CINXE.COM
vektor - Hrvatska enciklopedija
<!DOCTYPE html> <html lang="hr"> <head> <meta charset="utf-8" /> <meta name="viewport" content="width=device-width, initial-scale=1.0" /> <title>vektor - Hrvatska enciklopedija</title> <link rel="stylesheet" href="/lib/bootstrap/dist/css/bootstrap.min.css" /> <link rel="stylesheet" href="/css/site.css?v=aloXpnyJZY1CI82ecVYHMjJxHCRd1QASDdrJLGGVljo" /> <link rel="stylesheet" href="/css/edicija.css?v=nWB4zkqd6uP2jryLevXrveaQ9lLnQcuk6Shqr9-ZuG8" /> <link rel="stylesheet" href="/Enciklopedija.styles.css?v=FqXpQdF1a2Rla5RbDuOH-XQm3ENGUuk1Lvq1h6OEFyI" /> <script src="https://polyfill.io/v3/polyfill.min.js?features=es6"></script> <script id="MathJax-script" async src="https://cdn.jsdelivr.net/npm/mathjax@3.0.1/es5/tex-mml-chtml.js"></script> <link href="/lib/lightbox2/css/lightbox.min.css" rel="stylesheet" /> <script src="/lib/jquery/jquery.min.js"></script> <script src="/lib/jqueryui/jquery-ui.min.js"></script> <link href="/lib/jqueryui/themes/base/jquery-ui.min.css" rel="stylesheet" /> <link href="/lib/jqueryui/themes/base/theme.min.css" rel="stylesheet" /> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-EEL30DJPVS"></script> <script> window.dataLayer = window.dataLayer || []; function gtag() { dataLayer.push(arguments); } gtag('js', new Date()); gtag('config', 'G-EEL30DJPVS'); </script> </head> <body> <header b-5bzbccjy93> <div b-5bzbccjy93> <div b-5bzbccjy93 class="container p-4 text-center"> <a class="mx-auto" href="/"><img src="/images/HeLogo.png" /><img style="height:4.8em" src="/images/hrvalskaenciklopedijatitle.png" /></a> </div> <nav b-5bzbccjy93 class="navbar navbar-light bg-white border-bottom box-shadow pb-4 mb-4 d-print-none"> <div b-5bzbccjy93 class="container col-lg-auto d-block"> <form method="get" class="container text-center" action="/Abecedarij"> <div b-5bzbccjy93 class="nav-item input-group col-centered " id="trazilica"> <input b-5bzbccjy93 type="search" placeholder="Traži..." name="q" class="search form-control" id="natuknica"> <button b-5bzbccjy93 type="submit" class="btn btn-outline-secondary btn-edicija" title="Traži"> <svg b-5bzbccjy93 xmlns="http://www.w3.org/2000/svg" width="18" height="18" fill="currentColor" class="bi bi-search"> <path b-5bzbccjy93 d="M11.742 10.344a6.5 6.5 0 1 0-1.397 1.398h-.001c.03.04.062.078.098.115l3.85 3.85a1 1 0 0 0 1.415-1.414l-3.85-3.85a1.007 1.007 0 0 0-.115-.1zM12 6.5a5.5 5.5 0 1 1-11 0 5.5 5.5 0 0 1 11 0z" /> </svg> </button> <button b-5bzbccjy93 class="navbar-toggler ms-2" title="search" type="button" data-bs-toggle="offcanvas" data-bs-target="#offcanvasNavbar" aria-controls="offcanvasNavbar"> <span b-5bzbccjy93 class="navbar-toggler-icon"></span> </button> </div> </form> <div b-5bzbccjy93 class="offcanvas offcanvas-end" tabindex="-1" id="offcanvasNavbar" aria-labelledby="offcanvasNavbarLabel"> <div b-5bzbccjy93 class="offcanvas-header"> <h5 b-5bzbccjy93 class="offcanvas-title" id="offcanvasNavbarLabel">O enciklopediji</h5> <button b-5bzbccjy93 type="button" class="btn-close" data-bs-dismiss="offcanvas" aria-label="Close"></button> </div> <div b-5bzbccjy93 class="offcanvas-body"> <ul b-5bzbccjy93 class="navbar-nav justify-content-end flex-grow-1 pe-3"> <li b-5bzbccjy93 class="nav-item"> <a class="nav-link text-dark" href="/Impresum">Impresum</a> </li> <li b-5bzbccjy93 class="nav-item"> <a class="nav-link