 1.49597903-.18 2.99138042v1.4024082c0 1.495979.18 2.9913804.18 2.9913804s.1755 1.2736038.7149375 1.8344515c.685125.7364376 1.5845625.7133337 1.9850625.7901542 1.44.1420891 6.12.1859866 6.12.1859866s3.78225-.005776 6.301125-.1929178c.3515625-.0433198 1.1188125-.0467854 1.803375-.783223.5394375-.5608477.7155-1.8344515.7155-1.8344515s.18-1.4954014.18-2.9913804v-1.4024082c0-1.49540139-.18-2.99138042-.18-2.99138042s-.1760625-1.27360377-.7155-1.8344515z" fill-rule="evenodd"/></symbol><symbol id="icon-subject-medicine" viewBox="0 0 18 18"><path d="m12.5 8h-6.5c-1.65685425 0-3 1.34314575-3 3v1c0 1.6568542 1.34314575 3 3 3h1v-2h-.5c-.82842712 0-1.5-.6715729-1.5-1.5s.67157288-1.5 1.5-1.5h1.5 2 1 2c1.6568542 0 3-1.34314575 3-3v-1c0-1.65685425-1.3431458-3-3-3h-2v2h1.5c.8284271 0 1.5.67157288 1.5 1.5s-.6715729 1.5-1.5 1.5zm-5.5-1v-1h-3.5c-1.38071187 0-2.5-1.11928813-2.5-2.5s1.11928813-2.5 2.5-2.5h1.02786405c.46573528 0 .92507448.10843528 1.34164078.31671843l1.13382424.56691212c.06026365-1.05041141.93116291-1.88363055 1.99667093-1.88363055 1.1045695 0 2 .8954305 2 2h2c2.209139 0 4 1.790861 4 4v1c0 2.209139-1.790861 4-4 4h-2v1h2c1.1045695 0 2 .8954305 2 2s-.8954305 2-2 2h-2c0 1.1045695-.8954305 2-2 2s-2-.8954305-2-2h-1c-2.209139 0-4-1.790861-4-4v-1c0-2.209139 1.790861-4 4-4zm0-2v-2.05652691c-.14564246-.03538148-.28733393-.08714006-.42229124-.15461871l-1.15541752-.57770876c-.27771087-.13885544-.583937-.21114562-.89442719-.21114562h-1.02786405c-.82842712 0-1.5.67157288-1.5 1.5s.67157288 1.5 1.5 1.5zm4 1v1h1.5c.2761424 0 .5-.22385763.5-.5s-.2238576-.5-.5-.5zm-1 1v-5c0-.55228475-.44771525-1-1-1s-1 .44771525-1 1v5zm-2 4v5c0 .5522847.44771525 1 1 1s1-.4477153 1-1v-5zm3 2v2h2c.5522847 0 1-.4477153 1-1s-.4477153-1-1-1zm-4-1v-1h-.5c-.27614237 0-.5.2238576-.5.5s.22385763.5.5.5zm-3.5-9h1c.27614237 0 .5.22385763.5.5s-.22385763.5-.5.5h-1c-.27614237 0-.5-.22385763-.5-.5s.22385763-.5.5-.5z" fill-rule="evenodd"/></symbol><symbol id="icon-success" viewBox="0 0 18 18"><path d="m9 0c4.9705627 0 9 4.02943725 9 9 0 4.9705627-4.0294373 9-9 9-4.97056275 0-9-4.0294373-9-9 0-4.97056275 4.02943725-9 9-9zm3.4860198 4.98163161-4.71802968 5.50657859-2.62834168-2.02300024c-.42862421-.36730544-1.06564993-.30775346-1.42283677.13301307-.35718685.44076653-.29927542 1.0958383.12934879 1.46314377l3.40735508 2.7323063c.42215801.3385221 1.03700951.2798252 1.38749189-.1324571l5.38450527-6.33394549c.3613513-.43716226.3096573-1.09278382-.115462-1.46437175-.4251192-.37158792-1.0626796-.31842941-1.4240309.11873285z" fill-rule="evenodd"/></symbol><symbol id="icon-table" viewBox="0 0 18 18"><path d="m16.0049107 2c1.1018574 0 1.9950893.89706013 1.9950893 2.00585866v9.98828264c0 1.1078052-.8926228 2.0058587-1.9950893 2.0058587l-4.0059107-.001.001.001h-1l-.001-.001h-5l.001.001h-1l-.001-.001-3.00391071.001c-1.10185739 0-1.99508929-.8970601-1.99508929-2.0058587v-9.98828264c0-1.10780515.8926228-2.00585866 1.99508929-2.00585866zm-11.0059107 5h-3.999v6.9941413c0 .5572961.44630695 1.0058587.99508929 1.0058587h3.00391071zm6 0h-5v8h5zm5.0059107-4h-4.0059107v3h5.001v1h-5.001v7.999l4.0059107.001c.5487152 0 .9950893-.4488783.9950893-1.0058587v-9.98828264c0-.55729607-.446307-1.00585866-.9950893-1.00585866zm-12.5049107 9c.27614237 0 .5.2238576.5.5s-.22385763.5-.5.5h-1c-.27614237 0-.5-.2238576-.5-.5s.22385763-.5.5-.5zm12 0c.2761424 0 .5.2238576.5.5s-.2238576.5-.5.5h-2c-.2761424 0-.5-.2238576-.5-.5s.2238576-.5.5-.5zm-6 0c.27614237 0 .5.2238576.5.5s-.22385763.5-.5.5h-2c-.27614237 