CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 256 results for author: <span class="mathjax">Cheng, J</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/physics" aria-role="search"> Searching in archive <strong>physics</strong>. <a href="/search/?searchtype=author&amp;query=Cheng%2C+J">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Cheng, J"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Cheng%2C+J&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Cheng, J"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Cheng%2C+J&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Cheng%2C+J&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Cheng%2C+J&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Cheng%2C+J&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Cheng%2C+J&amp;start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Cheng%2C+J&amp;start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Cheng%2C+J&amp;start=250" class="pagination-link " aria-label="Page 6" aria-current="page">6 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.19090">arXiv:2410.19090</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.19090">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Mid-infrared Energy Deposition Spectroscopy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Yin%2C+J">Jiaze Yin</a>, <a href="/search/physics?searchtype=author&amp;query=Pfluegl%2C+C">Christian Pfluegl</a>, <a href="/search/physics?searchtype=author&amp;query=Teng%2C+C+C">Chu C. Teng</a>, <a href="/search/physics?searchtype=author&amp;query=Bolarinho%2C+R">Rylie Bolarinho</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+G">Guo Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Gong%2C+X">Xinrui Gong</a>, <a href="/search/physics?searchtype=author&amp;query=Dong%2C+D">Dashan Dong</a>, <a href="/search/physics?searchtype=author&amp;query=Vakhshoori%2C+D">Daryoosh Vakhshoori</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+J">Ji-Xin Cheng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.19090v1-abstract-short" style="display: inline;"> Photothermal microscopy is an emerging tool for measuring light-matter interactions with single-molecule sensitivity. It is generally believed that the spectral acquisition speed in photothermal microscopy is limited by the slow thermal diffusion process. Here, we demonstrate mid-infrared energy deposition (MIRED) spectroscopy, which offers both microsecond-scale temporal resolution and sub-micron&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.19090v1-abstract-full').style.display = 'inline'; document.getElementById('2410.19090v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.19090v1-abstract-full" style="display: none;"> Photothermal microscopy is an emerging tool for measuring light-matter interactions with single-molecule sensitivity. It is generally believed that the spectral acquisition speed in photothermal microscopy is limited by the slow thermal diffusion process. Here, we demonstrate mid-infrared energy deposition (MIRED) spectroscopy, which offers both microsecond-scale temporal resolution and sub-micron spatial resolution. In this approach, the photothermal process is optically probed while the infrared pulses from a quantum cascade laser array are rapidly tuned. Based on Newton&#39;s law, the energy deposition corresponds to the first derivative of local temperature rise over time and provides the instantaneous infrared absorption. By employing time-resolved measurement of transient energy deposition, the upper limit for spectrum encoding shifts to the vibrational relaxation level, which occurs on the picosecond scale. This method significantly increases the detection bandwidth while maintaining the sensitivity and resolution advantages of photothermal detection. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.19090v1-abstract-full').style.display = 'none'; document.getElementById('2410.19090v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.15681">arXiv:2408.15681</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.15681">pdf</a>, <a href="https://arxiv.org/format/2408.15681">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> </div> <p class="title is-5 mathjax"> Towards a Unified Benchmark and Framework for Deep Learning-Based Prediction of Nuclear Magnetic Resonance Chemical Shifts </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Xu%2C+F">Fanjie Xu</a>, <a href="/search/physics?searchtype=author&amp;query=Guo%2C+W">Wentao Guo</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+F">Feng Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Yao%2C+L">Lin Yao</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+H">Hongshuai Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Tang%2C+F">Fujie Tang</a>, <a href="/search/physics?searchtype=author&amp;query=Gao%2C+Z">Zhifeng Gao</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+L">Linfeng Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=E%2C+W">Weinan E</a>, <a href="/search/physics?searchtype=author&amp;query=Tian%2C+Z">Zhong-Qun Tian</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+J">Jun Cheng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.15681v1-abstract-short" style="display: inline;"> The study of structure-spectrum relationships is essential for spectral interpretation, impacting structural elucidation and material design. Predicting spectra from molecular structures is challenging due to their complex relationships. Herein, we introduce NMRNet, a deep learning framework using the SE(3) Transformer for atomic environment modeling, following a pre-training and fine-tuning parad&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.15681v1-abstract-full').style.display = 'inline'; document.getElementById('2408.15681v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.15681v1-abstract-full" style="display: none;"> The study of structure-spectrum relationships is essential for spectral interpretation, impacting structural elucidation and material design. Predicting spectra from molecular structures is challenging due to their complex relationships. Herein, we introduce NMRNet, a deep learning framework using the SE(3) Transformer for atomic environment modeling, following a pre-training and fine-tuning paradigm. To support the evaluation of NMR chemical shift prediction models, we have established a comprehensive benchmark based on previous research and databases, covering diverse chemical systems. Applying NMRNet to these benchmark datasets, we achieve state-of-the-art performance in both liquid-state and solid-state NMR datasets, demonstrating its robustness and practical utility in real-world scenarios. This marks the first integration of solid and liquid state NMR within a unified model architecture, highlighting the need for domainspecific handling of different atomic environments. Our work sets a new standard for NMR prediction, advancing deep learning applications in analytical and structural chemistry. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.15681v1-abstract-full').style.display = 'none'; document.getElementById('2408.15681v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">23 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.17740">arXiv:2407.17740</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.17740">pdf</a>, <a href="https://arxiv.org/format/2407.17740">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> </div> <p class="title is-5 mathjax"> Machine Learning Potential for Electrochemical Interfaces with Hybrid Representation of Dielectric Response </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Zhu%2C+J">Jia-Xin Zhu</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+J">Jun Cheng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.17740v1-abstract-short" style="display: inline;"> Understanding electrochemical interfaces at a microscopic level is essential for elucidating important electrochemical processes in electrocatalysis, batteries and corrosion. While \textit{ab initio} simulations have provided valuable insights into model systems, the high computational cost limits their use in tackling complex systems of relevance to practical applications. Machine learning potent&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.17740v1-abstract-full').style.display = 'inline'; document.getElementById('2407.17740v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.17740v1-abstract-full" style="display: none;"> Understanding electrochemical interfaces at a microscopic level is essential for elucidating important electrochemical processes in electrocatalysis, batteries and corrosion. While \textit{ab initio} simulations have provided valuable insights into model systems, the high computational cost limits their use in tackling complex systems of relevance to practical applications. Machine learning potentials offer a solution, but their application in electrochemistry remains challenging due to the difficulty in treating the dielectric response of electronic conductors and insulators simultaneously. In this work, we propose a hybrid framework of machine learning potentials that is capable of simulating metal/electrolyte interfaces by unifying the interfacial dielectric response accounting for local electronic polarisation in electrolytes and non-local charge transfer in metal electrodes. We validate our method by reproducing the bell-shaped differential Helmholtz capacitance at the Pt(111)/electrolyte interface. Furthermore, we apply the machine learning potential to calculate the dielectric profile at the interface, providing new insights into electronic polarisation effects. Our work lays the foundation for atomistic modelling of complex, realistic electrochemical interfaces using machine learning potential at \textit{ab initio} accuracy. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.17740v1-abstract-full').style.display = 'none'; document.getElementById('2407.17740v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.15338">arXiv:2407.15338</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.15338">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0230101">10.1063/5.0230101 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Revealing the molecular structures of a-Al2O3(0001)-water interface by machine learning based computational vibrational spectroscopy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Du%2C+X">Xianglong Du</a>, <a href="/search/physics?searchtype=author&amp;query=Shao%2C+W">Weizhi Shao</a>, <a href="/search/physics?searchtype=author&amp;query=Bao%2C+C">Chenglong Bao</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+L">Linfeng Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+J">Jun Cheng</a>, <a href="/search/physics?searchtype=author&amp;query=Tang%2C+F">Fujie Tang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.15338v2-abstract-short" style="display: inline;"> Solid-water interfaces are crucial to many physical and chemical processes and are extensively studied using surface-specific sum-frequency generation (SFG) spectroscopy. To establish clear correlations between specific spectral signatures and distinct interfacial water structures, theoretical calculations using molecular dynamics (MD) simulations are required. These MD simulations typically need&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.15338v2-abstract-full').style.display = 'inline'; document.getElementById('2407.15338v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.15338v2-abstract-full" style="display: none;"> Solid-water interfaces are crucial to many physical and chemical processes and are extensively studied using surface-specific sum-frequency generation (SFG) spectroscopy. To establish clear correlations between specific spectral signatures and distinct interfacial water structures, theoretical calculations using molecular dynamics (MD) simulations are required. These MD simulations typically need relatively long trajectories (a few nanoseconds) to achieve reliable SFG response function calculations via the dipole-polarizability time correlation function. However, the requirement for long trajectories limits the use of computationally expensive techniques such as ab initio MD (AIMD) simulations, particularly for complex solid-water interfaces. In this work, we present a pathway for calculating vibrational spectra (IR, Raman, SFG) of solid-water interfaces using machine learning (ML)-accelerated methods. We employ both the dipole moment-polarizability correlation function and the surface-specific velocity-velocity correlation function approaches to calculate SFG spectra. Our results demonstrate the successful acceleration of AIMD simulations and the calculation of SFG spectra using ML methods. This advancement provides an opportunity to calculate SFG spectra for the complicated solid-water systems more rapidly and at a lower computational cost with the aid of ML. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.15338v2-abstract-full').style.display = 'none'; document.getElementById('2407.15338v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">35 pages, 14 figures; accepted by Journal of Chemical Physics in the special issue of &#34;Festschrift in honor of Yuen-Ron Shen&#34;</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. Chem. Phys. 161, 124702 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.14202">arXiv:2405.14202</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.14202">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Classical Physics">physics.class-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Giant Acoustic Geometric Spin and Orbital Hall Effect </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Wang%2C+W">Wei Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Tan%2C+Y">Yang Tan</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+J">Jingjing Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Liang%2C+B">Bin Liang</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+J">Jianchun Cheng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.14202v1-abstract-short" style="display: inline;"> Acoustic waves in fluid with spin-0 nature have been long believed not to support spin Hall effect and strong orbital Hall effect that enables experimental observation. Here we report the first theoretical explication and experimental demonstration of giant acoustic geometric spin and orbital Hall effect characterized by a large transverse shift. We reveal that this effect occurs when a vortex bea&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.14202v1-abstract-full').style.display = 'inline'; document.getElementById('2405.14202v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.14202v1-abstract-full" style="display: none;"> Acoustic waves in fluid with spin-0 nature have been long believed not to support spin Hall effect and strong orbital Hall effect that enables experimental observation. Here we report the first theoretical explication and experimental demonstration of giant acoustic geometric spin and orbital Hall effect characterized by a large transverse shift. We reveal that this effect occurs when a vortex beam is observed from a tilted reference frame free of wave-interface interactions or gradient-index media needed for observing conventional ones, and can be amplified by simply binding the beam tightly. Thanks to this mechanism, large transverse shifts proportional to angular momentum are observed in a compact system. Our work provides deeper insights into the physics of angular momentum of classic waves. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.14202v1-abstract-full').style.display = 'none'; document.getElementById('2405.14202v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.12483">arXiv:2405.12483</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.12483">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Molecule-induced surface second-order nonlinearity in an inversion symmetric microcavity </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Wang%2C+R">Ru Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Dai%2C+Y">Yue Dai</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+J">Jinsong Cheng</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+R">Ruoyu Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Shen%2C+X">Xiaoqin Shen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.12483v1-abstract-short" style="display: inline;"> Inversion symmetry eliminates the second-order nonlinear responses in materials commonly used in silicon photonics with electric-dipole approximation. The lack of effective methods to induce the second-order nonlinearity in silicon photonic materials prevents their applications in second-order nonlinear integrated photonics. Here, we experimentally demonstrate a surface second-order nonlinear opti&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.12483v1-abstract-full').style.display = 'inline'; document.getElementById('2405.12483v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.12483v1-abstract-full" style="display: none;"> Inversion symmetry eliminates the second-order nonlinear responses in materials commonly used in silicon photonics with electric-dipole approximation. The lack of effective methods to induce the second-order nonlinearity in silicon photonic materials prevents their applications in second-order nonlinear integrated photonics. Here, we experimentally demonstrate a surface second-order nonlinear optics approach for boosting the second harmonic (SH) generation process in a silica microcavity. By leveraging the molecule-induced surface second-order nonlinearity, a record high SH efficiency of about 6.7% W-1 is achieved in a silica microcavity functionalized with a surface asymmetrically-aligned molecular monolayer, which is enhanced of two to four orders of magnitude compared to that before molecule-functionalization. Furthermore, we derive the equations that govern the surface second-order nonlinear process in inversion symmetric microcavities. Our method not only enables high efficiency second-order nonlinear frequency conversions in silica photonics, but also can apply to other inversion symmetric material platforms for integrated photonics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.12483v1-abstract-full').style.display = 'none'; document.getElementById('2405.12483v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.07303">arXiv:2405.07303</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.07303">pdf</a>, <a href="https://arxiv.org/format/2405.07303">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Search for solar axions by Primakoff effect with the full dataset of the CDEX-1B Experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Yang%2C+L+T">L. T. Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+S+K">S. K. Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Yue%2C+Q">Q. Yue</a>, <a href="/search/physics?searchtype=author&amp;query=Kang%2C+K+J">K. J. Kang</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+Y+J">Y. J. Li</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+H+P">H. P. An</a>, <a href="/search/physics?searchtype=author&amp;query=C.%2C+G">Greeshma C.</a>, <a href="/search/physics?searchtype=author&amp;query=Chang%2C+J+P">J. P. Chang</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Y+H">Y. H. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+J+P">J. P. Cheng</a>, <a href="/search/physics?searchtype=author&amp;query=Dai%2C+W+H">W. H. Dai</a>, <a href="/search/physics?searchtype=author&amp;query=Deng%2C+Z">Z. Deng</a>, <a href="/search/physics?searchtype=author&amp;query=Fang%2C+C+H">C. H. Fang</a>, <a href="/search/physics?searchtype=author&amp;query=Geng%2C+X+P">X. P. Geng</a>, <a href="/search/physics?searchtype=author&amp;query=Gong%2C+H">H. Gong</a>, <a href="/search/physics?searchtype=author&amp;query=Guo%2C+Q+J">Q. J. Guo</a>, <a href="/search/physics?searchtype=author&amp;query=Guo%2C+T">T. Guo</a>, <a href="/search/physics?searchtype=author&amp;query=Guo%2C+X+Y">X. Y. Guo</a>, <a href="/search/physics?searchtype=author&amp;query=He%2C+L">L. He</a>, <a href="/search/physics?searchtype=author&amp;query=He%2C+J+R">J. R. He</a>, <a href="/search/physics?searchtype=author&amp;query=Hu%2C+J+W">J. W. Hu</a>, <a href="/search/physics?searchtype=author&amp;query=Huang%2C+H+X">H. X. Huang</a>, <a href="/search/physics?searchtype=author&amp;query=Huang%2C+T+C">T. C. Huang</a>, <a href="/search/physics?searchtype=author&amp;query=Jiang%2C+L">L. Jiang</a>, <a href="/search/physics?searchtype=author&amp;query=Karmakar%2C+S">S. Karmakar</a> , et al. (61 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.07303v1-abstract-short" style="display: inline;"> We present the first limit on $g_{A纬}$ coupling constant using the Bragg-Primakoff conversion based on an exposure of 1107.5 kg days of data from the CDEX-1B experiment at the China Jinping Underground Laboratory. The data are consistent with the null signal hypothesis, and no excess signals are observed. Limits of the coupling $g_{A纬}&lt;2.08\times10^{-9}$ GeV$^{-1}$ (95\% C.L.) are derived for axio&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.07303v1-abstract-full').style.display = 'inline'; document.getElementById('2405.07303v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.07303v1-abstract-full" style="display: none;"> We present the first limit on $g_{A纬}$ coupling constant using the Bragg-Primakoff conversion based on an exposure of 1107.5 kg days of data from the CDEX-1B experiment at the China Jinping Underground Laboratory. The data are consistent with the null signal hypothesis, and no excess signals are observed. Limits of the coupling $g_{A纬}&lt;2.08\times10^{-9}$ GeV$^{-1}$ (95\% C.L.) are derived for axions with mass up to 100 eV/$c^2$. Within the hadronic model of KSVZ, our results exclude axion mass $&gt;5.3~\rm{eV}/c^2$ at 95\% C.L. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.07303v1-abstract-full').style.display = 'none'; document.getElementById('2405.07303v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.03141">arXiv:2405.03141</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.03141">pdf</a>, <a href="https://arxiv.org/format/2405.03141">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Image and Video Processing">eess.IV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Medical Physics">physics.med-ph</span> </div> </div> <p class="title is-5 mathjax"> Automatic Ultrasound Curve Angle Measurement via Affinity Clustering for Adolescent Idiopathic Scoliosis Evaluation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Zhou%2C+Y">Yihao Zhou</a>, <a href="/search/physics?searchtype=author&amp;query=Lee%2C+T+T">Timothy Tin-Yan Lee</a>, <a href="/search/physics?searchtype=author&amp;query=Lai%2C+K+K">Kelly Ka-Lee Lai</a>, <a href="/search/physics?searchtype=author&amp;query=Wu%2C+C">Chonglin Wu</a>, <a href="/search/physics?searchtype=author&amp;query=Lau%2C+H+T">Hin Ting Lau</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+D">De Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Chan%2C+C">Chui-Yi Chan</a>, <a href="/search/physics?searchtype=author&amp;query=Chu%2C+W+C">Winnie Chiu-Wing Chu</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+J+C">Jack Chun-Yiu Cheng</a>, <a href="/search/physics?searchtype=author&amp;query=Lam%2C+T">Tsz-Ping Lam</a>, <a href="/search/physics?searchtype=author&amp;query=Zheng%2C+Y">Yong-Ping Zheng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.03141v2-abstract-short" style="display: inline;"> The current clinical gold standard for evaluating adolescent idiopathic scoliosis (AIS) is X-ray radiography, using Cobb angle measurement. However, the frequent monitoring of the AIS progression using X-rays poses a challenge due to the cumulative radiation exposure. Although 3D ultrasound has been validated as a reliable and radiation-free alternative for scoliosis assessment, the process of mea&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.03141v2-abstract-full').style.display = 'inline'; document.getElementById('2405.03141v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.03141v2-abstract-full" style="display: none;"> The current clinical gold standard for evaluating adolescent idiopathic scoliosis (AIS) is X-ray radiography, using Cobb angle measurement. However, the frequent monitoring of the AIS progression using X-rays poses a challenge due to the cumulative radiation exposure. Although 3D ultrasound has been validated as a reliable and radiation-free alternative for scoliosis assessment, the process of measuring spinal curvature is still carried out manually. Consequently, there is a considerable demand for a fully automatic system that can locate bony landmarks and perform angle measurements. To this end, we introduce an estimation model for automatic ultrasound curve angle (UCA) measurement. The model employs a dual-branch network to detect candidate landmarks and perform vertebra segmentation on ultrasound coronal images. An affinity clustering strategy is utilized within the vertebral segmentation area to illustrate the affinity relationship between candidate landmarks. Subsequently, we can efficiently perform line delineation from a clustered affinity map for UCA measurement. As our method is specifically designed for UCA calculation, this method outperforms other state-of-the-art methods for landmark and line detection tasks. The high correlation between the automatic UCA and Cobb angle (R$^2$=0.858) suggests that our proposed method can potentially replace manual UCA measurement in ultrasound scoliosis assessment. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.03141v2-abstract-full').style.display = 'none'; document.getElementById('2405.03141v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.11921">arXiv:2404.11921</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.11921">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Generation of optical toroidal vortex with circular asymmetric gratings </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Liu%2C+W">Weichao Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+J">Jie Cheng</a>, <a href="/search/physics?searchtype=author&amp;query=Wan%2C+C">Chenhao Wan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.11921v1-abstract-short" style="display: inline;"> Toroidal vortex, a topological structure commonly observed in nature, exist in various types such as bubbles produced by dolphins and the air flow surrounding a flying dandelion. A toroidal vortex corresponds to a spatiotemporal wave packet in the shape of a donut that propagates in the direction perpendicular to the plane of the ring. In this work, we propose a circular asymmetric grating to gene&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.11921v1-abstract-full').style.display = 'inline'; document.getElementById('2404.11921v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.11921v1-abstract-full" style="display: none;"> Toroidal vortex, a topological structure commonly observed in nature, exist in various types such as bubbles produced by dolphins and the air flow surrounding a flying dandelion. A toroidal vortex corresponds to a spatiotemporal wave packet in the shape of a donut that propagates in the direction perpendicular to the plane of the ring. In this work, we propose a circular asymmetric grating to generate vortex rings. A cylindrical vector wave packet is transformed by the device into a transmitted toroidal vortex pulse. Such a compact toroidal vortex generator may find applications in optical topology research and high-dimensional optical communications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.11921v1-abstract-full').style.display = 'none'; document.getElementById('2404.11921v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.09793">arXiv:2404.09793</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.09793">pdf</a>, <a href="https://arxiv.org/format/2404.09793">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> First Search for Light Fermionic Dark Matter Absorption on Electrons Using Germanium Detector in CDEX-10 Experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Liu%2C+J+X">J. X. Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+L+T">L. T. Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Yue%2C+Q">Q. Yue</a>, <a href="/search/physics?searchtype=author&amp;query=Kang%2C+K+J">K. J. Kang</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+Y+J">Y. J. Li</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+H+P">H. P. An</a>, <a href="/search/physics?searchtype=author&amp;query=C.%2C+G">Greeshma C.</a>, <a href="/search/physics?searchtype=author&amp;query=Chang%2C+J+P">J. P. Chang</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Y+H">Y. H. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+J+P">J. P. Cheng</a>, <a href="/search/physics?searchtype=author&amp;query=Dai%2C+W+H">W. H. Dai</a>, <a href="/search/physics?searchtype=author&amp;query=Deng%2C+Z">Z. Deng</a>, <a href="/search/physics?searchtype=author&amp;query=Fang%2C+C+H">C. H. Fang</a>, <a href="/search/physics?searchtype=author&amp;query=Geng%2C+X+P">X. P. Geng</a>, <a href="/search/physics?searchtype=author&amp;query=Gong%2C+H">H. Gong</a>, <a href="/search/physics?searchtype=author&amp;query=Guo%2C+Q+J">Q. J. Guo</a>, <a href="/search/physics?searchtype=author&amp;query=Guo%2C+T">T. Guo</a>, <a href="/search/physics?searchtype=author&amp;query=Guo%2C+X+Y">X. Y. Guo</a>, <a href="/search/physics?searchtype=author&amp;query=He%2C+L">L. He</a>, <a href="/search/physics?searchtype=author&amp;query=He%2C+J+R">J. R. He</a>, <a href="/search/physics?searchtype=author&amp;query=Hu%2C+J+W">J. W. Hu</a>, <a href="/search/physics?searchtype=author&amp;query=Huang%2C+H+X">H. X. Huang</a>, <a href="/search/physics?searchtype=author&amp;query=Huang%2C+T+C">T. C. Huang</a>, <a href="/search/physics?searchtype=author&amp;query=Jiang%2C+L">L. Jiang</a>, <a href="/search/physics?searchtype=author&amp;query=Karmakar%2C+S">S. Karmakar</a> , et al. (61 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.09793v1-abstract-short" style="display: inline;"> We present the first results of the search for sub-MeV fermionic dark matter absorbed by electron targets of Germanium using the 205.4~kg$\cdot$day data collected by the CDEX-10 experiment, with the analysis threshold of 160~eVee. No significant dark matter (DM) signals over the background are observed. Results are presented as limits on the cross section of DM--electron interaction. We present ne&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.09793v1-abstract-full').style.display = 'inline'; document.getElementById('2404.09793v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.09793v1-abstract-full" style="display: none;"> We present the first results of the search for sub-MeV fermionic dark matter absorbed by electron targets of Germanium using the 205.4~kg$\cdot$day data collected by the CDEX-10 experiment, with the analysis threshold of 160~eVee. No significant dark matter (DM) signals over the background are observed. Results are presented as limits on the cross section of DM--electron interaction. We present new constraints of cross section in the DM range of 0.1--10 keV/$c^2$ for vector and axial-vector interaction. The upper limit on the cross section is set to be $\rm 5.5\times10^{-46}~cm^2$ for vector interaction, and $\rm 1.8\times10^{-46}~cm^2$ for axial-vector interaction at DM mass of 5 keV/$c^2$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.09793v1-abstract-full').style.display = 'none'; document.getElementById('2404.09793v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.00413">arXiv:2404.00413</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.00413">pdf</a>, <a href="https://arxiv.org/format/2404.00413">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Space Physics">physics.space-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> Language Models are Spacecraft Operators </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Rodriguez-Fernandez%2C+V">Victor Rodriguez-Fernandez</a>, <a href="/search/physics?searchtype=author&amp;query=Carrasco%2C+A">Alejandro Carrasco</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+J">Jason Cheng</a>, <a href="/search/physics?searchtype=author&amp;query=Scharf%2C+E">Eli Scharf</a>, <a href="/search/physics?searchtype=author&amp;query=Siew%2C+P+M">Peng Mun Siew</a>, <a href="/search/physics?searchtype=author&amp;query=Linares%2C+R">Richard Linares</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.00413v1-abstract-short" style="display: inline;"> Recent trends are emerging in the use of Large Language Models (LLMs) as autonomous agents that take actions based on the content of the user text prompts. We intend to apply these concepts to the field of Guidance, Navigation, and Control in space, enabling LLMs to have a significant role in the decision-making process for autonomous satellite operations. As a first step towards this goal, we hav&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.00413v1-abstract-full').style.display = 'inline'; document.getElementById('2404.00413v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.00413v1-abstract-full" style="display: none;"> Recent trends are emerging in the use of Large Language Models (LLMs) as autonomous agents that take actions based on the content of the user text prompts. We intend to apply these concepts to the field of Guidance, Navigation, and Control in space, enabling LLMs to have a significant role in the decision-making process for autonomous satellite operations. As a first step towards this goal, we have developed a pure LLM-based solution for the Kerbal Space Program Differential Games (KSPDG) challenge, a public software design competition where participants create autonomous agents for maneuvering satellites involved in non-cooperative space operations, running on the KSP game engine. Our approach leverages prompt engineering, few-shot prompting, and fine-tuning techniques to create an effective LLM-based agent that ranked 2nd in the competition. To the best of our knowledge, this work pioneers the integration of LLM agents into space research. Code is available at https://github.com/ARCLab-MIT/kspdg. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.00413v1-abstract-full').style.display = 'none'; document.getElementById('2404.00413v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Source code available on Github at: https://github.com/ARCLab-MIT/kspdg</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.20276">arXiv:2403.20276</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.20276">pdf</a>, <a href="https://arxiv.org/format/2403.20276">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Constraints on the Blazar-Boosted Dark Matter from the CDEX-10 Experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Xu%2C+R">R. Xu</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+L+T">L. T. Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Yue%2C+Q">Q. Yue</a>, <a href="/search/physics?searchtype=author&amp;query=Kang%2C+K+J">K. J. Kang</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+Y+J">Y. J. Li</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+H+P">H. P. An</a>, <a href="/search/physics?searchtype=author&amp;query=C.%2C+G">Greeshma C.</a>, <a href="/search/physics?searchtype=author&amp;query=Chang%2C+J+P">J. P. Chang</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Y+H">Y. H. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+J+P">J. P. Cheng</a>, <a href="/search/physics?searchtype=author&amp;query=Dai%2C+W+H">W. H. Dai</a>, <a href="/search/physics?searchtype=author&amp;query=Deng%2C+Z">Z. Deng</a>, <a href="/search/physics?searchtype=author&amp;query=Fang%2C+C+H">C. H. Fang</a>, <a href="/search/physics?searchtype=author&amp;query=Geng%2C+X+P">X. P. Geng</a>, <a href="/search/physics?searchtype=author&amp;query=Gong%2C+H">H. Gong</a>, <a href="/search/physics?searchtype=author&amp;query=Guo%2C+Q+J">Q. J. Guo</a>, <a href="/search/physics?searchtype=author&amp;query=Guo%2C+T">T. Guo</a>, <a href="/search/physics?searchtype=author&amp;query=Guo%2C+X+Y">X. Y. Guo</a>, <a href="/search/physics?searchtype=author&amp;query=He%2C+L">L. He</a>, <a href="/search/physics?searchtype=author&amp;query=He%2C+S+M">S. M. He</a>, <a href="/search/physics?searchtype=author&amp;query=Hu%2C+J+W">J. W. Hu</a>, <a href="/search/physics?searchtype=author&amp;query=Huang%2C+H+X">H. X. Huang</a>, <a href="/search/physics?searchtype=author&amp;query=Huang%2C+T+C">T. C. Huang</a>, <a href="/search/physics?searchtype=author&amp;query=Jiang%2C+L">L. Jiang</a>, <a href="/search/physics?searchtype=author&amp;query=Karmakar%2C+S">S. Karmakar</a> , et al. (59 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.20276v1-abstract-short" style="display: inline;"> We report new constraints on light dark matter (DM) boosted by blazars using the 205.4 kg day data from the CDEX-10 experiment located at the China Jinping Underground Laboratory. Two representative blazars, TXS 0506+56 and BL Lacertae are studied. The results derived from TXS 0506+56 exclude DM-nucleon elastic scattering cross sections from $4.6\times 10^{-33}\ \rm cm^2$ to&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.20276v1-abstract-full').style.display = 'inline'; document.getElementById('2403.20276v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.20276v1-abstract-full" style="display: none;"> We report new constraints on light dark matter (DM) boosted by blazars using the 205.4 kg day data from the CDEX-10 experiment located at the China Jinping Underground Laboratory. Two representative blazars, TXS 0506+56 and BL Lacertae are studied. The results derived from TXS 0506+56 exclude DM-nucleon elastic scattering cross sections from $4.6\times 10^{-33}\ \rm cm^2$ to $1\times10^{-26}\ \rm cm^2$ for DM masses between 10 keV and 1 GeV, and the results derived from BL Lacertae exclude DM-nucleon elastic scattering cross sections from $2.4\times 10^{-34}\ \rm cm^2$ to $1\times10^{-26}\ \rm cm^2$ for the same range of DM masses. The constraints correspond to the best sensitivities among solid-state detector experiments in the sub-MeV mass range. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.20276v1-abstract-full').style.display = 'none'; document.getElementById('2403.20276v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.20263">arXiv:2403.20263</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.20263">pdf</a>, <a href="https://arxiv.org/format/2403.20263">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/s11433-024-2446-2">10.1007/s11433-024-2446-2 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Probing Dark Matter Particles from Evaporating Primordial Black Holes via Electron Scattering in the CDEX-10 Experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+Z+H">Z. H. Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+L+T">L. T. Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Yue%2C+Q">Q. Yue</a>, <a href="/search/physics?searchtype=author&amp;query=Kang%2C+K+J">K. J. Kang</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+Y+J">Y. J. Li</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+H+P">H. P. An</a>, <a href="/search/physics?searchtype=author&amp;query=C.%2C+G">Greeshma C.</a>, <a href="/search/physics?searchtype=author&amp;query=Chang%2C+J+P">J. P. Chang</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Y+H">Y. H. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+J+P">J. P. Cheng</a>, <a href="/search/physics?searchtype=author&amp;query=Dai%2C+W+H">W. H. Dai</a>, <a href="/search/physics?searchtype=author&amp;query=Deng%2C+Z">Z. Deng</a>, <a href="/search/physics?searchtype=author&amp;query=Fang%2C+C+H">C. H. Fang</a>, <a href="/search/physics?searchtype=author&amp;query=Geng%2C+X+P">X. P. Geng</a>, <a href="/search/physics?searchtype=author&amp;query=Gong%2C+H">H. Gong</a>, <a href="/search/physics?searchtype=author&amp;query=Guo%2C+Q+J">Q. J. Guo</a>, <a href="/search/physics?searchtype=author&amp;query=Guo%2C+T">T. Guo</a>, <a href="/search/physics?searchtype=author&amp;query=Guo%2C+X+Y">X. Y. Guo</a>, <a href="/search/physics?searchtype=author&amp;query=He%2C+L">L. He</a>, <a href="/search/physics?searchtype=author&amp;query=He%2C+S+M">S. M. He</a>, <a href="/search/physics?searchtype=author&amp;query=Hu%2C+J+W">J. W. Hu</a>, <a href="/search/physics?searchtype=author&amp;query=Huang%2C+H+X">H. X. Huang</a>, <a href="/search/physics?searchtype=author&amp;query=Huang%2C+T+C">T. C. Huang</a>, <a href="/search/physics?searchtype=author&amp;query=Jiang%2C+L">L. Jiang</a>, <a href="/search/physics?searchtype=author&amp;query=Karmakar%2C+S">S. Karmakar</a> , et al. (59 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.20263v2-abstract-short" style="display: inline;"> Dark matter (DM) is a major constituent of the Universe. However, no definite evidence of DM particles (denoted as ``$蠂$&#34;) has been found in DM direct detection (DD) experiments to date. There is a novel concept of detecting $蠂$ from evaporating primordial black holes (PBHs). We search for $蠂$ emitted from PBHs by investigating their interaction with target electrons. The examined PBH masses range&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.20263v2-abstract-full').style.display = 'inline'; document.getElementById('2403.20263v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.20263v2-abstract-full" style="display: none;"> Dark matter (DM) is a major constituent of the Universe. However, no definite evidence of DM particles (denoted as ``$蠂$&#34;) has been found in DM direct detection (DD) experiments to date. There is a novel concept of detecting $蠂$ from evaporating primordial black holes (PBHs). We search for $蠂$ emitted from PBHs by investigating their interaction with target electrons. The examined PBH masses range from 1$\times$10$^{15}$ to 7$\times$10$^{16}$ g under the current limits of PBH abundance $f_{PBH}$. Using 205.4 kg$\cdot$day data obtained from the CDEX-10 experiment conducted in the China Jinping Underground Laboratory, we exclude the $蠂$--electron ($蠂$--$e$) elastic-scattering cross section $蟽_{蠂e} \sim 5\times10^{-29}$ cm$^2$ for $蠂$ with a mass $m_蠂\lesssim$ 0.1 keV from our results. With the higher radiation background but lower energy threshold (160 eV), CDEX-10 fill a part of the gap in the previous work. If ($m_蠂$, $蟽_{蠂e}$) can be determined in the future, DD experiments are expected to impose strong constraints on $f_{PBH}$ for large $M_{PBH}$s. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.20263v2-abstract-full').style.display = 'none'; document.getElementById('2403.20263v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 6 figures, 3 tables. Version updated to match SCPMA version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Sci. China Phys. Mech. Astron. 67, 101011 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.00272">arXiv:2402.00272</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2402.00272">pdf</a>, <a href="https://arxiv.org/format/2402.00272">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> Quantum phase transitions and composite excitations of antiferromagnetic spin trimer chains in a magnetic field </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+J">Jun-Qing Cheng</a>, <a href="/search/physics?searchtype=author&amp;query=Ning%2C+Z">Zhi-Yao Ning</a>, <a href="/search/physics?searchtype=author&amp;query=Wu%2C+H">Han-Qing Wu</a>, <a href="/search/physics?searchtype=author&amp;query=Yao%2C+D">Dao-Xin Yao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.00272v3-abstract-short" style="display: inline;"> Motivated by recent advancements in theoretical and experimental studies of the high-energy excitations on an antiferromagnetic trimer chain, we numerically investigate the quantum phase transition and composite dynamics in this system by applying a magnetic field. The numerical methods we used include the exact diagonalization, density matrix renormalization group, time-dependent variational prin&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.00272v3-abstract-full').style.display = 'inline'; document.getElementById('2402.00272v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.00272v3-abstract-full" style="display: none;"> Motivated by recent advancements in theoretical and experimental studies of the high-energy excitations on an antiferromagnetic trimer chain, we numerically investigate the quantum phase transition and composite dynamics in this system by applying a magnetic field. The numerical methods we used include the exact diagonalization, density matrix renormalization group, time-dependent variational principle, and cluster perturbation theory. From calculating the entanglement entropy, we have revealed the phase diagram which includes the XY-I, $1/3$ magnetization plateau, XY-II, and ferromagnetic phases. Both the critical XY-I and XY-II phases are characterized by the conformal field theory with a central charge $c \simeq 1$. By analyzing the dynamic spin structure factor, we elucidate the distinct features of spin dynamics across different phases. In the regime with weak intertrimer interaction, we identify the intermediate-energy and high-energy modes in the XY-I and $1/3$ magnetization plateau phases as internal trimer excitations, corresponding to the propagating of doublons and quartons, respectively. Notably, applying a magnetic field splits the high-energy spectrum into two branches, labeled as the upper quarton and lower quarton. Furthermore, we explore the spin dynamics of a frustrated trimerized model closely related to the quantum magnet \ce{Na_2Cu_3Ge_4O_12}. In the end, we extend our discuss on the possibility of the quarton Bose-Einstein condensation in the trimer systems. Our results are expected to be further verified through the inelastic neutron scattering and resonant inelastic X-ray scattering, and also provide valuable insights for exploring high-energy exotic excitations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.00272v3-abstract-full').style.display = 'none'; document.getElementById('2402.00272v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 31 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15+6 pages, 16 figures, to be published in npj Quantum materials</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.15492">arXiv:2312.15492</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.15492">pdf</a>, <a href="https://arxiv.org/format/2312.15492">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> DPA-2: a large atomic model as a multi-task learner </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+D">Duo Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+X">Xinzijian Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+X">Xiangyu Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+C">Chengqian Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Cai%2C+C">Chun Cai</a>, <a href="/search/physics?searchtype=author&amp;query=Bi%2C+H">Hangrui Bi</a>, <a href="/search/physics?searchtype=author&amp;query=Du%2C+Y">Yiming Du</a>, <a href="/search/physics?searchtype=author&amp;query=Qin%2C+X">Xuejian Qin</a>, <a href="/search/physics?searchtype=author&amp;query=Peng%2C+A">Anyang Peng</a>, <a href="/search/physics?searchtype=author&amp;query=Huang%2C+J">Jiameng Huang</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+B">Bowen Li</a>, <a href="/search/physics?searchtype=author&amp;query=Shan%2C+Y">Yifan Shan</a>, <a href="/search/physics?searchtype=author&amp;query=Zeng%2C+J">Jinzhe Zeng</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+Y">Yuzhi Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+S">Siyuan Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+Y">Yifan Li</a>, <a href="/search/physics?searchtype=author&amp;query=Chang%2C+J">Junhan Chang</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+X">Xinyan Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Zhou%2C+S">Shuo Zhou</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+J">Jianchuan Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Luo%2C+X">Xiaoshan Luo</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+Z">Zhenyu Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Jiang%2C+W">Wanrun Jiang</a>, <a href="/search/physics?searchtype=author&amp;query=Wu%2C+J">Jing Wu</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+Y">Yudi Yang</a> , et al. (18 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.15492v2-abstract-short" style="display: inline;"> The rapid advancements in artificial intelligence (AI) are catalyzing transformative changes in atomic modeling, simulation, and design. AI-driven potential energy models have demonstrated the capability to conduct large-scale, long-duration simulations with the accuracy of ab initio electronic structure methods. However, the model generation process remains a bottleneck for large-scale applicatio&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.15492v2-abstract-full').style.display = 'inline'; document.getElementById('2312.15492v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.15492v2-abstract-full" style="display: none;"> The rapid advancements in artificial intelligence (AI) are catalyzing transformative changes in atomic modeling, simulation, and design. AI-driven potential energy models have demonstrated the capability to conduct large-scale, long-duration simulations with the accuracy of ab initio electronic structure methods. However, the model generation process remains a bottleneck for large-scale applications. We propose a shift towards a model-centric ecosystem, wherein a large atomic model (LAM), pre-trained across multiple disciplines, can be efficiently fine-tuned and distilled for various downstream tasks, thereby establishing a new framework for molecular modeling. In this study, we introduce the DPA-2 architecture as a prototype for LAMs. Pre-trained on a diverse array of chemical and materials systems using a multi-task approach, DPA-2 demonstrates superior generalization capabilities across multiple downstream tasks compared to the traditional single-task pre-training and fine-tuning methodologies. Our approach sets the stage for the development and broad application of LAMs in molecular and materials simulation research. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.15492v2-abstract-full').style.display = 'none'; document.getElementById('2312.15492v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.06127">arXiv:2312.06127</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.06127">pdf</a>, <a href="https://arxiv.org/format/2312.06127">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/19/03/P03002">10.1088/1748-0221/19/03/P03002 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Study of cosmogenic activation in $^{76}$Ge enriched germanium detectors during fabrication and transportation above ground </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Nie%2C+Q">Qiyuan Nie</a>, <a href="/search/physics?searchtype=author&amp;query=Zeng%2C+Z">Zhi Zeng</a>, <a href="/search/physics?searchtype=author&amp;query=Ma%2C+H">Hao Ma</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+L">Litao Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Yue%2C+Q">Qian Yue</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+J">Jianping Cheng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.06127v2-abstract-short" style="display: inline;"> Rare event search experiments using germanium detectors are operated in underground laboratories to minimize the background induced by cosmic rays. However, the cosmogenic activation in germanium crystals on the ground during fabrication and transportation generates long half-life radionuclides and contributes a considerable background. We simulated the production rates of cosmogenic radionuclides&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.06127v2-abstract-full').style.display = 'inline'; document.getElementById('2312.06127v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.06127v2-abstract-full" style="display: none;"> Rare event search experiments using germanium detectors are operated in underground laboratories to minimize the background induced by cosmic rays. However, the cosmogenic activation in germanium crystals on the ground during fabrication and transportation generates long half-life radionuclides and contributes a considerable background. We simulated the production rates of cosmogenic radionuclides in germanium and calculated the specifi c activities of cosmogenic radionuclides according to the scheduled fabrication and transportation processes of $^{76}$Ge enriched germanium detectors. The impact of cosmogenic background in germanium crystals for the next generation CDEX experiment was assessed with the scheduled exposure history above ground. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.06127v2-abstract-full').style.display = 'none'; document.getElementById('2312.06127v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> JINST 19 P03002, 2024 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.05798">arXiv:2310.05798</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.05798">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Millimeter-deep micron-resolution vibrational imaging by shortwave infrared photothermal microscopy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Ni%2C+H">Hongli Ni</a>, <a href="/search/physics?searchtype=author&amp;query=Yuan%2C+Y">Yuhao Yuan</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+M">Mingsheng Li</a>, <a href="/search/physics?searchtype=author&amp;query=Zhu%2C+Y">Yifan Zhu</a>, <a href="/search/physics?searchtype=author&amp;query=Ge%2C+X">Xiaowei Ge</a>, <a href="/search/physics?searchtype=author&amp;query=Dessai%2C+C+P">Chinmayee Prabhu Dessai</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+L">Le Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+J">Ji-Xin Cheng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.05798v1-abstract-short" style="display: inline;"> Deep-tissue chemical imaging plays a vital role in biological and medical applications. Here, we present a shortwave infrared photothermal (SWIP) microscope for millimeter-deep vibrational imaging with sub-micron lateral resolution and nanoparticle detection sensitivity. By pumping the overtone transition of carbon-hydrogen bonds and probing the subsequent photothermal lens with shortwave infrared&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.05798v1-abstract-full').style.display = 'inline'; document.getElementById('2310.05798v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.05798v1-abstract-full" style="display: none;"> Deep-tissue chemical imaging plays a vital role in biological and medical applications. Here, we present a shortwave infrared photothermal (SWIP) microscope for millimeter-deep vibrational imaging with sub-micron lateral resolution and nanoparticle detection sensitivity. By pumping the overtone transition of carbon-hydrogen bonds and probing the subsequent photothermal lens with shortwave infrared light, SWIP can obtain chemical contrast from microparticles located millimeter-deep in a highly scattering phantom. By fast digitization on the optically probed signal, the amplitude of photothermal signal is shown to be 63 times larger than that of photoacoustic signal, thus enabling highly sensitive detection of nanoscale objects. SWIP can resolve the intracellular lipids across an intact tumor spheroid and the layered structure in millimeter-thick liver, skin, brain, and breast tissues. Together, SWIP microscopy fills a gap in vibrational imaging with sub-cellular resolution and millimeter-level penetration, which heralds broad potential for life science and clinical applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.05798v1-abstract-full').style.display = 'none'; document.getElementById('2310.05798v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">26 pages, 10 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.14982">arXiv:2309.14982</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2309.14982">pdf</a>, <a href="https://arxiv.org/format/2309.14982">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.132.171001">10.1103/PhysRevLett.132.171001 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Experimental Limits on Solar Reflected Dark Matter with a New Approach on Accelerated-Dark-Matter-Electron Analysis in Semiconductors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+Z+Y">Z. Y. Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+L+T">L. T. Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Yue%2C+Q">Q. Yue</a>, <a href="/search/physics?searchtype=author&amp;query=Kang%2C+K+J">K. J. Kang</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+Y+J">Y. J. Li</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+H+P">H. P. An</a>, <a href="/search/physics?searchtype=author&amp;query=C.%2C+G">Greeshma C.</a>, <a href="/search/physics?searchtype=author&amp;query=Chang%2C+J+P">J. P. Chang</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Y+H">Y. H. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+J+P">J. P. Cheng</a>, <a href="/search/physics?searchtype=author&amp;query=Dai%2C+W+H">W. H. Dai</a>, <a href="/search/physics?searchtype=author&amp;query=Deng%2C+Z">Z. Deng</a>, <a href="/search/physics?searchtype=author&amp;query=Fang%2C+C+H">C. H. Fang</a>, <a href="/search/physics?searchtype=author&amp;query=Geng%2C+X+P">X. P. Geng</a>, <a href="/search/physics?searchtype=author&amp;query=Gong%2C+H">H. Gong</a>, <a href="/search/physics?searchtype=author&amp;query=Guo%2C+Q+J">Q. J. Guo</a>, <a href="/search/physics?searchtype=author&amp;query=Guo%2C+T">T. Guo</a>, <a href="/search/physics?searchtype=author&amp;query=Guo%2C+X+Y">X. Y. Guo</a>, <a href="/search/physics?searchtype=author&amp;query=He%2C+L">L. He</a>, <a href="/search/physics?searchtype=author&amp;query=He%2C+S+M">S. M. He</a>, <a href="/search/physics?searchtype=author&amp;query=Hu%2C+J+W">J. W. Hu</a>, <a href="/search/physics?searchtype=author&amp;query=Huang%2C+H+X">H. X. Huang</a>, <a href="/search/physics?searchtype=author&amp;query=Huang%2C+T+C">T. C. Huang</a>, <a href="/search/physics?searchtype=author&amp;query=Jiang%2C+L">L. Jiang</a>, <a href="/search/physics?searchtype=author&amp;query=Karmakar%2C+S">S. Karmakar</a> , et al. (59 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.14982v3-abstract-short" style="display: inline;"> Recently a dark matter-electron (DM-electron) paradigm has drawn much attention. Models beyond the standard halo model describing DM accelerated by high energy celestial bodies are under intense examination as well. In this Letter, a velocity components analysis (VCA) method dedicated to swift analysis of accelerated DM-electron interactions via semiconductor detectors is proposed and the first HP&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.14982v3-abstract-full').style.display = 'inline'; document.getElementById('2309.14982v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.14982v3-abstract-full" style="display: none;"> Recently a dark matter-electron (DM-electron) paradigm has drawn much attention. Models beyond the standard halo model describing DM accelerated by high energy celestial bodies are under intense examination as well. In this Letter, a velocity components analysis (VCA) method dedicated to swift analysis of accelerated DM-electron interactions via semiconductor detectors is proposed and the first HPGe detector-based accelerated DM-electron analysis is realized. Utilizing the method, the first germanium based constraint on sub-GeV solar reflected DM-electron interaction is presented with the 205.4 kg$\cdot$day dataset from the CDEX-10 experiment. In the heavy mediator scenario, our result excels in the mass range of 5$-$15 keV/$c^2$, achieving a 3 orders of magnitude improvement comparing with previous semiconductor experiments. In the light mediator scenario, the strongest laboratory constraint for DM lighter than 0.1 MeV/$c^2$ is presented. The result proves the feasibility and demonstrates the vast potential of the VCA technique in future accelerated DM-electron analyses with semiconductor detectors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.14982v3-abstract-full').style.display = 'none'; document.getElementById('2309.14982v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 4 figures. Version updated to match PRL version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 132, 171001 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.14927">arXiv:2309.14927</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2309.14927">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> </div> <p class="title is-5 mathjax"> Microstructure and structural modulation of lutetium dihydride LuH2 as seen via transmission electron microscopy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Ma%2C+X">Xiao-Ping Ma</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+N">Ning-Ning Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+W">Wen-Tao Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Nie%2C+J">Jing-Zhe Nie</a>, <a href="/search/physics?searchtype=author&amp;query=Gao%2C+W">Wen-Li Gao</a>, <a href="/search/physics?searchtype=author&amp;query=Sun%2C+S">Shuai-Shuai Sun</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+J">Jun Li</a>, <a href="/search/physics?searchtype=author&amp;query=Tian%2C+H">Huan-Fang Tian</a>, <a href="/search/physics?searchtype=author&amp;query=Xia%2C+T">Tian-Long Xia</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+J">Jin-Guang Cheng</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+J">Jian-Qi Li</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+H">Huai-Xin Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.14927v1-abstract-short" style="display: inline;"> Structural investigations conducted using transmission electron microscopy (TEM) on LuH2 synthesized under atmospheric pressure (AP-LuH2) and nitrogen-doped LuH2 synthesized under high pressure (HP-LuH2) have revealed numerous microstructural phenomena. Both materials show a clear superstructure modulation with wave vector, q^* = 1/4 (2-20), and this modulation can be well interpreted by the displ&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.14927v1-abstract-full').style.display = 'inline'; document.getElementById('2309.14927v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.14927v1-abstract-full" style="display: none;"> Structural investigations conducted using transmission electron microscopy (TEM) on LuH2 synthesized under atmospheric pressure (AP-LuH2) and nitrogen-doped LuH2 synthesized under high pressure (HP-LuH2) have revealed numerous microstructural phenomena. Both materials show a clear superstructure modulation with wave vector, q^* = 1/4 (2-20), and this modulation can be well interpreted by the displacements of Lu atoms. Further investigations on the nitrogen-doped HP-LuH2 materials reveal the appearance of high-density antiphase boundaries, in particular, domain walls of a few atomic layer thickness without structural modulation can be observed, suggesting possible interface properties could be detected in this system. In-situ TEM observations of AP-LuH2 suggest that no evident structural phase transition occurs between 94 K and 673 K. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.14927v1-abstract-full').style.display = 'none'; document.getElementById('2309.14927v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.04989">arXiv:2309.04989</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2309.04989">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Classical Physics">physics.class-ph</span> </div> </div> <p class="title is-5 mathjax"> Non-zero Integral Spin of Acoustic Vortices and Spin-orbit Interaction in Longitudinal Acoustics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Wang%2C+W">Wei Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Tan%2C+Y">Yang Tan</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+J">Jingjing Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Liang%2C+B">Bin Liang</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+J">Jianchun Cheng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.04989v1-abstract-short" style="display: inline;"> Spin and orbital angular momenta (AM) are of fundamental interest in wave physics. Acoustic wave, as a typical longitudinal wave, has been well studied in terms of orbital AM, but still considered unable to carry non-zero integral spin AM or spin-orbital interaction in homogeneous media due to its spin-0 nature. Here we give the first self-consistent analytical calculations of spin, orbital and to&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.04989v1-abstract-full').style.display = 'inline'; document.getElementById('2309.04989v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.04989v1-abstract-full" style="display: none;"> Spin and orbital angular momenta (AM) are of fundamental interest in wave physics. Acoustic wave, as a typical longitudinal wave, has been well studied in terms of orbital AM, but still considered unable to carry non-zero integral spin AM or spin-orbital interaction in homogeneous media due to its spin-0 nature. Here we give the first self-consistent analytical calculations of spin, orbital and total AM of guided vortices under different boundary conditions, revealing that vortex field can carry non-zero integral spin AM. We also introduce for acoustic waves the canonical-Minkowski and kinetic-Abraham AM, which has aroused long-lasting debate in optics, and prove that only the former is conserved with the corresponding symmetries. Furthermore, we present the theoretical and experimental observation of the spin-orbit interaction of vortices in longitudinal acoustics, which is thought beyond attainable in longitudinal waves in the absence of spin degree of freedom. Our work provides a solid platform for future studies of the spin and orbital AM of guided acoustic waves and may open up a new dimension for acoustic vortex-based applications such as underwater communications and object manipulations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.04989v1-abstract-full').style.display = 'none'; document.getElementById('2309.04989v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.03605">arXiv:2309.03605</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2309.03605">pdf</a>, <a href="https://arxiv.org/format/2309.03605">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epjc/s10052-024-12645-5">10.1140/epjc/s10052-024-12645-5 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Virtual segmentation of a small contact HPGe detector: inference of hit positions of single-site events via pulse shape analysis </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Dai%2C+W+H">W. H. Dai</a>, <a href="/search/physics?searchtype=author&amp;query=Ma%2C+H">H. Ma</a>, <a href="/search/physics?searchtype=author&amp;query=Zeng%2C+Z">Z. Zeng</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+L+T">L. T. Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Yue%2C+Q">Q. Yue</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+J+P">J. P. Cheng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.03605v1-abstract-short" style="display: inline;"> Exploring hit positions of recorded events can help to understand and suppress backgrounds in rare event searching experiments. In this study, we virtually segment a small contact P-type high purity germanium detector (HPGe) into two layers. Single-site events (SSEs) in each layer are selected by an algorithm based on two pulse shape parameters: the charge pulse drift time ($T_{Q}$) and current pu&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.03605v1-abstract-full').style.display = 'inline'; document.getElementById('2309.03605v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.03605v1-abstract-full" style="display: none;"> Exploring hit positions of recorded events can help to understand and suppress backgrounds in rare event searching experiments. In this study, we virtually segment a small contact P-type high purity germanium detector (HPGe) into two layers. Single-site events (SSEs) in each layer are selected by an algorithm based on two pulse shape parameters: the charge pulse drift time ($T_{Q}$) and current pulse rise time ($T_{I}$). To determine the shapes and volumes of the two layers, a Th-228 source is placed at top and side positions to irradiate the detector. The double escape peak events from 2614.5 keV $纬$-ray are selected as typical SSEs, their numbers in the two layers are used to calculate the volumes and shapes of those layers. Considering the statistical and systematic uncertainties, the inner layer volume is evaluated to be 47.2\%$\pm$0.26(stat.)\%$\pm$0.22(sys.)\% of the total sensitive volume. We extend our analysis for SSEs in 1400-2100 keV, the spectra of inner layer events acquired from experimental data using the selection algorithm are in good agreement with those from the simulation. For sources outside the HPGe detector, the outer layer can act as a shielding for the inner layer. Selecting the inner layer as the analysis volume can reduce the externalbackground in the signal region of Ge-76 neutrinoless double beta (0$谓尾尾$) decay. We use the Th-228 source to evaluate the background suppression power of the virtual segmentation. After performing the single and multi-site event discrimination, the event rate in the 0$谓尾尾$ signal region can be further suppressed by 12\% by selecting the inner layer as the analysis volume. The virtual segmentation could be used to efficiently suppress surface background like electrons from Ar-42/K-42 decay in 0$谓尾尾$ experiments using germanium detector immersed in liquid argon. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.03605v1-abstract-full').style.display = 'none'; document.getElementById('2309.03605v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 19 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Eur. Phys. J. C (2024) 84:294 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.01843">arXiv:2309.01843</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2309.01843">pdf</a>, <a href="https://arxiv.org/format/2309.01843">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1475-7516/2024/07/009">10.1088/1475-7516/2024/07/009 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Projected WIMP sensitivity of the CDEX-50 dark matter experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Geng%2C+X+P">X. P. Geng</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+L+T">L. T. Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Yue%2C+Q">Q. Yue</a>, <a href="/search/physics?searchtype=author&amp;query=Kang%2C+K+J">K. J. Kang</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+Y+J">Y. J. Li</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+H+P">H. P. An</a>, <a href="/search/physics?searchtype=author&amp;query=C.%2C+G">Greeshma C.</a>, <a href="/search/physics?searchtype=author&amp;query=Chang%2C+J+P">J. P. Chang</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Y+H">Y. H. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+J+P">J. P. Cheng</a>, <a href="/search/physics?searchtype=author&amp;query=Dai%2C+W+H">W. H. Dai</a>, <a href="/search/physics?searchtype=author&amp;query=Deng%2C+Z">Z. Deng</a>, <a href="/search/physics?searchtype=author&amp;query=Fang%2C+C+H">C. H. Fang</a>, <a href="/search/physics?searchtype=author&amp;query=Gong%2C+H">H. Gong</a>, <a href="/search/physics?searchtype=author&amp;query=Guo%2C+Q+J">Q. J. Guo</a>, <a href="/search/physics?searchtype=author&amp;query=Guo%2C+T">T. Guo</a>, <a href="/search/physics?searchtype=author&amp;query=Guo%2C+X+Y">X. Y. Guo</a>, <a href="/search/physics?searchtype=author&amp;query=He%2C+L">L. He</a>, <a href="/search/physics?searchtype=author&amp;query=He%2C+S+M">S. M. He</a>, <a href="/search/physics?searchtype=author&amp;query=Hu%2C+J+W">J. W. Hu</a>, <a href="/search/physics?searchtype=author&amp;query=Huang%2C+H+X">H. X. Huang</a>, <a href="/search/physics?searchtype=author&amp;query=Huang%2C+T+C">T. C. Huang</a>, <a href="/search/physics?searchtype=author&amp;query=Jiang%2C+L">L. Jiang</a>, <a href="/search/physics?searchtype=author&amp;query=Karmakar%2C+S">S. Karmakar</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+H+B">H. B. Li</a> , et al. (59 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.01843v2-abstract-short" style="display: inline;"> CDEX-50 is a next-generation project of the China Dark Matter Experiment (CDEX) that aims to search for dark matter using a 50-kg germanium detector array. This paper comprises a thorough summary of the CDEX-50 dark matter experiment, including an investigation of potential background sources and the development of a background model. Based on the baseline model, the projected sensitivity of weakl&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.01843v2-abstract-full').style.display = 'inline'; document.getElementById('2309.01843v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.01843v2-abstract-full" style="display: none;"> CDEX-50 is a next-generation project of the China Dark Matter Experiment (CDEX) that aims to search for dark matter using a 50-kg germanium detector array. This paper comprises a thorough summary of the CDEX-50 dark matter experiment, including an investigation of potential background sources and the development of a background model. Based on the baseline model, the projected sensitivity of weakly interacting massive particle (WIMP) is also presented. The expected background level within the energy region of interest, set to 2--2.5 keVee, is $\sim$0.01 counts keVee$^{-1}$ kg$^{-1}$ day$^{-1}$. At 90\% confidence level, the expected sensitivity to spin-independent WIMP-nucleon couplings is estimated to reach a cross-section of 5.1 $\times$ 10$^{-45}$ cm$^{2}$ for a WIMP mass of 5 GeV/c$^{2}$ with an exposure objective of 150 kg$\cdot$year and an analysis threshold of 160 eVee. This science goal will correspond to the most sensitive results for WIMPs with a mass of 2.2--8 GeV/c$^{2}$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.01843v2-abstract-full').style.display = 'none'; document.getElementById('2309.01843v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 11 figures. Version updated to match JCAP version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> JCAP 07 (2024) 009 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.12318">arXiv:2308.12318</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2308.12318">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Emerging Technologies">cs.ET</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Eight-input optical programmable logic array enabled by parallel spectrum modulation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+W">Wenkai Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Wu%2C+B">Bo Wu</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+J">Junwei Cheng</a>, <a href="/search/physics?searchtype=author&amp;query=Zhou%2C+H">Hailong Zhou</a>, <a href="/search/physics?searchtype=author&amp;query=Dong%2C+J">Jianji Dong</a>, <a href="/search/physics?searchtype=author&amp;query=Huang%2C+D">Dongmei Huang</a>, <a href="/search/physics?searchtype=author&amp;query=Wai%2C+P+K+A">P. K. A. Wai</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+X">Xinliang Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.12318v1-abstract-short" style="display: inline;"> Despite over 40 years&#39; development of optical logic computing, the studies have been still struggling to support more than four operands, since the high parallelism of light has not been fully leveraged blocked by the optical nonlinearity and redundant input modulation in existing methods. Here, we propose a scalable multi-input optical programmable logic array (PLA) with minimal logical input, en&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.12318v1-abstract-full').style.display = 'inline'; document.getElementById('2308.12318v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.12318v1-abstract-full" style="display: none;"> Despite over 40 years&#39; development of optical logic computing, the studies have been still struggling to support more than four operands, since the high parallelism of light has not been fully leveraged blocked by the optical nonlinearity and redundant input modulation in existing methods. Here, we propose a scalable multi-input optical programmable logic array (PLA) with minimal logical input, enabled by parallel spectrum modulation. By making full use of the wavelength resource, an eight-input PLA is experimentally demonstrated, and there are 2^256 possible combinations of generated logic gates. Various complex logic fuctions, such as 8-256 decoder, 4-bit comparator, adder and multiplier are experimentally demonstrated via leveraging the PLA. The scale of PLA can be further extended by fully using the dimensions of wavelength and space. As an example, a nine-input PLA is implemented to realize the two-dimensional optical cellular automaton for the first time and perform Conway&#39;s Game of Life to simulate the evolutionary process of cells. Our work significantly alleviates the challenge of extensibility of optical logic devices, opening up new avenues for future large-scale, high-speed and energy-efficient optical digital computing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.12318v1-abstract-full').style.display = 'none'; document.getElementById('2308.12318v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.12301">arXiv:2308.12301</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2308.12301">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> The SPARC Toroidal Field Model Coil Program </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Hartwig%2C+Z">Zachary Hartwig</a>, <a href="/search/physics?searchtype=author&amp;query=Vieira%2C+R">Rui Vieira</a>, <a href="/search/physics?searchtype=author&amp;query=Dunn%2C+D">Darby Dunn</a>, <a href="/search/physics?searchtype=author&amp;query=Golfinopoulos%2C+T">Theodore Golfinopoulos</a>, <a href="/search/physics?searchtype=author&amp;query=LaBombard%2C+B">Brian LaBombard</a>, <a href="/search/physics?searchtype=author&amp;query=Lammi%2C+C">Christopher Lammi</a>, <a href="/search/physics?searchtype=author&amp;query=Michael%2C+P">Phil Michael</a>, <a href="/search/physics?searchtype=author&amp;query=Agabian%2C+S">Susan Agabian</a>, <a href="/search/physics?searchtype=author&amp;query=Arsenault%2C+D">David Arsenault</a>, <a href="/search/physics?searchtype=author&amp;query=Barnett%2C+R">Raheem Barnett</a>, <a href="/search/physics?searchtype=author&amp;query=Barry%2C+M">Mike Barry</a>, <a href="/search/physics?searchtype=author&amp;query=Bartoszek%2C+L">Larry Bartoszek</a>, <a href="/search/physics?searchtype=author&amp;query=Beck%2C+W">William Beck</a>, <a href="/search/physics?searchtype=author&amp;query=Bellofatto%2C+D">David Bellofatto</a>, <a href="/search/physics?searchtype=author&amp;query=Brunner%2C+D">Daniel Brunner</a>, <a href="/search/physics?searchtype=author&amp;query=Burke%2C+W">William Burke</a>, <a href="/search/physics?searchtype=author&amp;query=Burrows%2C+J">Jason Burrows</a>, <a href="/search/physics?searchtype=author&amp;query=Byford%2C+W">William Byford</a>, <a href="/search/physics?searchtype=author&amp;query=Cauley%2C+C">Charles Cauley</a>, <a href="/search/physics?searchtype=author&amp;query=Chamberlain%2C+S">Sarah Chamberlain</a>, <a href="/search/physics?searchtype=author&amp;query=Chavarria%2C+D">David Chavarria</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+J">JL Cheng</a>, <a href="/search/physics?searchtype=author&amp;query=Chicarello%2C+J">James Chicarello</a>, <a href="/search/physics?searchtype=author&amp;query=Cote%2C+K">Karen Cote</a>, <a href="/search/physics?searchtype=author&amp;query=Cotta%2C+C">Corinne Cotta</a> , et al. (75 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.12301v1-abstract-short" style="display: inline;"> The SPARC Toroidal Field Model Coil (TFMC) Program was a three-year effort between 2018 and 2021 that developed novel Rare Earth Yttrium Barium Copper Oxide (REBCO) superconductor technologies and then successfully utilized these technologies to design, build, and test a first-in-class, high-field (~20 T), representative-scale (~3 m) superconducting toroidal field coil. With the principal objectiv&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.12301v1-abstract-full').style.display = 'inline'; document.getElementById('2308.12301v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.12301v1-abstract-full" style="display: none;"> The SPARC Toroidal Field Model Coil (TFMC) Program was a three-year effort between 2018 and 2021 that developed novel Rare Earth Yttrium Barium Copper Oxide (REBCO) superconductor technologies and then successfully utilized these technologies to design, build, and test a first-in-class, high-field (~20 T), representative-scale (~3 m) superconducting toroidal field coil. With the principal objective of demonstrating mature, large-scale, REBCO magnets, the project was executed jointly by the MIT Plasma Science and Fusion Center (PSFC) and Commonwealth Fusion Systems (CFS). The TFMC achieved its programmatic goal of experimentally demonstrating a large-scale high-field REBCO magnet, achieving 20.1 T peak field-on-conductor with 40.5 kA of terminal current, 815 kN/m of Lorentz loading on the REBCO stacks, and almost 1 GPa of mechanical stress accommodated by the structural case. Fifteen internal demountable pancake-to-pancake joints operated in the 0.5 to 2.0 nOhm range at 20 K and in magnetic fields up to 12 T. The DC and AC electromagnetic performance of the magnet, predicted by new advances in high-fidelity computational models, was confirmed in two test campaigns while the massively parallel, single-pass, pressure-vessel style coolant scheme capable of large heat removal was validated. The REBCO current lead and feeder system was experimentally qualified up to 50 kA, and the crycooler based cryogenic system provided 600 W of cooling power at 20 K with mass flow rates up to 70 g/s at a maximum design pressure of 20 bar-a for the test campaigns. Finally, the feasibility of using passive, self-protection against a quench in a fusion-scale NI TF coil was experimentally assessed with an intentional open-circuit quench at 31.5 kA terminal current. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.12301v1-abstract-full').style.display = 'none'; document.getElementById('2308.12301v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages 9 figures, overview paper and the first of a six-part series of papers covering the TFMC Program</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.02222">arXiv:2308.02222</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2308.02222">pdf</a>, <a href="https://arxiv.org/format/2308.02222">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.109.013704">10.1103/PhysRevA.109.013704 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Strong squeezing of microwave output fields via reservoir-engineered cavity magnomechanics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Qian%2C+H">Hang Qian</a>, <a href="/search/physics?searchtype=author&amp;query=Zuo%2C+X">Xuan Zuo</a>, <a href="/search/physics?searchtype=author&amp;query=Fan%2C+Z">Zhi-Yuan Fan</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+J">Jiong Cheng</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+J">Jie Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.02222v3-abstract-short" style="display: inline;"> We show how to achieve strong squeezing of a microwave output field by reservoir engineering a cavity magnomechanical system, consisting of a microwave cavity, a magnon mode, and a mechanical vibration mode. The magnon mode is simultaneously driven by two microwave fields at the blue and red sidebands associated with the vibration mode. The two-tone drive induces a squeezed magnonic reservoir for&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.02222v3-abstract-full').style.display = 'inline'; document.getElementById('2308.02222v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.02222v3-abstract-full" style="display: none;"> We show how to achieve strong squeezing of a microwave output field by reservoir engineering a cavity magnomechanical system, consisting of a microwave cavity, a magnon mode, and a mechanical vibration mode. The magnon mode is simultaneously driven by two microwave fields at the blue and red sidebands associated with the vibration mode. The two-tone drive induces a squeezed magnonic reservoir for the intracavity field, leading to a squeezed cavity mode due to the cavity-magnon state swapping, which further yields a squeezed cavity output field. The squeezing of the output field is stationary and substantial using currently available parameters in cavity magnomechanics. The work indicates the potential of the cavity magnomechanical system in preparing squeezed microwave fields, and may find promising applications in quantum information science and quantum metrology. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.02222v3-abstract-full').style.display = 'none'; document.getElementById('2308.02222v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">To appear in PRA</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. A 109, 013704 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.14990">arXiv:2307.14990</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2307.14990">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Super-resolution enabled widefield quantum diamond microscopy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Xu%2C+F">Feng Xu</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+J">Jialong Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Hou%2C+Y">Yong Hou</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+J">Juan Cheng</a>, <a href="/search/physics?searchtype=author&amp;query=Hui%2C+T+K">Tony KC Hui</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+S">Shih-Chi Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chu%2C+Z">Zhiqin Chu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.14990v1-abstract-short" style="display: inline;"> Widefield quantum diamond microscopy (WQDM) based on Kohler-illumination has been widely adopted in the field of quantum sensing, however, practical applications are still limited by issues such as unavoidable photodamage and unsatisfied spatial-resolution. Here, we design and develop a super-resolution enabled WQDM using a digital micromirror device (DMD)-based structured illumination microscopy.&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.14990v1-abstract-full').style.display = 'inline'; document.getElementById('2307.14990v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.14990v1-abstract-full" style="display: none;"> Widefield quantum diamond microscopy (WQDM) based on Kohler-illumination has been widely adopted in the field of quantum sensing, however, practical applications are still limited by issues such as unavoidable photodamage and unsatisfied spatial-resolution. Here, we design and develop a super-resolution enabled WQDM using a digital micromirror device (DMD)-based structured illumination microscopy. With the rapidly programmable illumination patterns, we have firstly demonstrated how to mitigate phototoxicity when imaging nanodiamonds in cell samples. As a showcase, we have performed the super-resolved quantum sensing measurements of two individual nanodiamonds not even distinguishable with conventional WQDM. The DMD-powered WQDM presents not only excellent compatibility with quantum sensing solutions, but also strong advantages in high imaging speed, high resolution, low phototoxicity, and enhanced signal-to-background ratio, making it a competent tool to for applications in demanding fields such as biomedical science. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.14990v1-abstract-full').style.display = 'none'; document.getElementById('2307.14990v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.14577">arXiv:2307.14577</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2307.14577">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acsami.3c06300">10.1021/acsami.3c06300 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Hydrophobic Silica Microcavities with Sustainable Nonlinear Photonic Performance </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Xie%2C+J">Jiadu Xie</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+Y">Yang Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Kang%2C+H">Hui Kang</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+J">Jinsong Cheng</a>, <a href="/search/physics?searchtype=author&amp;query=Shen%2C+X">Xiaoqin Shen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.14577v2-abstract-short" style="display: inline;"> Ultrahigh quality factor (Q) microcavities have been emerging as an appealing compact photonic platform for various applications. The Q factor plays a critical role in determining the nonlinear optical performance of a microcavity. However, a silica microcavity suffers from severe degradation of its Q value over time during storage or use in air due to the accumulating surface absorption loss, whi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.14577v2-abstract-full').style.display = 'inline'; document.getElementById('2307.14577v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.14577v2-abstract-full" style="display: none;"> Ultrahigh quality factor (Q) microcavities have been emerging as an appealing compact photonic platform for various applications. The Q factor plays a critical role in determining the nonlinear optical performance of a microcavity. However, a silica microcavity suffers from severe degradation of its Q value over time during storage or use in air due to the accumulating surface absorption loss, which would deteriorate their nonlinear photonic performance. Here, we report a new type of ultrahigh Q silica microcavity that effectively prevents the Q degradation over time. The Q values of the devices remain unchanged over time under storage in air. Optical frequency combs are generated with sustainable ultralow threshold performance in the course of time from the devices in open air. This approach would greatly facilitate ultrahigh Q silica-based photonic devices for next generation photonic applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.14577v2-abstract-full').style.display = 'none'; document.getElementById('2307.14577v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.12524">arXiv:2307.12524</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2307.12524">pdf</a>, <a href="https://arxiv.org/format/2307.12524">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Geophysics">physics.geo-ph</span> </div> </div> <p class="title is-5 mathjax"> Landslide Surface Displacement Prediction Based on VSXC-LSTM Algorithm </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Kong%2C+M">Menglin Kong</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+R">Ruichen Li</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+F">Fan Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+X">Xingquan Li</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+J">Juan Cheng</a>, <a href="/search/physics?searchtype=author&amp;query=Hou%2C+M">Muzhou Hou</a>, <a href="/search/physics?searchtype=author&amp;query=Cao%2C+C">Cong Cao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.12524v1-abstract-short" style="display: inline;"> Landslide is a natural disaster that can easily threaten local ecology, people&#39;s lives and property. In this paper, we conduct modelling research on real unidirectional surface displacement data of recent landslides in the research area and propose a time series prediction framework named VMD-SegSigmoid-XGBoost-ClusterLSTM (VSXC-LSTM) based on variational mode decomposition, which can predict the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.12524v1-abstract-full').style.display = 'inline'; document.getElementById('2307.12524v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.12524v1-abstract-full" style="display: none;"> Landslide is a natural disaster that can easily threaten local ecology, people&#39;s lives and property. In this paper, we conduct modelling research on real unidirectional surface displacement data of recent landslides in the research area and propose a time series prediction framework named VMD-SegSigmoid-XGBoost-ClusterLSTM (VSXC-LSTM) based on variational mode decomposition, which can predict the landslide surface displacement more accurately. The model performs well on the test set. Except for the random item subsequence that is hard to fit, the root mean square error (RMSE) and the mean absolute percentage error (MAPE) of the trend item subsequence and the periodic item subsequence are both less than 0.1, and the RMSE is as low as 0.006 for the periodic item prediction module based on XGBoost\footnote{Accepted in ICANN2023}. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.12524v1-abstract-full').style.display = 'none'; document.getElementById('2307.12524v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.07364">arXiv:2307.07364</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2307.07364">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Single-sensor and real-time ultrasonic imaging using an AI-driven disordered metasurface </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Wang%2C+W">Wei Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Hu%2C+J">Jie Hu</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+J">Jingjing Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Tan%2C+Y">Yang Tan</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+J">Jing Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Liang%2C+B">Bin Liang</a>, <a href="/search/physics?searchtype=author&amp;query=Christensen%2C+J">Johan Christensen</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+J">Jianchun Cheng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.07364v1-abstract-short" style="display: inline;"> Non-destructive testing and medical diagnostic techniques using ultrasound has become indispensable in evaluating the state of materials or imaging the internal human body, respectively. To conduct spatially resolved high-quality observations, conventionally, sophisticated phased arrays are used both at the emitting and receiving ends of the setup. In comparison, single-sensor imaging techniques o&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.07364v1-abstract-full').style.display = 'inline'; document.getElementById('2307.07364v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.07364v1-abstract-full" style="display: none;"> Non-destructive testing and medical diagnostic techniques using ultrasound has become indispensable in evaluating the state of materials or imaging the internal human body, respectively. To conduct spatially resolved high-quality observations, conventionally, sophisticated phased arrays are used both at the emitting and receiving ends of the setup. In comparison, single-sensor imaging techniques offer significant benefits including compact physical dimensions and reduced manufacturing expenses. However, recent advances such as compressive sensing have shown that this improvement comes at the cost of additional time-consuming dynamic spatial scanning or multi-mode mask switching, which severely hinders the quest for real-time imaging. Consequently, real-time single-sensor imaging, at low cost and simple design, still represents a demanding and largely unresolved challenge till this day. Here, we bestow on ultrasonic metasurface with both disorder and artificial intelligence (AI). The former ensures strong dispersion and highly complex scattering to encode the spatial information into frequency spectra at an arbitrary location, while the latter is used to decode instantaneously the amplitude and spectral component of the sample under investigation. Thus, thanks to this symbiosis, we demonstrate that a single fixed sensor suffices to recognize complex ultrasonic objects through the random scattered field from an unpretentious metasurface, which enables real-time and low-cost imaging, easily extendable to 3D. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.07364v1-abstract-full').style.display = 'none'; document.getElementById('2307.07364v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.05110">arXiv:2307.05110</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2307.05110">pdf</a>, <a href="https://arxiv.org/ps/2307.05110">ps</a>, <a href="https://arxiv.org/format/2307.05110">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Gate voltage induced injection and shift currents in AA- and AB-stacked bilayer graphene </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Zheng%2C+Z">Ze Zheng</a>, <a href="/search/physics?searchtype=author&amp;query=Chang%2C+K">Kainan Chang</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+J+L">Jin Luo Cheng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.05110v1-abstract-short" style="display: inline;"> Generating photogalvanic effects in centrosymmetric materials can provide new opportunities for developing passive photodetectors and energy harvesting devices. In this work, we investigate the photogalvanic effects in centrosymmetric two-dimensional materials, AA- and AB-stacked bilayer graphene, by applying an external gate voltage to break the symmetry. Using a tight-binding model to describe t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.05110v1-abstract-full').style.display = 'inline'; document.getElementById('2307.05110v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.05110v1-abstract-full" style="display: none;"> Generating photogalvanic effects in centrosymmetric materials can provide new opportunities for developing passive photodetectors and energy harvesting devices. In this work, we investigate the photogalvanic effects in centrosymmetric two-dimensional materials, AA- and AB-stacked bilayer graphene, by applying an external gate voltage to break the symmetry. Using a tight-binding model to describe the electronic states, the injection coefficients for circular photogalvanic effects and shift conductivities for linear photogalvanic effects are calculated for both materials with light wavelengths ranging from THz to visible. We find that gate voltage induced photogalvanic effects can be very significant for AB-stacked bilayer graphene, with generating a maximal dc current in the order of mA for a 1 $渭$m wide sample illuminated by a light intensity of 0.1 GW/cm$^2$, which is determined by the optical transition around the band gap and van Hove singularity points. Although such effects in AA-stacked bilayer graphene are about two orders of magnitude smaller than those in AB-stacked bilayer graphene, the spectrum is interestingly limited in a very narrow photon energy window, which is associated with the interlayer coupling strength. A detailed analysis of the light polarization dependence is also performed. The gate voltage and chemical potential can be used to effectively control the photogalvanic effects. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.05110v1-abstract-full').style.display = 'none'; document.getElementById('2307.05110v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.13942">arXiv:2306.13942</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2306.13942">pdf</a>, <a href="https://arxiv.org/format/2306.13942">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Classical Physics">physics.class-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevResearch.5.043197">10.1103/PhysRevResearch.5.043197 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Synchronization by Magnetostriction </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+J">Jiong Cheng</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+W">Wenlin Li</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+J">Jie Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.13942v2-abstract-short" style="display: inline;"> We show how to utilize magnetostriction to synchronize two mechanical vibration modes in a cavity magnomechanical system. The dispersive magnetostrictive interaction provides necessary nonlinearity required for achieving synchronization. Strong phase correlation between two mechanical oscillators can be established, leading to the synchronization robust against thermal noise. We develop a theoreti&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.13942v2-abstract-full').style.display = 'inline'; document.getElementById('2306.13942v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.13942v2-abstract-full" style="display: none;"> We show how to utilize magnetostriction to synchronize two mechanical vibration modes in a cavity magnomechanical system. The dispersive magnetostrictive interaction provides necessary nonlinearity required for achieving synchronization. Strong phase correlation between two mechanical oscillators can be established, leading to the synchronization robust against thermal noise. We develop a theoretical framework to analyze the synchronization by solving the constraint conditions of steady-state limit cycles. We determine that the strong cavity-magnon linear coupling can enhance and regulate the synchronization, which offers a new path to modulate synchronization. The work reveals a new mechanism for achieving and modulating synchronization and indicates that cavity magnomechanical systems can be an ideal platform to explore rich synchronization phenomena. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.13942v2-abstract-full').style.display = 'none'; document.getElementById('2306.13942v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted to Phys. Rev. Research</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Research 5, 043197 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.01374">arXiv:2306.01374</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2306.01374">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Acoustic meta-stethoscope for cardiac auscultation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Z">Zheng-Ji Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+J">Jing-Jing Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Liang%2C+B">Bin Liang</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+J">Jing Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+J">Jian-Chun Cheng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.01374v1-abstract-short" style="display: inline;"> Straight cylindrical stethoscopes serve as an important alternative to conventional stethoscopes whose application in the treatment of infectious diseases might be limited by the use of protective clothing. Yet their miniaturization is challenging due to the low-frequency of bioacoustics signal. Here, we design and experimentally implement a meta-stethoscope with subwavelength size, simple fabrica&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.01374v1-abstract-full').style.display = 'inline'; document.getElementById('2306.01374v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.01374v1-abstract-full" style="display: none;"> Straight cylindrical stethoscopes serve as an important alternative to conventional stethoscopes whose application in the treatment of infectious diseases might be limited by the use of protective clothing. Yet their miniaturization is challenging due to the low-frequency of bioacoustics signal. Here, we design and experimentally implement a meta-stethoscope with subwavelength size, simple fabrication, easy assembly yet high sensitivity, which simply comprises multiple round perforated plate units and a cylindrical shell. We elucidate our proposed mechanism by analytically deriving the frequency response equation, which proves that the equivalent acoustic propagation path is substantially increased by the high-index metamaterial, enabling downscaling of the meta-stethoscope to subwavelength footprint. The acoustic performance of meta-stethoscope is experimentally characterized by monitoring the cardiac auscultation on clothed human body. The simulated and measured results agree well, with both showing the expected enhancement of sensitivity of our proposed meta-stethoscope (~ 10 dB) within the predicted working frequency range from 80 to 130 Hz despite its compactness and simplicity. Our designed portable, detachable yet effective meta-stethoscope opens a route to metamaterial-enabled stethoscope paradigm, with potential applications in diverse scenarios such as medical diagnosis and acoustic sensing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.01374v1-abstract-full').style.display = 'none'; document.getElementById('2306.01374v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.14895">arXiv:2305.14895</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2305.14895">pdf</a>, <a href="https://arxiv.org/format/2305.14895">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1674-4527/acd593">10.1088/1674-4527/acd593 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Lobster Eye Imager for Astronomy Onboard the SATech-01 Satellite </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Ling%2C+Z+X">Z. X. Ling</a>, <a href="/search/physics?searchtype=author&amp;query=Sun%2C+X+J">X. J. Sun</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+C">C. Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Sun%2C+S+L">S. L. Sun</a>, <a href="/search/physics?searchtype=author&amp;query=Jin%2C+G">G. Jin</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+S+N">S. N. Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+X+F">X. F. Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Chang%2C+J+B">J. B. Chang</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+F+S">F. S. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Y+F">Y. F. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+Z+W">Z. W. Cheng</a>, <a href="/search/physics?searchtype=author&amp;query=Fu%2C+W">W. Fu</a>, <a href="/search/physics?searchtype=author&amp;query=Han%2C+Y+X">Y. X. Han</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+H">H. Li</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+J+F">J. F. Li</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+Y">Y. Li</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+Z+D">Z. D. Li</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+P+R">P. R. Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Lv%2C+Y+H">Y. H. Lv</a>, <a href="/search/physics?searchtype=author&amp;query=Ma%2C+X+H">X. H. Ma</a>, <a href="/search/physics?searchtype=author&amp;query=Tang%2C+Y+J">Y. J. Tang</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+C+B">C. B. Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Xie%2C+R+J">R. J. Xie</a>, <a href="/search/physics?searchtype=author&amp;query=Xue%2C+Y+L">Y. L. Xue</a>, <a href="/search/physics?searchtype=author&amp;query=Yan%2C+A+L">A. L. Yan</a> , et al. (101 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.14895v1-abstract-short" style="display: inline;"> The Lobster Eye Imager for Astronomy (LEIA), a pathfinder of the Wide-field X-ray Telescope of the Einstein Probe (EP) mission, was successfully launched onboard the SATech-01 satellite of the Chinese Academy of Sciences on 27 July 2022. In this paper, we introduce the design and on-ground test results of the LEIA instrument. Using state-of-the-art Micro-Pore Optics (MPO), a wide field-of-view (Fo&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.14895v1-abstract-full').style.display = 'inline'; document.getElementById('2305.14895v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.14895v1-abstract-full" style="display: none;"> The Lobster Eye Imager for Astronomy (LEIA), a pathfinder of the Wide-field X-ray Telescope of the Einstein Probe (EP) mission, was successfully launched onboard the SATech-01 satellite of the Chinese Academy of Sciences on 27 July 2022. In this paper, we introduce the design and on-ground test results of the LEIA instrument. Using state-of-the-art Micro-Pore Optics (MPO), a wide field-of-view (FoV) of 346 square degrees (18.6 degrees * 18.6 degrees) of the X-ray imager is realized. An optical assembly composed of 36 MPO chips is used to focus incident X-ray photons, and four large-format complementary metal-oxide semiconductor (CMOS) sensors, each of 6 cm * 6 cm, are used as the focal plane detectors. The instrument has an angular resolution of 4 - 8 arcmin (in FWHM) for the central focal spot of the point spread function, and an effective area of 2 - 3 cm2 at 1 keV in essentially all the directions within the field of view. The detection passband is 0.5 - 4 keV in the soft X-rays and the sensitivity is 2 - 3 * 10-11 erg s-1 cm-2 (about 1 mini-Crab) at 1,000 second observation. The total weight of LEIA is 56 kg and the power is 85 W. The satellite, with a design lifetime of 2 years, operates in a Sun-synchronous orbit of 500 km with an orbital period of 95 minutes. LEIA is paving the way for future missions by verifying in flight the technologies of both novel focusing imaging optics and CMOS sensors for X-ray observation, and by optimizing the working setups of the instrumental parameters. In addition, LEIA is able to carry out scientific observations to find new transients and to monitor known sources in the soft X-ray band, albeit limited useful observing time available. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.14895v1-abstract-full').style.display = 'none'; document.getElementById('2305.14895v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted by RAA</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.10658">arXiv:2305.10658</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2305.10658">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41377-023-01182-7">10.1038/s41377-023-01182-7 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Far-field Super-resolution Chemical Microscopy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Tang%2C+M">Mingwei Tang</a>, <a href="/search/physics?searchtype=author&amp;query=Han%2C+Y">Yubing Han</a>, <a href="/search/physics?searchtype=author&amp;query=Jia%2C+D">Danchen Jia</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+Q">Qing Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+J">Ji-Xin Cheng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.10658v1-abstract-short" style="display: inline;"> Far-field chemical microscopy providing molecular electronic or vibrational fingerprint information opens a new window for the study of three-dimensional biological, material, and chemical systems. Chemical microscopy provides a nondestructive way of chemical identification without exterior labels. However, the diffraction limit of optics hindered it from discovering more details under the resolut&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.10658v1-abstract-full').style.display = 'inline'; document.getElementById('2305.10658v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.10658v1-abstract-full" style="display: none;"> Far-field chemical microscopy providing molecular electronic or vibrational fingerprint information opens a new window for the study of three-dimensional biological, material, and chemical systems. Chemical microscopy provides a nondestructive way of chemical identification without exterior labels. However, the diffraction limit of optics hindered it from discovering more details under the resolution limit. Recent development of super-resolution techniques gives enlightenment to open this door behind far-field chemical microscopy. Here, we review recent advances that have pushed the boundary of far-field chemical microscopy in terms of spatial resolution. We further highlight applications in biomedical research, material characterization, environmental study, cultural heritage conservation, and integrated chip inspection. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.10658v1-abstract-full').style.display = 'none'; document.getElementById('2305.10658v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">34 pages, 8 figures,1 table</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> 137 (2023) </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Light: Science &amp; Applications 2023 Vol. 12 Issue 1 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.07174">arXiv:2305.07174</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2305.07174">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Chess-board Acoustic Crystals with Momentum-space Nonsymmorphic Symmetries </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Wang%2C+Y">Yanqiu Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+C">Chen Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Z+Y">Z. Y. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Liang%2C+B">Bin Liang</a>, <a href="/search/physics?searchtype=author&amp;query=Zhao%2C+Y+X">Y. X. Zhao</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+J">Jianchun Cheng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.07174v1-abstract-short" style="display: inline;"> Spatial symmetries appearing in both real and momentum space are of fundamental significance to crystals. However, in the conventional framework, every space group in real space, either symmorphic or nonsymmorphic, corresponds to a symmorphic dual in momentum space. Our experiment breaks the framework by showing that in a 2D acoustic crystal with chess-board pattern of $蟺$ and 0 fluxes, mirror ref&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.07174v1-abstract-full').style.display = 'inline'; document.getElementById('2305.07174v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.07174v1-abstract-full" style="display: none;"> Spatial symmetries appearing in both real and momentum space are of fundamental significance to crystals. However, in the conventional framework, every space group in real space, either symmorphic or nonsymmorphic, corresponds to a symmorphic dual in momentum space. Our experiment breaks the framework by showing that in a 2D acoustic crystal with chess-board pattern of $蟺$ and 0 fluxes, mirror reflections are manifested nonsymmorphically as glide reflections in momentum space. These momentum-space nonsymmorphic symmetries stem from projective, rather than ordinary, representations of the real-space symmetries due to the peculiar flux pattern. Moreover, our experiment demonstrates that the glide reflection can reduce the topological type of the Brillouin zone from the torus to the Klein bottle, resulting in novel topological phases with new topological invariants. Since crystalline topologies are based on momentum-space symmetries, our work paves the way for utilizing engineerable gauge fluxes over artificial crystals to extend the current topological classifications into the broader regime of momentum-space nonsymmorphic symmetries. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.07174v1-abstract-full').style.display = 'none'; document.getElementById('2305.07174v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages,3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.05323">arXiv:2305.05323</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2305.05323">pdf</a>, <a href="https://arxiv.org/format/2305.05323">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> </div> <p class="title is-5 mathjax"> Global simulations of kinetic-magnetohydrodynamic processes with energetic electrons in tokamak plasmas </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Bao%2C+J">Jian Bao</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+W">Wenlu Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+D">Ding Li</a>, <a href="/search/physics?searchtype=author&amp;query=Lin%2C+Z">Zhihong Lin</a>, <a href="/search/physics?searchtype=author&amp;query=Qiu%2C+Z">Zhiyong Qiu</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+W">Wei Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Zhu%2C+X">Xiang Zhu</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+J">Junyi Cheng</a>, <a href="/search/physics?searchtype=author&amp;query=Dong%2C+C">Chao Dong</a>, <a href="/search/physics?searchtype=author&amp;query=Cao%2C+J">Jintao Cao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.05323v1-abstract-short" style="display: inline;"> The energetic electrons (EEs) generated through auxiliary heating have been found to destabilize various Alfven eigenmodes (AEs) in recent experiments, which in turn lead to the EE transport and degrade the plasma energy confinement. In this work, we propose a global fluid-kinetic hybrid model for studying corresponding kinetic-magnetohydrodynamic (MHD) processes by coupling the drift-kinetic EEs&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.05323v1-abstract-full').style.display = 'inline'; document.getElementById('2305.05323v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.05323v1-abstract-full" style="display: none;"> The energetic electrons (EEs) generated through auxiliary heating have been found to destabilize various Alfven eigenmodes (AEs) in recent experiments, which in turn lead to the EE transport and degrade the plasma energy confinement. In this work, we propose a global fluid-kinetic hybrid model for studying corresponding kinetic-magnetohydrodynamic (MHD) processes by coupling the drift-kinetic EEs to the Landau-fluid model of bulk plasmas in a non-perturbative manner. The numerical capability of Landau-fluid bulk plasmas is obtained based on a well-benchmarked eigenvalue code MAS [Multiscale Analysis of plasma Stabilities, J. Bao et al. Nucl. Fusion accepted 2023], and the EE responses to the electromagnetic fluctuations are analytically derived, which not only contribute to the MHD interchange drive and parallel current but also lead to the newly kinetic particle compression with the precessional drift resonance in the leading order. The hybrid model is casted into a nonlinear eigenvalue matrix equation and solved iteratively using Newton&#39;s method. By calibrating the EE precession frequency against the particle equation of motion in general geometry and applying more realistic trapped particle distribution in the poloidal plane, MAS simulations of EE-driven beta-induced Alfven eigenmodes (e-BAE) show excellent agreements with gyrokinetic particle-in-cell simulations, and the non-perturbative effects of EEs on e-BAE mode structure, growth rate and damping rate are demonstrated. With these efforts, the upgraded MAS greatly improves the computation efficiency for plasma problems related to deeply-trapped EEs, which is superior than initial-value simulations restricted by the stringent electron Courant condition regarding to the practical application of fast linear analysis. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.05323v1-abstract-full').style.display = 'none'; document.getElementById('2305.05323v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">24 pages, 11 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.00894">arXiv:2305.00894</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2305.00894">pdf</a>, <a href="https://arxiv.org/format/2305.00894">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1674-1137/ad597b">10.1088/1674-1137/ad597b <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Searching for $^{76}$Ge neutrinoless double beta decay with the CDEX-1B experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+B+T">B. T. Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+J+Z">J. Z. Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+L+T">L. T. Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Yue%2C+Q">Q. Yue</a>, <a href="/search/physics?searchtype=author&amp;query=Kang%2C+K+J">K. J. Kang</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+Y+J">Y. J. Li</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+H+P">H. P. An</a>, <a href="/search/physics?searchtype=author&amp;query=C.%2C+G">Greeshma C.</a>, <a href="/search/physics?searchtype=author&amp;query=Chang%2C+J+P">J. P. Chang</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Y+H">Y. H. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+J+P">J. P. Cheng</a>, <a href="/search/physics?searchtype=author&amp;query=Dai%2C+W+H">W. H. Dai</a>, <a href="/search/physics?searchtype=author&amp;query=Deng%2C+Z">Z. Deng</a>, <a href="/search/physics?searchtype=author&amp;query=Fang%2C+C+H">C. H. Fang</a>, <a href="/search/physics?searchtype=author&amp;query=Geng%2C+X+P">X. P. Geng</a>, <a href="/search/physics?searchtype=author&amp;query=Gong%2C+H">H. Gong</a>, <a href="/search/physics?searchtype=author&amp;query=Guo%2C+Q+J">Q. J. Guo</a>, <a href="/search/physics?searchtype=author&amp;query=Guo%2C+X+Y">X. Y. Guo</a>, <a href="/search/physics?searchtype=author&amp;query=He%2C+L">L. He</a>, <a href="/search/physics?searchtype=author&amp;query=He%2C+S+M">S. M. He</a>, <a href="/search/physics?searchtype=author&amp;query=Hu%2C+J+W">J. W. Hu</a>, <a href="/search/physics?searchtype=author&amp;query=Huang%2C+H+X">H. X. Huang</a>, <a href="/search/physics?searchtype=author&amp;query=Huang%2C+T+C">T. C. Huang</a>, <a href="/search/physics?searchtype=author&amp;query=Jia%2C+H+T">H. T. Jia</a>, <a href="/search/physics?searchtype=author&amp;query=Jiang%2C+X">X. Jiang</a> , et al. (60 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.00894v3-abstract-short" style="display: inline;"> We operated a p-type point contact high purity germanium (PPCGe) detector (CDEX-1B, 1.008 kg) in the China Jinping Underground Laboratory (CJPL) for 500.3 days to search for neutrinoless double beta ($0谓尾尾$) decay of $^{76}$Ge. A total of 504.3 kg$\cdot$day effective exposure data was accumulated. The anti-coincidence and the multi/single-site event (MSE/SSE) discrimination methods were used to su&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.00894v3-abstract-full').style.display = 'inline'; document.getElementById('2305.00894v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.00894v3-abstract-full" style="display: none;"> We operated a p-type point contact high purity germanium (PPCGe) detector (CDEX-1B, 1.008 kg) in the China Jinping Underground Laboratory (CJPL) for 500.3 days to search for neutrinoless double beta ($0谓尾尾$) decay of $^{76}$Ge. A total of 504.3 kg$\cdot$day effective exposure data was accumulated. The anti-coincidence and the multi/single-site event (MSE/SSE) discrimination methods were used to suppress the background in the energy region of interest (ROI, 1989$-$2089 keV for this work) with a factor of 23. A background level of 0.33 counts/(keV$\cdot$kg$\cdot$yr) was realized. The lower limit on the half life of $^{76}$Ge $0谓尾尾$ decay was constrained as $T_{1/2}^{0谓}\ &gt; \ {1.0}\times 10^{23}\ \rm yr\ (90\% \ C.L.)$, corresponding to the upper limits on the effective Majorana neutrino mass: $\langle m_{尾尾}\rangle &lt; $3.2$-$7.5$\ \mathrm{eV}$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.00894v3-abstract-full').style.display = 'none'; document.getElementById('2305.00894v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 12 figures, 2 tables. Version updated to match CPC version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Chin. Phys. C 48, 101001 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.14913">arXiv:2304.14913</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2304.14913">pdf</a>, <a href="https://arxiv.org/format/2304.14913">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Populations and Evolution">q-bio.PE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Physics and Society">physics.soc-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.physa.2023.128447">10.1016/j.physa.2023.128447 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Evolutionary Games on Networks: Phase Transition, Quasi-equilibrium, and Mathematical Principles </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+J">Jiangjiang Cheng</a>, <a href="/search/physics?searchtype=author&amp;query=Mei%2C+W">Wenjun Mei</a>, <a href="/search/physics?searchtype=author&amp;query=Su%2C+W">Wei Su</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+G">Ge Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.14913v1-abstract-short" style="display: inline;"> The stable cooperation ratio of spatial evolutionary games has been widely studied using simulations or approximate analysis methods. However, sometimes such ``stable&#39;&#39; cooperation ratios obtained via approximate methods might not be actually stable, but correspond to quasi-equilibriums instead. We find that various classic game models, like the evolutionary snowdrift game, evolutionary prisoner&#39;s&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.14913v1-abstract-full').style.display = 'inline'; document.getElementById('2304.14913v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.14913v1-abstract-full" style="display: none;"> The stable cooperation ratio of spatial evolutionary games has been widely studied using simulations or approximate analysis methods. However, sometimes such ``stable&#39;&#39; cooperation ratios obtained via approximate methods might not be actually stable, but correspond to quasi-equilibriums instead. We find that various classic game models, like the evolutionary snowdrift game, evolutionary prisoner&#39;s dilemma, and spatial public goods game on square lattices and scale-free networks, exhibit the phase transition in convergence time to the equilibrium state. Moreover, mathematical principles are provided to explain the phase transition of convergence time and quasi-equilibrium of cooperation ratio. The findings explain why and when cooperation and defection have a long-term coexistence. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.14913v1-abstract-full').style.display = 'none'; document.getElementById('2304.14913v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 7 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physica A 611 (2023) 128447 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.10760">arXiv:2304.10760</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2304.10760">pdf</a>, <a href="https://arxiv.org/format/2304.10760">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.108.063703">10.1103/PhysRevA.108.063703 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Magnon squeezing by two-tone driving of a qubit in cavity-magnon-qubit systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Guo%2C+Q">Qi Guo</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+J">Jiong Cheng</a>, <a href="/search/physics?searchtype=author&amp;query=Tan%2C+H">Huatang Tan</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+J">Jie Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.10760v4-abstract-short" style="display: inline;"> We propose a scheme for preparing magnon squeezed states in a hybrid cavity-magnon-qubit system. The system consists of a microwave cavity that simultaneously couples to a magnon mode of a macroscopic yttrium-iron-garnet (YIG) sphere via the magnetic-dipole interaction and to a transmon-type superconducting qubit via the electric-dipole interaction. By far detuning from the magnon-qubit system, th&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.10760v4-abstract-full').style.display = 'inline'; document.getElementById('2304.10760v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.10760v4-abstract-full" style="display: none;"> We propose a scheme for preparing magnon squeezed states in a hybrid cavity-magnon-qubit system. The system consists of a microwave cavity that simultaneously couples to a magnon mode of a macroscopic yttrium-iron-garnet (YIG) sphere via the magnetic-dipole interaction and to a transmon-type superconducting qubit via the electric-dipole interaction. By far detuning from the magnon-qubit system, the microwave cavity is adiabatically eliminated. The magnon mode and the qubit then get effectively coupled via the mediation of virtual photons of the microwave cavity. We show that by driving the qubit with two microwave fields and by appropriately choosing the drive frequencies and strengths, magnonic parametric amplification can be realized, which leads to magnon quadrature squeezing with the noise below vacuum fluctuation. We provide optimal conditions for achieving magnon squeezing, and moderate squeezing can be obtained using currently available parameters. The generated squeezed states are of a magnon mode involving more than $10^{18}$ spins and thus macroscopic quantum states. The work may find promising applications in quantum information processing and high-precision measurements based on magnons and in the study of macroscopic quantum states. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.10760v4-abstract-full').style.display = 'none'; document.getElementById('2304.10760v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">To appear in PRA</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. A 108, 063703 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.09476">arXiv:2304.09476</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2304.09476">pdf</a>, <a href="https://arxiv.org/format/2304.09476">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1741-4326/acd1a0">10.1088/1741-4326/acd1a0 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> MAS: A versatile Landau-fluid eigenvalue code for plasma stability analysis in general geometry </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Bao%2C+J">Jian Bao</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+W">Wenlu Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+D">Ding Li</a>, <a href="/search/physics?searchtype=author&amp;query=Lin%2C+Z">Zhihong Lin</a>, <a href="/search/physics?searchtype=author&amp;query=Dong%2C+G">Ge Dong</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+C">Chang Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Xie%2C+H">Huasheng Xie</a>, <a href="/search/physics?searchtype=author&amp;query=Meng%2C+G">Guo Meng</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+J">Junyi Cheng</a>, <a href="/search/physics?searchtype=author&amp;query=Dong%2C+C">Chao Dong</a>, <a href="/search/physics?searchtype=author&amp;query=Cao%2C+J">Jintao Cao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.09476v1-abstract-short" style="display: inline;"> We have developed a new global eigenvalue code, Multiscale Analysis for plasma Stabilities (MAS), for studying plasma problems with wave toroidal mode number n and frequency omega in a broad range of interest in general tokamak geometry, based on a five-field Landau-fluid description of thermal plasmas. Beyond keeping the necessary plasma fluid response, we further retain the important kinetic eff&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.09476v1-abstract-full').style.display = 'inline'; document.getElementById('2304.09476v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.09476v1-abstract-full" style="display: none;"> We have developed a new global eigenvalue code, Multiscale Analysis for plasma Stabilities (MAS), for studying plasma problems with wave toroidal mode number n and frequency omega in a broad range of interest in general tokamak geometry, based on a five-field Landau-fluid description of thermal plasmas. Beyond keeping the necessary plasma fluid response, we further retain the important kinetic effects including diamagnetic drift, ion finite Larmor radius, finite parallel electric field, ion and electron Landau resonances in a self-consistent and non-perturbative manner without sacrificing the attractive efficiency in computation. The physical capabilities of the code are evaluated and examined in the aspects of both theory and simulation. In theory, the comprehensive Landau-fluid model implemented in MAS can be reduced to the well-known ideal MHD model, electrostatic ion-fluid model, and drift-kinetic model in various limits, which clearly delineates the physics validity regime. In simulation, MAS has been well benchmarked with theory and other gyrokinetic and kinetic-MHD hybrid codes in a manner of adopting the unified physical and numerical framework, which covers the kinetic Alfven wave, ion sound wave, low-n kink, high-n ion temperature gradient mode and kinetic ballooning mode. Moreover, MAS is successfully applied to model the Alfven eigenmode (AE) activities in DIII-D discharge #159243, which faithfully captures the frequency sweeping of RSAE, the tunneling damping of TAE, as well as the polarization characteristics of KBAE and BAAE being consistent with former gyrokinetic theory and simulation. With respect to the key progress contributed to the community, MAS has the advantage of combining rich physics ingredients, realistic global geometry and high computation efficiency together for plasma stability analysis in linear regime. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.09476v1-abstract-full').style.display = 'none'; document.getElementById('2304.09476v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">40 pages, 21 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.07998">arXiv:2304.07998</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2304.07998">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> High dynamic range open-loop current measurement based on diamond quantum magnetometer achieving ppm scale precision </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Q">Qihui Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+H">Hao Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Xie%2C+F">Fei Xie</a>, <a href="/search/physics?searchtype=author&amp;query=Hu%2C+Y">Yuqiang Hu</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+J">Jin Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+N">Nan Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+L">Lihao Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Y">Yichen Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+Y">Yang Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Z">Zhichao Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+L">Lingyun Li</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+J">Jiangong Cheng</a>, <a href="/search/physics?searchtype=author&amp;query=Wu%2C+Z">Zhenyu Wu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.07998v1-abstract-short" style="display: inline;"> Negatively charged nitrogen-vacancy (NV) centers in diamond have been extensively studied as a promising high sensitivity solid-state magnetic field sensor at room temperature. However, their use for current sensing applications is limited due to the challenge of integration and miniaturization of the diamond NV sensor. Here, we demonstrate an integrated NV sensor fabricated with standard microfab&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.07998v1-abstract-full').style.display = 'inline'; document.getElementById('2304.07998v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.07998v1-abstract-full" style="display: none;"> Negatively charged nitrogen-vacancy (NV) centers in diamond have been extensively studied as a promising high sensitivity solid-state magnetic field sensor at room temperature. However, their use for current sensing applications is limited due to the challenge of integration and miniaturization of the diamond NV sensor. Here, we demonstrate an integrated NV sensor fabricated with standard microfabrication process. The sensor device incorporated with a toroidal magnetic yoke enables a high-precision wide range direct current sensing with galvanic isolation. The performance of the diamond NV current sensor in an open loop configuration has been investigated. A current measuring range of 0 A ~ 1000 A with an uncertainty of 46 ppm are achieved. Taking advantage of dual spin resonance modulation, temperature drift is suppressed to 10 ppm/K. This configuration opens new possibilities as a robust and scalable platform for current quantum sensing technologies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.07998v1-abstract-full').style.display = 'none'; document.getElementById('2304.07998v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16pages, 6figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.15790">arXiv:2303.15790</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2303.15790">pdf</a>, <a href="https://arxiv.org/format/2303.15790">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/s11467-023-1333-z">10.1007/s11467-023-1333-z <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> STCF Conceptual Design Report: Volume 1 -- Physics &amp; Detector </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Achasov%2C+M">M. Achasov</a>, <a href="/search/physics?searchtype=author&amp;query=Ai%2C+X+C">X. C. Ai</a>, <a href="/search/physics?searchtype=author&amp;query=Aliberti%2C+R">R. Aliberti</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+L+P">L. P. An</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+Q">Q. An</a>, <a href="/search/physics?searchtype=author&amp;query=Bai%2C+X+Z">X. Z. Bai</a>, <a href="/search/physics?searchtype=author&amp;query=Bai%2C+Y">Y. Bai</a>, <a href="/search/physics?searchtype=author&amp;query=Bakina%2C+O">O. Bakina</a>, <a href="/search/physics?searchtype=author&amp;query=Barnyakov%2C+A">A. Barnyakov</a>, <a href="/search/physics?searchtype=author&amp;query=Blinov%2C+V">V. Blinov</a>, <a href="/search/physics?searchtype=author&amp;query=Bobrovnikov%2C+V">V. Bobrovnikov</a>, <a href="/search/physics?searchtype=author&amp;query=Bodrov%2C+D">D. Bodrov</a>, <a href="/search/physics?searchtype=author&amp;query=Bogomyagkov%2C+A">A. Bogomyagkov</a>, <a href="/search/physics?searchtype=author&amp;query=Bondar%2C+A">A. Bondar</a>, <a href="/search/physics?searchtype=author&amp;query=Boyko%2C+I">I. Boyko</a>, <a href="/search/physics?searchtype=author&amp;query=Bu%2C+Z+H">Z. H. Bu</a>, <a href="/search/physics?searchtype=author&amp;query=Cai%2C+F+M">F. M. Cai</a>, <a href="/search/physics?searchtype=author&amp;query=Cai%2C+H">H. Cai</a>, <a href="/search/physics?searchtype=author&amp;query=Cao%2C+J+J">J. J. Cao</a>, <a href="/search/physics?searchtype=author&amp;query=Cao%2C+Q+H">Q. H. Cao</a>, <a href="/search/physics?searchtype=author&amp;query=Cao%2C+Z">Z. Cao</a>, <a href="/search/physics?searchtype=author&amp;query=Chang%2C+Q">Q. Chang</a>, <a href="/search/physics?searchtype=author&amp;query=Chao%2C+K+T">K. T. Chao</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+D+Y">D. Y. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+H">H. Chen</a> , et al. (413 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.15790v3-abstract-short" style="display: inline;"> The Super $蟿$-Charm facility (STCF) is an electron-positron collider proposed by the Chinese particle physics community. It is designed to operate in a center-of-mass energy range from 2 to 7 GeV with a peak luminosity of $0.5\times 10^{35}{\rm cm}^{-2}{\rm s}^{-1}$ or higher. The STCF will produce a data sample about a factor of 100 larger than that by the present $蟿$-Charm factory -- the BEPCII,&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.15790v3-abstract-full').style.display = 'inline'; document.getElementById('2303.15790v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.15790v3-abstract-full" style="display: none;"> The Super $蟿$-Charm facility (STCF) is an electron-positron collider proposed by the Chinese particle physics community. It is designed to operate in a center-of-mass energy range from 2 to 7 GeV with a peak luminosity of $0.5\times 10^{35}{\rm cm}^{-2}{\rm s}^{-1}$ or higher. The STCF will produce a data sample about a factor of 100 larger than that by the present $蟿$-Charm factory -- the BEPCII, providing a unique platform for exploring the asymmetry of matter-antimatter (charge-parity violation), in-depth studies of the internal structure of hadrons and the nature of non-perturbative strong interactions, as well as searching for exotic hadrons and physics beyond the Standard Model. The STCF project in China is under development with an extensive R\&amp;D program. This document presents the physics opportunities at the STCF, describes conceptual designs of the STCF detector system, and discusses future plans for detector R\&amp;D and physics case studies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.15790v3-abstract-full').style.display = 'none'; document.getElementById('2303.15790v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Front. Phys. 19(1), 14701 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.15646">arXiv:2303.15646</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2303.15646">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> 7.86 kV GaN-on-GaN PN Power Diode with BaTiO3 for Electrical Field Management </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Xu%2C+Y">Yibo Xu</a>, <a href="/search/physics?searchtype=author&amp;query=Vangipuram%2C+V+G+T">Vijay Gopal Thirupakuzi Vangipuram</a>, <a href="/search/physics?searchtype=author&amp;query=Telasara%2C+V">Vishank Telasara</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+J">Junao Cheng</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+Y">Yuxuan Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Hashimoto%2C+T">Tadao Hashimoto</a>, <a href="/search/physics?searchtype=author&amp;query=Letts%2C+E">Edward Letts</a>, <a href="/search/physics?searchtype=author&amp;query=Key%2C+D">Daryl Key</a>, <a href="/search/physics?searchtype=author&amp;query=Zhao%2C+H">Hongping Zhao</a>, <a href="/search/physics?searchtype=author&amp;query=Lu%2C+W">Wu Lu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.15646v1-abstract-short" style="display: inline;"> Device based on GaN have great potential for high power switching applications due to its high breakdown field and high electron mobility. In this work, we present the device design of a vertical GaN-on-GaN PN power diode using high dielectric constant (high-k) dielectrics for electrical field management and high breakdown voltages, in together with guard-rings and a field plate. The fabricated di&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.15646v1-abstract-full').style.display = 'inline'; document.getElementById('2303.15646v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.15646v1-abstract-full" style="display: none;"> Device based on GaN have great potential for high power switching applications due to its high breakdown field and high electron mobility. In this work, we present the device design of a vertical GaN-on-GaN PN power diode using high dielectric constant (high-k) dielectrics for electrical field management and high breakdown voltages, in together with guard-rings and a field plate. The fabricated diodes with a 57 um thick drift layer demonstrated a breakdown voltage of 7.86 kV on a bulk GaN substrate. The device has an on-resistance of 2.8 mohm.cm2 and a Baliga figure of merit of 22 GW/cm2. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.15646v1-abstract-full').style.display = 'none'; document.getElementById('2303.15646v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.14273">arXiv:2303.14273</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2303.14273">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0152389">10.1063/5.0152389 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Dynamics of rapidly spinning blob-filaments: fluid theory with a parallel kinetic extension </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Myra%2C+J+R">J. R. Myra</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+J">J. Cheng</a>, <a href="/search/physics?searchtype=author&amp;query=Parker%2C+S+E">S. E. Parker</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.14273v2-abstract-short" style="display: inline;"> Blob-filaments (or simply &#39;blobs&#39;) are coherent structures formed by turbulence and sustained by nonlinear processes in the edge and scrape-off layer (SOL) of tokamaks and other magnetically confined plasmas. The dynamics of these blob-filaments, in particular their radial motion, can influence the scrape-off layer width and plasma interactions with both the divertor target and with the main chamb&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.14273v2-abstract-full').style.display = 'inline'; document.getElementById('2303.14273v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.14273v2-abstract-full" style="display: none;"> Blob-filaments (or simply &#39;blobs&#39;) are coherent structures formed by turbulence and sustained by nonlinear processes in the edge and scrape-off layer (SOL) of tokamaks and other magnetically confined plasmas. The dynamics of these blob-filaments, in particular their radial motion, can influence the scrape-off layer width and plasma interactions with both the divertor target and with the main chamber walls. Motivated by recent results from the XGC1 gyrokinetic simulation code reported on elsewhere [J. Cheng et al. submitted to Nucl. Fusion and available at arXiv:2302.02877v1], a theory of rapidly spinning blob-filaments has been developed. The theory treats blob filaments in the closed flux surface region or the region that is disconnected from sheaths in the SOL. It extends previous work by treating blob spin, arising from partially or fully adiabatic electrons, as the leading order effect and retaining inertial (ion charge polarization) physics in next order. Spin helps to maintain blob coherency and affects the blob&#39;s propagation speed. Dipole charge polarization, treated perturbatively, gives rise to blob-filaments with relatively slow radial velocity, comparable to that observed in the simulations. The theory also treats the interaction of rapidly spinning blob filaments with a zonal flow layer. It is shown analytically that the flow layer can act like a transport barrier for these structures. Finally parallel electron kinetic effects are incorporated into the theory. Various asymptotic parameter regimes are discussed and asymptotic expressions for the radial and poloidal motion of the blob-filaments are obtained. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.14273v2-abstract-full').style.display = 'none'; document.getElementById('2303.14273v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">31 pages, 2 figures, accepted in the journal Physics of Plasmas 30, 072302 (2023)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.05172">arXiv:2303.05172</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2303.05172">pdf</a>, <a href="https://arxiv.org/format/2303.05172">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nima.2023.168680">10.1016/j.nima.2023.168680 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The JUNO experiment Top Tracker </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=JUNO+Collaboration"> JUNO Collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Abusleme%2C+A">Angel Abusleme</a>, <a href="/search/physics?searchtype=author&amp;query=Adam%2C+T">Thomas Adam</a>, <a href="/search/physics?searchtype=author&amp;query=Ahmad%2C+S">Shakeel Ahmad</a>, <a href="/search/physics?searchtype=author&amp;query=Ahmed%2C+R">Rizwan Ahmed</a>, <a href="/search/physics?searchtype=author&amp;query=Aiello%2C+S">Sebastiano Aiello</a>, <a href="/search/physics?searchtype=author&amp;query=Akram%2C+M">Muhammad Akram</a>, <a href="/search/physics?searchtype=author&amp;query=Aleem%2C+A">Abid Aleem</a>, <a href="/search/physics?searchtype=author&amp;query=Alexandros%2C+T">Tsagkarakis Alexandros</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+F">Fengpeng An</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+Q">Qi An</a>, <a href="/search/physics?searchtype=author&amp;query=Andronico%2C+G">Giuseppe Andronico</a>, <a href="/search/physics?searchtype=author&amp;query=Anfimov%2C+N">Nikolay Anfimov</a>, <a href="/search/physics?searchtype=author&amp;query=Antonelli%2C+V">Vito Antonelli</a>, <a href="/search/physics?searchtype=author&amp;query=Antoshkina%2C+T">Tatiana Antoshkina</a>, <a href="/search/physics?searchtype=author&amp;query=Asavapibhop%2C+B">Burin Asavapibhop</a>, <a href="/search/physics?searchtype=author&amp;query=de+Andr%C3%A9%2C+J+P+A+M">Jo茫o Pedro Athayde Marcondes de Andr茅</a>, <a href="/search/physics?searchtype=author&amp;query=Auguste%2C+D">Didier Auguste</a>, <a href="/search/physics?searchtype=author&amp;query=Bai%2C+W">Weidong Bai</a>, <a href="/search/physics?searchtype=author&amp;query=Balashov%2C+N">Nikita Balashov</a>, <a href="/search/physics?searchtype=author&amp;query=Baldini%2C+W">Wander Baldini</a>, <a href="/search/physics?searchtype=author&amp;query=Barresi%2C+A">Andrea Barresi</a>, <a href="/search/physics?searchtype=author&amp;query=Basilico%2C+D">Davide Basilico</a>, <a href="/search/physics?searchtype=author&amp;query=Baussan%2C+E">Eric Baussan</a>, <a href="/search/physics?searchtype=author&amp;query=Bellato%2C+M">Marco Bellato</a> , et al. (592 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.05172v1-abstract-short" style="display: inline;"> The main task of the Top Tracker detector of the neutrino reactor experiment Jiangmen Underground Neutrino Observatory (JUNO) is to reconstruct and extrapolate atmospheric muon tracks down to the central detector. This muon tracker will help to evaluate the contribution of the cosmogenic background to the signal. The Top Tracker is located above JUNO&#39;s water Cherenkov Detector and Central Detector&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.05172v1-abstract-full').style.display = 'inline'; document.getElementById('2303.05172v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.05172v1-abstract-full" style="display: none;"> The main task of the Top Tracker detector of the neutrino reactor experiment Jiangmen Underground Neutrino Observatory (JUNO) is to reconstruct and extrapolate atmospheric muon tracks down to the central detector. This muon tracker will help to evaluate the contribution of the cosmogenic background to the signal. The Top Tracker is located above JUNO&#39;s water Cherenkov Detector and Central Detector, covering about 60% of the surface above them. The JUNO Top Tracker is constituted by the decommissioned OPERA experiment Target Tracker modules. The technology used consists in walls of two planes of plastic scintillator strips, one per transverse direction. Wavelength shifting fibres collect the light signal emitted by the scintillator strips and guide it to both ends where it is read by multianode photomultiplier tubes. Compared to the OPERA Target Tracker, the JUNO Top Tracker uses new electronics able to cope with the high rate produced by the high rock radioactivity compared to the one in Gran Sasso underground laboratory. This paper will present the new electronics and mechanical structure developed for the Top Tracker of JUNO along with its expected performance based on the current detector simulation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.05172v1-abstract-full').style.display = 'none'; document.getElementById('2303.05172v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nucl.Instrum.Meth.A 1057 (2023) 168680 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.03910">arXiv:2303.03910</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2303.03910">pdf</a>, <a href="https://arxiv.org/format/2303.03910">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> JUNO sensitivity to $^7$Be, $pep$, and CNO solar neutrinos </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Abusleme%2C+A">Angel Abusleme</a>, <a href="/search/physics?searchtype=author&amp;query=Adam%2C+T">Thomas Adam</a>, <a href="/search/physics?searchtype=author&amp;query=Ahmad%2C+S">Shakeel Ahmad</a>, <a href="/search/physics?searchtype=author&amp;query=Ahmed%2C+R">Rizwan Ahmed</a>, <a href="/search/physics?searchtype=author&amp;query=Aiello%2C+S">Sebastiano Aiello</a>, <a href="/search/physics?searchtype=author&amp;query=Akram%2C+M">Muhammad Akram</a>, <a href="/search/physics?searchtype=author&amp;query=Aleem%2C+A">Abid Aleem</a>, <a href="/search/physics?searchtype=author&amp;query=Alexandros%2C+T">Tsagkarakis Alexandros</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+F">Fengpeng An</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+Q">Qi An</a>, <a href="/search/physics?searchtype=author&amp;query=Andronico%2C+G">Giuseppe Andronico</a>, <a href="/search/physics?searchtype=author&amp;query=Anfimov%2C+N">Nikolay Anfimov</a>, <a href="/search/physics?searchtype=author&amp;query=Antonelli%2C+V">Vito Antonelli</a>, <a href="/search/physics?searchtype=author&amp;query=Antoshkina%2C+T">Tatiana Antoshkina</a>, <a href="/search/physics?searchtype=author&amp;query=Asavapibhop%2C+B">Burin Asavapibhop</a>, <a href="/search/physics?searchtype=author&amp;query=de+Andr%C3%A9%2C+J+P+A+M">Jo茫o Pedro Athayde Marcondes de Andr茅</a>, <a href="/search/physics?searchtype=author&amp;query=Auguste%2C+D">Didier Auguste</a>, <a href="/search/physics?searchtype=author&amp;query=Bai%2C+W">Weidong Bai</a>, <a href="/search/physics?searchtype=author&amp;query=Balashov%2C+N">Nikita Balashov</a>, <a href="/search/physics?searchtype=author&amp;query=Baldini%2C+W">Wander Baldini</a>, <a href="/search/physics?searchtype=author&amp;query=Barresi%2C+A">Andrea Barresi</a>, <a href="/search/physics?searchtype=author&amp;query=Basilico%2C+D">Davide Basilico</a>, <a href="/search/physics?searchtype=author&amp;query=Baussan%2C+E">Eric Baussan</a>, <a href="/search/physics?searchtype=author&amp;query=Bellato%2C+M">Marco Bellato</a>, <a href="/search/physics?searchtype=author&amp;query=Beretta%2C+M">Marco Beretta</a> , et al. (592 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.03910v1-abstract-short" style="display: inline;"> The Jiangmen Underground Neutrino Observatory (JUNO), the first multi-kton liquid scintillator detector, which is under construction in China, will have a unique potential to perform a real-time measurement of solar neutrinos well below the few MeV threshold typical for Water Cherenkov detectors. JUNO&#39;s large target mass and excellent energy resolution are prerequisites for reaching unprecedented&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.03910v1-abstract-full').style.display = 'inline'; document.getElementById('2303.03910v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.03910v1-abstract-full" style="display: none;"> The Jiangmen Underground Neutrino Observatory (JUNO), the first multi-kton liquid scintillator detector, which is under construction in China, will have a unique potential to perform a real-time measurement of solar neutrinos well below the few MeV threshold typical for Water Cherenkov detectors. JUNO&#39;s large target mass and excellent energy resolution are prerequisites for reaching unprecedented levels of precision. In this paper, we provide estimation of the JUNO sensitivity to 7Be, pep, and CNO solar neutrinos that can be obtained via a spectral analysis above the 0.45 MeV threshold. This study is performed assuming different scenarios of the liquid scintillator radiopurity, ranging from the most opti mistic one corresponding to the radiopurity levels obtained by the Borexino experiment, up to the minimum requirements needed to perform the neutrino mass ordering determination with reactor antineutrinos - the main goal of JUNO. Our study shows that in most scenarios, JUNO will be able to improve the current best measurements on 7Be, pep, and CNO solar neutrino fluxes. We also perform a study on the JUNO capability to detect periodical time variations in the solar neutrino flux, such as the day-night modulation induced by neutrino flavor regeneration in Earth, and the modulations induced by temperature changes driven by helioseismic waves. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.03910v1-abstract-full').style.display = 'none'; document.getElementById('2303.03910v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2302.11769">arXiv:2302.11769</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2302.11769">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> </div> </div> <p class="title is-5 mathjax"> Mid-infrared Chemical Imaging of Intracellular Tau Fibrils using Fluorescence-guided Computational Photothermal Microscopy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Zhao%2C+J">Jian Zhao</a>, <a href="/search/physics?searchtype=author&amp;query=Jiang%2C+L">Lulu Jiang</a>, <a href="/search/physics?searchtype=author&amp;query=Matlock%2C+A">Alex Matlock</a>, <a href="/search/physics?searchtype=author&amp;query=Xu%2C+Y">Yihong Xu</a>, <a href="/search/physics?searchtype=author&amp;query=Zhu%2C+J">Jiabei Zhu</a>, <a href="/search/physics?searchtype=author&amp;query=Zhu%2C+H">Hongbo Zhu</a>, <a href="/search/physics?searchtype=author&amp;query=Tian%2C+L">Lei Tian</a>, <a href="/search/physics?searchtype=author&amp;query=Wolozin%2C+B">Benjamin Wolozin</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+J">Ji-Xin Cheng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2302.11769v1-abstract-short" style="display: inline;"> Amyloid proteins are associated with a broad spectrum of neurodegenerative diseases. However, it remains a grand challenge to extract molecular structure information from intracellular amyloid proteins in their native cellular environment. To address this challenge, we developed a computational chemical microscope integrating 3D mid-infrared photothermal imaging with fluorescence imaging, termed F&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.11769v1-abstract-full').style.display = 'inline'; document.getElementById('2302.11769v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2302.11769v1-abstract-full" style="display: none;"> Amyloid proteins are associated with a broad spectrum of neurodegenerative diseases. However, it remains a grand challenge to extract molecular structure information from intracellular amyloid proteins in their native cellular environment. To address this challenge, we developed a computational chemical microscope integrating 3D mid-infrared photothermal imaging with fluorescence imaging, termed Fluorescence-guided Bond-Selective Intensity Diffraction Tomography (FBS-IDT). Based on a low-cost and simple optical design, FBS-IDT enables chemical-specific volumetric imaging and 3D site-specific mid-IR fingerprint spectroscopic analysis of tau fibrils, an important type of amyloid protein aggregates, in their intracellular environment. Label-free volumetric chemical imaging of human cells with/without seeded tau fibrils is demonstrated to show the potential correlation between lipid accumulation and tau aggregate formation. Depth-resolved mid-infrared fingerprint spectroscopy is performed to reveal the protein secondary structure of the intracellular tau fibrils. 3D visualization of the \b{eta}-sheet for tau fibril structure is achieved. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.11769v1-abstract-full').style.display = 'none'; document.getElementById('2302.11769v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2302.06789">arXiv:2302.06789</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2302.06789">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> </div> </div> <p class="title is-5 mathjax"> On the fluid slip along a solid surface </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+J">Jiahao Cheng</a>, <a href="/search/physics?searchtype=author&amp;query=Hao%2C+J">Jiguang Hao</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+Y">Yalei Li</a>, <a href="/search/physics?searchtype=author&amp;query=Floryan%2C+J+M">J. M. Floryan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2302.06789v2-abstract-short" style="display: inline;"> It is commonly assumed that fluid cannot slip along a solid surface. The experimental evidence generally supports this assumption. We demonstrate that when the change of the relative velocity of a fluid and a solid wall is sufficiently rapid, the slip does occur; the fluid is unable to adjust if acceleration is large enough, and it slips. We use droplet impact on a moving surface to demonstrate an&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.06789v2-abstract-full').style.display = 'inline'; document.getElementById('2302.06789v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2302.06789v2-abstract-full" style="display: none;"> It is commonly assumed that fluid cannot slip along a solid surface. The experimental evidence generally supports this assumption. We demonstrate that when the change of the relative velocity of a fluid and a solid wall is sufficiently rapid, the slip does occur; the fluid is unable to adjust if acceleration is large enough, and it slips. We use droplet impact on a moving surface to demonstrate and estimate the slip length. We also estimate fluid acceleration, which is required to cause an observable slip. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.06789v2-abstract-full').style.display = 'none'; document.getElementById('2302.06789v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2302.02877">arXiv:2302.02877</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2302.02877">pdf</a>, <a href="https://arxiv.org/ps/2302.02877">ps</a>, <a href="https://arxiv.org/format/2302.02877">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1741-4326/acdf01">10.1088/1741-4326/acdf01 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Transport Barrier and Spinning Blob Dynamics in the Tokamak Edge </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+J">Junyi Cheng</a>, <a href="/search/physics?searchtype=author&amp;query=Myra%2C+J">James Myra</a>, <a href="/search/physics?searchtype=author&amp;query=Ku%2C+S">Seung-Hoe Ku</a>, <a href="/search/physics?searchtype=author&amp;query=Hager%2C+R">Robert Hager</a>, <a href="/search/physics?searchtype=author&amp;query=Chang%2C+C">Choong-Seock Chang</a>, <a href="/search/physics?searchtype=author&amp;query=Parker%2C+S">Scott Parker</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2302.02877v2-abstract-short" style="display: inline;"> In this work, we investigate the dynamics of plasma blobs in the edge of magnetic confinement devices using a full-f gyrokinetic particle-in-cell code with X-point geometry. In simulations, the evolution of a seeded blob is followed as it approaches a naturally-forming zonal shear layer near the separatrix, where the blob is stabilized by a large spin induced by the self-consistent adiabatic elect&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.02877v2-abstract-full').style.display = 'inline'; document.getElementById('2302.02877v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2302.02877v2-abstract-full" style="display: none;"> In this work, we investigate the dynamics of plasma blobs in the edge of magnetic confinement devices using a full-f gyrokinetic particle-in-cell code with X-point geometry. In simulations, the evolution of a seeded blob is followed as it approaches a naturally-forming zonal shear layer near the separatrix, where the blob is stabilized by a large spin induced by the self-consistent adiabatic electron response, and blob bifurcation and trapping are observed during the cross-field propagation of blobs. A new theoretical explanation in both the zonal free and zonal shear layer is constructed, where the dominant ExB spin motion is included. A theoretical condition for a transport barrier induced by the interaction between spinning blobs and the zonal shear layer is obtained, and its scaling is verified with simulations. The new theoretical framework, especially the transport barrier, is applicable to explain and predict various experimental phenomena. In particular, the transport barrier condition calculated with experimental parameters demonstrates that the blob radial transport for H mode is smaller than L mode in experiments. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.02877v2-abstract-full').style.display = 'none'; document.getElementById('2302.02877v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures, accepted in the journal Nucl. Fusion 63, 086015 (2023)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2301.13355">arXiv:2301.13355</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2301.13355">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> </div> </div> <p class="title is-5 mathjax"> Bond-Selective Full-Field Optical Coherence Tomography </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Zong%2C+H">Haonan Zong</a>, <a href="/search/physics?searchtype=author&amp;query=Yurdakul%2C+C">Celalettin Yurdakul</a>, <a href="/search/physics?searchtype=author&amp;query=Zhao%2C+J">Jian Zhao</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+Z">Zian Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+F">Fukai Chen</a>, <a href="/search/physics?searchtype=author&amp;query=%C3%9Cnl%C3%BC%2C+M+S">M. Selim 脺nl眉</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+J">Ji-Xin Cheng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2301.13355v1-abstract-short" style="display: inline;"> Optical coherence tomography (OCT) is a label-free, non-invasive 3D imaging tool widely used in both biological research and clinical diagnosis. Current OCT modalities can only visualize specimen tomography without chemical information. Here, we report a bondselective full-field OCT (BS-FF-OCT), in which a pulsed mid-infrared laser is used to modulate the OCT signal through the photothermal effect&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.13355v1-abstract-full').style.display = 'inline'; document.getElementById('2301.13355v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2301.13355v1-abstract-full" style="display: none;"> Optical coherence tomography (OCT) is a label-free, non-invasive 3D imaging tool widely used in both biological research and clinical diagnosis. Current OCT modalities can only visualize specimen tomography without chemical information. Here, we report a bondselective full-field OCT (BS-FF-OCT), in which a pulsed mid-infrared laser is used to modulate the OCT signal through the photothermal effect, achieving label-free bond-selective 3D sectioned imaging of highly scattering samples. We first demonstrate BS-FF-OCT imaging of 1 渭m PMMA beads embedded in agarose gel. Next, we then show 3D hyperspectral imaging of polypropylene fiber mattress from a standard surgical mask. We then demonstrate BS-FFOCT imaging on biological samples, including cancer cell spheroids and C. elegans. Using an alternative pulse timing configuration, we finally demonstrate the capability of BS-FF-OCT on a bulky and highly scattering 150 渭m thick mouse brain slice. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.13355v1-abstract-full').style.display = 'none'; document.getElementById('2301.13355v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2023. </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Cheng%2C+J&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Cheng%2C+J&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Cheng%2C+J&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Cheng%2C+J&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Cheng%2C+J&amp;start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Cheng%2C+J&amp;start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Cheng%2C+J&amp;start=250" class="pagination-link " aria-label="Page 6" aria-current="page">6 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10