CINXE.COM

On robust weakly $ \varepsilon $-efficient solutions for multi-objective fractional programming problems under data uncertainty

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> <html> <head> <meta name=renderer content=webkit> <meta http-equiv="X-UA-Compatible" content="IE=edge" /> <meta http-equiv="Content-Type" content="text/html; charset=utf-8" /> <meta name="viewport" content="width=device-width,initial-scale=1.0,maximum-scale=1.0,minimum-scale=1.0,user-scalable=no" /> <title>On robust weakly $ \varepsilon $-efficient solutions for multi-objective fractional programming problems under data uncertainty</title> <meta name="_sowise_journalid" content="10002"/> <meta name="WT.cg_n" content="AIMS Mathematics"/> <meta name="prism.issn" content="2473-6988"/> <meta name="citation_issn" content="2473-6988"/> <meta name="journal_id" content="110"/> <meta name="dc.title" content="On robust weakly $ \varepsilon $-efficient solutions for multi-objective fractional programming problems under data uncertainty"/> <meta name="dc.source" content="AIMS Mathematics 2022 2:2331"/> <meta name="dc.format" content="text/html"/> <meta name="dc.type" content="OriginalPaper"/> <meta name="prism.section" content="OriginalPaper"/> <meta name="prism.publicationName" content="AIMS Mathematics"/> <meta name="dc.date" content=""/> <meta name="dc.language" content="en"/> <meta name="dc.copyright" content="2022 The Author(s)"/> <meta name="dc.rightsAgent" content="mathematics@aimspress.org"/> <meta name="prism.rightsAgent" content="mathematics@aimspress.org"/> <meta name="dc.description" content="&lt;abstract&gt;&lt;p&gt;In this study, we use the robust optimization techniques to consider a class of multi-objective fractional programming problems in the presence of uncertain data in both of the objective function and the constraint functions. The components of the objective function vector are reported as ratios involving a convex non-negative function and a concave positive function. In addition, on applying a parametric approach, we establish $ \varepsilon $-optimality conditions for robust weakly $ \varepsilon $-efficient solution. Furthermore, we present some theorems to obtain a robust $ \varepsilon $-saddle point for uncertain multi-objective fractional problem.&lt;/p&gt;&lt;/abstract&gt;"/> <meta name="og:description" content="In this study, we use the robust optimization techniques to consider a class of multi-objective fractional programming problems in the presence of uncertain data in both of the objective function and the constraint functions. The components of the objective function vector are reported as ratios involving a convex non-negative function and a concave positive function. In addition, on applying a parametric approach, we establish $ \varepsilon $-optimality conditions for robust weakly $ \varepsilon $-efficient solution. Furthermore, we present some theorems to obtain a robust $ \varepsilon $-saddle point for uncertain multi-objective fractional problem."/> <meta name="description" content="&lt;abstract&gt;&lt;p&gt;In this study, we use the robust optimization techniques to consider a class of multi-objective fractional programming problems in the presence of uncertain data in both of the objective function and the constraint functions. The components of the objective function vector are reported as ratios involving a convex non-negative function and a concave positive function. In addition, on applying a parametric approach, we establish $ \varepsilon $-optimality conditions for robust weakly $ \varepsilon $-efficient solution. Furthermore, we present some theorems to obtain a robust $ \varepsilon $-saddle point for uncertain multi-objective fractional problem.&lt;/p&gt;&lt;/abstract&gt;"/> <meta name="prism.publicationDate" content=""/> <meta name="prism.volume" content="7"/> <meta name="prism.number" content="math-07-02-132"/> <meta name="prism.startingPage" content="2331"/> <meta name="prism.endingPage" content="2347"/> <meta name="prism.copyright" content="2022 The Author(s)"/> <meta name="prism.url" content="http://www.aimspress.com/article/doi/10.3934/math.2022132"/> <meta name="prism.doi" content="doi:10.3934/math.2022132"/> <meta name="citation_pdf_url" content="http://www.aimspress.com/article/doi/10.3934/math.2022132"/> <meta name="citation_fulltext_html_url" content="http://www.aimspress.com/article/doi/10.3934/math.2022132"/> <meta name="citation_journal_title" content="AIMS Mathematics"/> <meta name="citation_journal_abbrev" content="MATH"/> <meta name="citation_title" content="On robust weakly $ \varepsilon $-efficient solutions for multi-objective fractional programming problems under data uncertainty"/> <meta name="citation_volume" content="7"/> <meta name="citation_issue" content="2"/> <meta name="citation_online_date" content=""/> <meta name="citation_firstpage" content="2331"/> <meta name="citation_lastpage" content="2347"/> <meta name="citation_article_type" content="Article"/> <meta name="citation_fulltext_world_readable" content=""/> <meta name="citation_language" content="en"/> <meta name="dc.identifier" content="doi:10.3934/math.2022132"/> <meta name="DOI" content="10.3934/math.2022132"/> <meta name="citation_doi" content="10.3934/math.2022132"/> <meta name="dc.subject" content="Research article"/> <!-- more author --> <meta name="dc.creator" content="Shima Soleimani Manesh"/> <meta name="dc.creator" content="Mansour Saraj"/> <meta name="dc.creator" content="Mahmood Alizadeh"/> <meta name="dc.creator" content="Maryam Momeni"/> <!-- more refers --> <meta name="citation_reference" content="A. Beck, A. Ben-Tal, Duality in robust optimization primal worst equals dual best, &lt;i&gt;Oper. Res. Lett.&lt;/i&gt;, &lt;b&gt;37&lt;/b&gt; (2009), 1&#8211;6. doi: &lt;a href=&quot;http://dx.doi.org/10.1016/j.orl.2008.09.010&quot; target=&quot;_blank&quot;&gt;10.1016/j.orl.2008.09.010&lt;/a&gt;."/> <meta name="citation_reference" content="A. Ben-Tal, EL. Ghaoui, A. Nemirovski, &lt;i&gt;Robust optimization&lt;/i&gt;, Princeton Series in Applied Mathematics, 2009."/> <meta name="citation_reference" content="R. Bokrantz, A.Fredriksson, Necessary and Sufficient conditions for pareto efficiency in robust multiobjective optimization, &lt;i&gt;Eur. J. Oper. Res.&lt;/i&gt;, &lt;b&gt;262&lt;/b&gt; (2017), 682&#8211;692. doi: &lt;a href=&quot;http://dx.doi.org/10.1016/j.ejor.2017.04.012&quot; target=&quot;_blank&quot;&gt;10.1016/j.ejor.2017.04.012&lt;/a&gt;."/> <meta name="citation_reference" content="J. M. Buhmann, A. Y. Gronskiy, M. Mihal&amp;#225;k, T. Pr&amp;#246;ger, R. &amp;#352;r&amp;#225;mek, P. Widmayar, Robust optimization in the presence of uncertainty: A generic approach, &lt;i&gt;J. Comput. Syst. Sci.&lt;/i&gt;, &lt;b&gt;94&lt;/b&gt; (2018), 135&#8211;166. doi: &lt;a href=&quot;http://dx.doi.org/10.1016/j.jcss.2017.10.004&quot; target=&quot;_blank&quot;&gt;10.1016/j.jcss.2017.10.004&lt;/a&gt;."/> <meta name="citation_reference" content="S. Chandra, B. D. Craven, B. Mond, Vector valued lagrangian and multiobjective fractional programming duality, &lt;i&gt;Numer. Funct. Anal. Optim.&lt;/i&gt;, &lt;b&gt;11&lt;/b&gt; (1990), 239&#8211;254. doi: &lt;a href=&quot;http://dx.doi.org/10.1080/01630569008816373&quot; target=&quot;_blank&quot;&gt;10.1080/01630569008816373&lt;/a&gt;."/> <meta name="citation_reference" content="I. P. Debnath, X. Qin, Robust optimality and duality for minimax fractional programming problems with support functions, &lt;i&gt;J. Nonlinear Funct. Anal.&lt;/i&gt;, &lt;b&gt;2021&lt;/b&gt; (2021), 1&#8211;22. doi: &lt;a href=&quot;http://dx.doi.org/10.23952/jnfa.2021.5&quot; target=&quot;_blank&quot;&gt;10.23952/jnfa.2021.5&lt;/a&gt;."/> <meta name="citation_reference" content="W. Dinkelbach, On nonlinear fractional programming, &lt;i&gt;Manage. Sci.&lt;/i&gt;, &lt;b&gt;13&lt;/b&gt; (1967), 492&#8211;498. doi: &lt;a href=&quot;http://dx.doi.org/10.1287/mnsc.13.7.492&quot; target=&quot;_blank&quot;&gt;10.1287/mnsc.13.7.492&lt;/a&gt;."/> <meta name="citation_reference" content="M. Fakhar, M. R. Mahyarinia, J. Zafarani, On nonsmooth robust multiobjective optimization under generalized convexity with applications to portfolio optimization, &lt;i&gt;Eur. J. Oper. Res.&lt;/i&gt;, &lt;b&gt;265&lt;/b&gt; (2018), 39&#8211;48. doi: &lt;a href=&quot;http://dx.doi.org/10.1016/j.ejor.2017.08.003&quot; target=&quot;_blank&quot;&gt;10.1016/j.ejor.2017.08.003&lt;/a&gt;."/> <meta name="citation_reference" content="N. Gadhi, Necessary and sufficient optimality conditions for fractional multiobjective problem, &lt;i&gt;Optimization&lt;/i&gt;, &lt;b&gt;57&lt;/b&gt; (2008), 527&#8211;537. doi: &lt;a href=&quot;http://dx.doi.org/10.1080/02331930701455945&quot; target=&quot;_blank&quot;&gt;10.1080/02331930701455945&lt;/a&gt;."/> <meta name="citation_reference" content="M. G. Govil, A. Mehra, $\varepsilon$-optimality for multiobjective programming on a Banach spaces, &lt;i&gt;Eur. J. Oper. Res.&lt;/i&gt;, &lt;b&gt;157&lt;/b&gt; (2004), 106&#8211;112. doi: &lt;a href=&quot;http://dx.doi.org/10.1016/S0377-2217(03)00206-6&quot; target=&quot;_blank&quot;&gt;10.1016/S0377-2217(03)00206-6&lt;/a&gt;."/> <meta name="citation_reference" content="V. Jeyakumar, G. Y. Li, Strong duality in robust convex programming: complete characterization, &lt;i&gt;SIAM. J. Optim.&lt;/i&gt;, &lt;b&gt;20&lt;/b&gt; (2010), 3384&#8211;3407. doi: &lt;a href=&quot;http://dx.doi.org/10.1137/100791841&quot; target=&quot;_blank&quot;&gt;10.1137/100791841&lt;/a&gt;."/> <meta name="citation_reference" content="V. Jeyakumar, G. Y. Li, Robust Duality for Fractional Programming Problems with Constraint-Wise Data Uncertainty, &lt;i&gt;J. Optim. Theory Appl.&lt;/i&gt;, &lt;b&gt;151&lt;/b&gt;(2011), 292&#8211;303. doi: &lt;a href=&quot;http://dx.doi.org/10.1137/100791841&quot; target=&quot;_blank&quot;&gt;10.1137/100791841&lt;/a&gt;."