CINXE.COM
Search | arXiv e-print repository
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1–16 of 16 results for author: <span class="mathjax">Nandy, A</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> <div class="content"> <form method="GET" action="/search/physics" aria-role="search"> Searching in archive <strong>physics</strong>. <a href="/search/?searchtype=author&query=Nandy%2C+A">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Nandy, A"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Nandy%2C+A&terms-0-field=author&size=50&order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Nandy, A"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.14191">arXiv:2210.14191</a> <span> [<a href="https://arxiv.org/pdf/2210.14191">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> </div> <p class="title is-5 mathjax"> A Database of Ultrastable MOFs Reassembled from Stable Fragments with Machine Learning Models </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Nandy%2C+A">Aditya Nandy</a>, <a href="/search/physics?searchtype=author&query=Yue%2C+S">Shuwen Yue</a>, <a href="/search/physics?searchtype=author&query=Oh%2C+C">Changhwan Oh</a>, <a href="/search/physics?searchtype=author&query=Duan%2C+C">Chenru Duan</a>, <a href="/search/physics?searchtype=author&query=Terrones%2C+G+G">Gianmarco G. Terrones</a>, <a href="/search/physics?searchtype=author&query=Chung%2C+Y+G">Yongchul G. Chung</a>, <a href="/search/physics?searchtype=author&query=Kulik%2C+H+J">Heather J. Kulik</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.14191v1-abstract-short" style="display: inline;"> High-throughput screening of large hypothetical databases of metal-organic frameworks (MOFs) can uncover new materials, but their stability in real-world applications is often unknown. We leverage community knowledge and machine learning (ML) models to identify MOFs that are thermally stable and stable upon activation. We separate these MOFs into their building blocks and recombine them to make a… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.14191v1-abstract-full').style.display = 'inline'; document.getElementById('2210.14191v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.14191v1-abstract-full" style="display: none;"> High-throughput screening of large hypothetical databases of metal-organic frameworks (MOFs) can uncover new materials, but their stability in real-world applications is often unknown. We leverage community knowledge and machine learning (ML) models to identify MOFs that are thermally stable and stable upon activation. We separate these MOFs into their building blocks and recombine them to make a new hypothetical MOF database of over 50,000 structures that samples orders of magnitude more connectivity nets and inorganic building blocks than prior databases. This database shows an order of magnitude enrichment of ultrastable MOF structures that are stable upon activation and more than one standard deviation more thermally stable than the average experimentally characterized MOF. For the nearly 10,000 ultrastable MOFs, we compute bulk elastic moduli to confirm these materials have good mechanical stability, and we report methane deliverable capacities. Our work identifies privileged metal nodes in ultrastable MOFs that optimize gas storage and mechanical stability simultaneously. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.14191v1-abstract-full').style.display = 'none'; document.getElementById('2210.14191v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.08595">arXiv:2209.08595</a> <span> [<a href="https://arxiv.org/pdf/2209.08595">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> Low-cost machine learning approach to the prediction of transition metal phosphor excited state properties </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Terrones%2C+G">Gianmarco Terrones</a>, <a href="/search/physics?searchtype=author&query=Duan%2C+C">Chenru Duan</a>, <a href="/search/physics?searchtype=author&query=Nandy%2C+A">Aditya Nandy</a>, <a href="/search/physics?searchtype=author&query=Kulik%2C+H+J">Heather J. Kulik</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.08595v1-abstract-short" style="display: inline;"> Photoactive iridium complexes are of broad interest due to their applications ranging from lighting to photocatalysis. However, the excited state property prediction of these complexes challenges ab initio methods such as time-dependent density functional theory (TDDFT) both from an accuracy and a computational cost perspective, complicating high throughput virtual screening (HTVS). We instead lev… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.08595v1-abstract-full').style.display = 'inline'; document.getElementById('2209.08595v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.08595v1-abstract-full" style="display: none;"> Photoactive iridium complexes are of broad interest due to their applications ranging from lighting to photocatalysis. However, the excited state property prediction of these complexes challenges ab initio methods such as time-dependent density functional theory (TDDFT) both from an accuracy and a computational cost perspective, complicating high throughput virtual screening (HTVS). We instead leverage low-cost machine learning (ML) models to predict the excited state properties of photoactive iridium complexes. We use experimental data of 1,380 iridium complexes to train and evaluate the ML models and identify the best-performing and most transferable models to be those trained on electronic structure features from low-cost density functional theory tight binding calculations. Using these models, we predict the three excited state properties considered, mean emission energy of phosphorescence, excited state lifetime, and emission spectral integral, with accuracy competitive with or superseding TDDFT. We conduct feature importance analysis to identify which iridium complex attributes govern excited state properties and we validate these trends with explicit examples. As a demonstration of how our ML models can be used for HTVS and the acceleration of chemical discovery, we