CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 167 results for author: <span class="mathjax">Prabhakaran, D</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/cond-mat" aria-role="search"> Searching in archive <strong>cond-mat</strong>. <a href="/search/?searchtype=author&amp;query=Prabhakaran%2C+D">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Prabhakaran, D"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Prabhakaran%2C+D&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Prabhakaran, D"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Prabhakaran%2C+D&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Prabhakaran%2C+D&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Prabhakaran%2C+D&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Prabhakaran%2C+D&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Prabhakaran%2C+D&amp;start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.13898">arXiv:2411.13898</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.13898">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Discovery of an Antiferromagnetic Topological Nodal-line Kondo Semimetal </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+D+F">D. F. Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+Y+F">Y. F. Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+H+Y">H. Y. Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+J+Y">J. Y. Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ying%2C+T+P">T. P. Ying</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lv%2C+Y+Y">Y. Y. Lv</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+Y">Y. Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+C">C. Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+Y+H">Y. H. Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pei%2C+D">D. Pei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Prabhakaran%2C+D">D. Prabhakaran</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+M+H">M. H. Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+J+J">J. J. Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Q+H">Q. H. Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Meng%2C+F+Q">F. Q. Meng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Thiagarajan%2C+B">B. Thiagarajan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Polley%2C+C">C. Polley</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hashimoto%2C+M">M. Hashimoto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+D+H">D. H. Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schr%C3%B6ter%2C+N+B+M">N. B. M. Schr枚ter</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Strocov%2C+V+N">V. N. Strocov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Louat%2C+A">A. Louat</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cacho%2C+C">C. Cacho</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Biswas%2C+D">D. Biswas</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+T+-">T. -L. Lee</a> , et al. (12 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.13898v1-abstract-short" style="display: inline;"> The symbiosis of strong interactions, flat bands, topology and symmetry has led to the discovery of exotic phases of matter, including fractional Chern insulators, correlated moir茅 topological superconductors, and Dirac and Weyl semimetals. Correlated metals, such as those present in Kondo lattices, rely on the screening of local moments by a sea of non-magnetic conduction electrons. Here, we repo&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.13898v1-abstract-full').style.display = 'inline'; document.getElementById('2411.13898v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.13898v1-abstract-full" style="display: none;"> The symbiosis of strong interactions, flat bands, topology and symmetry has led to the discovery of exotic phases of matter, including fractional Chern insulators, correlated moir茅 topological superconductors, and Dirac and Weyl semimetals. Correlated metals, such as those present in Kondo lattices, rely on the screening of local moments by a sea of non-magnetic conduction electrons. Here, we report on a unique topological Kondo lattice compound, CeCo2P2, where the Kondo effect - whose existence under the magnetic Co phase is protected by PT symmetry - coexists with antiferromagnetic order emerging from the flat bands associated with the Co atoms. Remarkably, this is the only known Kondo lattice compound where magnetic order occurs in non-heavy electrons, and puzzlingly, at a temperature significantly higher than that of the Kondo effect. Furthermore, at low temperatures, the emergence of the Kondo effect, in conjunction with a glide-mirror-z symmetry, results in a nodal line protected by bulk topology near the Fermi energy. These unusual properties, arising from the interplay between itinerant and correlated electrons from different constituent elements, lead to novel quantum phases beyond the celebrated topological Kondo insulators and Weyl Kondo semimetals. CeCo2P2 thus provides an ideal platform for investigating narrow bands, topology, magnetism, and the Kondo effect in strongly correlated electron systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.13898v1-abstract-full').style.display = 'none'; document.getElementById('2411.13898v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17pages,4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.10043">arXiv:2410.10043</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.10043">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> AFM-based Functional Tomography-To Mill or not to Mill, that is the Question! </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Sharma%2C+N">Niyorjyoti Sharma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Holsgrove%2C+K+M">Kristina M. Holsgrove</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dalzell%2C+J">James Dalzell</a>, <a href="/search/cond-mat?searchtype=author&amp;query=McCluskey%2C+C+J">Conor J. McCluskey</a>, <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+J">Jilai He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Meier%2C+D">Dennis Meier</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Prabhakaran%2C+D">Dharmalingam Prabhakaran</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rodriguez%2C+B+J">Brian J. Rodriguez</a>, <a href="/search/cond-mat?searchtype=author&amp;query=McQuaid%2C+R+G+P">Raymond G. P. McQuaid</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gregg%2C+J+M">J. Marty Gregg</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kumar%2C+A">Amit Kumar</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.10043v1-abstract-short" style="display: inline;"> The electrical response of ferroelectric domain walls is often influenced by their geometry underneath the sample surface. Tomographic imaging in these material systems has therefore become increasingly important for its ability to correlate the surface-level functional response with subsurface domain microstructure. In this context, AFM-based tomography emerges as a compelling choice because of i&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.10043v1-abstract-full').style.display = 'inline'; document.getElementById('2410.10043v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.10043v1-abstract-full" style="display: none;"> The electrical response of ferroelectric domain walls is often influenced by their geometry underneath the sample surface. Tomographic imaging in these material systems has therefore become increasingly important for its ability to correlate the surface-level functional response with subsurface domain microstructure. In this context, AFM-based tomography emerges as a compelling choice because of its simplicity, high resolution and robust contrast mechanism. However, to date, the technique has been implemented in a limited number of ferroelectric materials, typically to depths of a few hundred nanometers or on relatively soft materials, resulting in an unclear understanding of its capabilities and limitations. In this work, AFM tomography is carried out in YbMnO3, mapping its complex domain microstructure up to a depth of around 1.8 um along with its current pathways. A model is presented, describing the impact of interconnected domain walls within the network, which act as current dividers and codetermine how currents distribute. Finally, challenges such as tip-blunting and subsurface amorphisation are identified through TEM studies, and strategies to address them are also put forward. This study highlights the potential of AFM tomography and could spur interest within the ferroics community for its use in the investigation of similar material systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.10043v1-abstract-full').style.display = 'none'; document.getElementById('2410.10043v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.03783">arXiv:2408.03783</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.03783">pdf</a>, <a href="https://arxiv.org/ps/2408.03783">ps</a>, <a href="https://arxiv.org/format/2408.03783">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Hidden elastic softness of low-symmetry frustrated $A$Ti$_2$O$_5$ ($A$ = Co, Fe) </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Watanabe%2C+T">Tadataka Watanabe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Takayanagi%2C+K">Kazuya Takayanagi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nishimura%2C+R">Ray Nishimura</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hara%2C+Y">Yoshiaki Hara</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Prabhakaran%2C+D">Dharmalingam Prabhakaran</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Johnson%2C+R+D">Roger D. Johnson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Blundell%2C+S+J">Stephen J. Blundell</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.03783v1-abstract-short" style="display: inline;"> Orthorhombic pseudobrookites CoTi$_2$O$_5$ and FeTi$_2$O$_5$ have a low-symmetry crystal structure comprising magnetic Co$^{2+}$/Fe$^{2+}$ ions and nonmagnetic Ti$^{4+}$ ions, where the orbital-nondegenerate Co$^{2+}$/Fe$^{2+}$ ions form one-dimensional chains running along the orthorhombic $a$ axis. These compounds undergo an antiferromagnetic phase transition at $T_N \sim$ 26 K for CoTi$_2$O&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.03783v1-abstract-full').style.display = 'inline'; document.getElementById('2408.03783v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.03783v1-abstract-full" style="display: none;"> Orthorhombic pseudobrookites CoTi$_2$O$_5$ and FeTi$_2$O$_5$ have a low-symmetry crystal structure comprising magnetic Co$^{2+}$/Fe$^{2+}$ ions and nonmagnetic Ti$^{4+}$ ions, where the orbital-nondegenerate Co$^{2+}$/Fe$^{2+}$ ions form one-dimensional chains running along the orthorhombic $a$ axis. These compounds undergo an antiferromagnetic phase transition at $T_N \sim$ 26 K for CoTi$_2$O$_5$ and $T_N \sim$ 40 K for FeTi$_2$O$_5$. We perform ultrasound velocity measurements on single crystals of CoTi$_2$O$_5$ and FeTi$_2$O$_5$. The measurements of these compounds reveal that the symmetry-lowering elastic modes of shear elastic moduli exhibit unusual elastic softness in the paramagnetic phase above $T_N$. This elastic softness indicates the presence of spin-lattice-coupled fluctuations above $T_N$ that should be a precursor to the symmetry-lowering lattice distortion at $T_N$. Furthermore, it is revealed that the magnitude of the unusual elastic softness is larger in CoTi$_2$O$_5$ than in FeTi$_2$O$_5$, which indicates that the spin-lattice coupling is stronger in CoTi$_2$O$_5$ than in FeTi$_2$O$_5$. The present study suggests that CoTi$_2$O$_5$ and FeTi$_2$O$_5$ are unique spin Jahn--Teller systems with low crystal symmetry, where, although the nature of exchange interactions is quasi-one-dimensional, the three-dimensional spin-lattice coupling releases the frustration by further lowering the crystal symmetry. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.03783v1-abstract-full').style.display = 'none'; document.getElementById('2408.03783v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.03372">arXiv:2408.03372</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.03372">pdf</a>, <a href="https://arxiv.org/format/2408.03372">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Spin-charge separation and resonant valence bond spin liquid in a frustrated doped Mott insulator </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Glittum%2C+C">Cecilie Glittum</a>, <a href="/search/cond-mat?searchtype=author&amp;query=%C5%A0trkalj%2C+A">Antonio 艩trkalj</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Prabhakaran%2C+D">Dharmalingam Prabhakaran</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Goddard%2C+P+A">Paul A. Goddard</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Batista%2C+C+D">Cristian D. Batista</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Castelnovo%2C+C">Claudio Castelnovo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.03372v1-abstract-short" style="display: inline;"> Anderson&#39;s groundbreaking ideas of resonant valence bond (RVB) liquid and spin-charge separation initiated a transformative shift in modern physics. Extensive implications influenced a broad spectrum of fields, from high-temperature superconductors to quantum computing, and gave birth to key concepts in physics, such as quantum spin liquids, emergent gauge symmetries, topological order, and fracti&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.03372v1-abstract-full').style.display = 'inline'; document.getElementById('2408.03372v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.03372v1-abstract-full" style="display: none;"> Anderson&#39;s groundbreaking ideas of resonant valence bond (RVB) liquid and spin-charge separation initiated a transformative shift in modern physics. Extensive implications influenced a broad spectrum of fields, from high-temperature superconductors to quantum computing, and gave birth to key concepts in physics, such as quantum spin liquids, emergent gauge symmetries, topological order, and fractionalisation. Despite extensive efforts to demonstrate the existence of an RVB phase in the Hubbard model, a definitive realisation has proven elusive. Here, we present a concise, realistic, and elegant solution to this longstanding problem by demonstrating analytically that an RVB spin liquid, exhibiting spin-charge separation, emerges as the ground state of doped Mott insulators on corner-sharing tetrahedral lattices with frustrated hopping near half-filling -- a manifestation of the counter-Nagaoka effect. We confirm numerically that this result holds for finite-size systems, finite dopant density, and small exchange interactions. While much attention has been devoted to the emergence of new states from geometrically frustrated interactions, our work demonstrates that kinetic energy frustration in doped Mott insulators may be pivotal to stabilise robust, topologically ordered states in real materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.03372v1-abstract-full').style.display = 'none'; document.getElementById('2408.03372v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.08491">arXiv:2407.08491</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.08491">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Breaking symmetry with light: photo-induced chirality in a non-chiral crystal </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zeng%2C+Z">Z. Zeng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=F%C3%B6rst%2C+M">M. F枚rst</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fechner%2C+M">M. Fechner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Buzzi%2C+M">M. Buzzi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Amuah%2C+E">E. Amuah</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Putzke%2C+C">C. Putzke</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Moll%2C+P+J+W">P. J. W. Moll</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Prabhakaran%2C+D">D. Prabhakaran</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Radaelli%2C+P">P. Radaelli</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cavalleri%2C+A">A. Cavalleri</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.08491v1-abstract-short" style="display: inline;"> Chirality is a pervasive form of symmetry that is intimately connected to the physical properties of solids, as well as the chemical and biological activity of molecular systems. However, its control with light is challenging, because inducing chirality in a non-chiral material requires that all mirrors and all roto-inversions be simultaneously broken. Electromagnetic fields exert only oscillatory&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.08491v1-abstract-full').style.display = 'inline'; document.getElementById('2407.08491v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.08491v1-abstract-full" style="display: none;"> Chirality is a pervasive form of symmetry that is intimately connected to the physical properties of solids, as well as the chemical and biological activity of molecular systems. However, its control with light is challenging, because inducing chirality in a non-chiral material requires that all mirrors and all roto-inversions be simultaneously broken. Electromagnetic fields exert only oscillatory forces that vanish on average, mostly leading to entropy increase that does not break symmetries, per se. Here, we show that chirality of either handedness can be generated in the non-chiral piezoelectric material BPO$_4$, in which two compensated sub-structures of opposite handedness coexist within the same unit cell. By resonantly driving either one of two orthogonal, doubly degenerate vibrational modes at Terahertz frequency, we rectify the lattice distortion and exert a displacive force onto the crystal. The staggered chirality is in this way uncompensated in either direction, inducing chiral structure with either handedness. The rotary power of the photo-induced phases is comparable to the static value of prototypical chiral alpha-quartz, limited by the strength of the pump laser pulse. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.08491v1-abstract-full').style.display = 'none'; document.getElementById('2407.08491v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">27 pages, including Supplementary Materials</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.03013">arXiv:2407.03013</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.03013">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Disentangling heterogeneity and disorder during ultrafast surface melting of orbital order </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Monti%2C+M">Maurizio Monti</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Siddiqui%2C+K+M">Khalid M. Siddiqui</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Perez-Salinas%2C+D">Daniel Perez-Salinas</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Agarwal%2C+N">Naman Agarwal</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bremholm%2C+M">Martin Bremholm</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+X">Xiang Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Prabhakaran%2C+D">Dharmalingam Prabhakaran</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+X">Xin Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Babich%2C+D">Danylo Babich</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sander%2C+M">Mathias Sander</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Deng%2C+Y">Yunpei Deng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lemke%2C+H+T">Henrik T. Lemke</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mankowsky%2C+R">Roman Mankowsky</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+X">Xuerong Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wall%2C+S+E">Simon E. Wall</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.03013v1-abstract-short" style="display: inline;"> Understanding how light modifies long-range order is key to improve our ability to control material functionality on an ultrafast timescale. Transient spatial heterogeneity has been proposed in many materials, but isolating the dynamics of different regions experimentally has been challenging. Here we address this issue and measure the dynamics of orbital order melting in the layered manganite, La&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.03013v1-abstract-full').style.display = 'inline'; document.getElementById('2407.03013v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.03013v1-abstract-full" style="display: none;"> Understanding how light modifies long-range order is key to improve our ability to control material functionality on an ultrafast timescale. Transient spatial heterogeneity has been proposed in many materials, but isolating the dynamics of different regions experimentally has been challenging. Here we address this issue and measure the dynamics of orbital order melting in the layered manganite, La0.5Sr1.5MnO4, and isolate the surface dynamics from the bulk for the first time. Bulk measurements show orbital order is rapidly suppressed, but the correlation length surprisingly increases. However, the surface dynamics, show a stronger suppression and a significant decrease in correlation length. By isolating the surface changes, we find that light preferentially melts a less ordered surface and the loss of long-range order is likely driven by the formation of local and disordered polarons. Melting the disordered surface effectively increases the average correlation of the bulk probed volume, resolving the contradictory response. These results show that surface scattering methods are necessary to understand both surface and bulk dynamics in heterogeneous materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.03013v1-abstract-full').style.display = 'none'; document.getElementById('2407.03013v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22 pages, 8 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.03829">arXiv:2404.03829</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.03829">pdf</a>, <a href="https://arxiv.org/format/2404.03829">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Spin dynamics and possible topological magnons in non-stoichiometric pyrochlore iridate Tb$_2$Ir$_2$O$_7$ studied by RIXS </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Faure%2C+Q">Q. Faure</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Toschi%2C+A">A. Toschi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Soh%2C+J+R">J. R. Soh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lhotel%2C+E">E. Lhotel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Detlefs%2C+B">B. Detlefs</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Prabhakaran%2C+D">D. Prabhakaran</a>, <a href="/search/cond-mat?searchtype=author&amp;query=McMorrow%2C+D+F">D. F. McMorrow</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sahle%2C+C+J">C. J. Sahle</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.03829v2-abstract-short" style="display: inline;"> We report a resonant inelastic X-ray scattering study on a single crystal of a non-stoichiometric pyrochlore iridate Tb$_{2+x}$Ir$_{2-x}$O$_{7-y}$ ($x \simeq 0.25$) that magnetically orders at $T_{\rm{N}}\simeq 50$ K. We find that the strength of the spin-orbit coupling and the trigonal distortion of the IrO$_6$ octahedra are comparable with the ones obtained in other pyrochlore iridates. We obser&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.03829v2-abstract-full').style.display = 'inline'; document.getElementById('2404.03829v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.03829v2-abstract-full" style="display: none;"> We report a resonant inelastic X-ray scattering study on a single crystal of a non-stoichiometric pyrochlore iridate Tb$_{2+x}$Ir$_{2-x}$O$_{7-y}$ ($x \simeq 0.25$) that magnetically orders at $T_{\rm{N}}\simeq 50$ K. We find that the strength of the spin-orbit coupling and the trigonal distortion of the IrO$_6$ octahedra are comparable with the ones obtained in other pyrochlore iridates. We observe a propagating gapped magnon mode at low energy, and model it using a Hamiltonian consisting of a Heisenberg exchange [$J = 16.2(9)$ meV] and Dzyaloshinskii-Moriya interactions [$D = 5.2(3)$ meV], which shows the robustness of interactions despite Tb-stuffing at the Ir-site. Strikingly, the ratio $D/J = 0.32(3)$ supports possible non-trivial topological magnon band crossing. This material may thus host coexisting fermionic and bosonic topology, with potential for manipulating electronic and magnonic topological bands thanks to the $d-f$ interaction. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.03829v2-abstract-full').style.display = 'none'; document.getElementById('2404.03829v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">manuscript: 7 pages, 4 figures; Supplemental Material: 6 pages, 7 figures, 1 table. Accepted at PRB Letters (2024)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.07671">arXiv:2403.07671</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.07671">pdf</a>, <a href="https://arxiv.org/format/2403.07671">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.110.144429">10.1103/PhysRevB.110.144429 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Characterizing the diffuse continuum excitations in the classical spin liquid $h$-YMnO$_3$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Lass%2C+J">Jakob Lass</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lenander%2C+E+Y">Emma Y. Lenander</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Krighaar%2C+K+M+L">Kristine M. L. Krighaar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=To%C5%A1i%C4%87%2C+T+N">Tara N. To拧i膰</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Prabhakaran%2C+D">Dharmalingam Prabhakaran</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Deen%2C+P+P">Pascale P. Deen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Holm-Janas%2C+S">Sofie Holm-Janas</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lefmann%2C+K">Kim Lefmann</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.07671v1-abstract-short" style="display: inline;"> We extend previous inelastic neutron scattering results on the geometrically frustrated antiferromagnet hexagonal-YMnO$_3$, which has been suggested to belong to the class of classical spin liquids. We extend the energy transfer coverage of the diffuse signal up to 6.9 meV within a wide temperature range around the ordering temperature, $T_\mathrm{N}$. The two distinct diffuse signals in the a-b p&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.07671v1-abstract-full').style.display = 'inline'; document.getElementById('2403.07671v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.07671v1-abstract-full" style="display: none;"> We extend previous inelastic neutron scattering results on the geometrically frustrated antiferromagnet hexagonal-YMnO$_3$, which has been suggested to belong to the class of classical spin liquids. We extend the energy transfer coverage of the diffuse signal up to 6.9 meV within a wide temperature range around the ordering temperature, $T_\mathrm{N}$. The two distinct diffuse signals in the a-b plane, the signal localized at $螕$&#39; and the scattering intensity connecting $螕$&#39; points over the M&#39;, are shown to be only weakly energy dependent. In addition, an external magnetic field of up to 10.5 T applied along c is shown to have no effect on the diffuse signal. In the orthogonal scattering plane, the signals are shown to be dependent on l only through the magnetic form factor, showing that the correlations are purely two-dimensional, and supporting its origin to be the frustrated Mn$^{3+}$ triangles. This result is corroborated by atomistic spin dynamics simulations showing similar scattering vector and temperature behaviours. Lastly, data for the spin wave scattering in the (h, 0, l) plane allow for a discussion of the magnetic ground state where better agreement is found between the data and an ordered structure of the $螕_1$ or $螕_3$ symmetry, albeit crystal electric field arguments dismisses the $螕_1$ as possibility. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.07671v1-abstract-full').style.display = 'none'; document.getElementById('2403.07671v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.16018">arXiv:2310.16018</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.16018">pdf</a>, <a href="https://arxiv.org/format/2310.16018">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Symmetry-breaking pathway towards the unpinned broken helix </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Donoway%2C+E">E. Donoway</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Trevisan%2C+T+V">T. V. Trevisan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pel%C3%A1ez%2C+A+L+-">A. Liebman - Pel谩ez</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Day%2C+R+P">R. P. Day</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yamakawa%2C+K">K. Yamakawa</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+Y">Y. Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Soh%2C+J+R">J. R. Soh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Prabhakaran%2C+D">D. Prabhakaran</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Boothroyd%2C+A+T">A. T. Boothroyd</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fernandes%2C+R+M">R. M. Fernandes</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Analytis%2C+J+G">J. G. Analytis</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Moore%2C+J+E">J. E. Moore</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Orenstein%2C+J">J. Orenstein</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sunko%2C+V">V. Sunko</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.16018v2-abstract-short" style="display: inline;"> One of the prime material candidates to host the axion insulator state is EuIn$_{2}$As$_{2}$. First-principles calculations predicted the emergence of this exotic topological phase based on the assumption of a collinear antiferromagnetic structure. However, neutron scattering measurements revealed a more intricate magnetic ground state, characterized by two coexisting magnetic wavevectors, reached&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.16018v2-abstract-full').style.display = 'inline'; document.getElementById('2310.16018v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.16018v2-abstract-full" style="display: none;"> One of the prime material candidates to host the axion insulator state is EuIn$_{2}$As$_{2}$. First-principles calculations predicted the emergence of this exotic topological phase based on the assumption of a collinear antiferromagnetic structure. However, neutron scattering measurements revealed a more intricate magnetic ground state, characterized by two coexisting magnetic wavevectors, reached by successive thermal phase transitions. The proposed high and low temperature phases were a spin helix and a state with interpenetrating helical and antiferromagnetic order, termed a broken helix, respectively. Despite its complexity, the broken helix still protects the axion state because the product of time-reversal and a rotational symmetry is preserved. Here we identify the magnetic structure associated with these two phases using a multimodal approach that combines symmetry-sensitive optical probes, scattering, and group theoretical analysis. We find that the higher temperature phase hosts a nodal structure rather than a helix, characterized by a variation of the magnetic moment amplitude from layer to layer, with the moment vanishing entirely in every third Eu layer. The lower temperature structure is similar to the broken helix, with one important difference: the relative orientation of the magnetic structure and the lattice is not fixed, resulting in an `unpinned broken helix&#39;. As a result of the breaking of rotational symmetry, the axion phase is not generically protected. Nevertheless, we show that it can be restored if the magnetic structure is tuned with externally-applied uniaxial strain. Finally, we present a spin Hamiltonian that identifies the spin interactions needed to account for the complex magnetic order in EuIn$_{2}$As$_{2}$. Our work highlights the importance of the multimodal approach in determining the symmetry of complex order-parameters. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.16018v2-abstract-full').style.display = 'none'; document.getElementById('2310.16018v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">32 pages, 21 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.15335">arXiv:2308.15335</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2308.15335">pdf</a>, <a href="https://arxiv.org/format/2308.15335">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Switching of ferrotoroidal domains via an intermediate mixed state in the multiferroic Y-type hexaferrite Ba$_{0.5}$Sr$_{1.5}$Mg$_2$Fe$_{12}$O$_{22}$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+J">Jiahao Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chmiel%2C+F">Francis Chmiel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+J">Jieyi Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Prabhakaran%2C+D">Dharmalingam Prabhakaran</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Radaelli%2C+P+G">Paolo G. Radaelli</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Johnson%2C+R+D">Roger D. Johnson</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.15335v5-abstract-short" style="display: inline;"> We report a detailed study of the magnetic field switching of ferrotoroidal/multiferroic domains in the Y-type hexaferrite compound Ba$_{0.5}$Sr$_{1.5}$Mg$_2$Fe$_{12}$O$_{22}$. By combining data from SQUID magnetometry, magneto-current measurements, and resonant X-ray scattering experiments, we arrive at a complete description of the deterministic switching, which involves the formation of a tempe&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.15335v5-abstract-full').style.display = 'inline'; document.getElementById('2308.15335v5-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.15335v5-abstract-full" style="display: none;"> We report a detailed study of the magnetic field switching of ferrotoroidal/multiferroic domains in the Y-type hexaferrite compound Ba$_{0.5}$Sr$_{1.5}$Mg$_2$Fe$_{12}$O$_{22}$. By combining data from SQUID magnetometry, magneto-current measurements, and resonant X-ray scattering experiments, we arrive at a complete description of the deterministic switching, which involves the formation of a temperature-dependent mixed state in low magnetic fields. This mechanism is likely to be shared by other members of the hexaferrite family, and presents a challenge for the development of high-speed read-write memory devices based on these materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.15335v5-abstract-full').style.display = 'none'; document.getElementById('2308.15335v5-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 7 figures, 2 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.07699">arXiv:2308.07699</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2308.07699">pdf</a>, <a href="https://arxiv.org/format/2308.07699">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.108.184416">10.1103/PhysRevB.108.184416 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Tuning the confinement potential between spinons in the Ising chain CoNb2O6 using longitudinal fields and quantitative determination of the microscopic Hamiltonian </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Woodland%2C+L">Leonie Woodland</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Macdougal%2C+D">David Macdougal</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cabrera%2C+I+M">Ivelisse M. Cabrera</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Thompson%2C+J+D">Jordan D. Thompson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Prabhakaran%2C+D">D. Prabhakaran</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bewley%2C+R+I">Robert I. Bewley</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Coldea%2C+R">Radu Coldea</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.07699v2-abstract-short" style="display: inline;"> The Ising chain realizes the fundamental paradigm of spin fractionalization, where locally flipping a spin creates two domain walls (spinons) that can separate apart at no energy cost. In a quasi-one-dimensional system, the mean-field effects of the weak three-dimensional couplings confine the spinons into a Zeeman ladder of two-spinon bound states. Here, we experimentally tune the confinement pot&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.07699v2-abstract-full').style.display = 'inline'; document.getElementById('2308.07699v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.07699v2-abstract-full" style="display: none;"> The Ising chain realizes the fundamental paradigm of spin fractionalization, where locally flipping a spin creates two domain walls (spinons) that can separate apart at no energy cost. In a quasi-one-dimensional system, the mean-field effects of the weak three-dimensional couplings confine the spinons into a Zeeman ladder of two-spinon bound states. Here, we experimentally tune the confinement potential between spinons in the quasi-one-dimensional Ising ferromagnet CoNb2O6 by means of an applied magnetic field with a large component along the Ising direction. Using high-resolution single crystal inelastic neutron scattering, we directly observe how the spectrum evolves from the limit of very weak confinement at low field (with many closely-spaced bound states with energies scaling as the field strength to the power 2/3) to very strong confinement at high field (where it consists of a magnon and a dispersive two-magnon bound state, with a linear field dependence). At intermediate fields, we explore how the higher-order bound states disappear from the spectrum as they move to higher energies and overlap with the two-particle continuum. By performing a global fit to the observed spectrum in zero field and high field applied along two orthogonal directions, combined with a quantitative parameterization of the interchain couplings, we propose a refined single chain and interchain Hamiltonian that quantitatively reproduces all observed dispersions and their field dependence. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.07699v2-abstract-full').style.display = 'none'; document.getElementById('2308.07699v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 14 figures. Accepted version after comments from referees</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 108, 184416 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.01948">arXiv:2306.01948</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2306.01948">pdf</a>, <a href="https://arxiv.org/format/2306.01948">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.108.184417">10.1103/PhysRevB.108.184417 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Excitations of quantum Ising chain CoNb2O6 in low transverse field: quantitative description of bound states stabilized by off-diagonal exchange and applied field </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Woodland%2C+L">Leonie Woodland</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lovas%2C+I">Izabella Lovas</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Telling%2C+M">M. Telling</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Prabhakaran%2C+D">D. Prabhakaran</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Balents%2C+L">Leon Balents</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Coldea%2C+R">Radu Coldea</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.01948v2-abstract-short" style="display: inline;"> We present experimental and theoretical evidence of novel bound state formation in the low transverse field ordered phase of the quasi-one-dimensional Ising-like material CoNb$_2$O$_6$. High resolution single crystal inelastic neutron scattering measurements observe that small transverse fields lead to a breakup of the spectrum into three parts, each evolving very differently upon increasing field&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.01948v2-abstract-full').style.display = 'inline'; document.getElementById('2306.01948v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.01948v2-abstract-full" style="display: none;"> We present experimental and theoretical evidence of novel bound state formation in the low transverse field ordered phase of the quasi-one-dimensional Ising-like material CoNb$_2$O$_6$. High resolution single crystal inelastic neutron scattering measurements observe that small transverse fields lead to a breakup of the spectrum into three parts, each evolving very differently upon increasing field. This can be naturally understood starting from the excitations of the ordered phase of the transverse field Ising model, domain wall quasiparticles (solitons). Here, the transverse field and a staggered off-diagonal exchange create one-soliton hopping terms with opposite signs. We show that this leads to a rich spectrum and a special field, when the strengths of the off-diagonal exchange and transverse field match, at which solitons become localized; the highest field investigated is very close to this special regime. We solve this case analytically and find three two-soliton continua, along with three novel bound states. Perturbing away from this novel localized limit, we find very good qualitative agreement with the experimental data. We also present calculations using exact diagonalization of a recently refined Hamiltonian model for CoNb$_2$O$_6$ and using diagonalization of the two-soliton subspace, both of which provide a quantitative agreement with the observed spectrum. The theoretical models qualitatively and quantitatively capture a variety of non-trivial features in the observed spectrum, providing insight into the underlying physics of bound state formation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.01948v2-abstract-full').style.display = 'none'; document.getElementById('2306.01948v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 5 figures. Accepted version after comments from referees</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 108, 184417 