/> <meta name="citation_reference" content="V. Jeyakumar, G. M. Lee, N. Dinh, Characterization of solution sets Of convex vector minimization problems, &lt;i&gt;Eur. J. Oper. Res.&lt;/i&gt;, &lt;b&gt;174&lt;/b&gt; (2006), 1380&#8211;1395. doi: &lt;a href=&quot;http://dx.doi.org/10.1016/j.ejor.2005.05.007&quot; target=&quot;_blank&quot;&gt;10.1016/j.ejor.2005.05.007&lt;/a&gt;."/> <meta name="citation_reference" content="V. Jeyakumar, Asymptotic dual conditions characterizing optimality for infinite convex programs, &lt;i&gt;J. Optim. Theory Appl.&lt;/i&gt;, &lt;b&gt;93&lt;/b&gt; (1997), 153&#8211;165. doi: &lt;a href=&quot;http://dx.doi.org/10.1023/A:1022606002804&quot; target=&quot;_blank&quot;&gt;10.1023/A:1022606002804&lt;/a&gt;."/> <meta name="citation_reference" content="G. S. Kim, G. M. Lee, On $\varepsilon$-approximate solutions for convex semidefinite optimization problems, &lt;i&gt;Taiwanese J Math.&lt;/i&gt;, &lt;b&gt;11&lt;/b&gt; (2007), 765&#8211;784."/> <meta name="citation_reference" content="M. H. Kim, G. S. Kim, G. M. Lee, On $\varepsilon$-optimality conditions for multiobjective fractional optimization problems, &lt;i&gt;J Fixed Point Theory Appl.&lt;/i&gt;, &lt;b&gt;2011&lt;/b&gt; (2011), 1&#8211;13. doi: &lt;a href=&quot;http://dx.doi.org/10.1186/1687-1812-2011-6&quot; target=&quot;_blank&quot;&gt;10.1186/1687-1812-2011-6&lt;/a&gt;."/> <meta name="citation_reference" content="M. H. Kim, Duality theorem and vector saddle point theorem for robust multiobjective optimization problems, &lt;i&gt;Korean. Math. Soc.&lt;/i&gt;, &lt;b&gt;28&lt;/b&gt; (2013), 597&#8211;602. doi: &lt;a href=&quot;http://dx.doi.org/10.4134/CKMS.2013.28.3.597&quot; target=&quot;_blank&quot;&gt;10.4134/CKMS.2013.28.3.597&lt;/a&gt;."/> <meta name="citation_reference" content="G. S. Kim, G. M. Lee, On $\varepsilon$-optimality theorems for convex vector optimization problems, &lt;i&gt;J. Nonlinear and Convex Anal.&lt;/i&gt;, &lt;b&gt;12&lt;/b&gt; (2011), 473&#8211;482."/> <meta name="citation_reference" content="G. M. Lee, G. H. Lee, $\varepsilon$-Duality for convex semidefinite optimization problem with conic constraints, &lt;i&gt;J. Inequalities Appl.&lt;/i&gt;, &lt;b&gt;2010&lt;/b&gt; (2010). doi: &lt;a href=&quot;http://dx.doi.org/10.1155/2010/363012&quot; target=&quot;_blank&quot;&gt;10.1155/2010/363012&lt;/a&gt;."/> <meta name="citation_reference" content="J. H. Lee, G. M. Lee, On $\varepsilon$-solutions for convex optimizations problems with uncertainty data, &lt;i&gt;Positivity&lt;/i&gt;, &lt;b&gt;16&lt;/b&gt; (2012), 509&#8211;526. doi: &lt;a href=&quot;http://dx.doi.org/10.1007/S11117-012-0186-4&quot; target=&quot;_blank&quot;&gt;10.1007/S11117-012-0186-4&lt;/a&gt;."/> <meta name="citation_reference" content="Ch. Li, K. F. Ng, T. K. Pong, The SECQ, Linear regularity and the strong CHIP for an infinite system of closed convex sets in normed linear spaces, &lt;i&gt;SIAM. J. Optim.&lt;/i&gt;, &lt;b&gt;18&lt;/b&gt; (2007), 643&#8211;665. doi: &lt;a href=&quot;http://dx.doi.org/10.1137/060652087&quot; target=&quot;_blank&quot;&gt;10.1137/060652087&lt;/a&gt;."/> <meta name="citation_reference" content="Z. A. Liang, H. X. Huang, P. M. Pardalas, Efficiency condition and duality for a class of multiobjective fractional programming problems, &lt;i&gt;J. Glob. Optim.&lt;/i&gt;, &lt;b&gt;27&lt;/b&gt; (2003), 447&#8211;471. doi: &lt;a href=&quot;http://dx.doi.org/10.1023/A:1026041403408&quot; target=&quot;_blank&quot;&gt;10.1023/A:1026041403408&lt;/a&gt;."/> <meta name="citation_reference" content="J. C. Liu, $\varepsilon$-duality theorem of nondifferentiable nonconvex multiobjective programming, &lt;i&gt;J. Optim. Theory and Appl.&lt;/i&gt;, &lt;b&gt;69&lt;/b&gt; (1991), 153&#8211;167. doi: &lt;a href=&quot;http://dx.doi.org/10.1007/BF00940466&quot; target=&quot;_blank&quot;&gt;10.1007/BF00940466&lt;/a&gt;."/> <meta name="citation_reference" content="X. J. Long, N. J. Huang, Z. B. Lia, Optimality conditions, duality and saddlepoints for nondifferentiable multiobjective fractional programs, &lt;i&gt;J. Ind. Manag. Optim.&lt;/i&gt;, &lt;b&gt;4&lt;/b&gt; (2008), 287&#8211;298. doi: &lt;a href=&quot;http://dx.doi.org/10.3934/jimo.2008.4.287&quot; target=&quot;_blank&quot;&gt;10.3934/jimo.2008.4.287&lt;/a&gt;."/> <meta name="citation_reference" content="P. Loridan, Necessary conditions for $\varepsilon$-optimality, In: Guignard M. (eds) &lt;i&gt;Optimality and Stability in Mathematical Programming&lt;/i&gt;, Mathematical Programming Studies, Springer, Berlin, Heidelberg, &lt;b&gt;19&lt;/b&gt; (1982), 140&#8211;152. doi: &lt;a href=&quot;http://dx.doi.org/10.1007/BFb0120986&quot; target=&quot;_blank&quot;&gt;10.1007/BFb0120986&lt;/a&gt;."/> <meta name="citation_reference" content="S. Nobakhtian, Optimality and duality for nonsmooth multiobjective fractional programming with mixed constraints, &lt;i&gt;J. Glob. Optim.&lt;/i&gt;, &lt;b&gt;41&lt;/b&gt; (2008), 103&#8211;115. doi: &lt;a href=&quot;http://dx.doi.org/10.1007/s10898-007-9168-7&quot; target=&quot;_blank&quot;&gt;10.1007/s10898-007-9168-7&lt;/a&gt;."/> <meta name="citation_reference" content="X. K. Sun, K. L. Teo, L. Tang, Dual approaches to characterize robust optimal solution sets for a class of uncertain optimization problems, &lt;i&gt;J. Optim. Theory Appl.&lt;/i&gt;, &lt;b&gt;182&lt;/b&gt; (2019), 984&#8211;1000. doi: &lt;a href=&quot;http://dx.doi.org/10.1007/s10957-019-01496-w&quot; target=&quot;_blank&quot;&gt;10.1007/s10957-019-01496-w&lt;/a&gt;."/> <meta name="citation_reference" content="X. K. Sun, X. B. Li, X. J. Long, Z. Y. Peng, On robust approximate optimal solutions for uncertain convex optimization and applications to multiobjective optimization, &lt;i&gt;Pac. J. Optim.&lt;/i&gt;, &lt;b&gt;13&lt;/b&gt; (2017), 621&#8211;643."/> <meta name="citation_reference" content="X. K. Sun, X. J. Long, H. Y. Fu, X. B. Li, Some characterizations of robust optimal solutions for uncertain fractional optimization and applications, &lt;i&gt;J. Ind. Manag. Optim.&lt;/i&gt;, &lt;b&gt;13&lt;/b&gt; (2017), 803&#8211;824. doi: &lt;a href=&quot;http://dx.doi.org/10.3934/jimo.2016047&quot; target=&quot;_blank&quot;&gt;10.3934/jimo.2016047&lt;/a&gt;."/> <meta name="citation_reference" content="X. K. Sun, H. Y. Fu, J. Zeng, Robust approximate optimality conditions for uncertain nonsmooth optimization with infinite number of constraints, &lt;i&gt;Mathematics&lt;/i&gt;, &lt;b&gt;7&lt;/b&gt; (2019), 1&#8211;14. doi: &lt;a href=&quot;http://dx.doi.org/10.3390/math7010012&quot; target=&quot;_blank&quot;&gt;10.3390/math7010012&lt;/a&gt;."/> <meta name="citation_reference" content="X. K. Sun, K. L. Teo, J. Zeng, X. L. Guo, On approximate solutions and saddle point theorems for robust convex optimization, &lt;i&gt;Optim. Lett.&lt;/i&gt;, &lt;b&gt;14&lt;/b&gt; (2020), 1711&#8211;1730. doi: &lt;a href=&quot;http://dx.doi.org/10.1007/s11590-019-01464-3&quot; target=&quot;_blank&quot;&gt;10.1007/s11590-019-01464-3&lt;/a&gt;."/> <meta name="citation_reference" content="T. Q. Sun, D. S. Kim, $\varepsilon$-mixed type duality for nonconvex multiobjective programs with an infinite number of constraints, &lt;i&gt;J. Glob. Optim.&lt;/i&gt;, &lt;b&gt;57&lt;/b&gt;(2013), 447&#8211;465. doi: &lt;a href=&quot;http://dx.doi.org/10.1007/s10898-012-9994-0&quot; target=&quot;_blank&quot;&gt;10.1007/s10898-012-9994-0&lt;/a&gt;."/> <meta name="citation_reference" content="J. Zeng, P. Xu, H. Y. Fu, On robust approximate optimal solutions for fractional semi-infinite optimization with data uncertainty data, &lt;i&gt;J. Inequalities Appl.&lt;/i&gt;, &lt;b&gt;2019&lt;/b&gt; (2019), 1&#8211;16. doi: &lt;a href=&quot;http://dx.doi.org/10.1186/s13660-019-1997-7&quot; target=&quot;_blank&quot;&gt;10.1186/s13660-019-1997-7&lt;/a&gt;."/> <!-- more author--> <meta name="citation_author" content="Shima Soleimani Manesh"/> <meta name="citation_author" content="Mansour Saraj"/> <meta name="citation_author" content="Mahmood Alizadeh"/> <meta name="citation_author" content="Maryam Momeni"/> <!-- more addiliations --> <meta name="citation_author_institution" content="Department of Mathematics, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran"/> <meta name="citation_author_institution" content="Department of Mathematics, Faculty of Mathematical Sciences and Computer, Shahid Chamran University of Ahvaz, Ahvaz, Iran"/> <meta name="access_endpoint" content="http://www.aimspress.com/"/> <meta name="twitter:site" content="@AIMS Mathematics"/> <meta name="twitter:card" content="summary"/> <meta name="twitter:image:alt" content="Content cover image"/> <meta name="WT.z_cc_license_type" content="cc_by"/> <meta name="WT.z_primary_atype" content="AIMS Mathematics"/> <meta name="WT.z_subject_term" content="Research article"/> <meta name="WT.z_subject_term_id" content="Research article"/> <meta property="og:url" content="http://www.aimspress.com/article/doi/10.3934/math.2022132"/> <meta property="og:type" content="article"/> <meta property="og:site_name" content="AIMS Mathematics"/> <meta property="og:title" content="On robust weakly $ \varepsilon $-efficient solutions for multi-objective fractional programming problems under data uncertainty"/> <meta property="og:image" content="http:"/> <!