curate a set of novel hypothetical iridium complexes and identify promising ligands for the design of new phosphors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.08595v1-abstract-full').style.display = 'none'; document.getElementById('2209.08595v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.05412">arXiv:2209.05412</a> <span> [<a href="https://arxiv.org/pdf/2209.05412">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0125700">10.1063/5.0125700 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Ligand additivity relationships enable efficient exploration of transition metal chemical space </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Arunachalam%2C+N">Naveen Arunachalam</a>, <a href="/search/physics?searchtype=author&query=Gugler%2C+S">Stefan Gugler</a>, <a href="/search/physics?searchtype=author&query=Taylor%2C+M+G">Michael G. Taylor</a>, <a href="/search/physics?searchtype=author&query=Duan%2C+C">Chenru Duan</a>, <a href="/search/physics?searchtype=author&query=Nandy%2C+A">Aditya Nandy</a>, <a href="/search/physics?searchtype=author&query=Janet%2C+J+P">Jon Paul Janet</a>, <a href="/search/physics?searchtype=author&query=Meyer%2C+R">Ralf Meyer</a>, <a href="/search/physics?searchtype=author&query=Oldenstaedt%2C+J">Jonas Oldenstaedt</a>, <a href="/search/physics?searchtype=author&query=Chu%2C+D+B+K">Daniel B. K. Chu</a>, <a href="/search/physics?searchtype=author&query=Kulik%2C+H+J">Heather J. Kulik</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.05412v1-abstract-short" style="display: inline;"> To accelerate exploration of chemical space, it is necessary to identify the compounds that will provide the most additional information or value. A large-scale analysis of mononuclear octahedral transition metal complexes deposited in an experimental database confirms an under-representation of lower-symmetry complexes. From a set of around 1000 previously studied Fe(II) complexes, we show that t… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.05412v1-abstract-full').style.display = 'inline'; document.getElementById('2209.05412v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.05412v1-abstract-full" style="display: none;"> To accelerate exploration of chemical space, it is necessary to identify the compounds that will provide the most additional information or value. A large-scale analysis of mononuclear octahedral transition metal complexes deposited in an experimental database confirms an under-representation of lower-symmetry complexes. From a set of around 1000 previously studied Fe(II) complexes, we show that the theoretical space of synthetically accessible complexes formed from the relatively small number of unique ligands is significantly (ca. 816k) larger. For the properties of these complexes, we validate the concept of ligand additivity by inferring heteroleptic properties from a stoichiometric combination of homoleptic complexes. An improved interpolation scheme that incorporates information about cis and trans isomer effects predicts the adiabatic spin-splitting energy to around 2 kcal/mol and the HOMO level to less than 0.2 eV. We demonstrate a multi-stage strategy to discover leads from the 816k Fe(II) complexes within a targeted property region. We carry out a coarse interpolation from homoleptic complexes that we refine over a subspace of ligands based on the likelihood of generating complexes with targeted properties. We validate our approach on 9 new binary and ternary complexes predicted to be in a targeted zone of discovery, suggesting opportunities for efficient transition metal complex discovery. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.05412v1-abstract-full').style.display = 'none'; document.getElementById('2209.05412v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2208.05444">arXiv:2208.05444</a> <span> [<a href="https://arxiv.org/pdf/2208.05444">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Biomolecules">q-bio.BM</span> </div> </div> <p class="title is-5 mathjax"> Active Learning Exploration of Transition Metal Complexes to Discover Method-Insensitive and Synthetically Accessible Chromophores </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Duan%2C+C">Chenru Duan</a>, <a href="/search/physics?searchtype=author&query=Nandy%2C+A">Aditya Nandy</a>, <a href="/search/physics?searchtype=author&query=Terrones%2C+G">Gianmarco Terrones</a>, <a href="/search/physics?searchtype=author&query=Kastner%2C+D+W">David W. Kastner</a>, <a href="/search/physics?searchtype=author&query=Kulik%2C+H+J">Heather J. Kulik</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2208.05444v2-abstract-short" style="display: inline;"> Transition metal chromophores with earth-abundant transition metals are an important design target for their applications in lighting and non-toxic bioimaging, but their design is challenged by the scarcity of complexes that simultaneously have optimal target absorption energies in the visible region as well as well-defined ground states. Machine learning (ML) accelerated discovery could overcome… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.05444v2-abstract-full').style.display = 'inline'; document.getElementById('2208.05444v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2208.05444v2-abstract-full" style="display: none;"> Transition metal chromophores with earth-abundant transition metals are an important design target for their applications in lighting and non-toxic bioimaging, but their design is challenged by the scarcity of complexes that simultaneously have optimal target absorption energies in the visible region as well as well-defined ground states. Machine learning (ML) accelerated discovery could overcome such challenges by enabling screening of a larger space, but is limited by the fidelity of the data used in ML model training, which is typically from a single approximate density functional. To address this limitation, we search for consensus in predictions among 23 density functional approximations across multiple rungs of Jacobs ladder. To accelerate the discovery of complexes with absorption energies in the visible region while minimizing MR character, we use 2D efficient global optimization to sample candidate low-spin chromophores from multi-million complex spaces. Despite the scarcity (i.e., approx. 