CINXE.COM
Search | arXiv e-print repository
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1–18 of 18 results for author: <span class="mathjax">Chen, X M</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> <div class="content"> <form method="GET" action="/search/cond-mat" aria-role="search"> Searching in archive <strong>cond-mat</strong>. <a href="/search/?searchtype=author&query=Chen%2C+X+M">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Chen, X M"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Chen%2C+X+M&terms-0-field=author&size=50&order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Chen, X M"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2201.00316">arXiv:2201.00316</a> <span> [<a href="https://arxiv.org/pdf/2201.00316">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3390/ma15020574">10.3390/ma15020574 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Symmetry analysis of magnetoelectric effects in perovskite-based multiferroics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Gareeva%2C+Z">Zukhra Gareeva</a>, <a href="/search/cond-mat?searchtype=author&query=Zvezdin%2C+A">Anatoly Zvezdin</a>, <a href="/search/cond-mat?searchtype=author&query=Zvezdin%2C+K">Konstantin Zvezdin</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+X+M">Xiang Ming Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2201.00316v1-abstract-short" style="display: inline;"> In this article, we perform the symmetry analysis of perovskite-based multiferroics: bismuth ferrite (BiFeO3)-like, orthochromites (RCrO3), and Ruddlesden-Popper perovskites (Ca3Mn2O7-like), being the typical representatives of multiferroics of the trigonal, rhombic, and tetragonal crystal families and explore the effect of crystallographic distortions on magnetoelectric properties. We determine t… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.00316v1-abstract-full').style.display = 'inline'; document.getElementById('2201.00316v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2201.00316v1-abstract-full" style="display: none;"> In this article, we perform the symmetry analysis of perovskite-based multiferroics: bismuth ferrite (BiFeO3)-like, orthochromites (RCrO3), and Ruddlesden-Popper perovskites (Ca3Mn2O7-like), being the typical representatives of multiferroics of the trigonal, rhombic, and tetragonal crystal families and explore the effect of crystallographic distortions on magnetoelectric properties. We determine the principal order parameters for each of the considered structures and obtain their invariant combinations consistent with the particular symmetry. This approach allowed us to analyze the features of the magnetoelectric effect observed during structural phase transitions in BixR1-xFeO3 compounds and show that the rare-earth sublattice gives an impact into the linear magnetoelectric effect allowed by the symmetry of the new structure. It is shown that the magnetoelectric properties of ortho-chromites are attributed to the couplings between the magnetic and electric dipole moments arising near Cr3+ ions due to distortions linked with rotations and deformations of the CrO6 octahedra. For the first time, such symmetry consideration was implemented in the analysis of the Ruddlesden-Popper structures, which demonstrates the possibility of realizing the magnetoelectric effect in the Ruddlesden-Popper phases containing magnetically active cations and allows to estimate conditions required for its optimization. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.00316v1-abstract-full').style.display = 'none'; document.getElementById('2201.00316v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 2 figures, 6 Tables</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">MSC Class:</span> 18B35 <span class="has-text-black-bis has-text-weight-semibold">ACM Class:</span> F.m </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2104.00082">arXiv:2104.00082</a> <span> [<a href="https://arxiv.org/pdf/2104.00082">pdf</a>, <a href="https://arxiv.org/format/2104.00082">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.126.177601">10.1103/PhysRevLett.126.177601 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Charge Condensation and Lattice Coupling Drives Stripe Formation in Nickelates </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Shen%2C+Y">Y. Shen</a>, <a href="/search/cond-mat?searchtype=author&query=Fabbris%2C+G">G. Fabbris</a>, <a href="/search/cond-mat?searchtype=author&query=Miao%2C+H">H. Miao</a>, <a href="/search/cond-mat?searchtype=author&query=Cao%2C+Y">Y. Cao</a>, <a href="/search/cond-mat?searchtype=author&query=Meyers%2C+D">D. Meyers</a>, <a href="/search/cond-mat?searchtype=author&query=Mazzone%2C+D+G">D. G. Mazzone</a>, <a href="/search/cond-mat?searchtype=author&query=Assefa%2C+T">T. Assefa</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+X+M">X. M. Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Kisslinger%2C+K">K. Kisslinger</a>, <a href="/search/cond-mat?searchtype=author&query=Prabhakaran%2C+D">D. Prabhakaran</a>, <a href="/search/cond-mat?searchtype=author&query=Boothroyd%2C+A+T">A. T. Boothroyd</a>, <a href="/search/cond-mat?searchtype=author&query=Tranquada%2C+J+M">J. M. Tranquada</a>, <a href="/search/cond-mat?searchtype=author&query=Hu%2C+W">W. Hu</a>, <a href="/search/cond-mat?searchtype=author&query=Barbour%2C+A+M">A. M. Barbour</a>, <a href="/search/cond-mat?searchtype=author&query=Wilkins%2C+S+B">S. B. Wilkins</a>, <a href="/search/cond-mat?searchtype=author&query=Mazzoli%2C+C">C. Mazzoli</a>, <a href="/search/cond-mat?searchtype=author&query=Robinson%2C+I+K">I. K. Robinson</a>, <a href="/search/cond-mat?searchtype=author&query=Dean%2C+M+P+M">M. P. M. Dean</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2104.00082v1-abstract-short" style="display: inline;"> Revealing the predominant driving force behind symmetry breaking in correlated materials is sometimes a formidable task due to the intertwined nature of different degrees of freedom. This is the case for La2-xSrxNiO4+未 in which coupled incommensurate charge and spin stripes form at low temperatures. Here, we use resonant X-ray photon correlation spectroscopy to study the temporal stability and dom… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.00082v1-abstract-full').style.display = 'inline'; document.getElementById('2104.00082v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2104.00082v1-abstract-full" style="display: none;"> Revealing the predominant driving force behind symmetry breaking in correlated materials is sometimes a formidable task due to the intertwined nature of different degrees of freedom. This is the case for La2-xSrxNiO4+未 in which coupled incommensurate charge and spin stripes form at low temperatures. Here, we use resonant X-ray photon correlation spectroscopy to study the temporal stability and domain memory of the charge and spin stripes in La2-xSrxNiO4+未. Although spin stripes are more spatially correlated, charge stripes maintain a better temporal stability against temperature change. More intriguingly, charge order shows robust domain memory with thermal cycling up to 250 K, far above the ordering temperature. These results demonstrate the pinning of charge stripes to the lattice and that charge condensation is the predominant factor in the formation of stripe orders in nickelates. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.00082v1-abstract-full').style.display = 'none'; document.getElementById('2104.00082v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages; accepted in Physical Review Letters</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 126, 177601 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2012.05659">arXiv:2012.05659</a> <span> [<a href="https://arxiv.org/pdf/2012.05659">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1361-648X/ac0dd6">10.1088/1361-648X/ac0dd6 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Multiferroic order parameters in rhombic antiferromagnets. RCrO$_3$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Zvezdin%2C+A+K">A. K. Zvezdin</a>, <a href="/search/cond-mat?searchtype=author&query=Gareeva%2C+Z+V">Z. V. Gareeva</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+X+M">X. M. Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2012.05659v3-abstract-short" style="display: inline;"> In this paper, we explore magneteoelectricity of rare earth orthochromites from the symmetry point of view. We determine the principal structural order parameters and find their couplings with ferroelectric and magnetic orderings. Our calculations showed that electric dipole moments emerge in the vicinity of Cr3+ ions in the unit cell of RCrO3 due to the displacements of oxygen ions from their hig… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.05659v3-abstract-full').style.display = 'inline'; document.getElementById('2012.05659v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2012.05659v3-abstract-full" style="display: none;"> In this paper, we explore magneteoelectricity of rare earth orthochromites from the symmetry point of view. We determine the principal structural order parameters and find their couplings with ferroelectric and magnetic orderings. Our calculations showed that electric dipole moments emerge in the vicinity of Cr3+ ions in the unit cell of RCrO3 due to the displacements of oxygen ions from their highly symmetric positions in the parent perovskite phase (structural instability). We find that the electric dipole moments are arranged in an antiferroelectric mode, so, in essence, RCrO3 are antiferroelectric materials. By classifying the order parameters according to the irreducible representations of the RCrO3 symmetry group (D2h16), we determine the possible couplings between distortive, ferroelectric and magnetic orderings and explore the emerging magnetoelectric structures in these terms. Our analysis makes it possible to explain experimentally observed polarization reversal and the concomitant reorientation of spins in a series of RCrO3 compounds and to predict the possible scenarios of phase transitions in RCrO3. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.05659v3-abstract-full').style.display = 'none'; document.getElementById('2012.05659v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 January, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">23 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2011.10148">arXiv:2011.10148</a> <span> [<a href="https://arxiv.org/pdf/2011.10148">pdf</a>, <a href="https://arxiv.org/format/2011.10148">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.126.117201">10.1103/PhysRevLett.126.117201 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Switchable X-ray Orbital Angular Momentum from an Artificial Spin Ice </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Woods%2C+J">Justin Woods</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+X+M">Xiaoqian M Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Chopdekar%2C+R+V">Rajesh V. Chopdekar</a>, <a href="/search/cond-mat?searchtype=author&query=Farmer%2C+B">Barry Farmer</a>, <a href="/search/cond-mat?searchtype=author&query=Mazzoli%2C+C">Claudio Mazzoli</a>, <a href="/search/cond-mat?searchtype=author&query=Koch%2C+R">Roland Koch</a>, <a href="/search/cond-mat?searchtype=author&query=Tremsin%2C+A">Anton Tremsin</a>, <a href="/search/cond-mat?searchtype=author&query=Hu%2C+W">Wen Hu</a>, <a href="/search/cond-mat?searchtype=author&query=Scholl%2C+A">Andreas Scholl</a>, <a href="/search/cond-mat?searchtype=author&query=Kevan%2C+S">Steve Kevan</a>, <a href="/search/cond-mat?searchtype=author&query=Wilkins%2C+S">Stuart Wilkins</a>, <a href="/search/cond-mat?searchtype=author&query=Kwok%2C+W">Wai-Kwong Kwok</a>, <a href="/search/cond-mat?searchtype=author&query=De+Long%2C+L+E">Lance E. De Long</a>, <a href="/search/cond-mat?searchtype=author&query=Roy%2C+S">Sujoy Roy</a>, <a href="/search/cond-mat?searchtype=author&query=Hastings%2C+J+T">J. Todd Hastings</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2011.10148v1-abstract-short" style="display: inline;"> Artificial spin ices (ASI) have been widely investigated as magnetic metamaterials with exotic properties governed by their geometries. In parallel, interest in X-ray photon orbital angular momentum (OAM) has been rapidly growing. Here we show that a square ASI with a programmed topological defect, a double edge dislocation, imparts OAM to scattered X-rays. Unlike single dislocations, a double dis… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.10148v1-abstract-full').style.display = 'inline'; document.getElementById('2011.10148v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2011.10148v1-abstract-full" style="display: none;"> Artificial spin ices (ASI) have been widely investigated as magnetic metamaterials with exotic properties governed by their geometries. In parallel, interest in X-ray photon orbital angular momentum (OAM) has been rapidly growing. Here we show that a square ASI with a programmed topological defect, a double edge dislocation, imparts OAM to scattered X-rays. Unlike single dislocations, a double dislocation does not introduce magnetic frustration, and the ASI equilibrates to its antiferromagnetic (AF) ground state. The topological charge of the defect differs with respect to the structural and magnetic order; thus, X-ray diffraction from the ASI produces photons with even and odd OAM quantum numbers at the structural and AF Bragg conditions, respectively. The magnetic transitions of the ASI allow the AF OAM beams to be switched on and off by modest variations of temperature and applied magnetic field. These results demonstrate ASIs can serve as metasurfaces for reconfigurable X-ray optics that could enable selective probes of electronic and magnetic properties. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.10148v1-abstract-full').style.display = 'none'; document.getElementById('2011.10148v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 126, 117201 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2002.04259">arXiv:2002.04259</a> <span> [<a href="https://arxiv.org/pdf/2002.04259">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> </div> </div> <p class="title is-5 mathjax"> Direct measurement of temporal correlations above the spin-glass transition by coherent resonant magnetic x-ray spectroscopy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Song%2C+J">Jingjin Song</a>, <a href="/search/cond-mat?searchtype=author&query=Patel%2C+S+K+K">Sheena K. K. Patel</a>, <a href="/search/cond-mat?searchtype=author&query=Bhattacharya%2C+R">Rupak Bhattacharya</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+Y">Yi Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Pandey%2C+S">Sudip Pandey</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+X+M">Xiao M. Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Maple%2C+M+B">M. Brian Maple</a>, <a href="/search/cond-mat?searchtype=author&query=Fullerton%2C+E+E">Eric E. Fullerton</a>, <a href="/search/cond-mat?searchtype=author&query=Roy%2C+S">Sujoy Roy</a>, <a href="/search/cond-mat?searchtype=author&query=Mazzoli%2C+C">Claudio Mazzoli</a>, <a href="/search/cond-mat?searchtype=author&query=Varma%2C+C+M">Chandra M. Varma</a>, <a href="/search/cond-mat?searchtype=author&query=Sinha%2C+S+K">Sunil K. Sinha</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2002.04259v1-abstract-short" style="display: inline;"> In the 1970s a new paradigm was introduced that interacting quenched systems, such as a spin-glass, have a phase transition in which long time memory of spatial patterns is realized without spatial correlations. The principal methods to study the spin-glass transition, besides some elaborate and elegant theoretical constructions, have been numerical computer simulations and neutron spin echo measu… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2002.04259v1-abstract-full').style.display = 'inline'; document.getElementById('2002.04259v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2002.04259v1-abstract-full" style="display: none;"> In the 1970s a new paradigm was introduced that interacting quenched systems, such as a spin-glass, have a phase transition in which long time memory of spatial patterns is realized without spatial correlations. The principal methods to study the spin-glass transition, besides some elaborate and elegant theoretical constructions, have been numerical computer simulations and neutron spin echo measurements . We show here that the dynamical correlations of the spin-glass transition are embedded in measurements of the four-spin correlations at very long times. This information is directly available in the temporal correlations of the intensity, which encode the spin-orientation memory, obtained by the technique of resonant magnetic x-ray photon correlation spectroscopy (RM- XPCS). We have implemented this method to observe and accurately characterize the critical slowing down of the spin orientation fluctuations in the classic metallic spin glass alloy Cu(Mn) over time scales of 1 to 1000 secs. Our method opens the way for studying phase transitions in systems such as spin ices, and quantum spin liquids, as well as the structural glass transition. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2002.04259v1-abstract-full').style.display = 'none'; document.getElementById('2002.04259v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 February, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 9 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1809.05656">arXiv:1809.05656</a> <span> [<a href="https://arxiv.org/pdf/1809.05656">pdf</a>, <a href="https://arxiv.org/format/1809.05656">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.123.197202">10.1103/PhysRevLett.123.197202 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Spontaneous Magnetic Superdomain Wall Fluctuations in an Artificial Antiferromagnet </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Chen%2C+X+M">X. M. Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Farmer%2C+B">B. Farmer</a>, <a href="/search/cond-mat?searchtype=author&query=Woods%2C+J+S">J. S. Woods</a>, <a href="/search/cond-mat?searchtype=author&query=Dhuey%2C+S">S. Dhuey</a>, <a href="/search/cond-mat?searchtype=author&query=Hu%2C+W">W. Hu</a>, <a href="/search/cond-mat?searchtype=author&query=Mazzoli%2C+C">C. Mazzoli</a>, <a href="/search/cond-mat?searchtype=author&query=Wilkins%2C+S+B">S. B. Wilkins</a>, <a href="/search/cond-mat?searchtype=author&query=Robinson%2C+I+K">I. K. Robinson</a>, <a href="/search/cond-mat?searchtype=author&query=De+Long%2C+L+E">L. E. De Long</a>, <a href="/search/cond-mat?searchtype=author&query=Roy%2C+S">S. Roy</a>, <a href="/search/cond-mat?searchtype=author&query=Hastings%2C+J+T">J. T. Hastings</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1809.05656v2-abstract-short" style="display: inline;"> Collective dynamics often play an important role in determining the stability of ground states for both naturally occurring materials and metamaterials. We studied the temperature dependent dynamics of antiferromagnetically ordered superdomains in a square artificial spin lattice using soft x-ray photon correlation spectroscopy. We observed an exponential slowing down of superdomain wall motion be… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1809.05656v2-abstract-full').style.display = 'inline'; document.getElementById('1809.05656v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1809.05656v2-abstract-full" style="display: none;"> Collective dynamics often play an important role in determining the stability of ground states for both naturally occurring materials and metamaterials. We studied the temperature dependent dynamics of antiferromagnetically ordered superdomains in a square artificial spin lattice using soft x-ray photon correlation spectroscopy. We observed an exponential slowing down of superdomain wall motion below the AF onset temperature, similar to the behavior of typical bulk antiferromagnets. Using a continuous time random walk model we show that these superdomain walls undergo low-temperature ballistic and high-temperature diffusive motions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1809.05656v2-abstract-full').style.display = 'none'; document.getElementById('1809.05656v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 September, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 September, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 123, 197202 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1807.09066">arXiv:1807.09066</a> <span> [<a href="https://arxiv.org/pdf/1807.09066">pdf</a>, <a href="https://arxiv.org/format/1807.09066">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-019-09433-1">10.1038/s41467-019-09433-1 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Persistent Charge Density Wave Memory in a Cuprate Superconductor </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Chen%2C+X+M">X. M. Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Mazzoli%2C+C">C. Mazzoli</a>, <a href="/search/cond-mat?searchtype=author&query=Cao%2C+Y">Y. Cao</a>, <a href="/search/cond-mat?searchtype=author&query=Thampy%2C+V">V. Thampy</a>, <a href="/search/cond-mat?searchtype=author&query=Barbour%2C+A+M">A. M. Barbour</a>, <a href="/search/cond-mat?searchtype=author&query=Hu%2C+W">W. Hu</a>, <a href="/search/cond-mat?searchtype=author&query=Lu%2C+M">M. Lu</a>, <a href="/search/cond-mat?searchtype=author&query=Assefa%2C+T">T. Assefa</a>, <a href="/search/cond-mat?searchtype=author&query=Miao%2C+H">H. Miao</a>, <a href="/search/cond-mat?searchtype=author&query=Fabbris%2C+G">G. Fabbris</a>, <a href="/search/cond-mat?searchtype=author&query=Gu%2C+G+D">G. D. Gu</a>, <a href="/search/cond-mat?searchtype=author&query=Tranquada%2C+J+M">J. M. Tranquada</a>, <a href="/search/cond-mat?searchtype=author&query=Dean%2C+M+P+M">M. P. M. Dean</a>, <a href="/search/cond-mat?searchtype=author&query=Wilkins%2C+S+B">S. B. Wilkins</a>, <a href="/search/cond-mat?searchtype=author&query=Robinson%2C+I+K">I. K. Robinson</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1807.09066v2-abstract-short" style="display: inline;"> Although charge density wave (CDW) correlations appear to be a ubiquitous feature of the superconducting cuprates, their disparate properties suggest a crucial role for coupling or pinning of the CDW to lattice deformations and disorder. While diffraction intensities can demonstrate the occurrence of CDW domain formation, the lack of scattering phase information has limited our understanding of th… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1807.09066v2-abstract-full').style.display = 'inline'; document.getElementById('1807.09066v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1807.09066v2-abstract-full" style="display: none;"> Although charge density wave (CDW) correlations appear to be a ubiquitous feature of the superconducting cuprates, their disparate properties suggest a crucial role for coupling or pinning of the CDW to lattice deformations and disorder. While diffraction intensities can demonstrate the occurrence of CDW domain formation, the lack of scattering phase information has limited our understanding of this process. Here, we report coherent resonant x-ray speckle correlation analysis, which directly determines the reproducibility of CDW domain patterns in La1.875Ba0.125CuO4 (LBCO 1/8) with thermal cycling. While CDW order is only observed below 54 K, where a structural phase transition results in equivalent Cu-O bonds, we discover remarkably reproducible CDW domain memory upon repeated cycling to temperatures well above that transition. That memory is only lost on cycling across the transition at 240(3) K that restores the four-fold symmetry of the copper-oxide planes. We infer that the structural-domain twinning pattern that develops below 240 K determines the CDW pinning landscape below 54 K. These results open a new view into the complex coupling between charge and lattice degrees of freedom in superconducting cuprates. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1807.09066v2-abstract-full').style.display = 'none'; document.getElementById('1807.09066v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 July, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 July, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages; 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Communications 10, 1435 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1709.01789">arXiv:1709.01789</a> <span> [<a href="https://arxiv.org/pdf/1709.01789">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.92.235133">10.1103/PhysRevB.92.235133 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Novel magnetoelectric effects via penta-linear interactions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Zhao%2C+H+J">Hong Jian Zhao</a>, <a href="/search/cond-mat?searchtype=author&query=Grisolia%2C+M+N">M. N. Grisolia</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+Y">Yurong Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Iniguez%2C+J">Jorge Iniguez</a>, <a href="/search/cond-mat?searchtype=author&query=Bibes%2C+M">M. Bibes</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+X+M">Xiang Ming Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Bellaiche%2C+L">L. Bellaiche</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1709.01789v1-abstract-short" style="display: inline;"> Magnetoelectric multiferroic materials, particularly with the perovskite structure, are receiving a lot of attention because of their inherent coupling between electrical polarization and magnetic ordering. However, very few types of direct coupling between polarization and magnetization are known, and it is unclear whether they can be useful to the design of novel spintronic devices exploiting th… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1709.01789v1-abstract-full').style.display = 'inline'; document.getElementById('1709.01789v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1709.01789v1-abstract-full" style="display: none;"> Magnetoelectric multiferroic materials, particularly with the perovskite structure, are receiving a lot of attention because of their inherent coupling between electrical polarization and magnetic ordering. However, very few types of direct coupling between polarization and magnetization are known, and it is unclear whether they can be useful to the design of novel spintronic devices exploiting the control of magnetization by electric fields. For instance, the typical bi-quadratic coupling only allows to change the magnitude of the magnetization by an electric field, but it does not permit an electric-field-induced switching of the magnetization. Similarly, the so-called Lifshitz invariants allow an electric-field control of complicated magnetic orderings, but not of the magnetization. Here, we report the discovery of novel direct couplings between polarization and magnetization in epitaxial perovskite films, via the use of first-principles methods and the development of an original Landau-type phenomenological theory. Our results feature penta-linear interactions involving the ferromagnetic and anti-ferromagnetic vectors as well as the polar distortions and oxygen octahedral tilting, and permit a number of striking effects. Examples include a continuous electric-field control of the magnetization magnitude and sign, and the discrete switching of the magnetization magnitude. Thus, the high-order, penta-linear couplings demonstrated in this work may open new paths towards novel magneto-electric effects, as well as, spintronic and magnonic devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1709.01789v1-abstract-full').style.display = 'none'; document.getElementById('1709.01789v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 August, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Work supported by ERC Consolidator grant MINT (Contract No. 615759)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 92, 235133 (2015) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1708.08785">arXiv:1708.08785</a> <span> [<a href="https://arxiv.org/pdf/1708.08785">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/1.4899277">10.1063/1.4899277 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Structural, magnetic, and electronic properties of GdTiO3 Mott insulator thin films grown by pulsed laser deposition </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Grisolia%2C+M+N">M. N. Grisolia</a>, <a href="/search/cond-mat?searchtype=author&query=Bruno%2C+F+Y">F. Y. Bruno</a>, <a href="/search/cond-mat?searchtype=author&query=Sando%2C+D">D. Sando</a>, <a href="/search/cond-mat?searchtype=author&query=Zhao%2C+H+J">H. J. Zhao</a>, <a href="/search/cond-mat?searchtype=author&query=Jacquet%2C+E">E. Jacquet</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+X+M">X. M. Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Bellaiche%2C+L">L. Bellaiche</a>, <a href="/search/cond-mat?searchtype=author&query=Barthelemy%2C+A">A. Barthelemy</a>, <a href="/search/cond-mat?searchtype=author&query=Bibes%2C+M">M. Bibes</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1708.08785v1-abstract-short" style="display: inline;"> We report on the optimization process to synthesize epitaxial thin films of GdTiO3 on SrLaGaO4 substrates by pulsed laser deposition. Optimized films are free of impurity phases and are fully strained. They possess a magnetic Curie temperature TC = 31.8 K with a saturation magnetization of 4.2 muB per formula unit at 10 K. Transport measurements reveal an insulating response, as expected. Optical… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1708.08785v1-abstract-full').style.display = 'inline'; document.getElementById('1708.08785v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1708.08785v1-abstract-full" style="display: none;"> We report on the optimization process to synthesize epitaxial thin films of GdTiO3 on SrLaGaO4 substrates by pulsed laser deposition. Optimized films are free of impurity phases and are fully strained. They possess a magnetic Curie temperature TC = 31.8 K with a saturation magnetization of 4.2 muB per formula unit at 10 K. Transport measurements reveal an insulating response, as expected. Optical spectroscopy indicates a band gap of 0.7 eV, comparable to the bulk value. Our work adds ferrimagnetic orthotitanates to the palette of perovskite materials for the design of emergent strongly correlated states at oxide interfaces using a versatile growth technique such as pulsed laser deposition. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1708.08785v1-abstract-full').style.display = 'none'; document.getElementById('1708.08785v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 August, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Work supported by ERC Consolidator grant MINT (Contract No. 615759)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Appl. Phys. Lett. 105, 172402 (2014) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1704.00827">arXiv:1704.00827</a> <span> [<a href="https://arxiv.org/pdf/1704.00827">pdf</a>, <a href="https://arxiv.org/format/1704.00827">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.95.241111">10.1103/PhysRevB.95.241111 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Static Charge Density Wave Order in the Superconducting State of La2-xBaxCuO4 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Thampy%2C+V">V. Thampy</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+X+M">X. M. Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Cao%2C+Y">Y. Cao</a>, <a href="/search/cond-mat?searchtype=author&query=Mazzoli%2C+C">C. Mazzoli</a>, <a href="/search/cond-mat?searchtype=author&query=Barbour%2C+A+M">A. M. Barbour</a>, <a href="/search/cond-mat?searchtype=author&query=Hu%2C+W">W. Hu</a>, <a href="/search/cond-mat?searchtype=author&query=Miao%2C+H">H. Miao</a>, <a href="/search/cond-mat?searchtype=author&query=Fabbris%2C+G">G. Fabbris</a>, <a href="/search/cond-mat?searchtype=author&query=Zhong%2C+R+D">R. D. Zhong</a>, <a href="/search/cond-mat?searchtype=author&query=Gu%2C+G+D">G. D. Gu</a>, <a href="/search/cond-mat?searchtype=author&query=Tranquada%2C+J+M">J. M. Tranquada</a>, <a href="/search/cond-mat?searchtype=author&query=Robinson%2C+I+K">I. K. Robinson</a>, <a href="/search/cond-mat?searchtype=author&query=Wilkins%2C+S+B">S. B. Wilkins</a>, <a href="/search/cond-mat?searchtype=author&query=Dean%2C+M+P+M">M. P. M. Dean</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1704.00827v4-abstract-short" style="display: inline;"> Charge density wave (CDW) correlations feature prominently in the phase diagram of the cuprates, motivating competing theories of whether fluctuating CDW correlations aid superconductivity or whether static CDW order coexists with superconductivity in inhomogeneous or spatially modulated states. Here we report Cu $L$-edge resonant x-ray photon correlation spectroscopy (XPCS) measurements of CDW co… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1704.00827v4-abstract-full').style.display = 'inline'; document.getElementById('1704.00827v4-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1704.00827v4-abstract-full" style="display: none;"> Charge density wave (CDW) correlations feature prominently in the phase diagram of the cuprates, motivating competing theories of whether fluctuating CDW correlations aid superconductivity or whether static CDW order coexists with superconductivity in inhomogeneous or spatially modulated states. Here we report Cu $L$-edge resonant x-ray photon correlation spectroscopy (XPCS) measurements of CDW correlations in superconducting La$_{2-x}$Ba$_x$CuO$_4$ $x=0.11$. Static CDW order is shown to exist in the superconducting state at low temperatures and to persist up to at least 85\% of the CDW transition temperature. We discuss the implications of our observations for how \emph{nominally} competing order parameters can coexist in the cuprates. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1704.00827v4-abstract-full').style.display = 'none'; document.getElementById('1704.00827v4-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 June, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 April, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 5 figures, Accepted in Phys. Rev. B Rapid Communications</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 95, 241111(R) (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1606.04168">arXiv:1606.04168</a> <span> [<a href="https://arxiv.org/pdf/1606.04168">pdf</a>, <a href="https://arxiv.org/format/1606.04168">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.117.167001">10.1103/PhysRevLett.117.167001 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Remarkable Stability of Charge Density Wave Order in La$_{1.875}$Ba$_{0.125}$CuO$_4$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Chen%2C+X+M">X. M. Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Thampy%2C+V">V. Thampy</a>, <a href="/search/cond-mat?searchtype=author&query=Mazzoli%2C+C">C. Mazzoli</a>, <a href="/search/cond-mat?searchtype=author&query=Barbour%2C+A+M">A. M. Barbour</a>, <a href="/search/cond-mat?searchtype=author&query=Miao%2C+H">H. Miao</a>, <a href="/search/cond-mat?searchtype=author&query=Gu%2C+G+D">G. D. Gu</a>, <a href="/search/cond-mat?searchtype=author&query=Cao%2C+Y">Y. Cao</a>, <a href="/search/cond-mat?searchtype=author&query=Tranquada%2C+J+M">J. M. Tranquada</a>, <a href="/search/cond-mat?searchtype=author&query=Dean%2C+M+P+M">M. P. M. Dean</a>, <a href="/search/cond-mat?searchtype=author&query=Wilkins%2C+S+B">S. B. Wilkins</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1606.04168v3-abstract-short" style="display: inline;"> The occurrence of charge-density-wave (CDW) order in underdoped cuprates is now well established, although the precise nature of the CDW and its relationship with superconductivity is not. Theoretical proposals include contrasting ideas such as that pairing may be driven by CDW fluctuations or that static CDWs may intertwine with a spatially-modulated superconducting wave function. We test the dyn… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1606.04168v3-abstract-full').style.display = 'inline'; document.getElementById('1606.04168v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1606.04168v3-abstract-full" style="display: none;"> The occurrence of charge-density-wave (CDW) order in underdoped cuprates is now well established, although the precise nature of the CDW and its relationship with superconductivity is not. Theoretical proposals include contrasting ideas such as that pairing may be driven by CDW fluctuations or that static CDWs may intertwine with a spatially-modulated superconducting wave function. We test the dynamics of CDW order in La$_{1.825}$Ba$_{0.125}$CuO$_4$ by using x-ray photon correlation spectroscopy (XPCS) at the CDW wave vector, detected resonantly at the Cu $L_3$-edge. We find that the CDW domains are strikingly static, with no evidence of significant fluctuations up to 2\,\nicefrac{3}{4} hours. We discuss the implications of these results for some of the competing theories. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1606.04168v3-abstract-full').style.display = 'none'; document.getElementById('1606.04168v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 March, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 June, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in Physical Review Letters; 6 pages, 4 figures; + supplementary</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 117, 167001 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1604.02439">arXiv:1604.02439</a> <span> [<a href="https://arxiv.org/pdf/1604.02439">pdf</a>, <a href="https://arxiv.org/format/1604.02439">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/nmat4641">10.1038/nmat4641 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Ultrafast energy and momentum resolved dynamics of magnetic correlations in photo-doped Mott insulator Sr$_2$IrO$_4$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Dean%2C+M+P+M">M. P. M. Dean</a>, <a href="/search/cond-mat?searchtype=author&query=Cao%2C+Y">Yue Cao</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+X">X. Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Wall%2C+S">S. Wall</a>, <a href="/search/cond-mat?searchtype=author&query=Zhu%2C+D">D. Zhu</a>, <a href="/search/cond-mat?searchtype=author&query=Mankowsky%2C+R">R. Mankowsky</a>, <a href="/search/cond-mat?searchtype=author&query=Thampy%2C+V">V. Thampy</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+X+M">X. M. Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Vale%2C+J+G">J. G. Vale</a>, <a href="/search/cond-mat?searchtype=author&query=Casa%2C+D">D. Casa</a>, <a href="/search/cond-mat?searchtype=author&query=Kim%2C+J">Jungho Kim</a>, <a href="/search/cond-mat?searchtype=author&query=Said%2C+A+H">A. H. Said</a>, <a href="/search/cond-mat?searchtype=author&query=Juhas%2C+P">P. Juhas</a>, <a href="/search/cond-mat?searchtype=author&query=Alonso-Mori%2C+R">R. Alonso-Mori</a>, <a href="/search/cond-mat?searchtype=author&query=Glownia%2C+J+M">J. M. Glownia</a>, <a href="/search/cond-mat?searchtype=author&query=Robert%2C+A">A. Robert</a>, <a href="/search/cond-mat?searchtype=author&query=Robinson%2C+J">J. Robinson</a>, <a href="/search/cond-mat?searchtype=author&query=Sikorski%2C+M">M. Sikorski</a>, <a href="/search/cond-mat?searchtype=author&query=Song%2C+S">S. Song</a>, <a href="/search/cond-mat?searchtype=author&query=Kozina%2C+M">M. Kozina</a>, <a href="/search/cond-mat?searchtype=author&query=Lemke%2C+H">H. Lemke</a>, <a href="/search/cond-mat?searchtype=author&query=Patthey%2C+L">L. Patthey</a>, <a href="/search/cond-mat?searchtype=author&query=Owada%2C+S">S. Owada</a>, <a href="/search/cond-mat?searchtype=author&query=Katayama%2C+T">T. Katayama</a>, <a href="/search/cond-mat?searchtype=author&query=Yabashi%2C+M">M. Yabashi</a> , et al. (10 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1604.02439v2-abstract-short" style="display: inline;"> Measuring how the magnetic correlations throughout the Brillouin zone evolve in a Mott insulator as charges are introduced dramatically improved our understanding of the pseudogap, non-Fermi liquids and high $T_C$ superconductivity. Recently, photoexcitation has been used to induce similarly exotic states transiently. However, understanding how these states emerge has been limited because of a lac… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1604.02439v2-abstract-full').style.display = 'inline'; document.getElementById('1604.02439v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1604.02439v2-abstract-full" style="display: none;"> Measuring how the magnetic correlations throughout the Brillouin zone evolve in a Mott insulator as charges are introduced dramatically improved our understanding of the pseudogap, non-Fermi liquids and high $T_C$ superconductivity. Recently, photoexcitation has been used to induce similarly exotic states transiently. However, understanding how these states emerge has been limited because of a lack of available probes of magnetic correlations in the time domain, which hinders further investigation of how light can be used to control the properties of solids. Here we implement magnetic resonant inelastic X-ray scattering at a free electron laser, and directly determine the magnetization dynamics after photo-doping the Mott insulator Sr$_2$IrO$_4$. We find that the non-equilibrium state 2~ps after the excitation has strongly suppressed long-range magnetic order, but hosts photo-carriers that induce strong, non-thermal magnetic correlations. The magnetism recovers its two-dimensional (2D) in-plane N茅el correlations on a timescale of a few ps, while the three-dimensional (3D) long-range magnetic order restores over a far longer, fluence-dependent timescale of a few hundred ps. The dramatic difference in these two timescales, implies that characterizing the dimensionality of magnetic correlations will be vital in our efforts to understand ultrafast magnetic dynamics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1604.02439v2-abstract-full').style.display = 'none'; document.getElementById('1604.02439v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 April, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 April, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 page, 4 figures; to appear in Nature Materials</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Materials 15, 601-605 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1411.6604">arXiv:1411.6604</a> <span> [<a href="https://arxiv.org/pdf/1411.6604">pdf</a>, <a href="https://arxiv.org/format/1411.6604">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Influence of Ti doping on the incommensurate charge density wave in 1T-TaS2 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Chen%2C+X+M">X. M. Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Miller%2C+A+J">A. J. Miller</a>, <a href="/search/cond-mat?searchtype=author&query=Nugroho%2C+C">C. Nugroho</a>, <a href="/search/cond-mat?searchtype=author&query=de+la+Pena%2C+G+A">G. A. de la Pena</a>, <a href="/search/cond-mat?searchtype=author&query=Joe%2C+Y+I">Y. I. Joe</a>, <a href="/search/cond-mat?searchtype=author&query=Kogar%2C+A">A. Kogar</a>, <a href="/search/cond-mat?searchtype=author&query=Brock%2C+J+D">J. D. Brock</a>, <a href="/search/cond-mat?searchtype=author&query=Geck%2C+J">J. Geck</a>, <a href="/search/cond-mat?searchtype=author&query=MacDougall%2C+G+J">G. J. MacDougall</a>, <a href="/search/cond-mat?searchtype=author&query=Cooper%2C+S+L">S. L. Cooper</a>, <a href="/search/cond-mat?searchtype=author&query=Fradkin%2C+E">E. Fradkin</a>, <a href="/search/cond-mat?searchtype=author&query=Van+Harlingen%2C+D+J">D. J. Van Harlingen</a>, <a href="/search/cond-mat?searchtype=author&query=Abbamonte%2C+P">P. Abbamonte</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1411.6604v2-abstract-short" style="display: inline;"> We report temperature-dependent transport and x-ray diffraction measurements of the influence of Ti hole doping on the charge density wave (CDW) in 1T-Ta(1-x)Ti(x)S(2). Confirming past studies, we find that even trace impurities eliminate the low-temperature commensurate (C) phase in this system. Surprisingly, the magnitude of the in-plane component of the CDW wave vector in the nearly commensurat… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1411.6604v2-abstract-full').style.display = 'inline'; document.getElementById('1411.6604v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1411.6604v2-abstract-full" style="display: none;"> We report temperature-dependent transport and x-ray diffraction measurements of the influence of Ti hole doping on the charge density wave (CDW) in 1T-Ta(1-x)Ti(x)S(2). Confirming past studies, we find that even trace impurities eliminate the low-temperature commensurate (C) phase in this system. Surprisingly, the magnitude of the in-plane component of the CDW wave vector in the nearly commensurate (NC) phase does not change significantly with Ti concentration, as might be expected from a changing Fermi surface volume. Instead, the angle of the CDW in the basal plane rotates, from 11.9 deg at x=0 to 16.4 deg at x=0.12. Ti substitution also leads to an extended region of coexistence between incommensurate (IC) and NC phases, indicating heterogeneous nucleation near the transition. Finally, we explain a resistive anomaly originally observed by DiSalvo [F. J. DiSalvo, et al., Phys. Rev. B {\bf 12}, 2220 (1975)] as arising from pinning of the CDW on the crystal lattice. Our study highlights the importance of commensuration effects in the NC phase, particularly at x ~ 0.08. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1411.6604v2-abstract-full').style.display = 'none'; document.getElementById('1411.6604v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 May, 2015; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 November, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2014. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1309.4051">arXiv:1309.4051</a> <span> [<a href="https://arxiv.org/pdf/1309.4051">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Emergence of charge density wave domain walls above the superconducting dome in TiSe2 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Joe%2C+Y+I">Y. I. Joe</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+X+M">X. M. Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Ghaemi%2C+P">P. Ghaemi</a>, <a href="/search/cond-mat?searchtype=author&query=Finkelstein%2C+K+D">K. D. Finkelstein</a>, <a href="/search/cond-mat?searchtype=author&query=de+la+Pe%C3%B1a%2C+G+A">G. A. de la Pe帽a</a>, <a href="/search/cond-mat?searchtype=author&query=Gan%2C+Y">Y. Gan</a>, <a href="/search/cond-mat?searchtype=author&query=Lee%2C+J+C+T">J. C. T. Lee</a>, <a href="/search/cond-mat?searchtype=author&query=Yuan%2C+S">S. Yuan</a>, <a href="/search/cond-mat?searchtype=author&query=Geck%2C+J">J. Geck</a>, <a href="/search/cond-mat?searchtype=author&query=MacDougall%2C+G+J">G. J. MacDougall</a>, <a href="/search/cond-mat?searchtype=author&query=Chiang%2C+T+C">T. C. Chiang</a>, <a href="/search/cond-mat?searchtype=author&query=Cooper%2C+S+L">S. L. Cooper</a>, <a href="/search/cond-mat?searchtype=author&query=Fradkin%2C+E">E. Fradkin</a>, <a href="/search/cond-mat?searchtype=author&query=Abbamonte%2C+P">P. Abbamonte</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1309.4051v1-abstract-short" style="display: inline;"> Superconductivity (SC) in so-called "unconventional superconductors" is nearly always found in the vicinity of another ordered state, such as antiferromagnetism, charge density wave (CDW), or stripe order. This suggests a fundamental connection between SC and fluctuations in some other order parameter. To better understand this connection, we used high-pressure x-ray scattering to directly study t… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1309.4051v1-abstract-full').style.display = 'inline'; document.getElementById('1309.4051v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1309.4051v1-abstract-full" style="display: none;"> Superconductivity (SC) in so-called "unconventional superconductors" is nearly always found in the vicinity of another ordered state, such as antiferromagnetism, charge density wave (CDW), or stripe order. This suggests a fundamental connection between SC and fluctuations in some other order parameter. To better understand this connection, we used high-pressure x-ray scattering to directly study the CDW order in the layered dichalcogenide TiSe2, which was previously shown to exhibit SC when the CDW is suppressed by pressure [1] or intercalation of Cu atoms [2]. We succeeded in suppressing the CDW fully to zero temperature, establishing for the first time the existence of a quantum critical point (QCP) at Pc = 5.1 +/- 0.2 GPa, which is more than 1 GPa beyond the end of the SC region. Unexpectedly, at P = 3 GPa we observed a reentrant, weakly first order, incommensurate phase, indicating the presence of a Lifshitz tricritical point somewhere above the superconducting dome. Our study suggests that SC in TiSe2 may not be connected to the QCP itself, but to the formation of CDW domain walls. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1309.4051v1-abstract-full').style.display = 'none'; document.getElementById('1309.4051v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 September, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1205.4106">arXiv:1205.4106</a> <span> [<a href="https://arxiv.org/pdf/1205.4106">pdf</a>, <a href="https://arxiv.org/format/1205.4106">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.111.157401">10.1103/PhysRevLett.111.157401 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> First-principles method of propagation of tightly bound excitons: exciton band structure of LiF and verification with inelastic x-ray scattering </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Lee%2C+C">Chi-Cheng Lee</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+X+M">Xiaoqian M. Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Gan%2C+Y">Yu Gan</a>, <a href="/search/cond-mat?searchtype=author&query=Yeh%2C+C">Chen-Lin Yeh</a>, <a href="/search/cond-mat?searchtype=author&query=Hsueh%2C+H+C">H. C. Hsueh</a>, <a href="/search/cond-mat?searchtype=author&query=Abbamonte%2C+P">Peter Abbamonte</a>, <a href="/search/cond-mat?searchtype=author&query=Ku%2C+W">Wei Ku</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1205.4106v2-abstract-short" style="display: inline;"> We propose a simple first-principles method to describe propagation of tightly bound excitons. By viewing the exciton as a composite object (an effective Frenkel exciton in Wannier orbitals), we define an exciton kinetic kernel to encapsulate the exciton propagation and decay for all binding energy. Applied to prototypical LiF, our approach produces three exciton bands, which we verified quantitat… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1205.4106v2-abstract-full').style.display = 'inline'; document.getElementById('1205.4106v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1205.4106v2-abstract-full" style="display: none;"> We propose a simple first-principles method to describe propagation of tightly bound excitons. By viewing the exciton as a composite object (an effective Frenkel exciton in Wannier orbitals), we define an exciton kinetic kernel to encapsulate the exciton propagation and decay for all binding energy. Applied to prototypical LiF, our approach produces three exciton bands, which we verified quantitatively via inelastic x-ray scattering. The proposed real-space picture is computationally inexpensive and thus enables study of the full exciton dynamics, even in the presence of surfaces and impurity scattering. It also provides intuitive understanding to facilitate practical exciton engineering in semiconductors, strongly correlated oxides, and their nanostructures. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1205.4106v2-abstract-full').style.display = 'none'; document.getElementById('1205.4106v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 September, 2013; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 May, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2012. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 4 figures. Accepted by PRL</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 111, 157401 (2013) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1109.0734">arXiv:1109.0734</a> <span> [<a href="https://arxiv.org/pdf/1109.0734">pdf</a>, <a href="https://arxiv.org/format/1109.0734">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Resonant soft x-ray scattering from La(1-x)Sr(x)MnO(3) quantum wire arrays </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Chen%2C+X+M">X. M. Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Spanton%2C+E+M">E. M. Spanton</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+S">S. Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Lee%2C+J+C+T">J. C. T. Lee</a>, <a href="/search/cond-mat?searchtype=author&query=Smadici%2C+S">S. Smadici</a>, <a href="/search/cond-mat?searchtype=author&query=Zhai%2C+X">X. Zhai</a>, <a href="/search/cond-mat?searchtype=author&query=Naibert%2C+T">T. Naibert</a>, <a href="/search/cond-mat?searchtype=author&query=Eckstein%2C+J+N">J. N. Eckstein</a>, <a href="/search/cond-mat?searchtype=author&query=Bhattacharya%2C+A">A. Bhattacharya</a>, <a href="/search/cond-mat?searchtype=author&query=Santos%2C+T">T. Santos</a>, <a href="/search/cond-mat?searchtype=author&query=Budakian%2C+R">R. Budakian</a>, <a href="/search/cond-mat?searchtype=author&query=Abbamonte%2C+P">P. Abbamonte</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1109.0734v1-abstract-short" style="display: inline;"> We describe a strategy for using resonant soft x-ray scattering (RSXS) to study the electronic structure of transition metal oxide quantum wires. Using electron beam lithography and ion milling, we have produced periodic, patterned arrays of colossal magnetoresistance (CMR) phase La(1-x)Sr(x)MnO(3) consisting of ~ 5000 wires, each of which is 80 nm in width. The scattered intensity exhibits a seri… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1109.0734v1-abstract-full').style.display = 