-- SoWise SEO 2019-9-6 --> <meta name="citation_title" content="On robust weakly $ \varepsilon $-efficient solutions for multi-objective fractional programming problems under data uncertainty" /> <meta name="citation_author" content="Shima Soleimani Manesh" /> <meta name="citation_author" content="Mansour Saraj" /> <meta name="citation_author" content="Mahmood Alizadeh" /> <meta name="citation_author" content="Maryam Momeni" /> <meta name="citation_keywords" content="multi-objective fractional programming problem, robust optimization, robust weakly $ \varepsilon $-efficient solution, robust $ \varepsilon $-saddle point theorem, $ \varepsilon $-optimality theorem, " /> <meta name="citation_year" content="2022"/> <meta name="citation_volume" content="7"/> <meta name="citation_issue" content="2"/> <meta name="citation_firstpage" content="2331"/> <meta name="citation_lastpage" content="2347"/> <meta name="citation_doi" content="10.3934/math.2022132"/> <meta name="citation_id" content="618cf88cba35de0683e3bfc7"/> <meta name="citation_state" content="" /> <link type="text/css" href="/style/web/images/custom/favicon.ico" rel="shortcut icon" /> <link rel="stylesheet" href="/style/web/css/common/bootstrap.min.css"> <link rel="stylesheet" href="/style/web/css/common/swiper.min.css"> <link rel="stylesheet" href="/style/web/css/common/iconfont.css"> <link rel="stylesheet" href="/style/web/css/common/font-awesome.min.css"> <link rel="stylesheet" href="/style/web/css/common/owl.carousel.css"> <link rel="stylesheet" href="/style/web/css/common/base.css"> <link rel="stylesheet" href="/style/web/css/common/media.css"> <link rel="stylesheet" href="/style/web/css/style.css"> <link rel="stylesheet" href="/style/web/css/common/jquery.mCustomScrollbar.css"> <link rel="stylesheet" href="/style/web/css/common/article_en.css"> <link rel="stylesheet" href="/style/web/css/common/imgShow.css"> <link rel="stylesheet" href="/style/web/css/common/articleFont.css"> <link rel="stylesheet" href="/style/web/css/en/tpl5/style.css"> <link rel="stylesheet" href="/style/web/css/en/main.css"> <script src="/style/web/js/common/jquery-1.11.2.min.js"></script> <script src="/style/web/js/common/bootstrap.min.js"></script> <script src="/style/web/js/common/swiper.min.js"></script> <script src="/style/web/js/common/jquery.colorbox.js"></script> <script src="/style/web/js/common/jquery.nicescroll.js"></script> <script src="/style/web/js/common/angular.min.js"></script> <script src="/style/web/js/common/angular-sanitize.min.js"></script> <script src="/style/web/js/common/wui-date.js"></script> <script src="/style/web/js/common/ng-infinite-scroll.min.js"></script> <script src="/style/web/js/common/rhhz.js"></script> <script src="/style/web/js/common/dataloading_news.js"></script> <script src="/style/web/js/common/dataloading_article.js"></script> <script src="/style/web/js/common/dataloading_filter.js"></script> <script src="/style/web/js/common/dataloading_other.js"></script> <script src="/style/web/js/common/base.js"></script> <script src="/style/web/js/common/common.js"></script> <script src="/style/web/js/common/owl.carousel.js"></script> <script src="/style/web/js/common/respond.js"></script> <script src="/style/web/js/common/search.js"></script> <script src="/style/web/js/common/user.js"></script> <script src="/style/web/highcharts/highcharts.js"></script> <script src="/style/web/highcharts/modules/exporting.js"></script> <script src="/style/web/js/common/better-scroll.js"></script> <script src="/style/web/js/common/jquery.mCustomScrollbar.concat.min.js"></script> <script src="/style/web/js/common/article.js"></script> <script src="/style/web/js/common/article_en.js"></script> <script src="/style/web/js/common/imgShow_en.js"></script> <script src="/style/web/js/en/tpl5/index.js"></script> <script src="/style/web/js/en/tpl5/main.js"></script> <script type="text/javascript" src="/aimspress-upload/platformTools/js/MathJax-master/MathJax-2.7.0/MathJax.js?config=TeX-AMS-MML_SVG"></script> <!-- <script type="text/javascript" src="http://aimspress.com/aimspress-upload/platformTools/js/MathJax-master/MathJax-2.7.0/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script> --> <!-- 2011到2015年是 用@渲染公式 --> <!-- 2020年之后 除了第三方 数据特殊 九个刊 用$ 渲染 --> <script type='text/x-mathjax-config'> MathJax.Hub.Config({ CommonHTML: { linebreaks: { automatic: true, width: 'container' } }, SVG: { linebreaks: { automatic: false } }, tex2jax: {inlineMath: [['$','$']]}, "HTML-CSS": {linebreaks: { automatic: true},scale: 100} });</script> <script type='text/javascript' src='https://d1bxh8uas1mnw7.cloudfront.net/assets/embed.js'></script> <!-- <script src="/style/web/js/common/embed.js"></script> --> <script> dataLayer = []; </script> <!-- Google Tag Manager --> <script>(function(w,d,s,l,i){w[l]=w[l]||[];w[l].push({'gtm.start': new Date().getTime(),event:'gtm.js'});var f=d.getElementsByTagName(s)[0], j=d.createElement(s),dl=l!='dataLayer'?'&l='+l:'';j.async=true;j.src= 'https://www.googletagmanager.com/gtm.js?id='+i+dl;f.parentNode.insertBefore(j,f); })(window,document,'script','dataLayer','GTM-K33SX87');</script> <!-- End Google Tag Manager --> </head> <body data-spy="scroll" data-target="#myScrollspy" class="articleBody " > <input type="hidden" value="AIMS Mathematics" id="journalName"/> <input type="hidden" value="article" id="pageViewId" /> <input type="hidden" value="618cf88cba35de0683e3bfc7" id="articleId" /> <input type="hidden" value="10.3934/math.2022132" id="articleDoi" /> <input type="hidden" value="" id="htmlState" /> <input type="hidden" value="" id="articleNum" /> <input type="hidden" value="//www.aimspress.com" id="dataPath" /> <input type="hidden" value="/aimspress-data/math/2022/2/PIC/" id="allSrc" /> <input hidden type="checkbox" checked id="reference" /> <div ng-app="index"> <!--头部 开始 --> <div id="common-top"> <!-- Google Tag Manager (noscript) --> <noscript><iframe src="https://www.googletagmanager.com/ns.html?id=GTM-K33SX87" height="0" width="0" style="display:none;visibility:hidden"></iframe></noscript> <!-- End Google Tag Manager (noscript) --> <div ng-controller="j-top-menu"> <div class="header header-index bgwhite"> <div class="mid topfix header-nav"> <div class="container clear"> <a href="/" class="logo fl"> <img src="/style/web/images/custom/index_logo.png" alt=""> </a> <div class="logor fr"> <div class="header-nav index-nav"> <div class="clear"> <ul class="clear fl i-top-menu top-menu"> <li><a href="/" >Home</a> </li> <li type="{{newsColumn.abbreviation}}" ng-repeat="newsColumn in topMenus" ng-if="newsColumn.columnNewsShowLocation == '1' && newsColumn.abbreviation =='journals'" repeat-finish-light> <a href="javascript:void(0);"> <i ng-bind-html="newsColumn.name"></i> <span ng-if="newsColumn.subColumns.length > 0"></span> <span ng-if="newsColumn.abbreviation == 'journals'"></span> </a> <ol class="data-show i-menu-journals tpl5-journal" ng-if="newsColumn.abbreviation == 'journals'"></ol> </li> </ul> <div class="shareBox fr" > <ul class="share-right clear "> <li class="share-facebook" onclick="shareTools('facebook');" title="share this content in facebook"> <img src="/style/web/images/custom/share_facebook.png" alt=""> </li> <li class="share-twitter" onclick="shareTools('twitter');" title="share this content in twitter"> <img src="/style/web/images/custom/share_twitter.png" alt=""> </li> <li class="share-linkedin" onclick="shareTools('linkedin');" title="share this content in linkedin"> <img src="/style/web/images/custom/share_linkin.png" alt=""> </li> <li class="share-mendeley" onclick="shareTools('mendeley');" title="share this content in Mendeley"> <img src="/style/web/images/custom/share_mendeley.png" alt=""> </li> <li class="share-researchGate" onclick="shareTools('researchGate');" title="share this content in researchGate"> <img src="/style/web/images/custom/share_researchGate.png" alt=""> </li> <!-- <li onclick="shareTools('sina');" title="分享到微博"><img src="/style/web/images/custom/share_weibo.png"></li> <li class="weixin" title="分享到微信"><img src="/style/web/images/custom/share_weixin.png"></li> <li class="kongjian" title="分享到qq空间"><img src="/style/web/images/custom/share_qq.png"></li> --> </ul> </div> </div> </div> </div> </div> </div> </div> <div class="header-nav ban-header-nav4"> <div class="container clear"> <ul class="nav-ul clear fl top-menu"> <li type="{{newsColumn.abbreviation}}" ng-repeat="newsColumn in topMenus" ng-if="newsColumn.columnNewsShowLocation == '1' && newsColumn.abbreviation !='journals'"> <a href="{{newsColumn.links}}"> <i ng-bind-html="newsColumn.name"></i> <span ng-if="newsColumn.subColumns.length > 0"></span> </a> <ol class="data-show" ng-if="newsColumn.subColumns.length > 0"> <li ng-repeat="subColumn in newsColumn.subColumns" type="{{subColumn.abbreviation}}"> <a href="{{subColumn.links}}" target="_top">{{subColumn.name}}</a> </li> </ol> </li> </ul> </div> </div> <!--手机菜单--> <div class="phone-nav ban-phone-nav"> <div class="container clear"> <div class="navList fl"> <span class="span1"></span> <span class="span2"></span> <span class="span3"></span> </div> <a href="/journal/math" class="logo fl"> <p class="romal">AIMS Mathematics</p> <!-- <img src="/style/web/images/logo-new_03.png" alt=""> --> </a> <div class="search-app fr"></div> </div> <div class="search-app-wrap"> <div class="container clear"> <div class="left fl"> <form action="/search" method="POST" onsubmit="return checkSearch(this);" class="topSearchForm"> <input type="text" name="q" placeholder="Search" class="fl text"> <input type="hidden" name="language" value="en"> <input type="hidden" name="publisherId" value="math"> <input type="submit" class="sub fl" value=""> </form> </div> <a href="javascript:void(0);" onclick="advanceSearchEntrance();" class="gao fr">Search Advanced</a> </div> </div> <ul class="smallUl top-menu"> <li><a href="/">Home</a></li> <li type="{{newsColumn.abbreviation}}" ng-repeat="newsColumn in topMenus" ng-if="newsColumn.columnNewsShowLocation == '1'" repeat-finish-light> <a href="{{newsColumn.links}}" >{{newsColumn.name}}</a> <ol class="data-show i-menu-journals" ng-if="newsColumn.abbreviation == 'journals'"></ol> <ol class="data-show" ng-if="newsColumn.subColumns.length > 0"> <li ng-repeat="subColumn in newsColumn.subColumns" type="{{subColumn.abbreviation}}"> <a href="{{subColumn.links}}" target="_top">{{subColumn.name}}</a> </li> </ol> </li> </ul> </div> </div> </div> <!-- 添加文章记录 --> <script type="text/javascript"> $(document).ready(function () { //访问文章记录 var articleId = $("#articleId").val(); if(!isNull(articleId)){ //var nowUrl = window.location.href; //var number = nowUrl.indexOf("viewType=HTML"); getVisitInfo(articleId,0); } }); </script> <!