0-.5-.2238576-.5-.5s.22385763-.5.5-.5zm-6-2c.27614237 0 .5.2238576.5.5s-.22385763.5-.5.5h-1c-.27614237 0-.5-.2238576-.5-.5s.22385763-.5.5-.5zm12 0c.2761424 0 .5.2238576.5.5s-.2238576.5-.5.5h-2c-.2761424 0-.5-.2238576-.5-.5s.2238576-.5.5-.5zm-6 0c.27614237 0 .5.2238576.5.5s-.22385763.5-.5.5h-2c-.27614237 0-.5-.2238576-.5-.5s.22385763-.5.5-.5zm-6-2c.27614237 0 .5.22385763.5.5s-.22385763.5-.5.5h-1c-.27614237 0-.5-.22385763-.5-.5s.22385763-.5.5-.5zm12 0c.2761424 0 .5.22385763.5.5s-.2238576.5-.5.5h-2c-.2761424 0-.5-.22385763-.5-.5s.2238576-.5.5-.5zm-6 0c.27614237 0 .5.22385763.5.5s-.22385763.5-.5.5h-2c-.27614237 0-.5-.22385763-.5-.5s.22385763-.5.5-.5zm1.499-5h-5v3h5zm-6 0h-3.00391071c-.54871518 0-.99508929.44887827-.99508929 1.00585866v1.99414134h3.999z" fill-rule="evenodd"/></symbol><symbol id="icon-tick-circle" viewBox="0 0 24 24"><path d="m12 2c5.5228475 0 10 4.4771525 10 10s-4.4771525 10-10 10-10-4.4771525-10-10 4.4771525-10 10-10zm0 1c-4.97056275 0-9 4.02943725-9 9 0 4.9705627 4.02943725 9 9 9 4.9705627 0 9-4.0294373 9-9 0-4.97056275-4.0294373-9-9-9zm4.2199868 5.36606669c.3613514-.43716226.9989118-.49032077 1.424031-.11873285s.4768133 1.02720949.115462 1.46437175l-6.093335 6.94397871c-.3622945.4128716-.9897871.4562317-1.4054264.0971157l-3.89719065-3.3672071c-.42862421-.3673054-.48653564-1.0223772-.1293488-1.4631437s.99421256-.5003185 1.42283677-.1330131l3.11097438 2.6987741z" fill-rule="evenodd"/></symbol><symbol id="icon-tick" viewBox="0 0 16 16"><path d="m6.76799012 9.21106946-3.1109744-2.58349728c-.42862421-.35161617-1.06564993-.29460792-1.42283677.12733148s-.29927541 1.04903009.1293488 1.40064626l3.91576307 3.23873978c.41034319.3393961 1.01467563.2976897 1.37450571-.0948578l6.10568327-6.660841c.3613513-.41848908.3096572-1.04610608-.115462-1.4018218-.4251192-.35571573-1.0626796-.30482786-1.424031.11366122z" fill-rule="evenodd"/></symbol><symbol id="icon-update" viewBox="0 0 18 18"><path d="m1 13v1c0 .5522847.44771525 1 1 1h14c.5522847 0 1-.4477153 1-1v-1h-1v-10h-14v10zm16-1h1v2c0 1.1045695-.8954305 2-2 2h-14c-1.1045695 0-2-.8954305-2-2v-2h1v-9c0-.55228475.44771525-1 1-1h14c.5522847 0 1 .44771525 1 1zm-1 0v1h-4.5857864l-1 1h-2.82842716l-1-1h-4.58578644v-1h5l1 1h2l1-1zm-13-8h12v7h-12zm1 1v5h10v-5zm1 1h4v1h-4zm0 2h4v1h-4z" fill-rule="evenodd"/></symbol><symbol id="icon-upload" viewBox="0 0 18 18"><path d="m10.0046024 0c.5497429 0 1.3179837.32258606 1.707238.71184039l4.5763192 4.57631922c.3931386.39313859.7118404 1.16760135.7118404 1.71431368v8.98899651c0 1.1092806-.8945138 2.0085302-1.9940603 2.0085302h-12.01187942c-1.10128908 0-1.99406028-.8926228-1.99406028-1.9950893v-14.00982141c0-1.10185739.88743329-1.99508929 1.99961498-1.99508929zm0 1h-7.00498742c-.55709576 0-.99961498.44271433-.99961498.99508929v14.00982141c0 .5500396.44491393.9950893.99406028.9950893h12.01187942c.5463747 0 .9940603-.4506622.9940603-1.0085302v-8.98899651c0-.28393444-.2150684-.80332809-.4189472-1.0072069l-4.5763192-4.57631922c-.2038461-.20384606-.718603-.41894717-1.0001312-.41894717zm-1.85576936 4.14572769c.19483374-.19483375.51177826-.19377714.70556874.00001334l2.59099082 2.59099079c.1948411.19484112.1904373.51514474.0027906.70279143-.1932998.19329987-.5046517.19237083-.7001856-.00692852l-1.74638687-1.7800176v6.14827687c0 .2717771-.23193359.492096-.5.492096-.27614237 0-.5-.216372-.5-.492096v-6.14827641l-1.74627892 