CINXE.COM
Search results for: nanoelectronics
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: nanoelectronics</title> <meta name="description" content="Search results for: nanoelectronics"> <meta name="keywords" content="nanoelectronics"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="nanoelectronics" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="nanoelectronics"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 12</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: nanoelectronics</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12</span> Ab Initio Study of Electronic Structure and Transport of Graphyne and Graphdiyne</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zeljko%20Crljen">Zeljko Crljen</a>, <a href="https://publications.waset.org/abstracts/search?q=Predrag%20Lazic"> Predrag Lazic</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Graphene has attracted a tremendous interest in the field of nanoelectronics and spintronics due to its exceptional electronic properties. However, pristine graphene has no band gap, a feature needed in building some of the electronic elements. Recently, a growing attention has been given to a class of carbon allotropes of graphene with honeycomb structures, in particular to graphyne and graphdiyne. They are characterized with a single and double acetylene bonding chains respectively, connecting the nearest-neighbor hexagonal rings. With an electron density comparable to that of graphene and a prominent gap in electronic band structures they appear as promising materials for nanoelectronic components. We studied the electronic structure and transport of infinite sheets of graphyne and graphdiyne and compared them with graphene. The method based on the non-equilibrium Green functions and density functional theory has been used in order to obtain a full ab initio self-consistent description of the transport current with different electrochemical bias potentials. The current/voltage (I/V) characteristics show a semi-conducting behavior with prominent nonlinearities at higher voltages. The calculated band gaps are 0.52V and 0.59V, respectively, and the effective masses are considerably smaller compared to typical semiconductors. We analyzed the results in terms of transmission eigenchannels and showed that the difference in conductance is directly related to the difference of the internal structure of the allotropes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electronic%20transport" title="electronic transport">electronic transport</a>, <a href="https://publications.waset.org/abstracts/search?q=graphene-like%20structures" title=" graphene-like structures"> graphene-like structures</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoelectronics" title=" nanoelectronics"> nanoelectronics</a>, <a href="https://publications.waset.org/abstracts/search?q=two-dimensional%20materials" title=" two-dimensional materials"> two-dimensional materials</a> </p> <a href="https://publications.waset.org/abstracts/72919/ab-initio-study-of-electronic-structure-and-transport-of-graphyne-and-graphdiyne" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72919.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">189</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11</span> Single Atom Manipulation with 4 Scanning Tunneling Microscope Technique</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jianshu%20Yang">Jianshu Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=Delphine%20Sordes"> Delphine Sordes</a>, <a href="https://publications.waset.org/abstracts/search?q=Marek%20Kolmer"> Marek Kolmer</a>, <a href="https://publications.waset.org/abstracts/search?q=Christian%20Joachim"> Christian Joachim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nanoelectronics, for example the calculating circuits integrating at molecule scale logic gates, atomic scale circuits, has been constructed and investigated recently. A major challenge is their functional properties characterization because of the connecting problem from atomic scale to micrometer scale. New experimental instruments and new processes have been proposed therefore. To satisfy a precisely measurement at atomic scale and then connecting micrometer scale electrical integration controller, the technique improvement is kept on going. Our new machine, a low temperature high vacuum four scanning tunneling microscope, as a customer required instrument constructed by Omicron GmbH, is expected to be scaling down to atomic scale characterization. Here, we will present our first testified results about the performance of this new instrument. The sample we selected is Au(111) surface. The measurements have been taken at 4.2 K. The atomic resolution surface structure was observed with each of four scanners with noise level better than 3 pm. With a tip-sample distance calibration by I-z spectra, the sample conductance has been derived from its atomic locally I-V spectra. Furthermore, the surface conductance measurement has been performed using two methods, (1) by landing two STM tips on the surface with sample floating; and (2) by sample floating and one of the landed tips turned to be grounding. In addition, single atom manipulation has been achieved with a modified tip design, which is comparable to a conventional LT-STM. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=low%20temperature%20ultra-high%20vacuum%20four%20scanning%20tunneling%20microscope" title="low temperature ultra-high vacuum four scanning tunneling microscope">low temperature ultra-high vacuum four scanning tunneling microscope</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoelectronics" title=" nanoelectronics"> nanoelectronics</a>, <a href="https://publications.waset.org/abstracts/search?q=point%20contact" title=" point contact"> point contact</a>, <a href="https://publications.waset.org/abstracts/search?q=single%20atom%20manipulation" title=" single atom manipulation"> single atom manipulation</a>, <a href="https://publications.waset.org/abstracts/search?q=tunneling%20resistance" title=" tunneling resistance"> tunneling resistance</a> </p> <a href="https://publications.waset.org/abstracts/31668/single-atom-manipulation-with-4-scanning-tunneling-microscope-technique" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31668.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">279</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10</span> Graphene Transistors Based Microwave Amplifiers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pejman%20Hosseinioun">Pejman Hosseinioun</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Safari"> Ali Safari</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamed%20Sarbazi"> Hamed Sarbazi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Graphene is a one-atom-thick sheet of carbon with numerous impressive properties. It is a promising material for future high-speed nanoelectronics due to its intrinsic superior carrier mobility and very high saturation velocity. These exceptional carrier transport properties suggest that graphene field effect transistors (G-FETs) can potentially outperform other FET technologies. In this paper, detailed discussions are introduced for Graphene Transistors Based Microwave Amplifiers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=graphene" title="graphene">graphene</a>, <a href="https://publications.waset.org/abstracts/search?q=microwave%20FETs" title=" microwave FETs"> microwave FETs</a>, <a href="https://publications.waset.org/abstracts/search?q=microwave%20amplifiers" title=" microwave amplifiers"> microwave amplifiers</a>, <a href="https://publications.waset.org/abstracts/search?q=transistors" title=" transistors "> transistors </a> </p> <a href="https://publications.waset.org/abstracts/20419/graphene-transistors-based-microwave-amplifiers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20419.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">493</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9</span> Simulation of High Performance Nanoscale Partially Depleted SOI n-MOSFET Transistors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fatima%20Zohra%20Rahou">Fatima Zohra Rahou</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Guen%20Bouazza"> A. Guen Bouazza</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Bouazza"> B. Bouazza</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Invention of transistor is the foundation of electronics industry. Metal Oxide Semiconductor Field Effect Transistor (MOSFET) has been the key for the development of nanoelectronics technology. In the first part of this manuscript, we present a new generation of MOSFET transistors based on SOI (Silicon-On-Insulator) technology. It is a partially depleted Silicon-On-Insulator (PD SOI MOSFET) transistor simulated by using SILVACO software. This work was completed by the presentation of some results concerning the influence of parameters variation (channel length L and gate oxide thickness Tox) on our PDSOI n-MOSFET structure on its drain current and kink effect. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=SOI%20technology" title="SOI technology">SOI technology</a>, <a href="https://publications.waset.org/abstracts/search?q=PDSOI%20MOSFET" title=" PDSOI MOSFET"> PDSOI MOSFET</a>, <a href="https://publications.waset.org/abstracts/search?q=FDSOI%20MOSFET" title=" FDSOI MOSFET"> FDSOI MOSFET</a>, <a href="https://publications.waset.org/abstracts/search?q=kink%20effect" title=" kink effect"> kink effect</a> </p> <a href="https://publications.waset.org/abstracts/61667/simulation-of-high-performance-nanoscale-partially-depleted-soi-n-mosfet-transistors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61667.