--头部 结束--> <!--底部暂时渲染在这--> <div class="common-bottom" hidden> <div class="footer ban-footer" ng-controller="j-bottom-menu" > <input type="hidden" id="language" value="en"> <input type="hidden" id="websitecn" value=""> <input type="hidden" id="websiteen" value=""> <input type="hidden" class="newsShow" value="publisherNews"> <input type="hidden" id="publisherId" value="math"> <input type="hidden" id="tplPath" value="en/tpl5"> <div class="bottom-fixed"></div> <div class="top"> <ul class="clear"> <li ng-repeat="newsColumn in newsColumns"> <a href="{{newsColumn.links}}">{{newsColumn.name}}</a> </li> </ul> </div> <div class="bot">Copyright © AIMS Press</div> </div> <!-- <script src="//plugin.sowise.cn/sowise-plugin.js" custom-options="{'citedby':false,'suggest':false,'ipRecord':true,'journalId':999}"></script> --> <link rel="stylesheet" href="https://public.xml-journal.net/rh-public/css/rh-public.css"> <script src="https://public.xml-journal.net/rh-public/js/rh-public.js"></script> </div> </div> <!--电脑端 开始--> <div class="article-pc"> <!-- <div class="article-header-new"> <div class="inner clear"> <ul class="fl"> <li> <a href="javascript:void(0);" class="download-pdf" data="618cf88cba35de0683e3bfc7"><i class="fa fa-file-pdf-o"></i><span>PDF</span></a> </li> <li> <a href="javascript:void(0);" data-target="#exportCitationModal" data-toggle="modal"><i class="fa fa-quote-left"></i><span>Cite</span></a> </li> <li> <a><i class="fa fa-share-alt"></i><span>Share</span></a> <dl> <dd> <a href="javascript:void(0);" onclick="shareTools('facebook');" title="share to facebook">facebook</a> </dd> <dd> <a href="javascript:void(0);" onclick="shareTools('twitter');" title="share to twitter">twitter</a> </dd> <dd> <a href="javascript:void(0);" onclick="shareTools('google+');" title="share to google">google</a> </dd> <dd> <a href="javascript:void(0);" onclick="shareTools('linkedin');" title="share to linkedin">linkedin</a> </dd> </dl> </li> </ul> <div class="article-search fr clear"> <form class="topSearchForm" id ="searchFormTop" action="/search" method="post" onsubmit="return checkSearch(this);" role="form"> <select class="fl" name="searchField"> <option value="">All</option> <option value="titleEn">Title</option> <option value="authors.authorNameEn">Author</option> <option value="keywords.keywordEn">Keyword</option> <option value="abstractinfoEn">Abstract</option> <option value="doi">DOI</option> <option value="classifyinfoEn">Category</option> <option value="affiliations.affliEn">Address</option> <option value="funds.fundsInfoEn">Fund</option> </select> <input type="text" name="q" placeholder="Search" class="fl text input"> <input name="language" type="hidden" value="en"> <input name="publisherId" type="hidden" value="math"> <input type="submit" class="sub fl" value=""> </form> </div> </div> </div> --> <div class="article-main"> <div class="inner clear content" style="position:relative;"> <!-- <div class="article-main-left fl"> <div class="wrapper"> <img src="//www.aimspress.com/aimspress-upload/journal/math/cover_2020410144226550.jpg" alt="" style="max-width: 100%;"> </a> <a href="/math/article/2022/2/archive-articles" class="volume-issue__wrap"> 2022 <span class="volume">Volume 7</span> <span class="issue">Issue 2</span> </a> <div class="content-nav"> <div class="contents-title">Article Contents</div> <a class="switchFormula" href="javascript:void(0);" onclick="switchFormula();">Turn off MathJax</a> <div class="Abstract-left-list"> <a href=""></a> </div> <div class="jumplink-list"> </div> <div class="References-left-list"> <a href=""></a> </div> <div class="Supplements-left-list"> <a href=""></a> </div> </div> </div> </div> --> <div class="article-main-mid fl bgwhite gongshi"> <div class="clear"> <div class="article-journal fl" > <h3 class="journal-con" ><a href="/journal/math" class="journal-tit"> AIMS Mathematics </a></h3> <div class="article-list-time"> <font > 2022, <span><a href="/math/article/archives" class="mainColor">Volume 7</a>, </span> <a href="/math/article/2022/2/archive-articles" class="mainColor">Issue 2</a><span>:</span> <span>2331-2347</span>. </font> <font>doi: <a href="https://doi.org/10.3934/math.2022132" target="_blank" class="mainColor">10.3934/math.2022132</a></font> </div> </div> <div class="fr changebtn" > <a href="/article/doi/10.3934/math.2022131" class="page-btn prev-page fl">Previous Article</a> <a href="/article/doi/10.3934/math.2022133" class="page-btn next-page fl">Next Article</a> </div> </div> <div class="article-left"> <div class="article-column "> <span class="columnli">Research article</span> <!-- <span class="columnli access"> Open Access </span> --> <!-- <span class="columnli" id="article_special_show" hidden> Special Issue </span> --> </div> <div class="articleEn"> <div class="article-title left-title"> <h1>On robust weakly $ \varepsilon $-efficient solutions for multi-objective fractional programming problems under data uncertainty</h1> </div> <ul class="article-author clear"> <li > <a href="javascript:void(0);" class="mainColor" data-relate="msaraj@scu.ac.ir; sh.s.manesh@gmail.com" data="{{author.authorNameEn}}" type="authors.authorNameEn">Shima Soleimani Manesh</a> <sup class="authorTag"> <a href="javascript:void(0);" class="com-num" data-tagVal="1">1</a> ,&nbsp; <a href="javascript:void(0);" class="com-user" title="Corresponding Author:&nbsp;Shima Soleimani Manesh,&nbsp;msaraj@scu.ac.ir; sh.s.manesh@gmail.com"></a>,&nbsp;<a href="mailto:msaraj@scu.ac.ir; sh.s.manesh@gmail.com" class="com-mail" title="mailto:&nbsp;msaraj@scu.ac.ir; sh.s.manesh@gmail.com"></a></sup>,&nbsp; </li> <li > <a href="javascript:void(0);" class="mainColor" data-relate="msaraj@scu.ac.ir; sh.s.manesh@gmail.com" data="{{author.authorNameEn}}" type="authors.authorNameEn">Mansour Saraj</a> <sup class="authorTag"> <a href="javascript:void(0);" class="com-num" data-tagVal="1,2">1,2</a> ,&nbsp; <a href="javascript:void(0);" class="com-user" title="Corresponding Author:&nbsp;Mansour Saraj,&nbsp;msaraj@scu.ac.ir; sh.s.manesh@gmail.com"></a>,&nbsp;<a href="mailto:msaraj@scu.ac.ir; sh.s.manesh@gmail.com" class="com-mail" title="mailto:&nbsp;msaraj@scu.ac.ir; sh.s.manesh@gmail.com"></a></sup>,&nbsp; </li> <li > <a href="javascript:void(0);" class="mainColor" data-relate="" data="{{author.authorNameEn}}" type="authors.authorNameEn">Mahmood Alizadeh</a> <sup class="authorTag"> <a href="javascript:void(0);" class="com-num" data-tagVal="1">1</a> </sup>,&nbsp; </li> <li > <a href="javascript:void(0);" class="mainColor" data-relate="" data="{{author.authorNameEn}}" type="authors.authorNameEn">Maryam Momeni</a> <sup class="authorTag"> <a href="javascript:void(0);" class="com-num" data-tagVal="1">1</a> </sup> </li> </ul> <ul class="about-author"> <!-- 英文作者地址 --> <li class="article-author-address"> <span class=""> 1. </span> <div class="lostOf" > Department of Mathematics, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran </div> </li> <li class="article-author-address"> <span class=""> 2. </span> <div class="lostOf" > Department of Mathematics, Faculty of Mathematical Sciences and Computer, Shahid Chamran University of Ahvaz, Ahvaz, Iran </div> </li> </ul> <ul class="about-article"> <!-- 稿件日期和基金项目0308 --> <li class="com-author-info timewrap"> <span><b>Received:</b> 09 August 2021 </span> <span><b>Accepted:</b> 26 October 2021 </span> <span><b>Published:</b> 11 November 2021 </span> </li> <li class="fundwrap"> </li> <li class="com-author-info"> <p class="com-author-info"> <b>MSC : </b> 90C17, 90C29, 90C32 </p> </li> <li class="com-author-info"> <span class="columnli" id="article_special_show" hidden> </span> </li> </p> </li> </ul> </div> </div> <ul id="myTab" class="tab-ul tab-ul-article clear"> <li class="active abs"><a href="#Abstract" data-toggle="tab">Abstract</a></li> <li class="htm"><a href="#FullTextWrap" data-toggle="tab">Full Text(HTML)</a></li> <!-- <div class="pdf-xml clearfix"> <div class="download-pdf" data="618cf88cba35de0683e3bfc7"><a href="javascript:void(0);" > Download PDF</a></div> <div class="download-xml"><a href="javascript:void(0);" onclick="toExportXML('618cf88cba35de0683e3bfc7');"> Download XML</a></div> <li class="pdf"><a href="javascript:void(0);" data-toggle="tab">Download PDF</a></li> </div> --> <li class="pdf hidden-sm hidden-xs"><div class="download-pdf" data="618cf88cba35de0683e3bfc7"><a href="javascript:void(0);" > Download PDF</a></div></li> <li class="pdf hidden-lg hidden-md"> <a href="/aimspress-data/math/2022/2/PDF/math-07-02-132.pdf" > Download PDF </a> </li> </ul> <ul class="article-tab-box tab-content" id="myTabContent"> <!-- 摘要 --> <li id="Abstract" class="articleListBox tab-pane fade in active"> <!-- <h3 class="navTitle" id="Abstract-list">Abstract</h3> --> <!-- <abstract><p>In this study, we use the robust optimization techniques to consider a class of multi-objective fractional programming problems in the presence of uncertain data in both of the objective function and the constraint functions. The components of the objective function vector are reported as ratios involving a convex non-negative function and a concave positive function. In addition, on applying a parametric approach, we establish $ \varepsilon $-optimality conditions for robust weakly $ \varepsilon $-efficient solution. Furthermore, we present some theorems to obtain a robust $ \varepsilon $-saddle point for uncertain multi-objective fractional problem.</p></abstract> --> <div class="article-abstract"> <abstract><p>In this study, we use the robust optimization techniques to consider a class of multi-objective fractional programming problems in the presence of uncertain data in both of the objective function and the constraint functions. The components of the objective function vector are reported as ratios involving a convex non-negative function and a concave positive function. In addition, on applying a parametric approach, we establish $ \varepsilon $-optimality conditions for robust weakly $ \varepsilon $-efficient solution. Furthermore, we present some theorems to obtain a robust $ \varepsilon $-saddle point for uncertain multi-objective fractional problem.