1.77990922c-.1933927.1971171-.51252214.19455839-.70016883.0069117-.19329987-.19329988-.19100584-.50899493.00277731-.70277808z" fill-rule="evenodd"/></symbol><symbol id="icon-video" viewBox="0 0 18 18"><path d="m16.0049107 2c1.1018574 0 1.9950893.89706013 1.9950893 2.00585866v9.98828264c0 1.1078052-.8926228 2.0058587-1.9950893 2.0058587h-14.00982141c-1.10185739 0-1.99508929-.8970601-1.99508929-2.0058587v-9.98828264c0-1.10780515.8926228-2.00585866 1.99508929-2.00585866zm0 1h-14.00982141c-.54871518 0-.99508929.44887827-.99508929 1.00585866v9.98828264c0 .5572961.44630695 1.0058587.99508929 1.0058587h14.00982141c.5487152 0 .9950893-.4488783.9950893-1.0058587v-9.98828264c0-.55729607-.446307-1.00585866-.9950893-1.00585866zm-8.30912922 2.24944486 4.60460462 2.73982242c.9365543.55726659.9290753 1.46522435 0 2.01804082l-4.60460462 2.7398224c-.93655425.5572666-1.69578148.1645632-1.69578148-.8937585v-5.71016863c0-1.05087579.76670616-1.446575 1.69578148-.89375851zm-.67492769.96085624v5.5750128c0 .2995102-.10753745.2442517.16578928.0847713l4.58452283-2.67497259c.3050619-.17799716.3051624-.21655446 0-.39461026l-4.58452283-2.67497264c-.26630747-.15538481-.16578928-.20699944-.16578928.08477139z" fill-rule="evenodd"/></symbol><symbol id="icon-warning" viewBox="0 0 18 18"><path d="m9 11.75c.69035594 0 1.25.5596441 1.25 1.25s-.55964406 1.25-1.25 1.25-1.25-.5596441-1.25-1.25.55964406-1.25 1.25-1.25zm.41320045-7.75c.55228475 0 1.00000005.44771525 1.00000005 1l-.0034543.08304548-.3333333 4c-.043191.51829212-.47645714.91695452-.99654578.91695452h-.15973424c-.52008864 0-.95335475-.3986624-.99654576-.91695452l-.33333333-4c-.04586475-.55037702.36312325-1.03372649.91350028-1.07959124l.04148683-.00259031zm-.41320045 14c-4.97056275 0-9-4.0294373-9-9 0-4.97056275 4.02943725-9 9-9 4.9705627 0 9 4.02943725 9 9 0 4.9705627-4.0294373 9-9 9z" fill-rule="evenodd"/></symbol><symbol id="icon-checklist-banner" viewBox="0 0 56.69 56.69"><path style="fill:none" d="M0 0h56.69v56.69H0z"/><clipPath id="b"><use xlink:href="#a" style="overflow:visible"/></clipPath><path d="M21.14 34.46c0-6.77 5.48-12.26 12.24-12.26s12.24 5.49 12.24 12.26-5.48 12.26-12.24 12.26c-6.76-.01-12.24-5.49-12.24-12.26zm19.33 10.66 10.23 9.22s1.21 1.09 2.3-.12l2.09-2.32s1.09-1.21-.12-2.3l-10.23-9.22m-19.29-5.92c0-4.38 3.55-7.94 7.93-7.94s7.93 3.55 7.93 7.94c0 4.38-3.55 7.94-7.93 7.94-4.38-.01-7.93-3.56-7.93-7.94zm17.58 12.99 4.14-4.81" style="clip-path:url(#b);fill:none;stroke:#01324b;stroke-width:2;stroke-linecap:round"/><path d="M8.26 9.75H28.6M8.26 15.98H28.6m-20.34 6.2h12.5m14.42-5.2V4.86s0-2.93-2.93-2.93H4.13s-2.93 0-2.93 2.93v37.57s0 2.93 2.93 2.93h15.01M8.26 9.75H28.6M8.26 15.98H28.6m-20.34 6.2h12.5" style="clip-path:url(#b);fill:none;stroke:#01324b;stroke-width:2;stroke-linecap:round;stroke-linejoin:round"/></symbol><symbol id="icon-chevron-down" viewBox="0 0 16 16"><path d="m5.58578644 3-3.29289322-3.29289322c-.39052429-.39052429-.39052429-1.02368927 0-1.41421356s1.02368927-.39052429 1.41421356 0l4 4c.39052429.39052429.39052429 1.02368927 0 1.41421356l-4 4c-.39052429.39052429-1.02368927.39052429-1.41421356 0s-.39052429-1.02368927 0-1.41421356z" fill-rule="evenodd" transform="matrix(0 1 -1 0 11 1)"/></symbol><symbol id="icon-eds-i-arrow-right-medium" viewBox="0 0 24 24"><path d="m12.728 3.293 7.98 7.99a.996.996 0 0 1 .281.561l.011.157c0 .32-.15.605-.384.788l-7.908 7.918a1 1 0 0 1-1.416-1.414L17.576 13H4a1 1 0 0 1 0-2h13.598l-6.285-6.293a1 1 0 0 1-.082-1.32l.083-.095a1 1 0 0 1 1.414.001Z"/></symbol><symbol