CINXE.COM
Search | arXiv e-print repository
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1–50 of 388 results for author: <span class="mathjax">Roy, S</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> <div class="content"> <form method="GET" action="/search/cond-mat" aria-role="search"> Searching in archive <strong>cond-mat</strong>. <a href="/search/?searchtype=author&query=Roy%2C+S">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Roy, S"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Roy%2C+S&terms-0-field=author&size=50&order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Roy, S"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Roy%2C+S&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Roy%2C+S&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Roy%2C+S&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&query=Roy%2C+S&start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&query=Roy%2C+S&start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&query=Roy%2C+S&start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> <li><span class="pagination-ellipsis">…</span></li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.06507">arXiv:2411.06507</a> <span> [<a href="https://arxiv.org/pdf/2411.06507">pdf</a>, <a href="https://arxiv.org/format/2411.06507">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> </div> </div> <p class="title is-5 mathjax"> One-Dimensional Quench Dynamics in an Optical Lattice: sine-Gordon and Bose-Hubbard Descriptions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Roy%2C+S">Subhrajyoti Roy</a>, <a href="/search/cond-mat?searchtype=author&query=Roy%2C+R">Rhombik Roy</a>, <a href="/search/cond-mat?searchtype=author&query=Trombettoni%2C+A">Andrea Trombettoni</a>, <a href="/search/cond-mat?searchtype=author&query=Chakrabarti%2C+B">Barnali Chakrabarti</a>, <a href="/search/cond-mat?searchtype=author&query=Gammal%2C+A">Arnaldo Gammal</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.06507v1-abstract-short" style="display: inline;"> We investigate the dynamics of one-dimensional interacting bosons in an optical lattice after a sudden quench in the Bose-Hubbard (BH) and sine-Gordon (SG) regimes. While in higher dimension, the Mott-superfluid phase transition is observed for weakly interacting bosons in deep lattices, in 1D an instability is generated also for shallow lattices with a commensurate periodic potential pinning the… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.06507v1-abstract-full').style.display = 'inline'; document.getElementById('2411.06507v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.06507v1-abstract-full" style="display: none;"> We investigate the dynamics of one-dimensional interacting bosons in an optical lattice after a sudden quench in the Bose-Hubbard (BH) and sine-Gordon (SG) regimes. While in higher dimension, the Mott-superfluid phase transition is observed for weakly interacting bosons in deep lattices, in 1D an instability is generated also for shallow lattices with a commensurate periodic potential pinning the atoms to the Mott state through a transition described by the SG model. The present work aims at identifying the SG and BH regimes. We study them by dynamical measures of several key quantities. We numerically exactly solve the time dependent Schr枚dinger equation for small number of atoms and investigate the corresponding quantum many-body dynamics. In both cases, correlation dynamics exhibits collapse revival phenomena, though with different time scales. We argue that the dynamical fragmentation is a convenient quantity to distinguish the dynamics specially near the pinning zone. To understand the relaxation process we measure the many-body information entropy. BH dynamics clearly establishes the possible relaxation to the maximum entropy state determined by the Gaussian orthogonal ensemble of random matrices (GOE). In contrast, the SG dynamics is so fast that it does not exhibit any signature of relaxation in the present time scale of computation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.06507v1-abstract-full').style.display = 'none'; document.getElementById('2411.06507v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 10 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.02042">arXiv:2411.02042</a> <span> [<a href="https://arxiv.org/pdf/2411.02042">pdf</a>, <a href="https://arxiv.org/format/2411.02042">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> Discrete Element Simulations of particles interacting via capillary forces using MercuryDPM </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Bagheri%2C+M">Meysam Bagheri</a>, <a href="/search/cond-mat?searchtype=author&query=Roy%2C+S">Sudeshna Roy</a>, <a href="/search/cond-mat?searchtype=author&query=Poeschel%2C+T">Thorsten Poeschel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.02042v1-abstract-short" style="display: inline;"> We present the implementation of two advanced capillary bridge approximations within the Discrete Element Method (DEM) framework of the open-source code MercuryDPM. While MercuryDPM already includes a simplified version of the Willett approximation, our work involves implementing both the classical Willett approximation and the recently published Bagheri approximation in MercuryDPM. Through detail… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.02042v1-abstract-full').style.display = 'inline'; document.getElementById('2411.02042v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.02042v1-abstract-full" style="display: none;"> We present the implementation of two advanced capillary bridge approximations within the Discrete Element Method (DEM) framework of the open-source code MercuryDPM. While MercuryDPM already includes a simplified version of the Willett approximation, our work involves implementing both the classical Willett approximation and the recently published Bagheri approximation in MercuryDPM. Through detailed descriptions and illustrative simulations using a two-particle collision model, we demonstrate the enhanced accuracy and capabilities of these approximations in capturing the complex dynamics of wet granular matter. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.02042v1-abstract-full').style.display = 'none'; document.getElementById('2411.02042v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.24212">arXiv:2410.24212</a> <span> [<a href="https://arxiv.org/pdf/2410.24212">pdf</a>, <a href="https://arxiv.org/format/2410.24212">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> </div> <p class="title is-5 mathjax"> Measurement-invisible quantum correlations in scrambling dynamics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Sherry%2C+A">Alan Sherry</a>, <a href="/search/cond-mat?searchtype=author&query=Roy%2C+S">Sthitadhi Roy</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.24212v1-abstract-short" style="display: inline;"> Scrambling unitary dynamics in a quantum system transmutes local quantum information into a non-local web of correlations which manifests itself in a complex spatio-temporal pattern of entanglement. In such a context, we show there can exist three distinct dynamical phases characterised by qualitatively different forms of quantum correlations between two disjoint subsystems of the system. Transiti… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.24212v1-abstract-full').style.display = 'inline'; document.getElementById('2410.24212v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.24212v1-abstract-full" style="display: none;"> Scrambling unitary dynamics in a quantum system transmutes local quantum information into a non-local web of correlations which manifests itself in a complex spatio-temporal pattern of entanglement. In such a context, we show there can exist three distinct dynamical phases characterised by qualitatively different forms of quantum correlations between two disjoint subsystems of the system. Transitions between these phases are driven by the relative sizes of the subsystems and the degree scrambling that the dynamics effects. Besides a phase which has no quantum correlations as manifested by vanishing entanglement between the parts and a phase which has non-trivial quantum correlations quantified by a finite entanglement monotone, we reveal a new phase transition within the entangled phase which separates phases wherein the quantum correlations are invisible or visible to measurements on one of the subsystems. This is encoded in the qualitatively different properties of the ensemble of states on one of the subsystems conditioned on the various measurement outcomes on the other subsystem. This provides a new characterisation of entanglement phases in terms of their response to measurements instead of the more ubiquitous measurement-induced entanglement transitions. Our results have implications for the kind of tasks that can be performed using measurement feedback within the framework of quantum interactive dynamics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.24212v1-abstract-full').style.display = 'none'; document.getElementById('2410.24212v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 1 figure + Supplementary Material (5 pages, 2 figures)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.06803">arXiv:2410.06803</a> <span> [<a href="https://arxiv.org/pdf/2410.06803">pdf</a>, <a href="https://arxiv.org/format/2410.06803">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Universal scaling of quantum caustics in the dynamics of interacting particles </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Roy%2C+M+S">Monalisa Singh Roy</a>, <a href="/search/cond-mat?searchtype=author&query=Mumford%2C+J">Jesse Mumford</a>, <a href="/search/cond-mat?searchtype=author&query=O%27Dell%2C+D+H+J">D. H. J. O'Dell</a>, <a href="/search/cond-mat?searchtype=author&query=Torre%2C+E+G+D">Emanuele G. Dalla Torre</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.06803v1-abstract-short" style="display: inline;"> Recent theoretical studies have predicted the existence of caustics in many-body quantum dynamics, where they manifest as extended regions of enhanced probability density that obey temporal and spatial scaling relations. Focusing on the transverse-field Ising model, we investigate the dynamics initiated by a local quench in a spin chain, resulting in outward-propagating excitations that create a d… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.06803v1-abstract-full').style.display = 'inline'; document.getElementById('2410.06803v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.06803v1-abstract-full" style="display: none;"> Recent theoretical studies have predicted the existence of caustics in many-body quantum dynamics, where they manifest as extended regions of enhanced probability density that obey temporal and spatial scaling relations. Focusing on the transverse-field Ising model, we investigate the dynamics initiated by a local quench in a spin chain, resulting in outward-propagating excitations that create a distinct caustic pattern. We calculate the scaling of the first two maxima of the interference fringes dressing the caustic, finding a universal exponent of 2/3, associated with an Airy function catastrophe. We demonstrate that this property is universal in the entire paramagnetic phase of the model, and starts varying at the quantum phase transition (QPT). This robust scaling persists even under perturbations that break the integrability of the model. We additionally explore the effect of boundary conditions and find that open boundaries introduce significant edge effects, leading to complex interference patterns. Despite these edge-induced dynamics, the overall power-law scaling exponent remains robust. These findings highlight the potential of quantum caustics as a powerful diagnostic tool for QPTs, demonstrating resilience against integrability-breaking perturbations and boundary condition variations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.06803v1-abstract-full').style.display = 'none'; document.getElementById('2410.06803v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.12685">arXiv:2408.12685</a> <span> [<a href="https://arxiv.org/pdf/2408.12685">pdf</a>, <a href="https://arxiv.org/format/2408.12685">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> The Fock-space landscape of many-body localisation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Roy%2C+S">Sthitadhi Roy</a>, <a href="/search/cond-mat?searchtype=author&query=Logan%2C+D+E">David E. Logan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.12685v1-abstract-short" style="display: inline;"> This article reviews recent progress in understanding the physics of many-body localisation (MBL) in disordered and interacting quantum many-body systems, from the perspective of ergodicity breaking on the associated Fock space. This approach to MBL is underpinned by mapping the dynamics of the many-body system onto that of a fictitious single particle on the high-dimensional, correlated and disor… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.12685v1-abstract-full').style.display = 'inline'; document.getElementById('2408.12685v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.12685v1-abstract-full" style="display: none;"> This article reviews recent progress in understanding the physics of many-body localisation (MBL) in disordered and interacting quantum many-body systems, from the perspective of ergodicity breaking on the associated Fock space. This approach to MBL is underpinned by mapping the dynamics of the many-body system onto that of a fictitious single particle on the high-dimensional, correlated and disordered Fock-space graph; yet, as we elaborate, the problem is fundamentally different from that of conventional Anderson localisation on high-dimensional or hierarchical graphs. We discuss in detail the nature of eigenstate correlations on the Fock space, both static and dynamic, and in the ergodic and many-body localised phases as well as in the vicinity of the MBL transition. The latter in turn sheds light on the nature of the transition, and motivates a scaling theory for it in terms of Fock-space based quantities. We also illustrate how these quantities can be concretely connected to real-space observables. An overview is given of several analytical and numerical techniques which have proven important in developing a comprehensive picture. Finally, we comment on some open questions in the field of MBL where the Fock-space approach is likely to prove insightful. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.12685v1-abstract-full').style.display = 'none'; document.getElementById('2408.12685v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">32 pages, 19 figures, Invited review article for J. Phys.: Condens. Matter</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.11342">arXiv:2408.11342</a> <span> [<a href="https://arxiv.org/pdf/2408.11342">pdf</a>, <a href="https://arxiv.org/format/2408.11342">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Dielectric Reliability and Interface Trap Characterization in MOCVD grown In-situ Al$_2$O$_3$ on $尾$-Ga$_2$O$_3$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Roy%2C+S">Saurav Roy</a>, <a href="/search/cond-mat?searchtype=author&query=Bhattacharyya%2C+A">Arkka Bhattacharyya</a>, <a href="/search/cond-mat?searchtype=author&query=Peterson%2C+C">Carl Peterson</a>, <a href="/search/cond-mat?searchtype=author&query=Krishnamoorthy%2C+S">Sriram Krishnamoorthy</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.11342v1-abstract-short" style="display: inline;"> In this article, we investigate the in-situ growth of Al$_2$O$_3$ on $尾$-Ga$_2$O$_3$ using metal-organic chemical vapor deposition (MOCVD) at a high temperature of 800掳C. The Al$_2$O$_3$ is grown within the same reactor as the $尾$-Ga$_2$O$_3$, employing trimethylaluminum (TMAl) and O$_2$ as precursors without breaking the vacuum. We characterize the shallow and deep-level traps through stressed ca… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.11342v1-abstract-full').style.display = 'inline'; document.getElementById('2408.11342v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.11342v1-abstract-full" style="display: none;"> In this article, we investigate the in-situ growth of Al$_2$O$_3$ on $尾$-Ga$_2$O$_3$ using metal-organic chemical vapor deposition (MOCVD) at a high temperature of 800掳C. The Al$_2$O$_3$ is grown within the same reactor as the $尾$-Ga$_2$O$_3$, employing trimethylaluminum (TMAl) and O$_2$ as precursors without breaking the vacuum. We characterize the shallow and deep-level traps through stressed capacitance-voltage (C-V) and photo-assisted C-V methods. The high-temperature deposited dielectric demonstrates an impressive breakdown field of approximately 10 MV/cm. Furthermore, we evaluate the reliability and lifetime of the dielectrics using time-dependent dielectric breakdown (TDDB) measurements. By modifying the dielectric deposition process to include a high-temperature (800掳C) thin interfacial layer and a low-temperature (600掳C) bulk layer, we report a 10-year lifetime under a stress field of 3.5 MV/cm along a breakdown field of 7.8 MV/cm. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.11342v1-abstract-full').style.display = 'none'; document.getElementById('2408.11342v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.09322">arXiv:2408.09322</a> <span> [<a href="https://arxiv.org/pdf/2408.09322">pdf</a>, <a href="https://arxiv.org/format/2408.09322">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> </div> </div> <p class="title is-5 mathjax"> Shape effects in binary mixtures of PA12 powder in additive manufacturing </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Roy%2C+S">Sudeshna Roy</a>, <a href="/search/cond-mat?searchtype=author&query=P%C3%B6schel%2C+T">Thorsten P枚schel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.09322v1-abstract-short" style="display: inline;"> The quality of the powder spread in additive manufacturing devices depends sensitively on the particles' shapes. Here, we study powder spreading for mixtures of spherical and irregularly shaped particles in Polyamide 12 powders. Using DEM simulations, including heat transfer, we find that spherical particles exhibit better flowability. Thus, the particles are deposited far ahead of the spreading b… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.09322v1-abstract-full').style.display = 'inline'; document.getElementById('2408.09322v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.09322v1-abstract-full" style="display: none;"> The quality of the powder spread in additive manufacturing devices depends sensitively on the particles' shapes. Here, we study powder spreading for mixtures of spherical and irregularly shaped particles in Polyamide 12 powders. Using DEM simulations, including heat transfer, we find that spherical particles exhibit better flowability. Thus, the particles are deposited far ahead of the spreading blade. In contrast, a large fraction of non-spherical particles hinders the flow. Therefore, the cold particles are deposited near the front of the spreading blade. This results in a temperature drop of the deposited particles near the substrate, which cannot be seen with spherical particles. The particles of both shapes are homogeneously distributed in the deposited powder layer. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.09322v1-abstract-full').style.display = 'none'; document.getElementById('2408.09322v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 8 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.21451">arXiv:2407.21451</a> <span> [<a href="https://arxiv.org/pdf/2407.21451">pdf</a>, <a href="https://arxiv.org/format/2407.21451">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1080/00268976.2024.2391998">10.1080/00268976.2024.2391998 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Critical surface adsorption of confined binary liquids with locally conserved mass and composition </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Roy%2C+S">Sutapa Roy</a>, <a href="/search/cond-mat?searchtype=author&query=H%C3%B6fling%2C+F">Felix H枚fling</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.21451v1-abstract-short" style="display: inline;"> Close to a solid surface, the properties of a fluid deviate significantly from their bulk values. In this context, we study the surface adsorption profiles of a symmetric binary liquid confined to a slit pore by means of molecular dynamics simulations; the latter naturally entails that mass and concentration are locally conserved. Near a bulk consolute point, where the liquid exhibits a demixing t… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.21451v1-abstract-full').style.display = 'inline'; document.getElementById('2407.21451v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.21451v1-abstract-full" style="display: none;"> Close to a solid surface, the properties of a fluid deviate significantly from their bulk values. In this context, we study the surface adsorption profiles of a symmetric binary liquid confined to a slit pore by means of molecular dynamics simulations; the latter naturally entails that mass and concentration are locally conserved. Near a bulk consolute point, where the liquid exhibits a demixing transition with the local concentration as the order parameter, we determine the order parameter profiles and characterise the relevant critical scaling behaviour, in the regime of strong surface attraction, for a range of pore widths and temperatures. The obtained order parameter profiles decay monotonically near the surfaces, also in the presence of a pronounced layering in the number density. Overall, our results agree qualitatively with recent theoretical predictions from a mesoscopic field-theoretical approach for the canonical ensemble. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.21451v1-abstract-full').style.display = 'none'; document.getElementById('2407.21451v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.12507">arXiv:2407.12507</a> <span> [<a href="https://arxiv.org/pdf/2407.12507">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Room temperature Mott transistor based on resistive switching in disordered V2O3 films grown on Si </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=De%2C+B+K">Binoy Krishna De</a>, <a href="/search/cond-mat?searchtype=author&query=Sathe%2C+V+G">V. G. Sathe</a>, <a href="/search/cond-mat?searchtype=author&query=Divya"> Divya</a>, <a href="/search/cond-mat?searchtype=author&query=Sharma%2C+P">Pragati Sharma</a>, <a href="/search/cond-mat?searchtype=author&query=Parate%2C+S+K">Shubham Kumar Parate</a>, <a href="/search/cond-mat?searchtype=author&query=Kunwar%2C+H+S">Hemant Singh Kunwar</a>, <a href="/search/cond-mat?searchtype=author&query=Nukala%2C+P">Pavan Nukala</a>, <a href="/search/cond-mat?searchtype=author&query=Roy%2C+S+B">S. B. Roy</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.12507v1-abstract-short" style="display: inline;"> Electric field-induced giant resistive switching triggered by insulator-to-metal transition (IMT) is one of the promising approaches for developing a new class of electronics often referred to as Mottronics. Achieving this resistive switching by minimal external field at room temperature is of paramount research and technological interest. Mott-IMT is often associated with structural modification,… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.12507v1-abstract-full').style.display = 'inline'; document.getElementById('2407.12507v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.12507v1-abstract-full" style="display: none;"> Electric field-induced giant resistive switching triggered by insulator-to-metal transition (IMT) is one of the promising approaches for developing a new class of electronics often referred to as Mottronics. Achieving this resistive switching by minimal external field at room temperature is of paramount research and technological interest. Mott-IMT is often associated with structural modification, which is very important for optoelectronic and actuator applications. Here, we report a giant resistive switching of about 900 % at room temperature in disordered polycrystalline V2O3-Si thin film stabilized at the IMT phase boundary and associated structural transformation under a small electric field. The increase of electron population in the a1g band under the field is responsible for the Mott gap collapse that drives the structural transition. Furthermore, we also fabricated a room temperature Mott-FET with a channel ON/OFF resistive ratio of about 15. This study provides a fundamental mechanism of the Mott-IMT in V2O3 as well as its device applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.12507v1-abstract-full').style.display = 'none'; document.getElementById('2407.12507v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.01680">arXiv:2407.01680</a> <span> [<a href="https://arxiv.org/pdf/2407.01680">pdf</a>, <a href="https://arxiv.org/format/2407.01680">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Sign changes of the thermoelectric transport coefficient across the metal-insulator crossover in the doped Fermi Hubbard model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Roy%2C+S">Sayantan Roy</a>, <a href="/search/cond-mat?searchtype=author&query=Samanta%2C+A">Abhisek Samanta</a>, <a href="/search/cond-mat?searchtype=author&query=Trivedi%2C+N">Nandini Trivedi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.01680v1-abstract-short" style="display: inline;"> We investigate the doping-dependence of the Seebeck coefficient, as calculated from the Kelvin formula, for the Fermi Hubbard model using determinantal quantum Monte Carlo simulations. Our key findings are: (1) Besides the expected hole to electron-like behavior change around half filling, we show that the additional sign change at an electronic density $n_s$ (and correspondingly a hole density… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.01680v1-abstract-full').style.display = 'inline'; document.getElementById('2407.01680v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.01680v1-abstract-full" style="display: none;"> We investigate the doping-dependence of the Seebeck coefficient, as calculated from the Kelvin formula, for the Fermi Hubbard model using determinantal quantum Monte Carlo simulations. Our key findings are: (1) Besides the expected hole to electron-like behavior change around half filling, we show that the additional sign change at an electronic density $n_s$ (and correspondingly a hole density $p_s$) is controlled by the opening of a charge gap in the thermodynamic density of states or compressibility and not by the pseudogap scale in the single particle density of states. (2) We find that $n_s(T,U)$ depends strongly on the interaction $U$ and shows an unusual non-monotonic dependence on temperature with a maximum at a temperature $T\approx t$, on the order of the hopping scale. (3) We identify local moment formation close to half filling as the main driver for the anomalous behavior of the thermoelectric transport coefficient. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.01680v1-abstract-full').style.display = 'none'; document.getElementById('2407.01680v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.16790">arXiv:2406.16790</a> <span> [<a href="https://arxiv.org/pdf/2406.16790">pdf</a>, <a href="https://arxiv.org/format/2406.16790">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Geometrically frustrated, mechanical metamaterial membranes: Large-scale stress accumulation and size-selective assembly </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Wang%2C+M">Micheal Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Roy%2C+S">Sourav Roy</a>, <a href="/search/cond-mat?searchtype=author&query=Santangelo%2C+C+D">Christian D. Santangelo</a>, <a href="/search/cond-mat?searchtype=author&query=Grason%2C+G+M">Gregory M. Grason</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.16790v1-abstract-short" style="display: inline;"> We study the effect of geometric frustration on dilational mechanical metamaterial membranes. While shape frustrated elastic plates can only accommodate non-zero Gaussian curvature up to size scales that ultimately vanish with their elastic thickness, we show that frustrated {\it metamembranes} accumulate hyperbolic curvatures up to mesoscopic length scales that are ultimately independent of the s… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.16790v1-abstract-full').style.display = 'inline'; document.getElementById('2406.16790v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.16790v1-abstract-full" style="display: none;"> We study the effect of geometric frustration on dilational mechanical metamaterial membranes. While shape frustrated elastic plates can only accommodate non-zero Gaussian curvature up to size scales that ultimately vanish with their elastic thickness, we show that frustrated {\it metamembranes} accumulate hyperbolic curvatures up to mesoscopic length scales that are ultimately independent of the size of their microscopic constituents. A continuum elastic theory and discrete numerical model describe the size-dependent shape and internal stresses of axisymmetric, trumpet-like frustrated metamembranes, revealing a non-trivial crossover to a much weaker power-law growth in elastic strain energy with size than in frustrated elastic membranes. We study a consequence of this for the self-limiting assembly thermodynamics of frustrated trumpets, showing a several-fold increase the size range of self-limitation of metamembranes relative to elastic membranes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.16790v1-abstract-full').style.display = 'none'; document.getElementById('2406.16790v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 3 figures, supplementary text appendices</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.13517">arXiv:2406.13517</a> <span> [<a href="https://arxiv.org/pdf/2406.13517">pdf</a>, <a href="https://arxiv.org/format/2406.13517">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Quantifying non-Hermiticity using single- and many-particle quantum properties </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Bandyopadhyay%2C+S">Soumik Bandyopadhyay</a>, <a href="/search/cond-mat?searchtype=author&query=Hauke%2C+P">Philipp Hauke</a>, <a href="/search/cond-mat?searchtype=author&query=Roy%2C+S+S">Sudipto Singha Roy</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.13517v1-abstract-short" style="display: inline;"> The non-Hermitian paradigm of quantum systems displays salient features drastically different from Hermitian counterparts. In this work, we focus on one such aspect, the difference of evolving quantum ensembles under $H_{\mathrm{nh}}$ (right ensemble) versus its Hermitian conjugate, $H_{\mathrm{nh}}^{\dagger}$ (left ensemble). We propose a formalism that quantifies the (dis-)similarity of these ri… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.13517v1-abstract-full').style.display = 'inline'; document.getElementById('2406.13517v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.13517v1-abstract-full" style="display: none;"> The non-Hermitian paradigm of quantum systems displays salient features drastically different from Hermitian counterparts. In this work, we focus on one such aspect, the difference of evolving quantum ensembles under $H_{\mathrm{nh}}$ (right ensemble) versus its Hermitian conjugate, $H_{\mathrm{nh}}^{\dagger}$ (left ensemble). We propose a formalism that quantifies the (dis-)similarity of these right and left ensembles, for single- as well as many-particle quantum properties. Such a comparison gives us a scope to measure the extent to which non-Hermiticity gets translated from the Hamiltonian into physically observable properties. We test the formalism in two cases: First, we construct a non-Hermitian Hamiltonian using a set of imperfect Bell states, showing that the non-Hermiticity of the Hamiltonian does not automatically comply with the non-Hermiticity at the level of observables. Second, we study the interacting Hatano--Nelson model with asymmetric hopping as a paradigmatic quantum many-body Hamiltonian. Interestingly, we identify situations where the measures of non-Hermiticity computed for the Hamiltonian, for single-, and for many-particle quantum properties behave distinctly from each other. Thus, different notions of non-Hermiticity can become useful in different physical scenarios. Furthermore, we demonstrate that the measures can mark the model's Parity--Time (PT) symmetry-breaking transition. Our findings can be instrumental in unveiling new exotic quantum phases of non-Hermitian quantum many-body systems as well as in preparing resourceful states for quantum technologies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.13517v1-abstract-full').style.display = 'none'; document.getElementById('2406.13517v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.09392">arXiv:2406.09392</a> <span> [<a href="https://arxiv.org/pdf/2406.09392">pdf</a>, <a href="https://arxiv.org/format/2406.09392">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Entanglement dynamics and eigenstate correlations in strongly disordered quantum many-body systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Pain%2C+B">Bikram Pain</a>, <a href="/search/cond-mat?searchtype=author&query=Roy%2C+S">Sthitadhi Roy</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.09392v1-abstract-short" style="display: inline;"> The many-body localised phase of quantum systems is an unusual dynamical phase wherein the system fails to thermalise and yet, entanglement grows unboundedly albeit very slowly in time. We present a microscopic theory of this ultraslow growth of entanglement in terms of dynamical eigenstate correlations of strongly disordered, interacting quantum systems in the many-body localised regime. These co… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.09392v1-abstract-full').style.display = 'inline'; document.getElementById('2406.09392v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.09392v1-abstract-full" style="display: none;"> The many-body localised phase of quantum systems is an unusual dynamical phase wherein the system fails to thermalise and yet, entanglement grows unboundedly albeit very slowly in time. We present a microscopic theory of this ultraslow growth of entanglement in terms of dynamical eigenstate correlations of strongly disordered, interacting quantum systems in the many-body localised regime. These correlations involve sets of four or more eigenstates and hence, go beyond correlations involving pairs of eigenstates which are usually studied in the context of eigenstate thermalisation or lack thereof. We consider the minimal case, namely the second R茅nyi entropy of entanglement, of an initial product state as well as that of the time-evolution operator, wherein the correlations involve quartets of four eigenstates. We identify that the dynamics of the entanglement entropy is dominated by the spectral correlations within certain special quartets of eigenstates. We uncover the spatial structure of these special quartets and the ensuing statistics of the spectral correlations amongst the eigenstates therein, which reveals a hierarchy of timescales or equivalently, energyscales. We show that the hierarchy of these timescales along with their non-trivial distributions conspire to produce the logarithmic in time growth of entanglement, characteristic of the many-body localised regime. The underlying spatial structures in the set of special quartets also provides a microscopic understanding of the spacetime picture of the entanglement growth. The theory therefore provides a much richer perspective on entanglement growth in strongly disordered systems compared to the commonly employed phenomenological approach based on the $\ell$-bit picture. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.09392v1-abstract-full').style.display = 'none'; document.getElementById('2406.09392v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 12 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.10222">arXiv:2405.10222</a> <span> [<a href="https://arxiv.org/pdf/2405.10222">pdf</a>, <a href="https://arxiv.org/format/2405.10222">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Kramers nodal line in the charge density wave state of YTe$_3$ and the influence of twin domains </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Sarkar%2C+S">Shuvam Sarkar</a>, <a href="/search/cond-mat?searchtype=author&query=Bhattacharya%2C+J">Joydipto Bhattacharya</a>, <a href="/search/cond-mat?searchtype=author&query=Bhakuni%2C+P">Pramod Bhakuni</a>, <a href="/search/cond-mat?searchtype=author&query=Sadhukhan%2C+P">Pampa Sadhukhan</a>, <a href="/search/cond-mat?searchtype=author&query=Batabyal%2C+R">Rajib Batabyal</a>, <a href="/search/cond-mat?searchtype=author&query=Malliakas%2C+C+D">Christos D. Malliakas</a>, <a href="/search/cond-mat?searchtype=author&query=Bianchi%2C+M">Marco Bianchi</a>, <a href="/search/cond-mat?searchtype=author&query=Curcio%2C+D">Davide Curcio</a>, <a href="/search/cond-mat?searchtype=author&query=Roy%2C+S">Shubhankar Roy</a>, <a href="/search/cond-mat?searchtype=author&query=Pariari%2C+A">Arnab Pariari</a>, <a href="/search/cond-mat?searchtype=author&query=Sathe%2C+V+G">Vasant G. Sathe</a>, <a href="/search/cond-mat?searchtype=author&query=Mandal%2C+P">Prabhat Mandal</a>, <a href="/search/cond-mat?searchtype=author&query=Kanatzidis%2C+M+G">Mercouri G. Kanatzidis</a>, <a href="/search/cond-mat?searchtype=author&query=Hofmann%2C+P">Philip Hofmann</a>, <a href="/search/cond-mat?searchtype=author&query=Chakrabarti%2C+A">Aparna Chakrabarti</a>, <a href="/search/cond-mat?searchtype=author&query=Barman%2C+S+R">Sudipta Roy Barman</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.10222v1-abstract-short" style="display: inline;"> Recent studies have focused on the relationship between charge density wave (CDW) collective electronic ground states and nontrivial topological states. Using angle-resolved photoemission and density functional theory, we establish that YTe$_3$ is a CDW-induced Kramers nodal line (KNL) metal, a newly proposed topological state of matter. YTe$_3$ is a non-magnetic quasi-2D chalcogenide with a CDW w… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.10222v1-abstract-full').style.display = 'inline'; document.getElementById('2405.10222v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.10222v1-abstract-full" style="display: none;"> Recent studies have focused on the relationship between charge density wave (CDW) collective electronic ground states and nontrivial topological states. Using angle-resolved photoemission and density functional theory, we establish that YTe$_3$ is a CDW-induced Kramers nodal line (KNL) metal, a newly proposed topological state of matter. YTe$_3$ is a non-magnetic quasi-2D chalcogenide with a CDW wave vector ($q_{\rm cdw}$) of 0.2907c$^*$. Scanning tunneling microscopy and low energy electron diffraction revealed two orthogonal CDW domains, each with a unidirectional CDW and similar YTe$_3$. The effective band structure (EBS) computations, using DFT-calculated folded bands, show excellent agreement with ARPES because a realistic x-ray crystal structure and twin domains are considered in the calculations. The Fermi surface and ARPES intensity plots show weak shadow bands displaced by $q_{\rm cdw}$ from the main bands. These are linked to CDW modulation, as the EBS calculation confirms. Bilayer split main and shadow bands suggest the existence of crossings, according to theory and experiment. DFT bands, including spin-orbit coupling, indicate a nodal line along the $危$ line from multiple band crossings perpendicular to the KNL. Additionally, doubly degenerate bands are only found along the KNL at all energies, with some bands dispersing through the Fermi level. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.10222v1-abstract-full').style.display = 'none'; document.getElementById('2405.10222v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.00409">arXiv:2405.00409</a> <span> [<a href="https://arxiv.org/pdf/2405.00409">pdf</a>, <a href="https://arxiv.org/format/2405.00409">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/2053-1583/ad7b53">10.1088/2053-1583/ad7b53 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Unconventional pairing in Ising superconductors: Application to monolayer NbSe$_2$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Roy%2C+S">Subhojit Roy</a>, <a href="/search/cond-mat?searchtype=author&query=Kreisel%2C+A">Andreas Kreisel</a>, <a href="/search/cond-mat?searchtype=author&query=Andersen%2C+B+M">Brian M. Andersen</a>, <a href="/search/cond-mat?searchtype=author&query=Mukherjee%2C+S">Shantanu Mukherjee</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.00409v3-abstract-short" style="display: inline;"> The presence of a non-centrosymmetric crystal structure and in-plane mirror symmetry allows an Ising spin-orbit coupling to form in some two-dimensional materials. Examples include transition metal dichalcogenide superconductors like monolayer NbSe$_2$, MoS$_2$, TaS$_2$, and PbTe$_2$, where a nontrivial nature of the superconducting state is currently being explored. In this study, we develop a mi… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.00409v3-abstract-full').style.display = 'inline'; document.getElementById('2405.00409v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.00409v3-abstract-full" style="display: none;"> The presence of a non-centrosymmetric crystal structure and in-plane mirror symmetry allows an Ising spin-orbit coupling to form in some two-dimensional materials. Examples include transition metal dichalcogenide superconductors like monolayer NbSe$_2$, MoS$_2$, TaS$_2$, and PbTe$_2$, where a nontrivial nature of the superconducting state is currently being explored. In this study, we develop a microscopic formalism for Ising superconductors that captures the superconducting instability arising from a momentum-dependent spin- and charge-fluctuation-mediated pairing interaction. We apply our pairing model to the electronic structure of monolayer NbSe$_2$, where first-principles calculations reveal the presence of strong paramagnetic fluctuations. Our calculations provide a quantitative measure of the mixing between the even- and odd-parity superconducting states and its variation with Coulomb interaction. Further, numerical analysis in the presence of an external Zeeman field reveals the role of Ising spin-orbit coupling and mixing of odd-parity superconducting state in influencing the low-temperature enhancement of the critical magnetic field. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.00409v3-abstract-full').style.display = 'none'; document.getElementById('2405.00409v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> 2D Materials, 2024 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.16187">arXiv:2404.16187</a> <span> [<a href="https://arxiv.org/pdf/2404.16187">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Deep Learning Interatomic Potential Connects Molecular Structural Ordering to Macroscale Properties of Polyacrylonitrile (PAN) Polymer </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Chahal%2C+R">Rajni Chahal</a>, <a href="/search/cond-mat?searchtype=author&query=Toomey%2C+M+D">Michael D. Toomey</a>, <a href="/search/cond-mat?searchtype=author&query=Kearney%2C+L+T">Logan T. Kearney</a>, <a href="/search/cond-mat?searchtype=author&query=Sedova%2C+A">Ada Sedova</a>, <a href="/search/cond-mat?searchtype=author&query=Damron%2C+J+T">Joshua T. Damron</a>, <a href="/search/cond-mat?searchtype=author&query=Naskar%2C+A+K">Amit K. Naskar</a>, <a href="/search/cond-mat?searchtype=author&query=Roy%2C+S">Santanu Roy</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.16187v1-abstract-short" style="display: inline;"> Polyacrylonitrile (PAN) is an important commercial polymer, bearing atactic stereochemistry resulting from nonselective radical polymerization. As such, an accurate, fundamental understanding of governing interactions among PAN molecular units are indispensable to advance the design principles of final products at reduced processability costs. While ab initio molecular dynamics (AIMD) simulations… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.16187v1-abstract-full').style.display = 'inline'; document.getElementById('2404.16187v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.16187v1-abstract-full" style="display: none;"> Polyacrylonitrile (PAN) is an important commercial polymer, bearing atactic stereochemistry resulting from nonselective radical polymerization. As such, an accurate, fundamental understanding of governing interactions among PAN molecular units are indispensable to advance the design principles of final products at reduced processability costs. While ab initio molecular dynamics (AIMD) simulations can provide the necessary accuracy for treating key interactions in polar polymers such as dipole-dipole interactions and hydrogen bonding, and analyzing their influence on molecular orientation, their implementation is limited to small molecules only. Herein, we show that the neural network interatomic potentials (NNIP) that are trained on the small-scale AIMD data (acquired for oligomers) can be efficiently employed to examine the structures/properties at large scales (polymers). NNIP provides critical insight into intra- and interchain hydrogen bonding and dipolar correlations, and accurately predicts the amorphous bulk PAN structure validated by modeling the experimental X-ray structure factor. Furthermore, the NNIP-predicted PAN properties such as density and elastic modulus are in good agreement with their experimental values. Overall, the trend in the elastic modulus is found to correlate strongly with the PAN structural orientations encoded in Hermans orientation factor. This study enables the ability to predict the structure-property relations for PAN and analogs with sustainable ab initio accuracy across scales. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.16187v1-abstract-full').style.display = 'none'; document.getElementById('2404.16187v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.13212">arXiv:2404.13212</a> <span> [<a href="https://arxiv.org/pdf/2404.13212">pdf</a>, <a href="https://arxiv.org/format/2404.13212">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Nematicity of a Magnetic Helix </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Tumbleson%2C+R">R. Tumbleson</a>, <a href="/search/cond-mat?searchtype=author&query=Morley%2C+S+A">S. A. Morley</a>, <a href="/search/cond-mat?searchtype=author&query=Hollingworth%2C+E">E. Hollingworth</a>, <a href="/search/cond-mat?searchtype=author&query=Singh%2C+A">A. Singh</a>, <a href="/search/cond-mat?searchtype=author&query=Bayaraa%2C+T">T. Bayaraa</a>, <a href="/search/cond-mat?searchtype=author&query=Burdet%2C+N+G">N. G. Burdet</a>, <a href="/search/cond-mat?searchtype=author&query=Saleheen%2C+A+U">A. U. Saleheen</a>, <a href="/search/cond-mat?searchtype=author&query=McCarter%2C+M+R">M. R. McCarter</a>, <a href="/search/cond-mat?searchtype=author&query=Raftrey%2C+D">D. Raftrey</a>, <a href="/search/cond-mat?searchtype=author&query=Pandolfi%2C+R+J">R. J. Pandolfi</a>, <a href="/search/cond-mat?searchtype=author&query=Esposito%2C+V">V. Esposito</a>, <a href="/search/cond-mat?searchtype=author&query=Dakovski%2C+G+L">G. L. Dakovski</a>, <a href="/search/cond-mat?searchtype=author&query=Decker%2C+F+-">F. -J. Decker</a>, <a href="/search/cond-mat?searchtype=author&query=Reid%2C+A+H">A. H. Reid</a>, <a href="/search/cond-mat?searchtype=author&query=Assefa%2C+T+A">T. A. Assefa</a>, <a href="/search/cond-mat?searchtype=author&query=Fischer%2C+P">P. Fischer</a>, <a href="/search/cond-mat?searchtype=author&query=Griffin%2C+S+M">S. M. Griffin</a>, <a href="/search/cond-mat?searchtype=author&query=Kevan%2C+S+D">S. D. Kevan</a>, <a href="/search/cond-mat?searchtype=author&query=Hellman%2C+F">F. Hellman</a>, <a href="/search/cond-mat?searchtype=author&query=Turner%2C+J+J">J. J. Turner</a>, <a href="/search/cond-mat?searchtype=author&query=Roy%2C+S">S. Roy</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.13212v1-abstract-short" style="display: inline;"> A system that possesses translational symmetry but breaks orientational symmetry is known as a nematic phase. While there are many examples of nematic phases in a wide range of contexts, such as in liquid crystals, complex oxides, and superconductors, of particular interest is the magnetic analogue, where the spin, charge, and orbital degrees of freedom of the electron are intertwined. The difficu… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.13212v1-abstract-full').style.display = 'inline'; document.getElementById('2404.13212v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.13212v1-abstract-full" style="display: none;"> A system that possesses translational symmetry but breaks orientational symmetry is known as a nematic phase. While there are many examples of nematic phases in a wide range of contexts, such as in liquid crystals, complex oxides, and superconductors, of particular interest is the magnetic analogue, where the spin, charge, and orbital degrees of freedom of the electron are intertwined. The difficulty of spin nematics is the unambiguous realization and characterization of the phase. Here we present an entirely new type of magnetic nematic phase, which replaces the basis of individual spins with magnetic helices. The helical basis allows for the direct measurement of the order parameters with soft X-ray scattering and a thorough characterization of the nematic phase and its thermodynamic transitions. We discover two distinct nematic phases with unique spatio-temporal correlation signatures. Using coherent X-ray methods, we find that near the phase boundary between the two nematic phases, fluctuations coexist on the timescale of both seconds and sub-nanoseconds. Additionally, we have determined that the fluctuations occur simultaneously with a reorientation of the magnetic helices, indicating that there is spontaneous symmetry breaking and new degrees of freedom become available. Our results provide a novel framework for characterizing exotic phases and the phenomena presented can be mapped onto a broad class of physical systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.13212v1-abstract-full').style.display = 'none'; document.getElementById('2404.13212v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.11830">arXiv:2404.11830</a> <span> [<a href="https://arxiv.org/pdf/2404.11830">pdf</a>, <a href="https://arxiv.org/format/2404.11830">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> </div> </div> <p class="title is-5 mathjax"> Alignment-induced depression and shear thinning of anisotropic granular media </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Rahim%2C+H">Huzaif Rahim</a>, <a href="/search/cond-mat?searchtype=author&query=Angelidakis%2C+V">Vasileios Angelidakis</a>, <a href="/search/cond-mat?searchtype=author&query=P%C3%B6schel%2C+T">Thorsten P枚schel</a>, <a href="/search/cond-mat?searchtype=author&query=Roy%2C+S">Sudeshna Roy</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.11830v1-abstract-short" style="display: inline;"> When granular materials of shape-anisotropic grains are sheared in a split-bottom shear cell, a localized shear band is formed with a depression at its center. This effect is closely related to the alignment of the particles with aspect ratio (AR), which, in turn, influences the local packing density, the stress distribution, and the system's overall bulk rheology. Particles with large AR tend to… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.11830v1-abstract-full').style.display = 'inline'; document.getElementById('2404.11830v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.11830v1-abstract-full" style="display: none;"> When granular materials of shape-anisotropic grains are sheared in a split-bottom shear cell, a localized shear band is formed with a depression at its center. This effect is closely related to the alignment of the particles with aspect ratio (AR), which, in turn, influences the local packing density, the stress distribution, and the system's overall bulk rheology. Particles with large AR tend to align with the shear direction, which increases the packing density in the shear band and affects rheological properties like stress, macroscopic friction coefficient, and effective viscosity. A scaling law correlates particle AR to macroscopic friction and effective viscosity, revealing shear-thinning behavior in bulk and near the surface. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.11830v1-abstract-full').style.display = 'none'; document.getElementById('2404.11830v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.07975">arXiv:2404.07975</a> <span> [<a href="https://arxiv.org/pdf/2404.07975">pdf</a>, <a href="https://arxiv.org/format/2404.07975">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Spectral Multifractality and Emergent Energyscales Across the Many-Body Localisation Transition </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Roy%2C+S">Sthitadhi Roy</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.07975v1-abstract-short" style="display: inline;"> We present a scaling theory of the many-body localisation transition in terms of emergent, characteristic energyscales. The analysis is based on the decomposition of the eigenstates in the basis of trivially localised states, resolved in the energies of the latter, which we refer to as the spectral decomposition of the eigenstates. The characteristic energyscales emerge when the multifractal prope… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.07975v1-abstract-full').style.display = 'inline'; document.getElementById('2404.07975v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.07975v1-abstract-full" style="display: none;"> We present a scaling theory of the many-body localisation transition in terms of emergent, characteristic energyscales. The analysis is based on the decomposition of the eigenstates in the basis of trivially localised states, resolved in the energies of the latter, which we refer to as the spectral decomposition of the eigenstates. The characteristic energyscales emerge when the multifractal properties, or lack thereof, of the spectral decomposition are studied at different scales. These characteristic scales correspond to the ones, above which the spectral decompositions exhibit their global behaviour, namely full ergodicity in the ergodic phase and multifractality in the many-body localised phase. On the other hand, at scales below the characteristic ones, the decomposition in the ergodic phase shows finer (multi)fractal structures whereas in the localised phase, the decomposition picks out well-separated, localised resonant peaks. The scaling of these characteristic energyscales across the many-body localisation transition admits a scaling theory consistent with a Kosterlitz-Thouless type scenario and bears striking resemblances to that of inverse participation ratios of eigenstates. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.07975v1-abstract-full').style.display = 'none'; document.getElementById('2404.07975v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures + Supplementary Material</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.17707">arXiv:2403.17707</a> <span> [<a href="https://arxiv.org/pdf/2403.17707">pdf</a>, <a href="https://arxiv.org/format/2403.17707">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> </div> <p class="title is-5 mathjax"> Effect of light-assisted tunable interaction on the position response function of cold atoms </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Misra%2C+A">Anirban Misra</a>, <a href="/search/cond-mat?searchtype=author&query=Satpathi%2C+U">Urbashi Satpathi</a>, <a href="/search/cond-mat?searchtype=author&query=Sinha%2C+S">Supurna Sinha</a>, <a href="/search/cond-mat?searchtype=author&query=Roy%2C+S">Sanjukta Roy</a>, <a href="/search/cond-mat?searchtype=author&query=Chaudhuri%2C+S">Saptarishi Chaudhuri</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.17707v1-abstract-short" style="display: inline;"> The position response of a particle subjected to a perturbation is of general interest in physics. We study the modification of the position response function of an ensemble of cold atoms in a magneto-optical trap in the presence of tunable light-assisted interactions. We subject the cold atoms to an intense laser light tuned near the photoassociation resonance and observe the position response of… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.17707v1-abstract-full').style.display = 'inline'; document.getElementById('2403.17707v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.17707v1-abstract-full" style="display: none;"> The position response of a particle subjected to a perturbation is of general interest in physics. We study the modification of the position response function of an ensemble of cold atoms in a magneto-optical trap in the presence of tunable light-assisted interactions. We subject the cold atoms to an intense laser light tuned near the photoassociation resonance and observe the position response of the atoms subjected to a sudden displacement. Surprisingly, we observe that the entire cold atomic cloud undergoes collective oscillations. We use a generalised quantum Langevin approach to theoretically analyse the results of the experiments and find good agreement. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.17707v1-abstract-full').style.display = 'none'; document.getElementById('2403.17707v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 7 Figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.13054">arXiv:2403.13054</a> <span> [<a href="https://arxiv.org/pdf/2403.13054">pdf</a>, <a href="https://arxiv.org/format/2403.13054">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> </div> </div> <p class="title is-5 mathjax"> Signatures of metal to insulator crossover in the repulsive Fermi Hubbard model through static correlations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Roy%2C+S">Sayantan Roy</a>, <a href="/search/cond-mat?searchtype=author&query=Pervaiz%2C+S">Sameed Pervaiz</a>, <a href="/search/cond-mat?searchtype=author&query=Paiva%2C+T">Thereza Paiva</a>, <a href="/search/cond-mat?searchtype=author&query=Trivedi%2C+N">Nandini Trivedi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.13054v3-abstract-short" style="display: inline;"> Cold atom systems provide a rich platform to realize strongly interacting condensed matter systems, and recent progress in fluorescence imaging technique has enabled identification of nontrivial doublon, singlon, and holon correlation functions. We show that these correlators can be used to identify the conditions under which local moments form in an interacting electronic system. Toward this end,… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.13054v3-abstract-full').style.display = 'inline'; document.getElementById('2403.13054v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.13054v3-abstract-full" style="display: none;"> Cold atom systems provide a rich platform to realize strongly interacting condensed matter systems, and recent progress in fluorescence imaging technique has enabled identification of nontrivial doublon, singlon, and holon correlation functions. We show that these correlators can be used to identify the conditions under which local moments form in an interacting electronic system. Toward this end, we report a Determinantal Quantum Monte Carlo (DQMC) study of such correlation functions in the two-dimensional repulsive Fermi Hubbard model on a square lattice as a function of doping, interaction strength and temperature. We find definite signatures of the crossover from small U(band regime) to large U(correlated insulator regime). Our key findings are: (1) An opening of a charge gap in the thermodynamic density of states is accompanied by the appearance of temperature insensitive points in the equation of state at finite doping, which can be used to distinguish the band regime in cold atom experiments. (2) Nearest neighbor doublon holon correlations track the opening of charge gap; these compete with density correlations to generate moment moment correlations that show different behavior in the metallic and correlated insulator regime. (3) Non local correlation functions can be used to distinguish between the two regimes, both at and away from half filling. Our results allow comparisons of different correlation functions with recent experimental findings and guide further experimental investigations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.13054v3-abstract-full').style.display = 'none'; document.getElementById('2403.13054v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 10 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.10141">arXiv:2403.10141</a> <span> [<a href="https://arxiv.org/pdf/2403.10141">pdf</a>, <a href="https://arxiv.org/format/2403.10141">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Anisotropic magneto-photothermal voltage in Sb2Te3 topological insulator thin films </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Manna%2C+S">Subhadip Manna</a>, <a href="/search/cond-mat?searchtype=author&query=Nath%2C+S+G">Sambhu G Nath</a>, <a href="/search/cond-mat?searchtype=author&query=Roy%2C+S">Samrat Roy</a>, <a href="/search/cond-mat?searchtype=author&query=Aon%2C+S">Soumik Aon</a>, <a href="/search/cond-mat?searchtype=author&query=Pal%2C+S">Sayani Pal</a>, <a href="/search/cond-mat?searchtype=author&query=Sharma%2C+K">Kanav Sharma</a>, <a href="/search/cond-mat?searchtype=author&query=Mahapatra%2C+D">Dhananjaya Mahapatra</a>, <a href="/search/cond-mat?searchtype=author&query=Mitra%2C+P">Partha Mitra</a>, <a href="/search/cond-mat?searchtype=author&query=Das%2C+S">Sourin Das</a>, <a href="/search/cond-mat?searchtype=author&query=Pal%2C+B">Bipul Pal</a>, <a href="/search/cond-mat?searchtype=author&query=Mitra%2C+C">Chiranjib Mitra</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.10141v1-abstract-short" style="display: inline;"> We studied longitudinal and Hall photothermal voltages under a planar magnetic field scan in epitaxial thin films of the Topological Insulator (TI) Sb2Te3, grown using pulsed laser deposition (PLD). Unlike prior research that utilised polarised light-induced photocurrent to investigate the TI, our study introduces advancements based on unpolarized light-induced local heating. This method yields a… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.10141v1-abstract-full').style.display = 'inline'; document.getElementById('2403.10141v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.10141v1-abstract-full" style="display: none;"> We studied longitudinal and Hall photothermal voltages under a planar magnetic field scan in epitaxial thin films of the Topological Insulator (TI) Sb2Te3, grown using pulsed laser deposition (PLD). Unlike prior research that utilised polarised light-induced photocurrent to investigate the TI, our study introduces advancements based on unpolarized light-induced local heating. This method yields a thermoelectric response exhibiting a direct signature of strong spin-orbit coupling. Our analysis reveals three distinct contributions when fitting the photothermal voltage data to the angular dependence of the planar magnetic field. The interaction between the applied magnetic field and the thermal gradient on the bulk band orbitals enables the differentiation between the ordinary Nernst effect from the out-of-plane thermal gradient and an extraordinary magneto-thermal contribution from the planar thermal gradient. The fitting of our data to theoretical models indicates that these effects primarily arise from the bulk states of the TI rather than the surface states. These findings highlight PLD-grown epitaxial topological insulator thin films as promising candidates for optoelectronic devices, including sensors and actuators. Such devices offer controllable responses through position-dependent, non-invasive local heating via focused incident light and variations in the applied magnetic field direction. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.10141v1-abstract-full').style.display = 'none'; document.getElementById('2403.10141v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.00124">arXiv:2403.00124</a> <span> [<a href="https://arxiv.org/pdf/2403.00124">pdf</a>, <a href="https://arxiv.org/format/2403.00124">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> </div> </div> <p class="title is-5 mathjax"> Quasi-superfluid and Quasi-Mott phases of strongly interacting bosons in shallow optical lattice </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Roy%2C+S">Subhrajyoti Roy</a>, <a href="/search/cond-mat?searchtype=author&query=Roy%2C+R">Rhombik Roy</a>, <a href="/search/cond-mat?searchtype=author&query=Gammal%2C+A">Arnaldo Gammal</a>, <a href="/search/cond-mat?searchtype=author&query=Chakrabarti%2C+B">Barnali Chakrabarti</a>, <a href="/search/cond-mat?searchtype=author&query=Chatterjee%2C+B">Budhaditya Chatterjee</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.00124v1-abstract-short" style="display: inline;"> We explore the ground states of strongly interacting bosons in the vanishingly small and weak lattices using the multiconfiguration time-dependent Hartree method for bosons (MCTDHB) which calculate numerically exact many-body wave function. Two new many-body phases: fragmented or quasi superfluid (QSF) and incomplete fragmented Mott or quasi Mott insulator (QMI) are emerged due to the strong inter… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.00124v1-abstract-full').style.display = 'inline'; document.getElementById('2403.00124v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.00124v1-abstract-full" style="display: none;"> We explore the ground states of strongly interacting bosons in the vanishingly small and weak lattices using the multiconfiguration time-dependent Hartree method for bosons (MCTDHB) which calculate numerically exact many-body wave function. Two new many-body phases: fragmented or quasi superfluid (QSF) and incomplete fragmented Mott or quasi Mott insulator (QMI) are emerged due to the strong interplay between interaction and lattice depth. Fragmentation is utilized as a figure of merit to distinguish these two new phases. We utilize the eigenvalues of the reduced one-body density matrix and define an order parameter that characterizes the pathway from a very weak lattice to a deep lattice. We provide a detailed investigation through the measures of one- and two-body correlations and information entropy. We find that the structures in one- and two-body coherence are good markers to understand the gradual built-up of intra-well correlation and decay of inter-well correlation with increase in lattice depth. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.00124v1-abstract-full').style.display = 'none'; document.getElementById('2403.00124v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.15271">arXiv:2402.15271</a> <span> [<a href="https://arxiv.org/pdf/2402.15271">pdf</a>, <a href="https://arxiv.org/format/2402.15271">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> </div> </div> <p class="title is-5 mathjax"> Combined thermal and particle shape effects on powder spreading in additive manufacturing via discrete element simulations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Roy%2C+S">Sudeshna Roy</a>, <a href="/search/cond-mat?searchtype=author&query=Xiao%2C+H">Hongyi Xiao</a>, <a href="/search/cond-mat?searchtype=author&query=Angelidakis%2C+V">Vasileios Angelidakis</a>, <a href="/search/cond-mat?searchtype=author&query=P%C3%B6schel%2C+T">Thorsten P枚schel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.15271v1-abstract-short" style="display: inline;"> The thermal and mechanical behaviors of powders are important for various additive manufacturing technologies. For powder bed fusion, capturing the temperature profile and the packing structure of the powders prior to melting is challenging due to both the various pathways of heat transfer and the complicated properties of powder system. Furthermore, these two effects can be coupled due to the tem… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.15271v1-abstract-full').style.display = 'inline'; document.getElementById('2402.15271v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.15271v1-abstract-full" style="display: none;"> The thermal and mechanical behaviors of powders are important for various additive manufacturing technologies. For powder bed fusion, capturing the temperature profile and the packing structure of the powders prior to melting is challenging due to both the various pathways of heat transfer and the complicated properties of powder system. Furthermore, these two effects can be coupled due to the temperature dependence of particle properties. This study addresses this challenge using a discrete element model that simulates non-spherical particles with thermal properties in powder spreading. Thermal conduction and radiation are introduced to a multi-sphere particle formulation for capturing the heat transfer among irregular-shaped powders, which have temperature-dependent elastic properties. The model is utilized to simulate the spreading of pre-heated PA12 powder through a hot substrate representing the part under manufacturing. Differences in the temperature profiles were found in the spreading cases with different particle shapes, spreading speed, and temperature dependence of the elastic moduli. The temperature of particles below the spreading blade is found to be dependent on the kinematics of the heap of particles in front, which eventually is influenced by the temperature-dependent properties of the particles. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.15271v1-abstract-full').style.display = 'none'; document.getElementById('2402.15271v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 12 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.14747">arXiv:2402.14747</a> <span> [<a href="https://arxiv.org/pdf/2402.14747">pdf</a>, <a href="https://arxiv.org/format/2402.14747">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> </div> <p class="title is-5 mathjax"> Inequality indices for heterogeneous systems: a tool for failure prediction </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Kanuri%2C+T+R">Tarun Ram Kanuri</a>, <a href="/search/cond-mat?searchtype=author&query=Roy%2C+S">Subhadeep Roy</a>, <a href="/search/cond-mat?searchtype=author&query=Biswas%2C+S">Soumyajyoti Biswas</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.14747v1-abstract-short" style="display: inline;"> We have numerically studied a mean-field fiber bundle model of fracture at a non-zero temperature and acted by a constant external tensile stress. The individual fibers fail (local damage) due to creep-like dynamics that lead up to a catastrophic breakdown (global failure). We quantify the variations in sizes of the resulting avalanches by calculating the Lorenz function and two inequality indices… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.14747v1-abstract-full').style.display = 'inline'; document.getElementById('2402.14747v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.14747v1-abstract-full" style="display: none;"> We have numerically studied a mean-field fiber bundle model of fracture at a non-zero temperature and acted by a constant external tensile stress. The individual fibers fail (local damage) due to creep-like dynamics that lead up to a catastrophic breakdown (global failure). We quantify the variations in sizes of the resulting avalanches by calculating the Lorenz function and two inequality indices -- Gini ($g$) and Kolkata ($k$) indices -- derived from the Lorenz function. We show that the two indices cross just prior to the failure point when the dynamics goes through intermittent avalanches. For a continuous failure dynamics (finite numbers of fibers breaking at each time step), the crossing does not happen. However, in that phase, the usual prediction method i.e., linear relation between the time of minimum strain-rate and failure time, holds. The boundary between continuous and intermittent dynamics is very close to the boundary between crossing and non-crossing of the two indices in the temperature-stress phase space. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.14747v1-abstract-full').style.display = 'none'; document.getElementById('2402.14747v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 figures, 6 pages</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.12362">arXiv:2402.12362</a> <span> [<a href="https://arxiv.org/pdf/2402.12362">pdf</a>, <a href="https://arxiv.org/ps/2402.12362">ps</a>, <a href="https://arxiv.org/format/2402.12362">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> </div> <p class="title is-5 mathjax"> Critical crack-length during fracture </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=K.%2C+V+R">Viswakannan R. K.