CINXE.COM
Search | arXiv e-print repository
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1–50 of 179 results for author: <span class="mathjax">Tan, Y</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> <div class="content"> <form method="GET" action="/search/physics" aria-role="search"> Searching in archive <strong>physics</strong>. <a href="/search/?searchtype=author&query=Tan%2C+Y">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Tan, Y"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Tan%2C+Y&terms-0-field=author&size=50&order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Tan, Y"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Tan%2C+Y&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Tan%2C+Y&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Tan%2C+Y&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&query=Tan%2C+Y&start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&query=Tan%2C+Y&start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.03555">arXiv:2502.03555</a> <span> [<a href="https://arxiv.org/pdf/2502.03555">pdf</a>, <a href="https://arxiv.org/format/2502.03555">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> The T-SDHCAL Hadronic Calorimeter for a Future Higgs factory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Tytgat%2C+M">M. Tytgat</a>, <a href="/search/physics?searchtype=author&query=Combaret%2C+C">C. Combaret</a>, <a href="/search/physics?searchtype=author&query=Devanne%2C+C">C. Devanne</a>, <a href="/search/physics?searchtype=author&query=Garillot%2C+G">G. Garillot</a>, <a href="/search/physics?searchtype=author&query=Grenier%2C+G">G. Grenier</a>, <a href="/search/physics?searchtype=author&query=Laktineh%2C+I">I. Laktineh</a>, <a href="/search/physics?searchtype=author&query=Mirabito%2C+L">L. Mirabito</a>, <a href="/search/physics?searchtype=author&query=Pasquier%2C+T">T. Pasquier</a>, <a href="/search/physics?searchtype=author&query=Fouz%2C+M+C">M. C. Fouz</a>, <a href="/search/physics?searchtype=author&query=Yang%2C+H+J">H. J. Yang</a>, <a href="/search/physics?searchtype=author&query=Wu%2C+W">W. Wu</a>, <a href="/search/physics?searchtype=author&query=Tan%2C+Y">Y. Tan</a>, <a href="/search/physics?searchtype=author&query=Baek%2C+Y">Y. Baek</a>, <a href="/search/physics?searchtype=author&query=Kim%2C+D">D. Kim</a>, <a href="/search/physics?searchtype=author&query=Kim%2C+J">J. Kim</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.03555v1-abstract-short" style="display: inline;"> The CALICE technological RPC-based SDHCAL prototype that fullfils all the requirements of compactness, hermeticity and power budget of the future lepton accelerator experiments, has been extensively tested and has provided excellent results in terms of the energy resolution and shower separation. A new phase of R&D to validate completely the SDHCAL option for the International Linear Detector (ILD… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.03555v1-abstract-full').style.display = 'inline'; document.getElementById('2502.03555v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.03555v1-abstract-full" style="display: none;"> The CALICE technological RPC-based SDHCAL prototype that fullfils all the requirements of compactness, hermeticity and power budget of the future lepton accelerator experiments, has been extensively tested and has provided excellent results in terms of the energy resolution and shower separation. A new phase of R&D to validate completely the SDHCAL option for the International Linear Detector (ILD) project of the ILC and also the Circular Electron Positron Collider (CEPC and FCCee) has started with the conception and the realization of new prototypes. The new prototype proposes to exploit the excellent time resolution that can be provided by multi-gap resistive plate chamber detectors in order to better build the hadronic showers with the aim to separate close-by ones and also to single out the contribution of delayed neutrons with the purpose to improve on the Particle Flow Algorithm performances and better reconstruct the showers energy. A new technique to build multi-gap resistive plate chambers has been developed and first results confirm the excellent efficiency of the new detectors. The timing performance is under study using the PETIROC ASIC developed by the OMEGA group. The progress realized on the different aspects of the new concept will be presented and the future steps will be discussed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.03555v1-abstract-full').style.display = 'none'; document.getElementById('2502.03555v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 6 figures, Proceedings of the XVII Conference on Resistive Plate Chambers and Related Detectors, 9-13 Sept. 2024, Santiago de Compostela, Spain</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.02999">arXiv:2502.02999</a> <span> [<a href="https://arxiv.org/pdf/2502.02999">pdf</a>, <a href="https://arxiv.org/format/2502.02999">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Exploration of optimized front-end readout circuit for time measurement of large-area SiPM arrays </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Wang%2C+M+X">M. X. Wang</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+Y">Y. Liu</a>, <a href="/search/physics?searchtype=author&query=Tan%2C+Y+Q">Y. Q. Tan</a>, <a href="/search/physics?searchtype=author&query=Tang%2C+J+N">J. N. Tang</a>, <a href="/search/physics?searchtype=author&query=Wu%2C+W+H">W. H. Wu</a>, <a href="/search/physics?searchtype=author&query=Xu%2C+D+L">D. L. Xu</a>, <a href="/search/physics?searchtype=author&query=Zhi%2C+W">W. Zhi</a>, <a href="/search/physics?searchtype=author&query=Zhou%2C+Z+Z">Z. Z. Zhou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.02999v1-abstract-short" style="display: inline;"> The detector of TRopIcal DEep-sea Neutrino Telescope (TRIDENT) will use large-area silicon photomultiplier (SiPM) arrays combined with photomultiplier tubes to boost photon detection efficiency and pointing capability. An application-specific integrated circuit (ASIC) is being developed to aim at high-resolution time measurement of large-area SiPM arrays. This work researches four architectures of… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.02999v1-abstract-full').style.display = 'inline'; document.getElementById('2502.02999v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.02999v1-abstract-full" style="display: none;"> The detector of TRopIcal DEep-sea Neutrino Telescope (TRIDENT) will use large-area silicon photomultiplier (SiPM) arrays combined with photomultiplier tubes to boost photon detection efficiency and pointing capability. An application-specific integrated circuit (ASIC) is being developed to aim at high-resolution time measurement of large-area SiPM arrays. This work researches four architectures of readout circuits including different input stages (common gate stage and negative feedback common gate stage) and discriminators (two types of current discriminator and one voltage discriminator) using a 180 nm CMOS process for optimizing time resolution. The experimental measurements show that single photon time resolutions performed using Hamamatsu S13360-3050PE SiPMs are around 260 ps full width at half maximum (FWHM). A timing jitter less than 500 ps FWHM when connecting a 6x6 mm^2 SiPM array is achieved. The power consumption is less than 7 mW/channel. Additionally, a digital summation is applied to reduce the number of output interfaces. The measured performances of the ASIC cater to the TRIDENT application requirements. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.02999v1-abstract-full').style.display = 'none'; document.getElementById('2502.02999v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.07230">arXiv:2501.07230</a> <span> [<a href="https://arxiv.org/pdf/2501.07230">pdf</a>, <a href="https://arxiv.org/format/2501.07230">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantitative Methods">q-bio.QM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> A neuromorphic camera for tracking passive and active matter with lower data throughput </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Monteiro%2C+G+B">Gabriel Britto Monteiro</a>, <a href="/search/physics?searchtype=author&query=Lim%2C+M">Megan Lim</a>, <a href="/search/physics?searchtype=author&query=Tan%2C+T+C+Y">Tiffany Cheow Yuen Tan</a>, <a href="/search/physics?searchtype=author&query=Upadhya%2C+A">Avinash Upadhya</a>, <a href="/search/physics?searchtype=author&query=Liang%2C+Z">Zhuo Liang</a>, <a href="/search/physics?searchtype=author&query=Agnew%2C+B">Benjamin Agnew</a>, <a href="/search/physics?searchtype=author&query=Hu%2C+T">Tomonori Hu</a>, <a href="/search/physics?searchtype=author&query=Eggleton%2C+B+J">Benjamin J. Eggleton</a>, <a href="/search/physics?searchtype=author&query=Perrella%2C+C">Christopher Perrella</a>, <a href="/search/physics?searchtype=author&query=Dunning%2C+K">Kylie Dunning</a>, <a href="/search/physics?searchtype=author&query=Dholakia%2C+K">Kishan Dholakia</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.07230v2-abstract-short" style="display: inline;"> We demonstrate the merits of using a neuromorphic, or event-based camera (EBC), for tracking of both passive and active matter. For passive matter, we tracked the Brownian motion of different micro-particles and estimated their diffusion coefficient. For active matter, we explored the case of tracking murine spermatozoa and extracted motility parameters from the motion of cells. This has applicati… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.07230v2-abstract-full').style.display = 'inline'; document.getElementById('2501.07230v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.07230v2-abstract-full" style="display: none;"> We demonstrate the merits of using a neuromorphic, or event-based camera (EBC), for tracking of both passive and active matter. For passive matter, we tracked the Brownian motion of different micro-particles and estimated their diffusion coefficient. For active matter, we explored the case of tracking murine spermatozoa and extracted motility parameters from the motion of cells. This has applications in enhancing outcomes for clinical fertility treatments. Using the EBC, we obtain results equivalent to those from an sCMOS camera, yet achieve a reduction in file size of up to two orders of magnitude. This is important in the modern computer era, as it reduces data throughput, and is well-aligned with edge-computing applications. We believe the EBC is an excellent choice, particularly for long-term studies of active matter. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.07230v2-abstract-full').style.display = 'none'; document.getElementById('2501.07230v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.20693">arXiv:2412.20693</a> <span> [<a href="https://arxiv.org/pdf/2412.20693">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Data Analysis, Statistics and Probability">physics.data-an</span> </div> </div> <p class="title is-5 mathjax"> Diffractive Magic Cube Network with Super-high Capacity Enabled by Mechanical Reconfiguration </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Feng%2C+P">Peijie Feng</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+F">Fubei Liu</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+Y">Yuanfeng Liu</a>, <a href="/search/physics?searchtype=author&query=Chong%2C+M">Mingzhe Chong</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+Z">Zongkun Zhang</a>, <a href="/search/physics?searchtype=author&query=Zhao%2C+Q">Qian Zhao</a>, <a href="/search/physics?searchtype=author&query=Sun%2C+J">Jingbo Sun</a>, <a href="/search/physics?searchtype=author&query=Zhou%2C+J">Ji Zhou</a>, <a href="/search/physics?searchtype=author&query=Tan%2C+Y">Yunhua Tan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.20693v1-abstract-short" style="display: inline;"> Multiplexing and dynamic reconfigurable metasurfaces have been extensively studied to enhance system capacity in response to the challenges posed by the exponential growth of optical information. Among them, the mechanically reconfigurable strategy offers a cost-effective and low-complexity approach for capacity enhancement. However, the channel numbers achieved in current studies are insufficient… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.20693v1-abstract-full').style.display = 'inline'; document.getElementById('2412.20693v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.20693v1-abstract-full" style="display: none;"> Multiplexing and dynamic reconfigurable metasurfaces have been extensively studied to enhance system capacity in response to the challenges posed by the exponential growth of optical information. Among them, the mechanically reconfigurable strategy offers a cost-effective and low-complexity approach for capacity enhancement. However, the channel numbers achieved in current studies are insufficient for practical applications because of inadequate mechanical transformations and suboptimal optimization methods. In this article, a diffractive magic cube network (DMCN) is proposed to advance the multiplexing capacity of mechanically reconfigurable metasurfaces. We utilized the deep diffractive neural network (D2NN) model to jointly optimize the subset of channels generated by the combination of three mechanical operations, permutation, translation, and rotation. The 144-channel holograms, 108-channel single-focus/multi-focus, and 60-channel orbital angular momentum (OAM) beam/comb generation were numerically achieved and experimentally validated using a spatial light modulator (SLM) and a reflective mirror. Our strategy not only provides a novel paradigm to improve metasurface capacity to super-high level with low crosstalk, but also paves the way for new advancements in optical storage, computing, communication, and photolithography. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.20693v1-abstract-full').style.display = 'none'; document.getElementById('2412.20693v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.09780">arXiv:2412.09780</a> <span> [<a href="https://arxiv.org/pdf/2412.09780">pdf</a>, <a href="https://arxiv.org/format/2412.09780">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> A high optical access cryogenic system for Rydberg atom arrays with a 3000-second trap lifetime </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Zhang%2C+Z">Zhenpu Zhang</a>, <a href="/search/physics?searchtype=author&query=Hsu%2C+T">Ting-Wei Hsu</a>, <a href="/search/physics?searchtype=author&query=Tan%2C+T+Y">Ting You Tan</a>, <a href="/search/physics?searchtype=author&query=Slichter%2C+D+H">Daniel H. Slichter</a>, <a href="/search/physics?searchtype=author&query=Kaufman%2C+A+M">Adam M. Kaufman</a>, <a href="/search/physics?searchtype=author&query=Marinelli%2C+M">Matteo Marinelli</a>, <a href="/search/physics?searchtype=author&query=Regal%2C+C+A">Cindy A. Regal</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.09780v1-abstract-short" style="display: inline;"> We present an optical tweezer array of $^{87}$Rb atoms housed in an cryogenic environment that successfully combines a 4 K cryopumping surface, a <50 K cold box surrounding the atoms, and a room-temperature high-numerical-aperture objective lens. We demonstrate a 3000 s atom trap lifetime, which enables us to optimize and measure losses at the $10^{-4}$ level that arise during imaging and cooling,… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.09780v1-abstract-full').style.display = 'inline'; document.getElementById('2412.09780v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.09780v1-abstract-full" style="display: none;"> We present an optical tweezer array of $^{87}$Rb atoms housed in an cryogenic environment that successfully combines a 4 K cryopumping surface, a <50 K cold box surrounding the atoms, and a room-temperature high-numerical-aperture objective lens. We demonstrate a 3000 s atom trap lifetime, which enables us to optimize and measure losses at the $10^{-4}$ level that arise during imaging and cooling, which are important to array rearrangement. We perform both ground-state qubit manipulation with an integrated microwave antenna and two-photon coherent Rydberg control, with the local electric field tuned to zero via integrated electrodes. We anticipate that the reduced blackbody radiation at the atoms from the cryogenic environment, combined with future electrical shielding, should decrease the rate of undesired transitions to nearby strongly-interacting Rydberg states, which cause many-body loss and impede Rydberg gates. This low-vibration, high-optical-access cryogenic platform can be used with a wide range of optically trapped atomic or molecular species for applications in quantum computing, simulation, and metrology. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.09780v1-abstract-full').style.display = 'none'; document.getElementById('2412.09780v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 10 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.01453">arXiv:2412.01453</a> <span> [<a href="https://arxiv.org/pdf/2412.01453">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> </div> <p class="title is-5 mathjax"> Quadruply Bonded Mo$_2$ Molecules: An Emitter-Resonator Integrated Quantum System in Free Space </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Meng%2C+M">Miao Meng</a>, <a href="/search/physics?searchtype=author&query=Tan%2C+Y+N">Ying Ning Tan</a>, <a href="/search/physics?searchtype=author&query=He%2C+Z+C">Zi Cong He</a>, <a href="/search/physics?searchtype=author&query=Zhong%2C+Z+H">Zi Hao Zhong</a>, <a href="/search/physics?searchtype=author&query=Zhou%2C+J">Jia Zhou</a>, <a href="/search/physics?searchtype=author&query=Zhou%2C+Y+L">Yu Li Zhou</a>, <a href="/search/physics?searchtype=author&query=Zhu%2C+G+Y">Guang Yuan Zhu</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+C+Y">Chun Y. Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.01453v2-abstract-short" style="display: inline;"> In recent decades, significant progress has been made in construction and study of individual quantum systems consisting of the basic single matter and energy particles, i.e., atoms and photons, which show great potentials in quantum computation and communication. Here, we demonstrate that the quadruply-bonded Mo$_2$ unit of the complex can trap photons of visible light under ambient conditions, p… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.01453v2-abstract-full').style.display = 'inline'; document.getElementById('2412.01453v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.01453v2-abstract-full" style="display: none;"> In recent decades, significant progress has been made in construction and study of individual quantum systems consisting of the basic single matter and energy particles, i.e., atoms and photons, which show great potentials in quantum computation and communication. Here, we demonstrate that the quadruply-bonded Mo$_2$ unit of the complex can trap photons of visible light under ambient conditions, producing intense local electromagnetic (EM) field that features squeezed states, photon antibunching, and vacuum Rabi splitting. Our results show that both the electronic and vibrational states of the Mo$_2$ molecule are modified by coherent coupling with the scattered photons of the Mo$_2$ unit, as evidenced by the Rabi doublet4 and the Mollow triplet in the incoherent resonance fluorescence and the Raman spectra. The Mo$_2$ molecule, acting as an independent emitter-resonator integrated quantum system, allows optical experiments to be conducted in free space, enabling fundamental quantum phenomena to be observed through conventional spectroscopic instrumentation. This provides a new platform for study of field effects and quantum electrodynamics (QED) in the optical domain. The insights gained from this study advance our understanding in metal-metal bond chemistry, molecular physics and quantum optics, with applications in quantum information processing, optoelectronic devices and control of chemical reactivity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.01453v2-abstract-full').style.display = 'none'; document.getElementById('2412.01453v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.01444">arXiv:2412.01444</a> <span> [<a href="https://arxiv.org/pdf/2412.01444">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> </div> <p class="title is-5 mathjax"> Quantization of Visible Light by a Ni$_2$ Molecular Optical Resonator </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Meng%2C+M">Miao Meng</a>, <a href="/search/physics?searchtype=author&query=Tan%2C+Y+N">Ying Ning Tan</a>, <a href="/search/physics?searchtype=author&query=Zhou%2C+Y+L">Yu Li Zhou</a>, <a href="/search/physics?searchtype=author&query=He%2C+Z+C">Zi Cong He</a>, <a href="/search/physics?searchtype=author&query=Zhong%2C+Z+H">Zi Hao Zhong</a>, <a href="/search/physics?searchtype=author&query=Zhou%2C+J">Jia Zhou</a>, <a href="/search/physics?searchtype=author&query=Zhu%2C+G+Y">Guang Yuan Zhu</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+C+Y">Chun Y. Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.01444v2-abstract-short" style="display: inline;"> The quantization of an optical field is a frontier in quantum optics with implications for both fundamental science and technological applications. Here, we demonstrate that a dinickel complex (Ni$_2$) traps and quantizes classical visible light, behaving as an individual quantum system or the Jaynes Cummings molecule.The composite system forms through coherently coupling the two level NiNi charge… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.01444v2-abstract-full').style.display = 'inline'; document.getElementById('2412.01444v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.01444v2-abstract-full" style="display: none;"> The quantization of an optical field is a frontier in quantum optics with implications for both fundamental science and technological applications. Here, we demonstrate that a dinickel complex (Ni$_2$) traps and quantizes classical visible light, behaving as an individual quantum system or the Jaynes Cummings molecule.The composite system forms through coherently coupling the two level NiNi charge transfer transition with the local scattering field, which produces nonclassical light featuring photon anti bunching and squeezed states, as verified by a sequence of discrete photonic modes in the incoherent resonance fluorescence. Notably, in this Ni$_2$ system, the collective coupling of N molecule ensembles scales as N, distinct from the Tavis-Cummings model, which allows easy achievement of ultrastrong coupling. This is exemplified by a vacuum Rabi splitting of 1.2 eV at the resonance (3.25 eV) and a normalized coupling rate of 0.18 for the N = 4 ensemble. The resulting quantum light of single photonic modes enables driving the molecule field interaction in cavity free solution, which profoundly modifies the electronic states. Our results establish Ni$_2$ as a robust platform for quantum optical phenomena under ambient conditions, offering new pathways for molecular physics, polaritonic chemistry and quantum information processing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.01444v2-abstract-full').style.display = 'none'; document.getElementById('2412.01444v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.18041">arXiv:2410.18041</a> <span> [<a href="https://arxiv.org/pdf/2410.18041">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Geophysics">physics.geo-ph</span> </div> </div> <p class="title is-5 mathjax"> Evaluating the performance of machine-learning-based phase pickers when applied to ocean bottom seismic data: Blanco oceanic transform fault as a case study </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Liu%2C+M">Min Liu</a>, <a href="/search/physics?searchtype=author&query=Tan%2C+Y+J">Yen Joe Tan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.18041v1-abstract-short" style="display: inline;"> Machine-learning-based phase pickers have been successfully leveraged to build high-resolution earthquake catalogs using seismic data on land. However, their performance when applied to ocean bottom seismic (OBS) data remains to be evaluated. In this study, we first adopt three machine-learning-based phase pickers - EQTransformer, Pickblue, and OBSTansformer - to build three earthquake catalogs fo… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.18041v1-abstract-full').style.display = 'inline'; document.getElementById('2410.18041v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.18041v1-abstract-full" style="display: none;"> Machine-learning-based phase pickers have been successfully leveraged to build high-resolution earthquake catalogs using seismic data on land. However, their performance when applied to ocean bottom seismic (OBS) data remains to be evaluated. In this study, we first adopt three machine-learning-based phase pickers - EQTransformer, Pickblue, and OBSTansformer - to build three earthquake catalogs for the 350-km-long Blanco oceanic transform fault (BTF) based on a year-long OBS deployment. We then systematically compare these catalogs with an existing catalog which utilized a traditional workflow. Results indicate that the Pickblue-based catalog documents more events and/or provides better-constrained locations than the other catalogs. The different performances of the three phase pickers suggest that detailed assessment of catalogs built using automatic workflows is necessary to prevent misinterpretations, especially when applied to regions without training samples. The Pickblue-based catalog reveals seismicity gaps in three extensional segments of BTF which likely represent aseismic slip zones affected by seawater infiltration. Furthermore, most earthquakes are shallower than the 600-degree isotherm predicted by a half-space conductive cooling model, except for the Blanco Ridge segment which has hosted 80% of the Mw > 6.0 earthquakes along BTF since 1976. These Blanco Ridge deep earthquake clusters can be explained by hydrothermal cooling or the serpentinization of mantle peridotite due to seawater infiltration along conduits created by the deeper ruptures of large earthquakes. Our analyses also demonstrate the importance of careful examination of automatically produced earthquake catalogs since mislocated events can lead to very different interpretations of fault slip modes from seismicity distribution. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.18041v1-abstract-full').style.display = 'none'; document.getElementById('2410.18041v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">38 pages and 16 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.20346">arXiv:2409.20346</a> <span> [<a href="https://arxiv.org/pdf/2409.20346">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> All-optical autoencoder machine learning framework using diffractive processors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Feng%2C+P">Peijie Feng</a>, <a href="/search/physics?searchtype=author&query=Tan%2C+Y">Yong Tan</a>, <a href="/search/physics?searchtype=author&query=Chong%2C+M">Mingzhe Chong</a>, <a href="/search/physics?searchtype=author&query=Li%2C+L">Lintao Li</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+Z">Zongkun Zhang</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+F">Fubei Liu</a>, <a href="/search/physics?searchtype=author&query=Tan%2C+Y">Yunhua Tan</a>, <a href="/search/physics?searchtype=author&query=Wen%2C+Y">Yongzheng Wen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.20346v1-abstract-short" style="display: inline;"> Diffractive deep neural network (D2NN), known for its high speed, low power consumption, and strong parallelism, has been widely applied across various fields, including pattern recognition, image processing, and image transmission. However, existing network architectures primarily focus on data representation within the original domain, with limited exploration of the latent space, thereby restri… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.20346v1-abstract-full').style.display = 'inline'; document.getElementById('2409.20346v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.20346v1-abstract-full" style="display: none;"> Diffractive deep neural network (D2NN), known for its high speed, low power consumption, and strong parallelism, has been widely applied across various fields, including pattern recognition, image processing, and image transmission. However, existing network architectures primarily focus on data representation within the original domain, with limited exploration of the latent space, thereby restricting the information mining capabilities and multifunctional integration of D2NNs. Here, we propose an all-optical autoencoder (OAE) framework that can encode the input wavefield into a prior shape distribution in the latent space and decode the encoded pattern back to the original wavefield. By leveraging the non-reciprocal property of D2NN, the OAE models function as encoders in one direction of wave propagation and as decoders in the opposite direction. We further apply the models to three key areas: image denoising, noise-resistant reconfigurable image classification, and image generation. Proof-of-concept experiments have been conducted to validate numerical simulations. Our OAE framework fully exploits the potential of latent space representations, enabling a single set of diffractive processors to simultaneously achieve image reconstruction, representation, and generation. It can be viewed as both a counterpart and an extension of the electronic autoencoder model. This work not only offers fresh insights into the design of optical generative models but also paves the way for developing and applying multifunctional, highly integrated, and general optical intelligent systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.20346v1-abstract-full').style.display = 'none'; document.getElementById('2409.20346v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 7 figure</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.07677">arXiv:2409.07677</a> <span> [<a href="https://arxiv.org/pdf/2409.07677">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Hopping Transfer Optimizes Avalanche Multiplication in