text-dark" href="/Predgovor">Predgovor</a> </li> <li b-5bzbccjy93 class="nav-item"> <a class="nav-link text-dark" href="/Upute">Upute</a> </li> <li b-5bzbccjy93 class="nav-item"> <a class="nav-link text-dark" href="/UvjetiKoristenja">Uvjeti korištenja</a> </li> </ul> <h5 b-5bzbccjy93 class="pt-4"> Kontakt </h5> <p b-5bzbccjy93> <a b-5bzbccjy93 href="http://www.lzmk.hr">Leksikografski zavod Miroslav Krleža</a><br b-5bzbccjy93 /> Frankopanska 26, Zagreb<br b-5bzbccjy93 /> tel.: +385 1 4800 332<br b-5bzbccjy93 /> tel.: +385 1 4800 392<br b-5bzbccjy93 /> fax.: +385 1 4800 399<br b-5bzbccjy93 /> </p> <p b-5bzbccjy93> <a b-5bzbccjy93 href="mailto:urednistvoHE@lzmk.hr">urednistvoHE@lzmk.hr</a> </p> </div> </div> </div> </nav> </div> </header> <div b-5bzbccjy93 class="container clearfix"> <main b-5bzbccjy93 role="main" class="pb-3"> <form method="post"> <input type="hidden" id="hfAlias" name="AliasId" /> <div class="container"> <h1 style="display:inline-block"><a href="#clanak">vektor</a></h1> <span class="d-print-none ps-3"> <a class="text-edicija" href="/Abecedarij?q=vektor">traži dalje ...</a></span> </div> <div class="container"> <div class="struke card bg-light"> <div><b>struka(e):</b> matematika | fizika | biologija</div> </div> <div> <div class="poglavlja card"> <div class="litem p1"><a href="#poglavlje1">Vrste vektora</a> |</div><div class="litem p1"><a href="#poglavlje2">Vektorske operacije</a> |</div><div class="litem p1"><a href="#poglavlje3">Prikaz vektora u Kartezijevu koordinatnom sustavu</a> </div> </div> </div> <div class="mediabox"> <div class="ilustracije card bg-light"> <figure clas="figure"><a data-lightbox="galerija" data-title="VEKTOR" href="https://enciklopedija.hr/slike/he/slike/Vektor.jpg"><img src="https://enciklopedija.hr/slike/he/slike/Vektor.jpg" " class="figure-img img-thumbnail rounded" alt="ilustracija" /></a><figcaption class="figure-caption">VEKTOR<br /></figure> </div> </div> <div class="clanak"> <a name="clanak"></a> <div><p><span style="color: #8b2323"><b>vektor</b></span> (lat. <span style="color: #000000"><i>vector:</i></span> prenositelj).</p><p><span style="color: #000080"><b>1.</b></span> U matematici, element <a href="https://www.enciklopedija.hr/clanak/vektorski-prostor">vektorskoga prostora</a>. Pojam vektora razvio se iz teorije orijentiranih ili usmjerenih dužina. <span style="color: #000000"><i>Orijentirana dužina</i></span> <span style="text-decoration:overline;"><span style="color: #000000"><i>AB</i></span></span> dužina je <span style="text-decoration:overline;"><span style="color: #000000"><i>AB</i></span></span> kojoj je određena početna <span style="color: #000000"><i>A</i></span> točka i završna <span style="color: #000000"><i>B</i></span> točka, pa se grafički označuje strelicom od <span style="color: #000000"><i>A</i></span> prema <span style="color: #000000"><i>B</i></span>. Dvije orijentirane dužine <span style="text-decoration:overline;"><span style="color: #000000"><i>AB</i></span></span> i <span style="text-decoration:overline;"><span style="color: #000000"><i>CD</i></span></span> <span style="color: #000000"><i>ekvivalentne</i></span> su ako se jedna iz druge mogu dobiti paralelnim pomakom. Skup svih međusobno ekvivalentnih orijentiranih dužina naziva se <span style="color: #000000"><i>vektor</i></span> (<span style="color: #000000"><i><b>a</b></i></span>), kojemu je svaka od tih orijentiranih dužina <span style="text-decoration:overline;"><span style="color: #000000"><i>AB</i></span></span>, <span style="text-decoration:overline;"><span style="color: #000000"><i>CD</i></span></span>, … <span style="color: #000000"><i>reprezentant</i></span>.