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.00295">arXiv:2305.00295</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2305.00295">pdf</a>, <a href="https://arxiv.org/format/2305.00295">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Weyl metallic state induced by helical magnetic order </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Soh%2C+J">Jian-Rui Soh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=S%C3%A1nchez-Ram%C3%ADrez%2C+I">Iri谩n S谩nchez-Ram铆rez</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+X">Xupeng Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+J">Jinzhao Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zivkovic%2C+I">Ivica Zivkovic</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rodr%C3%ADguez-Velamaz%C3%A1n%2C+J+A">J. Alberto Rodr铆guez-Velamaz谩n</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fabelo%2C+O">Oscar Fabelo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Stunault%2C+A">Anne Stunault</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bombardi%2C+A">Alessandro Bombardi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Balz%2C+C">Christian Balz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Le%2C+M+D">Manh Duc Le</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Walker%2C+H+C">Helen C. Walker</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dil%2C+J+H">J. Hugo Dil</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Prabhakaran%2C+D">Dharmalingam Prabhakaran</a>, <a href="/search/cond-mat?searchtype=author&amp;query=R%C3%B8nnow%2C+H+M">Henrik M. R酶nnow</a>, <a href="/search/cond-mat?searchtype=author&amp;query=de+Juan%2C+F">Fernando de Juan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vergniory%2C+M+G">Maia G. Vergniory</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Boothroyd%2C+A+T">Andrew T. Boothroyd</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.00295v1-abstract-short" style="display: inline;"> In the rapidly expanding field of topological materials there is growing interest in systems whose topological electronic band features can be induced or controlled by magnetism. Magnetic Weyl semimetals, which contain linear band crossings near the Fermi level, are of particular interest owing to their exotic charge and spin transport properties. Up to now, the majority of magnetic Weyl semimetal&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.00295v1-abstract-full').style.display = 'inline'; document.getElementById('2305.00295v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.00295v1-abstract-full" style="display: none;"> In the rapidly expanding field of topological materials there is growing interest in systems whose topological electronic band features can be induced or controlled by magnetism. Magnetic Weyl semimetals, which contain linear band crossings near the Fermi level, are of particular interest owing to their exotic charge and spin transport properties. Up to now, the majority of magnetic Weyl semimetals have been realized in ferro- or ferrimagnetically ordered compounds, but a disadvantage of these materials for practical use is their stray magnetic field which limits the minimum size of devices. Here we show that Weyl nodes can be induced by a helical spin configuration, in which the magnetization is fully compensated. Using a combination of neutron diffraction and resonant elastic x-ray scattering, we find that EuCuAs develops a planar helical structure below $T_\textrm{N}$ = 14.5 K which induces Weyl nodes along the $螕$--A high symmetry line in the Brillouin zone. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.00295v1-abstract-full').style.display = 'none'; document.getElementById('2305.00295v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.03949">arXiv:2304.03949</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2304.03949">pdf</a>, <a href="https://arxiv.org/format/2304.03949">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Data Analysis, Statistics and Probability">physics.data-an</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-023-41378-4">10.1038/s41467-023-41378-4 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Capturing dynamical correlations using implicit neural representations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Chitturi%2C+S">Sathya Chitturi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ji%2C+Z">Zhurun Ji</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Petsch%2C+A">Alexander Petsch</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Peng%2C+C">Cheng Peng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Z">Zhantao Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Plumley%2C+R">Rajan Plumley</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dunne%2C+M">Mike Dunne</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mardanya%2C+S">Sougata Mardanya</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chowdhury%2C+S">Sugata Chowdhury</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+H">Hongwei Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bansil%2C+A">Arun Bansil</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Feiguin%2C+A">Adrian Feiguin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kolesnikov%2C+A">Alexander Kolesnikov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Prabhakaran%2C+D">Dharmalingam Prabhakaran</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hayden%2C+S">Stephen Hayden</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ratner%2C+D">Daniel Ratner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jia%2C+C">Chunjing Jia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nashed%2C+Y">Youssef Nashed</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Turner%2C+J">Joshua Turner</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.03949v1-abstract-short" style="display: inline;"> The observation and description of collective excitations in solids is a fundamental issue when seeking to understand the physics of a many-body system. Analysis of these excitations is usually carried out by measuring the dynamical structure factor, S(Q, $蠅$), with inelastic neutron or x-ray scattering techniques and comparing this against a calculated dynamical model. Here, we develop an artific&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.03949v1-abstract-full').style.display = 'inline'; document.getElementById('2304.03949v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.03949v1-abstract-full" style="display: none;"> The observation and description of collective excitations in solids is a fundamental issue when seeking to understand the physics of a many-body system. Analysis of these excitations is usually carried out by measuring the dynamical structure factor, S(Q, $蠅$), with inelastic neutron or x-ray scattering techniques and comparing this against a calculated dynamical model. Here, we develop an artificial intelligence framework which combines a neural network trained to mimic simulated data from a model Hamiltonian with automatic differentiation to recover unknown parameters from experimental data. We benchmark this approach on a Linear Spin Wave Theory (LSWT) simulator and advanced inelastic neutron scattering data from the square-lattice spin-1 antiferromagnet La$_2$NiO$_4$. We find that the model predicts the unknown parameters with excellent agreement relative to analytical fitting. In doing so, we illustrate the ability to build and train a differentiable model only once, which then can be applied in real-time to multi-dimensional scattering data, without the need for human-guided peak finding and fitting algorithms. This prototypical approach promises a new technology for this field to automatically detect and refine more advanced models for ordered quantum systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.03949v1-abstract-full').style.display = 'none'; document.getElementById('2304.03949v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.02546">arXiv:2304.02546</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2304.02546">pdf</a>, <a href="https://arxiv.org/format/2304.02546">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevResearch.5.033113">10.1103/PhysRevResearch.5.033113 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> High-energy spin waves in the spin-1 square-lattice antiferromagnet La$_2$NiO$_4$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Petsch%2C+A+N">A. N. Petsch</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Headings%2C+N+S">N. S. Headings</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Prabhakaran%2C+D">D. Prabhakaran</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kolesnikov%2C+A+I">A. I. Kolesnikov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Frost%2C+C+D">C. D. Frost</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Boothroyd%2C+A+T">A. T. Boothroyd</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Coldea%2C+R">R. Coldea</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hayden%2C+S+M">S. M. Hayden</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.02546v2-abstract-short" style="display: inline;"> Inelastic neutron scattering is used to study the magnetic excitations of the $S=1$ square-lattice antiferromagnet La$_2$NiO$_4$. We find that the spin waves cannot be described by a simple classical (harmonic) Heisenberg model with only nearest-neighbor interactions. The spin-wave dispersion measured along the antiferromagnetic Brillouin-zone boundary shows a minimum energy at the $(1/2,0)$ posit&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.02546v2-abstract-full').style.display = 'inline'; document.getElementById('2304.02546v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.02546v2-abstract-full" style="display: none;"> Inelastic neutron scattering is used to study the magnetic excitations of the $S=1$ square-lattice antiferromagnet La$_2$NiO$_4$. We find that the spin waves cannot be described by a simple classical (harmonic) Heisenberg model with only nearest-neighbor interactions. The spin-wave dispersion measured along the antiferromagnetic Brillouin-zone boundary shows a minimum energy at the $(1/2,0)$ position as is observed in some $S=1/2$ square-lattice antiferromagnets. Thus, our results suggest that the quantum dispersion renormalization effects or longer-range exchange interactions observed in cuprates and other $S=1/2$ square-lattice antiferromagnets are also present in La$_2$NiO$_4$. We also find that the overall intensity of the spin-wave excitations is suppressed relative to linear spin-wave theory indicating that covalency is important. Two-magnon scattering is also observed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.02546v2-abstract-full').style.display = 'none'; document.getElementById('2304.02546v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Final author version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Research 5, 033113 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.01780">arXiv:2211.01780</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2211.01780">pdf</a>, <a href="https://arxiv.org/format/2211.01780">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevResearch.6.013088">10.1103/PhysRevResearch.6.013088 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Controlling charge density order in 2H-TaSe$_{2}$ using a van Hove singularity </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Luckin%2C+W+R+B">W. R. B. Luckin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Y. Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+J">J. Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gunasekera%2C+S+M">S. M. Gunasekera</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wen%2C+C">C. Wen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Y">Y. Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Prabhakaran%2C+D">D. Prabhakaran</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Flicker%2C+F">F. Flicker</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Y">Y. Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mucha-Kruczynski%2C+M">M. Mucha-Kruczynski</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.01780v2-abstract-short" style="display: inline;"> We report on the interplay between a van Hove singularity and a charge density wave state in 2H-TaSe$_{2}$. We use angle-resolved photoemission spectroscopy to investigate changes in the Fermi surface of this material under surface doping with potassium. At high doping, we observe modifications which imply the disappearance of the $(3\times 3)$ charge density wave and formation of a different corr&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.01780v2-abstract-full').style.display = 'inline'; document.getElementById('2211.01780v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.01780v2-abstract-full" style="display: none;"> We report on the interplay between a van Hove singularity and a charge density wave state in 2H-TaSe$_{2}$. We use angle-resolved photoemission spectroscopy to investigate changes in the Fermi surface of this material under surface doping with potassium. At high doping, we observe modifications which imply the disappearance of the $(3\times 3)$ charge density wave and formation of a different correlated state. Using a tight-binding-based approach as well as an effective model, we explain our observations as a consequence of coupling between the single-particle Lifshitz transition during which the Fermi level passes a van Hove singularity and the charge density order. In this scenario, the high electronic density of states associated with the van Hove singularity induces a change in the periodicity of the charge density wave from the known $(3\times 3)$ to a new $(2\times 2)$ superlattice. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.01780v2-abstract-full').style.display = 'none'; document.getElementById('2211.01780v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">main text: 12 pages, 6 figures; supplement: 25 pages, 15 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review Research 6, 013088 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.07058">arXiv:2210.07058</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2210.07058">pdf</a>, <a href="https://arxiv.org/format/2210.07058">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Nonlocal drag by topological surface magnons in a pyrochlore ferromagnet </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=De%2C+A">Avirup De</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Prabhakaran%2C+D">Dharmalingam Prabhakaran</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nair%2C+S">Sunil Nair</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.07058v1-abstract-short" style="display: inline;"> The nontrivial topology of quasiparticle wavefunctions can manifest themselves in the form of observable surface states. This is now well established in electronic systems, with Dirac and Weyl semimetals bringing to fore the exotic nature of these topologically protected entities. Magnons - which refer to collective excitations of localized spins - offer another sector where many of these concepts&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.07058v1-abstract-full').style.display = 'inline'; document.getElementById('2210.07058v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.07058v1-abstract-full" style="display: none;"> The nontrivial topology of quasiparticle wavefunctions can manifest themselves in the form of observable surface states. This is now well established in electronic systems, with Dirac and Weyl semimetals bringing to fore the exotic nature of these topologically protected entities. Magnons - which refer to collective excitations of localized spins - offer another sector where many of these concepts could be realized. Here, we report magneto-thermal measurements on a pyrochlore ferromagnet which is theoretically predicted to host such topological magnons. It is demonstrated that the thermoelectric potential across a metal layer deposited on single crystalline specimens of Y$_2$V$_2$O$_7$ can be used to measure the magnon Hall effect. Moreover, a direct manifestation of topologically protected magnon surface states is observed - via the interfacial drag which these surface spin currents impose on the conduction electrons of the adjacent metallic layer. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.07058v1-abstract-full').style.display = 'none'; document.getElementById('2210.07058v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.05641">arXiv:2210.05641</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2210.05641">pdf</a>, <a href="https://arxiv.org/format/2210.05641">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41535-024-00624-8">10.1038/s41535-024-00624-8 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Magnetotransport of single crystal Sm$_2$Ir$_2$O$_7$ across the pressure-induced quantum-critical phase boundary </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Coak%2C+M+J">M. J. Coak</a>, <a href="/search/cond-mat?searchtype=author&amp;query=G%C3%B6tze%2C+K">K. G枚tze</a>, <a href="/search/cond-mat?searchtype=author&amp;query=De+La+Fuente%2C+T+N">T. Northam De La Fuente</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Castelnovo%2C+C">C. Castelnovo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tidey%2C+J+P">J. P. Tidey</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Singleton%2C+J">J. Singleton</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Boothroyd%2C+A+T">A. T. Boothroyd</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Prabhakaran%2C+D">D. Prabhakaran</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Goddard%2C+P+A">P. A. Goddard</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.05641v4-abstract-short" style="display: inline;"> Rare-earth pyrochlore iridates host two interlocking magnetic sublattices of corner-sharing tetrahedra and can harbour a unique combination of frustrated moments, exotic excitations and highly correlated electrons. They are also the first systems predicted to display both topological Weyl semimetal and axion insulator phases. We have measured the transport and magnetotransport properties of single&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.05641v4-abstract-full').style.display = 'inline'; document.getElementById('2210.05641v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.05641v4-abstract-full" style="display: none;"> Rare-earth pyrochlore iridates host two interlocking magnetic sublattices of corner-sharing tetrahedra and can harbour a unique combination of frustrated moments, exotic excitations and highly correlated electrons. They are also the first systems predicted to display both topological Weyl semimetal and axion insulator phases. We have measured the transport and magnetotransport properties of single-crystal Sm$_2$Ir$_2$O$_7$ up to and beyond the pressure-induced quantum critical point for all-in-all-out (AIAO) Ir order at $p_{\rm c}$ = 63 kbar previously identified by resonant X-ray scattering and close to which Weyl semimetallic behavior has been previously predicted. Our findings overturn the accepted expectation that the suppression of AIAO order should lead to metallic conduction persisting down to zero temperature. Instead, the resistivity-minimum temperature, which tracks the decrease in the AIAO ordering temperature for pressures up to 30~kbar, begins to increase under further application of pressure, pointing to the presence of a second as-yet unidentified mechanism leading to non-metallic behavior. The magnetotransport does track the suppression of Ir magnetism, however, with a strong hysteresis observed only within the AIAO phase boundary, similar to that found for Ho$_2$Ir$_2$O$_7$ and attributed to plastic deformation of Ir domains. Around $p_{\rm c}$ we find the emergence of a new type of electronic phase, characterized by a negative magnetoresistance with small hysteresis at the lowest temperatures, and hysteresis-free positive magnetoresistance above approximately 5 K. The temperature dependence of our low-temperature transport data are found to be best described by a model consistent with a Weyl semimetal across the entire pressure range. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.05641v4-abstract-full').style.display = 'none'; document.getElementById('2210.05641v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> npj Quantum Materials 9, 1 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2111.04707">arXiv:2111.04707</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2111.04707">pdf</a>, <a href="https://arxiv.org/ps/2111.04707">ps</a>, <a href="https://arxiv.org/format/2111.04707">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.105.104422">10.1103/PhysRevB.105.104422 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A model for coupled $4f-3d$ magnetic spectra: a neutron scattering study of the Yb$-$Fe hybridisation in Yb$_3$Fe$_5$O$_{12}$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Pe%C3%A7anha-Antonio%2C+V">Viviane Pe莽anha-Antonio</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Prabhakaran%2C+D">Dharmalingam Prabhakaran</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Balz%2C+C">Christian Balz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Krajewska%2C+A">Aleksandra Krajewska</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Boothroyd%2C+A+T">Andrew T. Boothroyd</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2111.04707v1-abstract-short" style="display: inline;"> In this work, we explore experimentally and theoretically the spectrum of magnetic excitations of the Fe$^{3+}$ and Yb$^{3+}$ ions in ytterbium iron garnet (Yb$_3$Fe$_5$O$_{12}$). We present a complete description of the crystal-field splitting of the $4f$ states of Yb$^{3+}$, including the effect of the exchange field generated by the magnetically ordered Fe subsystem. We also consider a further&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.04707v1-abstract-full').style.display = 'inline'; document.getElementById('2111.04707v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2111.04707v1-abstract-full" style="display: none;"> In this work, we explore experimentally and theoretically the spectrum of magnetic excitations of the Fe$^{3+}$ and Yb$^{3+}$ ions in ytterbium iron garnet (Yb$_3$Fe$_5$O$_{12}$). We present a complete description of the crystal-field splitting of the $4f$ states of Yb$^{3+}$, including the effect of the exchange field generated by the magnetically ordered Fe subsystem. We also consider a further effect of the Fe-Yb exchange interaction, which is to hybridise the Yb crystal field excitations with the Fe spin-wave modes at positions in the Brillouin zone where the two types of excitations cross. We present detailed measurements of these hybridised excitations, and propose a framework which can be used in the quantitative analysis of the coupled spectra in terms of the anisotropic $4f-3d$ exchange interaction. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.04707v1-abstract-full').style.display = 'none'; document.getElementById('2111.04707v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2106.05715">arXiv:2106.05715</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2106.05715">pdf</a>, <a href="https://arxiv.org/ps/2106.05715">ps</a>, <a href="https://arxiv.org/format/2106.05715">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.103.235136">10.1103/PhysRevB.103.235136 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Dynamical screening in SrVO$_3$: Inelastic x-ray scattering experiments and ab initio calculations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Ruotsalainen%2C+K">Kari Ruotsalainen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nicolaou%2C+A">Alessandro Nicolaou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sahle%2C+C+J">Christoph J. Sahle</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Efimenko%2C+A">Anna Efimenko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ablett%2C+J+M">James M. Ablett</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rueff%2C+J">Jean-Pascal Rueff</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Prabhakaran%2C+D">Dharmalingam Prabhakaran</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gatti%2C+M">Matteo Gatti</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2106.05715v1-abstract-short" style="display: inline;"> We characterize experimentally and theoretically the high-energy dielectric screening properties of the prototypical correlated metal SrVO$_3$. The dynamical structure factor measured by inelastic x-ray scattering spectroscopy as a function of momentum transfer is in very good agreement with first-principles calculations in the adiabatic local density approximation to time-dependent density-functi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.05715v1-abstract-full').style.display = 'inline'; document.getElementById('2106.05715v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2106.05715v1-abstract-full" style="display: none;"> We characterize experimentally and theoretically the high-energy dielectric screening properties of the prototypical correlated metal SrVO$_3$. The dynamical structure factor measured by inelastic x-ray scattering spectroscopy as a function of momentum transfer is in very good agreement with first-principles calculations in the adiabatic local density approximation to time-dependent density-functional theory. Our results reveal the crucial importance of crystal local fields in the charge response function of correlated materials: They lead to depolarization effects for localised excitations and couple spectra from different Brillouin zones. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.05715v1-abstract-full').style.display = 'none'; document.getElementById('2106.05715v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2105.07977">arXiv:2105.07977</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2105.07977">pdf</a>, <a href="https://arxiv.org/format/2105.07977">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> </div> </div> <p class="title is-5 mathjax"> Dynamics and thermodynamics of a topological transition in spin ice materials under strain </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Pili%2C+L">L. Pili</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Steppke%2C+A">A. Steppke</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Barber%2C+M+E">M. E. Barber</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jerzembeck%2C+F">F. Jerzembeck</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hicks%2C+C+W">C. W. Hicks</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guruciaga%2C+P+C">P. C. Guruciaga</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Prabhakaran%2C+D">D. Prabhakaran</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Moessner%2C+R">R. Moessner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mackenzie%2C+A+P">A. P. Mackenzie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Grigera%2C+S+A">S. A. Grigera</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Borzi%2C+R+A">R. A. Borzi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2105.07977v1-abstract-short" style="display: inline;"> We study single crystals of Dy$_2$Ti$_2$O$_7$ and Ho$_2$Ti$_2$O$_7$ under magnetic field and stress applied along their [001] direction. We find that many of the features that the emergent gauge field of spin ice confers to the macroscopic magnetic properties are preserved in spite of the finite temperature. The magnetisation vs. field shows an upward convexity within a broad range of fields, whil&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.07977v1-abstract-full').style.display = 'inline'; document.getElementById('2105.07977v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2105.07977v1-abstract-full" style="display: none;"> We study single crystals of Dy$_2$Ti$_2$O$_7$ and Ho$_2$Ti$_2$O$_7$ under magnetic field and stress applied along their [001] direction. We find that many of the features that the emergent gauge field of spin ice confers to the macroscopic magnetic properties are preserved in spite of the finite temperature. The magnetisation vs. field shows an upward convexity within a broad range of fields, while the static and dynamic susceptibilities present a peculiar peak. Following this feature for both compounds, we determine a single experimental transition curve: that for the Kasteleyn transition in three dimensions, proposed more than a decade ago. Additionally, we observe that compression up to $-0.8\%$ along [001] does not significantly change the thermodynamics. However, the dynamical response of Ho$_2$Ti$_2$O$_7$ is quite sensitive to changes introduced in the ${\rm Ho}^{3+}$ environment. Uniaxial compression can thus open up experimental access to equilibrium properties of spin ice at low temperatures. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.07977v1-abstract-full').style.display = 'none'; document.getElementById('2105.07977v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 May, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2104.01005">arXiv:2104.01005</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2104.01005">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Studies on Novel Yb-based Candidate Triangular Quantum Antiferromagnets: Ba3YbB3O9 and Ba3YbB9O18 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Cho%2C+H">Hwanbeom Cho</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Blundell%2C+S+J">Stephen J. Blundell</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shiroka%2C+T">Toni Shiroka</a>, <a href="/search/cond-mat?searchtype=author&amp;query=MacFarquharson%2C+K">Kylie MacFarquharson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Prabhakaran%2C+D">Dharmalingam Prabhakaran</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Coldea%2C+R">Radu Coldea</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2104.01005v1-abstract-short" style="display: inline;"> Yb-based triangular magnets have recently attracted attention as promising candidates to explore frustrated quantum magnetism. However, some candidates have turned out to have significant amounts of site disorder, which significantly affects the low-temperature magnetic behavior. To overcome this issue, Yb-based frustrated systems without structural disorder are required. In this paper, we report&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.01005v1-abstract-full').style.display = 'inline'; document.getElementById('2104.01005v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2104.01005v1-abstract-full" style="display: none;"> Yb-based triangular magnets have recently attracted attention as promising candidates to explore frustrated quantum magnetism. However, some candidates have turned out to have significant amounts of site disorder, which significantly affects the low-temperature magnetic behavior. To overcome this issue, Yb-based frustrated systems without structural disorder are required. In this paper, we report physical properties of two Yb-based triangular magnets Ba3YbB3O9 and Ba3YbB9O18, without structural disorder. Via magnetic susceptibility, magnetization, and muon spin rotation measurements, we verified that both Ba3YbB3O9 and, particularly studied for the first time, Ba3YbB9O18 do not show long range magnetic order or glass-like spin freezing down to 0.28 K, but show typical paramagnetic behavior. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.01005v1-abstract-full').style.display = 'none'; document.getElementById('2104.01005v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 April, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 6 figures, 2 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2104.00082">arXiv:2104.00082</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2104.00082">pdf</a>, <a href="https://arxiv.org/format/2104.00082">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.126.177601">10.1103/PhysRevLett.126.177601 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Charge Condensation and Lattice Coupling Drives Stripe Formation in Nickelates </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+Y">Y. Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fabbris%2C+G">G. Fabbris</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Miao%2C+H">H. Miao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cao%2C+Y">Y. Cao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Meyers%2C+D">D. Meyers</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mazzone%2C+D+G">D. G. Mazzone</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Assefa%2C+T">T. Assefa</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+X+M">X. M. Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kisslinger%2C+K">K. Kisslinger</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Prabhakaran%2C+D">D. Prabhakaran</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Boothroyd%2C+A+T">A. T. Boothroyd</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tranquada%2C+J+M">J. M. Tranquada</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+W">W. Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Barbour%2C+A+M">A. M. Barbour</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wilkins%2C+S+B">S. B. Wilkins</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mazzoli%2C+C">C. Mazzoli</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Robinson%2C+I+K">I. K. Robinson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dean%2C+M+P+M">M. P. M. Dean</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2104.00082v1-abstract-short" style="display: inline;"> Revealing the predominant driving force behind symmetry breaking in correlated materials is sometimes a formidable task due to the intertwined nature of different degrees of freedom. This is the case for La2-xSrxNiO4+未 in which coupled incommensurate charge and spin stripes form at low temperatures. Here, we use resonant X-ray photon correlation spectroscopy to study the temporal stability and dom&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.00082v1-abstract-full').style.display = 'inline'; document.getElementById('2104.00082v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2104.00082v1-abstract-full" style="display: none;"> Revealing the predominant driving force behind symmetry breaking in correlated materials is sometimes a formidable task due to the intertwined nature of different degrees of freedom. This is the case for La2-xSrxNiO4+未 in which coupled incommensurate charge and spin stripes form at low temperatures. Here, we use resonant X-ray photon correlation spectroscopy to study the temporal stability and domain memory of the charge and spin stripes in La2-xSrxNiO4+未. Although spin stripes are more spatially correlated, charge stripes maintain a better temporal stability against temperature change. More intriguingly, charge order shows robust domain memory with thermal cycling up to 250 K, far above the ordering temperature. These results demonstrate the pinning of charge stripes to the lattice and that charge condensation is the predominant factor in the formation of stripe orders in nickelates. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.00082v1-abstract-full').style.display = 'none'; document.getElementById('2104.00082v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages; accepted in Physical Review Letters</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 126, 177601 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2103.09502">arXiv:2103.09502</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2103.09502">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-021-27819-y">10.1038/s41467-021-27819-y <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Multi-mode excitation drives disorder during the ultrafast melting of a C4-symmetry-broken phase </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Perez-Salinas%2C+D">Daniel Perez-Salinas</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Johnson%2C+A+S">Allan S. Johnson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Prabhakaran%2C+D">Dharmalingam Prabhakaran</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wall%2C+S">Simon Wall</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2103.09502v2-abstract-short" style="display: inline;"> Spontaneous C4-symmetry breaking phases are ubiquitous in layered quantum materials, and often compete with other phases such as superconductivity. Preferential suppression of the symmetry broken phases by light has been used to explain non-equilibrium light induced superconductivity, metallicity, and the creation of metastable states. Key to understanding how these phases emerge is understanding&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.09502v2-abstract-full').style.display = 'inline'; document.getElementById('2103.09502v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2103.09502v2-abstract-full" style="display: none;"> Spontaneous C4-symmetry breaking phases are ubiquitous in layered quantum materials, and often compete with other phases such as superconductivity. Preferential suppression of the symmetry broken phases by light has been used to explain non-equilibrium light induced superconductivity, metallicity, and the creation of metastable states. Key to understanding how these phases emerge is understanding how C4 symmetry is restored. A leading approach is based on time-dependent Ginzburg-Landau theory, which explains the coherence response seen in many systems. However, we show that, for the case of the single layered manganite La0.5Sr1.5MnO4, the theory fails. Instead, we find an ultrafast inhomogeneous disordering transition in which the mean-field order parameter no longer reflects the atomic-scale state of the system. Our results suggest that disorder may be common to light-induced phase transitions, and methods beyond the mean-field are necessary for understanding and manipulating photoinduced phases. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.09502v2-abstract-full').style.display = 'none'; document.getElementById('2103.09502v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Communications 13, 238 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2102.11969">arXiv:2102.11969</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2102.11969">pdf</a>, <a href="https://arxiv.org/format/2102.11969">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.104.014418">10.1103/PhysRevB.104.014418 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Experimental measurement of the isolated magnetic susceptibility </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Billington%2C+D">D. Billington</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Paulsen%2C+C">C. Paulsen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lhotel%2C+E">E. Lhotel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cannon%2C+J">J. Cannon</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Riordan%2C+E">E. Riordan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Salman%2C+M">M. Salman</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Klemencic%2C+G">G. Klemencic</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cafolla-Ward%2C+C">C. Cafolla-Ward</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Prabhakaran%2C+D">D. Prabhakaran</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Giblin%2C+S+R">S. R. Giblin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bramwell%2C+S+T">S. T. Bramwell</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2102.11969v1-abstract-short" style="display: inline;"> The isolated susceptibility $蠂_{\rm I}$ may be defined as a (non-thermodynamic) average over the canonical ensemble, but while it has often been discussed in the literature, it has not been clearly measured. Here, we demonstrate an unambiguous measurement of $蠂_{\rm I}$ at avoided nuclear-electronic level crossings in a dilute spin ice system, containing well-separated holmium ions. We show that&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.11969v1-abstract-full').style.display = 'inline'; document.getElementById('2102.11969v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2102.11969v1-abstract-full" style="display: none;"> The isolated susceptibility $蠂_{\rm I}$ may be defined as a (non-thermodynamic) average over the canonical ensemble, but while it has often been discussed in the literature, it has not been clearly measured. Here, we demonstrate an unambiguous measurement of $蠂_{\rm I}$ at avoided nuclear-electronic level crossings in a dilute spin ice system, containing well-separated holmium ions. We show that $蠂_{\rm I}$ quantifies the superposition of quasi-classical spin states at these points, and is a direct measure of state concurrence and populations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.11969v1-abstract-full').style.display = 'none'; document.getElementById('2102.11969v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 February, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, &amp; figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 104, 014418 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2102.04483">arXiv:2102.04483</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2102.04483">pdf</a>, <a href="https://arxiv.org/format/2102.04483">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-022-27964-y">10.1038/s41467-022-27964-y <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Monopole density and antiferromagnetic domain control in spin-ice iridates </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Pearce%2C+M+J">M. J. Pearce</a>, <a href="/search/cond-mat?searchtype=author&amp;query=G%C3%B6tze%2C+K">K. G枚tze</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Szab%C3%B3%2C+A">A. Szab贸</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sikkenk%2C+T+S">T. S. Sikkenk</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lees%2C+M+R">M. R. Lees</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Boothroyd%2C+A+T">A. T. Boothroyd</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Prabhakaran%2C+D">D. Prabhakaran</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Castelnovo%2C+C">C. Castelnovo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Goddard%2C+P+A">P. A. Goddard</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2102.04483v1-abstract-short" style="display: inline;"> Frustration in magnetic systems is fertile ground for complex behaviour, including