CINXE.COM
Search | arXiv e-print repository
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1–48 of 48 results for author: <span class="mathjax">Bockrath, M</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> <div class="content"> <form method="GET" action="/search/cond-mat" aria-role="search"> Searching in archive <strong>cond-mat</strong>. <a href="/search/?searchtype=author&query=Bockrath%2C+M">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Bockrath, M"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Bockrath%2C+M&terms-0-field=author&size=50&order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Bockrath, M"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.01578">arXiv:2412.01578</a> <span> [<a href="https://arxiv.org/pdf/2412.01578">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Double-edged Role of Interactions in Superconducting Twisted Bilayer Graphene </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Gao%2C+X">Xueshi Gao</a>, <a href="/search/cond-mat?searchtype=author&query=Jimeno-Pozo%2C+A">Alejandro Jimeno-Pozo</a>, <a href="/search/cond-mat?searchtype=author&query=Pantaleon%2C+P+A">Pierre A. Pantaleon</a>, <a href="/search/cond-mat?searchtype=author&query=Codecido%2C+E">Emilio Codecido</a>, <a href="/search/cond-mat?searchtype=author&query=Sharifi%2C+D+L">Daria L. Sharifi</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+Z">Zheneng Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+Y">Youwei Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&query=Bockrath%2C+M+W">Marc W. Bockrath</a>, <a href="/search/cond-mat?searchtype=author&query=Guinea%2C+F">Francisco Guinea</a>, <a href="/search/cond-mat?searchtype=author&query=Lau%2C+C+N">Chun Ning Lau</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.01578v1-abstract-short" style="display: inline;"> For the unconventional superconducting phases in moire materials, a critical question is the role played by electronic interactions in the formation of Cooper pairs. In twisted bilayer graphene (tBLG), the strength of electronic interactions can be reduced by increasing the twist angle or screening provided by the dielectric medium. In this work, we place tBLG at 3-4 nm above bulk SrTiO3 substrate… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.01578v1-abstract-full').style.display = 'inline'; document.getElementById('2412.01578v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.01578v1-abstract-full" style="display: none;"> For the unconventional superconducting phases in moire materials, a critical question is the role played by electronic interactions in the formation of Cooper pairs. In twisted bilayer graphene (tBLG), the strength of electronic interactions can be reduced by increasing the twist angle or screening provided by the dielectric medium. In this work, we place tBLG at 3-4 nm above bulk SrTiO3 substrates, which have a large yet tunable dielectric constant. By raising the dielectric constant in situ in a magic angle device, we observe suppression of both the height and the width of the entire superconducting dome, thus demonstrating that, unlike conventional superconductors, the pairing mechanism in tBLG is strongly dependent on electronic interactions. Interestingly, in contrast to the absence of superconductivity in devices on SiO2 with angle>1.3 deg, we observe a superconducting pocket in a large-angle (angle=1.4 deg) tBLG/STO device while the correlated insulating states are absent. These experimental results are in qualitative agreement with a theoretical model in which the pairing mechanism arises from Coulomb interactions that are screened by plasmons, electron-hole pairs, and longitudinal acoustic phonons. Our results highlight the unconventional nature of the superconductivity in tBLG, the double-edged role played by electronic interactions in its formation, as well as their complex interplay with the correlated insulating states. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.01578v1-abstract-full').style.display = 'none'; document.getElementById('2412.01578v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.14774">arXiv:2402.14774</a> <span> [<a href="https://arxiv.org/pdf/2402.14774">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Dominant 1/3-filling Correlated Insulator States and Orbital Geometric Frustration in Twisted Bilayer Graphene </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Tian%2C+H">Haidong Tian</a>, <a href="/search/cond-mat?searchtype=author&query=Codecido%2C+E">Emilio Codecido</a>, <a href="/search/cond-mat?searchtype=author&query=Mao%2C+D">Dan Mao</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+K">Kevin Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Che%2C+S">Shi Che</a>, <a href="/search/cond-mat?searchtype=author&query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&query=Smirnov%2C+D">Dmitry Smirnov</a>, <a href="/search/cond-mat?searchtype=author&query=Kim%2C+E">Eun-Ah Kim</a>, <a href="/search/cond-mat?searchtype=author&query=Bockrath%2C+M">Marc Bockrath</a>, <a href="/search/cond-mat?searchtype=author&query=Lau%2C+C+N">Chun Ning Lau</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.14774v1-abstract-short" style="display: inline;"> Geometric frustration is a phenomenon in a lattice system where not all interactions can be satisfied, the simplest example being antiferromagnetically coupled spins on a triangular lattice. Frustrated systems are characterized by their many nearly degenerate ground states, leading to non-trivial phases such as spin ice and spin liquids. To date most studies are on geometric frustration of spins;… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.14774v1-abstract-full').style.display = 'inline'; document.getElementById('2402.14774v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.14774v1-abstract-full" style="display: none;"> Geometric frustration is a phenomenon in a lattice system where not all interactions can be satisfied, the simplest example being antiferromagnetically coupled spins on a triangular lattice. Frustrated systems are characterized by their many nearly degenerate ground states, leading to non-trivial phases such as spin ice and spin liquids. To date most studies are on geometric frustration of spins; much less explored is orbital geometric frustration. For electrons in twisted bilayer graphene (tBLG) at denominator 3 fractional filling, Coulomb interactions and the Wannier orbital shapes are predicted to strongly constrain spatial charge ordering, leading to geometrically frustrated ground states that produce a new class of correlated insulators (CIs). Here we report the observation of dominant denominator 3 fractional filling insulating states in large angle tBLG; these states persist in magnetic fields and display magnetic ordering signatures and tripled unit cell reconstruction. These results are in agreement with a strong-coupling theory of symmetry-breaking of geometrically frustrated fractional states. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.14774v1-abstract-full').style.display = 'none'; document.getElementById('2402.14774v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2205.12766">arXiv:2205.12766</a> <span> [<a href="https://arxiv.org/pdf/2205.12766">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevApplied.18.014031">10.1103/PhysRevApplied.18.014031 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Tuning Spin Transport in a Graphene Antiferromagnetic Insulator </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Stepanov%2C+P">Petr Stepanov</a>, <a href="/search/cond-mat?searchtype=author&query=Shcherbakov%2C+D+L">Dmitry L. Shcherbakov</a>, <a href="/search/cond-mat?searchtype=author&query=Che%2C+S">Shi Che</a>, <a href="/search/cond-mat?searchtype=author&query=Bockrath%2C+M+W">Marc W. Bockrath</a>, <a href="/search/cond-mat?searchtype=author&query=Barlas%2C+Y">Yafis Barlas</a>, <a href="/search/cond-mat?searchtype=author&query=Smirnov%2C+D">Dmitry Smirnov</a>, <a href="/search/cond-mat?searchtype=author&query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&query=Lake%2C+R+K">Roger K. Lake</a>, <a href="/search/cond-mat?searchtype=author&query=Lau%2C+C+N">Chun Ning Lau</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2205.12766v1-abstract-short" style="display: inline;"> Long-distance spin transport through anti-ferromagnetic insulators (AFMIs) is a long-standing goal of spintronics research. Unlike conventional spintronics systems, monolayer graphene in quantum Hall regime (QH) offers an unprecedented tuneability of spin-polarization and charge carrier density in QH edge states. Here, using gate-controlled QH edges as spin-dependent injectors and detectors in an… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.12766v1-abstract-full').style.display = 'inline'; document.getElementById('2205.12766v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2205.12766v1-abstract-full" style="display: none;"> Long-distance spin transport through anti-ferromagnetic insulators (AFMIs) is a long-standing goal of spintronics research. Unlike conventional spintronics systems, monolayer graphene in quantum Hall regime (QH) offers an unprecedented tuneability of spin-polarization and charge carrier density in QH edge states. Here, using gate-controlled QH edges as spin-dependent injectors and detectors in an all-graphene electrical circuit, for the first time we demonstrate a selective tuning of ambipolar spin transport through graphene $谓$=0 AFMIs. By modulating polarities of the excitation bias, magnetic fields, and charge carriers that host opposite chiralities, we show that the difference between spin chemical potentials of adjacent edge channels in the spin-injector region is crucial in tuning spin-transport observed across graphene AFMI. We demonstrate that non-local response vanishes upon reversing directions of the co-propagating edge channels when the spin-filters in our devices are no longer selective for a particular spin-polarization. Our results establish a versatile set of methods to tune pure spin transport via an anti-ferromagnetic media and open a pathway to explore their applications for a broad field of antiferromagnetic spintronics research. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.12766v1-abstract-full').style.display = 'none'; document.getElementById('2205.12766v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Applied 18, 014031, 2022 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2202.02834">arXiv:2202.02834</a> <span> [<a href="https://arxiv.org/pdf/2202.02834">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acs.nanolett.1c04237">10.1021/acs.nanolett.1c04237 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Enhancing Perpendicular Magnetic Anisotropy in Garnet Ferrimagnet by Interfacing with Few-Layer WTe2 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Wu1%2C+G">Guanzhong Wu1</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+D">Dongying Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Verma%2C+N">Nishchhal Verma</a>, <a href="/search/cond-mat?searchtype=author&query=Rao%2C+R">Rahul Rao</a>, <a href="/search/cond-mat?searchtype=author&query=Cheng%2C+Y">Yang Cheng</a>, <a href="/search/cond-mat?searchtype=author&query=Guo%2C+S">Side Guo</a>, <a href="/search/cond-mat?searchtype=author&query=Cao%2C+G">Guixin Cao</a>, <a href="/search/cond-mat?searchtype=author&query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&query=Lau%2C+C+N">Chun Ning Lau</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+F">Fengyuan Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Randeria%2C+M">Mohit Randeria</a>, <a href="/search/cond-mat?searchtype=author&query=Bockrath%2C+M">Marc Bockrath</a>, <a href="/search/cond-mat?searchtype=author&query=Hammel%2C+P+C">P. Chris Hammel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2202.02834v1-abstract-short" style="display: inline;"> Engineering magnetic anisotropy in a ferro- or ferrimagnetic (FM) thin film is crucial in spintronic device. One way to modify the magnetic anisotropy is through the surface of the FM thin film. Here, we report the emergence of a perpendicular magnetic anisotropy (PMA) induced by interfacial interactions in a heterostructure comprised of a garnet ferrimagnet, Y3Fe5O12 (YIG), and the low-symmetry,… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.02834v1-abstract-full').style.display = 'inline'; document.getElementById('2202.02834v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2202.02834v1-abstract-full" style="display: none;"> Engineering magnetic anisotropy in a ferro- or ferrimagnetic (FM) thin film is crucial in spintronic device. One way to modify the magnetic anisotropy is through the surface of the FM thin film. Here, we report the emergence of a perpendicular magnetic anisotropy (PMA) induced by interfacial interactions in a heterostructure comprised of a garnet ferrimagnet, Y3Fe5O12 (YIG), and the low-symmetry, high spin orbit coupling (SOC) transition metal dichalcogenide, WTe2. At the same time, we also observed an enhancement in Gilbert damping in the WTe2 covered YIG area. Both the magnitude of interface-induced PMA and the Gilbert damping enhancement have no observable WTe2 thickness dependence down to single quadruple-layer, indicating that the interfacial interaction plays a critical role. The ability of WTe2 to enhance the PMA in FM thin film, combined with its previously reported capability to generate out-of-plane damping like spin torque, makes it desirable for magnetic memory applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.02834v1-abstract-full').style.display = 'none'; document.getElementById('2202.02834v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Nano Letters, in press</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2112.13401">arXiv:2112.13401</a> <span> [<a href="https://arxiv.org/pdf/2112.13401">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Evidence for Flat Band Dirac Superconductor Originating from Quantum Geometry </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Tian%2C+H">Haidong Tian</a>, <a href="/search/cond-mat?searchtype=author&query=Che%2C+S">Shi Che</a>, <a href="/search/cond-mat?searchtype=author&query=Xu%2C+T">Tianyi Xu</a>, <a href="/search/cond-mat?searchtype=author&query=Cheung%2C+P">Patrick Cheung</a>, <a href="/search/cond-mat?searchtype=author&query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&query=Randeria%2C+M">Mohit Randeria</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+F">Fan Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Lau%2C+C+N">Chun Ning Lau</a>, <a href="/search/cond-mat?searchtype=author&query=Bockrath%2C+M+W">Marc W. Bockrath</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2112.13401v1-abstract-short" style="display: inline;"> In a flat band superconductor, the charge carriers' group velocity vF is extremely slow, quenching their kinetic energy. The emergence of superconductivity thus appears paradoxical, as conventional BCS theory implies a vanishing coherence length, superfluid stiffness, and critical current. Here, using twisted bilayer graphene (tBLG), we explore the profound effect of vanishingly small vF in a Dira… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.13401v1-abstract-full').style.display = 'inline'; document.getElementById('2112.13401v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2112.13401v1-abstract-full" style="display: none;"> In a flat band superconductor, the charge carriers' group velocity vF is extremely slow, quenching their kinetic energy. The emergence of superconductivity thus appears paradoxical, as conventional BCS theory implies a vanishing coherence length, superfluid stiffness, and critical current. Here, using twisted bilayer graphene (tBLG), we explore the profound effect of vanishingly small vF in a Dirac superconducting flat band system Using Schwinger-limited non-linear transport studies, we demonstrate an extremely slow vF ~ 1000 m/s for filling fraction nu between -1/2 and -3/4 of the moire superlattice. In the superconducting state, the same velocity limit constitutes a new limiting mechanism for the critical current, analogous to a relativistic superfluid. Importantly, our measurement of superfluid stiffness, which controls the superconductor's electrodynamic response, shows that it is not dominated by the kinetic energy, but instead by the interaction-driven superconducting gap, consistent with recent theories on a quantum geometric contribution. We find evidence for small pairs, characteristic of the BCS to Bose-Einstein condensation (BEC) crossover, with an unprecedented ratio of the superconducting transition temperature to the Fermi temperature exceeding unity, and discuss how this arises for very strong coupling superconductivity in ultra-flat Dirac bands. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.13401v1-abstract-full').style.display = 'none'; document.getElementById('2112.13401v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2012.00937">arXiv:2012.00937</a> <span> [<a href="https://arxiv.org/pdf/2012.00937">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Layer- and Gate-tunable Spin-Orbit Coupling in a High Mobility Few-Layer Semiconductor </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Shcherbakov%2C+D">D. Shcherbakov</a>, <a href="/search/cond-mat?searchtype=author&query=Stepanov%2C+P">P. Stepanov</a>, <a href="/search/cond-mat?searchtype=author&query=Memaran%2C+S">S. Memaran</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+Y">Y. Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Xin%2C+Y">Y. Xin</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+J">J. Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Wei%2C+K">K. Wei</a>, <a href="/search/cond-mat?searchtype=author&query=Baumbach%2C+R">R. Baumbach</a>, <a href="/search/cond-mat?searchtype=author&query=Zheng%2C+W">W. Zheng</a>, <a href="/search/cond-mat?searchtype=author&query=Watanabe%2C+K">K. Watanabe</a>, <a href="/search/cond-mat?searchtype=author&query=Taniguchi%2C+T">T. Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&query=Bockrath%2C+M">M. Bockrath</a>, <a href="/search/cond-mat?searchtype=author&query=Smirnov%2C+D">D. Smirnov</a>, <a href="/search/cond-mat?searchtype=author&query=Siegrist%2C+T">T. Siegrist</a>, <a href="/search/cond-mat?searchtype=author&query=Windl%2C+W">W. Windl</a>, <a href="/search/cond-mat?searchtype=author&query=Balicas%2C+L">L. Balicas</a>, <a href="/search/cond-mat?searchtype=author&query=Lau%2C+C+N">C. N. Lau</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2012.00937v1-abstract-short" style="display: inline;"> Spin-orbit coupling (SOC) is a relativistic effect, where an electron moving in an electric field experiences an effective magnetic field in its rest frame. In crystals without inversion symmetry, it lifts the spin degeneracy and leads to many magnetic, spintronic and topological phenomena and applications. In bulk materials, SOC strength is a constant that cannot be modified. Here we demonstrate… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.00937v1-abstract-full').style.display = 'inline'; document.getElementById('2012.00937v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2012.00937v1-abstract-full" style="display: none;"> Spin-orbit coupling (SOC) is a relativistic effect, where an electron moving in an electric field experiences an effective magnetic field in its rest frame. In crystals without inversion symmetry, it lifts the spin degeneracy and leads to many magnetic, spintronic and topological phenomena and applications. In bulk materials, SOC strength is a constant that cannot be modified. Here we demonstrate SOC and intrinsic spin-splitting in atomically thin InSe, which can be modified over an unprecedentedly large range. From quantum oscillations, we establish that the SOC parameter 伪is thickness-dependent; it can be continuously modulated over a wide range by an out-of-plane electric field, achieving intrinsic spin splitting tunable between 0 and 20 meV. Surprisingly, 伪could be enhanced by an order of magnitude in some devices, suggesting that SOC can be further manipulated. Our work highlights the extraordinary tunability of SOC in 2D materials, which can be harnessed for in operando spintronic and topological devices and applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.00937v1-abstract-full').style.display = 'none'; document.getElementById('2012.00937v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2020. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2012.00935">arXiv:2012.00935</a> <span> [<a href="https://arxiv.org/pdf/2012.00935">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Equilibration and Filtering of Quantum Hall Edge States in Few-Layer Black Phosphorus </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Yang%2C+J">J. Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+K">K. Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Che%2C+S">S. Che</a>, <a href="/search/cond-mat?searchtype=author&query=Tuchfeld%2C+Z+J">Z. J. Tuchfeld</a>, <a href="/search/cond-mat?searchtype=author&query=Watanabe%2C+K">K. Watanabe</a>, <a href="/search/cond-mat?searchtype=author&query=Taniguchi%2C+T">T. Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&query=Shcherbakov%2C+D">D. Shcherbakov</a>, <a href="/search/cond-mat?searchtype=author&query=Moon%2C+S">S. Moon</a>, <a href="/search/cond-mat?searchtype=author&query=Smirnov%2C+D">D. Smirnov</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+R">R. Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Bockrath%2C+M">M. Bockrath</a>, <a href="/search/cond-mat?searchtype=author&query=Lau%2C+C+N">C. N. Lau</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2012.00935v1-abstract-short" style="display: inline;"> We realize p-p'-p junctions in few-layer black phosphorus (BP) devices, and use magneto-transport measurements to study the equilibration and transmission of edge states at the interfaces of regions with different charge densities. We observe both full equilibration, where all edge channels equilibrate and are equally partitioned at the interfaces, and partial equilibration, where only equilibrati… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.00935v1-abstract-full').style.display = 'inline'; document.getElementById('2012.00935v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2012.00935v1-abstract-full" style="display: none;"> We realize p-p'-p junctions in few-layer black phosphorus (BP) devices, and use magneto-transport measurements to study the equilibration and transmission of edge states at the interfaces of regions with different charge densities. We observe both full equilibration, where all edge channels equilibrate and are equally partitioned at the interfaces, and partial equilibration, where only equilibration only takes place among modes of the same spin polarization. Furthermore, the inner p'-region with low-doping level in the junction can function as a filter for highly doped p-regions which demonstrates gate-tunable transmission of edge channels. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.00935v1-abstract-full').style.display = 'none'; document.getElementById('2012.00935v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2020. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2011.09984">arXiv:2011.09984</a> <span> [<a href="https://arxiv.org/pdf/2011.09984">pdf</a>, <a href="https://arxiv.org/format/2011.09984">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.103.094513">10.1103/PhysRevB.103.094513 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Helical superconducting edge modes from pseudo-Landau levels in graphene </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Sabsovich%2C+D">Daniel Sabsovich</a>, <a href="/search/cond-mat?searchtype=author&query=Bockrath%2C+M+W">Marc W. Bockrath</a>, <a href="/search/cond-mat?searchtype=author&query=Shtengel%2C+K">Kirill Shtengel</a>, <a href="/search/cond-mat?searchtype=author&query=Sela%2C+E">Eran Sela</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2011.09984v2-abstract-short" style="display: inline;"> We explore Andreev states at the interface of graphene and a superconductor for a uniform pseudo-magnetic field. Near the zeroth-pseudo Landau level, we find a topological transition as a function of applied Zeeman field, at which a gapless helical mode appears. This 1D mode is protected from backscattering as long as intervalley- and spin-flip scattering are suppressed. We discuss a possible expe… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.09984v2-abstract-full').style.display = 'inline'; document.getElementById('2011.09984v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2011.09984v2-abstract-full" style="display: none;"> We explore Andreev states at the interface of graphene and a superconductor for a uniform pseudo-magnetic field. Near the zeroth-pseudo Landau level, we find a topological transition as a function of applied Zeeman field, at which a gapless helical mode appears. This 1D mode is protected from backscattering as long as intervalley- and spin-flip scattering are suppressed. We discuss a possible experimental platform to detect this gapless mode based on strained suspended membranes on a superconductor, in which dynamical strain causes charge pumping <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.09984v2-abstract-full').style.display = 'none'; document.getElementById('2011.09984v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 13 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 103, 094513 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2008.06907">arXiv:2008.06907</a> <span> [<a href="https://arxiv.org/pdf/2008.06907">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.103.245424">10.1103/PhysRevB.103.245424 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Strange metal behavior of the Hall angle in twisted bilayer graphene </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Lyu%2C+R">Rui Lyu</a>, <a href="/search/cond-mat?searchtype=author&query=Tuchfeld%2C+Z">Zachary Tuchfeld</a>, <a href="/search/cond-mat?searchtype=author&query=Verma%2C+N">Nishchhal Verma</a>, <a href="/search/cond-mat?searchtype=author&query=Tian%2C+H">Haidong Tian</a>, <a href="/search/cond-mat?searchtype=author&query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&query=Lau%2C+C+N">Chun Ning Lau</a>, <a href="/search/cond-mat?searchtype=author&query=Randeria%2C+M">Mohit Randeria</a>, <a href="/search/cond-mat?searchtype=author&query=Bockrath%2C+M">Marc Bockrath</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2008.06907v1-abstract-short" style="display: inline;"> Twisted bilayer graphene (TBG) with interlayer twist angles near the magic angle $\approx 1.08^{\circ}$ hosts flat bands and exhibits correlated states including Mott-like insulators, superconductivity and magnetism. Here we report combined temperature-dependent transport measurements of the longitudinal and Hall resistivities in close to magic-angle TBG. While the observed longitudinal resistivit… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.06907v1-abstract-full').style.display = 'inline'; document.getElementById('2008.06907v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2008.06907v1-abstract-full" style="display: none;"> Twisted bilayer graphene (TBG) with interlayer twist angles near the magic angle $\approx 1.08^{\circ}$ hosts flat bands and exhibits correlated states including Mott-like insulators, superconductivity and magnetism. Here we report combined temperature-dependent transport measurements of the longitudinal and Hall resistivities in close to magic-angle TBG. While the observed longitudinal resistivity follows linear temperature $T$ dependence consistent with previous reports, the Hall resistance shows an anomalous $T$ dependence with the cotangent of the Hall angle cot $螛{_H} \propto T^2$. Boltzmann theory for quasiparticle transport predicts that both the resistivity and cot $螛{_H}$ should have the same $T$ dependence, contradicting the observed behavior. This failure of quasiparticle-based theories is reminiscent of other correlated strange metals such as cuprates. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.06907v1-abstract-full').style.display = 'none'; document.getElementById('2008.06907v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 August, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 103, 245424 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1911.04450">arXiv:1911.04450</a> <span> [<a href="https://arxiv.org/pdf/1911.04450">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Gate Tunable Magnetism and Giant Magnetoresistance in ABC-stacked Few-Layer Graphene </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Lee%2C+Y">Yongjin Lee</a>, <a href="/search/cond-mat?searchtype=author&query=Che%2C+S">Shi Che</a>, <a href="/search/cond-mat?searchtype=author&query=Velasco%2C+J">Jairo Velasco Jr.</a>, <a href="/search/cond-mat?searchtype=author&query=Tran%2C+D">David Tran</a>, <a href="/search/cond-mat?searchtype=author&query=Baima%2C+J">Jacopo Baima</a>, <a href="/search/cond-mat?searchtype=author&query=Mauri%2C+F">Francesco Mauri</a>, <a href="/search/cond-mat?searchtype=author&query=Calandra%2C+M">Matteo Calandra</a>, <a href="/search/cond-mat?searchtype=author&query=Bockrath%2C+M">Marc Bockrath</a>, <a href="/search/cond-mat?searchtype=author&query=Lau%2C+C+N">Chun Ning Lau</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1911.04450v1-abstract-short" style="display: inline;"> Magnetism is a prototypical phenomenon of quantum collective state, and has found ubiquitous applications in semiconductor technologies such as dynamic random access memory (DRAM). In conventional materials, it typically arises from the strong exchange interaction among the magnetic moments of d- or f-shell electrons. Magnetism, however, can also emerge in perfect lattices from non-magnetic elemen… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1911.04450v1-abstract-full').style.display = 'inline'; document.getElementById('1911.04450v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1911.04450v1-abstract-full" style="display: none;"> Magnetism is a prototypical phenomenon of quantum collective state, and has found ubiquitous applications in semiconductor technologies such as dynamic random access memory (DRAM). In conventional materials, it typically arises from the strong exchange interaction among the magnetic moments of d- or f-shell electrons. Magnetism, however, can also emerge in perfect lattices from non-magnetic elements. For instance, flat band systems with high density of states (DOS) may develop spontaneous magnetic ordering, as exemplified by the Stoner criterion. Here we report tunable magnetism in rhombohedral-stacked few-layer graphene (r-FLG). At small but finite doping (n~10^11 cm-2), we observe prominent conductance hysteresis and giant magnetoconductance that exceeds 1000% as a function of magnetic fields. Both phenomena are tunable by density and temperature, and disappears for n>10^12 cm-2 or T>5K. These results are confirmed by first principles calculations, which indicate the formation of a half-metallic state in doped r-FLG, in which the magnetization is tunable by electric field. Our combined experimental and theoretical work demonstrate that magnetism and spin polarization, arising from the strong electronic interactions in flat bands, emerge in a system composed entirely of carbon atoms. The electric field tunability of magnetism provides promise for spintronics and low energy device engineering. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1911.04450v1-abstract-full').style.display = 'none'; document.getElementById('1911.04450v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 November, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2019. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1909.10931">arXiv:1909.10931</a> <span> [<a href="https://arxiv.org/pdf/1909.10931">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acs.nanolett.9b02445">10.1021/acs.nanolett.9b02445 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Quantum Hall Effect Measurement of Spin-Orbit Coupling Strengths in Ultraclean Bilayer Graphene/WSe2 Heterostructures </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Wang%2C+D">Dongying Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Che%2C+S">Shi Che</a>, <a href="/search/cond-mat?searchtype=author&query=Cao%2C+G">Guixin Cao</a>, <a href="/search/cond-mat?searchtype=author&query=Lyu%2C+R">Rui Lyu</a>, <a href="/search/cond-mat?searchtype=author&query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&query=Lau%2C+C+N">Chun Ning Lau</a>, <a href="/search/cond-mat?searchtype=author&query=Bockrath%2C+M">Marc Bockrath</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1909.10931v1-abstract-short" style="display: inline;"> We study proximity-induced spin-orbit coupling (SOC) in bilayer graphene/few-layer WSe2 heterostructure devices. Contact mode atomic force microscopy (AFM) cleaning yields ultra-clean interfaces and high-mobility devices. In a perpendicular magnetic field, we measure the quantum Hall effect to determine the Landau level structure in the presence of out-of-plane Ising and in-plane Rashba SOC. A dis… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1909.10931v1-abstract-full').style.display = 'inline'; document.getElementById('1909.10931v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1909.10931v1-abstract-full" style="display: none;"> We study proximity-induced spin-orbit coupling (SOC) in bilayer graphene/few-layer WSe2 heterostructure devices. Contact mode atomic force microscopy (AFM) cleaning yields ultra-clean interfaces and high-mobility devices. In a perpendicular magnetic field, we measure the quantum Hall effect to determine the Landau level structure in the presence of out-of-plane Ising and in-plane Rashba SOC. A distinct Landau level crossing pattern emerges when tuning the charge density and displacement field independently with dual gates, originating from a layer-selective SOC proximity effect. Analyzing the Landau level crossings and measured inter-Landau level energy gaps yields the proximity induced SOC energy scale. The Ising SOC is ~ 2.2 meV, 100 times higher than the intrinsic SOC in graphene, while its sign is consistent with theories predicting a dependence of SOC on interlayer twist angle. The Rashba SOC is ~15 meV. Finally, we infer the magnetic field dependence of the inter-Landau level Coulomb interactions. These ultraclean bilayer graphene/WSe2 heterostructures provide a high mobility system with the potential to realize novel topological electronic states and manipulate spins in nanostructures. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1909.10931v1-abstract-full').style.display = 'none'; document.getElementById('1909.10931v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 September, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Nano Letters, in press</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1903.06050">arXiv:1903.06050</a> <span> [<a href="https://arxiv.org/pdf/1903.06050">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acsnano.9b02870">10.1021/acsnano.9b02870 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Electric Switching of the Charge-Density-Wave and Normal Metallic Phases in Tantalum Disulfide Thin-Film Devices </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Geremew%2C+A">A. Geremew</a>, <a href="/search/cond-mat?searchtype=author&query=Rumyantsev%2C+S">S. Rumyantsev</a>, <a href="/search/cond-mat?searchtype=author&query=Kargar%2C+F">F. Kargar</a>, <a href="/search/cond-mat?searchtype=author&query=Debnath%2C+B">B. Debnath</a>, <a href="/search/cond-mat?searchtype=author&query=Nosek%2C+A">A. Nosek</a>, <a href="/search/cond-mat?searchtype=author&query=Bloodgood%2C+M">M. Bloodgood</a>, <a href="/search/cond-mat?searchtype=author&query=Bockrath%2C+M">M. Bockrath</a>, <a href="/search/cond-mat?searchtype=author&query=Salguero%2C+T">T. Salguero</a>, <a href="/search/cond-mat?searchtype=author&query=Lake%2C+R+K">R. K. Lake</a>, <a href="/search/cond-mat?searchtype=author&query=Balandin%2C+A+A">A. A. Balandin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1903.06050v1-abstract-short" style="display: inline;"> We report on switching among three charge-density-wave phases - commensurate, nearly commensurate, incommensurate - and the high-temperature normal metallic phase in thin-film 1T-TaS2 devices induced by application of an in-plane electric field. The electric switching among all phases has been achieved over a wide temperature range, from 77 K to 400 K. The low-frequency electronic noise spectrosco… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1903.06050v1-abstract-full').style.display = 'inline'; document.getElementById('1903.06050v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1903.06050v1-abstract-full" style="display: none;"> We report on switching among three charge-density-wave phases - commensurate, nearly commensurate, incommensurate - and the high-temperature normal metallic phase in thin-film 1T-TaS2 devices induced by application of an in-plane electric field. The electric switching among all phases has been achieved over a wide temperature range, from 77 K to 400 K. The low-frequency electronic noise spectroscopy has been used as an effective tool for monitoring the transitions, particularly the switching from the incommensurate charge-density-wave phase to the normal metal phase. The noise spectral density exhibits sharp increases at the phase transition points, which correspond to the step-like changes in resistivity. Assignment of the phases is consistent with low-field resistivity measurements over the temperature range from 77 K to 600 K. Analysis of the experimental data and calculations of heat dissipation suggest that Joule heating plays a dominant role in the electric-field induced transitions in the tested 1T-TaS2 devices on Si/SiO2 substrates. The possibility of electrical switching among four different phases of 1T-TaS2 is a promising step toward nanoscale device applications. The results also demonstrate the potential of noise spectroscopy for investigating and identifying phase transitions in materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1903.06050v1-abstract-full').style.display = 'none'; document.getElementById('1903.06050v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 March, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">32 pages, 7 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> ACS Nano, 13, 7231 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1902.05151">arXiv:1902.05151</a> <span> [<a href="https://arxiv.org/pdf/1902.05151">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Correlated Insulating and Superconducting States in Twisted Bilayer Graphene Below the Magic Angle </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Codecido%2C+E">Emilio Codecido</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+Q">Qiyue Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Koester%2C+R">Ryan Koester</a>, <a href="/search/cond-mat?searchtype=author&query=Che%2C+S">Shi Che</a>, <a href="/search/cond-mat?searchtype=author&query=Tian%2C+H">Haidong Tian</a>, <a href="/search/cond-mat?searchtype=author&query=Lv%2C+R">Rui Lv</a>, <a href="/search/cond-mat?searchtype=author&query=Tran%2C+S">Son Tran</a>, <a href="/search/cond-mat?searchtype=author&query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+F">Fan Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Bockrath%2C+M">Marc Bockrath</a>, <a href="/search/cond-mat?searchtype=author&query=Lau%2C+C+N">Chun Ning Lau</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1902.05151v1-abstract-short" style="display: inline;"> The emergence of flat bands and correlated behaviors in 'magic angle' twisted bilayer graphene (tBLG) has sparked tremendous interest, though many aspects of the system are under intense debate. Here we report observation of both superconductivity and the Mott-like insulating state in a tBLG device with a twist angle of approximately 0.93, which is smaller than the magic angle by 15%. At an electr… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1902.05151v1-abstract-full').style.display = 'inline'; document.getElementById('1902.05151v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1902.05151v1-abstract-full" style="display: none;"> The emergence of flat bands and correlated behaviors in 'magic angle' twisted bilayer graphene (tBLG) has sparked tremendous interest, though many aspects of the system are under intense debate. Here we report observation of both superconductivity and the Mott-like insulating state in a tBLG device with a twist angle of approximately 0.93, which is smaller than the magic angle by 15%. At an electron concentration of +/-5 electrons per moire unit cell, we observe a narrow resistance peak with an activation energy gap of approximately 0.1 meV, indicating the existence of an additional correlated insulating state. This is consistent with theory predicting the presence of a high-energy band with an energetically flat dispersion. At a doping of +/-12 electrons per moire unit cell we observe a resistance peak due to the presence of Dirac points in the spectrum. Our results reveal that the magic range of tBLG is in fact larger than what is previously expected, and provide a wealth of new information to help decipher the strongly correlated phenomena observed in tBLG. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1902.05151v1-abstract-full').style.display = 'none'; document.getElementById('1902.05151v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 February, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2019. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1805.09186">arXiv:1805.09186</a> <span> [<a href="https://arxiv.org/pdf/1805.09186">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acs.nanolett.8b01131">10.1021/acs.nanolett.8b01131 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Raman Spectroscopy, Photocatalytic Degradation and Stabilization of Atomically Thin Chromium Triiodide </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Shcherbakov%2C+D">Dmitry Shcherbakov</a>, <a href="/search/cond-mat?searchtype=author&query=Stepanov%2C+P">Petr Stepanov</a>, <a href="/search/cond-mat?searchtype=author&query=Weber%2C+D">Daniel Weber</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+Y">Yaxian Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Hu%2C+J">Jin Hu</a>, <a href="/search/cond-mat?searchtype=author&query=Zhu%2C+Y">Yanglin Zhu</a>, <a href="/search/cond-mat?searchtype=author&query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&query=Mao%2C+Z">Zhiqiang Mao</a>, <a href="/search/cond-mat?searchtype=author&query=Windl%2C+W">Wolfgang Windl</a>, <a href="/search/cond-mat?searchtype=author&query=Goldberger%2C+J">Joshua Goldberger</a>, <a href="/search/cond-mat?searchtype=author&query=Bockrath%2C+M">Marc Bockrath</a>, <a href="/search/cond-mat?searchtype=author&query=Lau%2C+C+N">Chun Ning Lau</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1805.09186v1-abstract-short" style="display: inline;"> As a 2D ferromagnetic semiconductor with magnetic ordering, atomically thin chromium triiodide is the latest addition to the family of two-dimensional (2D) materials. However, realistic exploration of CrI3-based devices and heterostructures is challenging, due to its extreme instability under ambient conditions. Here we present Raman characterization of CrI3, and demonstrate that the main degradat… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1805.09186v1-abstract-full').style.display = 'inline'; document.getElementById('1805.09186v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1805.09186v1-abstract-full" style="display: none;"> As a 2D ferromagnetic semiconductor with magnetic ordering, atomically thin chromium triiodide is the latest addition to the family of two-dimensional (2D) materials. However, realistic exploration of CrI3-based devices and heterostructures is challenging, due to its extreme instability under ambient conditions. Here we present Raman characterization of CrI3, and demonstrate that the main degradation pathway of CrI3 is the photocatalytic substitution of iodine by water. While simple encapsulation by Al2O3, PMMA and hexagonal BN (hBN) only leads to modest reduction in degradation rate, minimizing exposure of light markedly improves stability, and CrI3 sheets sandwiched between hBN layers are air-stable for >10 days. By monitoring the transfer characteristics of CrI3/graphene heterostructure over the course of degradation, we show that the aquachromium solution hole-dopes graphene. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1805.09186v1-abstract-full').style.display = 'none'; document.getElementById('1805.09186v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 May, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1804.00207">arXiv:1804.00207</a> <span> [<a href="https://arxiv.org/pdf/1804.00207">pdf</a>, <a href="https://arxiv.org/format/1804.00207">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acs.nanolett.7b03167">10.1021/acs.nanolett.7b03167 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Quantum Wires and Waveguides Formed in Graphene by Strain </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Wu%2C+Y">Y. Wu</a>, <a href="/search/cond-mat?searchtype=author&query=Zhai%2C+D">D. Zhai</a>, <a href="/search/cond-mat?searchtype=author&query=Pan%2C+C">C. Pan</a>, <a href="/search/cond-mat?searchtype=author&query=Cheng%2C+B">B. Cheng</a>, <a href="/search/cond-mat?searchtype=author&query=Taniguchi%2C+T">T. Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&query=Watanabe%2C+K">K. Watanabe</a>, <a href="/search/cond-mat?searchtype=author&query=Sandler%2C+N">N. Sandler</a>, <a href="/search/cond-mat?searchtype=author&query=Bockrath%2C+M">M. Bockrath</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1804.00207v1-abstract-short" style="display: inline;"> Confinement of electrons in graphene to make devices has proven to be a challenging task. Electrostatic methods fail because of Klein tunneling, while etching into nanoribbons requires extreme control of edge terminations, and bottom-up approaches are limited in size to a few nanometers. Fortunately, its mechanical flexibility raises the possibility of using strain to alter graphene's properties a… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1804.00207v1-abstract-full').style.display = 'inline'; document.getElementById('1804.00207v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1804.00207v1-abstract-full" style="display: none;"> Confinement of electrons in graphene to make devices has proven to be a challenging task. Electrostatic methods fail because of Klein tunneling, while etching into nanoribbons requires extreme control of edge terminations, and bottom-up approaches are limited in size to a few nanometers. Fortunately, its mechanical flexibility raises the possibility of using strain to alter graphene's properties and create novel straintronic devices. Here, we report transport studies of nanowires created by linearly-shaped strained regions resulting from individual folds formed by layer transfer onto hexagonal boron nitride. Conductance measurements across the folds reveal Coulomb blockade signatures, indicating confined charges within these structures, which act as quantum dots. Along folds, we observe sharp features in traverse resistivity measurements, attributed to an amplification of the dot conductance modulations by a resistance bridge incorporating the device. Our data indicates ballistic transport up to ~1 um along the folds. Calculations using the Dirac model including strain are consistent with measured bound state energies and predict the existence of valley-polarized currents. Our results show that graphene folds can act as straintronic quantum wires. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1804.00207v1-abstract-full').style.display = 'none'; document.getElementById('1804.00207v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 March, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nano Lett., 2018, 18, 64 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1803.03679">arXiv:1803.03679</a> <span> [<a href="https://arxiv.org/pdf/1803.03679">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.125.246401">10.1103/PhysRevLett.125.246401 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Twist Angle-Dependent Bands and Valley Inversion in 2D Materials/hBN Heterostructures </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Che%2C+S">Shi Che</a>, <a href="/search/cond-mat?searchtype=author&query=Stepanov%2C+P">Petr Stepanov</a>, <a href="/search/cond-mat?searchtype=author&query=Ge%2C+S">Supeng Ge</a>, <a href="/search/cond-mat?searchtype=author&query=Lee%2C+Y">Yongjin Lee</a>, <a href="/search/cond-mat?searchtype=author&query=Myhro%2C+K">Kevin Myhro</a>, <a href="/search/cond-mat?searchtype=author&query=Shi%2C+Y">Yanmeng Shi</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+R">Ruoyu Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Pi%2C+Z">Ziqi Pi</a>, <a href="/search/cond-mat?searchtype=author&query=Pan%2C+C">Cheng Pan</a>, <a href="/search/cond-mat?searchtype=author&query=Cheng%2C+B">Bin Cheng</a>, <a href="/search/cond-mat?searchtype=author&query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&query=Bockrath%2C+M">Marc Bockrath</a>, <a href="/search/cond-mat?searchtype=author&query=Barlas%2C+Y">Yafis Barlas</a>, <a href="/search/cond-mat?searchtype=author&query=Lake%2C+R">Roger Lake</a>, <a href="/search/cond-mat?searchtype=author&query=Lau%2C+C+N">Chun Ning Lau</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1803.03679v1-abstract-short" style="display: inline;"> The use of relative twist angle between adjacent atomic layers in a van der Waals heterostructure, has emerged as a new degree of freedom to tune electronic and optoelectronic properties of devices based on 2D materials. Using ABA-stacked trilayer (TLG) graphene as the model system, we show that, contrary to conventional wisdom, the band structures of 2D materials are systematically tunable depend… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1803.03679v1-abstract-full').style.display = 'inline'; document.getElementById('1803.03679v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1803.03679v1-abstract-full" style="display: none;"> The use of relative twist angle between adjacent atomic layers in a van der Waals heterostructure, has emerged as a new degree of freedom to tune electronic and optoelectronic properties of devices based on 2D materials. Using ABA-stacked trilayer (TLG) graphene as the model system, we show that, contrary to conventional wisdom, the band structures of 2D materials are systematically tunable depending on their relative alignment angle between hexagonal BN (hBN), even at very large twist angles. Moreover, addition or removal of the hBN substrate results in an inversion of the K and K' valley in TLG's lowest Landau level (LL). Our work illustrates the critical role played by substrates in van der Waals heterostructures and opens the door towards band structure modification and valley control via substrate and twist angle engineering. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1803.03679v1-abstract-full').style.display = 'none'; document.getElementById('1803.03679v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 March, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 125, 246401 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1801.07290">arXiv:1801.07290</a> <span> [<a href="https://arxiv.org/pdf/1801.07290">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41567-018-0161-5">10.1038/s41567-018-0161-5 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Long-Distance Spin Transport Through a Graphene Quantum Hall Antiferromagnet </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Stepanov%2C+P">Petr Stepanov</a>, <a href="/search/cond-mat?searchtype=author&query=Che%2C+S">Shi Che</a>, <a href="/search/cond-mat?searchtype=author&query=Shcherbakov%2C+D">Dmitry Shcherbakov</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+J">Jiawei Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Thilahar%2C+K">Kevin Thilahar</a>, <a href="/search/cond-mat?searchtype=author&query=Voigt%2C+G">Greyson Voigt</a>, <a href="/search/cond-mat?searchtype=author&query=Bockrath%2C+M+W">Marc W. Bockrath</a>, <a href="/search/cond-mat?searchtype=author&query=Smirnov%2C+D">Dmitry Smirnov</a>, <a href="/search/cond-mat?searchtype=author&query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&query=Lake%2C+R+K">Roger K. Lake</a>, <a href="/search/cond-mat?searchtype=author&query=Barlas%2C+Y">Yafis Barlas</a>, <a href="/search/cond-mat?searchtype=author&query=MacDonald%2C+A+H">Allan H. MacDonald</a>, <a href="/search/cond-mat?searchtype=author&query=Lau%2C+C+N">Chun Ning Lau</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1801.07290v1-abstract-short" style="display: inline;"> Antiferromagnetic insulators (AFMI) are robust against stray fields, and their intrinsic dynamics could enable ultrafast magneto-optics and ultrascaled magnetic information processing. Low dissipation, long distance spin transport and electrical manipulation of antiferromagnetic order are much sought-after goals of spintronics research. Here, we report the first experimental evidence of robust lon… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1801.07290v1-abstract-full').style.display = 'inline'; document.getElementById('1801.07290v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1801.07290v1-abstract-full" style="display: none;"> Antiferromagnetic insulators (AFMI) are robust against stray fields, and their intrinsic dynamics could enable ultrafast magneto-optics and ultrascaled magnetic information processing. Low dissipation, long distance spin transport and electrical manipulation of antiferromagnetic order are much sought-after goals of spintronics research. Here, we report the first experimental evidence of robust long-distance spin transport through an AFMI, in our case the gate-controlled, canted antiferromagnetic (CAF) state that appears at the charge neutrality point of graphene in the presence of an external magnetic field. Utilizing gate-controlled quantum Hall (QH) edge states as spin-dependent injectors and detectors, we observe large, non-local electrical signals across a 5 micron-long, insulating channel only when it is biased into the nu=0 CAF state. Among possible transport mechanisms, spin superfluidity in an antiferromagnetic state gives the most consistent interpretation of the non-local signal's dependence on magnetic field, temperature and filling factors. This work also demonstrates that graphene in the QH regime is a powerful model system for fundamental studies of antiferromagnetic, and in the case of a large in-plane field, ferromagnetic spintronics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1801.07290v1-abstract-full').style.display = 'none'; document.getElementById('1801.07290v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 January, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Physics (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1710.04179">arXiv:1710.04179</a> <span> [<a href="https://arxiv.org/pdf/1710.04179">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Approaching quantum anomalous Hall effect in proximity-coupled YIG/graphene/h-BN sandwich structure </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Tang%2C+C">Chi Tang</a>, <a href="/search/cond-mat?searchtype=author&query=Cheng%2C+B">Bin Cheng</a>, <a href="/search/cond-mat?searchtype=author&query=Aldosary%2C+M">Mohammed Aldosary</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+Z">Zhiyong Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Jiang%2C+Z">Zilong Jiang</a>, <a href="/search/cond-mat?searchtype=author&query=Watanabe%2C+K">K. Watanabe</a>, <a href="/search/cond-mat?searchtype=author&query=Taniguchi%2C+T">T. Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&query=Bockrath%2C+M">Marc Bockrath</a>, <a href="/search/cond-mat?searchtype=author&query=Shi%2C+J">Jing Shi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1710.04179v1-abstract-short" style="display: inline;"> Quantum anomalous Hall state is expected to emerge in Dirac electron systems such as graphene under both sufficiently strong exchange and spin-orbit interactions. In pristine graphene, neither interaction exists; however, both interactions can be acquired by coupling graphene to a magnetic insulator (MI) as revealed by the anomalous Hall effect. Here, we show enhanced magnetic proximity coupling b… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1710.04179v1-abstract-full').style.display = 'inline'; document.getElementById('1710.04179v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1710.04179v1-abstract-full" style="display: none;"> Quantum anomalous Hall state is expected to emerge in Dirac electron systems such as graphene under both sufficiently strong exchange and spin-orbit interactions. In pristine graphene, neither interaction exists; however, both interactions can be acquired by coupling graphene to a magnetic insulator (MI) as revealed by the anomalous Hall effect. Here, we show enhanced magnetic proximity coupling by sandwiching graphene between a ferrimagnetic insulator yttrium iron garnet (YIG) and hexagonal-boron nitride (h-BN) which also serves as a top gate dielectric. By sweeping the top-gate voltage, we observe Fermi level-dependent anomalous Hall conductance. As the Dirac point is approached from both electron and hole sides, the anomalous Hall conductance reaches 1/4 of the quantum anomalous Hall conductance 2e2/h. The exchange coupling strength is determined to be as high as 27 meV from the transition temperature of the induced magnetic phase. YIG/graphene/h-BN is an excellent heterostructure for demonstrating proximity-induced interactions in two-dimensional electron systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1710.04179v1-abstract-full').style.display = 'none'; document.getElementById('1710.04179v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 October, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2017. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1703.04911">arXiv:1703.04911</a> <span> [<a href="https://arxiv.org/pdf/1703.04911">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Surface Transport and Quantum Hall Effect in Ambipolar Black Phosphorus Double Quantum Wells </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Tran%2C+S">Son Tran</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+J">Jiawei Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Gillgren%2C+N">Nathaniel Gillgren</a>, <a href="/search/cond-mat?searchtype=author&query=Espiritu%2C+T">Timothy Espiritu</a>, <a href="/search/cond-mat?searchtype=author&query=Shi%2C+Y">Yanmeng Shi</a>, <a href="/search/cond-mat?searchtype=author&query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&query=Moon%2C+S">Seongphill Moon</a>, <a href="/search/cond-mat?searchtype=author&query=Baek%2C+H">Hongwoo Baek</a>, <a href="/search/cond-mat?searchtype=author&query=Smirnov%2C+D">Dmitry Smirnov</a>, <a href="/search/cond-mat?searchtype=author&query=Bockrath%2C+M">Marc Bockrath</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+R">Ruoyu Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Lau%2C+C+N">Chun Ning Lau</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1703.04911v2-abstract-short" style="display: inline;"> Quantum wells constitute one of the most important classes of devices in the study of 2D systems. In a double layer QW, the additional "which-layer" degree of freedom gives rise to celebrated phenomena such as Coulomb drag, Hall drag and exciton condensation. Here we demonstrate facile formation of wide QWs in few-layer black phosphorus devices that host double layers of charge carriers. In contra… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1703.04911v2-abstract-full').style.display = 'inline'; document.getElementById('1703.04911v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1703.04911v2-abstract-full" style="display: none;"> Quantum wells constitute one of the most important classes of devices in the study of 2D systems. In a double layer QW, the additional "which-layer" degree of freedom gives rise to celebrated phenomena such as Coulomb drag, Hall drag and exciton condensation. Here we demonstrate facile formation of wide QWs in few-layer black phosphorus devices that host double layers of charge carriers. In contrast to tradition QWs, each 2D layer is ambipolar, and can be tuned into n-doped, p-doped or intrinsic regimes. Fully spin-polarized quantum Hall states are observed on each layer, with enhanced Lande g-factor that is attributed to exchange interactions. Our work opens the door for using 2D semiconductors as ambipolar single, double or wide QWs with unusual properties such as high anisotropy. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1703.04911v2-abstract-full').style.display = 'none'; document.getElementById('1703.04911v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 March, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 March, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Science Advances 3, e1603179 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1607.04647">arXiv:1607.04647</a> <span> [<a href="https://arxiv.org/pdf/1607.04647">pdf</a>, <a href="https://arxiv.org/format/1607.04647">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/2053-1583/3/3/031012">10.1088/2053-1583/3/3/031012 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Tunable spin-orbit coupling and symmetry-protected edge states in graphene/WS$_2$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Yang%2C+B">Bowen Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Tu%2C+M">Min-Feng Tu</a>, <a href="/search/cond-mat?searchtype=author&query=Kim%2C+J">Jeongwoo Kim</a>, <a href="/search/cond-mat?searchtype=author&query=Wu%2C+Y">Yong Wu</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+H">Hui Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Alicea%2C+J">Jason Alicea</a>, <a href="/search/cond-mat?searchtype=author&query=Wu%2C+R">Ruqian Wu</a>, <a href="/search/cond-mat?searchtype=author&query=Bockrath%2C+M">Marc Bockrath</a>, <a href="/search/cond-mat?searchtype=author&query=Shi%2C+J">Jing Shi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1607.04647v1-abstract-short" style="display: inline;"> We demonstrate clear weak anti-localization (WAL) effect arising from induced Rashba spin-orbit coupling (SOC) in WS$_2$-covered single-layer and bilayer graphene devices. Contrary to the uncovered region of a shared single-layer graphene flake, WAL in WS$_2$-covered graphene occurs over a wide range of carrier densities on both electron and hole sides. At high carrier densities, we estimate the R… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1607.04647v1-abstract-full').style.display = 'inline'; document.getElementById('1607.04647v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1607.04647v1-abstract-full" style="display: none;"> We demonstrate clear weak anti-localization (WAL) effect arising from induced Rashba spin-orbit coupling (SOC) in WS$_2$-covered single-layer and bilayer graphene devices. Contrary to the uncovered region of a shared single-layer graphene flake, WAL in WS$_2$-covered graphene occurs over a wide range of carrier densities on both electron and hole sides. At high carrier densities, we estimate the Rashba SOC relaxation rate to be $\sim 0.2 \rm{ps}^{-1}$ and show that it can be tuned by transverse electric fields. In addition to the Rashba SOC, we also predict the existence of a `valley-Zeeman' SOC from first-principles calculations. The interplay between these two SOC's can open a non-topological but interesting gap in graphene; in particular, zigzag boundaries host four sub-gap edge states protected by time-reversal and crystalline symmetries. The graphene/WS$_2$ system provides a possible platform for these novel edge states. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1607.04647v1-abstract-full').style.display = 'none'; document.getElementById('1607.04647v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 July, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5+4 pages, 4+5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> 2D Mater. 3, 031012 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1602.03232">arXiv:1602.03232</a> <span> [<a href="https://arxiv.org/pdf/1602.03232">pdf</a>, <a href="https://arxiv.org/format/1602.03232">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.117.086801">10.1103/PhysRevLett.117.086801 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Tunable plasmonic reflection by bound 1D electron states in a 2D Dirac metal </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Jiang%2C+B">Bor-Yuan Jiang</a>, <a href="/search/cond-mat?searchtype=author&query=Ni%2C+G">Guangxin Ni</a>, <a href="/search/cond-mat?searchtype=author&query=Pan%2C+C">Cheng Pan</a>, <a href="/search/cond-mat?searchtype=author&query=Fei%2C+Z">Zhe Fei</a>, <a href="/search/cond-mat?searchtype=author&query=Cheng%2C+B">Bin Cheng</a>, <a href="/search/cond-mat?searchtype=author&query=Lau%2C+C+N">Chun Ning Lau</a>, <a href="/search/cond-mat?searchtype=author&query=Bockrath%2C+M">Marc Bockrath</a>, <a href="/search/cond-mat?searchtype=author&query=Basov%2C+D+N">Dimitri N. Basov</a>, <a href="/search/cond-mat?searchtype=author&query=Fogler%2C+M+M">Michael M. Fogler</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1602.03232v2-abstract-short" style="display: inline;"> We show that surface plasmons of a two-dimensional Dirac metal such as graphene can be reflected by line-like perturbations hosting one-dimensional electron states. The reflection originates from a strong enhancement of the local optical conductivity caused by optical transitions involving these bound states. We propose that the bound states can be systematically created, controlled, and liquidate… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1602.03232v2-abstract-full').style.display = 'inline'; document.getElementById('1602.03232v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1602.03232v2-abstract-full" style="display: none;"> We show that surface plasmons of a two-dimensional Dirac metal such as graphene can be reflected by line-like perturbations hosting one-dimensional electron states. The reflection originates from a strong enhancement of the local optical conductivity caused by optical transitions involving these bound states. We propose that the bound states can be systematically created, controlled, and liquidated by an ultranarrow electrostatic gate. Using infrared nanoimaging, we obtain experimental evidence for the locally enhanced conductivity of graphene induced by a carbon nanotube gate, which supports this theoretical concept. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1602.03232v2-abstract-full').style.display = 'none'; document.getElementById('1602.03232v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 June, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 February, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 12 figures, submitted to PRL</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 117, 086801 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1412.0717">arXiv:1412.0717</a> <span> [<a href="https://arxiv.org/pdf/1412.0717">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/2053-1583/2/1/011001">10.1088/2053-1583/2/1/011001 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Gate Tunable Quantum Oscillations in Air-Stable and High Mobility Few-Layer Phosphorene Heterostructures </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Gillgren%2C+N">Nathaniel Gillgren</a>, <a href="/search/cond-mat?searchtype=author&query=Wickramaratne%2C+D">Darshana Wickramaratne</a>, <a href="/search/cond-mat?searchtype=author&query=Shi%2C+Y">Yanmeng Shi</a>, <a href="/search/cond-mat?searchtype=author&query=Espiritu%2C+T">Tim Espiritu</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+J">Jiawei Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Hu%2C+J">Jin Hu</a>, <a href="/search/cond-mat?searchtype=author&query=Wei%2C+J">Jiang Wei</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+X">Xue Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Mao%2C+Z">Zhiqiang Mao</a>, <a href="/search/cond-mat?searchtype=author&query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&query=Bockrath%2C+M">Marc Bockrath</a>, <a href="/search/cond-mat?searchtype=author&query=Barlas%2C+Y">Yafis Barlas</a>, <a href="/search/cond-mat?searchtype=author&query=Lake%2C+R+K">Roger K. Lake</a>, <a href="/search/cond-mat?searchtype=author&query=Lau%2C+C+N">Chun Ning Lau</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1412.0717v2-abstract-short" style="display: inline;"> As the only non-carbon elemental layered allotrope, few-layer black phosphorus or phosphorene has emerged as a novel two-dimensional (2D) semiconductor with both high bulk mobility and a band gap. Here we report fabrication and transport measurements of phosphorene-hexagonal BN (hBN) heterostructures with one-dimensional (1D) edge contacts. These transistors are stable in ambient conditions for >3… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1412.0717v2-abstract-full').style.display = 'inline'; document.getElementById('1412.0717v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1412.0717v2-abstract-full" style="display: none;"> As the only non-carbon elemental layered allotrope, few-layer black phosphorus or phosphorene has emerged as a novel two-dimensional (2D) semiconductor with both high bulk mobility and a band gap. Here we report fabrication and transport measurements of phosphorene-hexagonal BN (hBN) heterostructures with one-dimensional (1D) edge contacts. These transistors are stable in ambient conditions for >300 hours, and display ambipolar behavior, a gate-dependent metal-insulator transition, and mobility up to 4000 $cm^2$/Vs. At low temperatures, we observe gate-tunable Shubnikov de Haas (SdH) magneto-oscillations and Zeeman splitting in magnetic field with an estimated g-factor ~2. The cyclotron mass of few-layer phosphorene holes is determined to increase from 0.25 to 0.31 $m_e$ as the Fermi level moves towards the valence band edge. Our results underscore the potential of few-layer phosphorene (FLP) as both a platform for novel 2D physics and an electronic material for semiconductor applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1412.0717v2-abstract-full').style.display = 'none'; document.getElementById('1412.0717v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 December, 2014; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 December, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">minor correction of typos, equations and references</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> 2D Materials, 2, 011001 (2015) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1303.3649">arXiv:1303.3649</a> <span> [<a href="https://arxiv.org/pdf/1303.3649">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/nl4043399">10.1021/nl4043399 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Transport Measurement of Landau level Gaps in Bilayer Graphene </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Velasco%2C+J">J. Velasco Jr.