</p></abstract> </div> <ul class="article-keyword article-info-en"> <b>Keywords:</b> <li><a class="underHigh mainColor" href="javascript:void(0);" data="multi-objective fractional programming problem" type="keywords.keywordEn">multi-objective fractional programming problem</a>, </li> <li><a class="underHigh mainColor" href="javascript:void(0);" data="robust optimization" type="keywords.keywordEn">robust optimization</a>, </li> <li><a class="underHigh mainColor" href="javascript:void(0);" data="robust weakly $ \varepsilon $-efficient solution" type="keywords.keywordEn">robust weakly $ \varepsilon $-efficient solution</a>, </li> <li><a class="underHigh mainColor" href="javascript:void(0);" data="robust $ \varepsilon $-saddle point theorem" type="keywords.keywordEn">robust $ \varepsilon $-saddle point theorem</a>, </li> <li><a class="underHigh mainColor" href="javascript:void(0);" data="$ \varepsilon $-optimality theorem" type="keywords.keywordEn">$ \varepsilon $-optimality theorem</a> </li> </ul> <p class="citation-p"><b class="subtit-b">Citation:</b> Shima Soleimani Manesh, Mansour Saraj, Mahmood Alizadeh, Maryam Momeni. On robust weakly $ \varepsilon $-efficient solutions for multi-objective fractional programming problems under data uncertainty[J]. AIMS Mathematics, 2022, 7(2): 2331-2347. doi: 10.3934/math.2022132</p> <!-- 相关文章 --> <div id="RelatedPages" class="articleListBox"> <h3><b class="subtit-b">Related Papers:</b></h3> <div id="RelatedPagesHtml"></div> </div> </li> <!-- 全文 --> <li id="FullTextWrap" class="articleListBox FullText-all tab-pane fade in"> <h3 class="navTitle" id="Abstract-list">Abstract</h3> <!-- changedby qmn:20210416 //CDATA域字符--> <div class="article-abstract"> <abstract><p>In this study, we use the robust optimization techniques to consider a class of multi-objective fractional programming problems in the presence of uncertain data in both of the objective function and the constraint functions. The components of the objective function vector are reported as ratios involving a convex non-negative function and a concave positive function. In addition, on applying a parametric approach, we establish $ \varepsilon $-optimality conditions for robust weakly $ \varepsilon $-efficient solution. Furthermore, we present some theorems to obtain a robust $ \varepsilon $-saddle point for uncertain multi-objective fractional problem.</p></abstract> </div> <br /> <div class="nodeTitle"><b></b></div> <br /> <div class="nodeContent"> </div> <div id="FullText" > <img style="display:block;margin:10px auto;" src="/style/web/images/article/1.gif" alt="加载中" /> </div> <!-- 缩写 --> </br> <!-- 致谢 --> <!-- 利益冲突 --> </br> <h3 class="navTitle" id="References-list">References</h3> <div id="References"> <div class="References-wrap"> <table class="reference-tab"> <tr class="document-box" id="b1"> <td valign="top" class="td1"> [1] </td> <td class="td2"> <!-- A. Beck, A. Ben-Tal, Duality in robust optimization primal worst equals dual best, <i>Oper. Res. Lett.</i>, <b>37</b> (2009), 1–6. doi: <a href="http://dx.doi.org/10.1016/j.orl.2008.09.010" target="_blank">10.1016/j.orl.2008.09.010</a>. --> A. Beck, A. Ben-Tal, Duality in robust optimization primal worst equals dual best, <i>Oper. Res. Lett.</i>, <b>37</b> (2009), 1–6. doi: <a href="http://dx.doi.org/10.1016/j.orl.2008.09.010" target="_blank">10.1016/j.orl.2008.09.010</a>. </td> </tr> <tr class="document-box" id="b2"> <td valign="top" class="td1"> [2] </td> <td class="td2"> <!-- A. Ben-Tal, EL. Ghaoui, A. Nemirovski, <i>Robust optimization</i>, Princeton Series in Applied Mathematics, 2009. --> A. Ben-Tal, EL. Ghaoui, A. Nemirovski, <i>Robust optimization</i>, Princeton Series in Applied Mathematics, 2009. </td> </tr> <tr class="document-box" id="b3"> <td valign="top" class="td1"> [3] </td> <td class="td2"> <!-- R. Bokrantz, A.Fredriksson, Necessary and Sufficient conditions for pareto efficiency in robust multiobjective optimization, <i>Eur. J. Oper. Res.</i>, <b>262</b> (2017), 682–692. doi: <a href="http://dx.doi.org/10.1016/j.ejor.2017.04.012" target="_blank">10.1016/j.ejor.2017.04.012</a>. --> R. Bokrantz, A.Fredriksson, Necessary and Sufficient conditions for pareto efficiency in robust multiobjective optimization, <i>Eur. J. Oper. Res.</i>, <b>262</b> (2017), 682–692. doi: <a href="http://dx.doi.org/10.1016/j.ejor.2017.04.012" target="_blank">10.1016/j.ejor.2017.04.012</a>. </td> </tr> <tr class="document-box" id="b4"> <td valign="top" class="td1"> [4] </td> <td class="td2"> <!-- J. M. Buhmann, A. Y. Gronskiy, M. Mihal&#225;k, T. Pr&#246;ger, R. &#352;r&#225;mek, P. Widmayar, Robust optimization in the presence of uncertainty: A generic approach, <i>J. Comput. Syst. Sci.</i>, <b>94</b> (2018), 135–166. doi: <a href="http://dx.doi.org/10.1016/j.jcss.2017.10.004" target="_blank">10.1016/j.jcss.2017.10.004</a>. --> J. M. Buhmann, A. Y. Gronskiy, M. Mihal&#225;k, T. Pr&#246;ger, R. &#352;r&#225;mek, P. Widmayar, Robust optimization in the presence of uncertainty: A generic approach, <i>J. Comput. Syst. Sci.</i>, <b>94</b> (2018), 135–166. doi: <a href="http://dx.doi.org/10.1016/j.jcss.2017.10.004" target="_blank">10.1016/j.jcss.2017.10.004</a>. </td> </tr> <tr class="document-box" id="b5"> <td valign="top" class="td1"> [5] </td> <td class="td2"> <!-- S. Chandra, B. D. Craven, B. Mond, Vector valued lagrangian and multiobjective fractional programming duality, <i>Numer. Funct. Anal. Optim.</i>, <b>11</b> (1990), 239–254. doi: <a href="http://dx.doi.org/10.1080/01630569008816373" target="_blank">10.1080/01630569008816373</a>. --> S. Chandra, B. D. Craven, B. Mond, Vector valued lagrangian and multiobjective fractional programming duality, <i>Numer. Funct. Anal. Optim.</i>, <b>11</b> (1990), 239–254. doi: <a href="http://dx.doi.org/10.1080/01630569008816373" target="_blank">10.1080/01630569008816373</a>. </td> </tr> <tr class="document-box" id="b6"> <td valign="top" class="td1"> [6] </td> <td class="td2"> <!-- I. P. Debnath, X. Qin, Robust optimality and duality for minimax fractional programming problems with support functions, <i>J. Nonlinear Funct. Anal.</i>, <b>2021</b> (2021), 1–22. doi: <a href="http://dx.doi.org/10.23952/jnfa.2021.5" target="_blank">10.23952/jnfa.2021.5</a>. --> I. P. Debnath, X. Qin, Robust optimality and duality for minimax fractional programming problems with support functions, <i>J. Nonlinear Funct. Anal.</i>, <b>2021</b> (2021), 1–22. doi: <a href="http://dx.doi.org/10.23952/jnfa.2021.5" target="_blank">10.23952/jnfa.2021.5</a>. </td> </tr> <tr class="document-box" id="b7"> <td valign="top" class="td1"> [7] </td> <td class="td2"> <!-- W. Dinkelbach, On nonlinear fractional programming, <i>Manage. Sci.</i>, <b>13</b> (1967), 492–498. doi: <a href="http://dx.doi.org/10.1287/mnsc.13.7.492" target="_blank">10.1287/mnsc.13.7.492</a>. --> W. Dinkelbach, On nonlinear fractional programming, <i>Manage. Sci.</i>, <b>13</b> (1967), 492–498. doi: <a href="http://dx.doi.org/10.1287/mnsc.13.7.492" target="_blank">10.1287/mnsc.13.7.492</a>. </td> </tr> <tr class="document-box" id="b8"> <td valign="top" class="td1"> [8] </td> <td class="td2"> <!-- M. Fakhar, M. R. Mahyarinia, J. Zafarani, On nonsmooth robust multiobjective optimization under generalized convexity with applications to portfolio optimization, <i>Eur. J. Oper. Res.</i>, <b>265</b> (2018), 39–48. doi: <a href="http://dx.doi.org/10.1016/j.ejor.2017.08.003" target="_blank">10.1016/j.ejor.2017.08.003</a>. --> M. Fakhar, M. R. Mahyarinia, J. Zafarani, On nonsmooth robust multiobjective optimization under generalized convexity with applications to portfolio optimization, <i>Eur. J. Oper. Res.</i>, <b>265</b> (2018), 39–48. doi: <a href="http://dx.doi.org/10.1016/j.ejor.2017.08.003" target="_blank">10.1016/j.ejor.2017.08.003</a>. </td> </tr> <tr class="document-box" id="b9"> <td valign="top" class="td1"> [9] </td> <td class="td2"> <!-- N. Gadhi, Necessary and sufficient optimality conditions for fractional multiobjective problem, <i>Optimization</i>, <b>57</b> (2008), 527–537. doi: <a href="http://dx.doi.org/10.1080/02331930701455945" target="_blank">10.1080/02331930701455945</a>. --> N. Gadhi, Necessary and sufficient optimality conditions for fractional multiobjective problem, <i>Optimization</i>, <b>57</b> (2008), 527–537. doi: <a href="http://dx.doi.org/10.1080/02331930701455945" target="_blank">10.1080/02331930701455945</a>. </td> </tr> <tr class="document-box" id="b10"> <td valign="top" class="td1"> [10] </td> <td class="td2"> <!-- M. G. Govil, A. Mehra, $\varepsilon$-optimality for multiobjective programming on a Banach spaces, <i>Eur. J. Oper. Res.</i>, <b>157</b> (2004), 106–112. doi: <a href="http://dx.doi.org/10.1016/S0377-2217(03)00206-6" target="_blank">10.1016/S0377-2217(03)00206-6</a>. --> M. G. Govil, A. Mehra, $\varepsilon$-optimality for multiobjective programming on a Banach spaces, <i>Eur. J. Oper. Res.</i>, <b>157</b> (2004), 106–112. doi: <a href="http://dx.doi.org/10.1016/S0377-2217(03)00206-6" target="_blank">10.1016/S0377-2217(03)00206-6</a>. </td> </tr> <tr class="document-box" id="b11"> <td valign="top" class="td1"> [11] </td> <td class="td2"> <!-- V. Jeyakumar, G. Y. Li, Strong duality in robust convex programming: complete characterization, <i>SIAM. J. Optim.</i>, <b>20</b> (2010), 3384–3407. doi: <a href="http://dx.doi.org/10.1137/100791841" target="_blank">10.1137/100791841</a>. --> V. Jeyakumar, G. Y. Li, Strong duality in robust convex programming: complete characterization, <i>SIAM. J. Optim.</i>, <b>20</b> (2010), 3384–3407. doi: <a href="http://dx.doi.org/10.1137/100791841" target="_blank">10.1137/100791841</a>. </td> </tr> <tr class="document-box" id="b12"> <td valign="top" class="td1"> [12] </td> <td class="td2"> <!