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">258</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8</span> Characterization and Detection of Cadmium Ion Using Modification Calixarene with Multiwalled Carbon Nanotubes </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amira%20Shakila%20Razali">Amira Shakila Razali</a>, <a href="https://publications.waset.org/abstracts/search?q=Faridah%20Lisa%20Supian"> Faridah Lisa Supian</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Mat%20Salleh"> Muhammad Mat Salleh</a>, <a href="https://publications.waset.org/abstracts/search?q=Suriani%20Abu%20Bakar"> Suriani Abu Bakar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Water contamination by toxic compound is one of the serious environmental problems today. These toxic compounds mostly originated from industrial effluents, agriculture, natural sources and human waste. These study are focused on modification of multiwalled carbon nanotube (MWCNTs) with nanoparticle of calixarene and explore the possibility of using this nanocomposites for the remediation of cadmium in water. The nanocomposites were prepared by dissolving calixarene in chloroform solution as solvent, followed by additional multiwalled carbon nanotube (MWCNTs) then sonication process for 3 hour and fabricated the nanocomposites on substrate by spin coating method. Finally, the nanocomposites were tested on cadmium ion (10 mg/ml). The morphology of nanocomposites was investigated by FESEM showing the formation of calixarene on the outer walls of carbon nanotube and cadmium ion also clearly seen from the micrograph. This formation was supported by using energy dispersive x-ray (EDX). The presence of cadmium ions in the films, leads to some changes in the surface potential and Fourier Transform Infrared spectroscopy (FTIR).This nanocomposites have potential for development of sensor for pollutant monitoring and nanoelectronics devices applications <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=calixarene" title="calixarene">calixarene</a>, <a href="https://publications.waset.org/abstracts/search?q=multiwalled%20carbon%20nanotubes" title=" multiwalled carbon nanotubes"> multiwalled carbon nanotubes</a>, <a href="https://publications.waset.org/abstracts/search?q=cadmium" title=" cadmium"> cadmium</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20potential" title=" surface potential"> surface potential</a> </p> <a href="https://publications.waset.org/abstracts/16972/characterization-and-detection-of-cadmium-ion-using-modification-calixarene-with-multiwalled-carbon-nanotubes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16972.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">491</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7</span> Effects of Voltage Pulse Characteristics on Some Performance Parameters of LiₓCoO₂-based Resistive Switching Memory Devices</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Van%20Son%20Nguyen">Van Son Nguyen</a>, <a href="https://publications.waset.org/abstracts/search?q=Van%20Huy%20Mai"> Van Huy Mai</a>, <a href="https://publications.waset.org/abstracts/search?q=Alec%20Moradpour"> Alec Moradpour</a>, <a href="https://publications.waset.org/abstracts/search?q=Pascale%20Auban%20Senzier"> Pascale Auban Senzier</a>, <a href="https://publications.waset.org/abstracts/search?q=Claude%20Pasquier"> Claude Pasquier</a>, <a href="https://publications.waset.org/abstracts/search?q=Kang%20Wang"> Kang Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Pierre-Antoine%20Albouy"> Pierre-Antoine Albouy</a>, <a href="https://publications.waset.org/abstracts/search?q=Marcelo%20J.%20Rozenberg"> Marcelo J. Rozenberg</a>, <a href="https://publications.waset.org/abstracts/search?q=John%20Giapintzakis"> John Giapintzakis</a>, <a href="https://publications.waset.org/abstracts/search?q=Christian%20N.%20Mihailescu"> Christian N. Mihailescu</a>, <a href="https://publications.waset.org/abstracts/search?q=Charis%20M.%20Orfanidou"> Charis M. Orfanidou</a>, <a href="https://publications.waset.org/abstracts/search?q=Thomas%20Maroutian"> Thomas Maroutian</a>, <a href="https://publications.waset.org/abstracts/search?q=Philippe%20Lecoeur"> Philippe Lecoeur</a>, <a href="https://publications.waset.org/abstracts/search?q=Guillaume%20Agnus"> Guillaume Agnus</a>, <a href="https://publications.waset.org/abstracts/search?q=Pascal%20Aubert"> Pascal Aubert</a>, <a href="https://publications.waset.org/abstracts/search?q=Sylvain%20Franger"> Sylvain Franger</a>, <a href="https://publications.waset.org/abstracts/search?q=Rapha%C3%ABl%20Salot"> Raphaël Salot</a>, <a href="https://publications.waset.org/abstracts/search?q=Nathalie%20Brun"> Nathalie Brun</a>, <a href="https://publications.waset.org/abstracts/search?q=Katia%20March"> Katia March</a>, <a href="https://publications.waset.org/abstracts/search?q=David%20Alamarguy"> David Alamarguy</a>, <a href="https://publications.waset.org/abstracts/search?q=Pascal%20Chr%C3%A9Tien"> Pascal ChréTien</a>, <a href="https://publications.waset.org/abstracts/search?q=Olivier%20Schneegans"> Olivier Schneegans</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the field of Nanoelectronics, a major research activity is being developed towards non-volatile memories. To face the limitations of existing Flash memory cells (endurance, downscaling, rapidity…), new approaches are emerging, among them resistive switching memories (Re-RAM). In this work, we analysed the behaviour of LixCoO2 oxide thin films in electrode/film/electrode devices. Preliminary results have been obtained concerning the influence of bias pulses characteristics (duration, value) on some performance parameters, such as endurance and resistance ratio (ROFF/RON). Besides, Conducting Probe Atomic Force Microscopy (CP-AFM) characterizations of the devices have been carried out to better understand some causes of performance failure, and thus help optimizing the switching performance of such devices. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=non%20volatile%20resistive%20memories" title="non volatile resistive memories">non volatile resistive memories</a>, <a href="https://publications.waset.org/abstracts/search?q=resistive%20switching" title=" resistive switching"> resistive switching</a>, <a href="https://publications.waset.org/abstracts/search?q=thin%20films" title=" thin films"> thin films</a>, <a href="https://publications.waset.org/abstracts/search?q=endurance" title=" endurance"> endurance</a> </p> <a href="https://publications.waset.org/abstracts/65064/effects-of-voltage-pulse-characteristics-on-some-performance-parameters-of-licoo2-based-resistive-switching-memory-devices" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65064.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">611</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6</span> The Ultimate Scaling Limit of Monolayer Material Field-Effect-Transistors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Y.%20Lu">Y. Lu</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Liu"> L. Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Guo"> J. Guo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Monolayer graphene and dichaclogenide semiconductor materials attract extensive research interest for potential nanoelectronics applications. The ultimate scaling limit of double gate MoS2 Field-Effect-Transistors (FETs) with a monolayer thin body is examined and compared with ultra-thin-body Si FETs by using self-consistent quantum transport simulation in the presence of phonon scattering. Modelling of phonon scattering, quantum mechanical effects, and self-consistent electrostatics allows us to accurately assess the performance potential of monolayer MoS2 FETs. The results revealed that monolayer MoS2 FETs show 52% smaller Drain Induced Barrier Lowering (DIBL) and 13% Smaller Sub-Threshold Swing (SS) than 3 nm-thick-body Si FETs at a channel length of 10 nm with the same gating. With a requirement of SS<100mV/dec, the scaling limit of monolayer MoS2 FETs is assessed to be 5 nm, comparing with 8nm of the ultra-thin-body Si counterparts due to the monolayer thin body and higher effective mass which reduces direct source-to-drain tunnelling. By comparing with the ITRS target for high performance logic devices of 2023; double gate monolayer MoS2 FETs can fulfil the ITRS requirements. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanotransistors" title="nanotransistors">nanotransistors</a>, <a href="https://publications.waset.org/abstracts/search?q=monolayer%202D%20materials" title=" monolayer 2D materials"> monolayer 2D materials</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20transport" title=" quantum transport"> quantum transport</a>, <a href="https://publications.waset.org/abstracts/search?q=scaling%20limit" title=" scaling limit"> scaling limit</a> </p> <a href="https://publications.waset.org/abstracts/4975/the-ultimate-scaling-limit-of-monolayer-material-field-effect-transistors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4975.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">234</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5</span> Bimetallic Silver-Platinum Core-Shell Nanoparticles Formation and Spectroscopic Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mangaka%20C.%20Matoetoe">Mangaka C. Matoetoe</a>, <a href="https://publications.waset.org/abstracts/search?q=Fredrick%20O.%20Okumu"> Fredrick O. Okumu </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Metal nanoparticles have attracted a great interest in scientific research and industrial applications, owing to their unique large surface area-to-volume ratios and quantum-size effects. Supported metal nanoparticles play a pivotal role in areas such as nanoelectronics, energy storage and as catalysts for the sustainable production of fuels and chemicals. Monometallics (Ag, Pt) and Silver-platinum (Ag-Pt) bimetallic (BM) nanoparticles (NPs) with a mole fraction (1:1) were prepared by reduction / co-reduction of hexachloroplatinate and silver nitrate with sodium citrate. The kinetics of the nanoparticles formation was monitored using UV-visible spectrophotometry. Transmission electron microscopy (TEM) and Energy-dispersive X-ray (EDX) spectroscopy were used for size, film morphology as well as elemental composition study. Fast reduction processes was noted in Ag NPs (0.079 s-1) and Ag-Pt NPs 1:1 (0.082 s-1) with exception of Pt NPs (0.006 s-1) formation. The UV-visible spectra showed characteristic peaks in Ag NPs while the Pt NPs and Ag-Pt NPs 1:1 had no observable absorption peaks. UV visible spectra confirmed chemical reduction resulting to formation of NPs while TEM images depicted core-shell arrangement in the Ag-Pt NPs 1:1 with particle size of 20 nm. Monometallic Ag and Pt NPs reported particle sizes of 60 nm and 2.5 nm respectively. The particle size distribution in the BM NPs was found to directly depend on the concentration of Pt NPs around the Ag core. EDX elemental composition analysis of the nanoparticle suspensions confirmed presence of the Ag and Pt in the Ag-Pt NPs 1:1. All the spectroscopic analysis confirmed the successful formation of the nanoparticles. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=kinetics" title="kinetics">kinetics</a>, <a href="https://publications.waset.org/abstracts/search?q=morphology" title=" morphology"> morphology</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoparticles" title=" nanoparticles"> nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=platinum" title=" platinum"> platinum</a>, <a href="https://publications.waset.org/abstracts/search?q=silver" title=" silver "> silver </a> </p> <a href="https://publications.waset.org/abstracts/36810/bimetallic-silver-platinum-core-shell-nanoparticles-formation-and-spectroscopic-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36810.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">401</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4</span> Thin-Film Nanocomposite Membrane with Single-Walled Carbon Nanotubes Axial Positioning in Support Layer for Desalination of Water</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20A.%20Alghamdi">Ahmed A. Alghamdi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Single-walled carbon nanotubes (SWCNTs) are an outstanding material for applications in thermoelectric power generation, nanoelectronics, electrochemical energy storage, photovoltaics, and light emission. They are ultra-lightweight and possess electrical as well as thermal conductivity, flexibility, and mechanical strength. SWCNT is applicable in water treatment, brine desalination, removal of heavy metal ions associated with pollutants, and oil-water separation. Carbon nanotube (CNT) is believed to tackle the trade-off issue between permeability, selectivity, and fouling issues in membrane filtration applications. Studying these CNT structures, as well as their interconnection in nanotechnology, assists in finding the precise position to be placed for water desalination. Reverse osmosis (RO) has been used globally for desalination, resulting in purified water. Thin film composite (TFC) membranes were utilized in the RO process for desalination. The sheet thickness increases the salt rejection and decreases the water flux when CNT is utilized as a support layer to this membrane. Thus, through a temperature-induced phase separation technique (TIPS), axially aligned SWCNT (AASWCNT) is fabricated, and its use enhances the salt rejection and water flux at short reaction times with a modified procedure. An evaluation was conducted and analogized with prior works in the literature, which exhibited that the prepared TFC membrane showed a better outcome. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=single-walled%20carbon%20nanotubes" title="single-walled carbon nanotubes">single-walled carbon nanotubes</a>, <a href="https://publications.waset.org/abstracts/search?q=thin%20film%20composite" title=" thin film composite"> thin film composite</a>, <a href="https://publications.waset.org/abstracts/search?q=axially%20aligned%20swcnt" title=" axially aligned swcnt"> axially aligned swcnt</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature%20induced%20phase%20separation%20technique" title=" temperature induced phase separation technique"> temperature induced phase separation technique</a>, <a href="https://publications.waset.org/abstracts/search?q=reverse%20osmosis" title=" reverse osmosis"> reverse osmosis</a> </p> <a href="https://publications.waset.org/abstracts/180409/thin-film-nanocomposite-membrane-with-single-walled-carbon-nanotubes-axial-positioning-in-support-layer-for-desalination-of-water" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/180409.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">51</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3</span> Microwave-Assisted 3D Porous Graphene for Its Multi-Functionalities</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jung-Hwan%20Oh">Jung-Hwan Oh</a>, <a href="https://publications.waset.org/abstracts/search?q=Rajesh%20Kumar"> Rajesh Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Il-Kwon%20Oh"> Il-Kwon Oh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Porous graphene has extensive potential applications in variety of fields such as hydrogen storage, CO oxidation, gas separation, supercapacitors, fuel cells, nanoelectronics, oil adsorption, and so on. However, the generation of some carbon atoms vacancies for precise small holes have been not extensively studied to prevent the agglomerates of graphene sheets and to obtain porous graphene with high surface area. Recently, many research efforts have been presented to develop physical and chemical synthetic approaches for porous graphene. But physical method has very high cost of manufacture and chemical method consumes so many hours for porous graphene. Herein, we propose a porous graphene contained holes with atomic scale precision