</a>, <a href="/search/cond-mat?searchtype=author&query=Lee%2C+Y">Y. Lee</a>, <a href="/search/cond-mat?searchtype=author&query=Zhao%2C+Z">Z. Zhao</a>, <a href="/search/cond-mat?searchtype=author&query=Jing%2C+L">Lei Jing</a>, <a href="/search/cond-mat?searchtype=author&query=Kratz%2C+P">P. Kratz</a>, <a href="/search/cond-mat?searchtype=author&query=Bockrath%2C+M">Marc Bockrath</a>, <a href="/search/cond-mat?searchtype=author&query=Lau%2C+C+N">C. N. Lau</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1303.3649v2-abstract-short" style="display: inline;"> Landau level gaps are important parameters for understanding electronic interactions and symmetry-broken processes in bilayer graphene (BLG). Here we present transport spectroscopy measurements of LL gaps in double-gated suspended BLG with high mobilities in the quantum Hall regime. By using bias as a spectroscopic tool, we measure the gap 螖 for the quantum Hall (QH) state at filling factor 谓={\pm… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1303.3649v2-abstract-full').style.display = 'inline'; document.getElementById('1303.3649v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1303.3649v2-abstract-full" style="display: none;"> Landau level gaps are important parameters for understanding electronic interactions and symmetry-broken processes in bilayer graphene (BLG). Here we present transport spectroscopy measurements of LL gaps in double-gated suspended BLG with high mobilities in the quantum Hall regime. By using bias as a spectroscopic tool, we measure the gap 螖 for the quantum Hall (QH) state at filling factor 谓={\pm}4 and -2. The single-particle gap for 谓=4 scales linearly with magnetic field B and is independent of the out-of-plane electric field E. For the symmetry-broken 谓=-2 state, the measured values of gap are 1.1 meV/T and 0.17 meV/T for singly-gated geometry and dual-gated geometry at E=0, respectively. The difference between the two values arises from the E-dependence of the gap, suggesting that the 谓=-2 state is layer polarized. Our studies provide the first measurements of the gaps of the broken symmetry QH states in BLG with well-controlled E, and establish a robust method that can be implemented for studying similar states in other layered materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1303.3649v2-abstract-full').style.display = 'none'; document.getElementById('1303.3649v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 January, 2014; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 March, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">revised figures and discussion</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nano Letters, 14, 1324 (2014) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1205.0292">arXiv:1205.0292</a> <span> [<a href="https://arxiv.org/pdf/1205.0292">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/nl203160x">10.1021/nl203160x <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Visualizing Electrical Breakdown and ON/OFF States in Electrically Switchable Suspended Graphene Break Junctions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+H">Hang Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Bao%2C+W">Wenzhong Bao</a>, <a href="/search/cond-mat?searchtype=author&query=Zhao%2C+Z">Zeng Zhao</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+J">Jhao-Wun Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Standley%2C+B">Brian Standley</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+G">Gang Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+F">Fenglin Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Kratz%2C+P">Philip Kratz</a>, <a href="/search/cond-mat?searchtype=author&query=Jing%2C+L">Lei Jing</a>, <a href="/search/cond-mat?searchtype=author&query=Bockrath%2C+M">Marc Bockrath</a>, <a href="/search/cond-mat?searchtype=author&query=Lau%2C+C+N">Chun Ning Lau</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1205.0292v1-abstract-short" style="display: inline;"> Narrow gaps are formed in suspended single to few layer graphene devices using a pulsed electrical breakdown technique. The conductance of the resulting devices can be programmed by the application of voltage pulses, with a voltage of 2.5V~4.5V corresponding to an ON pulse and voltages ~8V corresponding to OFF pulses. Electron microscope imaging of the devices shows that the graphene sheets typica… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1205.0292v1-abstract-full').style.display = 'inline'; document.getElementById('1205.0292v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1205.0292v1-abstract-full" style="display: none;"> Narrow gaps are formed in suspended single to few layer graphene devices using a pulsed electrical breakdown technique. The conductance of the resulting devices can be programmed by the application of voltage pulses, with a voltage of 2.5V~4.5V corresponding to an ON pulse and voltages ~8V corresponding to OFF pulses. Electron microscope imaging of the devices shows that the graphene sheets typically remain suspended and that the device conductance tends to zero when the observed gap is large. The switching rate is strongly temperature dependent, which rules out a purely electromechanical switching mechanism. This observed switching in suspended graphene devices strongly suggests a switching mechanism via atomic movement and/or chemical rearrangement, and underscores the potential of all-carbon devices for integration with graphene electronics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1205.0292v1-abstract-full').style.display = 'none'; document.getElementById('1205.0292v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 May, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2012. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">in situ SEM videos are available on Nano letters website</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nano Lett., 2012, 12 (4), pp 1772-1775 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1202.3212">arXiv:1202.3212</a> <span> [<a href="https://arxiv.org/pdf/1202.3212">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1073/pnas.1205978109">10.1073/pnas.1205978109 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Minimum Conductivity and Evidence for Phase Transitions in Ultra-clean Bilayer Graphene </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Bao%2C+W">Wenzhong Bao</a>, <a href="/search/cond-mat?searchtype=author&query=Velasco%2C+J">Jairo Velasco Jr</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+F">Fan Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Jing%2C+L">Lei Jing</a>, <a href="/search/cond-mat?searchtype=author&query=Standley%2C+B">Brian Standley</a>, <a href="/search/cond-mat?searchtype=author&query=Smirnov%2C+D">Dmitry Smirnov</a>, <a href="/search/cond-mat?searchtype=author&query=Bockrath%2C+M">Marc Bockrath</a>, <a href="/search/cond-mat?searchtype=author&query=MacDonald%2C+A">Allan MacDonald</a>, <a href="/search/cond-mat?searchtype=author&query=Lau%2C+C+N">Chun Ning Lau</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1202.3212v1-abstract-short" style="display: inline;"> Bilayer graphene (BLG) at the charge neutrality point (CNP) is strongly susceptible to electronic interactions, and expected to undergo a phase transition into a state with spontaneous broken symmetries. By systematically investigating a large number of singly- and doubly-gated bilayer graphene (BLG) devices, we show that an insulating state appears only in devices with high mobility and low extri… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1202.3212v1-abstract-full').style.display = 'inline'; document.getElementById('1202.3212v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1202.3212v1-abstract-full" style="display: none;"> Bilayer graphene (BLG) at the charge neutrality point (CNP) is strongly susceptible to electronic interactions, and expected to undergo a phase transition into a state with spontaneous broken symmetries. By systematically investigating a large number of singly- and doubly-gated bilayer graphene (BLG) devices, we show that an insulating state appears only in devices with high mobility and low extrinsic doping. This insulating state has an associated transition temperature Tc~5K and an energy gap of ~3 meV, thus strongly suggesting a gapped broken symmetry state that is destroyed by very weak disorder. The transition to the intrinsic broken symmetry state can be tuned by disorder, out-of-plane electric field, or carrier density. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1202.3212v1-abstract-full').style.display = 'none'; document.getElementById('1202.3212v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 February, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2012. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Proc. Nat. Acad. Sci., 109, 10802 (2012) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1108.1609">arXiv:1108.1609</a> <span> [<a href="https://arxiv.org/pdf/1108.1609">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/nnano.2011.251">10.1038/nnano.2011.251 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Transport Spectroscopy of Symmetry-Broken Insulating States in Bilayer Graphene </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Velasco%2C+J">J. Velasco Jr.</a>, <a href="/search/cond-mat?searchtype=author&query=Jing%2C+L">L. Jing</a>, <a href="/search/cond-mat?searchtype=author&query=Bao%2C+W">W. Bao</a>, <a href="/search/cond-mat?searchtype=author&query=Lee%2C+Y">Y. Lee</a>, <a href="/search/cond-mat?searchtype=author&query=Kratz%2C+P">P. Kratz</a>, <a href="/search/cond-mat?searchtype=author&query=Aji%2C+V">V. Aji</a>, <a href="/search/cond-mat?searchtype=author&query=Bockrath%2C+M">M. Bockrath</a>, <a href="/search/cond-mat?searchtype=author&query=Lau%2C+C+N">C. N. Lau</a>, <a href="/search/cond-mat?searchtype=author&query=Varma%2C+C">C. Varma</a>, <a href="/search/cond-mat?searchtype=author&query=Stillwell%2C+R">R. Stillwell</a>, <a href="/search/cond-mat?searchtype=author&query=Smirnov%2C+D">D. Smirnov</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+F">Fan Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Jung%2C+J">J. Jung</a>, <a href="/search/cond-mat?searchtype=author&query=MacDonald%2C+A+H">A. H. MacDonald</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1108.1609v1-abstract-short" style="display: inline;"> The flat bands in bilayer graphene(BLG) are sensitive to electric fields E\bot directed between the layers, and magnify the electron-electron interaction effects, thus making BLG an attractive platform for new two-dimensional (2D) electron physics[1-5]. Theories[6-16] have suggested the possibility of a variety of interesting broken symmetry states, some characterized by spontaneous mass gaps, whe… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1108.1609v1-abstract-full').style.display = 'inline'; document.getElementById('1108.1609v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1108.1609v1-abstract-full" style="display: none;"> The flat bands in bilayer graphene(BLG) are sensitive to electric fields E\bot directed between the layers, and magnify the electron-electron interaction effects, thus making BLG an attractive platform for new two-dimensional (2D) electron physics[1-5]. Theories[6-16] have suggested the possibility of a variety of interesting broken symmetry states, some characterized by spontaneous mass gaps, when the electron-density is at the carrier neutrality point (CNP). The theoretically proposed gaps[6,7,10] in bilayer graphene are analogous[17,18] to the masses generated by broken symmetries in particle physics and give rise to large momentum-space Berry curvatures[8,19] accompanied by spontaneous quantum Hall effects[7-9]. Though recent experiments[20-23] have provided convincing evidence of strong electronic correlations near the CNP in BLG, the presence of gaps is difficult to establish because of the lack of direct spectroscopic measurements. Here we present transport measurements in ultra-clean double-gated BLG, using source-drain bias as a spectroscopic tool to resolve a gap of ~2 meV at the CNP. The gap can be closed by an electric field E\bot \sim13 mV/nm but increases monotonically with a magnetic field B, with an apparent particle-hole asymmetry above the gap, thus providing the first mapping of the ground states in BLG. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1108.1609v1-abstract-full').style.display = 'none'; document.getElementById('1108.1609v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 August, 2011; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2011. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Nanotechnology, 7, 156 (2012) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1103.6088">arXiv:1103.6088</a> <span> [<a href="https://arxiv.org/pdf/1103.6088">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/nphys2103">10.1038/nphys2103 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Stacking-Dependent Band Gap and Quantum Transport in Trilayer Graphene </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Bao%2C+W">W. Bao</a>, <a href="/search/cond-mat?searchtype=author&query=Jing%2C+L">L. Jing</a>, <a href="/search/cond-mat?searchtype=author&query=Lee%2C+Y">Y. Lee</a>, <a href="/search/cond-mat?searchtype=author&query=Velasco%2C+J">J. Velasco Jr.</a>, <a href="/search/cond-mat?searchtype=author&query=Kratz%2C+P">P. Kratz</a>, <a href="/search/cond-mat?searchtype=author&query=Tran%2C+D">D. Tran</a>, <a href="/search/cond-mat?searchtype=author&query=Standley%2C+B">B. Standley</a>, <a href="/search/cond-mat?searchtype=author&query=Aykol%2C+M">M. Aykol</a>, <a href="/search/cond-mat?searchtype=author&query=Cronin%2C+S+B">S. B. Cronin</a>, <a href="/search/cond-mat?searchtype=author&query=Smirnov%2C+D">D. Smirnov</a>, <a href="/search/cond-mat?searchtype=author&query=Koshino%2C+M">M. Koshino</a>, <a href="/search/cond-mat?searchtype=author&query=McCann%2C+E">E. McCann</a>, <a href="/search/cond-mat?searchtype=author&query=Bockrath%2C+M">M. Bockrath</a>, <a href="/search/cond-mat?searchtype=author&query=Lau%2C+C+N">C. N. Lau</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1103.6088v2-abstract-short" style="display: inline;"> In a multi-layer electronic system, stacking order provides a rarely-explored degree of freedom for tuning its electronic properties. Here we demonstrate the dramatically different transport properties in trilayer graphene (TLG) with different stacking orders. At the Dirac point, ABA-stacked TLG remains metallic while the ABC counterpart becomes insulating. The latter exhibits a gap-like dI/dV cha… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1103.6088v2-abstract-full').style.display = 'inline'; document.getElementById('1103.6088v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1103.6088v2-abstract-full" style="display: none;"> In a multi-layer electronic system, stacking order provides a rarely-explored degree of freedom for tuning its electronic properties. Here we demonstrate the dramatically different transport properties in trilayer graphene (TLG) with different stacking orders. At the Dirac point, ABA-stacked TLG remains metallic while the ABC counterpart becomes insulating. The latter exhibits a gap-like dI/dV characteristics at low temperature and thermally activated conduction at higher temperatures, indicating an intrinsic gap ~6 meV. In magnetic fields, in addition to an insulating state at filling factor 谓=0, ABC TLG exhibits quantum Hall plateaus at 谓=-30, \pm 18, \pm 9, each of which splits into 3 branches at higher fields. Such splittings are signatures of the Lifshitz transition induced by trigonal warping, found only in ABC TLG, and in semi-quantitative agreement with theory. Our results underscore the rich interaction-induced phenomena in trilayer graphene with different stacking orders, and its potential towards electronic applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1103.6088v2-abstract-full').style.display = 'none'; document.getElementById('1103.6088v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 January, 2012; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 31 March, 2011; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2011. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">minor revision; published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Physics 7, 948--952 (2011) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1009.4669">arXiv:1009.4669</a> <span> [<a href="https://arxiv.org/pdf/1009.4669">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/nl101901g">10.1021/nl101901g <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Quantum Transport and Field Induced Insulating States in Bilayer Graphene pnp Junctions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Jing%2C+L">Lei Jing</a>, <a href="/search/cond-mat?searchtype=author&query=Velasco%2C+J">Jairo Velasco Jr.</a>, <a href="/search/cond-mat?searchtype=author&query=Kratz%2C+P">Philip Kratz</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+G">Gang Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Bao%2C+W">Wenzhong Bao</a>, <a href="/search/cond-mat?searchtype=author&query=Bockrath%2C+M">Marc Bockrath</a>, <a href="/search/cond-mat?searchtype=author&query=Lau%2C+C+N">Chun Ning Lau</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1009.4669v2-abstract-short" style="display: inline;"> We perform transport measurements in high quality bilayer graphene pnp junctions with suspended top gates. At a magnetic field B=0, we demonstrate band gap opening by an applied perpendicular electric field, with an On/Off ratio up to 20,000 at 260mK. Within the band gap, the conductance decreases exponentially by 3 orders of magnitude with increasing electric field, and can be accounted for by va… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1009.4669v2-abstract-full').style.display = 'inline'; document.getElementById('1009.4669v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1009.4669v2-abstract-full" style="display: none;"> We perform transport measurements in high quality bilayer graphene pnp junctions with suspended top gates. At a magnetic field B=0, we demonstrate band gap opening by an applied perpendicular electric field, with an On/Off ratio up to 20,000 at 260mK. Within the band gap, the conductance decreases exponentially by 3 orders of magnitude with increasing electric field, and can be accounted for by variable range hopping with a gate-tunable density of states, effective mass, and localization length. At large B, we observe quantum Hall conductance with fractional values, which arise from equilibration of edge states between differentially-doped regions, and the presence of an insulating state at filling factor 谓=0. Our work underscores the importance of bilayer graphene for both fundamental interest and technological applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1009.4669v2-abstract-full').style.display = 'none'; document.getElementById('1009.4669v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 September, 2010; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 September, 2010; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2010. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 figures, to appear in Nano Lett. Minor typos corrected</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1009.0081">arXiv:1009.0081</a> <span> [<a href="https://arxiv.org/pdf/1009.0081">pdf</a>, <a href="https://arxiv.org/ps/1009.0081">ps</a>, <a href="https://arxiv.org/format/1009.0081">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.susc.2011.03.025">10.1016/j.susc.2011.03.025 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Strain-induced pseudo-magnetic fields and charging effects on CVD-grown graphene </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Yeh%2C+N+-">N. -C. Yeh</a>, <a href="/search/cond-mat?searchtype=author&query=Teague%2C+M+L">M. L. Teague</a>, <a href="/search/cond-mat?searchtype=author&query=Yeom%2C+S">S. Yeom</a>, <a href="/search/cond-mat?searchtype=author&query=Standley%2C+B+L">B. L. Standley</a>, <a href="/search/cond-mat?searchtype=author&query=Boyd%2C+D+A">D. A. Boyd</a>, <a href="/search/cond-mat?searchtype=author&query=Bockrath%2C+M+W">M. W. Bockrath</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1009.0081v2-abstract-short" style="display: inline;"> Atomically resolved imaging and spectroscopic characteristics of graphene grown by chemical vapor deposition (CVD) on copper are investigated by means of scanning tunneling microscopy and spectroscopy (STM/STS). For CVD-grown graphene remaining on the copper substrate, the monolayer carbon structures exhibit ripples and appear strongly strained, with different regions exhibiting different lattice… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1009.0081v2-abstract-full').style.display = 'inline'; document.getElementById('1009.0081v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1009.0081v2-abstract-full" style="display: none;"> Atomically resolved imaging and spectroscopic characteristics of graphene grown by chemical vapor deposition (CVD) on copper are investigated by means of scanning tunneling microscopy and spectroscopy (STM/STS). For CVD-grown graphene remaining on the copper substrate, the monolayer carbon structures exhibit ripples and appear strongly strained, with different regions exhibiting different lattice structures and electronic density of states (DOS). In particular, ridges appear along the boundaries of different lattice structures, which exhibit excess charging effects. Additionally, the large and non-uniform strain induces pseudo-magnetic field up to ~ 50 Tesla, as manifested by the integer and fractional pseudo-magnetic field quantum Hall effect (IQHE and FQHE) in the DOS of graphene. In contrast, for graphene transferred from copper to SiO2 substrates after the CVD growth, the average strain on the whole is reduced, so are the corresponding charging effects and pseudo-magnetic fields except for sample areas near topographical ridges. These findings suggest feasible "strain engineering" of the electronic states of graphene by proper design of the substrates and growth conditions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1009.0081v2-abstract-full').style.display = 'none'; document.getElementById('1009.0081v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 March, 2011; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 31 August, 2010; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2010. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 9 figures. Accepted for publication in a special issue of Surface Science: "Graphene Surfaces and Interfaces". Contac author: Nai-Chang Yeh (ncyeh@caltech.edu)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Surface Science 605, 1649-1656 (2011) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/0912.3179">arXiv:0912.3179</a> <span> [<a href="https://arxiv.org/pdf/0912.3179">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.81.121407">10.1103/PhysRevB.81.121407 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Probing Charging and Localization in the Quantum Hall Regime by Graphene pnp Junctions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Velasco%2C+J">Jairo Velasco Jr.</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+G">Gang Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Jing%2C+L">Lei Jing</a>, <a href="/search/cond-mat?searchtype=author&query=Kratz%2C+P">Philip Kratz</a>, <a href="/search/cond-mat?searchtype=author&query=Bao%2C+W">Wenzhong Bao</a>, <a href="/search/cond-mat?searchtype=author&query=Bockrath%2C+M">Marc Bockrath</a>, <a href="/search/cond-mat?searchtype=author&query=Lau%2C+C+N">Chun Ning Lau</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="0912.3179v1-abstract-short" style="display: inline;"> Using high quality graphene pnp junctions, we observe prominent conductance fluctuations on transitions between quantum Hall (QH) plateaus as the top gate voltage Vtg is varied. In the Vtg-B plane, the fluctuations form crisscrossing lines that are parallel to those of the adjacent plateaus, with different temperature dependences for the conductance peaks and valleys. These fluctuations arise fr… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0912.3179v1-abstract-full').style.display = 'inline'; document.getElementById('0912.3179v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="0912.3179v1-abstract-full" style="display: none;"> Using high quality graphene pnp junctions, we observe prominent conductance fluctuations on transitions between quantum Hall (QH) plateaus as the top gate voltage Vtg is varied. In the Vtg-B plane, the fluctuations form crisscrossing lines that are parallel to those of the adjacent plateaus, with different temperature dependences for the conductance peaks and valleys. These fluctuations arise from Coulomb-induced charging of electron- or hole-doped localized states when the device bulk is delocalized, underscoring the importance of electronic interactions in graphene in the QH regime. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0912.3179v1-abstract-full').style.display = 'none'; document.getElementById('0912.3179v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 December, 2009; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2009. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/0905.0694">arXiv:0905.0694</a> <span> [<a href="https://arxiv.org/pdf/0905.0694">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Giant Raman Intensity Modulation in Pristine Carbon Nanotubes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Bushmaker%2C+A+W">Adam W. Bushmaker</a>, <a href="/search/cond-mat?searchtype=author&query=Deshpande%2C+V+V">Vikram V. Deshpande</a>, <a href="/search/cond-mat?searchtype=author&query=Hsieh%2C+S">Scott Hsieh</a>, <a href="/search/cond-mat?searchtype=author&query=Bockrath%2C+M+W">Marc W. Bockrath</a>, <a href="/search/cond-mat?searchtype=author&query=Cronin%2C+S+B">Stephen B. Cronin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="0905.0694v1-abstract-short" style="display: inline;"> Large variations of up to two orders of magnitude are observed in the Raman intensity of pristine, suspended quasi-metallic single-walled carbon nanotubes in response to applied gate potentials. No change in the resonance condition is observed, and all Raman bands exhibit the same changes in intensity, regardless of phonon energy or laser excitation energy. The effect is not observed in semicond… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0905.0694v1-abstract-full').style.display = 'inline'; document.getElementById('0905.0694v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="0905.0694v1-abstract-full" style="display: none;"> Large variations of up to two orders of magnitude are observed in the Raman intensity of pristine, suspended quasi-metallic single-walled carbon nanotubes in response to applied gate potentials. No change in the resonance condition is observed, and all Raman bands exhibit the same changes in intensity, regardless of phonon energy or laser excitation energy. The effect is not observed in semiconducting nanotubes. The electronic energy gaps correlate with the drop in the Raman intensity, and the recently observed Mott insulating behavior is suggested as a possible explanation for this effect. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0905.0694v1-abstract-full').style.display = 'none'; document.getElementById('0905.0694v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 May, 2009; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2009. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/0903.2327">arXiv:0903.2327</a> <span> [<a href="https://arxiv.org/pdf/0903.2327">pdf</a>, <a href="https://arxiv.org/ps/0903.2327">ps</a>, <a href="https://arxiv.org/format/0903.2327">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/nl9005657">10.1021/nl9005657 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Evidence for Strain-Induced Local Conductance Modulations in Single-Layer Graphene on SiO2 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Teague%2C+M+L">M. L. Teague</a>, <a href="/search/cond-mat?searchtype=author&query=Lai%2C+A+P">A. P. Lai</a>, <a href="/search/cond-mat?searchtype=author&query=Velasco%2C+J">J. Velasco</a>, <a href="/search/cond-mat?searchtype=author&query=Hughes%2C+C+R">C. R. Hughes</a>, <a href="/search/cond-mat?searchtype=author&query=Beyer%2C+A+D">A. D. Beyer</a>, <a href="/search/cond-mat?searchtype=author&query=Bockrath%2C+M+W">M. W. Bockrath</a>, <a href="/search/cond-mat?searchtype=author&query=Lau%2C+C+N">C. N. Lau</a>, <a href="/search/cond-mat?searchtype=author&query=Yeh%2C+N+-">N. -C. Yeh</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="0903.2327v1-abstract-short" style="display: inline;"> Graphene has emerged as an electronic material that is promising for device applications and for studying two-dimensional electron gases with relativistic dispersion near two Dirac points. Nonetheless, deviations from Dirac-like spectroscopy have been widely reported with varying interpretations. Here we show evidence for strain-induced spatial modulations in the local conductance of single-laye… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0903.2327v1-abstract-full').style.display = 'inline'; document.getElementById('0903.2327v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="0903.2327v1-abstract-full" style="display: none;"> Graphene has emerged as an electronic material that is promising for device applications and for studying two-dimensional electron gases with relativistic dispersion near two Dirac points. Nonetheless, deviations from Dirac-like spectroscopy have been widely reported with varying interpretations. Here we show evidence for strain-induced spatial modulations in the local conductance of single-layer graphene on SiO2 substrates from scanning tunneling microscopic (STM) studies. We find that strained graphene exhibits parabolic, U-shaped conductance vs. bias voltage spectra rather than the V-shaped spectra expected for Dirac fermions, whereas V-shaped spectra are recovered in regions of relaxed graphene. Strain maps derived from the STM studies further reveal direct correlation with the local tunneling conductance. These results are attributed to a strain-induced frequency increase in the out-of-plane phonon mode that mediates the low-energy inelastic charge tunneling into graphene. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0903.2327v1-abstract-full').style.display = 'none'; document.getElementById('0903.2327v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 March, 2009; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2009. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 4 figures. Corresponding author: Nai-Chang Yeh (ncyeh@caltech.edu)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nano Letters Vol. 9, No. 7, 2542 - 2546 (2009) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/0902.3305">arXiv:0902.3305</a> <span> [<a href="https://arxiv.org/pdf/0902.3305">pdf</a>, <a href="https://arxiv.org/format/0902.3305">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.102.105501">10.1103/PhysRevLett.102.105501 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Spatially-Resolved Temperature Measurements of Electrically-Heated Carbon Nanotubes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Deshpande%2C+V+V">Vikram V. Deshpande</a>, <a href="/search/cond-mat?searchtype=author&query=Hsieh%2C+S">Scott Hsieh</a>, <a href="/search/cond-mat?searchtype=author&query=Bushmaker%2C+A+W">Adam W. Bushmaker</a>, <a href="/search/cond-mat?searchtype=author&query=Bockrath%2C+M">Marc Bockrath</a>, <a href="/search/cond-mat?searchtype=author&query=Cronin%2C+S+B">Stephen B. Cronin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="0902.3305v1-abstract-short" style="display: inline;"> Spatially-resolved Raman spectra of individual pristine suspended carbon nanotubes are observed under electrical heating. The Raman G+ and G- bands show unequal temperature profiles. The preferential heating is more pronounced in short nanotubes (2 um) than in long nanotubes (5 um). These results are understood in terms of the decay and thermalization of non-equilibrium phonons, revealing the me… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0902.3305v1-abstract-full').style.display = 'inline'; document.getElementById('0902.3305v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="0902.3305v1-abstract-full" style="display: none;"> Spatially-resolved Raman spectra of individual pristine suspended carbon nanotubes are observed under electrical heating. The Raman G+ and G- bands show unequal temperature profiles. The preferential heating is more pronounced in short nanotubes (2 um) than in long nanotubes (5 um). These results are understood in terms of the decay and thermalization of non-equilibrium phonons, revealing the mechanism of thermal transport in these devices. The measurements also enable a direct estimate of thermal contact resistances and the spatial variation of thermal conductivity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0902.3305v1-abstract-full').style.display = 'none'; document.getElementById('0902.3305v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 February, 2009; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2009. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">To appear in Phys. Rev. Lett</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/0901.2947">arXiv:0901.2947</a> <span> [<a href="https://arxiv.org/pdf/0901.2947">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/nl802854x">10.1021/nl802854x <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Direct Observation of Born-Oppenheimer Approximation Breakdown in Carbon Nanotubes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Bushmaker%2C+A+W">Adam W. Bushmaker</a>, <a href="/search/cond-mat?searchtype=author&query=Deshpande%2C+V+V">Vikram V. Deshpande</a>, <a href="/search/cond-mat?searchtype=author&query=Hsieh%2C+S">Scott Hsieh</a>, <a href="/search/cond-mat?searchtype=author&query=Bockrath%2C+M+W">Marc W. Bockrath</a>, <a href="/search/cond-mat?searchtype=author&query=Cronin%2C+S+B">Stephen B. Cronin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="0901.2947v1-abstract-short" style="display: inline;"> Raman spectra and electrical conductance of individual, pristine, suspended, metallic single-walled carbon nanotubes are measured under applied gate potentials. The G- band is observed to downshift with small applied gate voltages, with the minima occurring at EF = +/- 1/2 Ephonon, contrary to adiabatic predictions. A subsequent upshift in the Raman frequency at higher gate voltages results in a… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0901.2947v1-abstract-full').style.display = 'inline'; document.getElementById('0901.2947v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="0901.2947v1-abstract-full" style="display: none;"> Raman spectra and electrical conductance of individual, pristine, suspended, metallic single-walled carbon nanotubes are measured under applied gate potentials. The G- band is observed to downshift with small applied gate voltages, with the minima occurring at EF = +/- 1/2 Ephonon, contrary to adiabatic predictions. A subsequent upshift in the Raman frequency at higher gate voltages results in a 'W'-shaped Raman shift profile that agrees well with a non-adiabatic phonon renormalization model. This behavior constitutes the first experimental confirmation of the theoretically predicted breakdown of the Born-Oppenheimer approximation in individual single walled carbon nanotubes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0901.2947v1-abstract-full').style.display = 'none'; document.getElementById('0901.2947v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 January, 2009; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2009. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/0806.2657">arXiv:0806.2657</a> <span> [<a href="https://arxiv.org/pdf/0806.2657">pdf</a>, <a href="https://arxiv.org/ps/0806.2657">ps</a>, <a href="https://arxiv.org/format/0806.2657">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.78.165405">10.1103/PhysRevB.78.165405 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Sagnac interference in Carbon nanotubes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Bishara%2C+W">Waheb Bishara</a>, <a href="/search/cond-mat?searchtype=author&query=Refael%2C+G">Gil Refael</a>, <a href="/search/cond-mat?searchtype=author&query=Bockrath%2C+M">Marc Bockrath</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="0806.2657v1-abstract-short" style="display: inline;"> The Sagnac interference mode arises when two interfering counterpropogating beams traverse a loop, but with their velocities detuned by a small amount $2u$, with $v_{R/L}=v_F\pm u$. In this paper we perform a perturbative non-equilibrium calculation of Sagnac interference in single channel wires as well as armchair nanotube loops. We study the dependence of the Sagnac conductance oscillations on… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0806.2657v1-abstract-full').style.display = 'inline'; document.getElementById('0806.2657v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="0806.2657v1-abstract-full" style="display: none;"> The Sagnac interference mode arises when two interfering counterpropogating beams traverse a loop, but with their velocities detuned by a small amount $2u$, with $v_{R/L}=v_F\pm u$. In this paper we perform a perturbative non-equilibrium calculation of Sagnac interference in single channel wires as well as armchair nanotube loops. We study the dependence of the Sagnac conductance oscillations on temperature and interactions. We find that the Sagnac interference is not destroyed by strong interactions, but becomes weakly dependent on the velocity detuning $u$. In armchairs nanotubes with typical interaction strength, $0.25 \leq g \leq 0.5$, we find that the necessary temperature for observing the interference effect, $T_{SAG}$ is also only weakly dependent on the interaction, and is enhanced by a factor of 8 relative to the temperature necessary for observing Fabry-Perot interference in the same system, $T_{FP}$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0806.2657v1-abstract-full').style.display = 'none'; document.getElementById('0806.2657v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 June, 2008; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2008. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 8 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/0710.0683">arXiv:0710.0683</a> <span> [<a href="https://arxiv.org/pdf/0710.0683">pdf</a>, <a href="https://arxiv.org/ps/0710.0683">ps</a>, <a href="https://arxiv.org/format/0710.0683">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> The One-Dimensional Wigner Crystal in Carbon Nanotubes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Deshpande%2C+V+V">Vikram V. Deshpande</a>, <a href="/search/cond-mat?searchtype=author&query=Bockrath%2C+M">Marc Bockrath</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="0710.0683v1-abstract-short" style="display: inline;"> Electron-electron interactions strongly affect the behavior of low-dimensional systems. In one dimension (1D), arbitrarily weak interactions qualitatively alter the ground state producing a Luttinger liquid (LL) which has now been observed in a number of experimental systems. Interactions are even more important at low carrier density, and in the limit when the long-ranged Coulomb potential is t… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0710.0683v1-abstract-full').style.display = 'inline'; document.getElementById('0710.0683v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="0710.0683v1-abstract-full" style="display: none;"> Electron-electron interactions strongly affect the behavior of low-dimensional systems. In one dimension (1D), arbitrarily weak interactions qualitatively alter the ground state producing a Luttinger liquid (LL) which has now been observed in a number of experimental systems. Interactions are even more important at low carrier density, and in the limit when the long-ranged Coulomb potential is the dominant energy scale, the electron liquid is expected to become a periodically ordered solid known as the Wigner crystal. In 1D, the Wigner crystal has been predicted to exhibit novel spin and magnetic properties not present in an ordinary LL. However, despite recent progress in coupled quantum wires, unambiguous experimental demonstration of this state has not been possible due to the role of disorder. Here, we demonstrate using low-temperature single-electron transport spectroscopy that a hole gas in low-disorder carbon nanotubes with a band gap is a realization of the 1D Wigner crystal. Our observation can lead to unprecedented control over the behavior of the spatially separated system of carriers, and could be used to realize solid state quantum computing with long coherence times. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0710.0683v1-abstract-full').style.display = 'none'; document.getElementById('0710.0683v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 October, 2007; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2007. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/cond-mat/0608365">arXiv:cond-mat/0608365</a> <span> [<a href="https://arxiv.org/pdf/cond-mat/0608365">pdf</a>, <a href="https://arxiv.org/ps/cond-mat/0608365">ps</a>, <a href="https://arxiv.org/format/cond-mat/0608365">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.98.246803">10.1103/PhysRevLett.98.246803 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Sagnac interference in Carbon nanotube loops </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Refael%2C+G">Gil Refael</a>, <a href="/search/cond-mat?searchtype=author&query=Heo%2C+J">Jinseong Heo</a>, <a href="/search/cond-mat?searchtype=author&query=Bockrath%2C+M">Marc Bockrath</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="cond-mat/0608365v1-abstract-short" style="display: inline;"> In this paper we study electron interference in nanotube loops. The conductance as a function of the applied voltage is shown to oscillate due to interference between electron beams traversing the loop in two opposite directions, with slightly different velocities. The period of these oscillations with respect to the gate voltage, as well as the temperatures required for the effect to appear, ar… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/0608365v1-abstract-full').style.display = 'inline'; document.getElementById('cond-mat/0608365v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="cond-mat/0608365v1-abstract-full" style="display: none;"> In this paper we study electron interference in nanotube loops. The conductance as a function of the applied voltage is shown to oscillate due to interference between electron beams traversing the loop in two opposite directions, with slightly different velocities. The period of these oscillations with respect to the gate voltage, as well as the temperatures required for the effect to appear, are shown to be much larger than those of the related Fabry-Perot interference. This effect is analogous to the Sagnac effect in light interferometers. We calculate the effect of interactions on the period of the oscillations, and show that even though interactions destroy much of the near-degeneracy of velocities in the symmetric spin channel, the slow interference effects survive. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/0608365v1-abstract-full').style.display = 'none'; document.getElementById('cond-mat/0608365v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 August, 2006; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2006. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 98, 246803 (2007). </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/cond-mat/0606463">arXiv:cond-mat/0606463</a> <span> [<a href="https://arxiv.org/pdf/cond-mat/0606463">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/1.2358821">10.1063/1.2358821 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Elastomeric carbon nanotube circuits for local strain sensing </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Maune%2C+H">H. Maune</a>, <a href="/search/cond-mat?searchtype=author&query=Bockrath%2C+M">M. Bockrath</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="cond-mat/0606463v1-abstract-short" style="display: inline;"> We use elastomeric polydimethylsiloxane substrates to strain single-walled carbon nanotubes and modulate their electronic properties, with the aim of developing flexible materials that can sense local strain. We demonstrate micron-scale nanotube devices that can be cycled repeatedly through strains as high as 20% while providing reproducible local strain transduction by via the device resistance… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/0606463v1-abstract-full').style.display = 'inline'; document.getElementById('cond-mat/0606463v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="cond-mat/0606463v1-abstract-full" style="display: none;"> We use elastomeric polydimethylsiloxane substrates to strain single-walled carbon nanotubes and modulate their electronic properties, with the aim of developing flexible materials that can sense local strain. We demonstrate micron-scale nanotube devices that can be cycled repeatedly through strains as high as 20% while providing reproducible local strain transduction by via the device resistance. We also compress individual nanotubes, and find they undergo an undulatory distortion with a characteristic spatial period of 100-200 nm. The observed period can be understood by the mechanical properties of nanotubes and the substrate in conjunction with continuum elasticity theory. These could potentially be used to create superlattices within individual nanotubes, enabling novel devices and applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/0606463v1-abstract-full').style.display = 'none'; document.getElementById('cond-mat/0606463v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 June, 2006; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2006. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/cond-mat/0507004">arXiv:cond-mat/0507004</a> <span> [<a href="https://arxiv.org/pdf/cond-mat/0507004">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.95.226101">10.1103/PhysRevLett.95.226101 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Ballistic Phonon Thermal Transport in Multi-Walled Carbon Nanotubes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Chiu%2C+H+-">H. -Y. Chiu</a>, <a href="/search/cond-mat?searchtype=author&query=Deshpande%2C+V+V">V. V. Deshpande</a>, <a href="/search/cond-mat?searchtype=author&query=Postma%2C+H+W+C">H. W. Ch. Postma</a>, <a href="/search/cond-mat?searchtype=author&query=Lau%2C+C+N">C. N. Lau</a>, <a href="/search/cond-mat?searchtype=author&query=Mik%C3%B3%2C+C">C. Mik贸</a>, <a href="/search/cond-mat?searchtype=author&query=Forr%C3%B3%2C+L">L. Forr贸</a>, <a href="/search/cond-mat?searchtype=author&query=Bockrath%2C+M">M. Bockrath</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="cond-mat/0507004v1-abstract-short" style="display: inline;"> We report electrical transport experiments using the phenomenon of electrical breakdown to perform thermometry that probe the thermal properties of individual multi-walled nanotubes. Our results show that nanotubes can readily conduct heat by ballistic phonon propagation, reaching a quantum-mechanical limit to thermal conductance. We determine the thermal conductance quantum, the ultimate limit… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/0507004v1-abstract-full').style.display = 'inline'; document.getElementById('cond-mat/0507004v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="cond-mat/0507004v1-abstract-full" style="display: none;"> We report electrical transport experiments using the phenomenon of electrical breakdown to perform thermometry that probe the thermal properties of individual multi-walled nanotubes. Our results show that nanotubes can readily conduct heat by ballistic phonon propagation, reaching a quantum-mechanical limit to thermal conductance. We determine the thermal conductance quantum, the ultimate limit to thermal conductance for a single phonon channel, and find good agreement with theoretical calculations. Moreover, our results suggest a breakdown mechanism of thermally activated C-C bond breaking coupled with the electrical stress of carrying ~10^12 A/m^2. We also demonstrate a current-driven self-heating technique to improve the conductance of nanotube devices dramatically. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/0507004v1-abstract-full').style.display = 'none'; document.getElementById('cond-mat/0507004v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 June, 2005; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2005. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/cond-mat/0210420">arXiv:cond-mat/0210420</a> <span> [<a href="https://arxiv.org/pdf/cond-mat/0210420">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.67.033407">10.1103/PhysRevB.67.033407 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Plastic Deformations in Mechanically Strained Single-Walled Carbon Nanotubes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Bozovic%2C+D">D. Bozovic</a>, <a href="/search/cond-mat?searchtype=author&query=Bockrath%2C+M">M. Bockrath</a>, <a href="/search/cond-mat?searchtype=author&query=Hafner%2C+J+H">J. H. Hafner</a>, <a href="/search/cond-mat?searchtype=author&query=Lieber%2C+C+M">C. M. Lieber</a>, <a href="/search/cond-mat?searchtype=author&query=Park%2C+H">H. Park</a>, <a href="/search/cond-mat?searchtype=author&query=Tinkham%2C+M">M. Tinkham</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="cond-mat/0210420v1-abstract-short" style="display: inline;"> AFM manipulation was used to controllably stretch individual metallic single-walled carbon nanotubes (SWNTs). We have found that SWNTs can sustain elongations as great as 30% without breaking. Scanned gate microscopy and transport measurements were used to probe the effects of the mechanical strain on the SWNT electronic properties, which revealed a strain-induced increase in intra-tube electron… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/0210420v1-abstract-full').style.display = 'inline'; document.getElementById('cond-mat/0210420v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="cond-mat/0210420v1-abstract-full" style="display: none;"> AFM manipulation was used to controllably stretch individual metallic single-walled carbon nanotubes (SWNTs). We have found that SWNTs can sustain elongations as great as 30% without breaking. Scanned gate microscopy and transport measurements were used to probe the effects of the mechanical strain on the SWNT electronic properties, which revealed a strain-induced increase in intra-tube electronic scattering above a threshold strain of ~5-10%. These findings are consistent with theoretical calculations predicting the onset of plastic deformation and defect formation in carbon nanotubes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/0210420v1-abstract-full').style.display = 'none'; document.getElementById('cond-mat/0210420v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 October, 2002; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2002. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/cond-mat/0110002">arXiv:cond-mat/0110002</a> <span> [<a href="https://arxiv.org/pdf/cond-mat/0110002">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.87.217003">10.1103/PhysRevLett.87.217003 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Quantum Phase Slips in Superconducting Nanowires </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Lau%2C+C+N">C. N. Lau</a>, <a href="/search/cond-mat?searchtype=author&query=Markovic%2C+N">N. Markovic</a>, <a href="/search/cond-mat?searchtype=author&query=Bockrath%2C+M">M. Bockrath</a>, <a href="/search/cond-mat?searchtype=author&query=Bezryadin%2C+A">A. Bezryadin</a>, <a href="/search/cond-mat?searchtype=author&query=Tinkham%2C+M">M. Tinkham</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="cond-mat/0110002v1-abstract-short" style="display: inline;"> We have measured the resistance vs. temperature of more than 20 superconducting nanowires with nominal widths ranging from 10 to 22 nm and lengths from 100 nm to 1050 nm. With decreasing cross-sectional areas, the wires display increasingly broad resistive transitions. The data are in very good agreement with a model that includes both thermally activated phase slips close to Tc and quantum phas… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/0110002v1-abstract-full').style.display = 'inline'; document.getElementById('cond-mat/0110002v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="cond-mat/0110002v1-abstract-full" style="display: none;"> We have measured the resistance vs. temperature of more than 20 superconducting nanowires with nominal widths ranging from 10 to 22 nm and lengths from 100 nm to 1050 nm. With decreasing cross-sectional areas, the wires display increasingly broad resistive transitions. The data are in very good agreement with a model that includes both thermally activated phase slips close to Tc and quantum phase slips (QPS) at low temperatures, but disagree with an earlier model based on a critical value of R_n/Rq. Our measurements provide strong evidence for QPS in thin superconducting wires. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/0110002v1-abstract-full').style.display = 'none'; document.getElementById('cond-mat/0110002v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 September, 2001; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2001. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/cond-mat/0008008">arXiv:cond-mat/0008008</a> <span> [<a href="https://arxiv.org/pdf/cond-mat/0008008">pdf</a>, <a href="https://arxiv.org/ps/cond-mat/0008008">ps</a>, <a href="https://arxiv.org/format/cond-mat/0008008">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Luttinger liquid behavior in metallic carbon nanotubes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Egger%2C+R">R. Egger</a>, <a href="/search/cond-mat?searchtype=author&query=Bachtold%2C+A">A. Bachtold</a>, <a href="/search/cond-mat?searchtype=author&query=Fuhrer%2C+M">M. Fuhrer</a>, <a href="/search/cond-mat?searchtype=author&query=Bockrath%2C+M">M. Bockrath</a>, <a href="/search/cond-mat?searchtype=author&query=Cobden%2C+D">D. Cobden</a>, <a href="/search/cond-mat?searchtype=author&query=McEuen%2C+P">P. McEuen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="cond-mat/0008008v1-abstract-short" style="display: inline;"> Coulomb interaction effects have pronounced consequences in carbon nanotubes due to their 1D nature. In particular, correlations imply the breakdown of Fermi liquid theory and typically lead to Luttinger liquid behavior characterized by pronounced power-law suppression of the transport current and the density of states, and spin-charge separation. This paper provides a review of the current unde… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/0008008v1-abstract-full').style.display = 'inline'; document.getElementById('cond-mat/0008008v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="cond-mat/0008008v1-abstract-full" style="display: none;"> Coulomb interaction effects have pronounced consequences in carbon nanotubes due to their 1D nature. In particular, correlations imply the breakdown of Fermi liquid theory and typically lead to Luttinger liquid behavior characterized by pronounced power-law suppression of the transport current and the density of states, and spin-charge separation. This paper provides a review of the current understanding of non-Fermi liquid effects in metallic single-wall nanotubes (SWNTs). We provide a self-contained theoretical discussion of electron-electron interaction effects and show that the tunneling density of states exhibits power-law behavior. The power-law exponent depends on the interaction strength parameter $g$ and on the geometry of the setup. We then show that these features are observed experimentally by measuring the tunneling conductance of SWNTs as a function of temperature and voltage. These tunneling experiments are obtained by contacting metallic SWNTs to two nanofabricated gold electrodes. Electrostatic force microscopy (EFM) measurements show that the measured resistance is due to the contact resistance from the transport barrier formed at the electrode/nanotube junction. These EFM measurements show also the ballistic nature of transport in these SWNTs. While charge transport can be nicely attributed to Luttinger liquid behavior, spin-charge separation has not been observed so far. We briefly describe a transport experiment that could provide direct evidence for spin-charge separation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/0008008v1-abstract-full').style.display = 'none'; document.getElementById('cond-mat/0008008v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 August, 2000; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2000. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Review, to appear in {\sl Interacting Electrons in Nanostructures}, edited by R. Haug and H. Schoeller (Springer); 22 pages, 7 figures; style files incl</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/cond-mat/9906055">arXiv:cond-mat/9906055</a> <span> [<a href="https://arxiv.org/pdf/cond-mat/9906055">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.83.5098">10.1103/PhysRevLett.83.5098 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Disorder, pseudospins, and backscattering in carbon nanotubes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=McEuen%2C+P+L">Paul L. McEuen</a>, <a href="/search/cond-mat?searchtype=author&query=Bockrath%2C+M">Marc Bockrath</a>, <a href="/search/cond-mat?searchtype=author&query=Cobden%2C+D+H">David H. Cobden</a>, <a href="/search/cond-mat?searchtype=author&query=Yoon%2C+Y">Young-Gui Yoon</a>, <a href="/search/cond-mat?searchtype=author&query=Louie%2C+S+G">Steven G. Louie</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="cond-mat/9906055v1-abstract-short" style="display: inline;"> We address the effects of disorder on the conducting properties of metal and semiconducting carbon nanotubes. Experimentally, the mean free path is found to be much larger in metallic tubes than in doped semiconducting tubes. We show that this result can be understood theoretically if the disorder potential is long-ranged. The effects of a pseudospin index that describes the internal sublattice… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/9906055v1-abstract-full').style.display = 'inline'; document.getElementById('cond-mat/9906055v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="cond-mat/9906055v1-abstract-full" style="display: none;"> We address the effects of disorder on the conducting properties of metal and semiconducting carbon nanotubes. Experimentally, the mean free path is found to be much larger in metallic tubes than in doped semiconducting tubes. We show that this result can be understood theoretically if the disorder potential is long-ranged. The effects of a pseudospin index that describes the internal sublattice structure of the states lead to a suppression of scattering in metallic tubes, but not in semiconducting tubes. This conclusion is supported by tight-binding calculations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/9906055v1-abstract-full').style.display = 'none'; document.getElementById('cond-mat/9906055v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 June, 1999; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 1999. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">four pages</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/cond-mat/9904179">arXiv:cond-mat/9904179</a> <span> [<a href="https://arxiv.org/pdf/cond-mat/9904179">pdf</a>, <a href="https://arxiv.org/ps/cond-mat/9904179">ps</a>, <a href="https://arxiv.org/format/cond-mat/9904179">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/1.59816">10.1063/1.59816 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> One-dimensional transport in bundles of single-walled carbon nanotubes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Cobden%2C+D+H">David H. Cobden</a>, <a href="/search/cond-mat?searchtype=author&query=Nygard%2C+J">Jesper Nygard</a>, <a href="/search/cond-mat?searchtype=author&query=Bockrath%2C+M">Marc Bockrath</a>, <a href="/search/cond-mat?searchtype=author&query=McEuen%2C+P+L">Paul L. McEuen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="cond-mat/9904179v1-abstract-short" style="display: inline;"> We report measurements of the temperature and gate voltage dependence for individual bundles (ropes) of single-walled nanotubes. When the conductance is less than about e^2/h at room temperature, it is found to decrease as an approximate power law of temperature down to the region where Coulomb blockade sets in. The power-law exponents are consistent with those expected for electron tunneling in… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/9904179v1-abstract-full').style.display = 'inline'; document.getElementById('cond-mat/9904179v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="cond-mat/9904179v1-abstract-full" style="display: none;"> We report measurements of the temperature and gate voltage dependence for individual bundles (ropes) of single-walled nanotubes. When the conductance is less than about e^2/h at room temperature, it is found to decrease as an approximate power law of temperature down to the region where Coulomb blockade sets in. The power-law exponents are consistent with those expected for electron tunneling into a Luttinger liquid. When the conductance is greater than e^2/h at room temperature, it changes much more slowly at high temperatures, but eventually develops very large fluctuations as a function of gate voltage when sufficiently cold. We discuss the interpretation of these results in terms of transport through a Luttinger liquid. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/9904179v1-abstract-full').style.display = 'none'; document.getElementById('cond-mat/9904179v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 April, 1999; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 1999. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages latex including 3 figures, for proceedings of IWEPNM 99 (Kirchberg)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/cond-mat/9812233">arXiv:cond-mat/9812233</a> <span> [<a href="https://arxiv.org/pdf/cond-mat/9812233">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/17569">10.1038/17569 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Luttinger Liquid Behavior in Carbon Nanotubes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Bockrath%2C+M">M. Bockrath</a>, <a href="/search/cond-mat?searchtype=author&query=Cobden%2C+D+H">D. H. Cobden</a>, <a href="/search/cond-mat?searchtype=author&query=Lu%2C+J">J. Lu</a>, <a href="/search/cond-mat?searchtype=author&query=Rinzler%2C+A+G">A. G. Rinzler</a>, <a href="/search/cond-mat?searchtype=author&query=Smalley%2C+R+E">R. E. Smalley</a>, <a href="/search/cond-mat?searchtype=author&query=Balents%2C+L">L. Balents</a>, <a href="/search/cond-mat?searchtype=author&query=Mceuen%2C+P+L">P. L. Mceuen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="cond-mat/9812233v1-abstract-short" style="display: inline;"> An interacting one-dimensional (1D) electron system is predicted to behave very differently than its higher-dimensional counterparts. Coulomb interactions strongly modify the properties away from those of a Fermi liquid, resulting in a Luttinger liquid (LL) characterized by a power-law vanishing of the density of states at the Fermi level. Experiments on one-dimensional semiconductor wires and f… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/9812233v1-abstract-full').style.display = 'inline'; document.getElementById('cond-mat/9812233v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="cond-mat/9812233v1-abstract-full" style="display: none;"> An interacting one-dimensional (1D) electron system is predicted to behave very differently than its higher-dimensional counterparts. Coulomb interactions strongly modify the properties away from those of a Fermi liquid, resulting in a Luttinger liquid (LL) characterized by a power-law vanishing of the density of states at the Fermi level. Experiments on one-dimensional semiconductor wires and fractional quantum Hall conductors have been interpreted using this picture, but questions remain about the connection between theory and experiment. Recently, single-walled carbon nanotubes (SWNTs) have emerged as a new type of 1D conductor that may exhibit LL behavior. Here we present measurements of the conductance of individual ropes of such SWNTs as a function of temperature and voltage. Power law behavior as a function of temperature or bias voltage is observed: G~ T^a and dI/dV ~ V^a. Both the power-law functional forms and the inferred exponents are in good agreement with theoretical predictions for tunneling into a LL. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/9812233v1-abstract-full').style.display = 'none'; document.getElementById('cond-mat/9812233v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 December, 1998; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 1998. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/cond-mat/9804154">arXiv:cond-mat/9804154</a> <span> [<a href="https://arxiv.org/pdf/cond-mat/9804154">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.81.681">10.1103/PhysRevLett.81.681 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Spin splitting and even-odd effects in carbon nanotubes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Cobden%2C+D+H">David H. Cobden</a>, <a href="/search/cond-mat?searchtype=author&query=Bockrath%2C+M">Marc Bockrath</a>, <a href="/search/cond-mat?searchtype=author&query=McEuen%2C+P+L">Paul L. McEuen</a>, <a href="/search/cond-mat?searchtype=author&query=Rinzler%2C+A+G">Andrew G. Rinzler</a>, <a href="/search/cond-mat?searchtype=author&query=Smalley%2C+R+E">Richard E. Smalley</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="cond-mat/9804154v1-abstract-short" style="display: inline;"> The level spectrum of a single-walled carbon nanotube rope, studied by transport spectroscopy, shows Zeeman splitting in a magnetic field parallel to the tube axis. The pattern of splittings implies that the spin of the ground state alternates by 1/2 as consecutive electrons are added. Other aspects of the Coulomb blockade characteristics, including the current-voltage traces and peak heights, a… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/9804154v1-abstract-full').style.display = 'inline'; document.getElementById('cond-mat/9804154v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="cond-mat/9804154v1-abstract-full" style="display: none;"> The level spectrum of a single-walled carbon nanotube rope, studied by transport spectroscopy, shows Zeeman splitting in a magnetic field parallel to the tube axis. The pattern of splittings implies that the spin of the ground state alternates by 1/2 as consecutive electrons are added. Other aspects of the Coulomb blockade characteristics, including the current-voltage traces and peak heights, also show corresponding even-odd effects. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/9804154v1-abstract-full').style.display = 'none'; document.getElementById('cond-mat/9804154v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 April, 1998; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 1998. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Preprint, pdf format only, 4 pages including figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/cond-mat/9710110">arXiv:cond-mat/9710110</a> <span> [<a href="https://arxiv.org/pdf/cond-mat/9710110">pdf</a>, <a href="https://arxiv.org/ps/cond-mat/9710110">ps</a>, <a href="https://arxiv.org/format/cond-mat/9710110">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/S0921-4526(98)00083-0">10.1016/S0921-4526(98)00083-0 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Transport Spectroscopy of Single-Walled Carbon Nanotubes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Cobden%2C+D+H">David H. Cobden</a>, <a href="/search/cond-mat?searchtype=author&query=Bockrath%2C+M">Marc Bockrath</a>, <a href="/search/cond-mat?searchtype=author&query=Chopra%2C+N">Nasreen Chopra</a>, <a href="/search/cond-mat?searchtype=author&query=Zettl%2C+A">Alex Zettl</a>, <a href="/search/cond-mat?searchtype=author&query=McEuen%2C+P+L">Paul L. McEuen</a>, <a href="/search/cond-mat?searchtype=author&query=Rinzler%2C+A">Andrew Rinzler</a>, <a href="/search/cond-mat?searchtype=author&query=Thess%2C+A">Andreas Thess</a>, <a href="/search/cond-mat?searchtype=author&query=Smalley%2C+R+E">Richard E. Smalley</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="cond-mat/9710110v1-abstract-short" style="display: inline;"> We have performed transport spectroscopy on individual ropes of single-walled carbon nanotubes. We find that the levels are Zeeman split in a magnetic field, with a g-factor of 2.04 +- 0.05. The observed pattern of peak splittings indicates the parity of the number of electrons on the dot. In one device there are also signs of the presence of a second dot. We observe features which resemble anti… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/9710110v1-abstract-full').style.display = 'inline'; document.getElementById('cond-mat/9710110v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="cond-mat/9710110v1-abstract-full" style="display: none;"> We have performed transport spectroscopy on individual ropes of single-walled carbon nanotubes. We find that the levels are Zeeman split in a magnetic field, with a g-factor of 2.04 +- 0.05. The observed pattern of peak splittings indicates the parity of the number of electrons on the dot. In one device there are also signs of the presence of a second dot. We observe features which resemble anticrossings between quantum levels in the two dots, which may be formed from separate conducting nanotubes within the rope. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/9710110v1-abstract-full').style.display = 'none'; document.getElementById('cond-mat/9710110v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 October, 1997; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 1997. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">3 pages of Latex, plus one postscript file containing 4 figures, to appear in Proceedings of EP2DS 12 (Tokyo 1997)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/cond-mat/9612162">arXiv:cond-mat/9612162</a> <span> [<a href="https://arxiv.org/pdf/cond-mat/9612162">pdf</a>, <a href="https://arxiv.org/ps/cond-mat/9612162">ps</a>, <a href="https://arxiv.org/format/cond-mat/9612162">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Single Electron Transport in Ropes of Carbon Nanotube </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Bockrath%2C+M">Marc Bockrath</a>, <a href="/search/cond-mat?searchtype=author&query=Cobden%2C+D+H">David H. Cobden</a>, <a href="/search/cond-mat?searchtype=author&query=McEuen%2C+P+L">Paul L. McEuen</a>, <a href="/search/cond-mat?searchtype=author&query=Chopra%2C+N+G">Nasreen G. Chopra</a>, <a href="/search/cond-mat?searchtype=author&query=Zettl%2C+A">A. Zettl</a>, <a href="/search/cond-mat?searchtype=author&query=Thess%2C+A">Andreas Thess</a>, <a href="/search/cond-mat?searchtype=author&query=Smalley%2C+R+E">R. E. Smalley</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="cond-mat/9612162v1-abstract-short" style="display: inline;"> We have measured the electrical properties of individual bundles, or "ropes" of single-walled carbon nanotubes. Below ~10 K, the low bias conductance is suppressed for voltages below a few millivolts. In addition, dramatic peaks are observed in the conductance as a function of a gate voltage that modulates the number of electrons in the rope. We interpret these results in terms of single electro… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/9612162v1-abstract-full').style.display = 'inline'; document.getElementById('cond-mat/9612162v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="cond-mat/9612162v1-abstract-full" style="display: none;"> We have measured the electrical properties of individual bundles, or "ropes" of single-walled carbon nanotubes. Below ~10 K, the low bias conductance is suppressed for voltages below a few millivolts. In addition, dramatic peaks are observed in the conductance as a function of a gate voltage that modulates the number of electrons in the rope. We interpret these results in terms of single electron charging and resonant tunneling through the quantized energy levels of the nanotubes comprising the rope. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/9612162v1-abstract-full').style.display = 'none'; document.getElementById('cond-mat/9612162v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 December, 1996; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 1996. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 pages of text plus 3 eps figures; submitted to Science</span> </p> </li> </ol> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>