-- V. Jeyakumar, G. Y. Li, Robust Duality for Fractional Programming Problems with Constraint-Wise Data Uncertainty, <i>J. Optim. Theory Appl.</i>, <b>151</b>(2011), 292–303. doi: <a href="http://dx.doi.org/10.1137/100791841" target="_blank">10.1137/100791841</a>. --> V. Jeyakumar, G. Y. Li, Robust Duality for Fractional Programming Problems with Constraint-Wise Data Uncertainty, <i>J. Optim. Theory Appl.</i>, <b>151</b>(2011), 292–303. doi: <a href="http://dx.doi.org/10.1137/100791841" target="_blank">10.1137/100791841</a>. </td> </tr> <tr class="document-box" id="b13"> <td valign="top" class="td1"> [13] </td> <td class="td2"> <!-- V. Jeyakumar, G. M. Lee, N. Dinh, Characterization of solution sets Of convex vector minimization problems, <i>Eur. J. Oper. Res.</i>, <b>174</b> (2006), 1380–1395. doi: <a href="http://dx.doi.org/10.1016/j.ejor.2005.05.007" target="_blank">10.1016/j.ejor.2005.05.007</a>. --> V. Jeyakumar, G. M. Lee, N. Dinh, Characterization of solution sets Of convex vector minimization problems, <i>Eur. J. Oper. Res.</i>, <b>174</b> (2006), 1380–1395. doi: <a href="http://dx.doi.org/10.1016/j.ejor.2005.05.007" target="_blank">10.1016/j.ejor.2005.05.007</a>. </td> </tr> <tr class="document-box" id="b14"> <td valign="top" class="td1"> [14] </td> <td class="td2"> <!-- V. Jeyakumar, Asymptotic dual conditions characterizing optimality for infinite convex programs, <i>J. Optim. Theory Appl.</i>, <b>93</b> (1997), 153–165. doi: <a href="http://dx.doi.org/10.1023/A:1022606002804" target="_blank">10.1023/A:1022606002804</a>. --> V. Jeyakumar, Asymptotic dual conditions characterizing optimality for infinite convex programs, <i>J. Optim. Theory Appl.</i>, <b>93</b> (1997), 153–165. doi: <a href="http://dx.doi.org/10.1023/A:1022606002804" target="_blank">10.1023/A:1022606002804</a>. </td> </tr> <tr class="document-box" id="b15"> <td valign="top" class="td1"> [15] </td> <td class="td2"> <!-- G. S. Kim, G. M. Lee, On $\varepsilon$-approximate solutions for convex semidefinite optimization problems, <i>Taiwanese J Math.</i>, <b>11</b> (2007), 765–784. --> G. S. Kim, G. M. Lee, On $\varepsilon$-approximate solutions for convex semidefinite optimization problems, <i>Taiwanese J Math.</i>, <b>11</b> (2007), 765–784. </td> </tr> <tr class="document-box" id="b16"> <td valign="top" class="td1"> [16] </td> <td class="td2"> <!-- M. H. Kim, G. S. Kim, G. M. Lee, On $\varepsilon$-optimality conditions for multiobjective fractional optimization problems, <i>J Fixed Point Theory Appl.</i>, <b>2011</b> (2011), 1–13. doi: <a href="http://dx.doi.org/10.1186/1687-1812-2011-6" target="_blank">10.1186/1687-1812-2011-6</a>. --> M. H. Kim, G. S. Kim, G. M. Lee, On $\varepsilon$-optimality conditions for multiobjective fractional optimization problems, <i>J Fixed Point Theory Appl.</i>, <b>2011</b> (2011), 1–13. doi: <a href="http://dx.doi.org/10.1186/1687-1812-2011-6" target="_blank">10.1186/1687-1812-2011-6</a>. </td> </tr> <tr class="document-box" id="b17"> <td valign="top" class="td1"> [17] </td> <td class="td2"> <!-- M. H. Kim, Duality theorem and vector saddle point theorem for robust multiobjective optimization problems, <i>Korean. Math. Soc.</i>, <b>28</b> (2013), 597–602. doi: <a href="http://dx.doi.org/10.4134/CKMS.2013.28.3.597" target="_blank">10.4134/CKMS.2013.28.3.597</a>. --> M. H. Kim, Duality theorem and vector saddle point theorem for robust multiobjective optimization problems, <i>Korean. Math. Soc.</i>, <b>28</b> (2013), 597–602. doi: <a href="http://dx.doi.org/10.4134/CKMS.2013.28.3.597" target="_blank">10.4134/CKMS.2013.28.3.597</a>. </td> </tr> <tr class="document-box" id="b18"> <td valign="top" class="td1"> [18] </td> <td class="td2"> <!-- G. S. Kim, G. M. Lee, On $\varepsilon$-optimality theorems for convex vector optimization problems, <i>J. Nonlinear and Convex Anal.</i>, <b>12</b> (2011), 473–482. --> G. S. Kim, G. M. Lee, On $\varepsilon$-optimality theorems for convex vector optimization problems, <i>J. Nonlinear and Convex Anal.</i>, <b>12</b> (2011), 473–482. </td> </tr> <tr class="document-box" id="b19"> <td valign="top" class="td1"> [19] </td> <td class="td2"> <!-- G. M. Lee, G. H. Lee, $\varepsilon$-Duality for convex semidefinite optimization problem with conic constraints, <i>J. Inequalities Appl.</i>, <b>2010</b> (2010). doi: <a href="http://dx.doi.org/10.1155/2010/363012" target="_blank">10.1155/2010/363012</a>. --> G. M. Lee, G. H. Lee, $\varepsilon$-Duality for convex semidefinite optimization problem with conic constraints, <i>J. Inequalities Appl.</i>, <b>2010</b> (2010). doi: <a href="http://dx.doi.org/10.1155/2010/363012" target="_blank">10.1155/2010/363012</a>. </td> </tr> <tr class="document-box" id="b20"> <td valign="top" class="td1"> [20] </td> <td class="td2"> <!-- J. H. Lee, G. M. Lee, On $\varepsilon$-solutions for convex optimizations problems with uncertainty data, <i>Positivity</i>, <b>16</b> (2012), 509–526. doi: <a href="http://dx.doi.org/10.1007/S11117-012-0186-4" target="_blank">10.1007/S11117-012-0186-4</a>. --> J. H. Lee, G. M. Lee, On $\varepsilon$-solutions for convex optimizations problems with uncertainty data, <i>Positivity</i>, <b>16</b> (2012), 509–526. doi: <a href="http://dx.doi.org/10.1007/S11117-012-0186-4" target="_blank">10.1007/S11117-012-0186-4</a>. </td> </tr> <tr class="document-box" id="b21"> <td valign="top" class="td1"> [21] </td> <td class="td2"> <!-- Ch. Li, K. F. Ng, T. K. Pong, The SECQ, Linear regularity and the strong CHIP for an infinite system of closed convex sets in normed linear spaces, <i>SIAM. J. Optim.</i>, <b>18</b> (2007), 643–665. doi: <a href="http://dx.doi.org/10.1137/060652087" target="_blank">10.1137/060652087</a>. --> Ch. Li, K. F. Ng, T. K. Pong, The SECQ, Linear regularity and the strong CHIP for an infinite system of closed convex sets in normed linear spaces, <i>SIAM. J. Optim.</i>, <b>18</b> (2007), 643–665. doi: <a href="http://dx.doi.org/10.1137/060652087" target="_blank">10.1137/060652087</a>. </td> </tr> <tr class="document-box" id="b22"> <td valign="top" class="td1"> [22] </td> <td class="td2"> <!-- Z. A. Liang, H. X. Huang, P. M. Pardalas, Efficiency condition and duality for a class of multiobjective fractional programming problems, <i>J. Glob. Optim.</i>, <b>27</b> (2003), 447–471. doi: <a href="http://dx.doi.org/10.1023/A:1026041403408" target="_blank">10.1023/A:1026041403408</a>. --> Z. A. Liang, H. X. Huang, P. M. Pardalas, Efficiency condition and duality for a class of multiobjective fractional programming problems, <i>J. Glob. Optim.</i>, <b>27</b> (2003), 447–471. doi: <a href="http://dx.doi.org/10.1023/A:1026041403408" target="_blank">10.1023/A:1026041403408</a>. </td> </tr> <tr class="document-box" id="b23"> <td valign="top" class="td1"> [23] </td> <td class="td2"> <!-- J. C. Liu, $\varepsilon$-duality theorem of nondifferentiable nonconvex multiobjective programming, <i>J. Optim. Theory and Appl.</i>, <b>69</b> (1991), 153–167. doi: <a href="http://dx.doi.org/10.1007/BF00940466" target="_blank">10.1007/BF00940466</a>. --> J. C. Liu, $\varepsilon$-duality theorem of nondifferentiable nonconvex multiobjective programming, <i>J. Optim. Theory and Appl.</i>, <b>69</b> (1991), 153–167. doi: <a href="http://dx.doi.org/10.1007/BF00940466" target="_blank">10.1007/BF00940466</a>. </td> </tr> <tr class="document-box" id="b24"> <td valign="top" class="td1"> [24] </td> <td class="td2"> <!-- X. J. Long, N. J. Huang, Z. B. Lia, Optimality conditions, duality and saddlepoints for nondifferentiable multiobjective fractional programs, <i>J. Ind. Manag. Optim.</i>, <b>4</b> (2008), 287–298. doi: <a href="http://dx.doi.org/10.3934/jimo.2008.4.287" target="_blank">10.3934/jimo.2008.4.287</a>. --> X. J. Long, N. J. Huang, Z. B. Lia, Optimality conditions, duality and saddlepoints for nondifferentiable multiobjective fractional programs, <i>J. Ind. Manag. Optim.</i>, <b>4</b> (2008), 287–298. doi: <a href="http://dx.doi.org/10.3934/jimo.2008.4.287" target="_blank">10.3934/jimo.2008.4.287</a>. </td> </tr> <tr class="document-box" id="b25"> <td valign="top" class="td1"> [25] </td> <td class="td2"> <!-- P. Loridan, Necessary conditions for $\varepsilon$-optimality, In: Guignard M. (eds) <i>Optimality and Stability in Mathematical Programming</i>, Mathematical Programming Studies, Springer, Berlin, Heidelberg, <b>19</b> (1982), 140–152. doi: <a href="http://dx.doi.org/10.1007/BFb0120986" target="_blank">10.1007/BFb0120986</a>. --> P. Loridan, Necessary conditions for $\varepsilon$-optimality, In: Guignard M. (eds) <i>Optimality and Stability in Mathematical Programming</i>, Mathematical Programming Studies, Springer, Berlin, Heidelberg, <b>19</b> (1982), 140–152. doi: <a href="http://dx.doi.org/10.1007/BFb0120986" target="_blank">10.1007/BFb0120986</a>. </td> </tr> <tr class="document-box" id="b26"> <td valign="top" class="td1"> [26] </td> <td class="td2"> <!-- S. Nobakhtian, Optimality and duality for nonsmooth multiobjective fractional programming with mixed constraints, <i>J. Glob. Optim.</i>, <b>41</b> (2008), 103–115. doi: <a href="http://dx.doi.org/10.1007/s10898-007-9168-7" target="_blank">10.1007/s10898-007-9168-7</a>. --> S. Nobakhtian, Optimality and duality for nonsmooth multiobjective fractional programming with mixed constraints, <i>J. Glob. Optim.</i>, <b>41</b> (2008), 103–115. doi: <a href="http://dx.doi.org/10.1007/s10898-007-9168-7" target="_blank">10.1007/s10898-007-9168-7</a>. </td> </tr> <tr class="document-box" id="b27"> <td valign="top" class="td1"> [27] </td> <td class="td2"> <!-- X. K. Sun, K. L. Teo, L. Tang, Dual approaches to characterize robust optimal solution sets for a class of uncertain optimization problems, <i>J. Optim. Theory Appl.</i>, <b>182</b> (2019), 984–1000. doi: <a href="http://dx.doi.org/10.1007/s10957-019-01496-w" target="_blank">10.1007/s10957-019-01496-w</a>. --> X. K. Sun, K. L. Teo, L. Tang, Dual approaches to characterize robust optimal solution sets for a class of uncertain optimization problems, <i>J. Optim. Theory Appl.