</p><p><span style="color: #000000"><i>Vektorska algebra</i></span> omogućuje algebarski prikaz vektora u trodimenzijskom prostoru i izvođenje algebarskih operacija nad vektorima, <span style="color: #000000"><i>vektorska analiza</i></span> bavi se diferenciranjem i integriranjem <a href="https://www.enciklopedija.hr/clanak/vektorsko-polje">vektorskih</a> i <a href="https://www.enciklopedija.hr/clanak/skalarno-polje">skalarnih polja</a>, tj. primjenom metoda infinitezimalnoga računa na vektore, a <span style="color: #000000"><i><a href="https://www.enciklopedija.hr/clanak/linearna-algebra">linearna algebra</a></i></span> proučava vektorske prostore, linearne operatore i sustave linearnih jednadžbi.</p><p><span style="color: #000000"><h2><a name="poglavlje1"></a>Vrste vektora</h2> </b></i></span> <span style="color: #000000"><i><a href="https://www.enciklopedija.hr/clanak/jedinicni-vektor">Jedinični vektor</a></i></span> jediničnoga je iznosa, <span style="color: #000000"><i><a href="https://www.enciklopedija.hr/clanak/nulvektor">nulvektor</a></i></span> je duljine jednake nuli, <span style="color: #000000"><i><a href="https://www.enciklopedija.hr/clanak/radijvektor">radijvektoru</a></i></span> je početak u nekoj nepomičnoj točki, obično u ishodištu nekoga <a href="https://www.enciklopedija.hr/clanak/koordinatni-sustavi">koordinatnog sustava</a>, a završetak u promatranoj točki. <span style="color: #000000"><i>Kolinearni vektori</i></span> paralelni su s istim pravcem, a <span style="color: #000000"><i>komplanarni vektori</i></span> paralelni su s istom ravninom. Međusobno <span style="color: #000000"><i>suprotni vektori</i></span> jednaki su po duljini i suprotnoga smjera.</p><p><span style="color: #000000"><h2><a name="poglavlje2"></a>Vektorske operacije</h2> </b></i></span> 1) <span style="color: #000000"><i>Zbrajanje</i></span> <span style="color: #000000"><i><b>a</b></i></span> + <span style="color: #000000"><i><b>b</b></i></span> = <span style="color: #000000"><i><b>c</b></i></span>, gdje je <span style="color: #000000"><i><b>c</b></i></span> vektor određen svojim reprezentantom <span style="text-decoration:overline;"><span style="color: #000000"><i>OC</i></span></span>, koji se dobiva <span style="color: #000000"><i><a href="https://www.enciklopedija.hr/clanak/pravilo-paralelograma">pravilom paralelograma</a></i></span> iz reprezentanata <span style="text-decoration:overline;"><span style="color: #000000"><i>OA</i></span></span> i <span style="text-decoration:overline;"><span style="color: #000000"><i>OB</i></span></span> vektora <span style="color: #000000"><i><b>a</b></i></span>, odnosno <span style="color: #000000"><i><b>b</b></i></span> po shemi <span style="text-decoration:overline;"><span style="color: #000000"><i>OA</i></span></span> + <span style="text-decoration:overline;"><span style="color: #000000"><i>OB</i></span></span> = <span style="text-decoration:overline;"><span style="color: #000000"><i>OC</i></span></span>, ili <span style="color: #000000"><i>pravilom trokuta</i></span> po shemi <span style="text-decoration:overline;"><span style="color: #000000"><i>OA</i></span></span> + <span style="text-decoration:overline;"><span style="color: #000000"><i>AC</i></span></span><span style="color: #000000"><i> = </i></span><span style="text-decoration:overline;"><span style="color: #000000"><i>OC</i></span></span>. Zbrajanje je komutativno i asocijativno.