0.01\%) of potential chromophores in this large chemical space, we identify candidates with high likelihood (i.e., > 10\%) of computational validation as the ML models improve during active learning, representing a 1,000-fold acceleration in discovery. Absorption spectra of promising chromophores from time-dependent density functional theory verify that 2/3 of candidates have the desired excited state properties. The observation that constituent ligands from our leads have demonstrated interesting optical properties in the literature exemplifies the effectiveness of our construction of a realistic design space and active learning approach. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.05444v2-abstract-full').style.display = 'none'; document.getElementById('2208.05444v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2207.10747">arXiv:2207.10747</a> <span> [<a href="https://arxiv.org/pdf/2207.10747">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> A Transferable Recommender Approach for Selecting the Best Density Functional Approximations in Chemical Discovery </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Duan%2C+C">Chenru Duan</a>, <a href="/search/physics?searchtype=author&query=Nandy%2C+A">Aditya Nandy</a>, <a href="/search/physics?searchtype=author&query=Meyer%2C+R">Ralf Meyer</a>, <a href="/search/physics?searchtype=author&query=Arunachalam%2C+N">Naveen Arunachalam</a>, <a href="/search/physics?searchtype=author&query=Kulik%2C+H+J">Heather J. Kulik</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2207.10747v1-abstract-short" style="display: inline;"> Approximate density functional theory (DFT) has become indispensable owing to its cost-accuracy trade-off in comparison to more computationally demanding but accurate correlated wavefunction theory. To date, however, no single density functional approximation (DFA) with universal accuracy has been identified, leading to uncertainty in the quality of data generated from DFT. With electron density f… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.10747v1-abstract-full').style.display = 'inline'; document.getElementById('2207.10747v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2207.10747v1-abstract-full" style="display: none;"> Approximate density functional theory (DFT) has become indispensable owing to its cost-accuracy trade-off in comparison to more computationally demanding but accurate correlated wavefunction theory. To date, however, no single density functional approximation (DFA) with universal accuracy has been identified, leading to uncertainty in the quality of data generated from DFT. With electron density fitting and transfer learning, we build a DFA recommender that selects the DFA with the lowest expected error with respect to gold standard but cost-prohibitive coupled cluster theory in a system-specific manner. We demonstrate this recommender approach on vertical spin-splitting energy evaluation for challenging transition metal complexes. Our recommender predicts top-performing DFAs and yields excellent accuracy (ca. 2 kcal/mol) for chemical discovery, outperforming both individual transfer learning models and the single best functional in a set of 48 DFAs. We demonstrate the transferability of the DFA recommender to experimentally synthesized compounds with distinct chemistry. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.10747v1-abstract-full').style.display = 'none'; document.getElementById('2207.10747v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2205.02967">arXiv:2205.02967</a> <span> [<a href="https://arxiv.org/pdf/2205.02967">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acs.jpclett.1c00631">10.1021/acs.jpclett.1c00631 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Putting Density Functional Theory to the Test in Machine-Learning-Accelerated Materials Discovery </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Duan%2C+C">Chenru Duan</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+F">Fang Liu</a>, <a href="/search/physics?searchtype=author&query=Nandy%2C+A">Aditya Nandy</a>, <a href="/search/physics?searchtype=author&query=Kulik%2C+H+J">Heather J. Kulik</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2205.02967v1-abstract-short" style="display: inline;"> Accelerated discovery with machine learning (ML) has begun to provide the advances in efficiency needed to overcome the combinatorial challenge of computational materials design. Nevertheless, ML-accelerated discovery both inherits the biases of training data derived from density functional theory (DFT) and leads to many attempted calculations that are doomed to fail. Many compelling functional ma… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.02967v1-abstract-full').style.display = 'inline'; document.getElementById('2205.02967v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2205.02967v1-abstract-full" style="display: none;"> Accelerated discovery with machine learning (ML) has begun to provide the advances in efficiency needed to overcome the combinatorial challenge of computational materials design. Nevertheless, ML-accelerated discovery both inherits the biases of training data derived from density functional theory (DFT) and leads to many attempted calculations that are doomed to fail. Many compelling functional materials and catalytic processes involve strained chemical bonds, open-shell radicals and diradicals, or metal-organic bonds to open-shell transition-metal centers. Although promising targets, these materials present unique challenges for electronic structure methods and combinatorial challenges for their discovery. In this Perspective, we describe the advances needed in accuracy, efficiency, and approach beyond what is typical in conventional DFT-based ML workflows. These challenges have begun to be addressed through ML models trained to predict the results of multiple methods or the differences between them, enabling quantitative sensitivity analysis. For DFT to be trusted for a given data point in a high-throughput screen, it must pass a series of tests. ML models that predict the likelihood of calculation success and detect the presence of strong correlation will enable rapid diagnoses and adaptation strategies. These "decision engines" represent the first steps toward autonomous workflows that avoid the need for expert determination of the robustness of DFT-based materials discoveries. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.02967v1-abstract-full').style.display = 'none'; document.getElementById('2205.02967v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Journal of Physical Chemistry Letters, 2021, 12, 19, 4628-4637 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2204.03810">arXiv:2204.03810</a> <span> [<a href="https://arxiv.org/pdf/2204.03810">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> </div> <p class="title is-5 mathjax"> Ligand Additivity and Divergent Trends in Two Types of Delocalization Errors from Approximate Density Functional Theory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Cytter%2C+Y">Yael Cytter</a>, <a href="/search/physics?searchtype=author&query=Nandy%2C+A">Aditya Nandy</a>, <a href="/search/physics?searchtype=author&query=Bajaj%2C+A">Akash Bajaj</a>, <a href="/search/physics?searchtype=author&query=Kulik%2C+H+J">Heather J. Kulik</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2204.03810v1-abstract-short" style="display: inline;"> Despite its widespread use, the predictive accuracy of density functional theory (DFT) is hampered by delocalization errors, especially for correlated systems such as transition-metal complexes. Two complementary tuning strategies have been developed to reduce delocalization error: eliminating the global curvature with respect to charge addition or removal, and computing a linear response Hubbard… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.03810v1-abstract-full').style.display = 'inline'; document.getElementById('2204.03810v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2204.03810v1-abstract-full" style="display: none;"> Despite its widespread use, the predictive accuracy of density functional theory (DFT) is hampered by delocalization errors, especially for correlated systems such as transition-metal complexes. Two complementary tuning strategies have been developed to reduce delocalization error: eliminating the global curvature with respect to charge addition or removal, and computing a linear response Hubbard U as a measure of local curvature at the metal center at fixed charge and applying it to the transition-metal complex in a DFT+U framework. We investigate the relationship between the two measures of delocalization error as we manipulate the ligand field strength by varying the number of strong-field ligands in a series of heteroleptic complexes or by geometrically constraining the metal-ligand bond length in homoleptic octahedral complexes. We show that across these sets of complexes with varying ligand fields, an inverse relationship generally exists between global and local curvatures. We find that effects of ligand substitution on both measures of delocalization are typically additive, but the two quantities seldom coincide. The observation of ligand additivity suggests opportunities for evaluating errors on homoleptic complexes to infer corrections for lower-symmetry complexes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.03810v1-abstract-full').style.display = 'none'; document.getElementById('2204.03810v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 April, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.01276">arXiv:2203.01276</a> <span> [<a href="https://arxiv.org/pdf/2203.01276">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> Machine learning models predict calculation outcomes with the transferability necessary for computational catalysis </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Duan%2C+C">Chenru Duan</a>, <a href="/search/physics?searchtype=author&query=Nandy%2C+A">Aditya Nandy</a>, <a href="/search/physics?searchtype=author&query=Adamji%2C+H">Husain Adamji</a>, <a href="/search/physics?searchtype=author&query=Roman-Leshkov%2C+Y">Yuriy Roman-Leshkov</a>, <a href="/search/physics?searchtype=author&query=Kulik%2C+H+J">Heather J. Kulik</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.01276v1-abstract-short" style="display: inline;"> Virtual high throughput screening (VHTS) and machine learning (ML) have greatly accelerated the design of single-site transition-metal catalysts. VHTS of catalysts, however, is often accompanied with high calculation failure rate and wasted computational resources due to the difficulty of simultaneously converging all mechanistically relevant reactive intermediates to expected geometries and elect… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.01276v1-abstract-full').style.display = 'inline'; document.getElementById('2203.01276v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.01276v1-abstract-full" style="display: none;"> Virtual high throughput screening (VHTS) and machine learning (ML) have greatly accelerated the design of single-site transition-metal catalysts. VHTS of catalysts, however, is often accompanied with high calculation failure rate and wasted computational resources due to the difficulty of simultaneously converging all mechanistically relevant reactive intermediates to expected geometries and electronic states. We demonstrate a dynamic classifier approach, i.e., a convolutional neural network that monitors geometry optimization on the fly, and exploit its good performance and transferability for catalyst design. We show that the dynamic classifier performs well on all reactive intermediates in the representative catalytic cycle of the radical rebound mechanism for methane-to-methanol despite being trained on only one reactive intermediate. The dynamic classifier also generalizes to chemically distinct intermediates and metal centers absent from the training data without loss of accuracy or model confidence. We rationalize this superior model transferability to the use of on-the-fly electronic structure and geometric information generated from density functional theory calculations and the convolutional layer in the dynamic classifier. Combined with model uncertainty quantification, the dynamic classifier saves more than half of the computational resources that would have been wasted on unsuccessful calculations for all reactive intermediates being considered. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.01276v1-abstract-full').style.display = 'none'; document.getElementById('2203.01276v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2201.04243">arXiv:2201.04243</a> <span> [<a href="https://arxiv.org/pdf/2201.04243">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> Two Wrongs Can Make a Right: A Transfer Learning Approach for Chemical Discovery with Chemical Accuracy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Duan%2C+C">Chenru Duan</a>, <a href="/search/physics?searchtype=author&query=Chu%2C+D+B+K">Daniel B. K. Chu</a>, <a href="/search/physics?searchtype=author&query=Nandy%2C+A">Aditya Nandy</a>, <a href="/search/physics?searchtype=author&query=Kulik%2C+H+J">Heather J. Kulik</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2201.04243v1-abstract-short" style="display: inline;"> Appropriately identifying and treating molecules and materials with significant multi-reference (MR) character is crucial for achieving high data fidelity in virtual high throughput screening (VHTS). Nevertheless, most VHTS is carried out with approximate density functional theory (DFT) using a single functional. Despite development of numerous MR diagnostics, the extent to which a single value of… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.04243v1-abstract-full').style.display = 'inline'; document.getElementById('2201.04243v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2201.04243v1-abstract-full" style="display: none;"> Appropriately identifying and treating molecules and materials with significant multi-reference (MR) character is crucial for achieving high data fidelity in virtual high throughput screening (VHTS). Nevertheless, most VHTS is carried out with approximate density functional theory (DFT) using a single functional. Despite development of numerous MR diagnostics, the extent to which a single value of such a diagnostic indicates MR effect on chemical property prediction is not well established. We evaluate MR diagnostics of over 10,000 transition metal complexes (TMCs) and compare to those in organic molecules. We reveal that only some MR diagnostics are transferable across these materials spaces. By studying the influence of MR character on chemical properties (i.e., MR effect) that involves multiple potential energy surfaces (i.e., adiabatic spin splitting, $螖E_\mathrm{H-L}$, and ionization potential, IP), we observe that cancellation in MR effect outweighs accumulation. Differences in MR character are more important than the total degree of MR character in predicting MR effect in property prediction. Motivated by this observation, we build transfer learning models to directly predict CCSD(T)-level adiabatic $螖E_\mathrm{H-L}$ and IP from lower levels of theory. By combining these models with uncertainty quantification and multi-level modeling, we introduce a multi-pronged strategy that accelerates data acquisition by at least a factor of three while achieving chemical accuracy (i.e., 1 kcal/mol) for robust VHTS. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.04243v1-abstract-full').style.display = 'none'; document.getElementById('2201.04243v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2112.14835">arXiv:2112.14835</a> <span> [<a href="https://arxiv.org/pdf/2112.14835">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0089460">10.1063/5.0089460 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Molecular orbital projectors in non-empirical jmDFT recover exact conditions in transition metal chemistry </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Bajaj%2C+A">Akash Bajaj</a>, <a href="/search/physics?searchtype=author&query=Duan%2C+C">Chenru Duan</a>, <a href="/search/physics?searchtype=author&query=Nandy%2C+A">Aditya Nandy</a>, <a href="/search/physics?searchtype=author&query=Taylor%2C+M+G">Michael G. Taylor</a>, <a href="/search/physics?searchtype=author&query=Kulik%2C+H+J">Heather J. Kulik</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2112.14835v1-abstract-short" style="display: inline;"> Low-cost, non-empirical corrections to semi-local density functional theory are essential for accurately modeling transition metal chemistry. Here, we demonstrate the judiciously-modified density functional theory (jmDFT) approach with non-empirical U and J parameters obtained directly from frontier orbital energetics on a series of transition metal complexes. We curate a set of nine representativ… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.14835v1-abstract-full').style.display = 'inline'; document.getElementById('2112.14835v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2112.14835v1-abstract-full" style="display: none;"> Low-cost, non-empirical corrections to semi-local density functional theory are essential for accurately modeling transition metal chemistry. Here, we demonstrate the judiciously-modified density functional theory (jmDFT) approach with non-empirical U and J parameters obtained directly from frontier orbital energetics on a series of transition metal complexes. We curate a set of nine representative Ti(III) and V(IV) $d^1$ transition metal complexes and evaluate their flat plane errors along the fractional spin and charge lines. We demonstrate that while jmDFT improves upon both DFT+U and semi-local DFT with the standard atomic orbital projectors (AOPs), it does so inefficiently. We rationalize these inefficiencies by quantifying hybridization in the relevant frontier orbitals for both the case of fractional spins and fractional charges. To overcome these limitations, we introduce a procedure for computing a molecular orbital projector (MOP) basis for use with jmDFT. We demonstrate this single set of $d^1$ MOPs to be suitable for nearly eliminating all energetic delocalization error and static correlation error. In all cases, the MOP jmDFT outperforms AOP jmDFT, and it eliminates most flat plane errors at non-empirical values. Unlike widely employed DFT+U or hybrid functionals, jmDFT nearly eliminates energetic delocalization error and static correlation error within a non-empirical framework. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.14835v1-abstract-full').style.display = 'none'; document.getElementById('2112.14835v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2111.01905">arXiv:2111.01905</a> <span> [<a href="https://arxiv.org/pdf/2111.01905">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> Audacity of huge: overcoming challenges of data scarcity and data quality for machine learning in computational materials discovery </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Nandy%2C+A">Aditya Nandy</a>, <a href="/search/physics?searchtype=author&query=Duan%2C+C">Chenru Duan</a>, <a href="/search/physics?searchtype=author&query=Kulik%2C+H+J">Heather J. Kulik</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2111.01905v1-abstract-short" style="display: inline;"> Machine learning (ML)-accelerated discovery requires large amounts of high-fidelity data to reveal predictive structure-property relationships. For many properties of interest in materials discovery, the challenging nature and high cost of data generation has resulted in a data landscape that is both scarcely populated and of dubious quality. Data-driven techniques starting to overcome these limit… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.01905v1-abstract-full').style.display = 'inline'; document.getElementById('2111.01905v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2111.01905v1-abstract-full" style="display: none;"> Machine learning (ML)-accelerated discovery requires large amounts of high-fidelity data to reveal predictive structure-property relationships. For many properties of interest in materials discovery, the challenging nature and high cost of data generation has resulted in a data landscape that is both scarcely populated and of dubious quality. Data-driven techniques starting to overcome these limitations include the use of consensus across functionals in density functional theory, the development of new functionals or accelerated electronic structure theories, and the detection of where computationally demanding methods are most necessary. When properties cannot be reliably simulated, large experimental data sets can be used to train ML models. In the absence of manual curation, increasingly sophisticated natural language processing and automated image analysis are making it possible to learn structure-property relationships from the literature. Models trained on these data sets will improve as they incorporate community feedback. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.01905v1-abstract-full').style.display = 'none'; document.getElementById('2111.01905v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2109.08098">arXiv:2109.08098</a> <span> [<a href="https://arxiv.org/pdf/2109.08098">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> </div> <p class="title is-5 mathjax"> MOFSimplify: Machine Learning Models with Extracted Stability Data of Three Thousand Metal-Organic Frameworks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Nandy%2C+A">A. Nandy</a>, <a href="/search/physics?searchtype=author&query=Terrones%2C+G">G. Terrones</a>, <a href="/search/physics?searchtype=author&query=Arunachalam%2C+N">N. Arunachalam</a>, <a href="/search/physics?searchtype=author&query=Duan%2C+C">C. Duan</a>, <a href="/search/physics?searchtype=author&query=Kastner%2C+D+W">D. W. Kastner</a>, <a href="/search/physics?searchtype=author&query=Kulik%2C+H+J">H. J. Kulik</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2109.08098v1-abstract-short" style="display: inline;"> We report a workflow and the output of a natural language processing (NLP)-based procedure to mine the extant metal-organic framework (MOF) literature describing structurally characterized MOFs and their solvent removal and thermal stabilities. We obtain over 2,000 solvent removal stability measures from text mining and 3,000 thermal decomposition temperatures from thermogravimetric analysis data.… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.08098v1-abstract-full').style.display = 'inline'; document.getElementById('2109.08098v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2109.08098v1-abstract-full" style="display: none;"> We report a workflow and the output of a natural language processing (NLP)-based procedure to mine the extant metal-organic framework (MOF) literature describing structurally characterized MOFs and their solvent removal and thermal stabilities. We obtain over 2,000 solvent removal stability measures from text mining and 3,000 thermal decomposition temperatures from thermogravimetric analysis data. We assess the validity of our NLP methods and the accuracy of our extracted data by comparing to a hand-labeled subset. Machine learning (ML, i.e. artificial neural network) models trained on this data using graph- and pore-geometry-based representations enable prediction of stability on new MOFs with quantified uncertainty. Our web interface, MOFSimplify, provides users access to our curated data and enables them to harness that data for predictions on new MOFs. MOFSimplify also encourages community feedback on existing data and on ML model predictions for community-based active learning for improved MOF stability models. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.08098v1-abstract-full').style.display = 'none'; document.getElementById('2109.08098v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2107.14280">arXiv:2107.14280</a> <span> [<a href="https://arxiv.org/pdf/2107.14280">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> </div> <p class="title is-5 mathjax"> Deciphering Cryptic Behavior in Bimetallic Transition Metal Complexes with Machine Learning </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Taylor%2C+M+G">Michael G. Taylor</a>, <a href="/search/physics?searchtype=author&query=Nandy%2C+A">Aditya Nandy</a>, <a href="/search/physics?searchtype=author&query=Lu%2C+C+C">Connie C. Lu</a>, <a href="/search/physics?searchtype=author&query=Kulik%2C+H+J">Heather J. Kulik</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2107.14280v1-abstract-short" style="display: inline;"> The rational tailoring of transition metal complexes is necessary to address outstanding challenges in energy utilization and storage. Heterobimetallic transition metal complexes that exhibit metal-metal bonding in stacked "double decker" ligand structures are an emerging, attractive platform for catalysis, but their properties are challenging to predict prior to laborious synthetic efforts. We de… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.14280v1-abstract-full').style.display = 'inline'; document.getElementById('2107.14280v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2107.14280v1-abstract-full" style="display: none;"> The rational tailoring of transition metal complexes is necessary to address outstanding challenges in energy utilization and storage. Heterobimetallic transition metal complexes that exhibit metal-metal bonding in stacked "double decker" ligand structures are an emerging, attractive platform for catalysis, but their properties are challenging to predict prior to laborious synthetic efforts. We demonstrate an alternative, data-driven approach to uncovering structure-property relationships for rational bimetallic complex design. We tailor graph-based representations of the metal-local environment for these heterobimetallic complexes for use in training of multiple linear regression and kernel ridge regression (KRR) models. Focusing on oxidation potentials, we obtain a set of 28 experimentally characterized complexes to develop a multiple linear regression model. On this training set, we achieve good accuracy (mean absolute error, MAE, of 0.25 V) and preserve transferability to unseen experimental data with a new ligand structure. We trained a KRR model on a subset of 330 structurally characterized heterobimetallics to predict the degree of metal-metal bonding. This KRR model predicts relative metal-metal bond lengths in the test set to within 5%, and analysis of key features reveals the fundamental atomic contributions (e.g., the valence electron configuration) that most strongly influence the behavior of complexes. Our work provides guidance for rational bimetallic design, suggesting that properties including the formal shortness ratio should be transferable from one period to another. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.14280v1-abstract-full').style.display = 'none'; document.getElementById('2107.14280v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2106.13327">arXiv:2106.13327</a> <span> [<a href="https://arxiv.org/pdf/2106.13327">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> </div> <p class="title is-5 mathjax"> Using Machine Learning and Data Mining to Leverage Community Knowledge for the Engineering of Stable Metal-Organic Frameworks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Nandy%2C+A">Aditya Nandy</a>, <a href="/search/physics?searchtype=author&query=Duan%2C+C">Chenru Duan</a>, <a href="/search/physics?searchtype=author&query=Kulik%2C+H+J">Heather J. Kulik</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2106.13327v1-abstract-short" style="display: inline;"> Although the tailored metal active sites and porous architectures of MOFs hold great promise for engineering challenges ranging from gas separations to catalysis, a lack of understanding of how to improve their stability limits their use in practice. To overcome this limitation, we extract thousands of published reports of the key aspects of MOF stability necessary for their practical application:… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.13327v1-abstract-full').style.display = 'inline'; document.getElementById('2106.13327v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2106.13327v1-abstract-full" style="display: none;"> Although the tailored metal active sites and porous architectures of MOFs hold great promise for engineering challenges ranging from gas separations to catalysis, a lack of understanding of how to improve their stability limits their use in practice. To overcome this limitation, we extract thousands of published reports of the key aspects of MOF stability necessary for their practical application: the ability to withstand high temperatures without degrading and the capacity to be activated by removal of solvent molecules. From nearly 4,000 manuscripts, we use natural language processing and automated image analysis to obtain over 2,000 solvent-removal stability measures and 3,000 thermal degradation temperatures. We analyze the relationships between stability properties and the chemical and geometric structures in this set to identify limits of prior heuristics derived from smaller sets of MOFs. By training predictive machine learning (ML, i.e., Gaussian process and artificial neural network) models to encode the structure-property relationships with graph- and pore-structure-based representations, we are able to make predictions of stability orders of magnitude faster than conventional physics-based modeling or experiment. Interpretation of important features in ML models provides insights that we use to identify strategies to engineer increased stability into typically unstable 3d-containing MOFs that are frequently targeted for catalytic applications. We expect our approach to accelerate the time to discovery of stable, practical MOF materials for a wide range of applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.13327v1-abstract-full').style.display = 'none'; document.getElementById('2106.13327v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2106.10768">arXiv:2106.10768</a> <span> [<a href="https://arxiv.org/pdf/2106.10768">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0082964">10.1063/5.0082964 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Representations and Strategies