</i>, <b>182</b> (2019), 984–1000. doi: <a href="http://dx.doi.org/10.1007/s10957-019-01496-w" target="_blank">10.1007/s10957-019-01496-w</a>. </td> </tr> <tr class="document-box" id="b28"> <td valign="top" class="td1"> [28] </td> <td class="td2"> <!-- X. K. Sun, X. B. Li, X. J. Long, Z. Y. Peng, On robust approximate optimal solutions for uncertain convex optimization and applications to multiobjective optimization, <i>Pac. J. Optim.</i>, <b>13</b> (2017), 621–643. --> X. K. Sun, X. B. Li, X. J. Long, Z. Y. Peng, On robust approximate optimal solutions for uncertain convex optimization and applications to multiobjective optimization, <i>Pac. J. Optim.</i>, <b>13</b> (2017), 621–643. </td> </tr> <tr class="document-box" id="b29"> <td valign="top" class="td1"> [29] </td> <td class="td2"> <!-- X. K. Sun, X. J. Long, H. Y. Fu, X. B. Li, Some characterizations of robust optimal solutions for uncertain fractional optimization and applications, <i>J. Ind. Manag. Optim.</i>, <b>13</b> (2017), 803–824. doi: <a href="http://dx.doi.org/10.3934/jimo.2016047" target="_blank">10.3934/jimo.2016047</a>. --> X. K. Sun, X. J. Long, H. Y. Fu, X. B. Li, Some characterizations of robust optimal solutions for uncertain fractional optimization and applications, <i>J. Ind. Manag. Optim.</i>, <b>13</b> (2017), 803–824. doi: <a href="http://dx.doi.org/10.3934/jimo.2016047" target="_blank">10.3934/jimo.2016047</a>. </td> </tr> <tr class="document-box" id="b30"> <td valign="top" class="td1"> [30] </td> <td class="td2"> <!-- X. K. Sun, H. Y. Fu, J. Zeng, Robust approximate optimality conditions for uncertain nonsmooth optimization with infinite number of constraints, <i>Mathematics</i>, <b>7</b> (2019), 1–14. doi: <a href="http://dx.doi.org/10.3390/math7010012" target="_blank">10.3390/math7010012</a>. --> X. K. Sun, H. Y. Fu, J. Zeng, Robust approximate optimality conditions for uncertain nonsmooth optimization with infinite number of constraints, <i>Mathematics</i>, <b>7</b> (2019), 1–14. doi: <a href="http://dx.doi.org/10.3390/math7010012" target="_blank">10.3390/math7010012</a>. </td> </tr> <tr class="document-box" id="b31"> <td valign="top" class="td1"> [31] </td> <td class="td2"> <!-- X. K. Sun, K. L. Teo, J. Zeng, X. L. Guo, On approximate solutions and saddle point theorems for robust convex optimization, <i>Optim. Lett.</i>, <b>14</b> (2020), 1711–1730. doi: <a href="http://dx.doi.org/10.1007/s11590-019-01464-3" target="_blank">10.1007/s11590-019-01464-3</a>. --> X. K. Sun, K. L. Teo, J. Zeng, X. L. Guo, On approximate solutions and saddle point theorems for robust convex optimization, <i>Optim. Lett.</i>, <b>14</b> (2020), 1711–1730. doi: <a href="http://dx.doi.org/10.1007/s11590-019-01464-3" target="_blank">10.1007/s11590-019-01464-3</a>. </td> </tr> <tr class="document-box" id="b32"> <td valign="top" class="td1"> [32] </td> <td class="td2"> <!-- T. Q. Sun, D. S. Kim, $\varepsilon$-mixed type duality for nonconvex multiobjective programs with an infinite number of constraints, <i>J. Glob. Optim.</i>, <b>57</b>(2013), 447–465. doi: <a href="http://dx.doi.org/10.1007/s10898-012-9994-0" target="_blank">10.1007/s10898-012-9994-0</a>. --> T. Q. Sun, D. S. Kim, $\varepsilon$-mixed type duality for nonconvex multiobjective programs with an infinite number of constraints, <i>J. Glob. Optim.</i>, <b>57</b>(2013), 447–465. doi: <a href="http://dx.doi.org/10.1007/s10898-012-9994-0" target="_blank">10.1007/s10898-012-9994-0</a>. </td> </tr> <tr class="document-box" id="b33"> <td valign="top" class="td1"> [33] </td> <td class="td2"> <!-- J. Zeng, P. Xu, H. Y. Fu, On robust approximate optimal solutions for fractional semi-infinite optimization with data uncertainty data, <i>J. Inequalities Appl.</i>, <b>2019</b> (2019), 1–16. doi: <a href="http://dx.doi.org/10.1186/s13660-019-1997-7" target="_blank">10.1186/s13660-019-1997-7</a>. --> J. Zeng, P. Xu, H. Y. Fu, On robust approximate optimal solutions for fractional semi-infinite optimization with data uncertainty data, <i>J. Inequalities Appl.</i>, <b>2019</b> (2019), 1–16. doi: <a href="http://dx.doi.org/10.1186/s13660-019-1997-7" target="_blank">10.1186/s13660-019-1997-7</a>. </td> </tr> </table> </div> </div> <!-- 权限声明 --> <!-- </br>Copyright © 2022 by AIMS Mathematics 2022 <license-p>This work is licensed under a Creative Commons Attribution-NonCommercial-Share Alike 4.0 Unported License. To view a copy of this license, visit <a a-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" href="http://creativecommons.org/licenses/by-nc-sa/4.0/">http://creativecommons.org/licenses/by-nc-sa/4.0/</a></license-p> --> </li> <!-- 参考文献 --> <li id="References" class="articleListBox"> </li> <!-- 相关文章 --> <!-- <li id="RelatedPages" class="articleListBox"> </li> --> <!-- 附件 --> <li id="Supplements" class="articleListBox tab-pane fade in"> <!-- <h3 class="navTitle" id="Supplements-list">Supplements</h3> --> <table class="zgjx-table"> </table> </li> <!-- 访问统计 --> <!-- <li id="metric_count" class="articleListBox"> <h3 class="navTitle" id="Access-list">Access History</h3> <img id="downLoading" style="display:block;margin:10px auto;" src="/style/web/images/article/1.gif" alt="加载中" /> <div class="hichart_box" id="article_visit_count_column"></div> <div class="hichart_box" id="article_visit_type_pie"></div> <div class="hichart_box" id="article_visit_area_pie"></div> </li>--> <!-- 详情页中加载被引数据 :页面加载时使用ajax调用 citedby-info --> <li id="citedby-info" class="articleListBox"></li> <li class="commentwrap" > <div class="clearfix new-bio"> <!-- 作者简介和通讯作者 --> <!-- <li class="corresponding-author"> <b>Corresponding authors:</b> Email: <a href="mailto:msaraj@scu.ac.ir">msaraj@scu.ac.ir</a>; <a href="mailto:sh.s.manesh@gmail.com">sh.s.manesh@gmail.com</a>;&nbsp; Email: <a href="mailto:msaraj@scu.ac.ir">msaraj@scu.ac.ir</a>; <a href="mailto:sh.s.manesh@gmail.com">sh.s.manesh@gmail.com</a>;&nbsp; </li> --> </div> <h5 class="comment-title" ><b>Reader Comments</b></h5> <div class="comment-content" > <form id="commentForm" class="comment-form" name="commentform" > <textarea class="comment-textarea" name="textarea" id="textarea"> </textarea> <div class="line-phone common-line clear"> <label class="fl">Your name:<i class="colorRed">*</i></label> <input name="name" id="name" placeholder="" required /> </div> <div class="line-phone common-line clear"> <label class="fl">Email:<i class="colorRed">*</i></label> <input type="email" id="email" name="email" class="fl" required> </div> <input type="submit" class="submit-comment" value="Submit"> </form> </div> </li> <!-- trendmd数据显示 --> <li> <div id="trendmd-suggestions"></div> <script defer src='//js.trendmd.com/trendmd.min.js' data-trendmdconfig='{"journal_id":"54710","element":"#trendmd-suggestions"}'></script> </li> <li> <div> © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (<a href="http://creativecommons.org/licenses/by/4.0" target="_blank" >http://creativecommons.org/licenses/by/4.0</a>) </div> </li> </ul> <div class=" contentArea-left-bg"> <div class="article-footer"></div> <!--鼠标点击悬浮框--> <div class="box box-top box-tan"> <div class="box-tan-con"> <table class="box-content reference-tab"></table> </div> <div class="triangle"> <div class="triangle-bg"></div> <div class="triangle-content"></div> </div> <i class="close-box articleFont icon-cuo"></i> </div> <!--鼠标点击author悬浮框--> <div class="author-box"> <div class="author-content"> <h6> <span>通讯作者: </span>陈斌, bchen63@163.com </h6> <ul> <li><span class="">1.&nbsp;</span> <p class="">沈阳化工大学材料科学与工程学院 沈阳 110142</p></li> </ul> <p></p> <ol> <li><a href="search?q=">本站搜索</a> </li> <li><a href="http://xueshu.baidu.com/s?wd=author:(叶示舟)&tn=SE_baiduxueshu_c1gjeupa&bs=&ie=utf-8&sc_f_para=sc_tasktype%3D%7BfirstAdvancedSearch%7D">百度学术搜索</a> </li> <li><a href="http://s.wanfangdata.com.cn/Paper.aspx?q=作者%3A叶示舟&f=top">万方数据库搜索</a> </li> <li><a href="http://scholar.cnki.net/result.aspx?q=%E4%BD%9C%E8%80%85%3A%28叶示舟%29&rt=Journal&rl=&udb=">CNKI搜索</a> </li> </ol> </div> <div class="triangle"> <div class="triangle-bg"></div> <div class="triangle-content"></div> </div> <i class="close-box articleFont icon-cuo"></i> </div> </div> </div> <div class="article-main-right fr"> <div class="article-right"> <div class="article-detail-right"> <!-- journal --> <div class="searchl right2-journal-wrap clear bgwhite"> <div class="clear"> <div class="journalcover fl"> <img src="//www.aimspress.com/aimspress-upload/journal/math/cover_2020410144226550.jpg" /> </div> <div class="journaldetail fl"> <div class="clear"> <a href="/journal/math" class="journal-tit"> AIMS Mathematics </a> </div> </div> </div> <div class="ifcitewrap"> <span class="ifcon"> 1.8</span> <span class="citecon" >3.4</span> </div> </div> <div class="metrics bgwhite margin20"> <h2>Metrics</h2> <div class="clear"> <div class="fl"></div> <p class="all-message fl"> <span style="display:block;" href="javascript:void(0);">Article views(<span class="mainColor">2343</span>)</span> <span style="display:block;" href="javascript:void(0);">PDF downloads(<span class="mainColor">123</span>)</span> <span style="display:block;" href="javascript:void(0);">Cited by(<span class="mainColor" id="citedByCount">8</span>)</span> </p> </div> <div style="padding:10px 0;" data-badge-type="donut" data-doi="10.3934/math.2022132" data-hide-no-mentions="false" class="altmetric-embed"></div> <div style="padding:5px 0;" class='altmetric-embed' data-badge-popover='left' data-doi='10.3934/math.2022132'></div> </div> <div class="download-btns clear-size margin20"> <div class="pdf-xml clearfix"> <div class="preview-pdf" data="618cf88cba35de0683e3bfc7"><a href="javascript:void(0);" > Preview PDF</a></div> <div class="download-xml"><a href="javascript:void(0);" onclick="toExportXML('618cf88cba35de0683e3bfc7');"> Download XML</a></div> </div> <div class="download-btn"><a href="javascript:void(0);" data-target="#exportCitationModal" data-toggle="modal"> Export Citation</a></div> </div> </div> <div class="content-nav bgwhite rightpadding"> <div class="contents-title">Article outline</div> <div class="showfullbtn"> <label><input type="checkbox" /> Show full outline</label> </div> <div class="article-nav-wrap" > <div class="Abstract-left-list"> <a href=""></a> </div> <div class="jumplink-list"> </div> <div class="References-left-list"> <a href=""></a> </div> <div class="Supplements-left-list"> <a href=""></a> </div> </div> </div> <div class="article-metrics"> <div class="trend-right-list"> <a href="#trendmd-suggestions"> <img src="/style/web/images/trend_03.jpg"/> </a> <!