</a>, <a href="/search/cond-mat?searchtype=author&query=Roy%2C+S">Subhadeep Roy</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.12362v1-abstract-short" style="display: inline;"> Through controlled numerical simulations in a one dimensional fiber bundle model with local stress concentration, we established an inverse correlation between the strength of the material and the cracks which grow inside it - both the maximum crack and the one that set in instability within the system, defined to be the critical crack. Through Pearson correlation function as well as probabilistic… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.12362v1-abstract-full').style.display = 'inline'; document.getElementById('2402.12362v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.12362v1-abstract-full" style="display: none;"> Through controlled numerical simulations in a one dimensional fiber bundle model with local stress concentration, we established an inverse correlation between the strength of the material and the cracks which grow inside it - both the maximum crack and the one that set in instability within the system, defined to be the critical crack. Through Pearson correlation function as well as probabilistic study of individual configurations, we found that the maximum and the critical crack often differ from each other unless the disorder strength is extremely low. A phase diagram on the plane of disorder vs system size demarcates between the regions where the largest crack is the most vulnerable one and where they differ from each other but still shows moderate correlation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.12362v1-abstract-full').style.display = 'none'; document.getElementById('2402.12362v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.01318">arXiv:2312.01318</a> <span> [<a href="https://arxiv.org/pdf/2312.01318">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Stereochemically Active Lone-pair Leads to Strong Birefringence in the Vacancy Ordered Cs3Sb2Cl9 Perovskite Single Crystals </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Guha%2C+S">Shramana Guha</a>, <a href="/search/cond-mat?searchtype=author&query=Dalui%2C+A">Amit Dalui</a>, <a href="/search/cond-mat?searchtype=author&query=Sarkar%2C+P+K">Piyush Kanti Sarkar</a>, <a href="/search/cond-mat?searchtype=author&query=Roy%2C+S">Sima Roy</a>, <a href="/search/cond-mat?searchtype=author&query=Paul%2C+A">Atanu Paul</a>, <a href="/search/cond-mat?searchtype=author&query=Kamilya%2C+S">Sujit Kamilya</a>, <a href="/search/cond-mat?searchtype=author&query=Mondal%2C+A">Abhishake Mondal</a>, <a href="/search/cond-mat?searchtype=author&query=Dasgupta%2C+I">Indra Dasgupta</a>, <a href="/search/cond-mat?searchtype=author&query=Sarma%2C+D+D">D. D. Sarma</a>, <a href="/search/cond-mat?searchtype=author&query=Acharya%2C+S">Somobrata Acharya</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.01318v1-abstract-short" style="display: inline;"> Stereochemically active lone-pair (SCALP) cations are attractive units for realizing optical anisotropy. Antimony (III) chloride perovskites with SCALP have remained largely unknown till date. We synthesized vacancy ordered Cs3Sb2Cl9 perovskite single crystals with SbCl6 octahedral linkage containing SCALP. Remarkably, Cs3Sb2Cl9 single crystals exhibit an exceptional birefringence of 0.12 +(-) 0.0… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.01318v1-abstract-full').style.display = 'inline'; document.getElementById('2312.01318v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.01318v1-abstract-full" style="display: none;"> Stereochemically active lone-pair (SCALP) cations are attractive units for realizing optical anisotropy. Antimony (III) chloride perovskites with SCALP have remained largely unknown till date. We synthesized vacancy ordered Cs3Sb2Cl9 perovskite single crystals with SbCl6 octahedral linkage containing SCALP. Remarkably, Cs3Sb2Cl9 single crystals exhibit an exceptional birefringence of 0.12 +(-) 0.01 at 550 nm, which is the largest among pristine all-inorganic halide perovskites. The SCALP brings a large local structural distortion of the SbCl6 octahedra promoting birefringence optical responses in Cs3Sb2Cl9 single crystals. Theoretical calculations reveal that the considerable hybridization of Sb 5s with Sb 5p and Cl 3p states largely contribute to the SCALP. Furthermore, the change in the Sb-Cl-Sb bond angle creates distortion in the SbCl6 octahedral arrangement in the apical and equatorial directions within the crystal structure incorporating the required anisotropy for the birefringence. This work explores pristine inorganic halide perovskite single crystals as a potential birefringent material with prospects in integrated optical devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.01318v1-abstract-full').style.display = 'none'; document.getElementById('2312.01318v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.01158">arXiv:2312.01158</a> <span> [<a href="https://arxiv.org/pdf/2312.01158">pdf</a>, <a href="https://arxiv.org/format/2312.01158">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> </div> <p class="title is-5 mathjax"> Record statistics based prediction of fracture in the random spring network model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Senapati%2C+S">Subrat Senapati</a>, <a href="/search/cond-mat?searchtype=author&query=Roy%2C+S">Subhadeep Roy</a>, <a href="/search/cond-mat?searchtype=author&query=Banerjee%2C+A">Anuradha Banerjee</a>, <a href="/search/cond-mat?searchtype=author&query=Rajesh%2C+R">R. Rajesh</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.01158v1-abstract-short" style="display: inline;"> We study the role of record statistics of damage avalanches in predicting the fracture of a heterogeneous material under tensile loading. The material is modeled using a two-dimensional random spring network where disorder is introduced through randomness in the breakage threshold strains of the springs. It is shown that the waiting time between successive records of avalanches has a maximum for m… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.01158v1-abstract-full').style.display = 'inline'; document.getElementById('2312.01158v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.01158v1-abstract-full" style="display: none;"> We study the role of record statistics of damage avalanches in predicting the fracture of a heterogeneous material under tensile loading. The material is modeled using a two-dimensional random spring network where disorder is introduced through randomness in the breakage threshold strains of the springs. It is shown that the waiting time between successive records of avalanches has a maximum for moderate disorder, thus showing an acceleration of records with impending fracture. Such a signature is absent for low disorder strength when the fracture is nucleation-dominated, and high disorder strength when the fracture is percolation type. We examine the correlation between the record with the maximum waiting time and the crossover record at which the avalanche statistics change from off-critical to critical. Compared to the avalanche based predictor for failure, we show that the record statistics have the advantage of both being real-time as well as able to predict final fracture at much smaller strains. We also show that in the avalanche-dominated regime, the failure strain is shown to have a linear relation with the strain at the maximum waiting time, making possible a quantitative prediction. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.01158v1-abstract-full').style.display = 'none'; document.getElementById('2312.01158v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.17920">arXiv:2311.17920</a> <span> [<a href="https://arxiv.org/pdf/2311.17920">pdf</a>, <a href="https://arxiv.org/format/2311.17920">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.110.115119">10.1103/PhysRevB.110.115119 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Autoencoder-based analytic continuation method for strongly correlated quantum systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Kliczkowski%2C+M">Maksymilian Kliczkowski</a>, <a href="/search/cond-mat?searchtype=author&query=Keyes%2C+L">Lauren Keyes</a>, <a href="/search/cond-mat?searchtype=author&query=Roy%2C+S">Sayantan Roy</a>, <a href="/search/cond-mat?searchtype=author&query=Paiva%2C+T">Thereza Paiva</a>, <a href="/search/cond-mat?searchtype=author&query=Randeria%2C+M">Mohit Randeria</a>, <a href="/search/cond-mat?searchtype=author&query=Trivedi%2C+N">Nandini Trivedi</a>, <a href="/search/cond-mat?searchtype=author&query=Maska%2C+M+M">Maciej M. Maska</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.17920v1-abstract-short" style="display: inline;"> The single particle Green's function provides valuable information on the momentum and energy-resolved spectral properties for a strongly correlated system. In large-scale numerical calculations using quantum Monte Carlo (QMC), dynamical mean field theory (DMFT), including cluster-DMFT, one usually obtains the Green's function in imaginary-time $G(蟿)$. The process of inverting a Laplace transform… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.17920v1-abstract-full').style.display = 'inline'; document.getElementById('2311.17920v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.17920v1-abstract-full" style="display: none;"> The single particle Green's function provides valuable information on the momentum and energy-resolved spectral properties for a strongly correlated system. In large-scale numerical calculations using quantum Monte Carlo (QMC), dynamical mean field theory (DMFT), including cluster-DMFT, one usually obtains the Green's function in imaginary-time $G(蟿)$. The process of inverting a Laplace transform to obtain the spectral function $A(蠅)$ in real-frequency is an ill-posed problem and forms the core of the analytic continuation problem. In this Letter, we propose to use a completely unsupervised autoencoder-type neural network to solve the analytic continuation problem. We introduce an encoder-decoder approach that, together with only minor physical assumptions, can extract a high-quality frequency response from the imaginary time domain. With a deeply tunable architecture, this method can, in principle, locate sharp features of spectral functions that might normally be lost using already well-established methods, such as maximum entropy (MaxEnt) methods. We demonstrate the strength of the autoencoder approach by applying it to QMC results of $G(蟿)$ for a single-band Hubbard model. The proposed method is general and can also be applied to other ill-posed inverse problems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.17920v1-abstract-full').style.display = 'none'; document.getElementById('2311.17920v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 5 figures, supplement</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 110, 115119 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.13537">arXiv:2311.13537</a> <span> [<a href="https://arxiv.org/pdf/2311.13537">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> ab initio informed inelastic neutron scattering for time-resolved local dynamics in molten MgCl2 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Banerjee%2C+S">Shubhojit Banerjee</a>, <a href="/search/cond-mat?searchtype=author&query=Chahal%2C+R">Rajni Chahal</a>, <a href="/search/cond-mat?searchtype=author&query=Ivanov%2C+A+S">Alexander S. Ivanov</a>, <a href="/search/cond-mat?searchtype=author&query=Roy%2C+S">Santanu Roy</a>, <a href="/search/cond-mat?searchtype=author&query=Bryantsev%2C+V+S">Vyacheslav S. Bryantsev</a>, <a href="/search/cond-mat?searchtype=author&query=Shinohara%2C+Y">Yuya Shinohara</a>, <a href="/search/cond-mat?searchtype=author&query=Lam%2C+S+T">Stephen T Lam</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.13537v1-abstract-short" style="display: inline;"> Ion dynamics that drive the transport and thermophysical properties of molten salts are poorly understood due to challenges in precisely quantifying the spatial and temporal fluctuations of specific ions in highly disordered systems. While the Van Hove correlation function (VHF) obtained from inelastic neutron scattering (INS) probes these dynamics directly, its interpretation is limited by the in… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.13537v1-abstract-full').style.display = 'inline'; document.getElementById('2311.13537v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.13537v1-abstract-full" style="display: none;"> Ion dynamics that drive the transport and thermophysical properties of molten salts are poorly understood due to challenges in precisely quantifying the spatial and temporal fluctuations of specific ions in highly disordered systems. While the Van Hove correlation function (VHF) obtained from inelastic neutron scattering (INS) probes these dynamics directly, its interpretation is limited by the inherent species-averaging of experiments, which obscures analysis of key ion transport and solvation mechanisms. Here, ab initio molecular dynamics (AIMD) is used to model the VHF, unravel its partial contributions, and elucidate its underlying ionic transport mechanisms. Slow decorrelation is revealed for oppositely charged ions (Mg2+ and Cl-) caused by ion exchange across the solvation shell between adjoining ionocovalent complexes. Furthermore, transport coefficients are accurately recovered and connections between macroscopic properties and ion dynamics are revealed. This study demonstrates the potential of ab initio-informed VHF to resolve long-standing challenges in uncovering relationships between picosecond-scale ion dynamics, mechanisms, and emergent physical properties of molten salts. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.13537v1-abstract-full').style.display = 'none'; document.getElementById('2311.13537v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.04106">arXiv:2311.04106</a> <span> [<a href="https://arxiv.org/pdf/2311.04106">pdf</a>, <a href="https://arxiv.org/format/2311.04106">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> SPIRAL: An Efficient Algorithm for the Integration of the Equation of Rotational Motion </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=del+Valle%2C+C+A">Carlos Andr茅s del Valle</a>, <a href="/search/cond-mat?searchtype=author&query=Angelidakis%2C+V">Vasileios Angelidakis</a>, <a href="/search/cond-mat?searchtype=author&query=Roy%2C+S">Sudeshna Roy</a>, <a href="/search/cond-mat?searchtype=author&query=Mu%C3%B1oz%2C+J+D">Jos茅 Daniel Mu帽oz</a>, <a href="/search/cond-mat?searchtype=author&query=P%C3%B6schel%2C+T">Thorsten P枚schel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.04106v1-abstract-short" style="display: inline;"> We introduce Spiral, a third-order integration algorithm for the rotational motion of extended bodies. It requires only one force calculation per time step, does not require quaternion normalization at each time step, and can be formulated for both leapfrog and synchronous integration schemes, making it compatible with many particle simulation codes. The stability and precision of Spiral exceed th… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.04106v1-abstract-full').style.display = 'inline'; document.getElementById('2311.04106v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.04106v1-abstract-full" style="display: none;"> We introduce Spiral, a third-order integration algorithm for the rotational motion of extended bodies. It requires only one force calculation per time step, does not require quaternion normalization at each time step, and can be formulated for both leapfrog and synchronous integration schemes, making it compatible with many particle simulation codes. The stability and precision of Spiral exceed those of state-of-the-art algorithms currently used in popular DEM codes such as Yade, MercuryDPM, LIGGGHTS, PFC, and more, at only slightly higher computational cost. Also, beyond DEM, we see potential applications in all numerical simulations that involve the 3D rotation of extended bodies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.04106v1-abstract-full').style.display = 'none'; document.getElementById('2311.04106v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">25 pages, 9 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.02875">arXiv:2311.02875</a> <span> [<a href="https://arxiv.org/pdf/2311.02875">pdf</a>, <a href="https://arxiv.org/format/2311.02875">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> </div> </div> <p class="title is-5 mathjax"> Shear zones in granular mixtures of hard and soft particles with high and low friction </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Singh%2C+A+P">Aditya Pratap Singh</a>, <a href="/search/cond-mat?searchtype=author&query=Angelidakis%2C+V">Vasileios Angelidakis</a>, <a href="/search/cond-mat?searchtype=author&query=P%C3%B6schel%2C+T">Thorsten P枚schel</a>, <a href="/search/cond-mat?searchtype=author&query=Roy%2C+S">Sudeshna Roy</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.02875v1-abstract-short" style="display: inline;"> Granular materials show inhomogeneous flows characterized by strain localization. When strain is localized in a sheared granular material, rigid regions of a nearly undeformed state are separated by shear bands, where the material yields and flows. The characteristics of the shear bands are determined by the geometry of the system, the micromechanical material properties, and the kinematics at the… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.02875v1-abstract-full').style.display = 'inline'; document.getElementById('2311.02875v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.02875v1-abstract-full" style="display: none;"> Granular materials show inhomogeneous flows characterized by strain localization. When strain is localized in a sheared granular material, rigid regions of a nearly undeformed state are separated by shear bands, where the material yields and flows. The characteristics of the shear bands are determined by the geometry of the system, the micromechanical material properties, and the kinematics at the particle level. For a split-bottom shear cell, recent experimental work has shown that mixtures of hard, frictional and soft, nearly frictionless particles exhibit wider shear zones than samples with only one of the two components. To explain this finding, we investigate the shear zone properties and the stress response of granular mixtures using discrete element simulations. We show that both interparticle friction and elastic modulus determine the shear-band properties of granular mixtures of various mixing ratios, but their stress response depends strongly on the interparticle friction. Our study provides a fundamental understanding of the micromechanics of shear band formation in granular mixtures. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.02875v1-abstract-full').style.display = 'none'; document.getElementById('2311.02875v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 8 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.14031">arXiv:2310.14031</a> <span> [<a href="https://arxiv.org/pdf/2310.14031">pdf</a>, <a href="https://arxiv.org/format/2310.14031">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> DEM simulation of the powder application in powder bed fusion </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Angelidakis%2C+V">Vasileios Angelidakis</a>, <a href="/search/cond-mat?searchtype=author&query=Blank%2C+M">Michael Blank</a>, <a href="/search/cond-mat?searchtype=author&query=Parteli%2C+E+J+R">Eric J. R. Parteli</a>, <a href="/search/cond-mat?searchtype=author&query=Roy%2C+S">Sudeshna Roy</a>, <a href="/search/cond-mat?searchtype=author&query=Nasato%2C+D+S">Daniel Schiochet Nasato</a>, <a href="/search/cond-mat?searchtype=author&query=Xiao%2C+H">Hongyi Xiao</a>, <a href="/search/cond-mat?searchtype=author&query=Poeschel%2C+T">Thorsten Poeschel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.14031v1-abstract-short" style="display: inline;"> The packing behavior of powders is significantly influenced by various types of inter-particle attractive forces, including adhesion and non-bonded van der Waals forces [1, 2, 3, 4, 5, 6]. Alongside particle size and shape distributions, the inter-particle interactions, in particular frictional and adhesive forces, play a crucial role in determining the flow behavior and consequently the packing d… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.14031v1-abstract-full').style.display = 'inline'; document.getElementById('2310.14031v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.14031v1-abstract-full" style="display: none;"> The packing behavior of powders is significantly influenced by various types of inter-particle attractive forces, including adhesion and non-bonded van der Waals forces [1, 2, 3, 4, 5, 6]. Alongside particle size and shape distributions, the inter-particle interactions, in particular frictional and adhesive forces, play a crucial role in determining the flow behavior and consequently the packing density of the powder layer. The impact of various types of attractive forces on the packing density of powders with different materials and particle size distributions remains largely unexplored and requires further investigation. Accurately comprehending these effects through experiments while considering specific particle size distributions and material properties poses significant challenges. To address these challenges, we employ Discrete Element Method (DEM) simulations to characterize the packing behavior of fine powders. We can demonstrate quantitative agreement with experimental results by incorporating the appropriate particle size distribution and using an adequate model of attractive particle interactions. Furthermore, our findings indicate that both adhesion, which is modeled using the Johnson-Kendall-Roberts (JKR) model [7], and van der Waals interactions are crucial factors that must be taken into account in DEM simulations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.14031v1-abstract-full').style.display = 'none'; document.getElementById('2310.14031v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22 pages, 14 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.14013">arXiv:2310.14013</a> <span> [<a href="https://arxiv.org/pdf/2310.14013">pdf</a>, <a href="https://arxiv.org/format/2310.14013">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Structural fluctuations in thin cohesive particle layers in powder-based additive manufacturing </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Roy%2C+S">Sudeshna Roy</a>, <a href="/search/cond-mat?searchtype=author&query=Xiao%2C+H">Hongyi Xiao</a>, <a href="/search/cond-mat?searchtype=author&query=Angelidakis%2C+V">Vasileios Angelidakis</a>, <a href="/search/cond-mat?searchtype=author&query=P%C3%B6schel%2C+T">Thorsten P枚schel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.14013v1-abstract-short" style="display: inline;"> Producing dense and homogeneous powder layers with smooth free surface is challenging in additive manufacturing, as interparticle cohesion can strongly affect the powder packing structure and therefore influence the quality of the end product. We use the Discrete Element Method to simulate the spreading process of spherical powders and examine how cohesion influences the characteristics of the pac… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.14013v1-abstract-full').style.display = 'inline'; document.getElementById('2310.14013v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.14013v1-abstract-full" style="display: none;"> Producing dense and homogeneous powder layers with smooth free surface is challenging in additive manufacturing, as interparticle cohesion can strongly affect the powder packing structure and therefore influence the quality of the end product. We use the Discrete Element Method to simulate the spreading process of spherical powders and examine how cohesion influences the characteristics of the packing structure with a focus on the fluctuation of the local morphology. As cohesion increases, the overall packing density decreases, and the free surface roughness increases, which is calculated from digitized surface height distributions. Local structural fluctuations for both quantities are examined through the local packing anisotropy on the particle scale, obtained from Vorono茂 tessellation. The distributions of these particle-level metrics quantify the increasingly heterogeneous packing structure with clustering and changing surface morphology. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.14013v1-abstract-full').style.display = 'none'; document.getElementById('2310.14013v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 8 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.11485">arXiv:2310.11485</a> <span> [<a href="https://arxiv.org/pdf/2310.11485">pdf</a>, <a href="https://arxiv.org/format/2310.11485">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> </div> </div> <p class="title is-5 mathjax"> Approximate Expressions for the Capillary Force and the Surface Area of a Liquid Bridge between Identical Spheres </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Bagheri%2C+M">Meysam Bagheri</a>, <a href="/search/cond-mat?searchtype=author&query=Roy%2C+S">Sudeshna Roy</a>, <a href="/search/cond-mat?searchtype=author&query=P%C3%B6schel%2C+T">Thorsten P枚schel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.11485v1-abstract-short" style="display: inline;"> We consider a liquid bridge between two identical spheres and provide approximate expressions for the capillary force and the exposed surface area of the liquid bridge as functions of the liquid bridge's total volume and the sphere separation distance. The radius of the spheres and the solid-liquid contact angle are parameters that enter the expressions. These expressions are needed for efficient… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.11485v1-abstract-full').style.display = 'inline'; document.getElementById('2310.11485v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.11485v1-abstract-full" style="display: none;"> We consider a liquid bridge between two identical spheres and provide approximate expressions for the capillary force and the exposed surface area of the liquid bridge as functions of the liquid bridge's total volume and the sphere separation distance. The radius of the spheres and the solid-liquid contact angle are parameters that enter the expressions. These expressions are needed for efficient numerical simulations of drying suspensions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.11485v1-abstract-full').style.display = 'none'; document.getElementById('2310.11485v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">24 pages, 14 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.10621">arXiv:2310.10621</a> <span> [<a href="https://arxiv.org/pdf/2310.10621">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Electronic Transport and Fermi Surface Topology of Zintl Phase Compound SrZn2Ge2 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Hooda%2C+M+K">M. K. Hooda</a>, <a href="/search/cond-mat?searchtype=author&query=Chakraborty%2C+A">A. Chakraborty</a>, <a href="/search/cond-mat?searchtype=author&query=Roy%2C+S">S. Roy</a>, <a href="/search/cond-mat?searchtype=author&query=Swami%2C+R">R. Swami</a>, <a href="/search/cond-mat?searchtype=author&query=Agarwal%2C+A">A. Agarwal</a>, <a href="/search/cond-mat?searchtype=author&query=Mandal%2C+P">P. Mandal</a>, <a href="/search/cond-mat?searchtype=author&query=Sarangi%2C+S+N">S. N. Sarangi</a>, <a href="/search/cond-mat?searchtype=author&query=Samal%2C+D">D. Samal</a>, <a href="/search/cond-mat?searchtype=author&query=Awana%2C+V+P+S">V. P. S. Awana</a>, <a href="/search/cond-mat?searchtype=author&query=Hossain%2C+Z">Z. Hossain</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.10621v3-abstract-short" style="display: inline;"> We report a comprehensive study on the electronic transport properties of SrZn2Ge2 single crystals. The electrical resistivity of the compound exhibits metallic behavior, following a T^2 dependence below 35 K, consistent with the Fermi liquid behavior. However, a notable deviation is observed from this behavior at lower temperatures as a pronounced resistivity plateau emerges below 10 K. This plat… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.10621v3-abstract-full').style.display = 'inline'; document.getElementById('2310.10621v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.10621v3-abstract-full" style="display: none;"> We report a comprehensive study on the electronic transport properties of SrZn2Ge2 single crystals. The electrical resistivity of the compound exhibits metallic behavior, following a T^2 dependence below 35 K, consistent with the Fermi liquid behavior. However, a notable deviation is observed from this behavior at lower temperatures as a pronounced resistivity plateau emerges below 10 K. This plateau is remarkably robust, and persists under the magnetic fields of up to 10 T. Both the transverse and longitudinal magnetoresistance exhibit a crossover at critical field B* from weak-field quadratic-like to high-field unsaturated linear field dependence at low temperatures (T \leq 50 K). Possible sources of linear magnetoresistance are discussed based on the Fermi surface topology, classical and quantum transport models. The Hall resistivity data establish SrZn2Ge2 as a multiband system with contributions from both the electrons and holes. The Hall coefficient is observed to decrease with increasing temperature and magnetic field, changing its sign from positive to negative. The negative Hall coefficient observed at low temperatures in high fields and at high temperatures over the entire field range suggests that the highly mobile electron charge carriers dominate the electronic transport. Our first-principles calculations show that nontrivial topological surface states exist in SrZn2Ge2 within the bulk gap along the Gamma-M path. Notably, these surface states extend from the valence to conduction band with their number varying based on the Sr and Ge termination plane. The Fermi surface of the compound exhibits a distinct tetragonal petal-like structure, with one open and several closed surfaces. Overall, these findings offer crucial insights into the mechanisms underlying the electronic transport of the compound. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.10621v3-abstract-full').style.display = 'none'; document.getElementById('2310.10621v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 11 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">ACM Class:</span> J.2 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.07948">arXiv:2310.07948</a> <span> [<a href="https://arxiv.org/pdf/2310.07948">pdf</a>, <a href="https://arxiv.org/format/2310.07948">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> 3D Heisenberg universality in the Van der Waals antiferromagnet NiPS$_3$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Plumley%2C+R">Rajan Plumley</a>, <a href="/search/cond-mat?searchtype=author&query=Mardanya%2C+S">Sougata Mardanya</a>, <a href="/search/cond-mat?searchtype=author&query=Peng%2C+C">Cheng Peng</a>, <a href="/search/cond-mat?searchtype=author&query=Nokelainen%2C+J">Johannes Nokelainen</a>, <a href="/search/cond-mat?searchtype=author&query=Assefa%2C+T">Tadesse Assefa</a>, <a href="/search/cond-mat?searchtype=author&query=Shen%2C+L">Lingjia Shen</a>, <a href="/search/cond-mat?searchtype=author&query=Burdet%2C+N">Nicholas Burdet</a>, <a href="/search/cond-mat?searchtype=author&query=Porter%2C+Z">Zach Porter</a>, <a href="/search/cond-mat?searchtype=author&query=Petsch%2C+A">Alexander Petsch</a>, <a href="/search/cond-mat?searchtype=author&query=Israelski%2C+A">Aidan Israelski</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+H">Hongwei Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Lee%2C+J+S">Jun Sik Lee</a>, <a href="/search/cond-mat?searchtype=author&query=Morley%2C+S">Sophie Morley</a>, <a href="/search/cond-mat?searchtype=author&query=Roy%2C+S">Sujoy Roy</a>, <a href="/search/cond-mat?searchtype=author&query=Fabbris%2C+G">Gilberto Fabbris</a>, <a href="/search/cond-mat?searchtype=author&query=Blackburn%2C+E">Elizabeth Blackburn</a>, <a href="/search/cond-mat?searchtype=author&query=Feiguin%2C+A">Adrian Feiguin</a>, <a href="/search/cond-mat?searchtype=author&query=Bansil%2C+A">Arun Bansil</a>, <a href="/search/cond-mat?searchtype=author&query=Lee%2C+W">Wei-Sheng Lee</a>, <a href="/search/cond-mat?searchtype=author&query=Lindenberg%2C+A">Aaron Lindenberg</a>, <a href="/search/cond-mat?searchtype=author&query=Chowdhury%2C+S">Sugata Chowdhury</a>, <a href="/search/cond-mat?searchtype=author&query=Dunne%2C+M">Mike Dunne</a>, <a href="/search/cond-mat?searchtype=author&query=Turner%2C+J+J">Joshua J. Turner</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.07948v4-abstract-short" style="display: inline;"> Van der Waals (vdW) magnetic materials are comprised of layers of atomically thin sheets, making them ideal platforms for studying magnetism at the two-dimensional (2D) limit. These materials are at the center of a host of novel types of experiments, however, there are notably few pathways to directly probe their magnetic structure. We report the magnetic order within a single crystal of NiPS$_3$… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.07948v4-abstract-full').style.display = 'inline'; document.getElementById('2310.07948v4-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.07948v4-abstract-full" style="display: none;"> Van der Waals (vdW) magnetic materials are comprised of layers of atomically thin sheets, making them ideal platforms for studying magnetism at the two-dimensional (2D) limit. These materials are at the center of a host of novel types of experiments, however, there are notably few pathways to directly probe their magnetic structure. We report the magnetic order within a single crystal of NiPS$_3$ and show it can be accessed with resonant elastic X-ray diffraction along the edge of the vdW planes in a carefully grown crystal by detecting structurally forbidden resonant magnetic X-ray scattering. We find the magnetic order parameter has a critical exponent of $尾\sim0.36$, indicating that the magnetism of these vdW crystals is more adequately characterized by the three-dimensional (3D) Heisenberg universality class. We verify these findings with first-principle density functional theory, Monte-Carlo simulations, and density matrix renormalization group calculations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.07948v4-abstract-full').style.display = 'none'; document.getElementById('2310.07948v4-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.00128">arXiv:2310.00128</a> <span> [<a href="https://arxiv.org/pdf/2310.00128">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.109.195141">10.1103/PhysRevB.109.195141 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Ultrafast Raman thermometry in driven YBa$_2$Cu$_3$O$_{6.48}$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Chou%2C+T+-">T. -H. Chou</a>, <a href="/search/cond-mat?searchtype=author&query=F%C3%B6rst%2C+M">M. F枚rst</a>, <a href="/search/cond-mat?searchtype=author&query=Fechner%2C+M">M. Fechner</a>, <a href="/search/cond-mat?searchtype=author&query=Henstridge%2C+M">M. Henstridge</a>, <a href="/search/cond-mat?searchtype=author&query=Roy%2C+S">S. Roy</a>, <a href="/search/cond-mat?searchtype=author&query=Buzzi%2C+M">M. Buzzi</a>, <a href="/search/cond-mat?searchtype=author&query=Nicoletti%2C+D">D. Nicoletti</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+Y">Y. Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Nakata%2C+S">S. Nakata</a>, <a href="/search/cond-mat?searchtype=author&query=Keimer%2C+B">B. Keimer</a>, <a href="/search/cond-mat?searchtype=author&query=Cavalleri%2C+A">A. Cavalleri</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.00128v1-abstract-short" style="display: inline;"> Signatures of photo-induced superconductivity have been reported in cuprate materials subjected to a coherent phonon drive. A 'cold' superfluid was extracted from the transient Terahertz conductivity and was seen to coexist with 'hot' uncondensed quasi-particles, a hallmark of a driven-dissipative system of which the interplay between coherent and incoherent responses are not well understood. Here… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.00128v1-abstract-full').style.display = 'inline'; document.getElementById('2310.00128v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.00128v1-abstract-full" style="display: none;"> Signatures of photo-induced superconductivity have been reported in cuprate materials subjected to a coherent phonon drive. A 'cold' superfluid was extracted from the transient Terahertz conductivity and was seen to coexist with 'hot' uncondensed quasi-particles, a hallmark of a driven-dissipative system of which the interplay between coherent and incoherent responses are not well understood. Here, time resolved spontaneous Raman scattering was used to probe the lattice temperature in the photo-induced superconducting state of YBa2Cu3O6.48. An increase in lattice temperature of approximately 80 K was observed by measuring the time dependent Raman scattering intensity of an undriven 'spectator' phonon mode. This is to be compared with an estimated increase in quasi-particle temperatures of nearly 200 K. These temperature changes provide quantitative information on the nature of the driven state and its decay, and may provide a strategy to optimize this effect. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.00128v1-abstract-full').style.display = 'none'; document.getElementById('2310.00128v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 109, 195141 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.14533">arXiv:2309.14533</a> <span> [<a href="https://arxiv.org/pdf/2309.14533">pdf</a>, <a href="https://arxiv.org/format/2309.14533">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1002/admi.202400317">10.1002/admi.202400317 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Stable CoO$_2$ Nanoscrolls With Outstanding Electrical Properties </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Hettler%2C+S">Simon Hettler</a>, <a href="/search/cond-mat?searchtype=author&query=Roy%2C+K+S">Kankona Singha Roy</a>, <a href="/search/cond-mat?searchtype=author&query=Arenal%2C+R">Raul Arenal</a>, <a href="/search/cond-mat?searchtype=author&query=Panchakarla%2C+L+S">Leela S. Panchakarla</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.14533v2-abstract-short" style="display: inline;"> Layered CoO$_2$ is of great interest for its promising properties but is meta-stable in its bulk form. CoO$_2$ was synthesized by converting the quasi-one-dimensional crystal structure of bulk Ca$_3$Co$_2$O$_6$ via a hydrothermal treatment. The resulting nanostructures were predominantly nanoscrolls with very thin walls, which exhibit long-term stability. A detailed structural investigation reveal… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.14533v2-abstract-full').style.display = 'inline'; document.getElementById('2309.14533v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.14533v2-abstract-full" style="display: none;"> Layered CoO$_2$ is of great interest for its promising properties but is meta-stable in its bulk form. CoO$_2$ was synthesized by converting the quasi-one-dimensional crystal structure of bulk Ca$_3$Co$_2$O$_6$ via a hydrothermal treatment. The resulting nanostructures were predominantly nanoscrolls with very thin walls, which exhibit long-term stability. A detailed structural investigation reveals that the CoO$_2$ is found to crystallize in monoclinic form, similar to the related CaCoO$_2$-CoO$_2$ misfit structure. Individual nanoscrolls are characterized electrically and show a p-type semiconducting nature with a high current-carrying capacity of 4$\cdot$10$^5$ A cm$^{-2}$ and an extremely high breakdown voltage of up to 270 kV/cm. The results demonstrate the possibility to stabilize meta-stable materials in low-dimensional forms and a promising application of the nanoscrolls as interconnect in high-voltage electronic circuitry. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.14533v2-abstract-full').style.display = 'none'; document.getElementById('2309.14533v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Adv. Mater. Interfaces 2024, 2400317 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.13603">arXiv:2309.13603</a> <span> [<a href="https://arxiv.org/pdf/2309.13603">pdf</a>, <a href="https://arxiv.org/format/2309.13603">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> </div> <p class="title is-5 mathjax"> The Eshelby problem in amorphous solids </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Hentschel%2C+H+G+E">H. George E. Hentschel</a>, <a href="/search/cond-mat?searchtype=author&query=Kumar%2C+A">Avanish Kumar</a>, <a href="/search/cond-mat?searchtype=author&query=Procaccia%2C+I">Itamar Procaccia</a>, <a href="/search/cond-mat?searchtype=author&query=Roy%2C+S">Saikat Roy</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.13603v1-abstract-short" style="display: inline;"> The ``Eshelby problem" refers to the response of a 2-dimensional elastic sheet to cutting away a circle, deforming it into an ellipse, and pushing it back. The resulting response is dominated by the so-called ``Eshelby Kernel" which was derived for purely elastic (infinite) material, but has been employed extensively to model the redistribution of stress after plastic events in amorphous solids wi… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.13603v1-abstract-full').style.display = 'inline'; document.getElementById('2309.13603v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.13603v1-abstract-full" style="display: none;"> The ``Eshelby problem" refers to the response of a 2-dimensional elastic sheet to cutting away a circle, deforming it into an ellipse, and pushing it back. The resulting response is dominated by the so-called ``Eshelby Kernel" which was derived for purely elastic (infinite) material, but has been employed extensively to model the redistribution of stress after plastic events in amorphous solids with finite boundaries. Here we discuss and solve the Eshelby problem directly for amorphous solids, taking into account possible screening effects and realistic boundary conditions. We find major modifications compared to the classical Eshelby solution. These modification are needed for modeling correctly the spatial responses to plastic events in amorphous solids. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.13603v1-abstract-full').style.display = 'none'; document.getElementById('2309.13603v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.08205">arXiv:2309.08205</a> <span> [<a href="https://arxiv.org/pdf/2309.08205">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> A facile direct device transfer of monolayer MoS2 towards improvement in transistor performances </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Mallik%2C+S+K">Sameer Kumar Mallik</a>, <a href="/search/cond-mat?searchtype=author&query=Padhan%2C+R">Roshan Padhan</a>, <a href="/search/cond-mat?searchtype=author&query=Roy%2C+S">Suman Roy</a>, <a href="/search/cond-mat?searchtype=author&query=Sahu%2C+M+C">Mousam Charan Sahu</a>, <a href="/search/cond-mat?searchtype=author&query=Sahoo%2C+S">Sandhyarani Sahoo</a>, <a href="/search/cond-mat?searchtype=author&query=Sahoo%2C+S">Satyaprakash Sahoo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.08205v1-abstract-short" style="display: inline;"> Transfer techniques based on two dimensional (2D) materials and devices offer immense potential towards their industrial integration with the existing silicon based electronics. To achieve high quality devices, there is an urgent requirement for the etching-free, and clean transfer that retain original semiconducting properties of layered channel materials. In parallel, transfer of metal electrode… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.08205v1-abstract-full').style.display = 'inline'; document.getElementById('2309.08205v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.08205v1-abstract-full" style="display: none;"> Transfer techniques based on two dimensional (2D) materials and devices offer immense potential towards their industrial integration with the existing silicon based electronics. To achieve high quality devices, there is an urgent requirement for the etching-free, and clean transfer that retain original semiconducting properties of layered channel materials. In parallel, transfer of metal electrode arrays on the 2D semiconductors also attract attention towards large-scale integration for commercial applications. Here, we demonstrate a facile PMMA-assisted etching-free one-step approach to transfer both 2D channels and metal electrodes without damaging the contact region. The direct device transfer (DDT) technique enables residue-free monolayer MoS2 as channel material towards achieving doping-free intrinsic transistors with enhanced performances. The crystalline quality, strain relaxation, and interfacial coupling effects are studied using Raman and photoluminescence spectra with spatial mapping. Post device transfer, a reduced pinning effect is observed by the effective modulation of gate tunable drain currents in MoS2 transistors at room temperature. Furthermore, the extracted Schottky barrier heights, temperature dependence of threshold voltage shifts, hysteresis evolution, and mobility enhancements validates the improved transistor performances in transferred devices. The proposed DDT method can be utilized to directly transfer array of devices of 2D materials and heterostructures skipping various cumbersome steps in between and hence could offer high performance reliable electronic applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.08205v1-abstract-full').style.display = 'none'; document.getElementById('2309.08205v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.03836">arXiv:2309.03836</a> <span> [<a href="https://arxiv.org/pdf/2309.03836">pdf</a>, <a href="https://arxiv.org/format/2309.03836">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41598-024-70995-2">10.1038/s41598-024-70995-2 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Quasiperiodic disorder induced critical phases in a periodically driven dimerized $p$-wave Kitaev chain </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Roy%2C+K">Koustav Roy</a>, <a href="/search/cond-mat?searchtype=author&query=Roy%2C+S">Shilpi Roy</a>, <a href="/search/cond-mat?searchtype=author&query=Basu%2C+S">Saurabh Basu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.03836v3-abstract-short" style="display: inline;"> The interplay of topology and disorder in non-equilibrium quantum systems is an intriguing subject. Here, we look for a suitable platform that enables an in-depth exploration of the topic. To this end, We analyze the topological and localization properties of a dimerized one-dimensional Kitaev chain in the presence of an onsite quasiperiodic potential with its amplitude being modulated periodicall… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.03836v3-abstract-full').style.display = 'inline'; document.getElementById('2309.03836v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.03836v3-abstract-full" style="display: none;"> The interplay of topology and disorder in non-equilibrium quantum systems is an intriguing subject. Here, we look for a suitable platform that enables an in-depth exploration of the topic. To this end, We analyze the topological and localization properties of a dimerized one-dimensional Kitaev chain in the presence of an onsite quasiperiodic potential with its amplitude being modulated periodically in time. The topological features have been explored via computing the real-space winding numbers corresponding to both the Majorana zero and the $蟺$ energy modes. We enumerate the scenario at different driving frequencies. In particular, at some intermediate frequency regime, the phase diagram concerning the zero mode involves two distinct phase transitions, one from a topologically trivial to a non-trivial phase, and another from a topological phase to an Anderson localized phase. On the other hand, the study of the $蟺$ modes reveals the emergence of a unique topological phase, with the bulk and the edges being fully localized, which may be called as the Floquet topological Anderson phase. Furthermore, we study the localization properties of the bulk states by computing the inverse and normalized participation ratios, while the critical phase is ascertained by computing the fractal dimension. We have observed extended, critical, and localized phases at intermediate frequencies, which are further confirmed via a finite-size scaling analysis. Finally, fully extended and localized phases are respectively observed at lower and higher frequencies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.03836v3-abstract-full').style.display = 'none'; document.getElementById('2309.03836v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Scientific Reports volume 14, Article number: 20603 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.00049">arXiv:2309.00049</a> <span> [<a href="https://arxiv.org/pdf/2309.00049">pdf</a>, <a href="https://arxiv.org/format/2309.00049">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> </div> <p class="title is-5 mathjax"> Unveiling Eigenstate Thermalization for Non-Hermitian systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Roy%2C+S+S">Sudipto Singha Roy</a>, <a href="/search/cond-mat?searchtype=author&query=Bandyopadhyay%2C+S">Soumik Bandyopadhyay</a>, <a href="/search/cond-mat?searchtype=author&query=de+Almeida%2C+R+C">Ricardo Costa de Almeida</a>, <a href="/search/cond-mat?searchtype=author&query=Hauke%2C+P">Philipp Hauke</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.00049v1-abstract-short" style="display: inline;"> The Eigenstate Thermalization Hypothesis (ETH) has been highly influential in explaining thermodynamic behavior of closed quantum systems. As of yet, it is unclear whether and how the ETH applies to non-Hermitian systems. Here, we introduce a framework that extends the ETH to non-Hermitian systems. It hinges on a suitable choice of basis composed of right eigenvectors of the non-Hermitian model, a… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.00049v1-abstract-full').style.display = 'inline'; document.getElementById('2309.00049v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.00049v1-abstract-full" style="display: none;"> The Eigenstate Thermalization Hypothesis (ETH) has been highly influential in explaining thermodynamic behavior of closed quantum systems. As of yet, it is unclear whether and how the ETH applies to non-Hermitian systems. Here, we introduce a framework that extends the ETH to non-Hermitian systems. It hinges on a suitable choice of basis composed of right eigenvectors of the non-Hermitian model, a choice we motivate based on physical arguments. In this basis, and after correctly accounting for the nonorthogonality of non-Hermitian eigenvectors, expectation values of local operators reproduce the well-known ETH prediction for Hermitian systems. We illustrate the validity of the modified framework on non-Hermitian random-matrix and Sachdev--Ye--Kitaev models. Our results thus generalize the ETH to the non-Hermitian setting, and they illustrate the importance of the correct choice of basis to evaluate physical properties. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.00049v1-abstract-full').style.display = 'none'; document.getElementById('2309.00049v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5+5 pages, 3+3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.09756">arXiv:2308.09756</a> <span> [<a href="https://arxiv.org/pdf/2308.09756">pdf</a>, <a href="https://arxiv.org/format/2308.09756">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Exceptionally Slow, Long Range, and Non-Gaussian Critical Fluctuations Dominate the Charge Density Wave Transition </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Kalimuddin%2C+S">Sk Kalimuddin</a>, <a href="/search/cond-mat?searchtype=author&query=Chatterjee%2C+S">Sudipta Chatterjee</a>, <a href="/search/cond-mat?searchtype=author&query=Bera%2C+A">Arnab Bera</a>, <a href="/search/cond-mat?searchtype=author&query=Afzal%2C+H">Hasan Afzal</a>, <a href="/search/cond-mat?searchtype=author&query=Bera%2C+S">Satyabrata Bera</a>, <a href="/search/cond-mat?searchtype=author&query=Roy%2C+D+S">Deep Singha Roy</a>, <a href="/search/cond-mat?searchtype=author&query=Das%2C+S">Soham Das</a>, <a href="/search/cond-mat?searchtype=author&query=Debnath%2C+T">Tuhin Debnath</a>, <a href="/search/cond-mat?searchtype=author&query=Bansal%2C+B">Bhavtosh Bansal</a>, <a href="/search/cond-mat?searchtype=author&query=Mondal%2C+M">Mintu Mondal</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.09756v2-abstract-short" style="display: inline;"> $(TaSe_4)_2I… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.09756v2-abstract-full').style.display = 'inline'; document.getElementById('2308.09756v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.09756v2-abstract-full" style="display: none;"> $(TaSe_4)_2I$ is a well-studied quasi-one-dimensional compound long-known to have a charge-density wave (CDW) transition around 263 K. We argue that the critical fluctuations of the pinned CDW order parameter near the transition can be inferred from the resistance noise on account of their coupling to the dissipative normal carriers. Remarkably, the critical fluctuations of the CDW order parameter are slow enough to survive the thermodynamic limit and dominate the low-frequency resistance noise. The noise variance and relaxation time show rapid growth (critical opalescence and critical slowing down) within a temperature window of $ \varepsilon \approx \pm 0.1$, where $\varepsilon$ is the reduced temperature. This is very wide but consistent with the Ginzburg criterion. We further show that this resistance noise can be quantitatively used to extract the associated critical exponents. Below $|\varepsilon | \lesssim 0.02$, we observe a crossover from mean-field to a fluctuation-dominated regime with the critical exponents taking anomalously low values. The distribution of fluctuations in the critical transition region is skewed and strongly non-Gaussian. This non-Gaussianity is interpreted as the breakdown of the validity of the central limit theorem as the diverging coherence volume becomes comparable to the macroscopic sample size. The large magnitude critical fluctuations observed over an extended temperature range, as well as the crossover from the mean-field to the fluctuation-dominated regime highlight the role of the quasi-one dimensional character in controlling the phase transition. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.09756v2-abstract-full').style.display = 'none'; document.getElementById('2308.09756v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 4 figures, supplementary, Will appear in Phys. Rev. Lett</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.03630">arXiv:2308.03630</a> <span> [<a href="https://arxiv.org/pdf/2308.03630">pdf</a>, <a href="https://arxiv.org/format/2308.03630">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1039/D3SM01108A">10.1039/D3SM01108A <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Curvature screening in draped mechanical metamaterial sheet </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Roy%2C+S">Sourav Roy</a>, <a href="/search/cond-mat?searchtype=author&query=Santangelo%2C+C+D">C. D. Santangelo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.03630v2-abstract-short" style="display: inline;"> We develop a framework to understand the mechanics of metamaterial sheets on curved surfaces. Here we have constructed a continuum elastic theory of mechanical metamaterials by introducing an auxiliary, scalar gauge-like field that absorbs the strain along the soft mode and projects out the stiff ones. We propose a general form of the elastic energy of a mechanism based metamaterial sheet and spec… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.03630v2-abstract-full').style.display = 'inline'; document.getElementById('2308.03630v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.03630v2-abstract-full" style="display: none;"> We develop a framework to understand the mechanics of metamaterial sheets on curved surfaces. Here we have constructed a continuum elastic theory of mechanical metamaterials by introducing an auxiliary, scalar gauge-like field that absorbs the strain along the soft mode and projects out the stiff ones. We propose a general form of the elastic energy of a mechanism based metamaterial sheet and specialize to the cases of dilational metamaterials and shear metamaterials conforming to positively and negatively curved substrates in the F枚ppl-Von K谩rm谩n limit of small strains. We perform numerical simulations of these systems and obtain good agreement with our analytical predictions. This work provides a framework that can be easily extended to explore non-linear soft modes in metamaterial elasticity in future. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.03630v2-abstract-full').style.display = 'none'; document.getElementById('2308.03630v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.03587">arXiv:2308.03587</a> <span> [<a href="https://arxiv.org/pdf/2308.03587">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Detection of nontrivial topology driven by charge density wave in a semi-Dirac metal </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Alam%2C+R">Rafiqul Alam</a>, <a href="/search/cond-mat?searchtype=author&query=Boyal%2C+P">Prasun Boyal</a>, <a href="/search/cond-mat?searchtype=author&query=Roy%2C+S">Shubhankar Roy</a>, <a href="/search/cond-mat?searchtype=author&query=Singha%2C+R">Ratnadwip Singha</a>, <a href="/search/cond-mat?searchtype=author&query=Pal%2C+B">Buddhadeb Pal</a>, <a href="/search/cond-mat?searchtype=author&query=Pal%2C+R">Riju Pal</a>, <a href="/search/cond-mat?searchtype=author&query=Mandal%2C+P">Prabhat Mandal</a>, <a href="/search/cond-mat?searchtype=author&query=Mahadevan%2C+P">Priya Mahadevan</a>, <a href="/search/cond-mat?searchtype=author&query=Pal%2C+A+N">Atindra Nath Pal</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.03587v2-abstract-short" style="display: inline;"> The presence of electron correlations in a system with topological order can lead to exotic ground states. Considering single crystals of LaAgSb2 which has a square net crystal structure, one finds multiple charge density wave transitions (CDW) as the temperature is lowered. We find large planar Hall (PHE) signals in the CDW phase, which are still finite in the high temperature phase though they c… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.03587v2-abstract-full').style.display = 'inline'; document.getElementById('2308.03587v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.03587v2-abstract-full" style="display: none;"> The presence of electron correlations in a system with topological order can lead to exotic ground states. Considering single crystals of LaAgSb2 which has a square net crystal structure, one finds multiple charge density wave transitions (CDW) as the temperature is lowered. We find large planar Hall (PHE) signals in the CDW phase, which are still finite in the high temperature phase though they change sign. Optimising the structure within first-principles calculations, one finds an unusual chiral metallic phase. This is because as the temperature is lowered, the electrons on the Ag atoms get more localized, leading to stronger repulsions between electrons associated with atoms on different layers. This leads to successive layers sliding with respect to each other, thereby stabilising a chiral structure in which inversion symmetry is also broken. The large Berry curvature associated with the low temperature structure explains the low temperature PHE. At high temperature the PHE arises from the changes induced in the tilted Dirac cone in a magnetic field. Our work represents a route towards detecting and understanding the mechanism in a correlation driven topological transition through electron transport measurements, complemented by ab-initio electronic structure calculations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.03587v2-abstract-full').style.display = 'none'; document.getElementById('2308.03587v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 4 figures, Includes supplementary information, Accepted in Advanced Functional Materials</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.14231">arXiv:2307.14231</a> <span> [<a href="https://arxiv.org/pdf/2307.14231">pdf</a>, <a href="https://arxiv.org/format/2307.14231">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Giant conductance of PSS:PEDOT micro-surfaces induced by microbubble lithography </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Ranjan%2C+A+D">Anand Dev Ranjan</a>, <a href="/search/cond-mat?searchtype=author&query=Sen%2C+R">Rakesh Sen</a>, <a href="/search/cond-mat?searchtype=author&query=Kumar%2C+S">Sumeet Kumar</a>, <a href="/search/cond-mat?searchtype=author&query=Vaippully%2C+R">Rahul Vaippully</a>, <a href="/search/cond-mat?searchtype=author&query=Dutta%2C+S">Soumya Dutta</a>, <a href="/search/cond-mat?searchtype=author&query=Roy%2C+S">Soumyajit Roy</a>, <a href="/search/cond-mat?searchtype=author&query=Roy%2C+B">Basudev Roy</a>, <a href="/search/cond-mat?searchtype=author&query=Banerjee%2C+A">Ayan Banerjee</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.14231v1-abstract-short" style="display: inline;"> We provide direct evidence of the effects of interface engineering of various substrates by Microbubble lithography (MBL). We choose a model organic plastic (or polymer) poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS), with conductivity of 140 S/cm, as a representative organic system to showcase our technique. Thus, we fabricate permanent patterns of PEDOT:PSS on glass, followed… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.14231v1-abstract-full').style.display = 'inline'; document.getElementById('2307.14231v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.14231v1-abstract-full" style="display: none;"> We provide direct evidence of the effects of interface engineering of various substrates by Microbubble lithography (MBL). We choose a model organic plastic (or polymer) poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS), with conductivity of 140 S/cm, as a representative organic system to showcase our technique. Thus, we fabricate permanent patterns of PEDOT:PSS on glass, followed by a flexible PDMS substrate, and observe conductivity enhancement of 5 times on the former (694 S/cm), and 20 times (2844 S/cm) on the latter, without the use of external doping agents or invasive chemical treatment. Probing the patterned interface, we observe that MBL is able to tune the conformational states of PEDOT:PSS from coils in the pristine form, to extended coils on glass, and almost linear structures in PDMS due to its more malleable liquid-like interface. This results in higher ordering and vanishing grain boundaries leading to the highest conductivity of PEDOT:PSS on PDMS substrates. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.14231v1-abstract-full').style.display = 'none'; document.getElementById('2307.14231v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.11459">arXiv:2307.11459</a> <span> [<a href="https://arxiv.org/pdf/2307.11459">pdf</a>, <a href="https://arxiv.org/format/2307.11459">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Raman signatures of lattice dynamics across inversion symmetry breaking phase transition in quasi-1D compound, (TaSe$_4$)$_3$I </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Bera%2C+A">Arnab Bera</a>, <a href="/search/cond-mat?searchtype=author&query=Rana%2C+P+S">Partha Sarathi Rana</a>, <a href="/search/cond-mat?searchtype=author&query=Pradhan%2C+S+K">Suman Kalyan Pradhan</a>, <a href="/search/cond-mat?searchtype=author&query=Palit%2C+M">Mainak Palit</a>, <a href="/search/cond-mat?searchtype=author&query=Kalimuddin%2C+S">Sk Kalimuddin</a>, <a href="/search/cond-mat?searchtype=author&query=Bera%2C+S">Satyabrata Bera</a>, <a href="/search/cond-mat?searchtype=author&query=Debnath%2C+T">Tuhin Debnath</a>, <a href="/search/cond-mat?searchtype=author&query=Das%2C+S">Soham Das</a>, <a href="/search/cond-mat?searchtype=author&query=Roy%2C+D+S">Deep Singha Roy</a>, <a href="/search/cond-mat?searchtype=author&query=Afzal%2C+H">Hasan Afzal</a>, <a href="/search/cond-mat?searchtype=author&query=Datta%2C+S">Subhadeep Datta</a>, <a href="/search/cond-mat?searchtype=author&query=Mondal%2C+M">Mintu Mondal</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.11459v1-abstract-short" style="display: inline;"> Structural phase transition can occur due to complex mechanisms other than simple dynamical instability, especially when the parent and daughter structure is of low dimension. This article reports such an inversion symmetry-breaking structural phase transition in a quasi-1D compound (TaSe$_4$)$_3$I at T$_S\sim$ 141~K studied by Raman spectroscopy. Our investigation of collective lattice dynamics r… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.11459v1-abstract-full').style.display = 'inline'; document.getElementById('2307.11459v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.11459v1-abstract-full" style="display: none;"> Structural phase transition can occur due to complex mechanisms other than simple dynamical instability, especially when the parent and daughter structure is of low dimension. This article reports such an inversion symmetry-breaking structural phase transition in a quasi-1D compound (TaSe$_4$)$_3$I at T$_S\sim$ 141~K studied by Raman spectroscopy. Our investigation of collective lattice dynamics reveals three additional Raman active modes in the low-temperature non-centrosymmetric structure. Two vibrational modes become Raman active due to the absence of an inversion center, while the third mode is a soft phonon mode resulting from the vibration of Ta atoms along the \{-Ta-Ta-\} chains. Furthermore, the most intense Raman mode display Fano-shaped asymmetry, inferred as the signature of strong electron-phonon coupling. The group theory and symmetry analysis of Raman spectra confirm the displacive-first-order nature of the structural transition. Therefore, our results establish (TaSe$_4)_3$I as a model system with broken inversion symmetry and strong electron-phonon coupling in the quasi-1D regime. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.11459v1-abstract-full').style.display = 'none'; document.getElementById('2307.11459v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Main text - 6 figures, 11 pages, supplementary - 10 figures, 13 pages</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.06702">arXiv:2307.06702</a> <span> [<a href="https://arxiv.org/pdf/2307.06702">pdf</a>, <a href="https://arxiv.org/format/2307.06702">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1361-648X/ace413">10.1088/1361-648X/ace413 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Anatomy of localisation protected quantum order on Hilbert space </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Roy%2C+S">Sthitadhi Roy</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.06702v1-abstract-short" style="display: inline;"> Many-body localised phases of disordered, interacting quantum systems allow for exotic localisation protected quantum order in eigenstates at arbitrarily high energy densities. In this work, we analyse the manifestation of such order on the Hilbert-space anatomy of eigenstates. Quantified in terms of non-local Hilbert-spatial correlations of eigenstate amplitudes, we find that the spread of the ei… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.06702v1-abstract-full').style.display = 'inline'; document.getElementById('2307.06702v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.06702v1-abstract-full" style="display: none;"> Many-body localised phases of disordered, interacting quantum systems allow for exotic localisation protected quantum order in eigenstates at arbitrarily high energy densities. In this work, we analyse the manifestation of such order on the Hilbert-space anatomy of eigenstates. Quantified in terms of non-local Hilbert-spatial correlations of eigenstate amplitudes, we find that the spread of the eigenstates on the Hilbert-space graph is directly related to the order parameters which characterise the localisation protected order, and hence these correlations, in turn, characterise the order or lack thereof. Higher-point eigenstate correlations also characterise the different entanglement structures in the many-body localised phases, with and without order, as well as in the ergodic phase. The results pave the way for characterising the transitions between many-body localised phases and the ergodic phase in terms of scaling of emergent correlation lengthscales on the Hilbert-space graph. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.06702v1-abstract-full').style.display = 'none'; document.getElementById('2307.06702v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">28 pages, 7 figures, Invited article for J. Phys.: Condens. Matter special issue -- Emerging Leaders 2023</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. Phys.: Condens. Matter 35, 415601 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.04938">arXiv:2307.04938</a> <span> [<a href="https://arxiv.org/pdf/2307.04938">pdf</a>, <a href="https://arxiv.org/format/2307.04938">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41535-023-00613-3">10.1038/s41535-023-00613-3 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Periodicity staircase in a Fe/Gd magnetic thin film </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Singh%2C+A">Arnab Singh</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+J">Junli Li</a>, <a href="/search/cond-mat?searchtype=author&query=Montoya%2C+S+A">Sergio A. Montoya</a>, <a href="/search/cond-mat?searchtype=author&query=Morley%2C+S">Sophie Morley</a>, <a href="/search/cond-mat?searchtype=author&query=Fischer%2C+P">Peter Fischer</a>, <a href="/search/cond-mat?searchtype=author&query=Kevan%2C+S+D">Steve D. Kevan</a>, <a href="/search/cond-mat?searchtype=author&query=Fullerton%2C+E+E">Eric E. Fullerton</a>, <a href="/search/cond-mat?searchtype=author&query=Yao%2C+D">Dao-Xin Yao</a>, <a href="/search/cond-mat?searchtype=author&query=Datta%2C+T">Trinanjan Datta</a>, <a href="/search/cond-mat?searchtype=author&query=Roy%2C+S">Sujoy Roy</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.04938v3-abstract-short" style="display: inline;"> Presence of multiple competing periodicities may result in a system to go through states with modulated periodicities, an example of which is the self-similar staircase-like structure called the Devil's staircase. Herein we report on a novel staircase structure of domain periodicity in an amorphous and achiral Fe/Gd magnetic thin film wherein the reciprocal space wavevector \textbf{Q} due to the o… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.04938v3-abstract-full').style.display = 'inline'; document.getElementById('2307.04938v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.04938v3-abstract-full" style="display: none;"> Presence of multiple competing periodicities may result in a system to go through states with modulated periodicities, an example of which is the self-similar staircase-like structure called the Devil's staircase. Herein we report on a novel staircase structure of domain periodicity in an amorphous and achiral Fe/Gd magnetic thin film wherein the reciprocal space wavevector \textbf{Q} due to the ordered stripe domains does not evolve continuously, rather exhibits a staircase structure. Resonant X-ray scattering experiments show jumps in the periodicity of the stripe domains as a function of an external magnetic field. When resolved in components, the step change along Q$_x$ was found to be an integral multiple of a minimum step height of 7 nm, which resembles closely to the exchange length of the system. Modeling the magnetic texture in the Fe/Gd thin film as an achiral spin arrangement, we have been able to reproduce the steps in the magnetization using a Landau-Lifshitz spin dynamics calculation. Our results indicate that anisotropy and not the dipolar interaction is the dominant cause for the staircase pattern, thereby revealing the effect of achiral magnetism. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.04938v3-abstract-full').style.display = 'none'; document.getElementById('2307.04938v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> npj Quantum Mater. 9, 2 (2024) </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Roy%2C+S&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Roy%2C+S&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Roy%2C+S&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&query=Roy%2C+S&start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&query=Roy%2C+S&start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&query=Roy%2C+S&start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> <li><span class="pagination-ellipsis">…</span></li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>