by embedding metal nano-particles through microwave irradiation for hydrogen storage and CO oxidation multi- functionalities. This proposed synthetic method is appropriate for fast and convenient production of three dimensional nanostructures, which have nanoholes on the graphene surface in consequence of microwave irradiation. The metal nanoparticles are dispersed quickly on the graphene surface and generated uniform nanoholes on the graphene nanosheets. The morphological and structural characterization of the porous graphene were examined by scanning electron microscopy (SEM), transmission scanning electron microscopy (TEM) and RAMAN spectroscopy, respectively. The metal nanoparticle-embedded porous graphene exhibits a microporous volume of 2.586cm3g-1 with an average pore radius of 0.75 nm. HR-TEM analysis was carried out to further characterize the microstructures. By investigating the RAMAN spectra, we can understand the structural changes of graphene. The results of this work demonstrate a possibility to produce a new class of porous graphene. Furthermore, the newly acquired knowledge for the diffusion into graphene can provide useful guidance for the development of the growth of nanostructure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CO%20oxidation" title="CO oxidation">CO oxidation</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogen%20storage" title=" hydrogen storage"> hydrogen storage</a>, <a href="https://publications.waset.org/abstracts/search?q=nanocomposites" title=" nanocomposites"> nanocomposites</a>, <a href="https://publications.waset.org/abstracts/search?q=porous%20graphene" title=" porous graphene"> porous graphene</a> </p> <a href="https://publications.waset.org/abstracts/37230/microwave-assisted-3d-porous-graphene-for-its-multi-functionalities" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37230.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">372</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2</span> Modification of Hexagonal Boron Nitride Induced by Focused Laser Beam</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=I.%20Wlasny">I. Wlasny</a>, <a href="https://publications.waset.org/abstracts/search?q=Z.%20Klusek"> Z. Klusek</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Wysmolek"> A. Wysmolek</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hexagonal boron nitride is a representative of a widely popular class of two-dimensional Van Der Waals materials. It finds its uses, among others, in construction of complexly layered heterostructures. Hexagonal boron nitride attracts great interest because of its properties characteristic for wide-gap semiconductors as well as an ultra-flat surface.Van Der Waals heterostructures composed of two-dimensional layered materials, such as transition metal dichalcogenides or graphene give hope for miniaturization of various electronic and optoelectronic elements. In our presentation, we will show the results of our investigations of the not previously reported modification of the hexagonal boron nitride layers with focused laser beam. The electrostatic force microscopy (EFM) images reveal that the irradiation leads to changes of the local electric fields for a wide range of laser wavelengths (from 442 to 785 nm). These changes are also accompanied by alterations of crystallographic structure of the material, as reflected by Raman spectra. They exhibit high stability and remain visible after at least five months. This behavior can be explained in terms of photoionization of the defect centers in h-BN which influence non-uniform electrostatic field screening by the photo-excited charge carriers. Analyzed changes influence local defect structure, and thus the interatomic distances within the lattice. These effects can be amplified by the piezoelectric character of hexagonal boron nitride, similar to that found in nitrides (e.g., GaN, AlN). Our results shed new light on the optical properties of the hexagonal boron nitride, in particular, those associated with electron-phonon coupling. Our study also opens new possibilities for h-BN applications in layered heterostructures where electrostatic fields can be used in tailoring of the local properties of the structures for use in micro- and nanoelectronics or field-controlled memory storage. This work is supported by National Science Centre project granted on the basis of the decision number DEC-2015/16/S/ST3/00451. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=atomic%20force%20microscopy" title="atomic force microscopy">atomic force microscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=hexagonal%20boron%20nitride" title=" hexagonal boron nitride"> hexagonal boron nitride</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20properties" title=" optical properties"> optical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=raman%20spectroscopy" title=" raman spectroscopy"> raman spectroscopy</a> </p> <a href="https://publications.waset.org/abstracts/75769/modification-of-hexagonal-boron-nitride-induced-by-focused-laser-beam" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75769.