id="icon-eds-i-chevron-down-medium" viewBox="0 0 16 16"><path d="m2.00087166 7h4.99912834v-4.99912834c0-.55276616.44386482-1.00087166 1-1.00087166.55228475 0 1 .44463086 1 1.00087166v4.99912834h4.9991283c.5527662 0 1.0008717.44386482 1.0008717 1 0 .55228475-.4446309 1-1.0008717 1h-4.9991283v4.9991283c0 .5527662-.44386482 1.0008717-1 1.0008717-.55228475 0-1-.4446309-1-1.0008717v-4.9991283h-4.99912834c-.55276616 0-1.00087166-.44386482-1.00087166-1 0-.55228475.44463086-1 1.00087166-1z" fill-rule="evenodd"/></symbol><symbol id="icon-eds-i-chevron-down-small" viewBox="0 0 16 16"><path d="M13.692 5.278a1 1 0 0 1 .03 1.414L9.103 11.51a1.491 1.491 0 0 1-2.188.019L2.278 6.692a1 1 0 0 1 1.444-1.384L8 9.771l4.278-4.463a1 1 0 0 1 1.318-.111l.096.081Z"/></symbol><symbol id="icon-eds-i-chevron-right-medium" viewBox="0 0 10 10"><path d="m5.96738168 4.70639573 2.39518594-2.41447274c.37913917-.38219212.98637524-.38972225 1.35419292-.01894278.37750606.38054586.37784436.99719163-.00013556 1.37821513l-4.03074001 4.06319683c-.37758093.38062133-.98937525.38100976-1.367372-.00003075l-4.03091981-4.06337806c-.37759778-.38063832-.38381821-.99150444-.01600053-1.3622839.37750607-.38054587.98772445-.38240057 1.37006824.00302197l2.39538588 2.4146743.96295325.98624457z" fill-rule="evenodd" transform="matrix(0 -1 1 0 0 10)"/></symbol><symbol id="icon-eds-i-chevron-right-small" viewBox="0 0 10 10"><path d="m5.96738168 4.70639573 2.39518594-2.41447274c.37913917-.38219212.98637524-.38972225 1.35419292-.01894278.37750606.38054586.37784436.99719163-.00013556 1.37821513l-4.03074001 4.06319683c-.37758093.38062133-.98937525.38100976-1.367372-.00003075l-4.03091981-4.06337806c-.37759778-.38063832-.38381821-.99150444-.01600053-1.3622839.37750607-.38054587.98772445-.38240057 1.37006824.00302197l2.39538588 2.4146743.96295325.98624457z" fill-rule="evenodd" transform="matrix(0 -1 1 0 0 10)"/></symbol><symbol id="icon-eds-i-chevron-up-medium" viewBox="0 0 16 16"><path d="m2.00087166 7h11.99825664c.5527662 0 1.0008717.44386482 1.0008717 1 0 .55228475-.4446309 1-1.0008717 1h-11.99825664c-.55276616 0-1.00087166-.44386482-1.00087166-1 0-.55228475.44463086-1 1.00087166-1z" fill-rule="evenodd"/></symbol><symbol id="icon-eds-i-close-medium" viewBox="0 0 16 16"><path d="m2.29679575 12.2772478c-.39658757.3965876-.39438847 1.0328109-.00062148 1.4265779.39651227.3965123 1.03246768.3934888 1.42657791-.0006214l4.27724782-4.27724787 4.2772478 4.27724787c.3965876.3965875 1.0328109.3943884 1.4265779.0006214.3965123-.3965122.3934888-1.0324677-.0006214-1.4265779l-4.27724787-4.2772478 4.27724787-4.27724782c.3965875-.39658757.3943884-1.03281091.0006214-1.42657791-.3965122-.39651226-1.0324677-.39348875-1.4265779.00062148l-4.2772478 4.27724782-4.27724782-4.27724782c-.39658757-.39658757-1.03281091-.39438847-1.42657791-.00062148-.39651226.39651227-.39348875 1.03246768.00062148 1.42657791l4.27724782 4.27724782z" fill-rule="evenodd"/></symbol><symbol id="icon-eds-i-download-medium" viewBox="0 0 16 16"><path d="m12.9975267 12.999368c.5467123 0 1.0024733.4478567 1.0024733 1.000316 0 .5563109-.4488226 1.000316-1.0024733 1.000316h-9.99505341c-.54671233 0-1.00247329-.4478567-1.00247329-1.000316 0-.5563109.44882258-1.000316 1.00247329-1.000316zm-4.9975267-11.999368c.55228475 0 1 .44497754 1 .99589209v6.80214418l2.4816273-2.48241149c.3928222-.39294628 1.0219732-.4006883 1.4030652-.01947579.3911302.39125371.3914806 1.02525073-.0001404 1.41699553l-4.17620792 