</p><p>2) <span style="color: #000000"><i>Umnožak vektora sa skalarom</i></span> (brojem) <span style="color: #000000"><i>t</i></span>, <span style="color: #000000"><i>t<b>a</b></i></span> = <span style="color: #000000"><i><b>b</b></i></span>, jest vektor <span style="color: #000000"><i><b>b</b></i></span> paralelan s vektorom <span style="color: #000000"><i><b>a</b></i></span> i s njim iste ili suprotne orijentacije već prema tomu je li <span style="color: #000000"><i>t</i></span> > 0 ili <span style="color: #000000"><i>t</i></span> < 0 dok mu je duljina ili modul |<span style="color: #000000"><i>t<b>a</b></i></span>| = |<span style="color: #000000"><i>t</i></span>| |<span style="color: #000000"><i><b>a</b></i></span>|. Svojstva su ove operacije: (<span style="color: #000000"><i>st</i></span>) <span style="color: #000000"><i><b>a</b></i></span> = <span style="color: #000000"><i>s</i></span> (<span style="color: #000000"><i>t<b>a</b></i></span>); (<span style="color: #000000"><i>s</i></span> + <span style="color: #000000"><i>t</i></span>) <span style="color: #000000"><i><b>a</b></i></span> = <span style="color: #000000"><i>s<b>a</b></i></span> + <span style="color: #000000"><i>t<b>a</b></i></span>; <span style="color: #000000"><i>t</i></span> (<span style="color: #000000"><i><b>a</b></i></span> + <span style="color: #000000"><i><b>b</b></i></span>) = <span style="color: #000000"><i>t<b>a</b></i></span> + <span style="color: #000000"><i>t<b>b</b></i></span>.</p><p>3) <span style="color: #000000"><i><a href="https://www.enciklopedija.hr/clanak/skalarni-umnozak">Skalarni umnožak</a></i></span> <span style="color: #000000"><i><b>a</b></i></span> ∙ <span style="color: #000000"><i><b>b</b></i></span> = |<span style="color: #000000"><i><b>a</b></i></span>| ∙ |<span style="color: #000000"><i><b>b</b></i></span>| ∙ cos <span style="color: #000000"><i>φ</i></span> jest skalar, gdje je <span style="color: #000000"><i>φ</i></span> kut između vektora <span style="color: #000000"><i><b>a</b></i></span> i <span style="color: #000000"><i><b>b</b></i></span>. Svojstva su mu: <span style="color: #000000"><i>komutativnost <b>a</b></i></span> ∙ <span style="color: #000000"><i><b>b</b></i></span> = <span style="color: #000000"><i><b>b</b></i></span> ∙ <span style="color: #000000"><i><b>a</b></i></span>, distributivnost (<span style="color: #000000"><i><b>a</b></i></span> + <span style="color: #000000"><i><b>b</b></i></span>) ∙ <span style="color: #000000"><i><b>c</b></i></span> = <span style="color: #000000"><i><b>a</b></i></span> ∙ <span style="color: #000000"><i><b>c</b></i></span> + <span style="color: #000000"><i><b>b</b></i></span> ∙ <span style="color: #000000"><i><b>c</b></i></span> i <span style="color: #000000"><i>t</i></span>(<span style="color: #000000"><i><b>a</b></i></span> · <span style="color: #000000"><i><b>b</b></i></span>) = (<span style="color: #000000"><i>t<b>a</b></i></span>) · <span style="color: #000000"><i><b>b</b></i></span> = <span style="color: #000000"><i><b>a</b></i></span> · (<span style="color: #000000"><i>t<b>b</b></i></span>).