-- <script defer src='//js.trendmd.com/trendmd.min.js' data-trendmdconfig='{"journal_id":"59917","element":"#trendmd-suggestions"}'></script> --> </div> <script type="text/javascript"> $(document).ready(function(){ var trendInter = $("#trendmd-suggestions").text(); if(trendInter != null){ $("#right-trendmd").show(); } }); </script> </div> <!-- <div class="article-metrics Access-right-list"> <a href="#Access-list"> <h6>Access History</h6> <div class="img"> <img src="/style/web/images/Access-list_03.jpg"/> </div> </a> </div> --> <!-- <div class="associate-wrap bgwhite rightpadding margin20" > <h2 class="article-right-title">Associated material</h2> <div class="article-right-con"><a class="article-right-a" href ="">PubMed record</a> </div> </div> --> <div class="metrics metric-author bgwhite margin20" > <h2>Other Articles By Authors</h2> <ul class="authorOtherArticle"> <li class=""> <span class="author-title"><i></i>On This Site</span> <ul class="article-div clear"> <li> <a href="javascript:void(0);" class="search-like" data-relate="msaraj@scu.ac.ir; sh.s.manesh@gmail.com" data="Shima Soleimani Manesh" type="authors.authorNameEn">Shima Soleimani Manesh</a> </li> <li> <a href="javascript:void(0);" class="search-like" data-relate="msaraj@scu.ac.ir; sh.s.manesh@gmail.com" data="Mansour Saraj" type="authors.authorNameEn">Mansour Saraj</a> </li> <li> <a href="javascript:void(0);" class="search-like" data-relate="" data="Mahmood Alizadeh" type="authors.authorNameEn">Mahmood Alizadeh</a> </li> <li> <a href="javascript:void(0);" class="search-like" data-relate="" data="Maryam Momeni" type="authors.authorNameEn">Maryam Momeni</a> </li> </ul> </li> <li class=""> <span class="author-title"><i></i>On Google Scholar</span> <ul class="article-div clear"> <li> <a href="http://scholar.google.com/scholar?btnG=&amp;hl=en&amp;as_sdt=0%2C23&amp;q=author:Shima Soleimani Manesh" target="_blank">Shima Soleimani Manesh</a> </li> <li> <a href="http://scholar.google.com/scholar?btnG=&amp;hl=en&amp;as_sdt=0%2C23&amp;q=author:Mansour Saraj" target="_blank">Mansour Saraj</a> </li> <li> <a href="http://scholar.google.com/scholar?btnG=&amp;hl=en&amp;as_sdt=0%2C23&amp;q=author:Mahmood Alizadeh" target="_blank">Mahmood Alizadeh</a> </li> <li> <a href="http://scholar.google.com/scholar?btnG=&amp;hl=en&amp;as_sdt=0%2C23&amp;q=author:Maryam Momeni" target="_blank">Maryam Momeni</a> </li> </ul> </li> </ul> </div> <div class="related-wrap bgwhite rightpadding margin20" > <h2 class="article-right-title">Related pages</h2> <ul class="article-right-con"> <li><a class="article-right-a" href ="http://scholar.google.com/scholar?btnG=&amp;hl=en&amp;as_sdt=0%2C23&amp;q=author:On robust weakly $ \varepsilon $-efficient solutions for multi-objective fractional programming problems under data uncertainty" target="_blank">on Google Scholar</a></li> <li><a class="article-right-a" href ="http://www.ncbi.nlm.nih.gov/pubmed/?term=On robust weakly $ \varepsilon $-efficient solutions for multi-objective fractional programming problems under data uncertainty" target="_blank">on PubMed</a></li> </ul> </div> <div class="related-wrap bgwhite rightpadding margin20" > <h2 class="article-right-title">Tools</h2> <ul class="article-right-con"> <li><a class="article-right-a" href="javascript:void(0);" a_doi="10.3934/math.2022132" a_title="On robust weakly $ \varepsilon $-efficient solutions for multi-objective fractional programming problems under data uncertainty" onclick="emailToFriend(this);">Email to a friend</a></li> <!-- <li><a class="article-right-a" href ="" target="_blank">Order reprints</a></li> --> </ul> </div> </div> </div> </div> </div> </div> <!--电脑端 结束--> <!--手机端 开始--> <!--手机端 结束--> <!--footer START--> <footer class="hidden-lg hidden-md "> <a href="/aimspress-data/math/2022/2/PDF/math-07-02-132.pdf" > <div class="pdfView"> <div class="in-bl " > <i class="fa fa-file-pdf-o"></i> <span>PDF &nbsp;view</span> </div> </div> </a> <!-- <div class="WeChatView"> <img src="" alt="WeChat" id="article-qrcode"> <span>follow<i></i>share</span> </div> --> <div class="toTop"> <p><b>Top</b></p> <span class="fa fa-angle-up"></span> </div> </footer> <!--footer END--> <!--底部 开始--> <div id="common-bottom"> </div> <!--底部 结束--> <!--导出引用 开始--> <div class="modal fade" id="exportCitationModal"> <div class="modal-dialog"> <div class="modal-content"> <div class="modal-header"> <button type="button" class="close" data-dismiss="modal"><span aria-hidden="true">×</span><span class="sr-only">Close</span></button> <h2 class="modal-title mainColor" id="myModalLabel"><b>Export File</b></h2> </div> <div class="modal-body"> <div class="panel panel-primary"> <div class="panel-heading"> <h4 class="panel-title">Citation</h4> </div> <div class="panel-body"> <p class="quot"> <!--<span class="mainColor">Citation:</span>--> <div class="copyCitationInfo" style="width: 0px;height: 0px;opacity:0;overflow: hidden;">Shima Soleimani Manesh, Mansour Saraj, Mahmood Alizadeh, Maryam Momeni. On robust weakly $ \varepsilon $-efficient solutions for multi-objective fractional programming problems under data uncertainty[J]. AIMS Mathematics, 2022, 7(2): 2331-2347. doi: 10.3934/math.2022132</div> <span class="info citationEn" id=""> Shima Soleimani Manesh, Mansour Saraj, Mahmood Alizadeh, Maryam Momeni. On robust weakly $ \varepsilon $-efficient solutions for multi-objective fractional programming problems under data uncertainty[J]. <i>AIMS Mathematics</i>, 2022, 7(2): 2331-2347. <span style="display:inline-block;">doi: <a class="mainColor" href="https://doi.org/10.3934/math.2022132" target="_blank" class="mainColor">10.3934/math.2022132</a></span> </span> <div class="modal-footer modal-footer-copy"> <span class="copy-citation" onclick="copyArticle(this)" title="copy to clipboard"> <img class="shu" src="/style/web/images/article/shu.png" alt="shu" /> </span> </div> </p> </div> </div> <div class="panel panel-success"> <div class="panel-heading"> <h4 class="panel-title">Format</h4> </div> <div class="panel-body"> <div class="radio"> <label> <input type="radio" value="ris" name="format" checked=""> RIS(for EndNote,Reference Manager,ProCite) </label> </div> <div class="radio"> <label> <input type="radio" value="bib" name="format"> BibTex </label> </div> <div class="radio"> <label> <input type="radio" value="txt" name="format"> Txt </label> </div> </div> </div> <div class="panel panel-success"> <div class="panel-heading"> <h4 class="panel-title">Content</h4> </div> <div class="panel-body"> <div class="radio"> <label> <input type="radio" value="0" name="content" checked=""> Citation Only </label> </div> <div class="radio"> <label> <input type="radio" value="1" name="content"> Citation and Abstract </label> </div> </div> </div> </div> <div class="modal-footer"> <button type="button" class="btn btn-primary" data-dismiss="modal" onclick="toExportCitation(this,'en')" article_id="618cf88cba35de0683e3bfc7" id="exportArticleId">Export</button> <button type="button" class="btn btn-default" data-dismiss="modal">Close</button> </div> </div> </div> </div> <!--导出引用 结束--> <!--图示功能--> <div id="imgShow"> <!--大图--> <div id="originalImgs-wrapper"> <div class="originalImgs-wrapper"> <img id="originalImgs" src="" alt="" /> </div> <!--图题--> <div id="imgTitle" title="鼠标滚动"> <div> <p class="titleEn"></p> </div> </div> <!--页码--> <p id="imgsPageNum"> <span id="nowImgIndex" class="underHigh"></span>/<span id="allImgNum"></span> </p> <!--下载--> <div id="downloadImgs"> <img src="/style/web/images/article/download.png" />DownLoad:&nbsp; <a id="originalImgDownload" class="underHigh" href="javascript:void(0);">Full-Size Img</a>&nbsp; <a id="originalPPTDownload" class="underHigh" href="javascript:void(0);" style="border-left: 1px solid #ccc;padding-left: 5px;">PowerPoint</a> </div> </div> <!--小图--> <div id="miniImgs-wrapper"> <div id="imgPrev"> <a href="javascript:void(0);"><span class="imgShowIcon imgShowIcon-prev"></span> </a> </div> <div id="miniImgs"> <ul> </ul> </div> <div id="imgNext"> <a href="javascript:void(0);"><span class="imgShowIcon imgShowIcon-next"></span> </a> </div> </div> <!--返回--> <div id="imgBack"> <a href="javascript:void(0);"> Return<span class="triangle"></span> </a> </div> </div> <!-- 右侧缩略图表 --> <div class="show-table"> <div class="new-back"> <a href="javascript:;"> Return<span class="triangle"></span></a> </div> <div class="picbox"> <ul class="piclist"> </ul> <div id="big_play_prev" class="home-picprev thePrev"></div> <div id="big_play_next" class="home-picnext theNext"></div> </div> <div class="picsmallbox"> <a href="javascript:;" id="play_prev" class="play_prev"> <span class="imgShowIcon imgShowIcon-prev"></span> </a> <div class="picboxpic"> <ul id="picsmall" class="picsmall clear"> </ul> </div> <a href="javascript:;" id="play_next" class="play_next"> <span class="imgShowIcon imgShowIcon-next"></span> </a> </div> </div> <ul id="miniImgs_title" hidden> </ul> <div class="article-btn"> <div class="_table"> <div class="_cell"> <span></span> <span></span> <span></span> </div> </div> </div> <div class="article-menu"> <h3>Catalog</h3> <div class="article-menu-bot"> <ul class="iphone-wrapper"></ul> </div> </div> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10