unconventional ground states with emergent symmetries, topological properties, and exotic excitations. A canonical example is the emergence of magnetic-charge-carrying quasiparticles in spin-ice compounds. Despite extensive work, a reliable experimental indicator of the density of these magnetic monopoles in spin-ic&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.04483v1-abstract-full').style.display = 'inline'; document.getElementById('2102.04483v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2102.04483v1-abstract-full" style="display: none;"> Frustration in magnetic systems is fertile ground for complex behaviour, including unconventional ground states with emergent symmetries, topological properties, and exotic excitations. A canonical example is the emergence of magnetic-charge-carrying quasiparticles in spin-ice compounds. Despite extensive work, a reliable experimental indicator of the density of these magnetic monopoles in spin-ice systems is yet to be found. Here, using measurements on single crystals of Ho$_{2}$Ir$_{2}$O$_{7}$ in combination with dipolar Monte Carlo simulations, we show that the magnetoresistance is highly sensitive to the density of monopoles. Moreover, we find that for the orientations of magnetic field in which the monopole density is enhanced, a strong coupling emerges between the magnetic charges on the holmium sublattice and the antiferromagnetically ordered iridium ions, leading to an ability to manipulate the antiferromagnetic domains via a uniform external field. Our results pave the way to a quantitative experimental measure of monopole density and provide a powerful illustration of the interplay between the various magnetic and electronic degrees of freedom in the frustrated pyrochlore iridates. This interdependence holds promise for potential functional properties arising from the link between magnetic and electric charges, as well as for the control of antiferromagnetic domain walls, a key goal in the design of next-generation spintronic devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.04483v1-abstract-full').style.display = 'none'; document.getElementById('2102.04483v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 February, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">29 pages, 11 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2007.04199">arXiv:2007.04199</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2007.04199">pdf</a>, <a href="https://arxiv.org/format/2007.04199">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-021-23851-0">10.1038/s41467-021-23851-0 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Order-by-Disorder from Bond-Dependent Exchange and Intensity Signature of Nodal Quasiparticles in a Honeycomb Cobaltate </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Elliot%2C+M">M. Elliot</a>, <a href="/search/cond-mat?searchtype=author&amp;query=McClarty%2C+P+A">P. A. McClarty</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Prabhakaran%2C+D">D. Prabhakaran</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Johnson%2C+R+D">R. D. Johnson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Walker%2C+H+C">H. C. Walker</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Manuel%2C+P">P. Manuel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Coldea%2C+R">R. Coldea</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2007.04199v2-abstract-short" style="display: inline;"> Recent theoretical proposals have argued that cobaltates with edge-sharing octahedral coordination can have significant bond-dependent exchange couplings thus offering a platform in 3$d$ ions for such physics beyond the much-explored realizations in 4$d$ and 5$d$ materials. Here we present high-resolution inelastic neutron scattering data within the magnetically ordered phase of the stacked honeyc&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.04199v2-abstract-full').style.display = 'inline'; document.getElementById('2007.04199v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2007.04199v2-abstract-full" style="display: none;"> Recent theoretical proposals have argued that cobaltates with edge-sharing octahedral coordination can have significant bond-dependent exchange couplings thus offering a platform in 3$d$ ions for such physics beyond the much-explored realizations in 4$d$ and 5$d$ materials. Here we present high-resolution inelastic neutron scattering data within the magnetically ordered phase of the stacked honeycomb magnet CoTiO$_3$ revealing the presence of a finite energy gap and demonstrate that this implies the presence of bond-dependent anisotropic couplings. We also show through an extensive theoretical analysis that the gap further implies the existence of a quantum order-by-disorder mechanism that, in this material, crucially involves virtual crystal field fluctuations. Our data also provide an experimental observation of a universal winding of the scattering intensity in angular scans around linear band-touching points for both magnons and dispersive spin-orbit excitons, which is directly related to the non-trivial topology of the quasiparticle wavefunction in momentum space near nodal points. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.04199v2-abstract-full').style.display = 'none'; document.getElementById('2007.04199v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 July, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">33 pages in total, main text (5 pages) + supplementary information, published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Communications 12, 3936 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2006.15554">arXiv:2006.15554</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2006.15554">pdf</a>, <a href="https://arxiv.org/format/2006.15554">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.102.064421">10.1103/PhysRevB.102.064421 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Avoided quasiparticle decay and enhanced excitation continuum in the spin-1/2 near-Heisenberg triangular antiferromagnet Ba3CoSb2O9 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Macdougal%2C+D">David Macdougal</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Williams%2C+S">Stephanie Williams</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Prabhakaran%2C+D">Dharmalingam Prabhakaran</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bewley%2C+R+I">Robert I. Bewley</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Voneshen%2C+D+J">David J. Voneshen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Coldea%2C+R">Radu Coldea</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2006.15554v1-abstract-short" style="display: inline;"> We explore the magnetic excitations of the spin-1/2 triangular antiferromagnet Ba3CoSb2O9 in its 120 degree ordered phase using single-crystal high-resolution inelastic neutron scattering. Sharp magnons with no decay are observed throughout reciprocal space, with a strongly renormalized dispersion and multiple soft modes compared to linear spin wave theory. We propose an empirical parametrization&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.15554v1-abstract-full').style.display = 'inline'; document.getElementById('2006.15554v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2006.15554v1-abstract-full" style="display: none;"> We explore the magnetic excitations of the spin-1/2 triangular antiferromagnet Ba3CoSb2O9 in its 120 degree ordered phase using single-crystal high-resolution inelastic neutron scattering. Sharp magnons with no decay are observed throughout reciprocal space, with a strongly renormalized dispersion and multiple soft modes compared to linear spin wave theory. We propose an empirical parametrization that can quantitatively capture the complete dispersions in the three-dimensional Brillouin zone and explicitly show that the dispersion renormalizations have the direct consequence that one to two magnon decays are avoided throughout reciprocal space, whereas such decays would be allowed for the unrenormalized dispersions. At higher energies, we observe a very strong continuum of excitations with highly-structured intensity modulations extending up at least 4x the maximum one-magnon energy. The one-magnon intensities decrease much faster upon increasing energy than predicted by linear spin wave theory and the higher-energy continuum contains much more intensity than can be accounted for by a two-magnon cross-section, suggesting a significant transfer of spectral weight from the high-energy magnons into the higher-energy continuum states. We attribute the strong dispersion renormalizations and substantial transfer of spectral weight to continuum states to the effect of quantum fluctuations and interactions beyond the spin wave approximation, and make connections to theoretical approaches that might capture such effects. Finally, through measurements in a strong applied magnetic field, we find evidence for magnetic domains with opposite senses for the spin rotation in the 120 degree ordered ground state, as expected in the absence of Dzyaloshinskii-Moriya interactions, when the sense of spin rotation is selected via spontaneous symmetry breaking. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.15554v1-abstract-full').style.display = 'none'; document.getElementById('2006.15554v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 June, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 13 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 102, 064421 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2006.03396">arXiv:2006.03396</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2006.03396">pdf</a>, <a href="https://arxiv.org/format/2006.03396">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.126.107203">10.1103/PhysRevLett.126.107203 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Classical spin liquid or extended critical range in h-YMnO$_3$? </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Janas%2C+S">Sofie Janas</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lass%2C+J">Jakob Lass</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tutueanu%2C+A">Ana-Elena Tutueanu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Haubro%2C+M+L">Morten L. Haubro</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Niedermayer%2C+C">Christof Niedermayer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Stuhr%2C+U">Uwe Stuhr</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+G">Guangyong Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Prabhakaran%2C+D">Dharmalingam Prabhakaran</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Deen%2C+P+P">Pascale P. Deen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Holm-Dahlin%2C+S">Sonja Holm-Dahlin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lefmann%2C+K">Kim Lefmann</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2006.03396v1-abstract-short" style="display: inline;"> Inelastic neutron experiments on the classical triangular-lattice geometrically frustrated antiferromagnet h-YMnO$_3$ reveal diffuse, gapless magnetic excitations present both below and far above the ordering temperature, $T_N$. The correlation length of the excitations increases as the temperature approaches zero, bearing strong resemblance to critical scattering. We model the scattering as criti&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.03396v1-abstract-full').style.display = 'inline'; document.getElementById('2006.03396v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2006.03396v1-abstract-full" style="display: none;"> Inelastic neutron experiments on the classical triangular-lattice geometrically frustrated antiferromagnet h-YMnO$_3$ reveal diffuse, gapless magnetic excitations present both below and far above the ordering temperature, $T_N$. The correlation length of the excitations increases as the temperature approaches zero, bearing strong resemblance to critical scattering. We model the scattering as critical spin-spin correlations in a two-dimensional magnetic ground state, and we speculate that this may provide a general framework to understand features typically attributed to classical spin liquids. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.03396v1-abstract-full').style.display = 'none'; document.getElementById('2006.03396v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 June, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 126, 107203 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2005.08807">arXiv:2005.08807</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2005.08807">pdf</a>, <a href="https://arxiv.org/format/2005.08807">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevResearch.2.032073">10.1103/PhysRevResearch.2.032073 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Fragmented monopole crystal, dimer entropy and Coulomb interactions in Dy$_2$Ir$_2$O$_7$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Cathelin%2C+V">V. Cathelin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lefran%C3%A7ois%2C+E">E. Lefran莽ois</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Robert%2C+J">J. Robert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guruciaga%2C+P+C">P. C. Guruciaga</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Paulsen%2C+C">C. Paulsen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Prabhakaran%2C+1+D">1 D. Prabhakaran</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lejay%2C+P">P. Lejay</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Damay%2C+F">F. Damay</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ollivier%2C+J">J. Ollivier</a>, <a href="/search/cond-mat?searchtype=author&amp;query=F%C3%A5k%2C+B">B. F氓k</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chapon%2C+L+C">L. C. Chapon</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ballou%2C+R">R. Ballou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Simonet%2C+V">V. Simonet</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Holdsworth%2C+P+C+W">P. C. W. Holdsworth</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lhotel%2C+E">E. Lhotel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2005.08807v2-abstract-short" style="display: inline;"> Neutron scattering, specific heat and magnetisation measurements on both powders and single crystals reveal that Dy$_2$Ir$_2$O$_7$ realizes the fragmented monopole crystal state in which antiferromagnetic order and a Coulomb phase spin liquid co-inhabit. The measured residual entropy is that of a hard core dimer liquid, as predicted. Inclusion of Coulomb interactions allows for a quantitative desc&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.08807v2-abstract-full').style.display = 'inline'; document.getElementById('2005.08807v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2005.08807v2-abstract-full" style="display: none;"> Neutron scattering, specific heat and magnetisation measurements on both powders and single crystals reveal that Dy$_2$Ir$_2$O$_7$ realizes the fragmented monopole crystal state in which antiferromagnetic order and a Coulomb phase spin liquid co-inhabit. The measured residual entropy is that of a hard core dimer liquid, as predicted. Inclusion of Coulomb interactions allows for a quantitative description of both the thermodynamic data and the magnetisation dynamics, with the energy scale given by deconfined defects in the emergent ionic crystal. Our data reveal low energy excitations, as well as a large distribution of energy barriers down to low temperatures, while the magnetic response to an applied field suggests that domain wall pinning is important; results that call for further theoretical modelling. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.08807v2-abstract-full').style.display = 'none'; document.getElementById('2005.08807v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 May, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 May, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages + supp. mat. 6 pages</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Research 2, 032073 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2005.04952">arXiv:2005.04952</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2005.04952">pdf</a>, <a href="https://arxiv.org/format/2005.04952">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.102.014408">10.1103/PhysRevB.102.014408 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Resonant X-ray scattering study of diffuse magnetic scattering from the topological semimetals EuCd$_2$As$_2$ and EuCd$_2$Sb$_2$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Soh%2C+J">Jian-Rui Soh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schierle%2C+E">Enrico Schierle</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yan%2C+D">Da-Yu Yan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Su%2C+H">Hao Su</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Prabhakaran%2C+D">Dharmalingam Prabhakaran</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Weschke%2C+E">Eugen Weschke</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+Y">Yan-Feng Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+Y">You-Guo Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Boothroyd%2C+A">Andrew Boothroyd</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2005.04952v1-abstract-short" style="display: inline;"> We have investigated the magnetic correlations in the candidate Weyl semimetals EuCd$_2Pn_2$, ($Pn$=As, Sb) by resonant elastic X-ray scattering (REXS) at the Eu$^{2+}$ $M_5$ edge. The temperature and field dependence of the diffuse scattering of EuCd$_2$As$_2$ provide direct evidence that the Eu moments exhibit slow ferromagnetic correlations well above the N茅el temperature. By contrast, the diff&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.04952v1-abstract-full').style.display = 'inline'; document.getElementById('2005.04952v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2005.04952v1-abstract-full" style="display: none;"> We have investigated the magnetic correlations in the candidate Weyl semimetals EuCd$_2Pn_2$, ($Pn$=As, Sb) by resonant elastic X-ray scattering (REXS) at the Eu$^{2+}$ $M_5$ edge. The temperature and field dependence of the diffuse scattering of EuCd$_2$As$_2$ provide direct evidence that the Eu moments exhibit slow ferromagnetic correlations well above the N茅el temperature. By contrast, the diffuse scattering in the paramagnetic phase of isostructural EuCd$_2$Sb$_2$ is at least an order of magnitude weaker. The FM correlations present in the paramagnetic phase of EuCd$_2$As$_2$ could create short-lived Weyl nodes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.04952v1-abstract-full').style.display = 'none'; document.getElementById('2005.04952v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 May, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 102, 014408 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2001.02434">arXiv:2001.02434</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2001.02434">pdf</a>, <a href="https://arxiv.org/format/2001.02434">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevResearch.2.012055">10.1103/PhysRevResearch.2.012055 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Quantum oscillations probe the Fermi surface topology of the nodal-line semimetal CaAgAs </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Kwan%2C+Y+H">Y. H. Kwan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Reiss%2C+P">P. Reiss</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Han%2C+Y">Y. Han</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bristow%2C+M">M. Bristow</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Prabhakaran%2C+D">D. Prabhakaran</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Graf%2C+D">D. Graf</a>, <a href="/search/cond-mat?searchtype=author&amp;query=McCollam%2C+A">A. McCollam</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Parameswaran%2C+S+A">S. A. Parameswaran</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Coldea%2C+A+I">A. I. Coldea</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2001.02434v1-abstract-short" style="display: inline;"> Nodal semimetals are a unique platform to explore topological signatures of the unusual band structure that can manifest by accumulating a nontrivial phase in quantum oscillations. Here we report a study of the de Haasvan Alphen oscillations of the candidate topological nodal line semimetal CaAgAs using torque measurements in magnetic fields up to 45 T. Our results are compared with calculations f&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2001.02434v1-abstract-full').style.display = 'inline'; document.getElementById('2001.02434v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2001.02434v1-abstract-full" style="display: none;"> Nodal semimetals are a unique platform to explore topological signatures of the unusual band structure that can manifest by accumulating a nontrivial phase in quantum oscillations. Here we report a study of the de Haasvan Alphen oscillations of the candidate topological nodal line semimetal CaAgAs using torque measurements in magnetic fields up to 45 T. Our results are compared with calculations for a toroidal Fermi surface originating from the nodal ring. We find evidence of a nontrivial Berry phase shift only in one of the oscillatory frequencies. We interpret this as a Berry phase arising from the semi-classical electronic Landau orbit which links with the nodal ring when the magnetic field lies in the mirror (ab) plane. Furthermore, additional Berry phase accumulates while rotating the magnetic field for the second orbit in the same orientation which does not link with the nodal ring. These effects are expected in CaAgAs due to the lack of inversion symmetry. Our study experimentally demonstrates that CaAgAs is an ideal platform for exploring the physics of nodal line semimetals and our approach can be extended to other materials in which trivial and nontrivial oscillations are present. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2001.02434v1-abstract-full').style.display = 'none'; document.getElementById('2001.02434v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 January, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">accepted Physical Review Research; 12 pages, 10 figures including supplemental materials</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Research 2, 012055 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2001.00540">arXiv:2001.00540</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2001.00540">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41567-020-0936-3">10.1038/s41567-020-0936-3 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Polarizing an antiferromagnet by optical engineering of the crystal field </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Disa%2C+A+S">Ankit S. Disa</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fechner%2C+M">Michael Fechner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nova%2C+T+F">Tobia F. Nova</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+B">Biaolong Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=F%C3%B6rst%2C+M">Michael F枚rst</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Prabhakaran%2C+D">Dharmalingam Prabhakaran</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Radaelli%2C+P+G">Paolo G. Radaelli</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cavalleri%2C+A">Andrea Cavalleri</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2001.00540v1-abstract-short" style="display: inline;"> Strain engineering is widely used to manipulate the electronic and magnetic properties of complex materials. An attractive route to control magnetism with strain is provided by the piezomagnetic effect, whereby the staggered spin structure of an antiferromagnet is decompensated by breaking the crystal field symmetry, which induces a ferrimagnetic polarization. Piezomagnetism is especially attracti&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2001.00540v1-abstract-full').style.display = 'inline'; document.getElementById('2001.00540v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2001.00540v1-abstract-full" style="display: none;"> Strain engineering is widely used to manipulate the electronic and magnetic properties of complex materials. An attractive route to control magnetism with strain is provided by the piezomagnetic effect, whereby the staggered spin structure of an antiferromagnet is decompensated by breaking the crystal field symmetry, which induces a ferrimagnetic polarization. Piezomagnetism is especially attractive because unlike magnetostriction it couples strain and magnetization at linear order, and allows for bi-directional control suitable for memory and spintronics applications. However, its use in functional devices has so far been hindered by the slow speed and large uniaxial strains required. Here, we show that the essential features of piezomagnetism can be reproduced with optical phonons alone, which can be driven by light to large amplitudes without changing the volume and hence beyond the elastic limits of the material. We exploit nonlinear, three-phonon mixing to induce the desired crystal field distortions in the antiferromagnet CoF$_2$. Through this effect, we generate a ferrimagnetic moment of 0.2 $渭_B$ per unit cell, nearly three orders of magnitude larger than achieved with mechanical strain. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2001.00540v1-abstract-full').style.display = 'none'; document.getElementById('2001.00540v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 January, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">27 pages, 12 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Physics 16, 937-941(2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1912.11640">arXiv:1912.11640</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1912.11640">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.101.220404">10.1103/PhysRevB.101.220404 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Approaching the quantum critical point in a highly-correlated all-in-all-out antiferromagnet </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Yishu Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rosenbaum%2C+T+F">T. F. Rosenbaum</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Prabhakaran%2C+D">D. Prabhakaran</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Boothroyd%2C+A+T">A. T. Boothroyd</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Feng%2C+Y">Yejun Feng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1912.11640v1-abstract-short" style="display: inline;"> Continuous quantum phase transitions involving all-in-all-out (AIAO) antiferromagnetic order in strongly spin-orbit-coupled 5d compounds could give rise to various exotic electronic phases and strongly-coupled quantum critical phenomena. Here we experimentally trace the AIAO spin order in Sm2Ir2O7 using direct resonant x-ray magnetic diffraction techniques under high pressure. The magnetic order i&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1912.11640v1-abstract-full').style.display = 'inline'; document.getElementById('1912.11640v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1912.11640v1-abstract-full" style="display: none;"> Continuous quantum phase transitions involving all-in-all-out (AIAO) antiferromagnetic order in strongly spin-orbit-coupled 5d compounds could give rise to various exotic electronic phases and strongly-coupled quantum critical phenomena. Here we experimentally trace the AIAO spin order in Sm2Ir2O7 using direct resonant x-ray magnetic diffraction techniques under high pressure. The magnetic order is suppressed at a critical pressure Pc=6.30 GPa, while the lattice symmetry remains in the cubic Fd-3m space group across the quantum critical point. Comparing pressure tuning and the chemical series R2Ir2O7 reveals that the suppression of the AIAO order and the approach to the spin-disordered state is characterized by contrasting evolutions of both the pyrochlore lattice constant a and the trigonal distortion x. The former affects the 5d bandwidth, the latter the Ising anisotropy, and as such we posit that the opposite effects of pressure and chemical tuning lead to spin fluctuations with different Ising and Heisenberg character in the quantum critical region. Finally, the observed low-pressure scale of the AIAO quantum phase transition in Sm2Ir2O7 identifies a circumscribed region of P-T space for investigating the putative magnetic Weyl-semimetal state. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1912.11640v1-abstract-full').style.display = 'none'; document.getElementById('1912.11640v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 December, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 101, 220404 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1910.05551">arXiv:1910.05551</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1910.05551">pdf</a>, <a href="https://arxiv.org/format/1910.05551">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1361-648X/ab2217">10.1088/1361-648X/ab2217 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Selective probing of magnetic order on Tb and Ir sites in stuffed Tb$_{2+x}$Ir$_{2-x}$O$_{7-y}$ using resonant X-ray scattering </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Donnerer%2C+C">C. Donnerer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rahn%2C+M+C">M. C. Rahn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schierle%2C+E">E. Schierle</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Perry%2C+R+S">R. S. Perry</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Veiga%2C+L+S+I">L. S. I. Veiga</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nisbet%2C+G">G. Nisbet</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Collins%2C+S+P">S. P. Collins</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Prabhakaran%2C+D">D. Prabhakaran</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Boothroyd%2C+A+T">A. T. Boothroyd</a>, <a href="/search/cond-mat?searchtype=author&amp;query=McMorrow%2C+D+F">D. F. McMorrow</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1910.05551v1-abstract-short" style="display: inline;"> We study the magnetic structure of the &#34;stuffed&#34; (Tb-rich) pyrochlore iridate Tb$_{2+x}$Ir$_{2-x}$O$_{7-y}$, using resonant elastic x-ray scattering (REXS). In order to disentangle contributions from Tb and Ir magnetic sublattices, experiments were performed at the Ir $L_3$ and Tb $M_5$ edges, which provide selective sensitivity to Ir $5d$ and Tb $4f$ magnetic moments, respectively. At the Ir&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1910.05551v1-abstract-full').style.display = 'inline'; document.getElementById('1910.05551v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1910.05551v1-abstract-full" style="display: none;"> We study the magnetic structure of the &#34;stuffed&#34; (Tb-rich) pyrochlore iridate Tb$_{2+x}$Ir$_{2-x}$O$_{7-y}$, using resonant elastic x-ray scattering (REXS). In order to disentangle contributions from Tb and Ir magnetic sublattices, experiments were performed at the Ir $L_3$ and Tb $M_5$ edges, which provide selective sensitivity to Ir $5d$ and Tb $4f$ magnetic moments, respectively. At the Ir $L_3$ edge, we found the onset of long-range ${\bf k}={\bf 0}$ magnetic order below $T_{N}^\text{Ir}\sim$ 71 K, consistent with the expected signal of all-in all-out (AIAO) magnetic order. Using a single-ion model to calculate REXS cross-sections, we estimate an ordered magnetic moment of $渭_{5d}^{\text{Ir}} \approx 0.34(3)\,渭_B$ at 5 K. At the Tb $M_5$ edge, long-range ${\bf k}={\bf 0}$ magnetic order appeared below $\sim40$ K, also consistent with an AIAO magnetic structure on the Tb site. Additional insight into the magnetism of the Tb sublattice is gleaned from measurements at the $M_5$ edge in applied magnetic fields up to 6 T, which is found to completely suppress the Tb AIAO magnetic order. In zero applied field, the observed gradual onset of the Tb sublattice magnetisation with temperature suggests that it is induced by the magnetic order on the Ir site. The persistence of AIAO magnetic order, despite the greatly reduced ordering temperature and moment size compared to stoichiometric Tb$_{2}$Ir$_{2}$O$_{7}$, for which $T_{N}^{\text{Ir}} =130$ K and $渭_{5d}^{\text{Ir}}=0.56\,渭_B$, indicates that stuffing could be a viable means of tuning the strength of electronic correlations, thereby potentially offering a new strategy to achieve topologically non-trivial band crossings in pyrochlore iridates. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1910.05551v1-abstract-full').style.display = 'none'; document.getElementById('1910.05551v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 October, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. Phys.: Condens. Matter 31 (2019) 344001 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1909.07819">arXiv:1909.07819</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1909.07819">pdf</a>, <a href="https://arxiv.org/format/1909.07819">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.101.104404">10.1103/PhysRevB.101.104404 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Strong quantum fluctuations due to competition between magnetic phases in a pyrochlore iridate </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Jacobsen%2C+H">Henrik Jacobsen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dashwood%2C+C+D">Cameron D. Dashwood</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lhotel%2C+E">Elsa Lhotel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Khalyavin%2C+D">Dmitry Khalyavin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Manuel%2C+P">Pascal Manuel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Stewart%2C+R">Ross Stewart</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Prabhakaran%2C+D">Dharmalingam Prabhakaran</a>, <a href="/search/cond-mat?searchtype=author&amp;query=McMorrow%2C+D+F">Desmond F. McMorrow</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Boothroyd%2C+A+T">Andrew. T. Boothroyd</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1909.07819v3-abstract-short" style="display: inline;"> We report neutron diffraction measurements of the magnetic structures in two pyrochlore iridates, Yb2Ir2O7 and Lu2Ir2O7. Both samples exhibit the all-in-all-out magnetic structure on the Ir4+ sites below TN~ 150,K, with a low temperature moment of around 0.45 muB/Ir. Below 2\,K, the Yb moments in Yb2Ir2O7 begin to order ferromagnetically. However, even at 40 mK the ordered moment is only 0.57(3)mu&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1909.07819v3-abstract-full').style.display = 'inline'; document.getElementById('1909.07819v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1909.07819v3-abstract-full" style="display: none;"> We report neutron diffraction measurements of the magnetic structures in two pyrochlore iridates, Yb2Ir2O7 and Lu2Ir2O7. Both samples exhibit the all-in-all-out magnetic structure on the Ir4+ sites below TN~ 150,K, with a low temperature moment of around 0.45 muB/Ir. Below 2\,K, the Yb moments in Yb2Ir2O7 begin to order ferromagnetically. However, even at 40 mK the ordered moment is only 0.57(3)muB/Yb, well below the saturated moment of the ground state doublet of Yb3+ (1.9 muB/Yb), deduced from magnetization measurements and from a refined model of the crystal field environment, and also significantly smaller than the ordered moment of Yb in Yb2Ti2O7 (0.9 muB/Yb). A mean-field analysis shows that the reduced moment on Yb is a consequence of enhanced phase competition caused by coupling to the all-in-all-out magnetic order on the Ir sublattice. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1909.07819v3-abstract-full').style.display = 'none'; document.getElementById('1909.07819v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 February, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 September, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 10 figures, resubmitted to PRB</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 101, 104404 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1909.03146">arXiv:1909.03146</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1909.03146">pdf</a>, <a href="https://arxiv.org/format/1909.03146">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevResearch.4.013111">10.1103/PhysRevResearch.4.013111 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Inhomogeneous spin excitations in weakly coupled spin-1/2 chains </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+L">L. Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Campillo%2C+E">E. Campillo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zaharko%2C+O">O. Zaharko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Steffens%2C+P">P. Steffens</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Boehm%2C+M">M. Boehm</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Beauvois%2C+K">K. Beauvois</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ouladdiaf%2C+B">B. Ouladdiaf</a>, <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+Z">Z. He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Prabhakaran%2C+D">D. Prabhakaran</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Boothroyd%2C+A+T">A. T. Boothroyd</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Blackburn%2C+E">E. Blackburn</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1909.03146v2-abstract-short" style="display: inline;"> We present a systematic inelastic neutron scattering and neutron diffraction study of the magnetic structure of the quasi-1D spin-1/2 magnet SrCo2V2O8, where the interchain coupling in the Neel-type antiferromagnetic ground state breaks the static spin lattice into two independent domains. At zero magnetic field, we observe two new spin excitations with small spectral weights inside the gapped reg&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1909.03146v2-abstract-full').style.display = 'inline'; document.getElementById('1909.03146v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1909.03146v2-abstract-full" style="display: none;"> We present a systematic inelastic neutron scattering and neutron diffraction study of the magnetic structure of the quasi-1D spin-1/2 magnet SrCo2V2O8, where the interchain coupling in the Neel-type antiferromagnetic ground state breaks the static spin lattice into two independent domains. At zero magnetic field, we observe two new spin excitations with small spectral weights inside the gapped region defined by the spinon bound states. In an external magnetic field along the chain axis, the Neel order is partially destabilized above 2 T and completely suppressed at 3.9 T, above which a quantum disordered Tomonaga-Luttinger liquid (TLL) prevails. We propose that the two new modes at zero field are spinon excitations inside the domain walls. Since they have a smaller gap than those excited in the Neel domains, the underlying spin chains enter the TLL state via a local quantum phase transition at 2 T, making a stable Neel / TLL coexistence until the excitation gap closes in the Neel state at 3.9 T. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1909.03146v2-abstract-full').style.display = 'none'; document.getElementById('1909.03146v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 September, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 9 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review Research 4 (2022) 013111 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1908.01155">arXiv:1908.01155</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1908.01155">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-019-11491-4">10.1038/s41467-019-11491-4 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Topological Lifshitz Transitions and Fermi Arc Manipulation in Weyl Semimetal NbAs </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+H+F">H. F. Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+L+X">L. X. Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Z+K">Z. K. Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+Y">Y. Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+C">C. Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Peng%2C+H">H. Peng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schmidt%2C+M">M. Schmidt</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Prabhakaran%2C+D">D. Prabhakaran</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bernevig%2C+B+A">B. A. Bernevig</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Felser%2C+C">C. Felser</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yan%2C+B+H">B. H. Yan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Y+L">Y. L. Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1908.01155v1-abstract-short" style="display: inline;"> Surface Fermi arcs (SFAs), the unique open Fermi-surfaces (FSs) discovered recently in topological Weyl semimetals (TWSs), are unlike closed FSs in conventional materials and can give rise to many exotic phenomena, such as anomalous SFA-mediated quantum oscillations, chiral magnetic effects, three-dimensional quantum Hall effect, non-local voltage generation and anomalous electromagnetic wave tran&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1908.01155v1-abstract-full').style.display = 'inline'; document.getElementById('1908.01155v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1908.01155v1-abstract-full" style="display: none;"> Surface Fermi arcs (SFAs), the unique open Fermi-surfaces (FSs) discovered recently in topological Weyl semimetals (TWSs), are unlike closed FSs in conventional materials and can give rise to many exotic phenomena, such as anomalous SFA-mediated quantum oscillations, chiral magnetic effects, three-dimensional quantum Hall effect, non-local voltage generation and anomalous electromagnetic wave transmission. Here, by using in-situ surface decoration, we demonstrate successful manipulation of the shape, size and even the connections of SFAs in a model TWS, NbAs, and observe their evolution that leads to an unusual topological Lifshitz transition not caused by the change of the carrier concentration. The phase transition teleports the SFAs between different parts of the surface Brillouin zone. Despite the dramatic surface evolution, the existence of SFAs is robust and each SFA remains tied to a pair of Weyl points of opposite chirality, as dictated by the bulk topology. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1908.01155v1-abstract-full').style.display = 'none'; document.getElementById('1908.01155v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 August, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Communications 10, 3478 (2019). Link: https://www.nature.com/articles/s41467-019-11491-4 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1908.00459">arXiv:1908.00459</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1908.00459">pdf</a>, <a href="https://arxiv.org/format/1908.00459">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.100.075143">10.1103/PhysRevB.100.075143 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Spin-Orbit Excitons in CoO </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Sarte%2C+P+M">P. M. Sarte</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Songvilay%2C+M">M. Songvilay</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pachoud%2C+E">E. Pachoud</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ewings%2C+R+A">R. A. Ewings</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Frost%2C+C+D">C. D. Frost</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Prabhakaran%2C+D">D. Prabhakaran</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hong%2C+K+H">K. H. Hong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Browne%2C+A+J">A. J. Browne</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yamani%2C+Z">Z. Yamani</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Attfield%2C+J+P">J. P. Attfield</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rodriguez%2C+E+E">E. E. Rodriguez</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wilson%2C+S+D">S. D. Wilson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Stock%2C+C">C. Stock</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1908.00459v2-abstract-short" style="display: inline;"> CoO has an odd number of electrons in its unit cell, and therefore is expected to be metallic. Yet, CoO is strongly insulating owing to significant electronic correlations, thus classifying it as a Mott insulator. We investigate the magnetic fluctuations in CoO using neutron spectroscopy. The strong and spatially far-reaching exchange constants reported in [Sarte et al. Phys. Rev. B 98 024415 (201&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1908.00459v2-abstract-full').style.display = 'inline'; document.getElementById('1908.00459v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1908.00459v2-abstract-full" style="display: none;"> CoO has an odd number of electrons in its unit cell, and therefore is expected to be metallic. Yet, CoO is strongly insulating owing to significant electronic correlations, thus classifying it as a Mott insulator. We investigate the magnetic fluctuations in CoO using neutron spectroscopy. The strong and spatially far-reaching exchange constants reported in [Sarte et al. Phys. Rev. B 98 024415 (2018)], combined with the single-ion spin-orbit coupling of similar magnitude [Cowley et al. Phys. Rev. B 88, 205117 (2013)] results in significant mixing between $j_{eff}$ spin-orbit levels in the low temperature magnetically ordered phase. The high degree of entanglement, combined with the structural domains originating from the Jahn-Teller structural distortion at $\sim$ 300 K, make the magnetic excitation spectrum highly structured in both energy and momentum. We extend previous theoretical work on PrTl$_{3}$ [Buyers et al. Phys. Rev. B 11, 266 (1975)] to construct a mean-field and multi-level spin exciton model employing the aforementioned spin exchange and spin-orbit coupling parameters for coupled Co$^{2+}$ ions on a rocksalt lattice. This parameterization, based on a tetragonally distorted type-II antiferromagnetic unit cell, captures both the sharp low energy excitations at the magnetic zone center, and the energy broadened peaks at the zone boundary. However, the model fails to describe the momentum dependence of the excitations at high energy transfers, where the neutron response decays faster with momentum than the Co$^{2+}$ form factor. We discuss such a failure in terms of a possible breakdown of localized spin-orbit excitons at high energy transfers. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1908.00459v2-abstract-full').style.display = 'none'; document.getElementById('1908.00459v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 August, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 August, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">(main text - 21 pages, 12 figures; supplementary information - 15 pages, 3 figures, to be published in Phys. Rev. B)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 100, 075143 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1907.05913">arXiv:1907.05913</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1907.05913">pdf</a>, <a href="https://arxiv.org/format/1907.05913">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.100.174406">10.1103/PhysRevB.100.174406 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Magnetic and electronic structure of Dirac semimetal candidate EuMnSb$_2$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Soh%2C+J+-">J. -R. Soh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Manuel%2C+P">P. Manuel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schr%C3%B6ter%2C+N+M+B">N. M. B. Schr枚ter</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yi%2C+C+J">C. J. Yi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Prabhakaran%2C+D">D. Prabhakaran</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Orlandi%2C+F">F. Orlandi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+Y+G">Y. G. Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Boothroyd%2C+A+T">A. T. Boothroyd</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1907.05913v2-abstract-short" style="display: inline;"> We report an experimental study of the magnetic order and electronic structure and transport of the layered pnictide EuMnSb$_2$, performed using neutron diffraction, angle-resolved photoemission spectroscopy (ARPES), and magnetotransport measurements. We find that the Eu and Mn sublattices display antiferromagnetic (AFM) order below $T_\mathrm{N}^\mathrm{Eu} = 21(1)$ K and&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.05913v2-abstract-full').style.display = 'inline'; document.getElementById('1907.05913v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1907.05913v2-abstract-full" style="display: none;"> We report an experimental study of the magnetic order and electronic structure and transport of the layered pnictide EuMnSb$_2$, performed using neutron diffraction, angle-resolved photoemission spectroscopy (ARPES), and magnetotransport measurements. We find that the Eu and Mn sublattices display antiferromagnetic (AFM) order below $T_\mathrm{N}^\mathrm{Eu} = 21(1)$ K and $T_\mathrm{N}^\mathrm{Mn} = 350(2)$ K respectively. The former can be described by an A-type AFM structure with the Eu spins aligned along the $c$ axis (an in-plane direction), whereas the latter has a C-type AFM structure with Mn moments along the $a$--axis (perpendicular to the layers). The ARPES spectra reveal Dirac-like linearly dispersing bands near the Fermi energy. Furthermore, our magnetotransport measurements show strongly anisotropic magnetoresistance, and indicate that the Eu sublattice is intimately coupled to conduction electron states near the Dirac point. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.05913v2-abstract-full').style.display = 'none'; document.getElementById('1907.05913v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 July, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 July, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 100, 174406 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1906.06219">arXiv:1906.06219</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1906.06219">pdf</a>, <a href="https://arxiv.org/format/1906.06219">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.100.094401">10.1103/PhysRevB.100.094401 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> FeTi$_2$O$_5$: a spin Jahn-Teller transition enhanced by cation substitution </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Lang%2C+F">Franz Lang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jowitt%2C+L">Lydia Jowitt</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Prabhakaran%2C+D">Dharmalingam Prabhakaran</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Johnson%2C+R+D">Roger D. Johnson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Blundell%2C+S+J">Stephen J. Blundell</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1906.06219v2-abstract-short" style="display: inline;"> We have used muon-spin rotation, heat capacity and x-ray diffraction measurements in combination with density functional theory and dipole field calculations to investigate the crystal and magnetic structure of FeTi$_2$O$_5$. We observe a long range ordered state below $T_{\rm N}$=41.8(5) K with indications of significant correlations existing above this temperature. We determine candidate muon st&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1906.06219v2-abstract-full').style.display = 'inline'; document.getElementById('1906.06219v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1906.06219v2-abstract-full" style="display: none;"> We have used muon-spin rotation, heat capacity and x-ray diffraction measurements in combination with density functional theory and dipole field calculations to investigate the crystal and magnetic structure of FeTi$_2$O$_5$. We observe a long range ordered state below $T_{\rm N}$=41.8(5) K with indications of significant correlations existing above this temperature. We determine candidate muon stopping sites in this compound, and find that our data are consistent with the spin Jahn-Teller driven antiferromagnetic ground state with $\boldsymbol{k}$=(1/2,1/2,0) reported for CoTi$_2$O$_5$ ($T_{\rm N}$=26 K). By comparing our data with calculated dipolar fields we can restrict the possible moment size and directions of the Fe$^{2+}$ ions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1906.06219v2-abstract-full').style.display = 'none'; document.getElementById('1906.06219v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 August, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 June, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 100, 094401 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1903.11122">arXiv:1903.11122</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1903.11122">pdf</a>, <a href="https://arxiv.org/format/1903.11122">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-019-09323-6">10.1038/s41467-019-09323-6 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Nuclear spin assisted quantum tunnelling of magnetic monopoles in spin ice </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Paulsen%2C+C">C. Paulsen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Giblin%2C+S+R">S. R. Giblin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lhotel%2C+E">E. Lhotel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Prabhakaran%2C+D">D. Prabhakaran</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Matsuhira%2C+K">K. Matsuhira</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Balakrishnan%2C+G">G. Balakrishnan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bramwell%2C+S+T">S. T. Bramwell</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1903.11122v1-abstract-short" style="display: inline;"> Extensive work on single molecule magnets has identified a fundamental mode of relaxation arising from the nuclear-spin assisted quantum tunnelling of nearly independent and quasi-classical magnetic dipoles. Here we show that nuclear-spin assisted quantum tunnelling can also control the dynamics of purely emergent excitations: magnetic monopoles in spin ice. Our low temperature experiments were co&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1903.11122v1-abstract-full').style.display = 'inline'; document.getElementById('1903.11122v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1903.11122v1-abstract-full" style="display: none;"> Extensive work on single molecule magnets has identified a fundamental mode of relaxation arising from the nuclear-spin assisted quantum tunnelling of nearly independent and quasi-classical magnetic dipoles. Here we show that nuclear-spin assisted quantum tunnelling can also control the dynamics of purely emergent excitations: magnetic monopoles in spin ice. Our low temperature experiments were conducted on canonical spin ice materials with a broad range of nuclear spin values. By measuring the magnetic relaxation, or monopole current, we demonstrate strong evidence that dynamical coupling with the hyperfine fields bring the electronic spins associated with magnetic monopoles to resonance, allowing the monopoles to hop and transport magnetic charge. Our result shows how the coupling of electronic spins with nuclear spins may be used to control the monopole current. It broadens the relevance of the assisted quantum tunnelling mechanism from single molecular spins to emergent excitations in a strongly correlated system. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1903.11122v1-abstract-full').style.display = 'none'; document.getElementById('1903.11122v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 March, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 4 figures + supp. information. Accepted in Nature Communications</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1902.07179">arXiv:1902.07179</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1902.07179">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-019-08598-z">10.1038/s41467-019-08598-z <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Role of defects in determining the magnetic ground state of ytterbium titanate </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Bowman%2C+D+F">D. F. Bowman</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cemal%2C+E">E. Cemal</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lehner%2C+T">T. Lehner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wildes%2C+A+R">A. R. Wildes</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mangin-Thro%2C+L">L. Mangin-Thro</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nilsen%2C+G+J">G. J. Nilsen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gutmann%2C+M+J">M. J. Gutmann</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Voneshen%2C+D+J">D. J. Voneshen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Prabhakaran%2C+D">D. Prabhakaran</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Boothroyd%2C+A+T">A. T. Boothroyd</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Porter%2C+D+G">D. G. Porter</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Castelnovo%2C+C">C. Castelnovo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Refson%2C+K">K. Refson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Goff%2C+J+P">J. P. Goff</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1902.07179v1-abstract-short" style="display: inline;"> Pyrochlore systems are ideally suited to the exploration of geometrical frustration in three dimensions, and their rich phenomenology encompasses topological order and fractional excitations. Classical spin ices provide the first context in which it is possible to control emergent magnetic monopoles, and anisotropic exchange leads to even richer behaviour associated with large quantum fluctuations&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1902.07179v1-abstract-full').style.display = 'inline'; document.getElementById('1902.07179v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1902.07179v1-abstract-full" style="display: none;"> Pyrochlore systems are ideally suited to the exploration of geometrical frustration in three dimensions, and their rich phenomenology encompasses topological order and fractional excitations. Classical spin ices provide the first context in which it is possible to control emergent magnetic monopoles, and anisotropic exchange leads to even richer behaviour associated with large quantum fluctuations. Whether the magnetic ground state of Yb2Ti2O7 is a quantum spin liquid or a ferromagnetic phase induced by a Higgs transition appears to be sample dependent. Here we have determined the role of structural defects on the magnetic ground state via the diffuse scattering of neutrons. We find that oxygen vacancies stabilise the spin liquid phase and the stuffing of Ti sites by Yb suppresses it. Samples in which the oxygen vacancies have been eliminated by annealing in oxygen exhibit a transition to a ferromagnetic phase, and this is the true magnetic ground state. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1902.07179v1-abstract-full').style.display = 'none'; document.getElementById('1902.07179v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 February, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 1 table, 4 figures, journal article</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Communications 10:637 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1808.01387">arXiv:1808.01387</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1808.01387">pdf</a>, <a href="https://arxiv.org/format/1808.01387">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.99.064403">10.1103/PhysRevB.99.064403 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Spin Jahn-Teller antiferromagnetism in CoTi$_2$O$_5$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Kirschner%2C+F+K+K">Franziska K. K. Kirschner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Johnson%2C+R+D">Roger D. Johnson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lang%2C+F">Franz Lang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Khalyavin%2C+D+D">Dmitry D. Khalyavin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Manuel%2C+P">Pascal Manuel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lancaster%2C+T">Tom Lancaster</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Prabhakaran%2C+D">Dharmalingam Prabhakaran</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Blundell%2C+S+J">Stephen J. Blundell</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1808.01387v1-abstract-short" style="display: inline;"> We have used neutron powder diffraction to solve the magnetic structure of orthorhombic CoTi$_2$O$_5$, showing that the long-range ordered state below 26 K identified in our muon-spin rotation experiments is antiferromagnetic with propagation vector ${\bf k}=(\pm \frac{1}{2}, \frac{1}{2}, 0)$ and moment of 2.72(1)$渭_{\rm B}$ per Co$^{2+}$ ion. This long range magnetic order is incompatible with th&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1808.01387v1-abstract-full').style.display = 'inline'; document.getElementById('1808.01387v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1808.01387v1-abstract-full" style="display: none;"> We have used neutron powder diffraction to solve the magnetic structure of orthorhombic CoTi$_2$O$_5$, showing that the long-range ordered state below 26 K identified in our muon-spin rotation experiments is antiferromagnetic with propagation vector ${\bf k}=(\pm \frac{1}{2}, \frac{1}{2}, 0)$ and moment of 2.72(1)$渭_{\rm B}$ per Co$^{2+}$ ion. This long range magnetic order is incompatible with the experimentally determined crystal structure because the imposed symmetry completely frustrates the exchange coupling. We conclude that the magnetic transition must therefore be associated with a spin Jahn-Teller effect which lowers the structural symmetry and thereby relieves the frustration. These results show that CoTi$_2$O$_5$ is a highly unusual low symmetry material exhibiting a purely spin-driven lattice distortion critical to the establishment of an ordered magnetic ground state. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1808.01387v1-abstract-full').style.display = 'none'; document.getElementById('1808.01387v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 August, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 99, 064403 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1807.05012">arXiv:1807.05012</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1807.05012">pdf</a>, <a href="https://arxiv.org/format/1807.05012">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.98.024415">10.1103/PhysRevB.98.024415 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Disentangling orbital and spin exchange interactions for Co$^{2+}$ on a rocksalt lattice </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Sarte%2C+P+M">P. M. Sarte</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cowley%2C+R+A">R. A. Cowley</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rodriguez%2C+E+E">E. E. Rodriguez</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pachoud%2C+E">E. Pachoud</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Le%2C+D">D. Le</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Garcia-Sakai%2C+V">V. Garcia-Sakai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taylor%2C+J+W">J. W. Taylor</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Frost%2C+C+D">C. D. Frost</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Prabhakaran%2C+D">D. Prabhakaran</a>, <a href="/search/cond-mat?searchtype=author&amp;query=MacEwen%2C+C">C. MacEwen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kitada%2C+A">A. Kitada</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Browne%2C+A+J">A. J. Browne</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Songvilay%2C+M">M. Songvilay</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yamani%2C+Z">Z. Yamani</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Buyers%2C+W+J+L">W. J. L. Buyers</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Attfield%2C+J+P">J. P. Attfield</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Stock%2C+C">C. Stock</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1807.05012v2-abstract-short" style="display: inline;"> Neutron spectroscopy was applied to study the magnetic interactions of orbitally degenerate Co$^{2+}$ on a host MgO rocksalt lattice where no long range spin or orbital order exists. The paramagnetic nature of the substituted monoxide Co$_{0.03}$Mg$_{0.97}$O allows for the disentanglement of spin-exchange and spin-orbit interactions. By considering the prevalent excitations from Co$^{2+}$ spin pai&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1807.05012v2-abstract-full').style.display = 'inline'; document.getElementById('1807.05012v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1807.05012v2-abstract-full" style="display: none;"> Neutron spectroscopy was applied to study the magnetic interactions of orbitally degenerate Co$^{2+}$ on a host MgO rocksalt lattice where no long range spin or orbital order exists. The paramagnetic nature of the substituted monoxide Co$_{0.03}$Mg$_{0.97}$O allows for the disentanglement of spin-exchange and spin-orbit interactions. By considering the prevalent excitations from Co$^{2+}$ spin pairs, we extract 7 exchange constants out to the fourth coordination shell. An antiferromagnetic next nearest neighbor 180$^{\circ}$ exchange interaction is dominant, however dual ferromagnetic and antiferromagnetic interactions are observed for pairings with other pathways. These interactions can be understood in terms of a combination of orbital degeneracy in the $t_{2g}$ channel and the Goodenough-Kanamori-Anderson (GKA) rules. Our work suggests that such a hierarchy of exchange interactions exists in transition metal-based oxides with a $t_{2g}$ orbital degeneracy. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1807.05012v2-abstract-full').style.display = 'none'; document.getElementById('1807.05012v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 August, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 July, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">(main text - 7 pages, 3 figures, 1 table; supplementary information - 6 pages, 3 figures, 2 tables, to be published in Physical Review B)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 98, 024415 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1806.00559">arXiv:1806.00559</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1806.00559">pdf</a>, <a href="https://arxiv.org/format/1806.00559">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.98.064419">10.1103/PhysRevB.98.064419 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Magnetic and electronic structure of the layered rare-earth pnictide EuCd$_2$Sb$_2$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Soh%2C+J+-">J. -R. Soh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Donnerer%2C+C">C. Donnerer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hughes%2C+K+M">K. M. Hughes</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schierle%2C+E">E. Schierle</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Weschke%2C+E">E. Weschke</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Prabhakaran%2C+D">D. Prabhakaran</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Boothroyd%2C+A+T">A. T. Boothroyd</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1806.00559v3-abstract-short" style="display: inline;"> Resonant elastic X-ray scattering (REXS) at the Eu $M_5$ edge reveals an antiferromagnetic structure in layered EuCd$_2$Sb$_2$ at temperatures below $T_\textrm{N}$ = 7.4 K with a magnetic propagation vector of $(0,0,1/2)$ and spins in the basal plane. Magneto-transport and REXS measurements with an in-plane magnetic field show that features in the magnetoresistance are correlated with changes in t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1806.00559v3-abstract-full').style.display = 'inline'; document.getElementById('1806.00559v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1806.00559v3-abstract-full" style="display: none;"> Resonant elastic X-ray scattering (REXS) at the Eu $M_5$ edge reveals an antiferromagnetic structure in layered EuCd$_2$Sb$_2$ at temperatures below $T_\textrm{N}$ = 7.4 K with a magnetic propagation vector of $(0,0,1/2)$ and spins in the basal plane. Magneto-transport and REXS measurements with an in-plane magnetic field show that features in the magnetoresistance are correlated with changes in the magnetic structure induced by the field. Ab initio electronic structure calculations predict that the observed spin structure gives rise to a gapped Dirac point close to the Fermi level with a gap of $螖E \sim$0.01 eV. The results of this study indicate that the Eu spins are coupled to conduction electron states near the Dirac point. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1806.00559v3-abstract-full').style.display = 'none'; document.getElementById('1806.00559v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 August, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 June, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 98, 064419 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1804.08970">arXiv:1804.08970</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1804.08970">pdf</a>, <a href="https://arxiv.org/format/1804.08970">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.121.067202">10.1103/PhysRevLett.121.067202 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Pauling entropy, metastability and equilibrium in Dy$_2$Ti$_2$O$_7$ spin ice </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Giblin%2C+S+R">S. R. Giblin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Twengstr%C3%B6m%2C+M">M. Twengstr枚m</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bovo%2C+L">L. Bovo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ruminy%2C+M">M. Ruminy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bartkowiak%2C+M">M. Bartkowiak</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Manuel%2C+P">P. Manuel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Andresen%2C+J+C">J. C. Andresen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Prabhakaran%2C+D">D. Prabhakaran</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Balakrishnan%2C+G">G. Balakrishnan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pomjakushina%2C+E">E. Pomjakushina</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Paulsen%2C+C">C. Paulsen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lhotel%2C+E">E. Lhotel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Keller%2C+L">L. Keller</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Frontzek%2C+M">M. Frontzek</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Capelli%2C+S+C">S. C. Capelli</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zaharko%2C+O">O. Zaharko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=McClarty%2C+P+A">P. A. McClarty</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bramwell%2C+S+T">S. T. Bramwell</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Henelius%2C+P">P. Henelius</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fennell%2C+T">T. Fennell</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1804.08970v1-abstract-short" style="display: inline;"> Determining the fate of the Pauling entropy in the classical spin ice material Dy$_2$Ti$_2$O$_7$ with respect to the third law of thermodynamics has become an important test case for understanding the existence and stability of ice-rule states in general. The standard model of spin ice - the dipolar spin ice model - predicts an ordering transition at $T\approx 0.15$ K, but recent experiments by Po&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1804.08970v1-abstract-full').style.display = 'inline'; document.getElementById('1804.08970v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1804.08970v1-abstract-full" style="display: none;"> Determining the fate of the Pauling entropy in the classical spin ice material Dy$_2$Ti$_2$O$_7$ with respect to the third law of thermodynamics has become an important test case for understanding the existence and stability of ice-rule states in general. The standard model of spin ice - the dipolar spin ice model - predicts an ordering transition at $T\approx 0.15$ K, but recent experiments by Pomaranski $et\ al.$ suggest an entropy recovery over long time scales at temperatures as high as $0.5$ K, much too high to be compatible with theory. Using neutron scattering and specific heat measurements at low temperatures and with long time scales ($0.35$ K$/10^6$ s and $0.5$ K$/10^5$ s respectively) on several isotopically enriched samples we find no evidence of a reduction of ice-rule correlations or spin entropy. High-resolution simulations of the neutron structure factor show that the spin correlations remain well described by the dipolar spin ice model at all temperatures. Further, by careful consideration of hyperfine contributions, we conclude that the original entropy measurements of Ramirez $et\ al.$ are, after all, essentially correct: the short-time relaxation method used in that study gives a reasonably accurate estimate of the equilibrium spin ice entropy due to a cancellation of contributions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1804.08970v1-abstract-full').style.display = 'none'; document.getElementById('1804.08970v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 April, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 7 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">MSC Class:</span> 82-08 <span class="has-text-black-bis has-text-weight-semibold">ACM Class:</span> I.6.1; I.6.5 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 121, 067202 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1802.02446">arXiv:1802.02446</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1802.02446">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3390/cryst8020088">10.3390/cryst8020088 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Coupling between Spin and Charge Order Driven by Magnetic Field in Triangular Ising System LuFe2O4+未 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Ding%2C+L">Lei Ding</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Orlandi%2C+F">Fabio Orlandi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Khalyavin%2C+D+D">Dmitry D. Khalyavin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Boothroyd%2C+A+T">Andrew T. Boothroyd</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Prabhakaran%2C+D">Dharmalingam Prabhakaran</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Balakrishnan%2C+G">Geetha Balakrishnan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Manuel%2C+P">Pascal Manuel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1802.02446v1-abstract-short" style="display: inline;"> We present a study of the magnetic-field effect on spin correlations in the charge ordered triangular Ising system LuFe2O4+未 through single crystal neutron diffraction. In the absence of a magnetic field, the strong diffuse neutron scattering observed below the Neel temperature (TN = 240 K) indicates that LuFe2O4+未 shows short-range, two-dimensional (2D) correlations in the FeO5 triangular layers,&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1802.02446v1-abstract-full').style.display = 'inline'; document.getElementById('1802.02446v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1802.02446v1-abstract-full" style="display: none;"> We present a study of the magnetic-field effect on spin correlations in the charge ordered triangular Ising system LuFe2O4+未 through single crystal neutron diffraction. In the absence of a magnetic field, the strong diffuse neutron scattering observed below the Neel temperature (TN = 240 K) indicates that LuFe2O4+未 shows short-range, two-dimensional (2D) correlations in the FeO5 triangular layers, characterized by the development of a magnetic scattering rod along the 1/3 1/3 L direction, persisting down to 5 K. We also found that on top of the 2D correlations, a long range ferromagnetic component associated with the propagation vector k1 = 0 sets in at around 240 K. On the other hand, an external magnetic field applied along the c-axis effectively favours a three-dimensional (3D) spin correlation between the FeO5 bilayers evidenced by the increase of the intensity of satellite reflections with propagation vector k2 = (1/3, 1/3, 3/2). This magnetic modulation is identical to the charge ordered superstructure, highlighting the field-promoted coupling between the spin and charge degrees of freedom. Formation of the 3D spin correlations suppresses both the rod-type diffuse scattering and the k1 component. Simple symmetry-based arguments provide a natural explanation of the observed phenomenon and put forward a possible charge redistribution in the applied magnetic field. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1802.02446v1-abstract-full').style.display = 'none'; document.getElementById('1802.02446v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 February, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Crystals 2018, 8(2), 88 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1801.09473">arXiv:1801.09473</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1801.09473">pdf</a>, <a href="https://arxiv.org/format/1801.09473">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.97.144401">10.1103/PhysRevB.97.144401 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Spin dynamics and exchange interactions in CuO measured by neutron scattering </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Jacobsen%2C+H">H. Jacobsen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gaw%2C+S+M">S. M. Gaw</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Princep%2C+A+J">A. J. Princep</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hamilton%2C+E">E. Hamilton</a>, <a href="/search/cond-mat?searchtype=author&amp;query=T%C3%B3th%2C+S">S. T贸th</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ewings%2C+R+A">R. A. Ewings</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Enderle%2C+M">M. Enderle</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wheeler%2C+E+M+H">E. M. H茅troy Wheeler</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Prabhakaran%2C+D">D. Prabhakaran</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Boothroyd%2C+A+T">A. T. Boothroyd</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1801.09473v2-abstract-short" style="display: inline;"> The magnetic properties of CuO encompass several contemporary themes in condensed matter physics, including quantum magnetism, magnetic frustration, magnetically-induced ferroelectricity and orbital currents. Here we report polarized and unpolarized neutron inelastic scattering measurements which provide a comprehensive map of the cooperative spin dynamics in the low temperature antiferromagnetic&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1801.09473v2-abstract-full').style.display = 'inline'; document.getElementById('1801.09473v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1801.09473v2-abstract-full" style="display: none;"> The magnetic properties of CuO encompass several contemporary themes in condensed matter physics, including quantum magnetism, magnetic frustration, magnetically-induced ferroelectricity and orbital currents. Here we report polarized and unpolarized neutron inelastic scattering measurements which provide a comprehensive map of the cooperative spin dynamics in the low temperature antiferromagnetic (AFM) phase of CuO throughout much of the Brillouin zone. At high energies ($E \gtrsim 100$\,meV) the spectrum displays continuum features consistent with the des Cloizeax--Pearson dispersion for an ideal $S=\frac{1}{2}$ Heisenberg AFM chain. At lower energies the spectrum becomes more three-dimensional, and we find that a linear spin-wave model for a Heisenberg AFM provides a very good description of the data, allowing for an accurate determination of the relevant exchange constants in an effective spin Hamiltonian for CuO. In the high temperature helicoidal phase, there are features in the measured low-energy spectrum that we could not reproduce with a spin-only model. We discuss how these might be associated with the magnetically-induced multiferroic behavior observed in this phase. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1801.09473v2-abstract-full').style.display = 'none'; document.getElementById('1801.09473v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 April, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 January, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 97, 144401 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1801.01325">arXiv:1801.01325</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1801.01325">pdf</a>, <a href="https://arxiv.org/ps/1801.01325">ps</a>, <a href="https://arxiv.org/format/1801.01325">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/1.5030456">10.1063/1.5030456 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Pressure effect on magnetic susceptibility of LaCoO$_3$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Panfilov%2C+A+S">A. S. Panfilov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Grechnev%2C+G+E">G. E. Grechnev</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhuravleva%2C+I+P">I. P. Zhuravleva</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lyogenkaya%2C+A+A">A. A. Lyogenkaya</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pashchenko%2C+V+A">V. A. Pashchenko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Savenko%2C+B+N">B. N. Savenko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Novoselov%2C+D">D. Novoselov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Prabhakaran%2C+D">D. Prabhakaran</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Troyanchuk%2C+I+O">I. O. Troyanchuk</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1801.01325v1-abstract-short" style="display: inline;"> The effect of pressure on magnetic properties of LaCoO$_3$ is studied experimentally and theoretically. The pressure dependence of magnetic susceptibility $蠂$ of LaCoO$_3$ is obtained by precise measurements of $蠂$ as a function of the hydrostatic pressure $P$ up to 2 kbar in the temperature range from 78 K to 300 K. A pronounced magnitude of the pressure effect is found to be negative in sign and&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1801.01325v1-abstract-full').style.display = 'inline'; document.getElementById('1801.01325v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1801.01325v1-abstract-full" style="display: none;"> The effect of pressure on magnetic properties of LaCoO$_3$ is studied experimentally and theoretically. The pressure dependence of magnetic susceptibility $蠂$ of LaCoO$_3$ is obtained by precise measurements of $蠂$ as a function of the hydrostatic pressure $P$ up to 2 kbar in the temperature range from 78 K to 300 K. A pronounced magnitude of the pressure effect is found to be negative in sign and strongly temperature dependent. The obtained experimental data are analysed by using a two-level model and DFT+U calculations of the electronic structure of LaCoO$_3$. In particular, the fixed spin moment method was employed to obtain a volume dependence of the total energy difference $螖$ between the low spin and the intermediate spin states of LaCoO$_3$. Analysis of the obtained experimental $蠂(P)$ dependence within the two-level model, as well as our DFT+U calculations, have revealed the anomalous large decrease in the energy difference $螖$ with increasing of the unit cell volume. This effect, taking into account a thermal expansion, can be responsible for the temperatures dependence of $螖$, predicting its vanishing near room temperature. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1801.01325v1-abstract-full').style.display = 'none'; document.getElementById('1801.01325v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 January, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 9 figures</span> </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Prabhakaran%2C+D&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Prabhakaran%2C+D&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Prabhakaran%2C+D&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Prabhakaran%2C+D&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Prabhakaran%2C+D&amp;start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10