</p><p>4) <span style="color: #000000"><i><a href="https://www.enciklopedija.hr/clanak/vektorski-umnozak">Vektorski umnožak</a></i></span> <span style="color: #000000"><i><b>a</b></i></span> × <span style="color: #000000"><i><b>b</b></i></span> = <span style="color: #000000"><i><b>c</b></i></span> jest vektor okomit na <span style="color: #000000"><i><b>a</b></i></span> i <span style="color: #000000"><i><b>b</b></i></span>, koji s njima čini tzv. <span style="color: #000000"><i>desnu trojku</i></span> i vrijedi |<span style="color: #000000"><i><b>a</b></i></span> × <span style="color: #000000"><i><b>b</b></i></span>| = |<span style="color: #000000"><i><b>a</b></i></span>| · |<span style="color: #000000"><i><b>b</b></i></span>| · sin <span style="color: #000000"><i>φ</i></span>.</p><p>5) Za <span style="color: #000000"><i>mješoviti vektorski umnožak</i></span> vrijedi: (<span style="color: #000000"><i><b>a</b></i></span> × <span style="color: #000000"><i><b>b</b></i></span>) · <span style="color: #000000"><i><b>c</b></i></span> = (<span style="color: #000000"><i><b>b</b></i></span> × <span style="color: #000000"><i><b>c</b></i></span>) · <span style="color: #000000"><i><b>a</b></i></span> = (<span style="color: #000000"><i><b>c</b></i></span> × <span style="color: #000000"><i><b>a</b></i></span>) · <span style="color: #000000"><i><b>b</b></i></span>.</p><p>6) Za <span style="color: #000000"><i>dvostruki vektorski umnožak</i></span> vrijedi: (<span style="color: #000000"><i><b>a</b></i></span> × <span style="color: #000000"><i><b>b</b></i></span>) × <span style="color: #000000"><i><b>c</b></i></span> = (<span style="color: #000000"><i><b>a</b></i></span> · <span style="color: #000000"><i><b>c</b></i></span>)<span style="color: #000000"><i><b>b</b></i></span> – (<span style="color: #000000"><i><b>b</b></i></span> · <span style="color: #000000"><i><b>c</b></i></span>)<span style="color: #000000"><i><b>a</b></i></span>.</p><p><span style="color: #000000"><h2><a name="poglavlje3"></a>Prikaz vektora u Kartezijevu koordinatnom sustavu</h2> </b></i></span>U Kartezijevu koordinatnom sustavu vektori se izražavaju s pomoću koordinata i jediničnih vektora <span style="color: #000000"><i><b>i</b></i></span>, <span style="color: #000000"><i><b>j</b></i></span>, <span style="color: #000000"><i><b>k</b></i></span> u smjerovima koordinatnih osi <span style="color: #000000"><i>x</i></span>, <span style="color: #000000"><i>y</i></span> i <span style="color: #000000"><i>z</i></span>. Primjerice, ako je vektorima <span style="color: #000000"><i><b>a</b></i></span> i <span style="color: #000000"><i><b>b</b></i></span> početak u ishodištu koordinatnog sustava a završetci u točkama <span style="color: #000000"><i>A</i></span>(<span style="color: #000000"><i>a</i></span><sub>x</sub>, <span style="color: #000000"><i>a</i></span><sub>y</sub>, <span style="color: #000000"><i>a</i></span><sub>z</sub>) i <span style="color: #000000"><i>B</i></span>(<span style="color: #000000"><i>b</i></span><sub>x</sub>, <span style="color: #000000"><i>b</i></span><sub>y</sub>, <span style="color: #000000"><i>b</i></span><sub>z</sub>), tada je <span style="color: #000000"><i><b>a</b></i></span> = <span style="color: #000000"><i>a</i></span><sub>x</sub> <span