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">173</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1</span> Forming-Free Resistive Switching Effect in ZnₓTiᵧHfzOᵢ Nanocomposite Thin Films for Neuromorphic Systems Manufacturing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vladimir%20Smirnov">Vladimir Smirnov</a>, <a href="https://publications.waset.org/abstracts/search?q=Roman%20Tominov"> Roman Tominov</a>, <a href="https://publications.waset.org/abstracts/search?q=Vadim%20Avilov"> Vadim Avilov</a>, <a href="https://publications.waset.org/abstracts/search?q=Oleg%20Ageev"> Oleg Ageev</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The creation of a new generation micro- and nanoelectronics elements opens up unlimited possibilities for electronic devices parameters improving, as well as developing neuromorphic computing systems. Interest in the latter is growing up every year, which is explained by the need to solve problems related to the unstructured classification of data, the construction of self-adaptive systems, and pattern recognition. However, for its technical implementation, it is necessary to fulfill a number of conditions for the basic parameters of electronic memory, such as the presence of non-volatility, the presence of multi-bitness, high integration density, and low power consumption. Several types of memory are presented in the electronics industry (MRAM, FeRAM, PRAM, ReRAM), among which non-volatile resistive memory (ReRAM) is especially distinguished due to the presence of multi-bit property, which is necessary for neuromorphic systems manufacturing. ReRAM is based on the effect of resistive switching – a change in the resistance of the oxide film between low-resistance state (LRS) and high-resistance state (HRS) under an applied electric field. One of the methods for the technical implementation of neuromorphic systems is cross-bar structures, which are ReRAM cells, interconnected by cross data buses. Such a structure imitates the architecture of the biological brain, which contains a low power computing elements - neurons, connected by special channels - synapses. The choice of the ReRAM oxide film material is an important task that determines the characteristics of the future neuromorphic system. An analysis of literature showed that many metal oxides (TiO2, ZnO, NiO, ZrO2, HfO2) have a resistive switching effect. It is worth noting that the manufacture of nanocomposites based on these materials allows highlighting the advantages and hiding the disadvantages of each material. Therefore, as a basis for the neuromorphic structures manufacturing, it was decided to use ZnₓTiᵧHfzOᵢ nanocomposite. It is also worth noting that the ZnₓTiᵧHfzOᵢ nanocomposite does not need an electroforming, which degrades the parameters of the formed ReRAM elements. Currently, this material is not well studied, therefore, the study of the effect of resistive switching in forming-free ZnₓTiᵧHfzOᵢ nanocomposite is an important task and the goal of this work. Forming-free nanocomposite ZnₓTiᵧHfzOᵢ thin film was grown by pulsed laser deposition (Pioneer 180, Neocera Co., USA) on the SiO2/TiN (40 nm) substrate. Electrical measurements were carried out using a semiconductor characterization system (Keithley 4200-SCS, USA) with W probes. During measurements, TiN film was grounded. The analysis of the obtained current-voltage characteristics showed a resistive switching from HRS to LRS resistance states at +1.87±0.12 V, and from LRS to HRS at -2.71±0.28 V. Endurance test shown that HRS was 283.21±32.12 kΩ, LRS was 1.32±0.21 kΩ during 100 measurements. It was shown that HRS/LRS ratio was about 214.55 at reading voltage of 0.6 V. The results can be useful for forming-free nanocomposite ZnₓTiᵧHfzOᵢ films in neuromorphic systems manufacturing. This work was supported by RFBR, according to the research project № 19-29-03041 mk. The results were obtained using the equipment of the Research and Education Center «Nanotechnologies» of Southern Federal University. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanotechnology" title="nanotechnology">nanotechnology</a>, <a href="https://publications.waset.org/abstracts/search?q=nanocomposites" title=" nanocomposites"> nanocomposites</a>, <a href="https://publications.waset.org/abstracts/search?q=neuromorphic%20systems" title=" neuromorphic systems"> neuromorphic systems</a>, <a href="https://publications.waset.org/abstracts/search?q=RRAM" title=" RRAM"> RRAM</a>, <a href="https://publications.waset.org/abstracts/search?q=pulsed%20laser%20deposition" title=" pulsed laser deposition"> pulsed laser deposition</a>, <a href="https://publications.waset.org/abstracts/search?q=resistive%20switching%20effect" title=" resistive switching effect"> resistive switching effect</a> </p> <a href="https://publications.waset.org/abstracts/113907/forming-free-resistive-switching-effect-in-zntihfzo-nanocomposite-thin-films-for-neuromorphic-systems-manufacturing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/113907.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">132</span> </span> </div> </div> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>