'inline'; document.getElementById('1109.0734v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1109.0734v1-abstract-full" style="display: none;"> We describe a strategy for using resonant soft x-ray scattering (RSXS) to study the electronic structure of transition metal oxide quantum wires. Using electron beam lithography and ion milling, we have produced periodic, patterned arrays of colossal magnetoresistance (CMR) phase La(1-x)Sr(x)MnO(3) consisting of ~ 5000 wires, each of which is 80 nm in width. The scattered intensity exhibits a series of peaks that can be interpreted as Bragg reflections from the periodic structure or, equivalently, diffraction orders from the grating-like structure. RSXS measurements at the Mn L(2,3) edge, which has a large magnetic cross section, show clear evidence for a magnetic superstructure with a commensurate period of five wires, which we interpret as commensurately modulated antiferromagnetism. This superstructure, which is accompanied by non-trivial reorganization of the magnetization within each wire, likely results from classical dipole interactions among the wires. We introduce a simple, exactly soluble, analytic model of the scattering that captures, semi-quantitatively, the primary features in the RSXS data; this model will act as a foundation for forthcoming, detailed studies of the magnetic structure in these systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1109.0734v1-abstract-full').style.display = 'none'; document.getElementById('1109.0734v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 September, 2011; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2011. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 10 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1107.2329">arXiv:1107.2329</a> <span> [<a href="https://arxiv.org/pdf/1107.2329">pdf</a>, <a href="https://arxiv.org/ps/1107.2329">ps</a>, <a href="https://arxiv.org/format/1107.2329">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.84.174424">10.1103/PhysRevB.84.174424 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Pressure- and Field-Tuning the Magnetostructural Phases of Mn3O4: Raman Scattering and X-Ray Diffraction Studies </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Kim%2C+M">M. Kim</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+X+M">X. M. Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+X">X. Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Nelson%2C+C+S">C. S. Nelson</a>, <a href="/search/cond-mat?searchtype=author&query=Budakian%2C+R">R. Budakian</a>, <a href="/search/cond-mat?searchtype=author&query=Abbamonte%2C+P">P. Abbamonte</a>, <a href="/search/cond-mat?searchtype=author&query=Cooper%2C+S+L">S. L. Cooper</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1107.2329v2-abstract-short" style="display: inline;"> We present temperature-, magnetic-field-, and pressure-dependent Raman scattering studies of single crystal Mn3O4, combined with temperature- and field-dependent x-ray diffraction studies, revealing the novel magnetostructural phases in Mn3O4. Our temperature-dependent studies showed that the commensurate magnetic transition at T2=33K in the binary spinel Mn3O4 is associated with a structural tran… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1107.2329v2-abstract-full').style.display = 'inline'; document.getElementById('1107.2329v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1107.2329v2-abstract-full" style="display: none;"> We present temperature-, magnetic-field-, and pressure-dependent Raman scattering studies of single crystal Mn3O4, combined with temperature- and field-dependent x-ray diffraction studies, revealing the novel magnetostructural phases in Mn3O4. Our temperature-dependent studies showed that the commensurate magnetic transition at T2=33K in the binary spinel Mn3O4 is associated with a structural transition from tetragonal to orthorhombic structures. Field-dependent studies showed that the onset and nature of this structural transition can be controlled with an applied magnetic field, and revealed evidence for a field-tuned quantum phase transition to a tetragonal spin-disordered phase for H||[1-10]. Pressure-dependent Raman measurements showed that the magnetic easy axis direction in Mn3O4 can be controlled---and the ferrimagnetic transition temperature increased---with applied pressure. Finally, combined pressure- and magnetic-field-tuned Raman measurements revealed a rich magnetostructural phase diagram---including a pressure- and field-induced magnetically frustrated tetragonal phase in the PH phase diagram---that can be generated in Mn3O4 with applied pressure and magnetic field. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1107.2329v2-abstract-full').style.display = 'none'; document.getElementById('1107.2329v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 September, 2011; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 July, 2011; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2011. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 13 figures, to be published in Phys. Rev. B</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/0912.2052">arXiv:0912.2052</a> <span> [<a href="https://arxiv.org/pdf/0912.2052">pdf</a>, <a href="https://arxiv.org/ps/0912.2052">ps</a>, <a href="https://arxiv.org/format/0912.2052">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.104.136402">10.1103/PhysRevLett.104.136402 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Mapping the magneto-structural quantum phases of Mn3O4 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Kim%2C+M">M. Kim</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+X+M">X. M. Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Fradkin%2C+E">E. Fradkin</a>, <a href="/search/cond-mat?searchtype=author&query=Abbamonte%2C+P">P. Abbamonte</a>, <a href="/search/cond-mat?searchtype=author&query=Cooper%2C+S+L">S. L. Cooper</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="0912.2052v2-abstract-short" style="display: inline;"> We present temperature-dependent x-ray diffraction and temperature- and field-dependent Raman scattering studies of single crystal Mn3O4, which reveal the novel magnetostructural phases that evolve in the spinels due to the interplay between strong spin-orbital coupling, geometric frustration, and applied magnetic field. We observe a structural transition from tetragonal to monoclinic structures… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0912.2052v2-abstract-full').style.display = 'inline'; document.getElementById('0912.2052v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="0912.2052v2-abstract-full" style="display: none;"> We present temperature-dependent x-ray diffraction and temperature- and field-dependent Raman scattering studies of single crystal Mn3O4, which reveal the novel magnetostructural phases that evolve in the spinels due to the interplay between strong spin-orbital coupling, geometric frustration, and applied magnetic field. We observe a structural transition from tetragonal to monoclinic structures at the commensurate magnetic transition at T2=33K, show that the onset and nature of this structural transition can be controlled with an applied magnetic field, and find evidence for a field-tuned quantum phase transition to a tetragonal incommensurate or spin glass phase. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0912.2052v2-abstract-full').style.display = 'none'; document.getElementById('0912.2052v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 December, 2009; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 December, 2009; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2009. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 3 figures, submitted to Phys. Rev. Lett; typos corrected</span> </p> </li> </ol> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>