4.17752758c-.39120769.3913313-1.02508144.3917306-1.41671995-.0000316l-4.17639421-4.17771394c-.39122513-.39134876-.39767006-1.01940351-.01657797-1.40061601.39113012-.39125372 1.02337105-.3931606 1.41951349.00310701l2.48183446 2.48261871v-6.80214418c0-.55001601.44386482-.99589209 1-.99589209z" fill-rule="evenodd"/></symbol><symbol id="icon-eds-i-info-filled-medium" viewBox="0 0 18 18"><path d="m9 0c4.9705627 0 9 4.02943725 9 9 0 4.9705627-4.0294373 9-9 9-4.97056275 0-9-4.0294373-9-9 0-4.97056275 4.02943725-9 9-9zm0 7h-1.5l-.11662113.00672773c-.49733868.05776511-.88337887.48043643-.88337887.99327227 0 .47338693.32893365.86994729.77070917.97358929l.1126697.01968298.11662113.00672773h.5v3h-.5l-.11662113.0067277c-.42082504.0488782-.76196299.3590206-.85696816.7639815l-.01968298.1126697-.00672773.1166211.00672773.1166211c.04887817.4208251.35902055.761963.76398144.8569682l.1126697.019683.11662113.0067277h3l.1166211-.0067277c.4973387-.0577651.8833789-.4804365.8833789-.9932723 0-.4733869-.3289337-.8699473-.7707092-.9735893l-.1126697-.019683-.1166211-.0067277h-.5v-4l-.00672773-.11662113c-.04887817-.42082504-.35902055-.76196299-.76398144-.85696816l-.1126697-.01968298zm0-3.25c-.69035594 0-1.25.55964406-1.25 1.25s.55964406 1.25 1.25 1.25 1.25-.55964406 1.25-1.25-.55964406-1.25-1.25-1.25z" fill-rule="evenodd"/></symbol><symbol id="icon-eds-i-mail-medium" viewBox="0 0 24 24"><path d="m19.462 0c1.413 0 2.538 1.184 2.538 2.619v12.762c0 1.435-1.125 2.619-2.538 2.619h-16.924c-1.413 0-2.538-1.184-2.538-2.619v-12.762c0-1.435 1.125-2.619 2.538-2.619zm.538 5.158-7.378 6.258a2.549 2.549 0 0 1 -3.253-.008l-7.369-6.248v10.222c0 .353.253.619.538.619h16.924c.285 0 .538-.266.538-.619zm-.538-3.158h-16.924c-.264 0-.5.228-.534.542l8.65 7.334c.2.165.492.165.684.007l8.656-7.342-.001-.025c-.044-.3-.274-.516-.531-.516z"/></symbol><symbol id="icon-eds-i-menu-medium" viewBox="0 0 24 24"><path d="M21 4a1 1 0 0 1 0 2H3a1 1 0 1 1 0-2h18Zm-4 7a1 1 0 0 1 0 2H3a1 1 0 0 1 0-2h14Zm4 7a1 1 0 0 1 0 2H3a1 1 0 0 1 0-2h18Z"/></symbol><symbol id="icon-eds-i-search-medium" viewBox="0 0 24 24"><path d="M11 1c5.523 0 10 4.477 10 10 0 2.4-.846 4.604-2.256 6.328l3.963 3.965a1 1 0 0 1-1.414 1.414l-3.965-3.963A9.959 9.959 0 0 1 11 21C5.477 21 1 16.523 1 11S5.477 1 11 1Zm0 2a8 8 0 1 0 0 16 8 8 0 0 0 0-16Z"/></symbol><symbol id="icon-eds-i-user-single-medium" viewBox="0 0 24 24"><path d="M12 1a5 5 0 1 1 0 10 5 5 0 0 1 0-10Zm0 2a3 3 0 1 0 0 6 3 3 0 0 0 0-6Zm-.406 9.008a8.965 8.965 0 0 1 6.596 2.494A9.161 9.161 0 0 1 21 21.025V22a1 1 0 0 1-1 1H4a1 1 0 0 1-1-1v-.985c.05-4.825 3.815-8.777 8.594-9.007Zm.39 1.992-.299.006c-3.63.175-6.518 3.127-6.678 6.775L5 21h13.998l-.009-.268a7.157 7.157 0 0 0-1.97-4.573l-.214-.213A6.967 6.967 0 0 0 11.984 14Z"/></symbol><symbol id="icon-eds-i-warning-filled-medium" viewBox="0 0 18 18"><path d="m9 11.75c.69035594 0 1.25.5596441 1.25 1.25s-.55964406 1.25-1.25 1.25-1.25-.5596441-1.25-1.25.55964406-1.25 1.25-1.25zm.41320045-7.75c.55228475 0 1.00000005.44771525 1.00000005 1l-.0034543.08304548-.3333333 4c-.043191.51829212-.47645714.91695452-.99654578.91695452h-.15973424c-.52008864 0-.95335475-.3986624-.99654576-.91695452l-.33333333-4c-.04586475-.55037702.36312325-1.03372649.91350028-1.07959124l.04148683-.00259031zm-.41320045 14c-4.97056275 0-9-4.0294373-9-9 0-4.97056275 4.02943725-9 9-9 4.9705627 0 9 4.02943725 9 9 0 4.9705627-4.0294373 9-9 9z" fill-rule="evenodd"/></symbol><symbol id="icon-expand-image" viewBox="0 0 18 18"><path