for Transferable Machine Learning Models in Chemical Discovery </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Harper%2C+D+R">Daniel R. Harper</a>, <a href="/search/physics?searchtype=author&query=Nandy%2C+A">Aditya Nandy</a>, <a href="/search/physics?searchtype=author&query=Arunachalam%2C+N">Naveen Arunachalam</a>, <a href="/search/physics?searchtype=author&query=Duan%2C+C">Chenru Duan</a>, <a href="/search/physics?searchtype=author&query=Janet%2C+J+P">Jon Paul Janet</a>, <a href="/search/physics?searchtype=author&query=Kulik%2C+H+J">Heather J. Kulik</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2106.10768v1-abstract-short" style="display: inline;"> Strategies for machine-learning(ML)-accelerated discovery that are general across materials composition spaces are essential, but demonstrations of ML have been primarily limited to narrow composition variations. By addressing the scarcity of data in promising regions of chemical space for challenging targets like open-shell transition-metal complexes, general representations and transferable ML m… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.10768v1-abstract-full').style.display = 'inline'; document.getElementById('2106.10768v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2106.10768v1-abstract-full" style="display: none;"> Strategies for machine-learning(ML)-accelerated discovery that are general across materials composition spaces are essential, but demonstrations of ML have been primarily limited to narrow composition variations. By addressing the scarcity of data in promising regions of chemical space for challenging targets like open-shell transition-metal complexes, general representations and transferable ML models that leverage known relationships in existing data will accelerate discovery. Over a large set (ca. 1000) of isovalent transition-metal complexes, we quantify evident relationships for different properties (i.e., spin-splitting and ligand dissociation) between rows of the periodic table (i.e., 3d/4d metals and 2p/3p ligands). We demonstrate an extension to graph-based revised autocorrelation (RAC) representation (i.e., eRAC) that incorporates the effective nuclear charge alongside the nuclear charge heuristic that otherwise overestimates dissimilarity of isovalent complexes. To address the common challenge of discovery in a new space where data is limited, we introduce a transfer learning approach in which we seed models trained on a large amount of data from one row of the periodic table with a small number of data points from the additional row. We demonstrate the synergistic value of the eRACs alongside this transfer learning strategy to consistently improve model performance. Analysis of these models highlights how the approach succeeds by reordering the distances between complexes to be more consistent with the periodic table, a property we expect to be broadly useful for other materials domains. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.10768v1-abstract-full').style.display = 'none'; document.getElementById('2106.10768v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1401.0991">arXiv:1401.0991</a> <span> [<a href="https://arxiv.org/pdf/1401.0991">pdf</a>, <a href="https://arxiv.org/ps/1401.0991">ps</a>, <a href="https://arxiv.org/format/1401.0991">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Numerical Analysis">math.NA</span> </div> </div> <p class="title is-5 mathjax"> Conservation properties of the trapezoidal rule in linear time domain analysis of acoustics and structures </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Nandy%2C+A+K">Arup Kumar Nandy</a>, <a href="/search/physics?searchtype=author&query=Jog%2C+C+S">C. S. Jog</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1401.0991v1-abstract-short" style="display: inline;"> The trapezoidal rule, which is a special case of the Newmark family of algorithms, is one of the most widely used methods for transient hyperbolic problems. In this work, we show that this rule conserves linear and angular momenta and energy in the case of undamped linear elastodynamics problems, and an `energy-like measure' in the case of undamped acoustic problems. These conservation properties,… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1401.0991v1-abstract-full').style.display = 'inline'; document.getElementById('1401.0991v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1401.0991v1-abstract-full" style="display: none;"> The trapezoidal rule, which is a special case of the Newmark family of algorithms, is one of the most widely used methods for transient hyperbolic problems. In this work, we show that this rule conserves linear and angular momenta and energy in the case of undamped linear elastodynamics problems, and an `energy-like measure' in the case of undamped acoustic problems. These conservation properties, thus, provide a rational basis for using this algorithm. In linear elastodynamics problems, variants of the trapezoidal rule that incorporate `high-frequency' dissipation are often used, since the higher frequencies, which are not approximated properly by the standard displacement-based approach, often result in unphysical behavior. Instead of modifying the trapezoidal algorithm, we propose using a hybrid finite element framework for constructing the stiffness matrix. Hybrid finite elements, which are based on a two-field variational formulation involving displacement and stresses, are known to approximate the eigenvalues much more accurately than the standard displacement-based approach, thereby either bypassing or reducing the need for high-frequency dissipation. We show this by means of several examples, where we compare the numerical solutions obtained using the displacement-based and hybrid approaches against analytical solutions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1401.0991v1-abstract-full').style.display = 'none'; document.getElementById('1401.0991v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 January, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2014. </p> </li> </ol> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>