style="color: #000000"><i><b>i</b></i></span> + <span style="color: #000000"><i>a</i></span><sub>y</sub> <span style="color: #000000"><i><b>j</b></i></span> + <span style="color: #000000"><i>a</i></span><sub>z</sub> <span style="color: #000000"><i><b>k</b></i></span> i <span style="color: #000000"><i><b>b</b></i></span> = <span style="color: #000000"><i>b</i></span><sub>x</sub> <span style="color: #000000"><i><b>i</b></i></span> + <span style="color: #000000"><i>b</i></span><sub>y</sub> <span style="color: #000000"><i><b>j</b></i></span> + <span style="color: #000000"><i>b</i></span><sub>z</sub> <span style="color: #000000"><i><b>k</b></i></span>.</p><p>Vektorske operacije u Kartezijevu koordinatnom sustavu:</p><p>1) zbrajanje <span style="color: #000000"><i><b>a</b></i></span> + <span style="color: #000000"><i><b>b</b></i></span> = (<span style="color: #000000"><i>a</i><sub><i>x</i></sub></span> + <span style="color: #000000"><i>b</i><sub><i>x</i></sub></span>) <span style="color: #000000"><i><b>i</b></i></span> + (<span style="color: #000000"><i>a</i><sub><i>y</i></sub></span> + <span style="color: #000000"><i>b</i><sub><i>y</i></sub></span>)<span style="color: #000000"><i> <b>j</b></i></span> + (<span style="color: #000000"><i>a</i><sub><i>z</i></sub></span> + <span style="color: #000000"><i>b</i><sub><i>z</i></sub></span>) <span style="color: #000000"><i><b>k</b></i></span>,</p><p>2) umnožak vektora sa skalarom <span style="color: #000000"><i>t<b>a</b></i></span> = <span style="color: #000000"><i>ta</i><sub><i>x</i></sub></span> <span style="color: #000000"><i><b>i</b></i></span> + <span style="color: #000000"><i>ta<sub>y</sub><b>j</b></i></span> + <span style="color: #000000"><i>ta<sub>z</sub><b>k</b></i></span>,</p><p>3) skalarni umnožak <span style="color: #000000"><i><b>a</b></i></span> ∙ <span style="color: #000000"><i><b>b</b></i></span> = <span style="color: #000000"><i><b>a</b><sub>x</sub> <b>b</b></i><sub><i>x</i></sub></span> + <span style="color: #000000"><i><b>a</b><sub>y</sub> <b>b</b></i><sub><i>y</i></sub></span> + <span style="color: #000000"><i><b>a</b><sub>z</sub> <b>b</b></i><sub><i>z</i></sub></span>,</p><p>4) vektorski umnožak <span style="color: #000000"><i><b>a</b></i></span> × <span style="color: #000000"><i><b>b</b></i></span> = (<span style="color: #000000"><i>a</i><sub><i>y</i></sub></span> <span style="color: #000000"><i>b</i><sub><i>z</i></sub></span> – <span style="color: #000000"><i>a</i><sub><i>z</i></sub></span> <span style="color: #000000"><i>b</i><sub><i>y</i></sub></span>) <span style="color: #000000"><i><b>i</b></i></span> + (<span style="color: #000000"><i>a</i><sub><i>z</i></sub></span> <span style="color: #000000"><i>b</i><sub><i>x</i></sub></span> – <span style="color: #000000"><i>a</i><sub><i>x</i></sub></span> <span style="color: #000000"><i>b</i><sub><i>z</i></sub></span>) <span style="color: #000000"><i><b>j</b></i></span> + (<span style="color: #000000"><i>a</i><sub><i>x</i></sub></span> <span style="color: #000000"><i>b</i><sub><i>y</i></sub></span> – <span style="color: #000000"><i>a</i><sub><i>y</i></sub></span> <span style="color: #000000"><i>b</i><sub><i>x</i></sub></span>) <span style="color: #000000"><i><b>k</b></i></span>.