CINXE.COM
Search | arXiv e-print repository
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1–50 of 61 results for author: <span class="mathjax">Fischer, P</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> <div class="content"> <form method="GET" action="/search/cond-mat" aria-role="search"> Searching in archive <strong>cond-mat</strong>. <a href="/search/?searchtype=author&query=Fischer%2C+P">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Fischer, P"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Fischer%2C+P&terms-0-field=author&size=50&order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Fischer, P"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Fischer%2C+P&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Fischer%2C+P&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Fischer%2C+P&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.11477">arXiv:2410.11477</a> <span> [<a href="https://arxiv.org/pdf/2410.11477">pdf</a>, <a href="https://arxiv.org/format/2410.11477">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> </div> </div> <p class="title is-5 mathjax"> Spatially Selective Acoustic Pressure Reporting Using Antibubbles </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Gomez%2C+N+M">Nicolas Moreno Gomez</a>, <a href="/search/cond-mat?searchtype=author&query=Athanassiadis%2C+A+G">Athanasios G. Athanassiadis</a>, <a href="/search/cond-mat?searchtype=author&query=Reuter%2C+F">Fabian Reuter</a>, <a href="/search/cond-mat?searchtype=author&query=Reese%2C+H">Hendrik Reese</a>, <a href="/search/cond-mat?searchtype=author&query=Jade%2C+H+M">Helen M. Jade</a>, <a href="/search/cond-mat?searchtype=author&query=Poortinga%2C+A">Albert Poortinga</a>, <a href="/search/cond-mat?searchtype=author&query=Ohl%2C+C">Claus-Dieter Ohl</a>, <a href="/search/cond-mat?searchtype=author&query=Fischer%2C+P">Peer Fischer</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.11477v1-abstract-short" style="display: inline;"> Ultrasound offers promising applications in biology and chemistry, but quantifying local ultrasound conditions remains challenging due to the lack of non-invasive measurement tools. We introduce antibubbles as novel optical reporters of local ultrasound pressure. These liquid-core, air-shell structures encapsulate fluorescent payloads, releasing them upon exposure to low-intensity ultrasound. We d… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.11477v1-abstract-full').style.display = 'inline'; document.getElementById('2410.11477v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.11477v1-abstract-full" style="display: none;"> Ultrasound offers promising applications in biology and chemistry, but quantifying local ultrasound conditions remains challenging due to the lack of non-invasive measurement tools. We introduce antibubbles as novel optical reporters of local ultrasound pressure. These liquid-core, air-shell structures encapsulate fluorescent payloads, releasing them upon exposure to low-intensity ultrasound. We demonstrate their versatility by fabricating antibubbles with hydrophilic and hydrophobic payloads, revealing payload-dependent encapsulation efficiency and release dynamics. Using acoustic holograms, we showcase precise spatial control of payload release, enabling visualization of complex ultrasound fields. High-speed fluorescence imaging reveals a gentle, single-shot release mechanism occurring within 20-50 ultrasound cycles. It is thus possible to determine via an optical fluorescence marker what the applied ultrasound pressure was. This work thereby introduces a non-invasive method for mapping ultrasound fields in complex environments, potentially accelerating research in ultrasound-based therapies and processes. The long-term stability and versatility of these antibubble reporters suggest broad applicability in studying and optimizing ultrasound effects across various biological and chemical systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.11477v1-abstract-full').style.display = 'none'; document.getElementById('2410.11477v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.11427">arXiv:2410.11427</a> <span> [<a href="https://arxiv.org/pdf/2410.11427">pdf</a>, <a href="https://arxiv.org/format/2410.11427">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Colloquium: Quantum Properties and Functionalities of Magnetic Skyrmions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Petrovi%C4%87%2C+A+P">Alexander P. Petrovi膰</a>, <a href="/search/cond-mat?searchtype=author&query=Psaroudaki%2C+C">Christina Psaroudaki</a>, <a href="/search/cond-mat?searchtype=author&query=Fischer%2C+P">Peter Fischer</a>, <a href="/search/cond-mat?searchtype=author&query=Garst%2C+M">Markus Garst</a>, <a href="/search/cond-mat?searchtype=author&query=Panagopoulos%2C+C">Christos Panagopoulos</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.11427v1-abstract-short" style="display: inline;"> Competing magnetic interactions may stabilize smooth magnetization textures that can be characterized by a topological winding number. Such textures, which are spatially localized within a two-dimensional plane, are commonly known as skyrmions. On the classical level, their significance for fundamental science and their potential for applications, ranging from spintronic devices to unconventional… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.11427v1-abstract-full').style.display = 'inline'; document.getElementById('2410.11427v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.11427v1-abstract-full" style="display: none;"> Competing magnetic interactions may stabilize smooth magnetization textures that can be characterized by a topological winding number. Such textures, which are spatially localized within a two-dimensional plane, are commonly known as skyrmions. On the classical level, their significance for fundamental science and their potential for applications, ranging from spintronic devices to unconventional computation platforms, have been intensively investigated in recent years. This Colloquium considers quantum effects associated with skyrmion textures: their theoretical origins, the experimental and material challenges associated with their detection, and the promise of exploiting them for quantum operations. Starting with classical skyrmions, we discuss their magnon and electron excitations and show how hybrid architectures offer new platforms for engineering quantum orders, including topological superconductivity. We then focus on the quantization of the skyrmion texture itself and formulate the long-time skyrmion dynamics in terms of collective coordinates. Next, we discuss the quantization of helicity and phenomena of macroscopic quantum tunneling: key concepts that fundamentally distinguish quantum skyrmions from their classical counterparts. Looking ahead, we propose material classes suitable for the realization of skyrmions in quantum spin systems and identify device architectures with the promise of achieving quantum operations. We close by addressing the advances in experimental methods which will be a prerequisite for resolving the quantum aspects of topological spin patterns, sensing their local dynamical response, and achieving their predicted functionalities in magnetic systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.11427v1-abstract-full').style.display = 'none'; document.getElementById('2410.11427v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">26 pages, 12 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.13212">arXiv:2404.13212</a> <span> [<a href="https://arxiv.org/pdf/2404.13212">pdf</a>, <a href="https://arxiv.org/format/2404.13212">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Nematicity of a Magnetic Helix </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Tumbleson%2C+R">R. Tumbleson</a>, <a href="/search/cond-mat?searchtype=author&query=Morley%2C+S+A">S. A. Morley</a>, <a href="/search/cond-mat?searchtype=author&query=Hollingworth%2C+E">E. Hollingworth</a>, <a href="/search/cond-mat?searchtype=author&query=Singh%2C+A">A. Singh</a>, <a href="/search/cond-mat?searchtype=author&query=Bayaraa%2C+T">T. Bayaraa</a>, <a href="/search/cond-mat?searchtype=author&query=Burdet%2C+N+G">N. G. Burdet</a>, <a href="/search/cond-mat?searchtype=author&query=Saleheen%2C+A+U">A. U. Saleheen</a>, <a href="/search/cond-mat?searchtype=author&query=McCarter%2C+M+R">M. R. McCarter</a>, <a href="/search/cond-mat?searchtype=author&query=Raftrey%2C+D">D. Raftrey</a>, <a href="/search/cond-mat?searchtype=author&query=Pandolfi%2C+R+J">R. J. Pandolfi</a>, <a href="/search/cond-mat?searchtype=author&query=Esposito%2C+V">V. Esposito</a>, <a href="/search/cond-mat?searchtype=author&query=Dakovski%2C+G+L">G. L. Dakovski</a>, <a href="/search/cond-mat?searchtype=author&query=Decker%2C+F+-">F. -J. Decker</a>, <a href="/search/cond-mat?searchtype=author&query=Reid%2C+A+H">A. H. Reid</a>, <a href="/search/cond-mat?searchtype=author&query=Assefa%2C+T+A">T. A. Assefa</a>, <a href="/search/cond-mat?searchtype=author&query=Fischer%2C+P">P. Fischer</a>, <a href="/search/cond-mat?searchtype=author&query=Griffin%2C+S+M">S. M. Griffin</a>, <a href="/search/cond-mat?searchtype=author&query=Kevan%2C+S+D">S. D. Kevan</a>, <a href="/search/cond-mat?searchtype=author&query=Hellman%2C+F">F. Hellman</a>, <a href="/search/cond-mat?searchtype=author&query=Turner%2C+J+J">J. J. Turner</a>, <a href="/search/cond-mat?searchtype=author&query=Roy%2C+S">S. Roy</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.13212v1-abstract-short" style="display: inline;"> A system that possesses translational symmetry but breaks orientational symmetry is known as a nematic phase. While there are many examples of nematic phases in a wide range of contexts, such as in liquid crystals, complex oxides, and superconductors, of particular interest is the magnetic analogue, where the spin, charge, and orbital degrees of freedom of the electron are intertwined. The difficu… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.13212v1-abstract-full').style.display = 'inline'; document.getElementById('2404.13212v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.13212v1-abstract-full" style="display: none;"> A system that possesses translational symmetry but breaks orientational symmetry is known as a nematic phase. While there are many examples of nematic phases in a wide range of contexts, such as in liquid crystals, complex oxides, and superconductors, of particular interest is the magnetic analogue, where the spin, charge, and orbital degrees of freedom of the electron are intertwined. The difficulty of spin nematics is the unambiguous realization and characterization of the phase. Here we present an entirely new type of magnetic nematic phase, which replaces the basis of individual spins with magnetic helices. The helical basis allows for the direct measurement of the order parameters with soft X-ray scattering and a thorough characterization of the nematic phase and its thermodynamic transitions. We discover two distinct nematic phases with unique spatio-temporal correlation signatures. Using coherent X-ray methods, we find that near the phase boundary between the two nematic phases, fluctuations coexist on the timescale of both seconds and sub-nanoseconds. Additionally, we have determined that the fluctuations occur simultaneously with a reorientation of the magnetic helices, indicating that there is spontaneous symmetry breaking and new degrees of freedom become available. Our results provide a novel framework for characterizing exotic phases and the phenomena presented can be mapped onto a broad class of physical systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.13212v1-abstract-full').style.display = 'none'; document.getElementById('2404.13212v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.12607">arXiv:2401.12607</a> <span> [<a href="https://arxiv.org/pdf/2401.12607">pdf</a>, <a href="https://arxiv.org/format/2401.12607">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.21468/SciPostPhys.17.3.070">10.21468/SciPostPhys.17.3.070 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Nonequilibrium quasiparticle distribution in superconducting resonators: effect of pair-breaking photons </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Fischer%2C+P+B">P. B. Fischer</a>, <a href="/search/cond-mat?searchtype=author&query=Catelani%2C+G">G. Catelani</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.12607v2-abstract-short" style="display: inline;"> Many superconducting devices rely on the finite gap in the excitation spectrum of a superconductor: thanks to this gap, at temperatures much smaller than the critical one the number of excitations (quasiparticles) that can impact the device's behavior is exponentially small. Nevertheless, experiments at low temperature usually find a finite, non-negligible density of quasiparticles whose origin ha… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.12607v2-abstract-full').style.display = 'inline'; document.getElementById('2401.12607v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.12607v2-abstract-full" style="display: none;"> Many superconducting devices rely on the finite gap in the excitation spectrum of a superconductor: thanks to this gap, at temperatures much smaller than the critical one the number of excitations (quasiparticles) that can impact the device's behavior is exponentially small. Nevertheless, experiments at low temperature usually find a finite, non-negligible density of quasiparticles whose origin has been attributed to various non-equilibrium phenomena. Here, we investigate the role of photons with energy exceeding the pair-breaking threshold $2螖$ as a possible source for these quasiparticles in superconducting resonators. Modeling the interacting system of quasiparticles, phonons, sub-gap and pair-breaking photons using a kinetic equation approach, we find analytical expressions for the quasiparticles' density and their energy distribution. Applying our theory to measurements of quality factor as function of temperature and for various readout powers, we find they could be explained by assuming a small number of photons above the pair-breaking threshold. We also show that frequency shift data can give evidence of quasiparticle heating. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.12607v2-abstract-full').style.display = 'none'; document.getElementById('2401.12607v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 13 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> SciPost Phys. 17, 070 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.04793">arXiv:2401.04793</a> <span> [<a href="https://arxiv.org/pdf/2401.04793">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> 2024 Roadmap on Magnetic Microscopy Techniques and Their Applications in Materials Science </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Christensen%2C+D+V">D. V. Christensen</a>, <a href="/search/cond-mat?searchtype=author&query=Staub%2C+U">U. Staub</a>, <a href="/search/cond-mat?searchtype=author&query=Devidas%2C+T+R">T. R. Devidas</a>, <a href="/search/cond-mat?searchtype=author&query=Kalisky%2C+B">B. Kalisky</a>, <a href="/search/cond-mat?searchtype=author&query=Nowack%2C+K+C">K. C. Nowack</a>, <a href="/search/cond-mat?searchtype=author&query=Webb%2C+J+L">J. L. Webb</a>, <a href="/search/cond-mat?searchtype=author&query=Andersen%2C+U+L">U. L. Andersen</a>, <a href="/search/cond-mat?searchtype=author&query=Huck%2C+A">A. Huck</a>, <a href="/search/cond-mat?searchtype=author&query=Broadway%2C+D+A">D. A. Broadway</a>, <a href="/search/cond-mat?searchtype=author&query=Wagner%2C+K">K. Wagner</a>, <a href="/search/cond-mat?searchtype=author&query=Maletinsky%2C+P">P. Maletinsky</a>, <a href="/search/cond-mat?searchtype=author&query=van+der+Sar%2C+T">T. van der Sar</a>, <a href="/search/cond-mat?searchtype=author&query=Du%2C+C+R">C. R. Du</a>, <a href="/search/cond-mat?searchtype=author&query=Yacoby%2C+A">A. Yacoby</a>, <a href="/search/cond-mat?searchtype=author&query=Collomb%2C+D">D. Collomb</a>, <a href="/search/cond-mat?searchtype=author&query=Bending%2C+S">S. Bending</a>, <a href="/search/cond-mat?searchtype=author&query=Oral%2C+A">A. Oral</a>, <a href="/search/cond-mat?searchtype=author&query=Hug%2C+H+J">H. J. Hug</a>, <a href="/search/cond-mat?searchtype=author&query=Mandru%2C+A+-">A. -O. Mandru</a>, <a href="/search/cond-mat?searchtype=author&query=Neu%2C+V">V. Neu</a>, <a href="/search/cond-mat?searchtype=author&query=Schumacher%2C+H+W">H. W. Schumacher</a>, <a href="/search/cond-mat?searchtype=author&query=Sievers%2C+S">S. Sievers</a>, <a href="/search/cond-mat?searchtype=author&query=Saito%2C+H">H. Saito</a>, <a href="/search/cond-mat?searchtype=author&query=Khajetoorians%2C+A+A">A. A. Khajetoorians</a>, <a href="/search/cond-mat?searchtype=author&query=Hauptmann%2C+N">N. Hauptmann</a> , et al. (28 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.04793v1-abstract-short" style="display: inline;"> Considering the growing interest in magnetic materials for unconventional computing, data storage, and sensor applications, there is active research not only on material synthesis but also characterisation of their properties. In addition to structural and integral magnetic characterisations, imaging of magnetization patterns, current distributions and magnetic fields at nano- and microscale is of… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.04793v1-abstract-full').style.display = 'inline'; document.getElementById('2401.04793v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.04793v1-abstract-full" style="display: none;"> Considering the growing interest in magnetic materials for unconventional computing, data storage, and sensor applications, there is active research not only on material synthesis but also characterisation of their properties. In addition to structural and integral magnetic characterisations, imaging of magnetization patterns, current distributions and magnetic fields at nano- and microscale is of major importance to understand the material responses and qualify them for specific applications. In this roadmap, we aim to cover a broad portfolio of techniques to perform nano- and microscale magnetic imaging using SQUIDs, spin center and Hall effect magnetometries, scanning probe microscopies, x-ray- and electron-based methods as well as magnetooptics and nanoMRI. The roadmap is aimed as a single access point of information for experts in the field as well as the young generation of students outlining prospects of the development of magnetic imaging technologies for the upcoming decade with a focus on physics, materials science, and chemistry of planar, 3D and geometrically curved objects of different material classes including 2D materials, complex oxides, semi-metals, multiferroics, skyrmions, antiferromagnets, frustrated magnets, magnetic molecules/nanoparticles, ionic conductors, superconductors, spintronic and spinorbitronic materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.04793v1-abstract-full').style.display = 'none'; document.getElementById('2401.04793v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.08411">arXiv:2310.08411</a> <span> [<a href="https://arxiv.org/pdf/2310.08411">pdf</a>, <a href="https://arxiv.org/format/2310.08411">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> </div> </div> <p class="title is-5 mathjax"> Revealing the Microscopic Mechanism of Displacive Excitation of Coherent Phonons in a Bulk Rashba Semiconductor </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Fischer%2C+P">Peter Fischer</a>, <a href="/search/cond-mat?searchtype=author&query=Baer%2C+J">Julian Baer</a>, <a href="/search/cond-mat?searchtype=author&query=Cimander%2C+M">Moritz Cimander</a>, <a href="/search/cond-mat?searchtype=author&query=Wiechert%2C+V">Volker Wiechert</a>, <a href="/search/cond-mat?searchtype=author&query=Tereshchenko%2C+O">Oleg Tereshchenko</a>, <a href="/search/cond-mat?searchtype=author&query=Bossini%2C+D">Davide Bossini</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.08411v2-abstract-short" style="display: inline;"> Changing the macroscopic properties of quantum materials by optically activating collective lattice excitations has recently become a major trend in solid state physics. One of the most commonly employed light-matter interaction routes is the displacive mechanism. However, the fundamental contribution to this process remains elusive, as the effects of free-carrier density modification and raised e… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.08411v2-abstract-full').style.display = 'inline'; document.getElementById('2310.08411v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.08411v2-abstract-full" style="display: none;"> Changing the macroscopic properties of quantum materials by optically activating collective lattice excitations has recently become a major trend in solid state physics. One of the most commonly employed light-matter interaction routes is the displacive mechanism. However, the fundamental contribution to this process remains elusive, as the effects of free-carrier density modification and raised effective electronic temperature have not been disentangled yet. Here we use time-resolved pump-probe spectroscopy to address this issue in the Rashba semiconductor BiTeI. Exploring the conventional regime of electronic interband transitions for different excitation wavelengths as well as the barely accessed regime of electronic intraband transitions, we answer a long-standing open question regarding the displacive mechanism: the lattice modes are predominantly driven by the rise of the effective electronic temperature. In the intraband regime, which allows to increase the effective carrier temperature while leaving their density unaffected, the phonon coherence time does not display significant fluence-dependent variations. Our results thus reveal a pathway to displacive excitation of coherent phonons, free from additional scattering and dissipation mechanisms typically associated with an increase of the free-carrier density. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.08411v2-abstract-full').style.display = 'none'; document.getElementById('2310.08411v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.04938">arXiv:2307.04938</a> <span> [<a href="https://arxiv.org/pdf/2307.04938">pdf</a>, <a href="https://arxiv.org/format/2307.04938">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41535-023-00613-3">10.1038/s41535-023-00613-3 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Periodicity staircase in a Fe/Gd magnetic thin film </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Singh%2C+A">Arnab Singh</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+J">Junli Li</a>, <a href="/search/cond-mat?searchtype=author&query=Montoya%2C+S+A">Sergio A. Montoya</a>, <a href="/search/cond-mat?searchtype=author&query=Morley%2C+S">Sophie Morley</a>, <a href="/search/cond-mat?searchtype=author&query=Fischer%2C+P">Peter Fischer</a>, <a href="/search/cond-mat?searchtype=author&query=Kevan%2C+S+D">Steve D. Kevan</a>, <a href="/search/cond-mat?searchtype=author&query=Fullerton%2C+E+E">Eric E. Fullerton</a>, <a href="/search/cond-mat?searchtype=author&query=Yao%2C+D">Dao-Xin Yao</a>, <a href="/search/cond-mat?searchtype=author&query=Datta%2C+T">Trinanjan Datta</a>, <a href="/search/cond-mat?searchtype=author&query=Roy%2C+S">Sujoy Roy</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.04938v3-abstract-short" style="display: inline;"> Presence of multiple competing periodicities may result in a system to go through states with modulated periodicities, an example of which is the self-similar staircase-like structure called the Devil's staircase. Herein we report on a novel staircase structure of domain periodicity in an amorphous and achiral Fe/Gd magnetic thin film wherein the reciprocal space wavevector \textbf{Q} due to the o… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.04938v3-abstract-full').style.display = 'inline'; document.getElementById('2307.04938v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.04938v3-abstract-full" style="display: none;"> Presence of multiple competing periodicities may result in a system to go through states with modulated periodicities, an example of which is the self-similar staircase-like structure called the Devil's staircase. Herein we report on a novel staircase structure of domain periodicity in an amorphous and achiral Fe/Gd magnetic thin film wherein the reciprocal space wavevector \textbf{Q} due to the ordered stripe domains does not evolve continuously, rather exhibits a staircase structure. Resonant X-ray scattering experiments show jumps in the periodicity of the stripe domains as a function of an external magnetic field. When resolved in components, the step change along Q$_x$ was found to be an integral multiple of a minimum step height of 7 nm, which resembles closely to the exchange length of the system. Modeling the magnetic texture in the Fe/Gd thin film as an achiral spin arrangement, we have been able to reproduce the steps in the magnetization using a Landau-Lifshitz spin dynamics calculation. Our results indicate that anisotropy and not the dipolar interaction is the dominant cause for the staircase pattern, thereby revealing the effect of achiral magnetism. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.04938v3-abstract-full').style.display = 'none'; document.getElementById('2307.04938v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> npj Quantum Mater. 9, 2 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.15003">arXiv:2306.15003</a> <span> [<a href="https://arxiv.org/pdf/2306.15003">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1126/sciadv.adp8615">10.1126/sciadv.adp8615 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Quantifying the Topology of Magnetic Skyrmions in three Dimensions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Raftrey%2C+D">David Raftrey</a>, <a href="/search/cond-mat?searchtype=author&query=Finizio%2C+S">Simone Finizio</a>, <a href="/search/cond-mat?searchtype=author&query=Chopdekar%2C+R+V">Rajesh V. Chopdekar</a>, <a href="/search/cond-mat?searchtype=author&query=Dhuey%2C+S">Scott Dhuey</a>, <a href="/search/cond-mat?searchtype=author&query=Bayaraa%2C+T">Temuujin Bayaraa</a>, <a href="/search/cond-mat?searchtype=author&query=Ashby%2C+P">Paul Ashby</a>, <a href="/search/cond-mat?searchtype=author&query=Raabe%2C+J">J枚rg Raabe</a>, <a href="/search/cond-mat?searchtype=author&query=Santos%2C+T">Tiffany Santos</a>, <a href="/search/cond-mat?searchtype=author&query=Griffin%2C+S">Sin茅ad Griffin</a>, <a href="/search/cond-mat?searchtype=author&query=Fischer%2C+P">Peter Fischer</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.15003v1-abstract-short" style="display: inline;"> Magnetic skyrmions have so far been treated as two-dimensional spin structures characterized by a topological winding number describing the rotation of spins across the skyrmion. However, in real systems with a finite thickness of the material being larger than the magnetic exchange length, the skyrmion spin texture extends into the third dimension and cannot be assumed as homogeneous. Using soft… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.15003v1-abstract-full').style.display = 'inline'; document.getElementById('2306.15003v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.15003v1-abstract-full" style="display: none;"> Magnetic skyrmions have so far been treated as two-dimensional spin structures characterized by a topological winding number describing the rotation of spins across the skyrmion. However, in real systems with a finite thickness of the material being larger than the magnetic exchange length, the skyrmion spin texture extends into the third dimension and cannot be assumed as homogeneous. Using soft x-ray laminography we reconstruct with about 20nm spatial (voxel) resolution the full three-dimensional spin texture of a skyrmion in an 800 nm diameter and 95 nm thin disk patterned into a trilayer [Ir/Co/Pt] thin film structure. A quantitative analysis finds that the evolution of the radial profile of the topological skyrmion number and the chirality is non-uniform across the thickness of the disk. Estimates of local micromagnetic energy densities suggest that the changes in topological profile are related to non-uniform competing energetic interactions. Theoretical calculations and micromagnetic simulations are consistent with the experimental findings. Our results provide the foundation for nanoscale magnetic metrology for future tailored spintronics devices using topology as a design parameter, and have the potential to reverse-engineer a spin Hamiltonian from macroscopic data, tying theory more closely to experiment. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.15003v1-abstract-full').style.display = 'none'; document.getElementById('2306.15003v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.10141">arXiv:2305.10141</a> <span> [<a href="https://arxiv.org/pdf/2305.10141">pdf</a>, <a href="https://arxiv.org/format/2305.10141">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1002/adma.202305296">10.1002/adma.202305296 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Antibubbles enable tunable payload release with low-intensity ultrasound </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Moreno-Gomez%2C+N">Nicolas Moreno-Gomez</a>, <a href="/search/cond-mat?searchtype=author&query=Athanassiadis%2C+A+G">Athanasios G. Athanassiadis</a>, <a href="/search/cond-mat?searchtype=author&query=Poortinga%2C+A+T">Albert T. Poortinga</a>, <a href="/search/cond-mat?searchtype=author&query=Fischer%2C+P">Peer Fischer</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.10141v2-abstract-short" style="display: inline;"> The benefits of ultrasound are its ease-of-use and its ability to precisely deliver energy in opaque and complex media. However, most materials responsive to ultrasound show a weak response, requiring the use of high powers, which are associated with undesirable streaming, cavitation, or temperature rise. These effects hinder response control and may even cause damage to the medium where the ultra… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.10141v2-abstract-full').style.display = 'inline'; document.getElementById('2305.10141v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.10141v2-abstract-full" style="display: none;"> The benefits of ultrasound are its ease-of-use and its ability to precisely deliver energy in opaque and complex media. However, most materials responsive to ultrasound show a weak response, requiring the use of high powers, which are associated with undesirable streaming, cavitation, or temperature rise. These effects hinder response control and may even cause damage to the medium where the ultrasound is applied. Moreover, materials that are currently in use rely on all-or-nothing effects, limiting the ability to fine-tune the response of the material on the fly. For these reasons, there is a need for materials that can respond to low intensity ultrasound with programmable responses. Here it is demonstrated that antibubbles are a low-intensity-ultrasound-responsive material system that can controllably release a payload using acoustic pressures in the kPa range. Varying their size and composition tunes the release pressure, and the response can be switched between a single release and stepwise release across multiple ultrasound pulses. Observations using confocal and high-speed microscopy revealed different ways that can lead to release. These findings lay the groundwork to design antibubbles that controllably respond to low-intensity ultrasound, opening a wide range of applications ranging from ultrasound-responsive material systems to carriers for targeted delivery. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.10141v2-abstract-full').style.display = 'none'; document.getElementById('2305.10141v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Main Text: 14 pages, 4 figures. Embedded SI: 4 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Advanced Materials, 2023 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.07787">arXiv:2305.07787</a> <span> [<a href="https://arxiv.org/pdf/2305.07787">pdf</a>, <a href="https://arxiv.org/format/2305.07787">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> On Ultrafast X-ray Methods for Magnetism </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Plumley%2C+R">Rajan Plumley</a>, <a href="/search/cond-mat?searchtype=author&query=Chitturi%2C+S">Sathya Chitturi</a>, <a href="/search/cond-mat?searchtype=author&query=Peng%2C+C">Cheng Peng</a>, <a href="/search/cond-mat?searchtype=author&query=Assefa%2C+T">Tadesse Assefa</a>, <a href="/search/cond-mat?searchtype=author&query=Burdet%2C+N">Nicholas Burdet</a>, <a href="/search/cond-mat?searchtype=author&query=Shen%2C+L">Lingjia Shen</a>, <a href="/search/cond-mat?searchtype=author&query=Reid%2C+A">Alex Reid</a>, <a href="/search/cond-mat?searchtype=author&query=Dakovski%2C+G">Georgi Dakovski</a>, <a href="/search/cond-mat?searchtype=author&query=Seaberg%2C+M">Matthew Seaberg</a>, <a href="/search/cond-mat?searchtype=author&query=O%27Dowd%2C+F">Frank O'Dowd</a>, <a href="/search/cond-mat?searchtype=author&query=Montoya%2C+S">Sergio Montoya</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+H">Hongwei Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Okullo%2C+A">Alana Okullo</a>, <a href="/search/cond-mat?searchtype=author&query=Mardanya%2C+S">Sougata Mardanya</a>, <a href="/search/cond-mat?searchtype=author&query=Kevan%2C+S">Stephen Kevan</a>, <a href="/search/cond-mat?searchtype=author&query=Fischer%2C+P">Peter Fischer</a>, <a href="/search/cond-mat?searchtype=author&query=Fullerton%2C+E">Eric Fullerton</a>, <a href="/search/cond-mat?searchtype=author&query=Sinha%2C+S">Sunil Sinha</a>, <a href="/search/cond-mat?searchtype=author&query=Colocho%2C+W">William Colocho</a>, <a href="/search/cond-mat?searchtype=author&query=Lutman%2C+A">Alberto Lutman</a>, <a href="/search/cond-mat?searchtype=author&query=Decker%2C+F">Franz-Joseph Decker</a>, <a href="/search/cond-mat?searchtype=author&query=Roy%2C+S">Sujoy Roy</a>, <a href="/search/cond-mat?searchtype=author&query=Fujioka%2C+J">Jun Fujioka</a>, <a href="/search/cond-mat?searchtype=author&query=Tokura%2C+Y">Yoshinori Tokura</a>, <a href="/search/cond-mat?searchtype=author&query=Minitti%2C+M+P">Michael P. Minitti</a> , et al. (14 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.07787v1-abstract-short" style="display: inline;"> With the introduction of x-ray free electron laser sources around the world, new scientific approaches for visualizing matter at fundamental length and time-scales have become possible. As it relates to magnetism and "magnetic-type" systems, advanced methods are being developed for studying ultrafast magnetic responses on the time-scales at which they occur. We describe three capabilities which ha… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.07787v1-abstract-full').style.display = 'inline'; document.getElementById('2305.07787v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.07787v1-abstract-full" style="display: none;"> With the introduction of x-ray free electron laser sources around the world, new scientific approaches for visualizing matter at fundamental length and time-scales have become possible. As it relates to magnetism and "magnetic-type" systems, advanced methods are being developed for studying ultrafast magnetic responses on the time-scales at which they occur. We describe three capabilities which have the potential to seed new directions in this area and present original results from each: pump-probe x-ray scattering with low energy excitation, x-ray photon fluctuation spectroscopy, and ultrafast diffuse x-ray scattering. By combining these experimental techniques with advanced modeling together with machine learning, we describe how the combination of these domains allows for a new understanding in the field of magnetism. Finally, we give an outlook for future areas of investigation and the newly developed instruments which will take us there. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.07787v1-abstract-full').style.display = 'none'; document.getElementById('2305.07787v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2301.06920">arXiv:2301.06920</a> <span> [<a href="https://arxiv.org/pdf/2301.06920">pdf</a>, <a href="https://arxiv.org/format/2301.06920">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1107/S205252062200124X">10.1107/S205252062200124X <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Revisiting the antiferromagnetic structure of $\rm Tb_{14}Ag_{51}$. The importance of distinguishing alternative symmetries for a multidimensional order parameter </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Pomjakushin%2C+V">V. Pomjakushin</a>, <a href="/search/cond-mat?searchtype=author&query=Perez-Mato%2C+J+M">J. M. Perez-Mato</a>, <a href="/search/cond-mat?searchtype=author&query=Fischer%2C+P">P. Fischer</a>, <a href="/search/cond-mat?searchtype=author&query=Keller%2C+L">L. Keller</a>, <a href="/search/cond-mat?searchtype=author&query=Sikora%2C+W">W. Sikora</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2301.06920v1-abstract-short" style="display: inline;"> We revisit the antiferromagnetic structure of $\rm Tb_{14}Ag_{51}$ [P. Fischer., $et\, al$. (2005). PRB, 72 134413] with the propagation vector $[{1\over3},{1\over3},{0}] $ and parent space group $P6/m$ using both magnetic symmetry and irreducible representation arguments. We have found a new magnetic structure under the hexagonal Shubnikov magnetic space group $P\bar{6}'$, which fits much better… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.06920v1-abstract-full').style.display = 'inline'; document.getElementById('2301.06920v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2301.06920v1-abstract-full" style="display: none;"> We revisit the antiferromagnetic structure of $\rm Tb_{14}Ag_{51}$ [P. Fischer., $et\, al$. (2005). PRB, 72 134413] with the propagation vector $[{1\over3},{1\over3},{0}] $ and parent space group $P6/m$ using both magnetic symmetry and irreducible representation arguments. We have found a new magnetic structure under the hexagonal Shubnikov magnetic space group $P\bar{6}'$, which fits much better the experimental data. This new solution was obtained by constraining the spin arrangement to one of the three possible magnetic space groups of maximal symmetry that can be realised by a magnetic ordering transforming according to the 4-dimensional physically irreducible representation that is known to be relevant in this magnetic phase. The refined model, parameterised under $P\bar{6}'$, implicitly includes the presence of a third harmonic with the propagation vector at the gamma point $[0,0,0]$, which has an important weight in the final result. The structure consists of 13 symmetry-independent Tb magnetic moments with the same size of $8.48(2)渭_B$, propagating cycloidally in the $ab$-plane. The modulation has a substantial deviation from being purely sinusoidal due to the contribution of the mentioned third harmonic. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.06920v1-abstract-full').style.display = 'none'; document.getElementById('2301.06920v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 pages, 1 table, 7 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Acta Cryst. (2022). B78, 172-178 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.08155">arXiv:2212.08155</a> <span> [<a href="https://arxiv.org/pdf/2212.08155">pdf</a>, <a href="https://arxiv.org/format/2212.08155">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevApplied.19.054087">10.1103/PhysRevApplied.19.054087 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Nonequilibrium quasiparticle distribution in superconducting resonators: analytical approach </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Fischer%2C+P+B">P. B. Fischer</a>, <a href="/search/cond-mat?searchtype=author&query=Catelani%2C+G">G. Catelani</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.08155v2-abstract-short" style="display: inline;"> In the superconducting state, the presence of a finite gap in the excitation spectrum implies that the number of excitations (quasiparticles) is exponentially small at temperatures well below the critical one. Conversely, minute perturbations can significantly impact both the distribution in energy and number of quasiparticles. Typically, the interaction with the electromagnetic environment is the… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.08155v2-abstract-full').style.display = 'inline'; document.getElementById('2212.08155v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.08155v2-abstract-full" style="display: none;"> In the superconducting state, the presence of a finite gap in the excitation spectrum implies that the number of excitations (quasiparticles) is exponentially small at temperatures well below the critical one. Conversely, minute perturbations can significantly impact both the distribution in energy and number of quasiparticles. Typically, the interaction with the electromagnetic environment is the main perturbation source driving quasiparticles out of thermal equilibrium, while a phonon bath is responsible for restoration of equilibrium. Here we derive approximate analytical solutions for the quasiparticle distribution function in superconducting resonators and explore the impact of nonequilibrium on two measurable quantities: the resonator's quality factor and its resonant frequency. Applying our results to experimental data, we conclude that while at intermediate temperatures there is clear evidence for the nonequilibrium effects due to heating of the quasiparticles by photons, the low-temperature measurements are not explained by this mechanism. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.08155v2-abstract-full').style.display = 'none'; document.getElementById('2212.08155v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22 pages, 8 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Applied 19, 054087 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.04265">arXiv:2211.04265</a> <span> [<a href="https://arxiv.org/pdf/2211.04265">pdf</a>, <a href="https://arxiv.org/format/2211.04265">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1107/S1600577523000619">10.1107/S1600577523000619 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Photon shot-noise limited transient absorption soft X-ray spectroscopy at the European XFEL </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Guyader%2C+L+L">Lo茂c Le Guyader</a>, <a href="/search/cond-mat?searchtype=author&query=Eschenlohr%2C+A">Andrea Eschenlohr</a>, <a href="/search/cond-mat?searchtype=author&query=Beye%2C+M">Martin Beye</a>, <a href="/search/cond-mat?searchtype=author&query=Schlotter%2C+W">William Schlotter</a>, <a href="/search/cond-mat?searchtype=author&query=D%C3%B6ring%2C+F">Florian D枚ring</a>, <a href="/search/cond-mat?searchtype=author&query=Carinan%2C+C">Cammille Carinan</a>, <a href="/search/cond-mat?searchtype=author&query=Hickin%2C+D">David Hickin</a>, <a href="/search/cond-mat?searchtype=author&query=Agarwal%2C+N">Naman Agarwal</a>, <a href="/search/cond-mat?searchtype=author&query=Boeglin%2C+C">Christine Boeglin</a>, <a href="/search/cond-mat?searchtype=author&query=Bovensiepen%2C+U">Uwe Bovensiepen</a>, <a href="/search/cond-mat?searchtype=author&query=Buck%2C+J">Jens Buck</a>, <a href="/search/cond-mat?searchtype=author&query=Carley%2C+R">Robert Carley</a>, <a href="/search/cond-mat?searchtype=author&query=Castoldi%2C+A">Andrea Castoldi</a>, <a href="/search/cond-mat?searchtype=author&query=D%27Elia%2C+A">Alessandro D'Elia</a>, <a href="/search/cond-mat?searchtype=author&query=Delitz%2C+J">Jan-Torben Delitz</a>, <a href="/search/cond-mat?searchtype=author&query=Ehsan%2C+W">Wajid Ehsan</a>, <a href="/search/cond-mat?searchtype=author&query=Engel%2C+R">Robin Engel</a>, <a href="/search/cond-mat?searchtype=author&query=Erdinger%2C+F">Florian Erdinger</a>, <a href="/search/cond-mat?searchtype=author&query=Fangohr%2C+H">Hans Fangohr</a>, <a href="/search/cond-mat?searchtype=author&query=Fischer%2C+P">Peter Fischer</a>, <a href="/search/cond-mat?searchtype=author&query=Fiorini%2C+C">Carlo Fiorini</a>, <a href="/search/cond-mat?searchtype=author&query=F%C3%B6hlisch%2C+A">Alexander F枚hlisch</a>, <a href="/search/cond-mat?searchtype=author&query=Gelisio%2C+L">Luca Gelisio</a>, <a href="/search/cond-mat?searchtype=author&query=Gensch%2C+M">Michael Gensch</a>, <a href="/search/cond-mat?searchtype=author&query=Gerasimova%2C+N">Natalia Gerasimova</a> , et al. (39 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.04265v3-abstract-short" style="display: inline;"> Femtosecond transient soft X-ray Absorption Spectroscopy (XAS) is a very promising technique that can be employed at X-ray Free Electron Lasers (FELs) to investigate out-of-equilibrium dynamics for material and energy research. Here we present a dedicated setup for soft X-rays available at the Spectroscopy & Coherent Scattering (SCS) instrument at the European X-ray Free Electron Laser (EuXFEL). I… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.04265v3-abstract-full').style.display = 'inline'; document.getElementById('2211.04265v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.04265v3-abstract-full" style="display: none;"> Femtosecond transient soft X-ray Absorption Spectroscopy (XAS) is a very promising technique that can be employed at X-ray Free Electron Lasers (FELs) to investigate out-of-equilibrium dynamics for material and energy research. Here we present a dedicated setup for soft X-rays available at the Spectroscopy & Coherent Scattering (SCS) instrument at the European X-ray Free Electron Laser (EuXFEL). It consists of a beam-splitting off-axis zone plate (BOZ) used in transmission to create three copies of the incoming beam, which are used to measure the transmitted intensity through the excited and unexcited sample, as well as to monitor the incoming intensity. Since these three intensity signals are detected shot-by-shot and simultaneously, this setup allows normalized shot-by-shot analysis of the transmission. For photon detection, the DSSC imaging detector, which is capable of recording up to 800 images at 4.5 MHz frame rate during the FEL burst, is employed and allows approaching the photon shot-noise limit. We review the setup and its capabilities, as well as the online and offline analysis tools provided to users. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.04265v3-abstract-full').style.display = 'none'; document.getElementById('2211.04265v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. Synchrotron Rad. (2023). 30, 284-300 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.13162">arXiv:2210.13162</a> <span> [<a href="https://arxiv.org/pdf/2210.13162">pdf</a>, <a href="https://arxiv.org/format/2210.13162">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> The interplay of local electron correlations and ultrafast spin dynamics in fcc Ni </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Lojewski%2C+T">Tobias Lojewski</a>, <a href="/search/cond-mat?searchtype=author&query=Elhanoty%2C+M+F">Mohamed F. Elhanoty</a>, <a href="/search/cond-mat?searchtype=author&query=Guyader%2C+L+L">Lo茂c Le Guyader</a>, <a href="/search/cond-mat?searchtype=author&query=Gr%C3%A5n%C3%A4s%2C+O">Oscar Gr氓n盲s</a>, <a href="/search/cond-mat?searchtype=author&query=Agarwal%2C+N">Naman Agarwal</a>, <a href="/search/cond-mat?searchtype=author&query=Boeglin%2C+C">Christine Boeglin</a>, <a href="/search/cond-mat?searchtype=author&query=Carley%2C+R">Robert Carley</a>, <a href="/search/cond-mat?searchtype=author&query=Castoldi%2C+A">Andrea Castoldi</a>, <a href="/search/cond-mat?searchtype=author&query=David%2C+C">Christian David</a>, <a href="/search/cond-mat?searchtype=author&query=Deiter%2C+C">Carsten Deiter</a>, <a href="/search/cond-mat?searchtype=author&query=D%C3%B6ring%2C+F">Florian D枚ring</a>, <a href="/search/cond-mat?searchtype=author&query=Engel%2C+R+Y">Robin Y. Engel</a>, <a href="/search/cond-mat?searchtype=author&query=Erdinger%2C+F">Florian Erdinger</a>, <a href="/search/cond-mat?searchtype=author&query=Fangohr%2C+H">Hans Fangohr</a>, <a href="/search/cond-mat?searchtype=author&query=Fiorini%2C+C">Carlo Fiorini</a>, <a href="/search/cond-mat?searchtype=author&query=Fischer%2C+P">Peter Fischer</a>, <a href="/search/cond-mat?searchtype=author&query=Gerasimova%2C+N">Natalia Gerasimova</a>, <a href="/search/cond-mat?searchtype=author&query=Gort%2C+R">Rafael Gort</a>, <a href="/search/cond-mat?searchtype=author&query=de+Groot%2C+F">Frank de Groot</a>, <a href="/search/cond-mat?searchtype=author&query=Hansen%2C+K">Karsten Hansen</a>, <a href="/search/cond-mat?searchtype=author&query=Hauf%2C+S">Steffen Hauf</a>, <a href="/search/cond-mat?searchtype=author&query=Hickin%2C+D">David Hickin</a>, <a href="/search/cond-mat?searchtype=author&query=Izquierdo%2C+M">Manuel Izquierdo</a>, <a href="/search/cond-mat?searchtype=author&query=Van+Kuiken%2C+B+E">Benjamin E. Van Kuiken</a>, <a href="/search/cond-mat?searchtype=author&query=Kvashnin%2C+Y">Yaroslav Kvashnin</a> , et al. (26 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.13162v1-abstract-short" style="display: inline;"> The complex electronic structure of metallic ferromagnets is determined by a balance between exchange interaction, electron hopping leading to band formation, and local Coulomb repulsion. The interplay between the respective terms of the Hamiltonian is of fundamental interest, since it produces most, if not all, of the exotic phenomena observed in the solid state. By combining high energy and temp… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.13162v1-abstract-full').style.display = 'inline'; document.getElementById('2210.13162v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.13162v1-abstract-full" style="display: none;"> The complex electronic structure of metallic ferromagnets is determined by a balance between exchange interaction, electron hopping leading to band formation, and local Coulomb repulsion. The interplay between the respective terms of the Hamiltonian is of fundamental interest, since it produces most, if not all, of the exotic phenomena observed in the solid state. By combining high energy and temporal resolution in femtosecond time-resolved X-ray absorption spectroscopy with ab initio time-dependent density functional theory we analyze the electronic structure in fcc Ni on the time scale of these interactions in a pump-probe experiment. We distinguish transient broadening and energy shifts in the absorption spectra, which we demonstrate to be caused by electron repopulation and correlation-induced modifications of the electronic structure, respectively. Importantly, the theoretical description of this experimental result hence requires to take the local Coulomb interaction into account, revealing a temporal interplay between band formation, exchange interaction, and Coulomb repulsion. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.13162v1-abstract-full').style.display = 'none'; document.getElementById('2210.13162v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.07153">arXiv:2210.07153</a> <span> [<a href="https://arxiv.org/pdf/2210.07153">pdf</a>, <a href="https://arxiv.org/format/2210.07153">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Directed Acoustic Assembly in 3D </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Melde%2C+K">Kai Melde</a>, <a href="/search/cond-mat?searchtype=author&query=Shi%2C+M">Minghui Shi</a>, <a href="/search/cond-mat?searchtype=author&query=Kremer%2C+H">Heiner Kremer</a>, <a href="/search/cond-mat?searchtype=author&query=Seneca%2C+S">Senne Seneca</a>, <a href="/search/cond-mat?searchtype=author&query=Frey%2C+C">Christoph Frey</a>, <a href="/search/cond-mat?searchtype=author&query=Platzman%2C+I">Ilia Platzman</a>, <a href="/search/cond-mat?searchtype=author&query=Degel%2C+C">Christian Degel</a>, <a href="/search/cond-mat?searchtype=author&query=Schmitt%2C+D">Daniel Schmitt</a>, <a href="/search/cond-mat?searchtype=author&query=Sch%C3%B6lkopf%2C+B">Bernhard Sch枚lkopf</a>, <a href="/search/cond-mat?searchtype=author&query=Fischer%2C+P">Peer Fischer</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.07153v1-abstract-short" style="display: inline;"> The creation of whole 3D objects in one shot is an ultimate goal for rapid prototyping, most notably biofabrication, where conventional methods are typically slow and apply mechanical or chemical stress on biological cells. Here, we demonstrate one-step assembly of matter to form compact 3D shapes using acoustic forces, which is enabled by the superposition of multiple holographic fields. The tech… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.07153v1-abstract-full').style.display = 'inline'; document.getElementById('2210.07153v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.07153v1-abstract-full" style="display: none;"> The creation of whole 3D objects in one shot is an ultimate goal for rapid prototyping, most notably biofabrication, where conventional methods are typically slow and apply mechanical or chemical stress on biological cells. Here, we demonstrate one-step assembly of matter to form compact 3D shapes using acoustic forces, which is enabled by the superposition of multiple holographic fields. The technique is contactless and shown to work with solid microparticles, hydrogel beads and biological cells inside standard labware. The structures can be fixed via gelation of the surrounding medium. In contrast to previous work, this approach handles matter with positive acoustic contrast and does not require opposing waves, supporting surfaces or scaffolds. We envision promising applications in tissue engineering and additive manufacturing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.07153v1-abstract-full').style.display = 'none'; document.getElementById('2210.07153v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.05739">arXiv:2210.05739</a> <span> [<a href="https://arxiv.org/pdf/2210.05739">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0122923">10.1063/5.0122923 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Element-Specific First Order Reversal Curves Measured by Magnetic Transmission X-ray Microscopy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Gilbert%2C+D+A">Dustin A. Gilbert</a>, <a href="/search/cond-mat?searchtype=author&query=Im%2C+M">Mi-Young Im</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+K">Kai Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Fischer%2C+P">Peter Fischer</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.05739v1-abstract-short" style="display: inline;"> The first order reversal curve (FORC) method is a macroscopic measurement technique which can be used to extract quantitative, microscopic properties of hysteretic systems. Using magnetic transmission X-ray microscopy (MTXM), local element-specific FORC measurements are performed on a 20 nm thick film of CoTb. The FORCs measured with microscopy reveal a step-by-step domain evolution under the magn… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.05739v1-abstract-full').style.display = 'inline'; document.getElementById('2210.05739v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.05739v1-abstract-full" style="display: none;"> The first order reversal curve (FORC) method is a macroscopic measurement technique which can be used to extract quantitative, microscopic properties of hysteretic systems. Using magnetic transmission X-ray microscopy (MTXM), local element-specific FORC measurements are performed on a 20 nm thick film of CoTb. The FORCs measured with microscopy reveal a step-by-step domain evolution under the magnetic field cycling protocol, and provide a direct visualization of the mechanistic interpretation of FORC diagrams. They are compared with magnetometry FORCs and show good quantitative agreement. Furthermore, the high spatial resolution and element-specific sensitivity of MTXM provide new capabilities to measure FORCs on small regions or specific phases within multicomponent systems, including buried layers in heterostructures. The ability to perform FORCs on very small features is demonstrated with the MTXM-FORC measurement of a rectangular microstructure with vortex-like Landau structures. This work demonstrates the confluence of two uniquely powerful techniques to achieve quantitative insight into nanoscale magnetic behavior. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.05739v1-abstract-full').style.display = 'none'; document.getElementById('2210.05739v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.02546">arXiv:2210.02546</a> <span> [<a href="https://arxiv.org/pdf/2210.02546">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-023-39442-0">10.1038/s41467-023-39442-0 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Controlled Ordering of Room-Temperature Magnetic Skyrmions in a Polar Van der Waals Magnet </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Meisenheimer%2C+P">Peter Meisenheimer</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+H">Hongrui Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Raftrey%2C+D">David Raftrey</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+X">Xiang Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Chan%2C+Y">Ying-Ting Chan</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+R">Rui Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Yalisove%2C+R">Reed Yalisove</a>, <a href="/search/cond-mat?searchtype=author&query=Scott%2C+M+C">Mary C. Scott</a>, <a href="/search/cond-mat?searchtype=author&query=Yao%2C+J">Jie Yao</a>, <a href="/search/cond-mat?searchtype=author&query=Wu%2C+W">Weida Wu</a>, <a href="/search/cond-mat?searchtype=author&query=Fischer%2C+P">Peter Fischer</a>, <a href="/search/cond-mat?searchtype=author&query=Birgeneau%2C+R+J">Robert J. Birgeneau</a>, <a href="/search/cond-mat?searchtype=author&query=Ramesh%2C+R">Ramamoorthy Ramesh</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.02546v1-abstract-short" style="display: inline;"> Control and understanding of ensembles of skyrmions is important for realization of future technologies. In particular, the order-disorder transition associated with the 2D lattice of magnetic skyrmions can have significant implications for transport and other dynamic functionalities. To date, skyrmion ensembles have been primarily studied in bulk crystals, or as isolated skyrmions in thin film de… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.02546v1-abstract-full').style.display = 'inline'; document.getElementById('2210.02546v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.02546v1-abstract-full" style="display: none;"> Control and understanding of ensembles of skyrmions is important for realization of future technologies. In particular, the order-disorder transition associated with the 2D lattice of magnetic skyrmions can have significant implications for transport and other dynamic functionalities. To date, skyrmion ensembles have been primarily studied in bulk crystals, or as isolated skyrmions in thin film devices. Here, we investigate the condensation of the skyrmion phase at room temperature and zero field in a polar, Van der Waals magnet. We demonstrate that we can engineer an ordered skyrmion crystal through structural confinement on the $渭$m scale, showing control over this order-disorder transition on scales relevant for device applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.02546v1-abstract-full').style.display = 'none'; document.getElementById('2210.02546v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">26 pages; 5 main text, 8 supplementary figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nat.Commun. 14, 3744 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.11865">arXiv:2203.11865</a> <span> [<a href="https://arxiv.org/pdf/2203.11865">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Disentangling kinetics from thermodynamics in heterogeneous colloidal systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Almohammadi%2C+H">Hamed Almohammadi</a>, <a href="/search/cond-mat?searchtype=author&query=Martinek%2C+S">Sandra Martinek</a>, <a href="/search/cond-mat?searchtype=author&query=Yuan%2C+Y">Ye Yuan</a>, <a href="/search/cond-mat?searchtype=author&query=Fischer%2C+P">Peter Fischer</a>, <a href="/search/cond-mat?searchtype=author&query=Mezzenga%2C+R">Raffaele Mezzenga</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.11865v1-abstract-short" style="display: inline;"> Nucleation and growth (N&G) - the emergence of a new phase within an initially homogeneous one - is one of the most important physical phenomena by which gas-liquid, liquid-liquid and solid-liquid phase separation takes place. Accordingly, thermodynamics sets the asymptotic boundaries towards which the system must evolve, while kinetics tries to cope with it by imposing the transport rates at whic… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.11865v1-abstract-full').style.display = 'inline'; document.getElementById('2203.11865v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.11865v1-abstract-full" style="display: none;"> Nucleation and growth (N&G) - the emergence of a new phase within an initially homogeneous one - is one of the most important physical phenomena by which gas-liquid, liquid-liquid and solid-liquid phase separation takes place. Accordingly, thermodynamics sets the asymptotic boundaries towards which the system must evolve, while kinetics tries to cope with it by imposing the transport rates at which phase separation is realized. In all heterogeneous colloidal systems observed in nature, the composition, shape, structure and ultimately physical properties result from the trade-off between thermodynamics and kinetics. In this work we demonstrate, by carefully selecting colloidal systems and controlling phase separation in microfluidic devices, that it becomes possible to go beyond N&G, disentangling kinetics effects from thermodynamics in composition, structure and physical properties of the final system. Using amyloid fibril and cellulose nanocrystal filamentous colloids for which the binodal curve defining the two-phase region in the phase diagram is given by two separate vertical lines, we extrude a solution set at one thermodynamic branch inside the other branch, realizing nematic or cholesteric droplets where the composition is set by thermodynamics, while the structure and morphology are defined by dynamic flow parameters. We demonstrate that departing from the N&G paradigm unveils new physical phenomena, such as orders of magnitude shorter timescales, a wider phase diagram and internal cholesteric structures that are not observable via conventional LLPS. We also show that by co-dispersing plasmonic gold nanoparticles within colloidal liquid crystalline droplets, our approach enables on-demand fabrication of multicomponent heterogeneous liquid crystals, enhancing their potential, and introducing original fundamental and technological directions in multicomponent structured fluids. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.11865v1-abstract-full').style.display = 'none'; document.getElementById('2203.11865v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2201.06350">arXiv:2201.06350</a> <span> [<a href="https://arxiv.org/pdf/2201.06350">pdf</a>, <a href="https://arxiv.org/format/2201.06350">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1107/S1600577522008414">10.1107/S1600577522008414 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Megahertz-rate Ultrafast X-ray Scattering and Holographic Imaging at the European XFEL </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Hagstr%C3%B6m%2C+N+Z">Nanna Zhou Hagstr枚m</a>, <a href="/search/cond-mat?searchtype=author&query=Schneider%2C+M">Michael Schneider</a>, <a href="/search/cond-mat?searchtype=author&query=Kerber%2C+N">Nico Kerber</a>, <a href="/search/cond-mat?searchtype=author&query=Yaroslavtsev%2C+A">Alexander Yaroslavtsev</a>, <a href="/search/cond-mat?searchtype=author&query=Parra%2C+E+B">Erick Burgos Parra</a>, <a href="/search/cond-mat?searchtype=author&query=Beg%2C+M">Marijan Beg</a>, <a href="/search/cond-mat?searchtype=author&query=Lang%2C+M">Martin Lang</a>, <a href="/search/cond-mat?searchtype=author&query=G%C3%BCnther%2C+C+M">Christian M. G眉nther</a>, <a href="/search/cond-mat?searchtype=author&query=Seng%2C+B">Boris Seng</a>, <a href="/search/cond-mat?searchtype=author&query=Kammerbauer%2C+F">Fabian Kammerbauer</a>, <a href="/search/cond-mat?searchtype=author&query=Popescu%2C+H">Horia Popescu</a>, <a href="/search/cond-mat?searchtype=author&query=Pancaldi%2C+M">Matteo Pancaldi</a>, <a href="/search/cond-mat?searchtype=author&query=Neeraj%2C+K">Kumar Neeraj</a>, <a href="/search/cond-mat?searchtype=author&query=Polley%2C+D">Debanjan Polley</a>, <a href="/search/cond-mat?searchtype=author&query=Jangid%2C+R">Rahul Jangid</a>, <a href="/search/cond-mat?searchtype=author&query=Hrkac%2C+S+B">Stjepan B. Hrkac</a>, <a href="/search/cond-mat?searchtype=author&query=Patel%2C+S+K+K">Sheena K. K. Patel</a>, <a href="/search/cond-mat?searchtype=author&query=Ovcharenko%2C+S">Sergei Ovcharenko</a>, <a href="/search/cond-mat?searchtype=author&query=Turenne%2C+D">Diego Turenne</a>, <a href="/search/cond-mat?searchtype=author&query=Ksenzov%2C+D">Dmitriy Ksenzov</a>, <a href="/search/cond-mat?searchtype=author&query=Boeglin%2C+C">Christine Boeglin</a>, <a href="/search/cond-mat?searchtype=author&query=Pronin%2C+I">Igor Pronin</a>, <a href="/search/cond-mat?searchtype=author&query=Baidakova%2C+M">Marina Baidakova</a>, <a href="/search/cond-mat?searchtype=author&query=Schmising%2C+C+v+K">Clemens von Korff Schmising</a>, <a href="/search/cond-mat?searchtype=author&query=Borchert%2C+M">Martin Borchert</a> , et al. (75 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2201.06350v2-abstract-short" style="display: inline;"> The advent of X-ray free-electron lasers (XFELs) has revolutionized fundamental science, from atomic to condensed matter physics, from chemistry to biology, giving researchers access to X-rays with unprecedented brightness, coherence, and pulse duration. All XFEL facilities built until recently provided X-ray pulses at a relatively low repetition rate, with limited data statistics. Here, we presen… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.06350v2-abstract-full').style.display = 'inline'; document.getElementById('2201.06350v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2201.06350v2-abstract-full" style="display: none;"> The advent of X-ray free-electron lasers (XFELs) has revolutionized fundamental science, from atomic to condensed matter physics, from chemistry to biology, giving researchers access to X-rays with unprecedented brightness, coherence, and pulse duration. All XFEL facilities built until recently provided X-ray pulses at a relatively low repetition rate, with limited data statistics. Here, we present the results from the first megahertz repetition rate X-ray scattering experiments at the Spectroscopy and Coherent Scattering (SCS) instrument of the European XFEL. We illustrate the experimental capabilities that the SCS instrument offers, resulting from the operation at MHz repetition rates and the availability of the novel DSSC 2D imaging detector. Time-resolved magnetic X-ray scattering and holographic imaging experiments in solid state samples were chosen as representative, providing an ideal test-bed for operation at megahertz rates. Our results are relevant and applicable to any other non-destructive XFEL experiments in the soft X-ray range. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.06350v2-abstract-full').style.display = 'none'; document.getElementById('2201.06350v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 5 figures. Supplementary Information as ancillary file</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. Synchrotron Rad. (2022), 29 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2109.00819">arXiv:2109.00819</a> <span> [<a href="https://arxiv.org/pdf/2109.00819">pdf</a>, <a href="https://arxiv.org/format/2109.00819">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> </div> </div> <p class="title is-5 mathjax"> Influence of the interfacial tension on the microstructural and mechanical properties of microgels at fluid interfaces </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Vialetto%2C+J">Jacopo Vialetto</a>, <a href="/search/cond-mat?searchtype=author&query=Nussbaum%2C+N">Natalie Nussbaum</a>, <a href="/search/cond-mat?searchtype=author&query=Bergfreund%2C+J">Jotam Bergfreund</a>, <a href="/search/cond-mat?searchtype=author&query=Fischer%2C+P">Peter Fischer</a>, <a href="/search/cond-mat?searchtype=author&query=Isa%2C+L">Lucio Isa</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2109.00819v1-abstract-short" style="display: inline;"> Microgels are soft colloidal particles constituted by cross-linked polymer networks with a high potential for applications. In particular, after adsorption at a fluid interface, interfacial tension provides two-dimensional (2D) confinement for microgel monolayers and drives the reconfiguration of the particles, enabling their deployment in foam and emulsion stabilization and in surface patterning… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.00819v1-abstract-full').style.display = 'inline'; document.getElementById('2109.00819v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2109.00819v1-abstract-full" style="display: none;"> Microgels are soft colloidal particles constituted by cross-linked polymer networks with a high potential for applications. In particular, after adsorption at a fluid interface, interfacial tension provides two-dimensional (2D) confinement for microgel monolayers and drives the reconfiguration of the particles, enabling their deployment in foam and emulsion stabilization and in surface patterning for lithography, sensing and optical materials. However, most studies focus on systems of fluids with a high interfacial tension, e.g. alkanes/ or air/water interfaces, which imparts similar properties to the assembled monolayers. Here, instead, we compare two organic fluid phases, hexane and methyl tert-butyl ether, which have markedly different interfacial tension ($纬$) values with water and thus tune the elasticity and deformation of adsorbed microgels. We rationalize how $纬$ controls the single-particle morphology, which consequently modulates the structural and mechanical response of the monolayers at varying interfacial compression. Specifically, when $纬$ is low, the microgels are less deformed within the interface plane and their polymer networks can rearrange more easily upon lateral compression, leading to softer monolayers. Selecting interfaces with different surface energy offers an additional control to customize the 2D assembly of soft particles, from the fine-tuning of particle size and interparticle spacing to the tailoring of mechanical properties. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.00819v1-abstract-full').style.display = 'none'; document.getElementById('2109.00819v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">29 pages, 5 figures, 6 supplementary figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2104.13349">arXiv:2104.13349</a> <span> [<a href="https://arxiv.org/pdf/2104.13349">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.127.257201">10.1103/PhysRevLett.127.257201 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Field-driven dynamics of magnetic Hopfions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Raftrey%2C+D">D. Raftrey</a>, <a href="/search/cond-mat?searchtype=author&query=Fischer%2C+P">P. Fischer</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2104.13349v1-abstract-short" style="display: inline;"> We present micromagnetic simulations on resonant spin wave modes of magnetic Hopfions up to 15 GHz driven by external magnetic fields. A sharp transition is found around 32 mT coinciding with a transition from Hopfions to magnetic torons. The modes exhibit characteristic amplitudes in frequency space accompanied by unique localization patterns in real space, and are found to be robust to damping a… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.13349v1-abstract-full').style.display = 'inline'; document.getElementById('2104.13349v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2104.13349v1-abstract-full" style="display: none;"> We present micromagnetic simulations on resonant spin wave modes of magnetic Hopfions up to 15 GHz driven by external magnetic fields. A sharp transition is found around 32 mT coinciding with a transition from Hopfions to magnetic torons. The modes exhibit characteristic amplitudes in frequency space accompanied by unique localization patterns in real space, and are found to be robust to damping around topological features, particularly vortex lines in Hopfions and Bloch points in torons. The marked differences in spin wave spectra between Hopfions, torons and target skyrmions can serve as fingerprints in future experimental validation studies of these novel 3d topological spin textures. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.13349v1-abstract-full').style.display = 'none'; document.getElementById('2104.13349v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 April, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pg, 5 figs</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2103.13310">arXiv:2103.13310</a> <span> [<a href="https://arxiv.org/pdf/2103.13310">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Curvature-mediated spin textures in magnetic multi-layered nanotubes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Josten%2C+E">Elisabeth Josten</a>, <a href="/search/cond-mat?searchtype=author&query=Raftrey%2C+D">David Raftrey</a>, <a href="/search/cond-mat?searchtype=author&query=Hierro-Rodriguez%2C+A">Aurelio Hierro-Rodriguez</a>, <a href="/search/cond-mat?searchtype=author&query=Sorrentino%2C+A">Andrea Sorrentino</a>, <a href="/search/cond-mat?searchtype=author&query=Aballe%2C+L">Lucia Aballe</a>, <a href="/search/cond-mat?searchtype=author&query=Lipi%C5%84ska-Chwa%C5%82ek%2C+M">Marta Lipi艅ska-Chwa艂ek</a>, <a href="/search/cond-mat?searchtype=author&query=Jansen%2C+T">Thomas Jansen</a>, <a href="/search/cond-mat?searchtype=author&query=H%C3%B6flich%2C+K">Katja H枚flich</a>, <a href="/search/cond-mat?searchtype=author&query=Kr%C3%B6ncke%2C+H">Hanno Kr枚ncke</a>, <a href="/search/cond-mat?searchtype=author&query=Dubourdieu%2C+C">Catherine Dubourdieu</a>, <a href="/search/cond-mat?searchtype=author&query=B%C3%BCrgler%2C+D+E">Daniel E. B眉rgler</a>, <a href="/search/cond-mat?searchtype=author&query=Mayer%2C+J">Joachim Mayer</a>, <a href="/search/cond-mat?searchtype=author&query=Fischer%2C+P">Peter Fischer</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2103.13310v1-abstract-short" style="display: inline;"> The scientific and technological exploration of artificially designed three-dimensional magnetic nanostructures opens the path to exciting novel physical phenomena, originating from the increased complexity in spin textures, topology, and frustration in three dimensions. Theory predicts that the equilibrium magnetic ground state of two-dimensional systems which reflects the competition between sym… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.13310v1-abstract-full').style.display = 'inline'; document.getElementById('2103.13310v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2103.13310v1-abstract-full" style="display: none;"> The scientific and technological exploration of artificially designed three-dimensional magnetic nanostructures opens the path to exciting novel physical phenomena, originating from the increased complexity in spin textures, topology, and frustration in three dimensions. Theory predicts that the equilibrium magnetic ground state of two-dimensional systems which reflects the competition between symmetric (Heisenberg) and antisymmetric (Dzyaloshinskii-Moriya interaction (DMI)) exchange interaction is significantly modified on curved surfaces when the radius of local curvature becomes comparable to fundamental magnetic length scales. Here, we present an experimental study of the spin texture in an 8 nm thin magnetic multilayer with growth-induced in-plane anisotropy and DMI deposited onto the curved surface of a 1.8 渭m long non-magnetic carbon nanowire with a 67 nm radius. Using magnetic soft x-ray tomography the three-dimensional spin configuration in this nanotube was retrieved with about 30nm spatial resolution. The transition between two vortex configurations on the two ends of the nanotube with opposite circulation occurs through a domain wall that is aligned at an inclined angle relative to the wire axis. Three-dimensional micromagnetic simulations support the experimental observations and represent a visualization of the curvature-mediated DMI. They also allow a quantitative estimate of the DMI value for the magnetic multilayered nanotube. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.13310v1-abstract-full').style.display = 'none'; document.getElementById('2103.13310v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2010.08674">arXiv:2010.08674</a> <span> [<a href="https://arxiv.org/pdf/2010.08674">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-021-21846-5">10.1038/s41467-021-21846-5 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Creation and confirmation of Hopfions in magnetic multilayer systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Kent%2C+N">N. Kent</a>, <a href="/search/cond-mat?searchtype=author&query=Reynolds%2C+N">N. Reynolds</a>, <a href="/search/cond-mat?searchtype=author&query=Raftrey%2C+D">D. Raftrey</a>, <a href="/search/cond-mat?searchtype=author&query=Campbell%2C+I+T+G">I. T. G. Campbell</a>, <a href="/search/cond-mat?searchtype=author&query=Virasawmy%2C+S">S. Virasawmy</a>, <a href="/search/cond-mat?searchtype=author&query=Dhuey%2C+S">S. Dhuey</a>, <a href="/search/cond-mat?searchtype=author&query=Chopdekar%2C+R+V">R. V. Chopdekar</a>, <a href="/search/cond-mat?searchtype=author&query=Hierro-Rodriguez%2C+A">A. Hierro-Rodriguez</a>, <a href="/search/cond-mat?searchtype=author&query=Sorrentino%2C+A">A. Sorrentino</a>, <a href="/search/cond-mat?searchtype=author&query=Pereiro%2C+E">E. Pereiro</a>, <a href="/search/cond-mat?searchtype=author&query=Ferrer%2C+S">S. Ferrer</a>, <a href="/search/cond-mat?searchtype=author&query=Hellman%2C+F">F. Hellman</a>, <a href="/search/cond-mat?searchtype=author&query=Sutcliffe%2C+P">P. Sutcliffe</a>, <a href="/search/cond-mat?searchtype=author&query=Fischer%2C+P">P. Fischer</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2010.08674v1-abstract-short" style="display: inline;"> Topological solitons have been studied for decades in classical field theories, and have started recently to impact condensed matter physics. Among those solitons, magnetic skyrmions are two-dimensional particle-like objects with a continuous winding of the magnetization, and magnetic Hopfions are three-dimensional topological solitons that can be formed from a closed loop of a twisted skyrmion st… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.08674v1-abstract-full').style.display = 'inline'; document.getElementById('2010.08674v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2010.08674v1-abstract-full" style="display: none;"> Topological solitons have been studied for decades in classical field theories, and have started recently to impact condensed matter physics. Among those solitons, magnetic skyrmions are two-dimensional particle-like objects with a continuous winding of the magnetization, and magnetic Hopfions are three-dimensional topological solitons that can be formed from a closed loop of a twisted skyrmion string. Whereas intense research is underway with magnetic skyrmions towards a fundamental understanding and potential applications in advanced storage and logic devices, the experimental creation and confirmation of magnetic Hopfions has been elusive so far. Theoretical models suggest that Hopfions can be stabilized in frustrated or chiral magnetic systems, and that target skymions can be transformed into Hopfions by adapting their perpendicular magnetic anisotropy. Here, we present experimental evidence of magnetic Hopfions that were created in magnetic Ir/Co/Pt multilayers shaped into nanoscale disks, which are known to host target skyrmions. The three-dimensional spin texture, which distinguishes magnetic Hopfions from target skyrmions was confirmed by combining two advanced element-specific magnetic X-ray microscopy techniques with about 20-30nm lateral resolution, using X-ray magnetic circular dichroism effect as magnetic contrast mechanism in surface-sensitive X-ray photoemission electron microscopy and bulk-sensitive soft x-ray transmission microscopy. We anticipate that these results will stimulate further investigations of Hopfions with different topologies and their potential application in three-dimensional spintronics devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.08674v1-abstract-full').style.display = 'none'; document.getElementById('2010.08674v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 October, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2005.00773">arXiv:2005.00773</a> <span> [<a href="https://arxiv.org/pdf/2005.00773">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1039/D1SM00142F">10.1039/D1SM00142F <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Complex fluids in the animal kingdom </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=R%C3%BChs%2C+P+A">Patrick A. R眉hs</a>, <a href="/search/cond-mat?searchtype=author&query=Bergfreund%2C+J">Jotam Bergfreund</a>, <a href="/search/cond-mat?searchtype=author&query=Bertsch%2C+P">Pascal Bertsch</a>, <a href="/search/cond-mat?searchtype=author&query=Gst%C3%B6hl%2C+S">Stefan Gst枚hl</a>, <a href="/search/cond-mat?searchtype=author&query=Fischer%2C+P">Peter Fischer</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2005.00773v1-abstract-short" style="display: inline;"> Animals have evolved distinctive survival strategies in response to constant selective pressure. In this review, we highlight how animals exploit complex flow phenomena by manipulating their habitat or by producing complex fluids. In particular, we outline different strategies evolved for movement, defense from predators, attacking of prey, and reproduction and breeding. From the slimy defense of… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.00773v1-abstract-full').style.display = 'inline'; document.getElementById('2005.00773v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2005.00773v1-abstract-full" style="display: none;"> Animals have evolved distinctive survival strategies in response to constant selective pressure. In this review, we highlight how animals exploit complex flow phenomena by manipulating their habitat or by producing complex fluids. In particular, we outline different strategies evolved for movement, defense from predators, attacking of prey, and reproduction and breeding. From the slimy defense of the notorious hagfish to the circus-like mating spectacle of leopard slugs, we unveil remarkable correlations within the flow behavior and biological purpose of biological complex fluids. We discuss recurring phenomena, propose flow behavior for undescribed complex fluids, and put these in context with the animals survival strategy. With this review, we hope to underline the importance of complex fluids and material flow in the animal kingdom. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.00773v1-abstract-full').style.display = 'none'; document.getElementById('2005.00773v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 May, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Soft Matter 17 (2021) 3022-3036 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2001.11291">arXiv:2001.11291</a> <span> [<a href="https://arxiv.org/pdf/2001.11291">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> </div> </div> <p class="title is-5 mathjax"> Characterization of active matter in dense suspensions with heterodyne laser Doppler velocimetry </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Sachs%2C+J">Johannes Sachs</a>, <a href="/search/cond-mat?searchtype=author&query=Kottapalli%2C+S+N">S. Nikhilesh Kottapalli</a>, <a href="/search/cond-mat?searchtype=author&query=Fischer%2C+P">Peer Fischer</a>, <a href="/search/cond-mat?searchtype=author&query=Botin%2C+D">Denis Botin</a>, <a href="/search/cond-mat?searchtype=author&query=Palberg%2C+T">Thomas Palberg</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2001.11291v3-abstract-short" style="display: inline;"> We present a novel approach for characterizing the properties and performance of active matter in dilute suspension as well as in crowded environments. We use Super-Heterodyne Laser-Doppler-Velocimetry (SH-LDV) to study large ensembles of catalytically active Janus particles moving under UV-illumination. SH-LDV facilitates a model-free determination of the swimming speed and direction, with excell… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2001.11291v3-abstract-full').style.display = 'inline'; document.getElementById('2001.11291v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2001.11291v3-abstract-full" style="display: none;"> We present a novel approach for characterizing the properties and performance of active matter in dilute suspension as well as in crowded environments. We use Super-Heterodyne Laser-Doppler-Velocimetry (SH-LDV) to study large ensembles of catalytically active Janus particles moving under UV-illumination. SH-LDV facilitates a model-free determination of the swimming speed and direction, with excellent ensemble averaging. In addition we obtain in-formation on the distribution of the catalytic activity. Moreover, SH-LDV operates away from walls and permits a facile correction for multiple scattering contributions. It thus allows for stud-ies of concentrated suspensions of swimmers or of systems where swimmers propel actively in an environment crowded by passive particles. We demonstrate the versatility and the scope of the method with a few selected examples. We anticipate that SH-LDV complements estab-lished methods and paves the way for systematic measurements at previously inaccessible boundary conditions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2001.11291v3-abstract-full').style.display = 'none'; document.getElementById('2001.11291v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 May, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 January, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 MS pages, 8 figures To be submitted to Colloid and Polymer Science for Special Issue on Kolloidtagung 2019</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2001.07130">arXiv:2001.07130</a> <span> [<a href="https://arxiv.org/pdf/2001.07130">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acsnano.0c00720">10.1021/acsnano.0c00720 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Artificial double-helix for geometrical control of magnetic chirality </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Sanz-Hern%C3%A1ndez%2C+D">D茅dalo Sanz-Hern谩ndez</a>, <a href="/search/cond-mat?searchtype=author&query=Hierro-Rodriguez%2C+A">Aurelio Hierro-Rodriguez</a>, <a href="/search/cond-mat?searchtype=author&query=Donnelly%2C+C">Claire Donnelly</a>, <a href="/search/cond-mat?searchtype=author&query=Pablo-Navarro%2C+J">Javier Pablo-Navarro</a>, <a href="/search/cond-mat?searchtype=author&query=Sorrentino%2C+A">Andrea Sorrentino</a>, <a href="/search/cond-mat?searchtype=author&query=Pereiro%2C+E">Eva Pereiro</a>, <a href="/search/cond-mat?searchtype=author&query=Mag%C3%A9n%2C+C">C茅sar Mag茅n</a>, <a href="/search/cond-mat?searchtype=author&query=McVitie%2C+S">Stephen McVitie</a>, <a href="/search/cond-mat?searchtype=author&query=de+Teresa%2C+J+M">Jos茅 Mar铆a de Teresa</a>, <a href="/search/cond-mat?searchtype=author&query=Ferrer%2C+S">Salvador Ferrer</a>, <a href="/search/cond-mat?searchtype=author&query=Fischer%2C+P">Peter Fischer</a>, <a href="/search/cond-mat?searchtype=author&query=Fern%C3%A1ndez-Pacheco%2C+A">Amalio Fern谩ndez-Pacheco</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2001.07130v1-abstract-short" style="display: inline;"> Chirality plays a major role in nature, from particle physics to DNA, and its control is much sought-after due to the scientific and technological opportunities it unlocks. For magnetic materials, chiral interactions between spins promote the formation of sophisticated swirling magnetic states such as skyrmions, with rich topological properties and great potential for future technologies. Currentl… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2001.07130v1-abstract-full').style.display = 'inline'; document.getElementById('2001.07130v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2001.07130v1-abstract-full" style="display: none;"> Chirality plays a major role in nature, from particle physics to DNA, and its control is much sought-after due to the scientific and technological opportunities it unlocks. For magnetic materials, chiral interactions between spins promote the formation of sophisticated swirling magnetic states such as skyrmions, with rich topological properties and great potential for future technologies. Currently, chiral magnetism requires either a restricted group of natural materials or synthetic thin-film systems that exploit interfacial effects. Here, using state-of-the-art nanofabrication and magnetic X-ray microscopy, we demonstrate the imprinting of complex chiral spin states via three-dimensional geometric effects at the nanoscale. By balancing dipolar and exchange interactions in an artificial ferromagnetic double-helix nanostructure, we create magnetic domains and domain walls with a well-defined spin chirality, determined solely by the chiral geometry. We further demonstrate the ability to create confined 3D spin textures and topological defects by locally interfacing geometries of opposite chirality. The ability to create chiral spin textures via 3D nano-patterning alone enables exquisite control over the properties and location of complex topological magnetic states, of great importance for the development of future metamaterials and devices in which chirality provides enhanced functionality. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2001.07130v1-abstract-full').style.display = 'none'; document.getElementById('2001.07130v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 January, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1912.01469">arXiv:1912.01469</a> <span> [<a href="https://arxiv.org/pdf/1912.01469">pdf</a>, <a href="https://arxiv.org/format/1912.01469">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevE.102.012120">10.1103/PhysRevE.102.012120 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Free diffusion bounds the precision of currents in underdamped dynamics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Fischer%2C+L+P">Lukas P. Fischer</a>, <a href="/search/cond-mat?searchtype=author&query=Chun%2C+H">Hyun-Myung Chun</a>, <a href="/search/cond-mat?searchtype=author&query=Seifert%2C+U">Udo Seifert</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1912.01469v1-abstract-short" style="display: inline;"> The putative generalization of the thermodynamic uncertainty relation (TUR) to underdamped dynamics is still an open problem. So far, bounds that have been derived for such a dynamics are not particularly transparent and they do not converge to the known TUR in the overdamped limit. Furthermore, it was found that there are restrictions for a TUR to hold such as the absence of a magnetic field. In… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1912.01469v1-abstract-full').style.display = 'inline'; document.getElementById('1912.01469v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1912.01469v1-abstract-full" style="display: none;"> The putative generalization of the thermodynamic uncertainty relation (TUR) to underdamped dynamics is still an open problem. So far, bounds that have been derived for such a dynamics are not particularly transparent and they do not converge to the known TUR in the overdamped limit. Furthermore, it was found that there are restrictions for a TUR to hold such as the absence of a magnetic field. In this article we first analyze the properties of driven free diffusion in the underdamped regime and show that it inherently violates the overdamped TUR for finite times. Based on numerical evidence, we then conjecture a bound for one-dimensional driven diffusion in a potential which is based on the result for free diffusion. This bound converges to the known overdamped TUR in the corresponding limit. Moreover, the conjectured bound holds for observables that involve higher powers of the velocity as long as the observable is odd under time-reversal. Finally, we address the applicability of this bound to underdamped dynamics in higher dimensions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1912.01469v1-abstract-full').style.display = 'none'; document.getElementById('1912.01469v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 December, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. E 102, 012120 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1903.06480">arXiv:1903.06480</a> <span> [<a href="https://arxiv.org/pdf/1903.06480">pdf</a>, <a href="https://arxiv.org/format/1903.06480">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevE.99.042128">10.1103/PhysRevE.99.042128 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Effect of a magnetic field on the thermodynamic uncertainty relation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Chun%2C+H">Hyun-Myung Chun</a>, <a href="/search/cond-mat?searchtype=author&query=Fischer%2C+L+P">Lukas P. Fischer</a>, <a href="/search/cond-mat?searchtype=author&query=Seifert%2C+U">Udo Seifert</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1903.06480v2-abstract-short" style="display: inline;"> The thermodynamic uncertainty relation provides a universal lower bound on the product of entropy production and the fluctuations of any current. While proven for Markov dynamics on a discrete set of states and for overdamped Langevin dynamics, its status for underdamped dynamics is still open. We consider a two-dimensional harmonically confined charged particle in a magnetic field under the actio… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1903.06480v2-abstract-full').style.display = 'inline'; document.getElementById('1903.06480v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1903.06480v2-abstract-full" style="display: none;"> The thermodynamic uncertainty relation provides a universal lower bound on the product of entropy production and the fluctuations of any current. While proven for Markov dynamics on a discrete set of states and for overdamped Langevin dynamics, its status for underdamped dynamics is still open. We consider a two-dimensional harmonically confined charged particle in a magnetic field under the action of an external torque. We show analytically that, depending on the sign of the magnetic field, the thermodynamic uncertainty relation does not hold for the currents associated with work and heat. A strong magnetic field can effectively localize the particle with concomitant bounded fluctuations and low dissipation. Numerical results for a three-dimensional variant and for further currents suggest that the existence of such a bound depends crucially on the specific current. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1903.06480v2-abstract-full').style.display = 'none'; document.getElementById('1903.06480v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 April, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 March, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 4 figures (v2) Sec.III is revised. Fig.1 is updated</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. E 99, 042128 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1809.07472">arXiv:1809.07472</a> <span> [<a href="https://arxiv.org/pdf/1809.07472">pdf</a>, <a href="https://arxiv.org/format/1809.07472">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41598-019-52460-7">10.1038/s41598-019-52460-7 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Thermally and field-driven mobility of emergent magnetic charges in square artificial spin ice </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Morley%2C+S+A">Sophie A. Morley</a>, <a href="/search/cond-mat?searchtype=author&query=Porro%2C+J+M">Jose Maria Porro</a>, <a href="/search/cond-mat?searchtype=author&query=Hrabec%2C+A">Ale拧 Hrabec</a>, <a href="/search/cond-mat?searchtype=author&query=Rosamond%2C+M+C">Mark C. Rosamond</a>, <a href="/search/cond-mat?searchtype=author&query=Linfield%2C+E+H">Edmund H. Linfield</a>, <a href="/search/cond-mat?searchtype=author&query=Burnell%2C+G">Gavin Burnell</a>, <a href="/search/cond-mat?searchtype=author&query=Im%2C+M">Mi-Young Im</a>, <a href="/search/cond-mat?searchtype=author&query=Fischer%2C+P+J">Peter J. Fischer</a>, <a href="/search/cond-mat?searchtype=author&query=Langridge%2C+S">Sean Langridge</a>, <a href="/search/cond-mat?searchtype=author&query=Marrows%2C+C+H">Christopher H. Marrows</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1809.07472v1-abstract-short" style="display: inline;"> Designing and constructing model systems that embody the statistical mechanics of frustration is now possible using nanotechnology. We have arranged nanomagnets on a two-dimensional square lattice to form an artificial spin ice, and studied its fractional excitations, emergent magnetic monopoles, and how they respond to a driving field using X-ray magnetic microscopy. We observe a regime in which… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1809.07472v1-abstract-full').style.display = 'inline'; document.getElementById('1809.07472v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1809.07472v1-abstract-full" style="display: none;"> Designing and constructing model systems that embody the statistical mechanics of frustration is now possible using nanotechnology. We have arranged nanomagnets on a two-dimensional square lattice to form an artificial spin ice, and studied its fractional excitations, emergent magnetic monopoles, and how they respond to a driving field using X-ray magnetic microscopy. We observe a regime in which the monopole drift velocity is linear in field above a critical field for the onset of motion. The temperature dependence of the critical field can be described by introducing an interaction term into the Bean-Livingston model of field-assisted barrier hopping. By analogy with electrical charge drift motion, we define and measure a monopole mobility that is larger both for higher temperatures and stronger interactions between nanomagnets. The mobility in this linear regime is described by a creep model of zero-dimensional charges moving within a network of quasi-one-dimensional objects. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1809.07472v1-abstract-full').style.display = 'none'; document.getElementById('1809.07472v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 September, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1802.04152">arXiv:1802.04152</a> <span> [<a href="https://arxiv.org/pdf/1802.04152">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Mid Infrared Nonlinear Plasmonics using Germanium Nanoantennas on Silicon Substrates </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Fischer%2C+M+P">Marco P. Fischer</a>, <a href="/search/cond-mat?searchtype=author&query=Riede%2C+A">Aaron Riede</a>, <a href="/search/cond-mat?searchtype=author&query=Gallacher%2C+K">Kevin Gallacher</a>, <a href="/search/cond-mat?searchtype=author&query=Frigerio%2C+J">Jacopo Frigerio</a>, <a href="/search/cond-mat?searchtype=author&query=Pellegrini%2C+G">Giovanni Pellegrini</a>, <a href="/search/cond-mat?searchtype=author&query=Ortolani%2C+M">Michele Ortolani</a>, <a href="/search/cond-mat?searchtype=author&query=Paul%2C+D+J">Douglas J. Paul</a>, <a href="/search/cond-mat?searchtype=author&query=Isella%2C+G">Giovanni Isella</a>, <a href="/search/cond-mat?searchtype=author&query=Leitenstorfer%2C+A">Alfred Leitenstorfer</a>, <a href="/search/cond-mat?searchtype=author&query=Biagioni%2C+P">Paolo Biagioni</a>, <a href="/search/cond-mat?searchtype=author&query=Brida%2C+D">Daniele Brida</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1802.04152v1-abstract-short" style="display: inline;"> We demonstrate third harmonic generation in plasmonic antennas made of highly doped germanium and designed to be resonant in the mid infrared. Owing to the near-field enhancement, the result is an ultrafast, sub-diffraction, coherent light source tunable between 3 and 5 micrometer wavelength on a silicon substrate. To observe nonlinearity in this challenging spectral region, a high-power femtoseco… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1802.04152v1-abstract-full').style.display = 'inline'; document.getElementById('1802.04152v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1802.04152v1-abstract-full" style="display: none;"> We demonstrate third harmonic generation in plasmonic antennas made of highly doped germanium and designed to be resonant in the mid infrared. Owing to the near-field enhancement, the result is an ultrafast, sub-diffraction, coherent light source tunable between 3 and 5 micrometer wavelength on a silicon substrate. To observe nonlinearity in this challenging spectral region, a high-power femtosecond laser system equipped with parametric frequency conversion in combination with an all-reflective confocal microscope setup is employed. We show spatially resolved maps of the linear scattering cross section and the nonlinear emission of single isolated antenna structures. A clear third order power dependence as well as the mid-infrared emission spectra prove the nonlinear nature of the light emission. Simulations support the observed resonance length of the double rod antenna and demonstrate that the field enhancement inside the antenna material is responsible for the nonlinear frequency mixing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1802.04152v1-abstract-full').style.display = 'none'; document.getElementById('1802.04152v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 February, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2018. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1712.01216">arXiv:1712.01216</a> <span> [<a href="https://arxiv.org/pdf/1712.01216">pdf</a>, <a href="https://arxiv.org/ps/1712.01216">ps</a>, <a href="https://arxiv.org/format/1712.01216">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevE.97.022143">10.1103/PhysRevE.97.022143 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Large Deviation Function for a Driven Underdamped Particle in a Periodic Potential </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Fischer%2C+L+P">Lukas P. Fischer</a>, <a href="/search/cond-mat?searchtype=author&query=Pietzonka%2C+P">Patrick Pietzonka</a>, <a href="/search/cond-mat?searchtype=author&query=Seifert%2C+U">Udo Seifert</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1712.01216v2-abstract-short" style="display: inline;"> Employing large deviation theory, we explore current fluctuations of underdamped Brownian motion for the paradigmatic example of a single particle in a one dimensional periodic potential. Two different approaches to the large deviation function of the particle current are presented. First, we derive an explicit expression for the large deviation functional of the empirical phase space density, whi… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1712.01216v2-abstract-full').style.display = 'inline'; document.getElementById('1712.01216v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1712.01216v2-abstract-full" style="display: none;"> Employing large deviation theory, we explore current fluctuations of underdamped Brownian motion for the paradigmatic example of a single particle in a one dimensional periodic potential. Two different approaches to the large deviation function of the particle current are presented. First, we derive an explicit expression for the large deviation functional of the empirical phase space density, which replaces the level 2.5 functional used for overdamped dynamics. Using this approach, we obtain several bounds on the large deviation function of the particle current. We compare these to bounds for overdamped dynamics that have recently been derived motivated by the thermodynamic uncertainty relation. Second, we provide a method to calculate the large deviation function via the cumulant generating function. We use this method to assess the tightness of the bounds in a numerical case study for a cosine potential. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1712.01216v2-abstract-full').style.display = 'none'; document.getElementById('1712.01216v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 March, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 December, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. E 97, 022143 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1711.00182">arXiv:1711.00182</a> <span> [<a href="https://arxiv.org/pdf/1711.00182">pdf</a>, <a href="https://arxiv.org/format/1711.00182">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.99.024406">10.1103/PhysRevB.99.024406 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Textured heterogeneity in square artificial spin ice </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Lee%2C+J+C+T">J. C. T Lee</a>, <a href="/search/cond-mat?searchtype=author&query=Mishra%2C+S+K">S. K. Mishra</a>, <a href="/search/cond-mat?searchtype=author&query=Bhat%2C+V+S">V. S. Bhat</a>, <a href="/search/cond-mat?searchtype=author&query=Streubel%2C+R">R. Streubel</a>, <a href="/search/cond-mat?searchtype=author&query=Farmer%2C+B">B. Farmer</a>, <a href="/search/cond-mat?searchtype=author&query=Shi%2C+X">X. Shi</a>, <a href="/search/cond-mat?searchtype=author&query=De+Long%2C+L+E">L. E. De Long</a>, <a href="/search/cond-mat?searchtype=author&query=McNulty%2C+I">I. McNulty</a>, <a href="/search/cond-mat?searchtype=author&query=Fischer%2C+P">P. Fischer</a>, <a href="/search/cond-mat?searchtype=author&query=Kevan%2C+S+D">S. D. Kevan</a>, <a href="/search/cond-mat?searchtype=author&query=Roy%2C+S">S. Roy</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1711.00182v1-abstract-short" style="display: inline;"> We report evidence of spontaneous formation of a heterogeneous network of superdomains in two-dimensional square artificial spin ice nanostructures in externally applied magnetic fields. The magnetic heterogeneity is locally disordered but has a zig-zag texture at longer length scales. Resonant coherent soft-x-ray scattering off such textures give rise to unique internal structure in Bragg peaks.… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1711.00182v1-abstract-full').style.display = 'inline'; document.getElementById('1711.00182v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1711.00182v1-abstract-full" style="display: none;"> We report evidence of spontaneous formation of a heterogeneous network of superdomains in two-dimensional square artificial spin ice nanostructures in externally applied magnetic fields. The magnetic heterogeneity is locally disordered but has a zig-zag texture at longer length scales. Resonant coherent soft-x-ray scattering off such textures give rise to unique internal structure in Bragg peaks. Our result shows that the macroscopic magnetic texture is derived from the microscopic structure of the Dirac strings. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1711.00182v1-abstract-full').style.display = 'none'; document.getElementById('1711.00182v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 October, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Main text: 5 pages, 4 figures. Supplemental: 13 pages, 11 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 99, 024406 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1708.01140">arXiv:1708.01140</a> <span> [<a href="https://arxiv.org/pdf/1708.01140">pdf</a>, <a href="https://arxiv.org/ps/1708.01140">ps</a>, <a href="https://arxiv.org/format/1708.01140">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevE.98.063105">10.1103/PhysRevE.98.063105 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The role of symmetry in driven propulsion at low Reynolds number </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Sachs%2C+J">Johannes Sachs</a>, <a href="/search/cond-mat?searchtype=author&query=Morozov%2C+K+I">Konstantin I. Morozov</a>, <a href="/search/cond-mat?searchtype=author&query=Kenneth%2C+O">Oded Kenneth</a>, <a href="/search/cond-mat?searchtype=author&query=Qiu%2C+T">Tian Qiu</a>, <a href="/search/cond-mat?searchtype=author&query=Segreto%2C+N">Nico Segreto</a>, <a href="/search/cond-mat?searchtype=author&query=Fischer%2C+P">Peer Fischer</a>, <a href="/search/cond-mat?searchtype=author&query=Leshansky%2C+A+M">Alexander M. Leshansky</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1708.01140v3-abstract-short" style="display: inline;"> We theoretically and experimentally investigate low-Reynolds-number propulsion of geometrically achiral planar objects that possess a dipole moment and that are driven by a rotating magnetic field. Symmetry considerations (involving parity, $\widehat{P}$, and charge conjugation, $\widehat{C}$) establish correspondence between propulsive states depending on orientation of the dipolar moment. Althou… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1708.01140v3-abstract-full').style.display = 'inline'; document.getElementById('1708.01140v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1708.01140v3-abstract-full" style="display: none;"> We theoretically and experimentally investigate low-Reynolds-number propulsion of geometrically achiral planar objects that possess a dipole moment and that are driven by a rotating magnetic field. Symmetry considerations (involving parity, $\widehat{P}$, and charge conjugation, $\widehat{C}$) establish correspondence between propulsive states depending on orientation of the dipolar moment. Although basic symmetry arguments do not forbid individual symmetric objects to efficiently propel due to spontaneous symmetry breaking, they suggest that the average ensemble velocity vanishes. Some additional arguments show, however, that highly symmetrical ($\widehat{P}$-even) objects exhibit no net propulsion while individual less symmetrical ($\widehat{C}\widehat{P}$-even) propellers do propel. Particular magnetization orientation, rendering the shape $\widehat{C}\widehat{P}$-odd, yields unidirectional motion typically associated with chiral structures, such as helices. If instead of a structure with a permanent dipole we consider a polarizable object, some of the arguments have to be modified. For instance, we demonstrate a truly achiral ($\widehat{P}$- and $\widehat{C}\widehat{P}$-even) planar shape with an induced electric dipole that can propel by electro-rotation. We thereby show that chirality is not essential for propulsion due to rotation-translation coupling at low Reynolds number. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1708.01140v3-abstract-full').style.display = 'none'; document.getElementById('1708.01140v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 March, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 August, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. E 98, 063105 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1707.05891">arXiv:1707.05891</a> <span> [<a href="https://arxiv.org/pdf/1707.05891">pdf</a>, <a href="https://arxiv.org/format/1707.05891">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1367-2630/aa9b4b">10.1088/1367-2630/aa9b4b <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Active colloidal propulsion over a crystalline surface </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Choudhury%2C+U">Udit Choudhury</a>, <a href="/search/cond-mat?searchtype=author&query=Straube%2C+A+V">Arthur V. Straube</a>, <a href="/search/cond-mat?searchtype=author&query=Fischer%2C+P">Peer Fischer</a>, <a href="/search/cond-mat?searchtype=author&query=Gibbs%2C+J+G">John G. Gibbs</a>, <a href="/search/cond-mat?searchtype=author&query=H%C3%B6fling%2C+F">Felix H枚fling</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1707.05891v1-abstract-short" style="display: inline;"> We study both experimentally and theoretically the dynamics of chemically self-propelled Janus colloids moving atop a two-dimensional crystalline surface. The surface is a hexagonally close-packed monolayer of colloidal particles of the same size as the mobile one. The dynamics of the self-propelled colloid reflects the competition between hindered diffusion due to the periodic surface and enhance… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1707.05891v1-abstract-full').style.display = 'inline'; document.getElementById('1707.05891v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1707.05891v1-abstract-full" style="display: none;"> We study both experimentally and theoretically the dynamics of chemically self-propelled Janus colloids moving atop a two-dimensional crystalline surface. The surface is a hexagonally close-packed monolayer of colloidal particles of the same size as the mobile one. The dynamics of the self-propelled colloid reflects the competition between hindered diffusion due to the periodic surface and enhanced diffusion due to active motion. Which contribution dominates depends on the propulsion strength, which can be systematically tuned by changing the concentration of a chemical fuel. The mean-square displacements obtained from the experiment exhibit enhanced diffusion at long lag times. Our experimental data are consistent with a Langevin model for the effectively two-dimensional translational motion of an active Brownian particle in a periodic potential, combining the confining effects of gravity and the crystalline surface with the free rotational diffusion of the colloid. Approximate analytical predictions are made for the mean-square displacement describing the crossover from free Brownian motion at short times to active diffusion at long times. The results are in semi-quantitative agreement with numerical results of a refined Langevin model that treats translational and rotational degrees of freedom on the same footing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1707.05891v1-abstract-full').style.display = 'none'; document.getElementById('1707.05891v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 July, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> New J. Phys. 19, 125010 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1705.09019">arXiv:1705.09019</a> <span> [<a href="https://arxiv.org/pdf/1705.09019">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/ncomms15573">10.1038/ncomms15573 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Spin-orbit torque-driven skyrmion dynamics revealed by time-resolved X-ray microscopy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Woo%2C+S">Seonghoon Woo</a>, <a href="/search/cond-mat?searchtype=author&query=Song%2C+K+M">Kyung Mee Song</a>, <a href="/search/cond-mat?searchtype=author&query=Han%2C+H">Hee-Sung Han</a>, <a href="/search/cond-mat?searchtype=author&query=Jung%2C+M">Min-Seung Jung</a>, <a href="/search/cond-mat?searchtype=author&query=Im%2C+M">Mi-Young Im</a>, <a href="/search/cond-mat?searchtype=author&query=Lee%2C+K">Ki-Suk Lee</a>, <a href="/search/cond-mat?searchtype=author&query=Song%2C+K+S">Kun Soo Song</a>, <a href="/search/cond-mat?searchtype=author&query=Fischer%2C+P">Peter Fischer</a>, <a href="/search/cond-mat?searchtype=author&query=Hong%2C+J">Jung-Il Hong</a>, <a href="/search/cond-mat?searchtype=author&query=Choi%2C+J+W">Jun Woo Choi</a>, <a href="/search/cond-mat?searchtype=author&query=Min%2C+B">Byoung-Chul Min</a>, <a href="/search/cond-mat?searchtype=author&query=Koo%2C+H+C">Hyun Cheol Koo</a>, <a href="/search/cond-mat?searchtype=author&query=Chang%2C+J">Joonyeon Chang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1705.09019v1-abstract-short" style="display: inline;"> Magnetic skyrmions are topologically-protected spin textures with attractive properties suitable for high-density and low-power spintronic device applications. Much effort has been dedicated to understanding the dynamical behaviours of the magnetic skyrmions. However, experimental observation of the ultrafast dynamics of this chiral magnetic texture in real space, which is the hallmark of its quas… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1705.09019v1-abstract-full').style.display = 'inline'; document.getElementById('1705.09019v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1705.09019v1-abstract-full" style="display: none;"> Magnetic skyrmions are topologically-protected spin textures with attractive properties suitable for high-density and low-power spintronic device applications. Much effort has been dedicated to understanding the dynamical behaviours of the magnetic skyrmions. However, experimental observation of the ultrafast dynamics of this chiral magnetic texture in real space, which is the hallmark of its quasiparticle nature, has so far remained elusive. Here, we report nanosecond-dynamics of a 100 nm-size magnetic skyrmion during a current pulse application, using a time-resolved pump-probe soft X-ray imaging technique. We demonstrate that distinct dynamic excitation states of magnetic skyrmions, triggered by current-induced spin-orbit torques, can be reliably tuned by changing the magnitude of spin-orbit torques. Our findings show that the dynamics of magnetic skyrmions can be controlled by the spin-orbit torque on the nanosecond time scale, which points to exciting opportunities for ultrafast and novel skyrmionic applications in the future. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1705.09019v1-abstract-full').style.display = 'none'; document.getElementById('1705.09019v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 May, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">30 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Communications 8, 15573 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1702.04691">arXiv:1702.04691</a> <span> [<a href="https://arxiv.org/pdf/1702.04691">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.95.224405">10.1103/PhysRevB.95.224405 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Resonant properties of dipole skyrmions in amorphous Fe/Gd multilayers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Montoya%2C+S+A">S. A. Montoya</a>, <a href="/search/cond-mat?searchtype=author&query=Couture%2C+S">S. Couture</a>, <a href="/search/cond-mat?searchtype=author&query=Chess%2C+J+J">J. J. Chess</a>, <a href="/search/cond-mat?searchtype=author&query=Lee%2C+J+C+T">J. C. T Lee</a>, <a href="/search/cond-mat?searchtype=author&query=Kent%2C+N">N. Kent</a>, <a href="/search/cond-mat?searchtype=author&query=Im%2C+M+-">M. -Y. Im</a>, <a href="/search/cond-mat?searchtype=author&query=Kevan%2C+S+D">S. D. Kevan</a>, <a href="/search/cond-mat?searchtype=author&query=Fischer%2C+P">P. Fischer</a>, <a href="/search/cond-mat?searchtype=author&query=McMorran%2C+B+J">B. J. McMorran</a>, <a href="/search/cond-mat?searchtype=author&query=Roy%2C+S">S. Roy</a>, <a href="/search/cond-mat?searchtype=author&query=Lomakin%2C+V">V. Lomakin</a>, <a href="/search/cond-mat?searchtype=author&query=Fullerton%2C+E+E">E. E. Fullerton</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1702.04691v2-abstract-short" style="display: inline;"> The dynamic response of dipole skyrmions in Fe/Gd multilayer films is investigated by ferromagnetic resonance measurements and compared to micromagnetic simulations. We detail thickness and temperature dependent studies of the observed modes as well as the effects of magnetic field history on the resonant spectra. Correlation between the modes and the magnetic phase maps constructed from real-spac… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1702.04691v2-abstract-full').style.display = 'inline'; document.getElementById('1702.04691v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1702.04691v2-abstract-full" style="display: none;"> The dynamic response of dipole skyrmions in Fe/Gd multilayer films is investigated by ferromagnetic resonance measurements and compared to micromagnetic simulations. We detail thickness and temperature dependent studies of the observed modes as well as the effects of magnetic field history on the resonant spectra. Correlation between the modes and the magnetic phase maps constructed from real-space imaging and scattering patterns allows us to conclude the resonant modes arise from local topological features such as dipole skyrmions but does not depend on the collective response of a closed packed lattice of these chiral textures. Using, micromagnetic modeling, we are able to quantitatively reproduce our experimental observations which suggests the existence of localized spin-wave modes that are dependent on the helicity of the dipole skyrmion. We identify four localized spin wave excitations for the skyrmions that are excited under either in-plane or out-of-plane r.f. fields. Lastly we show that dipole skyrmions and non-chiral bubble domains exhibit qualitatively different localized spin wave modes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1702.04691v2-abstract-full').style.display = 'none'; document.getElementById('1702.04691v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 May, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 February, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">38 pages, 17 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 95, 224405 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1609.07828">arXiv:1609.07828</a> <span> [<a href="https://arxiv.org/pdf/1609.07828">pdf</a>, <a href="https://arxiv.org/format/1609.07828">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Magnetically Charged Superdomain Walls In Square Artificial Spin Ice </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Lee%2C+J+C+T">J. C. T Lee</a>, <a href="/search/cond-mat?searchtype=author&query=Mishra%2C+S+K">S. K. Mishra</a>, <a href="/search/cond-mat?searchtype=author&query=Bhat%2C+V+S">V. S. Bhat</a>, <a href="/search/cond-mat?searchtype=author&query=Streubel%2C+R">R. Streubel</a>, <a href="/search/cond-mat?searchtype=author&query=Farmer%2C+B">B. Farmer</a>, <a href="/search/cond-mat?searchtype=author&query=Shi%2C+X">X. Shi</a>, <a href="/search/cond-mat?searchtype=author&query=De+Long%2C+L+E">L. E. De Long</a>, <a href="/search/cond-mat?searchtype=author&query=McNulty%2C+I">I. McNulty</a>, <a href="/search/cond-mat?searchtype=author&query=Fischer%2C+P">P. Fischer</a>, <a href="/search/cond-mat?searchtype=author&query=Kevan%2C+S+D">S. D. Kevan</a>, <a href="/search/cond-mat?searchtype=author&query=Roy%2C+S">S. Roy</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1609.07828v1-abstract-short" style="display: inline;"> We report direct evidence that magnetically charged superdomain walls form spontaneously in two dimensional square artificial spin ice nanostructures in response to external magnetic fields. These extended magnetic defects were revealed by the development of internal structure, which varies as a function of applied magnetic field, within the Bragg peaks of resonant soft x-ray magnetic scattering p… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1609.07828v1-abstract-full').style.display = 'inline'; document.getElementById('1609.07828v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1609.07828v1-abstract-full" style="display: none;"> We report direct evidence that magnetically charged superdomain walls form spontaneously in two dimensional square artificial spin ice nanostructures in response to external magnetic fields. These extended magnetic defects were revealed by the development of internal structure, which varies as a function of applied magnetic field, within the Bragg peaks of resonant soft x-ray magnetic scattering patterns. Magnetically charged superdomain walls extend over tens of lattice sites and do not necessarily align with the applied field. Our results illustrate a novel approach to detect hierarchical magnetic structures within spin textures. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1609.07828v1-abstract-full').style.display = 'none'; document.getElementById('1609.07828v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 September, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1608.01368">arXiv:1608.01368</a> <span> [<a href="https://arxiv.org/pdf/1608.01368">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.95.024415">10.1103/PhysRevB.95.024415 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Tailoring magnetic energies to form dipole skyrmions and skyrmion lattices </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Montoya%2C+S+A">S. A. Montoya</a>, <a href="/search/cond-mat?searchtype=author&query=Couture%2C+S">S. Couture</a>, <a href="/search/cond-mat?searchtype=author&query=Chess%2C+J+J">J. J. Chess</a>, <a href="/search/cond-mat?searchtype=author&query=Lee%2C+J+C+T">J. C. T. Lee</a>, <a href="/search/cond-mat?searchtype=author&query=Kent%2C+N">N. Kent</a>, <a href="/search/cond-mat?searchtype=author&query=Henze%2C+D">D. Henze</a>, <a href="/search/cond-mat?searchtype=author&query=Sinha%2C+S+K">S. K. Sinha</a>, <a href="/search/cond-mat?searchtype=author&query=Im%2C+M+-">M. -Y. Im</a>, <a href="/search/cond-mat?searchtype=author&query=Kevan%2C+S+D">S. D. Kevan</a>, <a href="/search/cond-mat?searchtype=author&query=Fischer%2C+P">P. Fischer</a>, <a href="/search/cond-mat?searchtype=author&query=McMorran%2C+B+J">B. J. McMorran</a>, <a href="/search/cond-mat?searchtype=author&query=Lomakin%2C+V">V. Lomakin</a>, <a href="/search/cond-mat?searchtype=author&query=Roy%2C+S">S. Roy</a>, <a href="/search/cond-mat?searchtype=author&query=Fullerton%2C+E+E">E. E. Fullerton</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1608.01368v2-abstract-short" style="display: inline;"> The interesting physics and potential memory technologies resulting from topologically protected spin textures such as skyrmions, has prompted efforts to discover new material systems that can host these kind of magnetic structures. Here we use the highly tunable magnetic properties of amorphous Fe/Gd multilayer films to explore the magnetic properties that lead to dipole-stabilized skyrmions and… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1608.01368v2-abstract-full').style.display = 'inline'; document.getElementById('1608.01368v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1608.01368v2-abstract-full" style="display: none;"> The interesting physics and potential memory technologies resulting from topologically protected spin textures such as skyrmions, has prompted efforts to discover new material systems that can host these kind of magnetic structures. Here we use the highly tunable magnetic properties of amorphous Fe/Gd multilayer films to explore the magnetic properties that lead to dipole-stabilized skyrmions and skyrmion lattices that form from the competition of dipolar field and exchange energy. Using both real space imaging and reciprocal space scattering techniques we determined the range of material properties and magnetic fields where skyrmions form. Micromagnetic modeling closely matches our observation of small skyrmion features (~50 to 70nm) and suggests these class of skyrmions have a rich domain structure that is Bloch like in the center of the film and more N茅el like towards each surface. Our results provide a pathway to engineer the formation and controllability of dipole skyrmion phases in a thin film geometry at different temperatures and magnetic fields. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1608.01368v2-abstract-full').style.display = 'none'; document.getElementById('1608.01368v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 December, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 August, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">34 pages, 11 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 95, 024415 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1607.00439">arXiv:1607.00439</a> <span> [<a href="https://arxiv.org/pdf/1607.00439">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/RevModPhys.89.025006">10.1103/RevModPhys.89.025006 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Interface-Induced Phenomena in Magnetism </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Hellman%2C+F">Frances Hellman</a>, <a href="/search/cond-mat?searchtype=author&query=Hoffmann%2C+A">Axel Hoffmann</a>, <a href="/search/cond-mat?searchtype=author&query=Tserkovnyak%2C+Y">Yaroslav Tserkovnyak</a>, <a href="/search/cond-mat?searchtype=author&query=Beach%2C+G">Geoffrey Beach</a>, <a href="/search/cond-mat?searchtype=author&query=Fullerton%2C+E">Eric Fullerton</a>, <a href="/search/cond-mat?searchtype=author&query=Leighton%2C+C">Chris Leighton</a>, <a href="/search/cond-mat?searchtype=author&query=MacDonald%2C+A">Allan MacDonald</a>, <a href="/search/cond-mat?searchtype=author&query=Ralph%2C+D">Dan Ralph</a>, <a href="/search/cond-mat?searchtype=author&query=Arena%2C+D">Dario Arena</a>, <a href="/search/cond-mat?searchtype=author&query=Durr%2C+H">Hermann Durr</a>, <a href="/search/cond-mat?searchtype=author&query=Fischer%2C+P">Peter Fischer</a>, <a href="/search/cond-mat?searchtype=author&query=Grollier%2C+J">Julie Grollier</a>, <a href="/search/cond-mat?searchtype=author&query=Heremans%2C+J">Joseph Heremans</a>, <a href="/search/cond-mat?searchtype=author&query=Jungwirth%2C+T">Tomas Jungwirth</a>, <a href="/search/cond-mat?searchtype=author&query=Kimmel%2C+A">Alexey Kimmel</a>, <a href="/search/cond-mat?searchtype=author&query=Koopmans%2C+B">Bert Koopmans</a>, <a href="/search/cond-mat?searchtype=author&query=Krivorotov%2C+I">Ilya Krivorotov</a>, <a href="/search/cond-mat?searchtype=author&query=May%2C+S">Steven May</a>, <a href="/search/cond-mat?searchtype=author&query=Petford-Long%2C+A">Amanda Petford-Long</a>, <a href="/search/cond-mat?searchtype=author&query=Rondinelli%2C+J">James Rondinelli</a>, <a href="/search/cond-mat?searchtype=author&query=Samarth%2C+N">Nitin Samarth</a>, <a href="/search/cond-mat?searchtype=author&query=Schuller%2C+I">Ivan Schuller</a>, <a href="/search/cond-mat?searchtype=author&query=Slavin%2C+A">Andrei Slavin</a>, <a href="/search/cond-mat?searchtype=author&query=Stiles%2C+M">Mark Stiles</a>, <a href="/search/cond-mat?searchtype=author&query=Tchernyshyov%2C+O">Oleg Tchernyshyov</a> , et al. (2 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1607.00439v4-abstract-short" style="display: inline;"> This article reviews static and dynamic interfacial effects in magnetism, focusing on interfacially-driven magnetic effects and phenomena associated with spin-orbit coupling and intrinsic symmetry breaking at interfaces. It provides a historical background and literature survey, but focuses on recent progress, identifying the most exciting new scientific results and pointing to promising future re… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1607.00439v4-abstract-full').style.display = 'inline'; document.getElementById('1607.00439v4-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1607.00439v4-abstract-full" style="display: none;"> This article reviews static and dynamic interfacial effects in magnetism, focusing on interfacially-driven magnetic effects and phenomena associated with spin-orbit coupling and intrinsic symmetry breaking at interfaces. It provides a historical background and literature survey, but focuses on recent progress, identifying the most exciting new scientific results and pointing to promising future research directions. It starts with an introduction and overview of how basic magnetic properties are affected by interfaces, then turns to a discussion of charge and spin transport through and near interfaces and how these can be used to control the properties of the magnetic layer. Important concepts include spin accumulation, spin currents, spin transfer torque, and spin pumping. An overview is provided to the current state of knowledge and existing review literature on interfacial effects such as exchange bias, exchange spring magnets, spin Hall effect, oxide heterostructures, and topological insulators. The article highlights recent discoveries of interface-induced magnetism and non-collinear spin textures, non-linear dynamics including spin torque transfer and magnetization reversal induced by interfaces, and interfacial effects in ultrafast magnetization processes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1607.00439v4-abstract-full').style.display = 'none'; document.getElementById('1607.00439v4-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 June, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 July, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">193 pages, including 28 figures inserted after text and references. Paper accepted in Reviews of Modern Physics</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Rev. Mod. Phys. 89, 25006 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1607.00224">arXiv:1607.00224</a> <span> [<a href="https://arxiv.org/pdf/1607.00224">pdf</a>, <a href="https://arxiv.org/ps/1607.00224">ps</a>, <a href="https://arxiv.org/format/1607.00224">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Fabrication and optical characterization of long-range surface-plasmon-polariton waveguides in the NIR </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Weber%2C+M">Markus Weber</a>, <a href="/search/cond-mat?searchtype=author&query=Trapp%2C+J">Johannes Trapp</a>, <a href="/search/cond-mat?searchtype=author&query=Boehm%2C+F">Florian Boehm</a>, <a href="/search/cond-mat?searchtype=author&query=Fischer%2C+P">Peter Fischer</a>, <a href="/search/cond-mat?searchtype=author&query=Kraus%2C+M">Marion Kraus</a>, <a href="/search/cond-mat?searchtype=author&query=Tashima%2C+T">Toshiyuki Tashima</a>, <a href="/search/cond-mat?searchtype=author&query=Liebermeister%2C+L">Lars Liebermeister</a>, <a href="/search/cond-mat?searchtype=author&query=Altpeter%2C+P">Philipp Altpeter</a>, <a href="/search/cond-mat?searchtype=author&query=Weinfurter%2C+H">Harald Weinfurter</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1607.00224v1-abstract-short" style="display: inline;"> We experimentally demonstrate the propagation of long-range surface plasmon-polaritons in a nobel metal stripe waveguide at an optical wavelength of 780 nm. To minimize propagation damping the lithographically structured waveguide is produced from a thin gold stripe embedded in a dielectric polymer. Our waveguide geometry supports a symmetric fundamental and anti-symmetric first order mode. For th… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1607.00224v1-abstract-full').style.display = 'inline'; document.getElementById('1607.00224v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1607.00224v1-abstract-full" style="display: none;"> We experimentally demonstrate the propagation of long-range surface plasmon-polaritons in a nobel metal stripe waveguide at an optical wavelength of 780 nm. To minimize propagation damping the lithographically structured waveguide is produced from a thin gold stripe embedded in a dielectric polymer. Our waveguide geometry supports a symmetric fundamental and anti-symmetric first order mode. For the fundamental mode we measure a propagation loss of $(6.12^{+0.66} _{-0.54})$ dB/mm, in good agreement with numerical simulations using a vectorial eigenmode solver. Our results are a promising starting point for coupling fluorescence of individual solid state quantum emitters to integrated plasmonic waveguide structures. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1607.00224v1-abstract-full').style.display = 'none'; document.getElementById('1607.00224v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 July, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2016. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1603.07882">arXiv:1603.07882</a> <span> [<a href="https://arxiv.org/pdf/1603.07882">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/1.4955462">10.1063/1.4955462 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Synthesizing Skyrmion Molecules in Fe-Gd Thin Films </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Lee%2C+J+C+T">J. C. T Lee</a>, <a href="/search/cond-mat?searchtype=author&query=Chess%2C+J+J">J. J. Chess</a>, <a href="/search/cond-mat?searchtype=author&query=Montoya%2C+S+A">S. A. Montoya</a>, <a href="/search/cond-mat?searchtype=author&query=Shi%2C+X">X. Shi</a>, <a href="/search/cond-mat?searchtype=author&query=Tamura%2C+N">N. Tamura</a>, <a href="/search/cond-mat?searchtype=author&query=Mishra%2C+S+K">S. K. Mishra</a>, <a href="/search/cond-mat?searchtype=author&query=Fischer%2C+P">P. Fischer</a>, <a href="/search/cond-mat?searchtype=author&query=McMorran%2C+B+J">B. J. McMorran</a>, <a href="/search/cond-mat?searchtype=author&query=Sinha%2C+S+K">S. K. Sinha</a>, <a href="/search/cond-mat?searchtype=author&query=Fullerton%2C+E+E">E. E. Fullerton</a>, <a href="/search/cond-mat?searchtype=author&query=Kevan%2C+S+D">S. D. Kevan</a>, <a href="/search/cond-mat?searchtype=author&query=Roy%2C+S">S. Roy</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1603.07882v2-abstract-short" style="display: inline;"> We show that properly engineered amorphous Fe-Gd alloy thin films with perpendicular magnetic anisotropy exhibit room-temperature skyrmion molecules, or a pair of like-polarity, opposite-helicity skyrmions. Magnetic mirror symmetry planes present in the stripe phase, instead of chiral exchange, determine the internal skyrmion structure and the net achirality of the skyrmion phase. Our study shows… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1603.07882v2-abstract-full').style.display = 'inline'; document.getElementById('1603.07882v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1603.07882v2-abstract-full" style="display: none;"> We show that properly engineered amorphous Fe-Gd alloy thin films with perpendicular magnetic anisotropy exhibit room-temperature skyrmion molecules, or a pair of like-polarity, opposite-helicity skyrmions. Magnetic mirror symmetry planes present in the stripe phase, instead of chiral exchange, determine the internal skyrmion structure and the net achirality of the skyrmion phase. Our study shows that stripe domain engineering in amorphous alloy thin films may enable the creation of skyrmion phases with technologically desirable properties. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1603.07882v2-abstract-full').style.display = 'none'; document.getElementById('1603.07882v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 June, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 March, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 6 figures. Accepted for publication in Applied Physics Letters</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1603.06339">arXiv:1603.06339</a> <span> [<a href="https://arxiv.org/pdf/1603.06339">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.117.047401">10.1103/PhysRevLett.117.047401 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Optical Activation of Germanium Plasmonic Antennas in the Mid Infrared </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Fischer%2C+M+P">Marco P. Fischer</a>, <a href="/search/cond-mat?searchtype=author&query=Schmidt%2C+C">Christian Schmidt</a>, <a href="/search/cond-mat?searchtype=author&query=Sakat%2C+E">Emilie Sakat</a>, <a href="/search/cond-mat?searchtype=author&query=Stock%2C+J">Johannes Stock</a>, <a href="/search/cond-mat?searchtype=author&query=Samarelli%2C+A">Antonio Samarelli</a>, <a href="/search/cond-mat?searchtype=author&query=Frigerio%2C+J">Jacopo Frigerio</a>, <a href="/search/cond-mat?searchtype=author&query=Ortolani%2C+M">Michele Ortolani</a>, <a href="/search/cond-mat?searchtype=author&query=Paul%2C+D+J">Douglas J. Paul</a>, <a href="/search/cond-mat?searchtype=author&query=Isella%2C+G">Giovanni Isella</a>, <a href="/search/cond-mat?searchtype=author&query=Leitenstorfer%2C+A">Alfred Leitenstorfer</a>, <a href="/search/cond-mat?searchtype=author&query=Biagioni%2C+P">Paolo Biagioni</a>, <a href="/search/cond-mat?searchtype=author&query=Brida%2C+D">Daniele Brida</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1603.06339v2-abstract-short" style="display: inline;"> Impulsive interband excitation with femtosecond near-infrared pulses establishes a plasma response in intrinsic germanium structures fabricated on a silicon substrate. This direct approach activates the plasmonic resonance of the Ge structures and enables their use as optical antennas up to the mid-infrared spectral range. The optical switching lasts for hundreds of picoseconds until charge recomb… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1603.06339v2-abstract-full').style.display = 'inline'; document.getElementById('1603.06339v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1603.06339v2-abstract-full" style="display: none;"> Impulsive interband excitation with femtosecond near-infrared pulses establishes a plasma response in intrinsic germanium structures fabricated on a silicon substrate. This direct approach activates the plasmonic resonance of the Ge structures and enables their use as optical antennas up to the mid-infrared spectral range. The optical switching lasts for hundreds of picoseconds until charge recombination red-shifts the plasma frequency. The full behavior of the structures is modeled by the electrodynamic response established by an electron-hole plasma in a regular array of antennas. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1603.06339v2-abstract-full').style.display = 'none'; document.getElementById('1603.06339v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 June, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 March, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 117, 047401 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1601.05321">arXiv:1601.05321</a> <span> [<a href="https://arxiv.org/pdf/1601.05321">pdf</a>, <a href="https://arxiv.org/ps/1601.05321">ps</a>, <a href="https://arxiv.org/format/1601.05321">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.94.085202">10.1103/PhysRevB.94.085202 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Tunability and Losses of Mid-infrared Plasmonics in Heavily Doped Germanium Thin Films </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Frigerio%2C+J">Jacopo Frigerio</a>, <a href="/search/cond-mat?searchtype=author&query=Ballabio%2C+A">Andrea Ballabio</a>, <a href="/search/cond-mat?searchtype=author&query=Isella%2C+G">Giovanni Isella</a>, <a href="/search/cond-mat?searchtype=author&query=Sakat%2C+E">Emilie Sakat</a>, <a href="/search/cond-mat?searchtype=author&query=Biagioni%2C+P">Paolo Biagioni</a>, <a href="/search/cond-mat?searchtype=author&query=Bollani%2C+M">Monica Bollani</a>, <a href="/search/cond-mat?searchtype=author&query=Napolitani%2C+E">Enrico Napolitani</a>, <a href="/search/cond-mat?searchtype=author&query=Manganelli%2C+C">Costanza Manganelli</a>, <a href="/search/cond-mat?searchtype=author&query=Virgilio%2C+M">Michele Virgilio</a>, <a href="/search/cond-mat?searchtype=author&query=Grupp%2C+A">Alexander Grupp</a>, <a href="/search/cond-mat?searchtype=author&query=Fischer%2C+M+P">Marco P. Fischer</a>, <a href="/search/cond-mat?searchtype=author&query=Brida%2C+D">Daniele Brida</a>, <a href="/search/cond-mat?searchtype=author&query=Gallacher%2C+K">Kevin Gallacher</a>, <a href="/search/cond-mat?searchtype=author&query=Paul%2C+D+J">Douglas J. Paul</a>, <a href="/search/cond-mat?searchtype=author&query=Baldassarre%2C+L">Leonetta Baldassarre</a>, <a href="/search/cond-mat?searchtype=author&query=Calvani%2C+P">Paolo Calvani</a>, <a href="/search/cond-mat?searchtype=author&query=Giliberti%2C+V">Valeria Giliberti</a>, <a href="/search/cond-mat?searchtype=author&query=Nucara%2C+A">Alessandro Nucara</a>, <a href="/search/cond-mat?searchtype=author&query=Ortolani%2C+M">Michele Ortolani</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1601.05321v1-abstract-short" style="display: inline;"> Heavily-doped semiconductor films are very promising for application in mid-infrared plasmonic devices because the real part of their dielectric function is negative and broadly tunable in this wavelength range. In this work we investigate heavily n-type doped germanium epilayers grown on different substrates, in-situ doped in the $10^{17}$ to $10^{19}$ cm$^{-3}$ range, by infrared spectroscopy, f… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1601.05321v1-abstract-full').style.display = 'inline'; document.getElementById('1601.05321v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1601.05321v1-abstract-full" style="display: none;"> Heavily-doped semiconductor films are very promising for application in mid-infrared plasmonic devices because the real part of their dielectric function is negative and broadly tunable in this wavelength range. In this work we investigate heavily n-type doped germanium epilayers grown on different substrates, in-situ doped in the $10^{17}$ to $10^{19}$ cm$^{-3}$ range, by infrared spectroscopy, first principle calculations, pump-probe spectroscopy and dc transport measurements to determine the relation between plasma edge and carrier density and to quantify mid-infrared plasmon losses. We demonstrate that the unscreened plasma frequency can be tuned in the 400 - 4800 cm$^{-1}$ range and that the average electron scattering rate, dominated by scattering with optical phonons and charged impurities, increases almost linearly with frequency. We also found weak dependence of losses and tunability on the crystal defect density, on the inactivated dopant density and on the temperature down to 10 K. In films where the plasma was optically activated by pumping in the near-infrared, we found weak but significant dependence of relaxation times on the static doping level of the film. Our results suggest that plasmon decay times in the several-picosecond range can be obtained in n-type germanium thin films grown on silicon substrates hence allowing for underdamped mid-infrared plasma oscillations at room temperature. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1601.05321v1-abstract-full').style.display = 'none'; document.getElementById('1601.05321v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 January, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 10 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 94, 085202 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1503.02681">arXiv:1503.02681</a> <span> [<a href="https://arxiv.org/pdf/1503.02681">pdf</a>, <a href="https://arxiv.org/format/1503.02681">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/1.4928503">10.1063/1.4928503 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Raspberry Model for Hydrodynamic Interactions Revisited. II. The Effect of Confinement </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=de+Graaf%2C+J">Joost de Graaf</a>, <a href="/search/cond-mat?searchtype=author&query=Peter%2C+T">Toni Peter</a>, <a href="/search/cond-mat?searchtype=author&query=Fischer%2C+L+P">Lukas P. Fischer</a>, <a href="/search/cond-mat?searchtype=author&query=Holm%2C+C">Christian Holm</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1503.02681v4-abstract-short" style="display: inline;"> The so-called 'raspberry' model refers to the hybrid lattice-Boltzmann (LB) and Langevin molecular dynamics scheme for simulating the dynamics of suspensions of colloidal particles, originally developed by [V. Lobaskin and B. D眉nweg, New J. Phys. 6, 54 (2004)], wherein discrete surface points are used to achieve fluid-particle coupling. In this paper, we present a follow up to our study of the eff… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1503.02681v4-abstract-full').style.display = 'inline'; document.getElementById('1503.02681v4-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1503.02681v4-abstract-full" style="display: none;"> The so-called 'raspberry' model refers to the hybrid lattice-Boltzmann (LB) and Langevin molecular dynamics scheme for simulating the dynamics of suspensions of colloidal particles, originally developed by [V. Lobaskin and B. D眉nweg, New J. Phys. 6, 54 (2004)], wherein discrete surface points are used to achieve fluid-particle coupling. In this paper, we present a follow up to our study of the effectiveness of the raspberry model in reproducing hydrodynamic interactions in the Stokes regime for spheres arranged in a simple-cubic crystal [L. Fischer, et al., J. Chem. Phys. 143, 084108 (2015)]. Here, we consider the accuracy with which the raspberry model is able to reproduce such interactions for particles confined between two parallel plates. To this end, we compare our LB simulation results to established theoretical expressions and finite-element calculations. We show that there is a discrepancy between the translational and rotational mobility when only surface coupling points are used, as also found in Part I of our joint publication. We demonstrate that adding internal coupling points to the raspberry, can be used to correct said discrepancy in confining geometries as well. Finally, we show that the raspberry model accurately reproduces hydrodynamic interactions between a spherical colloid and planar walls up to roughly one LB lattice spacing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1503.02681v4-abstract-full').style.display = 'none'; document.getElementById('1503.02681v4-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 July, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 March, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 8 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1503.02671">arXiv:1503.02671</a> <span> [<a href="https://arxiv.org/pdf/1503.02671">pdf</a>, <a href="https://arxiv.org/format/1503.02671">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/1.4928502">10.1063/1.4928502 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Raspberry Model for Hydrodynamic Interactions Revisited. I. Periodic Arrays of Spheres and Dumbbells </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Fischer%2C+L+P">Lukas P. Fischer</a>, <a href="/search/cond-mat?searchtype=author&query=Peter%2C+T">Toni Peter</a>, <a href="/search/cond-mat?searchtype=author&query=Holm%2C+C">Christian Holm</a>, <a href="/search/cond-mat?searchtype=author&query=de+Graaf%2C+J">Joost de Graaf</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1503.02671v5-abstract-short" style="display: inline;"> The so-called 'raspberry' model refers to the hybrid lattice-Boltzmann and Langevin molecular dynamics scheme for simulating the dynamics of suspensions of colloidal particles, originally developed by [V. Lobaskin and B. D眉nweg, New J. Phys. 6, 54 (2004)], wherein discrete surface points are used to achieve fluid-particle coupling. This technique has been used in many simulation studies on the beh… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1503.02671v5-abstract-full').style.display = 'inline'; document.getElementById('1503.02671v5-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1503.02671v5-abstract-full" style="display: none;"> The so-called 'raspberry' model refers to the hybrid lattice-Boltzmann and Langevin molecular dynamics scheme for simulating the dynamics of suspensions of colloidal particles, originally developed by [V. Lobaskin and B. D眉nweg, New J. Phys. 6, 54 (2004)], wherein discrete surface points are used to achieve fluid-particle coupling. This technique has been used in many simulation studies on the behavior of colloids. However, there are fundamental questions with regards to the use of this model. In this paper, we examine the accuracy with which the raspberry method is able to reproduce Stokes-level hydrodynamic interactions when compared to analytic expressions for solid spheres in simple-cubic crystals. To this end, we consider the quality of numerical experiments that are traditionally used to establish these properties and we discuss their shortcomings. We show that there is a discrepancy between the translational and rotational mobility reproduced by the simple raspberry model and present a way to numerically remedy the problem by adding internal coupling points. Finally, we examine a non-convex shape, namely a colloidal dumbbell, and show that the filled raspberry model replicates the desired hydrodynamic behavior in bulk for this more complicated shape. Our investigation is continued in [J. de Graaf, et al., J. Chem. Phys. 143, 084107 (2015)], wherein we consider the raspberry model in the confining geometry of two parallel plates. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1503.02671v5-abstract-full').style.display = 'none'; document.getElementById('1503.02671v5-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 October, 2015; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 March, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">25 pages, 11 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1502.07376">arXiv:1502.07376</a> <span> [<a href="https://arxiv.org/pdf/1502.07376">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/nmat4593">10.1038/nmat4593 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Observation of room temperature magnetic skyrmions and their current-driven dynamics in ultrathin Co films </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Woo%2C+S">Seonghoon Woo</a>, <a href="/search/cond-mat?searchtype=author&query=Litzius%2C+K">Kai Litzius</a>, <a href="/search/cond-mat?searchtype=author&query=Kr%C3%BCger%2C+B">Benjamin Kr眉ger</a>, <a href="/search/cond-mat?searchtype=author&query=Im%2C+M">Mi-Young Im</a>, <a href="/search/cond-mat?searchtype=author&query=Caretta%2C+L">Lucas Caretta</a>, <a href="/search/cond-mat?searchtype=author&query=Richter%2C+K">Kornel Richter</a>, <a href="/search/cond-mat?searchtype=author&query=Mann%2C+M">Maxwell Mann</a>, <a href="/search/cond-mat?searchtype=author&query=Krone%2C+A">Andrea Krone</a>, <a href="/search/cond-mat?searchtype=author&query=Reeve%2C+R">Robert Reeve</a>, <a href="/search/cond-mat?searchtype=author&query=Weigand%2C+M">Markus Weigand</a>, <a href="/search/cond-mat?searchtype=author&query=Agrawal%2C+P">Parnika Agrawal</a>, <a href="/search/cond-mat?searchtype=author&query=Fischer%2C+P">Peter Fischer</a>, <a href="/search/cond-mat?searchtype=author&query=Kl%C3%A4ui%2C+M">Mathias Kl盲ui</a>, <a href="/search/cond-mat?searchtype=author&query=Beach%2C+G+S+D">Geoffrey S. D. Beach</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1502.07376v1-abstract-short" style="display: inline;"> Magnetic skyrmions are topologically-protected spin textures that exhibit fascinating physical behaviors and large potential in highly energy efficient spintronic device applications. The main obstacles so far are that skyrmions have been observed in only a few exotic materials and at low temperatures, and manipulation of individual skyrmions has not yet been achieved. Here, we report the observat… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1502.07376v1-abstract-full').style.display = 'inline'; document.getElementById('1502.07376v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1502.07376v1-abstract-full" style="display: none;"> Magnetic skyrmions are topologically-protected spin textures that exhibit fascinating physical behaviors and large potential in highly energy efficient spintronic device applications. The main obstacles so far are that skyrmions have been observed in only a few exotic materials and at low temperatures, and manipulation of individual skyrmions has not yet been achieved. Here, we report the observation of stable magnetic skyrmions at room temperature in ultrathin transition metal ferromagnets with magnetic transmission soft x-ray microscopy. We demonstrate the ability to generate stable skyrmion lattices and drive trains of individual skyrmions by short current pulses along a magnetic racetrack. Our findings provide experimental evidence of recent predictions and open the door to room-temperature skyrmion spintronics in robust thin-film heterostructures. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1502.07376v1-abstract-full').style.display = 'none'; document.getElementById('1502.07376v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 February, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1408.3157">arXiv:1408.3157</a> <span> [<a href="https://arxiv.org/pdf/1408.3157">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/ncomms7466">10.1038/ncomms7466 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Sub-nanosecond signal propagation in anisotropy engineered nanomagnetic logic chains </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Gu%2C+Z">Zheng Gu</a>, <a href="/search/cond-mat?searchtype=author&query=Nowakowski%2C+M+E">Mark E. Nowakowski</a>, <a href="/search/cond-mat?searchtype=author&query=Carlton%2C+D+B">David B. Carlton</a>, <a href="/search/cond-mat?searchtype=author&query=Storz%2C+R">Ralph Storz</a>, <a href="/search/cond-mat?searchtype=author&query=Im%2C+M">Mi-Young Im</a>, <a href="/search/cond-mat?searchtype=author&query=Hong%2C+J">Jeongmin Hong</a>, <a href="/search/cond-mat?searchtype=author&query=Chao%2C+W">Weilun Chao</a>, <a href="/search/cond-mat?searchtype=author&query=Lambson%2C+B">Brian Lambson</a>, <a href="/search/cond-mat?searchtype=author&query=Bennett%2C+P">Patrick Bennett</a>, <a href="/search/cond-mat?searchtype=author&query=Alam%2C+M+T">Mohmmad T. Alam</a>, <a href="/search/cond-mat?searchtype=author&query=Marcus%2C+M+A">Matthew A. Marcus</a>, <a href="/search/cond-mat?searchtype=author&query=Doran%2C+A">Andrew Doran</a>, <a href="/search/cond-mat?searchtype=author&query=Young%2C+A">Anthony Young</a>, <a href="/search/cond-mat?searchtype=author&query=Scholl%2C+A">Andreas Scholl</a>, <a href="/search/cond-mat?searchtype=author&query=Fischer%2C+P">Peter Fischer</a>, <a href="/search/cond-mat?searchtype=author&query=Bokor%2C+J">Jeffrey Bokor</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1408.3157v1-abstract-short" style="display: inline;"> Energy efficient nanomagnetic logic (NML) computing architectures propagate and process binary information by relying on dipolar field coupling to reorient closely-spaced nanoscale magnets. Signal propagation in nanomagnet chains of various sizes, shapes, and magnetic orientations has been previously characterized by static magnetic imaging experiments with low-speed adiabatic operation; however t… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1408.3157v1-abstract-full').style.display = 'inline'; document.getElementById('1408.3157v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1408.3157v1-abstract-full" style="display: none;"> Energy efficient nanomagnetic logic (NML) computing architectures propagate and process binary information by relying on dipolar field coupling to reorient closely-spaced nanoscale magnets. Signal propagation in nanomagnet chains of various sizes, shapes, and magnetic orientations has been previously characterized by static magnetic imaging experiments with low-speed adiabatic operation; however the mechanisms which determine the final state and their reproducibility over millions of cycles in high-speed operation (sub-ns time scale) have yet to be experimentally investigated. Monitoring NML operation at its ultimate intrinsic speed reveals features undetectable by conventional static imaging including individual nanomagnetic switching events and systematic error nucleation during signal propagation. Here, we present a new study of NML operation in a high speed regime at fast repetition rates. We perform direct imaging of digital signal propagation in permalloy nanomagnet chains with varying degrees of shape-engineered biaxial anisotropy using full-field magnetic soft x-ray transmission microscopy after applying single nanosecond magnetic field pulses. Further, we use time-resolved magnetic photo-emission electron microscopy to evaluate the sub-nanosecond dipolar coupling signal propagation dynamics in optimized chains with 100 ps time resolution as they are cycled with nanosecond field pulses at a rate of 3 MHz. An intrinsic switching time of 100 ps per magnet is observed. These experiments, and accompanying macro-spin and micromagnetic simulations, reveal the underlying physics of NML architectures repetitively operated on nanosecond timescales and identify relevant engineering parameters to optimize performance and reliability. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1408.3157v1-abstract-full').style.display = 'none'; document.getElementById('1408.3157v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 August, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Main article (22 pages, 4 figures), Supplementary info (11 pages, 5 sections)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1303.4170">arXiv:1303.4170</a> <span> [<a href="https://arxiv.org/pdf/1303.4170">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Wave modes of collective vortex gyration in dipolar-coupled-dot-array magnonic crystals </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Han%2C+D">Dong-Soo Han</a>, <a href="/search/cond-mat?searchtype=author&query=Vogel%2C+A">Andreas Vogel</a>, <a href="/search/cond-mat?searchtype=author&query=Jung%2C+H">Hyunsung Jung</a>, <a href="/search/cond-mat?searchtype=author&query=Lee%2C+K">Ki-Suk Lee</a>, <a href="/search/cond-mat?searchtype=author&query=Weigand%2C+M">Markus Weigand</a>, <a href="/search/cond-mat?searchtype=author&query=Stoll%2C+H">Hermann Stoll</a>, <a href="/search/cond-mat?searchtype=author&query=Sch%C3%BCtz%2C+G">Gisela Sch眉tz</a>, <a href="/search/cond-mat?searchtype=author&query=Fischer%2C+P">Peter Fischer</a>, <a href="/search/cond-mat?searchtype=author&query=Meier%2C+G">Guido Meier</a>, <a href="/search/cond-mat?searchtype=author&query=Kim%2C+S">Sang-Koog Kim</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1303.4170v1-abstract-short" style="display: inline;"> Lattice vibration modes are collective excitations in periodic arrays of atoms or molecules. These modes determine novel transport properties in solid crystals. Analogously, in periodical arrangements of magnetic vortex-state disks, collective vortex motions have been predicted. Here, we experimentally observe wave modes of collective vortex gyration in one-dimensional (1D) chains of periodic disk… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1303.4170v1-abstract-full').style.display = 'inline'; document.getElementById('1303.4170v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1303.4170v1-abstract-full" style="display: none;"> Lattice vibration modes are collective excitations in periodic arrays of atoms or molecules. These modes determine novel transport properties in solid crystals. Analogously, in periodical arrangements of magnetic vortex-state disks, collective vortex motions have been predicted. Here, we experimentally observe wave modes of collective vortex gyration in one-dimensional (1D) chains of periodic disks using time-resolved scanning transmission x-ray microscopy. The observed modes are interpreted based on micromagnetic simulation and numerical calculation of coupled Thiele equations. Dispersion of the modes is found to be strongly affected by both vortex polarization and chirality ordering, as revealed by the explicit analytical form of 1D infinite chains. A thorough understanding thereof is fundamental both for lattice vibrations and vortex dynamics, which we demonstrate for 1D magnonic crystals. Such magnetic disk arrays with vortex-state ordering, referred to as magnetic metastructure, offer potential implementation into information processing devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1303.4170v1-abstract-full').style.display = 'none'; document.getElementById('1303.4170v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 March, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">39pagae, 7 figures (including two supplementary figures)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1012.0895">arXiv:1012.0895</a> <span> [<a href="https://arxiv.org/pdf/1012.0895">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/1.3551524">10.1063/1.3551524 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Memory-bit selective recording in vortex-core cross-point architecture </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Yu%2C+Y">Young-Sang Yu</a>, <a href="/search/cond-mat?searchtype=author&query=Jung%2C+H">Hyunsung Jung</a>, <a href="/search/cond-mat?searchtype=author&query=Lee%2C+K">Ki-Suk Lee</a>, <a href="/search/cond-mat?searchtype=author&query=Fischer%2C+P">Peter Fischer</a>, <a href="/search/cond-mat?searchtype=author&query=Kim%2C+S">Sang-Koog Kim</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1012.0895v1-abstract-short" style="display: inline;"> In our earlier work [Appl. Phys. Lett. 92, 022509 (2008)], we proposed nonvolatile vortex random access memory (VRAM) based on the energetically stable twofold ground state of vortex-core magnetizations as information carrier. Here we experimentally demonstrate reliable memory bit selection and low-power-consumption recording in a two-by-two vortex-state dot array. The bit selection and core switc… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1012.0895v1-abstract-full').style.display = 'inline'; document.getElementById('1012.0895v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1012.0895v1-abstract-full" style="display: none;"> In our earlier work [Appl. Phys. Lett. 92, 022509 (2008)], we proposed nonvolatile vortex random access memory (VRAM) based on the energetically stable twofold ground state of vortex-core magnetizations as information carrier. Here we experimentally demonstrate reliable memory bit selection and low-power-consumption recording in a two-by-two vortex-state dot array. The bit selection and core switching is made by flowing currents along two orthogonal addressing electrode lines chosen among the other crossed electrodes. Tailored pulse-type rotating magnetic fields are used for efficiently switching a vortex core only at the intersection of the two orthogonal electrodes. This robust mechanism provides reliable bit selection and information writing operations in a potential VRAM device. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1012.0895v1-abstract-full').style.display = 'none'; document.getElementById('1012.0895v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 December, 2010; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2010. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Appl. Phys. Lett. 98, 052507 (2011) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1011.6399">arXiv:1011.6399</a> <span> [<a href="https://arxiv.org/pdf/1011.6399">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/srep00059">10.1038/srep00059 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Tunable energy transfer between dipolar-coupled magnetic disks by stimulated vortex gyration </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Jung%2C+H">Hyunsung Jung</a>, <a href="/search/cond-mat?searchtype=author&query=Lee%2C+K">Ki-Suk Lee</a>, <a href="/search/cond-mat?searchtype=author&query=Jeong%2C+D">Dae-Eun Jeong</a>, <a href="/search/cond-mat?searchtype=author&query=Choi%2C+Y">Youn-Seok Choi</a>, <a href="/search/cond-mat?searchtype=author&query=Yu%2C+Y">Young-Sang Yu</a>, <a href="/search/cond-mat?searchtype=author&query=Han%2C+D">Dong-Soo Han</a>, <a href="/search/cond-mat?searchtype=author&query=Vogel%2C+A">Andreas Vogel</a>, <a href="/search/cond-mat?searchtype=author&query=Bocklage%2C+L">Lars Bocklage</a>, <a href="/search/cond-mat?searchtype=author&query=Meier%2C+G">Guido Meier</a>, <a href="/search/cond-mat?searchtype=author&query=Im%2C+M">Mi-Young Im</a>, <a href="/search/cond-mat?searchtype=author&query=Fischer%2C+P">Peter Fischer</a>, <a href="/search/cond-mat?searchtype=author&query=Kim%2C+S">Sang-Koog Kim</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1011.6399v1-abstract-short" style="display: inline;"> A wide variety of coupled harmonic oscillators exist in nature1. Coupling between different oscillators allows for the possibility of mutual energy transfer between them2-4 and the information-signal propagation5,6. Low-energy input signals and their transport with low-energy dissipation are the key technical factors in the design of information processing devices7. Here, utilizing the concept of… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1011.6399v1-abstract-full').style.display = 'inline'; document.getElementById('1011.6399v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1011.6399v1-abstract-full" style="display: none;"> A wide variety of coupled harmonic oscillators exist in nature1. Coupling between different oscillators allows for the possibility of mutual energy transfer between them2-4 and the information-signal propagation5,6. Low-energy input signals and their transport with low-energy dissipation are the key technical factors in the design of information processing devices7. Here, utilizing the concept of coupled oscillators, we experimentally demonstrated a robust new mechanism for energy transfer between spatially separated dipolar-coupled magnetic disks - stimulated vortex gyration. Direct experimental evidence was obtained by time-resolved soft X-ray microscopy. The rate of energy transfer from one disk to the other was deduced from the two normal modes' frequency splitting caused by dipolar interaction. This mechanism provides the advantages of tunable energy transfer rate, low-power input signal, and low-energy dissipation for magnetic elements with negligible damping. Coupled vortex-state disks are promising candidates for information-signal processing devices that operate above room temperature. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1011.6399v1-abstract-full').style.display = 'none'; document.getElementById('1011.6399v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 November, 2010; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2010. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Scientific Reports 1, 59; DOI:10.1038/srep00059 (2011) </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Fischer%2C+P&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Fischer%2C+P&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Fischer%2C+P&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>