Molybdenum Disulfide </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Cai%2C+X">Xiaofan Cai</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+R">Ruichang Chen</a>, <a href="/search/physics?searchtype=author&query=Gao%2C+X">Xu Gao</a>, <a href="/search/physics?searchtype=author&query=Yuan%2C+M">Meili Yuan</a>, <a href="/search/physics?searchtype=author&query=Hu%2C+H">Haixia Hu</a>, <a href="/search/physics?searchtype=author&query=Yin%2C+H">Hang Yin</a>, <a href="/search/physics?searchtype=author&query=Qu%2C+Y">Yuanyuan Qu</a>, <a href="/search/physics?searchtype=author&query=Tan%2C+Y">Yang Tan</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+F">Feng Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.07677v1-abstract-short" style="display: inline;"> Recently, avalanche multiplication has been observed in TMDC-based FETs, enhancing sensor performance with high sensitivity. However, the high voltage required for operation can damage the FETs, making it crucial to reduce the breakdown voltage for effective sensing applications. Here, we demonstrate that the utilization of hopping transfer induced by high-density defects can effectively reduce th… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.07677v1-abstract-full').style.display = 'inline'; document.getElementById('2409.07677v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.07677v1-abstract-full" style="display: none;"> Recently, avalanche multiplication has been observed in TMDC-based FETs, enhancing sensor performance with high sensitivity. However, the high voltage required for operation can damage the FETs, making it crucial to reduce the breakdown voltage for effective sensing applications. Here, we demonstrate that the utilization of hopping transfer induced by high-density defects can effectively reduce the breakdown voltage in TMDCs FETs. By substituting oxygen atoms for sulfur atoms in a monolayer of MoS2, we create MoS2-xOx, with x carefully adjusted within the range of 0 to 0.51. Oxygen doping reduces the bandgap of TMDCs and enhances ion collision rates. Moreover, higher levels of oxygen doping (x > 0.41) in MoS2-xOx exhibit nearest-neighbor hopping behavior, leading to a significant enhancement in electron mobility. These improvements result in a decrease in the breakdown voltage of avalanche multiplication from 26.2 V to 12.6 V. Additionally, we propose avalanche multiplication in MoS2-xOx as an efficient sensing mechanism to overcome the limitations of gas sensing. The MoS2-xOx sensors display an ultra-high response to NO2 gas in the air, with a response of 5.8x103 % to NO2 gas of 50 ppb at room temperature, which is nearly two orders of magnitude higher than resistance-type gas detectors based on TMDCs. This work demonstrates that hopping transfer induced by high-density oxygen defects can effectively decrease the breakdown voltage of MoS2-xOx FETs, enhancing avalanche multiplication and serving as a promising mechanism for ultrasensitive gas detection. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.07677v1-abstract-full').style.display = 'none'; document.getElementById('2409.07677v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.14530">arXiv:2408.14530</a> <span> [<a href="https://arxiv.org/pdf/2408.14530">pdf</a>, <a href="https://arxiv.org/format/2408.14530">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> </div> <p class="title is-5 mathjax"> Simulation of atom trajectories in the original Stern-Gerlach experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Mostafaeipour%2C+F">Faraz Mostafaeipour</a>, <a href="/search/physics?searchtype=author&query=Kahraman%2C+S+S">S. Suleyman Kahraman</a>, <a href="/search/physics?searchtype=author&query=Titimbo%2C+K">Kelvin Titimbo</a>, <a href="/search/physics?searchtype=author&query=Tan%2C+Y">Yixuan Tan</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+L+V">Lihong V. Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.14530v1-abstract-short" style="display: inline;"> Following a comprehensive analysis of the historical literature, we model the geometry of the Stern$\unicode{x2013}$Gerlach experiment to numerically calculate the magnetic field using the finite-element method. Using this calculated field and Monte Carlo methods, the atomic translational dynamics are simulated to produce the well-known quantized end-pattern with matching dimensions. The finite-el… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.14530v1-abstract-full').style.display = 'inline'; document.getElementById('2408.14530v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.14530v1-abstract-full" style="display: none;"> Following a comprehensive analysis of the historical literature, we model the geometry of the Stern$\unicode{x2013}$Gerlach experiment to numerically calculate the magnetic field using the finite-element method. Using this calculated field and Monte Carlo methods, the atomic translational dynamics are simulated to produce the well-known quantized end-pattern with matching dimensions. The finite-element method used provides the most accurate description of the Stern$\unicode{x2013}$Gerlach magnetic field and end-pattern in the literature, matching the historically reported values and figures. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.14530v1-abstract-full').style.display = 'none'; document.getElementById('2408.14530v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.04943">arXiv:2408.04943</a> <span> [<a href="https://arxiv.org/pdf/2408.04943">pdf</a>, <a href="https://arxiv.org/format/2408.04943">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Medical Physics">physics.med-ph</span> </div> </div> <p class="title is-5 mathjax"> CBCT scatter correction with dual-layer flat-panel detector </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Zhang%2C+X">Xin Zhang</a>, <a href="/search/physics?searchtype=author&query=Xie%2C+J">Jixiong Xie</a>, <a href="/search/physics?searchtype=author&query=Su%2C+T">Ting Su</a>, <a href="/search/physics?searchtype=author&query=Zhu%2C+J">Jiongtao Zhu</a>, <a href="/search/physics?searchtype=author&query=Cui%2C+H">Han Cui</a>, <a href="/search/physics?searchtype=author&query=Tan%2C+Y">Yuhang Tan</a>, <a href="/search/physics?searchtype=author&query=Xia%2C+D">Dongmei Xia</a>, <a href="/search/physics?searchtype=author&query=Zheng%2C+H">Hairong Zheng</a>, <a href="/search/physics?searchtype=author&query=Liang%2C+D">Dong Liang</a>, <a href="/search/physics?searchtype=author&query=Ge%2C+Y">Yongshuai Ge</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.04943v2-abstract-short" style="display: inline;"> Background: Recently, the popularity of dual-layer flat-panel detector (DL-FPD) based dual-energy cone-beam CT (DE-CBCT) imaging has been increasing. However, the image quality of DE-CBCT remains constrained by the Compton scattered X-ray photons. Purpose: The objective of this study is to develop an energy-modulated scatter correction method for DL-FPD based CBCT imaging. Methods: In DL-FPD,… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.04943v2-abstract-full').style.display = 'inline'; document.getElementById('2408.04943v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.04943v2-abstract-full" style="display: none;"> Background: Recently, the popularity of dual-layer flat-panel detector (DL-FPD) based dual-energy cone-beam CT (DE-CBCT) imaging has been increasing. However, the image quality of DE-CBCT remains constrained by the Compton scattered X-ray photons. Purpose: The objective of this study is to develop an energy-modulated scatter correction method for DL-FPD based CBCT imaging. Methods: In DL-FPD, a certain portion of the X-ray photons (mainly low-energy primary and scattered photons) passing through the object are captured by the top detector layer, while the remaining X-ray photons (mainly high-energy primary and scattered photons) are collected by the bottom detector layer. Based on the two set of distinct low-energy and high-energy measurements, a linear signal model was approximated for the dual-energy primary and scattered signals on DL-FPD. The distributions of X-ray scatters were quickly estimated using this signal model. Monte Carlo (MC) simulation of a water phantom was conducted to verify this newly developed scatter estimation method. Moreover, physical experiments of water phantom, head phantom, and abdominal phantom were carried out to validate the real performance of this proposed scatter correction method. Results: The MC results showed that the e-Grid method was able to generate scatter distributions close to the ground truth. Moreover, the physical experiments demonstrated that the e-Grid method can greatly reduce the shading artifacts in both low-energy and high-energy CBCT images acquired from DL-FPD. On average, the image non-uniformity (NU) was reduced by over 77% in the low-energy CBCT image and by over 66% in the high-energy CBCT image. A a consequence, the accuracy of the decomposed multi-material bases was substantially improved. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.04943v2-abstract-full').style.display = 'none'; document.getElementById('2408.04943v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.01164">arXiv:2408.01164</a> <span> [<a href="https://arxiv.org/pdf/2408.01164">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Discriminative Addressing of Versatile Nanodiamonds via Physically-Enabled Classifier in Complex Bio-Systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Tan%2C+Y">Yayin Tan</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+X">Xiaolu Wang</a>, <a href="/search/physics?searchtype=author&query=Xu%2C+F">Feng Xu</a>, <a href="/search/physics?searchtype=author&query=Hu%2C+X">Xinhao Hu</a>, <a href="/search/physics?searchtype=author&query=Lin%2C+Y">Yuan Lin</a>, <a href="/search/physics?searchtype=author&query=Gao%2C+B">Bo Gao</a>, <a href="/search/physics?searchtype=author&query=Chu%2C+Z">Zhiqin Chu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.01164v1-abstract-short" style="display: inline;"> Nitrogen-vacancy (NV) centers show great potentials for nanoscale bio-sensing and bio-imaging. Nevertheless, their envisioned bio-applications suffer from intrinsic background noise due to unavoidable light scattering and autofluorescence in cells and tissues. Herein, we develop a novel all-optical modulated imaging method via physically-enabled classifier, for on-demand and direct access to NV fl… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.01164v1-abstract-full').style.display = 'inline'; document.getElementById('2408.01164v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.01164v1-abstract-full" style="display: none;"> Nitrogen-vacancy (NV) centers show great potentials for nanoscale bio-sensing and bio-imaging. Nevertheless, their envisioned bio-applications suffer from intrinsic background noise due to unavoidable light scattering and autofluorescence in cells and tissues. Herein, we develop a novel all-optical modulated imaging method via physically-enabled classifier, for on-demand and direct access to NV fluorescence at pixel resolution while effectively filtering out background noise. Specifically, NV fluorescence can be modulated optically to exhibit sinusoid-like variations, providing basis for classification. We validate our method in various complex biological scenarios with fluorescence interference, ranging from cells to organisms. Notably, our classification-based approach achieves almost 10^6 times enhancement of signal-to-background ratio (SBR) for fluorescent nanodiamonds (FNDs) in neural protein imaging. We also demonstrate 4-fold contrast improvement in optically-detected magnetic resonance measurements (ODMR) of FNDs inside stained cells. Our technique offers a generic, explainable and robust solution, applicable for realistic high-fidelity imaging and sensing in challenging noise-laden scenarios. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.01164v1-abstract-full').style.display = 'none'; document.getElementById('2408.01164v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.20723">arXiv:2407.20723</a> <span> [<a href="https://arxiv.org/pdf/2407.20723">pdf</a>, <a href="https://arxiv.org/format/2407.20723">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> Design of High-speed readout electronics for the DarkSHINE electromagnetic calorimeter </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Guo%2C+Y">Yihan Guo</a>, <a href="/search/physics?searchtype=author&query=Li%2C+S">Shu Li</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+K">Kun Liu</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+Y">Yang Liu</a>, <a href="/search/physics?searchtype=author&query=Tan%2C+Y">Yongqi Tan</a>, <a href="/search/physics?searchtype=author&query=Tang%2C+J">Jiannan Tang</a>, <a href="/search/physics?searchtype=author&query=Wu%2C+W">Weihao Wu</a>, <a href="/search/physics?searchtype=author&query=Yang%2C+H">Haijun Yang</a>, <a href="/search/physics?searchtype=author&query=Zhao%2C+Z">Zhiyu Zhao</a>, <a href="/search/physics?searchtype=author&query=Zhi%2C+W">Wei Zhi</a>, <a href="/search/physics?searchtype=author&query=Zhou%2C+Z">Zhizhen Zhou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.20723v1-abstract-short" style="display: inline;"> The DarkSHINE experiment aims to search for dark photons by measuring the energy loss of the electrons recoiled from fixed-target. Its electromagnetic calorimeter is primarily responsible for accurately reconstructing the energy of the recoil electrons and bremsstrahlung photons. The performance of the electromagnetic calorimeter is crucial, as its energy measurement precision directly determines… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.20723v1-abstract-full').style.display = 'inline'; document.getElementById('2407.20723v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.20723v1-abstract-full" style="display: none;"> The DarkSHINE experiment aims to search for dark photons by measuring the energy loss of the electrons recoiled from fixed-target. Its electromagnetic calorimeter is primarily responsible for accurately reconstructing the energy of the recoil electrons and bremsstrahlung photons. The performance of the electromagnetic calorimeter is crucial, as its energy measurement precision directly determines the sensitivity to the search for dark photons. The DarkSHINE electromagnetic calorimeter uses LYSO crystals to form a fully absorptive electromagnetic calorimeter. It utilizes SiPMs to detect scintillation light in the crystals, and its readout electronics system deduces the deposited energy in the crystals by measuring the number of photoelectric signals generated by the SiPMs. The DarkSHINE electromagnetic calorimeter aims to operate at an event rate of 1-10 MHz, detecting energies ranging from 1 MeV to 1 GeV. To meet the requirements of high energy measurement precision, high event rate, and large dynamic range, we have researched and designed a readout electronics system based on dual-channel high-speed ADCs and a customized DAQ. The front-end amplification part of this system uses low-noise trans-impedance amplifiers to achieve high-precision waveform amplification. It successfully achieves a dynamic range up to a thousandfold through a double-gain readout scheme. The digital part uses 1 GSPS high-speed ADCs to achieve non-dead-time, high-precision waveform digitization. The DAQ part uses JESD204B high-speed serial protocol to read out the signal from ADC, and transmit it to PC software for processing and storage. Test results show a signal-to-noise ratio greater than 66 dBFS and an ENOB greater than 10.6 bits. Energy spectra measurements have been conducted using LYSO crystals and SiPMs, and an energy resolution of 5.96% at the 2.6 MeV gamma peak of Th-232 has been achieved. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.20723v1-abstract-full').style.display = 'none'; document.getElementById('2407.20723v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.15238">arXiv:2406.15238</a> <span> [<a href="https://arxiv.org/pdf/2406.15238">pdf</a>, <a href="https://arxiv.org/format/2406.15238">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> </div> </div> <p class="title is-5 mathjax"> Fermilab Booster Beam Emittances from Quadrupole Modes Measured by BPMs </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Tan%2C+C+Y">C. Y. Tan</a>, <a href="/search/physics?searchtype=author&query=Balcewicz%2C+M">M. Balcewicz</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.15238v1-abstract-short" style="display: inline;"> The measurement of beam emittances by extracting the quadrupole mode signal from a 4 plate beam position monitor (BPM) was published at least 40 years ago. Unfortunately, in practice, this method suffers from poor signal to noise ratio and requires a lot of tuning to extract out the emittances. In this paper, an improved method where multiple BPMs are used together with better mathematical analysi… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.15238v1-abstract-full').style.display = 'inline'; document.getElementById('2406.15238v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.15238v1-abstract-full" style="display: none;"> The measurement of beam emittances by extracting the quadrupole mode signal from a 4 plate beam position monitor (BPM) was published at least 40 years ago. Unfortunately, in practice, this method suffers from poor signal to noise ratio and requires a lot of tuning to extract out the emittances. In this paper, an improved method where multiple BPMs are used together with better mathematical analysis is described. The BPM derived emittances are then compared with those measured by the Ion Profile Monitor (IPM). Surprisingly, the BPM measured emittances behave very well and are more realistic than those measured by the IPM. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.15238v1-abstract-full').style.display = 'none'; document.getElementById('2406.15238v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15th International Particle Accelerator Conference (IPAC'24)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-CONF-24-0179-AD </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.14202">arXiv:2405.14202</a> <span> [<a href="https://arxiv.org/pdf/2405.14202">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Classical Physics">physics.class-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Giant Acoustic Geometric Spin and Orbital Hall Effect </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Wang%2C+W">Wei Wang</a>, <a href="/search/physics?searchtype=author&query=Tan%2C+Y">Yang Tan</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+J">Jingjing Liu</a>, <a href="/search/physics?searchtype=author&query=Liang%2C+B">Bin Liang</a>, <a href="/search/physics?searchtype=author&query=Cheng%2C+J">Jianchun Cheng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.14202v1-abstract-short" style="display: inline;"> Acoustic waves in fluid with spin-0 nature have been long believed not to support spin Hall effect and strong orbital Hall effect that enables experimental observation. Here we report the first theoretical explication and experimental demonstration of giant acoustic geometric spin and orbital Hall effect characterized by a large transverse shift. We reveal that this effect occurs when a vortex bea… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.14202v1-abstract-full').style.display = 'inline'; document.getElementById('2405.14202v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.14202v1-abstract-full" style="display: none;"> Acoustic waves in fluid with spin-0 nature have been long believed not to support spin Hall effect and strong orbital Hall effect that enables experimental observation. Here we report the first theoretical explication and experimental demonstration of giant acoustic geometric spin and orbital Hall effect characterized by a large transverse shift. We reveal that this effect occurs when a vortex beam is observed from a tilted reference frame free of wave-interface interactions or gradient-index media needed for observing conventional ones, and can be amplified by simply binding the beam tightly. Thanks to this mechanism, large transverse shifts proportional to angular momentum are observed in a compact system. Our work provides deeper insights into the physics of angular momentum of classic waves. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.14202v1-abstract-full').style.display = 'none'; document.getElementById('2405.14202v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.08267">arXiv:2405.08267</a> <span> [<a href="https://arxiv.org/pdf/2405.08267">pdf</a>, <a href="https://arxiv.org/format/2405.08267">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> </div> <p class="title is-5 mathjax"> Line intensities of CO near 1560 nm measured with absorption and dispersion spectroscopy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Huang%2C+Q">Q. Huang</a>, <a href="/search/physics?searchtype=author&query=Tan%2C+Y">Y. Tan</a>, <a href="/search/physics?searchtype=author&query=Yin%2C+R+-">R. -H. Yin</a>, <a href="/search/physics?searchtype=author&query=Nie%2C+Z+-">Z. -L. Nie</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+J">J. Wang</a>, <a href="/search/physics?searchtype=author&query=Hu%2C+S+-">S. -M Hu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.08267v2-abstract-short" style="display: inline;"> High-precision line intensities are of great value in various applications, such as greenhouse gas metrology, planetary atmospheric analysis, and trace gas detection. Here we report simultaneous measurements of cavity-enhanced absorption and dispersion spectroscopy of the prototype molecule $^{12}$C$^{16}$O using the same optical resonant cavity. Nine lines were measured in the R branch of the… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.08267v2-abstract-full').style.display = 'inline'; document.getElementById('2405.08267v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.08267v2-abstract-full" style="display: none;"> High-precision line intensities are of great value in various applications, such as greenhouse gas metrology, planetary atmospheric analysis, and trace gas detection. Here we report simultaneous measurements of cavity-enhanced absorption and dispersion spectroscopy of the prototype molecule $^{12}$C$^{16}$O using the same optical resonant cavity. Nine lines were measured in the R branch of the $v=3-0$ band. The absorption and dispersion spectra were fitted separately with speed-dependent Voigt profiles, and the line intensities obtained by the two methods agree within the experimental uncertainty of about 1\textperthousand. The results demonstrate the feasibility of SI-traceable molecular density measurements based on laser spectroscopy. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.08267v2-abstract-full').style.display = 'none'; document.getElementById('2405.08267v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 9figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.01548">arXiv:2405.01548</a> <span> [<a href="https://arxiv.org/pdf/2405.01548">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1109/JLT.2023.3304659">10.1109/JLT.2023.3304659 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Foundry's perspective on laser and SOA module integration with silicon photonics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Tan%2C+J+Y+S">James Y. S. Tan</a>, <a href="/search/physics?searchtype=author&query=Wu%2C+S+X">Shawn Xie Wu</a>, <a href="/search/physics?searchtype=author&query=Yanikgonul%2C+S">Salih Yanikgonul</a>, <a href="/search/physics?searchtype=author&query=Li%2C+C">Chao Li</a>, <a href="/search/physics?searchtype=author&query=Lo%2C+P+G">Patrick Guo-Qiang Lo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.01548v1-abstract-short" style="display: inline;"> Silicon photonic integrated circuit (PIC) builds on the demand for a low cost approach from established silicon-based manufacturing infrastructure traditionally built for electronics. Besides its natural abundance, silicon has desirable properties such as optically low loss (at certain critical wavelengths), and small form factor to enable high density scaled-up optical on-chip circuitry. However,… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.01548v1-abstract-full').style.display = 'inline'; document.getElementById('2405.01548v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.01548v1-abstract-full" style="display: none;"> Silicon photonic integrated circuit (PIC) builds on the demand for a low cost approach from established silicon-based manufacturing infrastructure traditionally built for electronics. Besides its natural abundance, silicon has desirable properties such as optically low loss (at certain critical wavelengths), and small form factor to enable high density scaled-up optical on-chip circuitry. However, given its indirect bandgap, the platform is typically integrated with other direct bandgap (e.g., III-V semiconductor) platforms for on-chip light source. An effective solution to integrating light source onto silicon photonics platform is integral to a practical scaled-up and full-fledged integrated photonics implementation. Here, we discuss the integration solutions, and present our foundry's perspective toward realizing it. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.01548v1-abstract-full').style.display = 'none'; document.getElementById('2405.01548v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> IEEE J Lightwave Technol. vol. 42, no. 3, pp. 1062-1074, 2024 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.08882">arXiv:2404.08882</a> <span> [<a href="https://arxiv.org/pdf/2404.08882">pdf</a>, <a href="https://arxiv.org/format/2404.08882">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Medical Physics">physics.med-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Explanations of MTF discrepancy in grating-based X-ray differential phase contrast CT imaging </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Tan%2C+Y">Yuhang Tan</a>, <a href="/search/physics?searchtype=author&query=Yang%2C+J">Jiecheng Yang</a>, <a href="/search/physics?searchtype=author&query=Zheng%2C+H">Hairong Zheng</a>, <a href="/search/physics?searchtype=author&query=Liang%2C+D">Dong Liang</a>, <a href="/search/physics?searchtype=author&query=Zhu%2C+P">Peiping Zhu</a>, <a href="/search/physics?searchtype=author&query=Ge%2C+Y">Yongshuai Ge</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.08882v1-abstract-short" style="display: inline;"> As a multi-contrast X-ray computed tomography (CT) imaging system, the grating-based Talbot-Lau interferometer is able to generate the absorption contrast and differential phase contrast (DPC) images concurrently. However, experiments found that the absorption CT (ACT) images have better spatial resolution, i.e., higher modulation transfer function (MTF), than the differential phase contrast CT (D… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.08882v1-abstract-full').style.display = 'inline'; document.getElementById('2404.08882v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.08882v1-abstract-full" style="display: none;"> As a multi-contrast X-ray computed tomography (CT) imaging system, the grating-based Talbot-Lau interferometer is able to generate the absorption contrast and differential phase contrast (DPC) images concurrently. However, experiments found that the absorption CT (ACT) images have better spatial resolution, i.e., higher modulation transfer function (MTF), than the differential phase contrast CT (DPCT) images. Until now, the root cause of such observed discrepancy has not been rigorously investigated. Through physical experiments, this study revealed that the phase grating in the Talbot-Lau interferometer induces direct superposition of paired split absorption signals and inverse superposition of paired split phase signals via diffraction. Further simulation experiments demonstrated that this splitting leads to a reduction in MTF in both ACT and DPCT images, with distinct superposition mechanisms contributing to the lower MTF in DPCT. Besides, such MTF discrepancy may also be affected in a minor extent by object composition, sample size, beam spectra and detector pixel size. Based on this study, the spatial resolution could be optimized when designing a grating-based DPC imaging system. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.08882v1-abstract-full').style.display = 'none'; document.getElementById('2404.08882v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages,3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">ACM Class:</span> J.2 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.11851">arXiv:2403.11851</a> <span> [<a href="https://arxiv.org/pdf/2403.11851">pdf</a>, <a href="https://arxiv.org/format/2403.11851">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mathematical Physics">math-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PRXQuantum.5.040315">10.1103/PRXQuantum.5.040315 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Postselection technique for optical Quantum Key Distribution with improved de Finetti reductions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Nahar%2C+S">Shlok Nahar</a>, <a href="/search/physics?searchtype=author&query=Tupkary%2C+D">Devashish Tupkary</a>, <a href="/search/physics?searchtype=author&query=Zhao%2C+Y">Yuming Zhao</a>, <a href="/search/physics?searchtype=author&query=L%C3%BCtkenhaus%2C+N">Norbert L眉tkenhaus</a>, <a href="/search/physics?searchtype=author&query=Tan%2C+E+Y+-">Ernest Y. -Z. Tan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.11851v3-abstract-short" style="display: inline;"> The postselection technique is an important proof technique for proving the security of quantum key distribution protocols against coherent attacks. In this work, we go through multiple steps to rigorously apply the postselection technique to optical quantum key distribution protocols. First, we place the postselection technique on a rigorous mathematical foundation by fixing a technical flaw in t… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.11851v3-abstract-full').style.display = 'inline'; document.getElementById('2403.11851v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.11851v3-abstract-full" style="display: none;"> The postselection technique is an important proof technique for proving the security of quantum key distribution protocols against coherent attacks. In this work, we go through multiple steps to rigorously apply the postselection technique to optical quantum key distribution protocols. First, we place the postselection technique on a rigorous mathematical foundation by fixing a technical flaw in the original postselection paper. Second, we extend the applicability of the postselection technique to prepare-and-measure protocols by using a de Finetti reduction with a fixed marginal. Third, we show how the postselection technique can be used for decoy-state protocols by tagging the source. Finally, we extend the applicability of the postselection technique to realistic optical setups by developing a new variant of the flag-state squasher. We also improve existing de Finetti reductions, which reduce the effect of using the postselection technique on the key rate. These improvements can be more generally applied to other quantum information processing tasks. As an example to demonstrate the applicability of our work, we apply our results to the time-bin encoded three-state protocol. We observe that the postselection technique performs better than all other known proof techniques against coherent attacks. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.11851v3-abstract-full').style.display = 'none'; document.getElementById('2403.11851v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.02948">arXiv:2403.02948</a> <span> [<a href="https://arxiv.org/pdf/2403.02948">pdf</a>, <a href="https://arxiv.org/format/2403.02948">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> Front-end electronics development of large-area SiPM arrays for high-precision single-photon time measurement </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Zhi%2C+W">Wei Zhi</a>, <a href="/search/physics?searchtype=author&query=Cao%2C+R">Ruike Cao</a>, <a href="/search/physics?searchtype=author&query=Tang%2C+J">Jiannan Tang</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+M">Mingxin Wang</a>, <a href="/search/physics?searchtype=author&query=Tan%2C+Y">Yongqi Tan</a>, <a href="/search/physics?searchtype=author&query=Wu%2C+W">Weihao Wu</a>, <a href="/search/physics?searchtype=author&query=Xu%2C+D">Donglian Xu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.02948v2-abstract-short" style="display: inline;"> TRopIcal DEep-sea Neutrino Telescope (TRIDENT) plans to incorporate silicon photomultipliers (SiPMs) with superior time resolution in addition to photomultiplier tubes (PMTs) into its detection units, namely hybrid Digital Optical Modules (hDOMs), to improve its angular resolution. However, the time resolution significantly degrades for large-area SiPMs due to the large detector capacitance, posin… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.02948v2-abstract-full').style.display = 'inline'; document.getElementById('2403.02948v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.02948v2-abstract-full" style="display: none;"> TRopIcal DEep-sea Neutrino Telescope (TRIDENT) plans to incorporate silicon photomultipliers (SiPMs) with superior time resolution in addition to photomultiplier tubes (PMTs) into its detection units, namely hybrid Digital Optical Modules (hDOMs), to improve its angular resolution. However, the time resolution significantly degrades for large-area SiPMs due to the large detector capacitance, posing significant challenges for the readout electronics of SiPMs in hDOM. We analyzed the influences of series and parallel connections when constructing a large-area SiPM array and designed a series-parallel connection SiPM array with differential output. We also designed a high-speed pre-amplifier based on transformers (MABA-007159) and radio frequency amplifiers (BGA2803), and an analog multi-channel summing circuit based on operational amplifiers (LMH6629). We measured the single photon time resolution (SPTR) of a $4\times4$ SiPM (Hamamatsu S13360-3050PE) array ($12\times12~\mathrm{mm}^2$) of approximately 300 ps FWHM. This front-end readout design enables the large-area SiPM array to achieve high-precision single photon time measurement in one readout channel. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.02948v2-abstract-full').style.display = 'none'; document.getElementById('2403.02948v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Revised version. 12 pages, 10 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.07615">arXiv:2402.07615</a> <span> [<a href="https://arxiv.org/pdf/2402.07615">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> Non-Hermitian bonding and electronic reconfiguration of Ba$_2$ScNbO$_6$ and Ba$_2$LuNbO$_6$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Tan%2C+Y">Yaorui Tan</a>, <a href="/search/physics?searchtype=author&query=Bo%2C+M">Maolin Bo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.07615v1-abstract-short" style="display: inline;"> Despite the extensive applications of perovskite compounds, the precise nature of non-Hermitian bonding in these materials remains poorly understood. In this study, density functional theory calculations were performed to determine the electronic structures of perovskite compounds. In particular, the bandgaps of Ba$_2$ScNbO$_6$ and Ba$_2$LuNbO$_6$ were found to be 2.617 and 2.629 eV, respectively,… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.07615v1-abstract-full').style.display = 'inline'; document.getElementById('2402.07615v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.07615v1-abstract-full" style="display: none;"> Despite the extensive applications of perovskite compounds, the precise nature of non-Hermitian bonding in these materials remains poorly understood. In this study, density functional theory calculations were performed to determine the electronic structures of perovskite compounds. In particular, the bandgaps of Ba$_2$ScNbO$_6$ and Ba$_2$LuNbO$_6$ were found to be 2.617 and 2.629 eV, respectively, and the deformation bond energies and non-Hermitian bonding of these compounds were calculated. The relationship between the non-Hermitian zeros of the O-Nb bond of Ba$_2$ScNbO$_6$ and the non-Hermitian zeros of the Sc-O bond was found to be similar but with varying sizes. Further, in-depth research on the non-Hermitian chemistry verified that precise control of atomic bonding and electron states can be achieved, providing new insights into the study of chemical bonds. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.07615v1-abstract-full').style.display = 'none'; document.getElementById('2402.07615v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.10508">arXiv:2401.10508</a> <span> [<a href="https://arxiv.org/pdf/2401.10508">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Photonic Supercoupling in Silicon Topological Waveguides </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Jia%2C+R">Ridong Jia</a>, <a href="/search/physics?searchtype=author&query=Tan%2C+Y+J">Yi Ji Tan</a>, <a href="/search/physics?searchtype=author&query=Navaratna%2C+N">Nikhil Navaratna</a>, <a href="/search/physics?searchtype=author&query=Kumar%2C+A">Abhishek Kumar</a>, <a href="/search/physics?searchtype=author&query=Singh%2C+R">Ranjan Singh</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.10508v1-abstract-short" style="display: inline;"> Electromagnetic wave coupling between photonic systems relies on the evanescent field typically confined within a single wavelength. Extending evanescent coupling distance requires low refractive index contrast and perfect momentum matching for achieving a large coupling ratio. Here, we report the discovery of photonic supercoupling in a topological valley Hall pair of waveguides, showing a substa… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.10508v1-abstract-full').style.display = 'inline'; document.getElementById('2401.10508v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.10508v1-abstract-full" style="display: none;"> Electromagnetic wave coupling between photonic systems relies on the evanescent field typically confined within a single wavelength. Extending evanescent coupling distance requires low refractive index contrast and perfect momentum matching for achieving a large coupling ratio. Here, we report the discovery of photonic supercoupling in a topological valley Hall pair of waveguides, showing a substantial improvement in coupling efficiency across multiple wavelengths. Experimentally, we realize ultra-high coupling ratios between waveguides through valley-conserved vortex flow of electromagnetic energy, attaining 95% coupling efficiency for separations of up to three wavelengths. This demonstration of photonic supercoupling in topological systems significantly extends the coupling distance between on-chip waveguides and components, paving the path for the development of supercoupled photonic integrated devices, optical sensing, and telecommunications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.10508v1-abstract-full').style.display = 'none'; document.getElementById('2401.10508v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.11228">arXiv:2312.11228</a> <span> [<a href="https://arxiv.org/pdf/2312.11228">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Programmed Internal Reconfigurations in a 3D-Printed Auxetic Metamaterial Enable Fluidic Control for a Vertically Stacked Valve Array </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Supakar%2C+T">Tinku Supakar</a>, <a href="/search/physics?searchtype=author&query=Space%2C+D">David Space</a>, <a href="/search/physics?searchtype=author&query=Meija%2C+S">Sophy Meija</a>, <a href="/search/physics?searchtype=author&query=Tan%2C+R+Y">Rou Yu Tan</a>, <a href="/search/physics?searchtype=author&query=Alston%2C+J+R">Jeffrey R. Alston</a>, <a href="/search/physics?searchtype=author&query=Josephs%2C+E+A">Eric A. Josephs</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.11228v1-abstract-short" style="display: inline;"> Microfluidic valves play a key role within microfluidic systems by regulating fluid flow through distinct microchannels, enabling