</p><p><span style="color: #000000"><i>Duljina vektora</i></span> <span style="color: #000000"><i><b>a</b></i></span> = <span style="color: #000000"><i>a<sub>x</sub></i></span> <span style="color: #000000"><i><b>i</b></i></span> + <span style="color: #000000"><i>a<sub>y</sub></i></span> <span style="color: #000000"><i><b>j</b></i></span> + <span style="color: #000000"><i>a</i><sub><i>z</i></sub></span> <span style="color: #000000"><i><b>k</b></i></span> dana je izrazom: \(a=\sqrt{a_x^2+a_y^2+a_z^2}.\)</p><p><span style="color: #000000"><i>Kut</i></span> između vektora <span style="color: #000000"><i><b>a</b></i></span> = <span style="color: #000000"><i>a<sub>x</sub></i></span><span style="color: #000000"><i><b>i</b></i></span> + <span style="color: #000000"><i>a<sub>y</sub></i></span> <span style="color: #000000"><i><b>j</b></i></span> + <span style="color: #000000"><i>a<sub>z</sub></i></span> <span style="color: #000000"><i><b>k</b></i></span> i <span style="color: #000000"><i><b>b</b></i></span> = <span style="color: #000000"><i>b<sub>x</sub></i></span> <span style="color: #000000"><i><b>i</b></i></span> + <span style="color: #000000"><i>b<sub>y</sub></i></span> <span style="color: #000000"><i><b>j</b></i></span> + <span style="color: #000000"><i>b<sub>z</sub></i></span> <span style="color: #000000"><i><b>k</b></i></span> može se odrediti iz izraza:</p><p>\[{\rm cos\,\varphi}=\cfrac{\pmb {a\cdot b}}{ab}=\cfrac{a_xb_x+a_yb_y+a_zb_z}{\sqrt{a_x^2+a_y^2+a_z^2}\cdot\sqrt{b_x^2+b_y^2+b_z^2}}.\]</p><p><span style="color: #000080"><b>2.</b></span> U fizici, veličina koja je definirana ako su određeni apsolutni iznos (vrijednost, intenzitet, modul), pravac i smjer duž pravca bez obzira na položaj <a href="https://www.enciklopedija.hr/clanak/hvatiste">hvatišta</a> (početne točke vektora). U koordinatnom sustavu vektor je definiran s pomoću svojih projekcija na koordinatne osi. Vektori su npr. sila, brzina, ubrzanje, jakost električnoga polja. Grafički, vektori se prikazuju s pomoću usmjerenih dužina. Za razliku od vektora, veličine definirane samim iznosom, kao masa, energija, temperatura i dr:, nazivaju se <a href="https://www.enciklopedija.hr/clanak/56364">skalari</a>.</p><p><span style="color: #000080"><b>3.</b></span> U biologiji: a) organizam, npr. komarac ili krpelj, koji prenosi mikroorganizme, uzročnike bolesti; b) u <a href="https://www.enciklopedija.hr/clanak/geneticko-inzenjerstvo">genetičkom inženjerstvu</a>, vektori su molekule DNA u koje se mogu ugraditi sintetski ili prirodni geni i potom prenijeti u stanicu domaćina. Kao vektori najčešće služe <a href="https://www.enciklopedija.hr/clanak/plazmidi">plazmidi</a> i virusne DNA, sposobni za replikaciju u ciljnim stanicama. Kombinacijom plazmida i <a href="https://www.enciklopedija.hr/clanak/bakteriofagi">bakteriofaga</a> dobiveni su <span style="color: #000000"><i>kozmidi,</i></span> vektori prikladni za kloniranje većih isječaka DNA. Klonirani geni u transformiranoj će stanici domaćina proizvoditi bjelančevine za strukturu kojih nose informaciju, pa će toj stanici donijeti svojstva koja prije nije imala. (→ <span style="color: #000000"><span style="font-variant: small-caps"><a href="https://www.enciklopedija.hr/clanak/rekombinantna-dna">rekombinantna dna</a></span></span>)</p> </div> </div> </div> <div class="container citiranje"> Citiranje: <p> vektor. <i>Hrvatska enciklopedija</i>, <i>mrežno izdanje.