d="m7.49754099 11.9178212c.38955542-.3895554.38761957-1.0207846-.00290473-1.4113089-.39324695-.3932469-1.02238878-.3918247-1.41130883-.0029047l-4.10273549 4.1027355.00055454-3.5103985c.00008852-.5603185-.44832171-1.006032-1.00155062-1.0059446-.53903074.0000852-.97857527.4487442-.97866268 1.0021075l-.00093318 5.9072465c-.00008751.553948.44841131 1.001882 1.00174994 1.0017946l5.906983-.0009331c.5539233-.0000875 1.00197907-.4486389 1.00206646-1.0018679.00008515-.5390307-.45026621-.9784332-1.00588841-.9783454l-3.51010549.0005545zm3.00571741-5.83449376c-.3895554.38955541-.3876196 1.02078454.0029047 1.41130883.393247.39324696 1.0223888.39182478 1.4113089.00290473l4.1027355-4.10273549-.0005546 3.5103985c-.0000885.56031852.4483217 1.006032 1.0015506 1.00594461.5390308-.00008516.9785753-.44874418.9786627-1.00210749l.0009332-5.9072465c.0000875-.553948-.4484113-1.00188204-1.0017499-1.00179463l-5.906983.00093313c-.5539233.00008751-1.0019791.44863892-1.0020665 1.00186784-.0000852.53903074.4502662.97843325 1.0058884.97834547l3.5101055-.00055449z" fill-rule="evenodd"/></symbol><symbol id="icon-github" viewBox="0 0 100 100"><path fill-rule="evenodd" clip-rule="evenodd" d="M48.854 0C21.839 0 0 22 0 49.217c0 21.756 13.993 40.172 33.405 46.69 2.427.49 3.316-1.059 3.316-2.362 0-1.141-.08-5.052-.08-9.127-13.59 2.934-16.42-5.867-16.42-5.867-2.184-5.704-5.42-7.17-5.42-7.17-4.448-3.015.324-3.015.324-3.015 4.934.326 7.523 5.052 7.523 5.052 4.367 7.496 11.404 5.378 14.235 4.074.404-3.178 1.699-5.378 3.074-6.6-10.839-1.141-22.243-5.378-22.243-24.283 0-5.378 1.94-9.778 5.014-13.2-.485-1.222-2.184-6.275.486-13.038 0 0 4.125-1.304 13.426 5.052a46.97 46.97 0 0 1 12.214-1.63c4.125 0 8.33.571 12.213 1.63 9.302-6.356 13.427-5.052 13.427-5.052 2.67 6.763.97 11.816.485 13.038 3.155 3.422 5.015 7.822 5.015 13.2 0 18.905-11.404 23.06-22.324 24.283 1.78 1.548 3.316 4.481 3.316 9.126 0 6.6-.08 11.897-.08 13.526 0 1.304.89 2.853 3.316 2.364 19.412-6.52 33.405-24.935 33.405-46.691C97.707 22 75.788 0 48.854 0z"/></symbol><symbol id="icon-springer-arrow-left"><path d="M15 7a1 1 0 000-2H3.385l2.482-2.482a.994.994 0 00.02-1.403 1.001 1.001 0 00-1.417 0L.294 5.292a1.001 1.001 0 000 1.416l4.176 4.177a.991.991 0 001.4.016 1 1 0 00-.003-1.42L3.385 7H15z"/></symbol><symbol id="icon-springer-arrow-right"><path d="M1 7a1 1 0 010-2h11.615l-2.482-2.482a.994.994 0 01-.02-1.403 1.001 1.001 0 011.417 0l4.176 4.177a1.001 1.001 0 010 1.416l-4.176 4.177a.991.991 0 01-1.4.016 1 1 0 01.003-1.42L12.615 7H1z"/></symbol><symbol id="icon-submit-open" viewBox="0 0 16 17"><path d="M12 0c1.10457 0 2 .895431 2 2v5c0 .276142-.223858.5-.5.5S13 7.276142 13 7V2c0-.512836-.38604-.935507-.883379-.993272L12 1H6v3c0 1.10457-.89543 2-2 2H1v8c0 .512836.38604.935507.883379.993272L2 15h6.5c.276142 0 .5.223858.5.5s-.223858.5-.5.5H2c-1.104569 0-2-.89543-2-2V5.828427c0-.530433.210714-1.039141.585786-1.414213L4.414214.585786C4.789286.210714 5.297994 0 5.828427 0H12Zm3.41 11.14c.250899.250899.250274.659726 0 .91-.242954.242954-.649606.245216-.9-.01l-1.863671-1.900337.001043 5.869492c0 .356992-.289839.637138-.647372.637138-.347077 0-.647371-.285256-.647371-.637138l-.001043-5.869492L9.5 12.04c-.253166.258042-.649726.260274-.9.01-.242954-.242954-.252269-.657731 0-.91l2.942184-2.951303c.250908-.250909.66127-.252277.91353-.000017L15.41 11.14ZM5 1.413 1.413 5H4c.552285 0 1-.447715 1-1V1.413ZM11 3c.276142 0 .5.223858.5.5s-.223858.5-.5.5H7.5c-.276142 0-.5-.223858-.5-.5s.223858-.5.5-.5H11Zm0 2c.276142 0 .5.223858.5.5s-.223858.5-.5.5H7.5c-.276142 0-.5-.223858-.5-.5s.223858-.5.5-.5H11Z" fill-rule="nonzero"/></symbol></svg> </div> </footer> <div class="c-site-messages message u-hide u-hide-print c-site-messages--nature-briefing c-site-messages--nature-briefing-email-variant c-site-messages--nature-briefing-redesign-2020 sans-serif " data-component-id="nature-briefing-banner" data-component-expirydays="30" data-component-trigger-scroll-percentage="15" data-track="in-view" data-track-action="in-view" data-track-category="nature briefing" data-track-label="Briefing banner visible: Flagship"> <div class="c-site-messages__banner-large"> <div class="c-site-messages__close-container"> <button class="c-site-messages__close" data-track="click" data-track-category="nature briefing" data-track-label="Briefing banner dismiss: Flagship"> <svg width="25px" height="25px" focusable="false" aria-hidden="true" viewBox="0 0 25 25" version="1.1" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink"> <title>Close banner</title> <defs></defs> <g stroke="none" stroke-width="1" fill="none" fill-rule="evenodd"> <rect opacity="0" x="0" y="0" width="25" height="25"></rect> <path d="M6.29679575,16.2772478 C5.90020818,16.6738354 5.90240728,17.3100587 6.29617427,17.7038257 C6.69268654,18.100338 7.32864195,18.0973145 7.72275218,17.7032043 L12,13.4259564 L16.2772478,17.7032043 C16.6738354,18.0997918 17.3100587,18.0975927 17.7038257,17.7038257 C18.100338,17.3073135 18.0973145,16.671358 17.7032043,16.2772478 L13.4259564,12 L17.7032043,7.72275218 C18.0997918,7.32616461 18.0975927,6.68994127 17.7038257,6.29617427 C17.3073135,5.89966201 16.671358,5.90268552 16.2772478,6.29679575 L12,10.5740436 L7.72275218,6.29679575 C7.32616461,5.90020818 6.68994127,5.90240728 6.29617427,6.29617427 C5.89966201,6.69268654 5.90268552,7.32864195 6.29679575,7.72275218 L10.5740436,12 L6.29679575,16.2772478 Z" fill="#ffffff"></path> </g> </svg> <span class="visually-hidden">Close</span> </button> </div> <div class="c-site-messages__form-container"> <div class="grid grid-12 last"> <div class="grid grid-4"> <img alt="Nature Briefing" src="/static/images/logos/nature-briefing-logo-n150-white-d81c9da3ec.svg" width="250" height="40"> <p class="c-site-messages--nature-briefing__strapline extra-tight-line-height">Sign up for the <em>Nature Briefing</em> newsletter — what matters in science, free to your inbox daily.</p> </div> <div class="grid grid-8 last"> <form action="https://www.nature.com/briefing/briefing" method="post" data-location="banner" data-track="signup_nature_briefing_banner" data-track-action="transmit-form" data-track-category="nature briefing" data-track-label="Briefing banner submit: Flagship"> <input id="briefing-banner-signup-form-input-track-originReferralPoint" type="hidden" name="track_originReferralPoint" value="MainBriefingBanner"> <input id="briefing-banner-signup-form-input-track-formType" type="hidden" name="track_formType" value="DirectEmailBanner"> <input type="hidden" value="false" name="gdpr_tick" id="gdpr_tick_banner"> <input type="hidden" value="false" name="marketing" id="marketing_input_banner"> <input type="hidden" value="false" name="marketing_tick" id="marketing_tick_banner"> <input type="hidden" value="MainBriefingBanner" name="brieferEntryPoint" id="brieferEntryPoint_banner"> <label class="nature-briefing-banner__email-label" for="emailAddress">Email address</label> <div