</i> Leksikografski zavod Miroslav Krleža, 2013. – 2024. Pristupljeno 25.11.2024. <https://www.enciklopedija.hr/clanak/vektor>. </p> </div> <div class="container d-print-none"></div> <div class="container d-print-none"> <button type="button" class="btn btn-secondary" data-bs-toggle="modal" data-bs-target="#mkomentar">Komentar</button> </div> <div class="modal fade" tabindex="-1" id="mkomentar"> <div class="modal-dialog modal-dialog-centered"> <div class="modal-content"> <div class="modal-header"> <h5 class="modal-title">Unesite komentar</h5> <button type="button" class="btn-close" data-bs-dismiss="modal" aria-label="Close"></button> </div> <div class="modal-body"> Komentar: <textarea style="width:100%; height:300px" id="taKomentar" name="taKomentar"></textarea> Potpis: <input type="text" style="width:100%" id="taPotpis" name="taPotpis" /input> </div> <div class="modal-footer"> <button type="button" class="btn btn-secondary" data-bs-dismiss="modal">Zatvori</button> <button type="submit" class="btn btn-primary" title="Snimi" value="Snimi" formaction="/Clanak/vektor?handler=ButtonSnimi">Pošalji</button> </div> </div> </div> </div> <br /> <input name="__RequestVerificationToken" type="hidden" value="CfDJ8AafmPaswmdEooPiIBQpxHC02V9AcU81rjlNX174Pa-fed0KTtounZF-lHyAnZFjAQaYe_7-3EqpEn89aC4yxHl2ufCCYDeKL2638m2X2Tmz46LkDNfwtrJeA3vvlb9iKtLJ8idY4Oin_iNSiMtQHZM" /></form> <script src="/lib/lightbox2/js/lightbox.min.js"></script> <script> lightbox.option({ 'resizeDuration': 200, 'wrapAround': false, 'albumLabel': "slika %1 od %2" }) </script> </main> </div> <div b-5bzbccjy93> <div id="cookieConsent" class="alert alert-info alert-dismissible fade show fixed-bottom" role="alert"> <div class="container"> Naše web stranice koriste kolačiće kako bi Vam omogućili najbolje korisničko iskustvo, za analizu prometa i korištenje društvenih mreža. <a href="/UvjetiKoristenja">Doznaj više.</a> </div> <div class="d-grid gap-2 d-md-flex justify-content-md-end"> <button type="button" class="btn btn-secondary accept-policy me-md-2" data-dismiss="alert" aria-label="Close" data-cookie-string=".AspNet.Consent=yes; expires=Tue, 25 Nov 2025 01:42:03 GMT; path=/; secure; samesite=none">Prihvati</button> </div> </div> <script> (function () { var button = document.querySelector("#cookieConsent button[data-cookie-string]"); button.addEventListener("click", function (event) { document.cookie = button.dataset.cookieString; $("#cookieConsent").hide(); }, false); })(); </script> </div> <footer b-5bzbccjy93 class="border-top footer text-muted" id="myFooter"> <div b-5bzbccjy93 class="container text-center"> <img style="height:48px; vertical-align:text-top;" src="/images/lzmklogo.png" /> </div> <div b-5bzbccjy93 class="container text-center"> © 2024. <a b-5bzbccjy93 href="https://www.lzmk.hr">Leksikografski zavod <i b-5bzbccjy93>Miroslav Krleža</i></a> </div> </footer> <button b-5bzbccjy93 type="button" title="Top" class="btn btn-secondary btn-floating btn-lg" id="btn-back-to-top"> <svg b-5bzbccjy93 xmlns="http://www.w3.org/2000/svg" width="18" height="18" fill="currentColor" class="bi bi-caret-up-fill"> <path b-5bzbccjy93 d="m7.247 4.86-4.796 5.481c-.566.647-.106 1.659.753 1.659h9.592a1 1 0 0 0 .753-1.659l-4.796-5.48a1 1 0 0 0-1.506 0z" /> </svg> </button> <script src="/lib/bootstrap/dist/js/bootstrap.bundle.min.js"></script> <script src="/js/site.js?v=HFdDLbM0HxvrAwFgkX5IgRBv1htKZvv7gXFyyLjyFbI"></script> </body> </html>