class="nature-briefing-banner__email-wrapper"> <input class="nature-briefing-banner__email-input box-sizing text14" type="email" id="emailAddress" name="emailAddress" value="" placeholder="e.g. jo.smith@university.ac.uk" required data-test-element="briefing-emailbanner-email-input"> <input type="hidden" value="true" name="N:nature_briefing_daily" id="defaultNewsletter_banner"> <button type="submit" class="nature-briefing-banner__submit-button box-sizing text14" data-test-element="briefing-emailbanner-signup-button">Sign up</button> </div> <div class="nature-briefing-banner__checkbox-wrapper grid grid-12 last"> <input class="nature-briefing-banner__checkbox-checkbox" id="gdpr-briefing-banner-checkbox" type="checkbox" name="gdpr" value="true" data-test-element="briefing-emailbanner-gdpr-checkbox" required> <label class="nature-briefing-banner__checkbox-label box-sizing text13 sans-serif block tighten-line-height" for="gdpr-briefing-banner-checkbox">I agree my information will be processed in accordance with the <em>Nature</em> and Springer Nature Limited <a href="https://www.nature.com/info/privacy">Privacy Policy</a>.</label> </div> </form> </div> </div> </div> </div> <div class="c-site-messages__banner-small"> <div class="c-site-messages__close-container"> <button class="c-site-messages__close" data-track="click" data-track-category="nature briefing" data-track-label="Briefing banner dismiss: Flagship"> <svg width="25px" height="25px" focusable="false" aria-hidden="true" viewBox="0 0 25 25" version="1.1" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink"> <title>Close banner</title> <defs></defs> <g stroke="none" stroke-width="1" fill="none" fill-rule="evenodd"> <rect opacity="0" x="0" y="0" width="25" height="25"></rect> <path d="M6.29679575,16.2772478 C5.90020818,16.6738354 5.90240728,17.3100587 6.29617427,17.7038257 C6.69268654,18.100338 7.32864195,18.0973145 7.72275218,17.7032043 L12,13.4259564 L16.2772478,17.7032043 C16.6738354,18.0997918 17.3100587,18.0975927 17.7038257,17.7038257 C18.100338,17.3073135 18.0973145,16.671358 17.7032043,16.2772478 L13.4259564,12 L17.7032043,7.72275218 C18.0997918,7.32616461 18.0975927,6.68994127 17.7038257,6.29617427 C17.3073135,5.89966201 16.671358,5.90268552 16.2772478,6.29679575 L12,10.5740436 L7.72275218,6.29679575 C7.32616461,5.90020818 6.68994127,5.90240728 6.29617427,6.29617427 C5.89966201,6.69268654 5.90268552,7.32864195 6.29679575,7.72275218 L10.5740436,12 L6.29679575,16.2772478 Z" fill="#ffffff"></path> </g> </svg> <span class="visually-hidden">Close</span> </button> </div> <div class="c-site-messages__content text14"> <span class="c-site-messages--nature-briefing__strapline strong">Get the most important science stories of the day, free in your inbox.</span> <a class="nature-briefing__link text14 sans-serif" data-track="click" data-track-category="nature briefing" data-track-label="Small-screen banner CTA to site" data-test-element="briefing-banner-link" target="_blank" rel="noreferrer noopener" href="https://www.nature.com/briefing/signup/?brieferEntryPoint=MainBriefingBanner">Sign up for Nature Briefing </a> </div> </div> </div> <noscript> <img hidden src="https://verify.nature.com/verify/nature.png" width="0" height="0" style="display: none" alt=""> </noscript> <script src="//content.readcube.com/ping?doi=10.1038/s41746-022-00631-8&amp;format=js&amp;last_modified=2022-07-07" async></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10