many advanced applications in medical diagnostics, lab-on-chips, and laboratory automation. While microfluidic systems are often limited to planar structures, 3D printing enables new capabilities to generate complex designs for fluidic circuits with higher densities and… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.11228v1-abstract-full').style.display = 'inline'; document.getElementById('2312.11228v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.11228v1-abstract-full" style="display: none;"> Microfluidic valves play a key role within microfluidic systems by regulating fluid flow through distinct microchannels, enabling many advanced applications in medical diagnostics, lab-on-chips, and laboratory automation. While microfluidic systems are often limited to planar structures, 3D printing enables new capabilities to generate complex designs for fluidic circuits with higher densities and integrated components. However, the control of fluids within 3D structures presents several difficulties, making it challenging to scale effectively and many fluidic devices are still often restricted to quasi-planar structures. Incorporating mechanical metamaterials that exhibit spatially adjustable mechanical properties into microfluidic systems provides an opportunity to address these challenges. Here, we have performed systematic computational and experimental characterization of a modified auxetic structure to generate a modular metamaterial for an active device that allows us to directly regulate flow through integrated, multiplexed fluidic channels "one-at-a-time," in a manner that is highly scalable. We present a design algorithm so that this architecture can be extended to arbitrary geometries, and we expect that by incorporation of mechanical metamaterial designs into 3D printed fluidic systems, which themselves are readily expandible to any complex geometries, will enable new biotechnological and biomedical applications of 3D printed devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.11228v1-abstract-full').style.display = 'none'; document.getElementById('2312.11228v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.08965">arXiv:2312.08965</a> <span> [<a href="https://arxiv.org/pdf/2312.08965">pdf</a>, <a href="https://arxiv.org/format/2312.08965">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Ghostbuster: a phase retrieval diffraction tomography algorithm for cryo-EM </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Yeo%2C+J">Joel Yeo</a>, <a href="/search/physics?searchtype=author&query=Daurer%2C+B+J">Benedikt J. Daurer</a>, <a href="/search/physics?searchtype=author&query=Kimanius%2C+D">Dari Kimanius</a>, <a href="/search/physics?searchtype=author&query=Balakrishnan%2C+D">Deepan Balakrishnan</a>, <a href="/search/physics?searchtype=author&query=Bepler%2C+T">Tristan Bepler</a>, <a href="/search/physics?searchtype=author&query=Tan%2C+Y+Z">Yong Zi Tan</a>, <a href="/search/physics?searchtype=author&query=Loh%2C+N+D">N. Duane Loh</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.08965v4-abstract-short" style="display: inline;"> Ewald sphere curvature correction, which extends beyond the projection approximation, stretches the shallow depth of field in cryo-EM reconstructions of thick particles. Here we show that even for previously assumed thin particles, reconstruction artifacts which we refer to as ghosts can appear. By retrieving the lost phases of the electron exitwaves and accounting for the first Born approximation… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.08965v4-abstract-full').style.display = 'inline'; document.getElementById('2312.08965v4-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.08965v4-abstract-full" style="display: none;"> Ewald sphere curvature correction, which extends beyond the projection approximation, stretches the shallow depth of field in cryo-EM reconstructions of thick particles. Here we show that even for previously assumed thin particles, reconstruction artifacts which we refer to as ghosts can appear. By retrieving the lost phases of the electron exitwaves and accounting for the first Born approximation scattering within the particle, we show that these ghosts can be effectively eliminated. Our simulations demonstrate how such ghostbusting can improve reconstructions as compared to existing state-of-the-art software. Like ptychographic cryo-EM, our Ghostbuster algorithm uses phase retrieval to improve reconstructions, but unlike the former, we do not need to modify the existing data acquisition pipelines. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.08965v4-abstract-full').style.display = 'none'; document.getElementById('2312.08965v4-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 11 figures. Submitted to IUCrJ</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.15387">arXiv:2311.15387</a> <span> [<a href="https://arxiv.org/pdf/2311.15387">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acsphotonics.3c01869">10.1021/acsphotonics.3c01869 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Micro-transfer-printed Thin film lithium niobate (TFLN)-on-Silicon Ring Modulator </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Tan%2C+Y">Ying Tan</a>, <a href="/search/physics?searchtype=author&query=Niu%2C+S">Shengpu Niu</a>, <a href="/search/physics?searchtype=author&query=Billet%2C+M">Maximilien Billet</a>, <a href="/search/physics?searchtype=author&query=Singh%2C+N">Nishant Singh</a>, <a href="/search/physics?searchtype=author&query=Niels%2C+M">Margot Niels</a>, <a href="/search/physics?searchtype=author&query=Vanackere%2C+T">Tom Vanackere</a>, <a href="/search/physics?searchtype=author&query=Van+Kerrebrouck%2C+J">Joris Van Kerrebrouck</a>, <a href="/search/physics?searchtype=author&query=Roelkens%2C+G">Gunther Roelkens</a>, <a href="/search/physics?searchtype=author&query=Kuyken%2C+B">Bart Kuyken</a>, <a href="/search/physics?searchtype=author&query=Van+Thourhout%2C+D">Dries Van Thourhout</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.15387v1-abstract-short" style="display: inline;"> Thin-film lithium niobate (TFLN) has a proven record of building high-performance electro-optical (EO) modulators. However, its CMOS incompatibility and the need for non-standard etching have consistently posed challenges in terms of scalability, standardization, and the complexity of integration. Heterogeneous integration comes to solve this key challenge. Micro-transfer printing of thin-film lit… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.15387v1-abstract-full').style.display = 'inline'; document.getElementById('2311.15387v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.15387v1-abstract-full" style="display: none;"> Thin-film lithium niobate (TFLN) has a proven record of building high-performance electro-optical (EO) modulators. However, its CMOS incompatibility and the need for non-standard etching have consistently posed challenges in terms of scalability, standardization, and the complexity of integration. Heterogeneous integration comes to solve this key challenge. Micro-transfer printing of thin-film lithium niobate brings TFLN to well-established silicon ecosystem by easy "pick and place", which showcases immense potential in constructing high-density, cost-effective, highly versatile heterogeneous integrated circuits. Here, we demonstrated for the first time a micro-transfer-printed thin film lithium niobate (TFLN)-on-silicon ring modulator, which is an important step towards dense integration of performant lithium niobate modulators with compact and scalable silicon circuity. The presented device exhibits an insertion loss of -1.5dB, extinction ratio of -37dB, electro-optical bandwidth of 16GHz and modulation rates up to 45Gps. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.15387v1-abstract-full').style.display = 'none'; document.getElementById('2311.15387v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 figures,10 pages. ACS Photonics 2024</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> DOI: 10.1021/acsphotonics.3c01869 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.07581">arXiv:2311.07581</a> <span> [<a href="https://arxiv.org/pdf/2311.07581">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Crown ether decorated silicon photonics for safeguarding against lead poisoning </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Ranno%2C+L">Luigi Ranno</a>, <a href="/search/physics?searchtype=author&query=Tan%2C+Y+Z">Yong Zen Tan</a>, <a href="/search/physics?searchtype=author&query=Ong%2C+C+S">Chi Siang Ong</a>, <a href="/search/physics?searchtype=author&query=Guo%2C+X">Xin Guo</a>, <a href="/search/physics?searchtype=author&query=Koo%2C+K+N">Khong Nee Koo</a>, <a href="/search/physics?searchtype=author&query=Li%2C+X">Xiang Li</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+W">Wanjun Wang</a>, <a href="/search/physics?searchtype=author&query=Serna%2C+S">Samuel Serna</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+C">Chongyang Liu</a>, <a href="/search/physics?searchtype=author&query=Rusli"> Rusli</a>, <a href="/search/physics?searchtype=author&query=Littlejohns%2C+C+G">Callum G. Littlejohns</a>, <a href="/search/physics?searchtype=author&query=Reed%2C+G+T">Graham T. Reed</a>, <a href="/search/physics?searchtype=author&query=Hu%2C+J">Juejun Hu</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+H">Hong Wang</a>, <a href="/search/physics?searchtype=author&query=Sia%2C+J+X+B">Jia Xu Brian Sia</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.07581v1-abstract-short" style="display: inline;"> Lead (Pb2+) toxification in society is one of the most concerning public health crisis that remains unaddressed. The exposure to Pb2+ poisoning leads to a multitude of enduring health issues, even at the part-per-billion scale (ppb). Yet, public action dwarfs its impact. Pb2+ poisoning is estimated to account for 1 million deaths per year globally, which is in addition to its chronic impact on chi… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.07581v1-abstract-full').style.display = 'inline'; document.getElementById('2311.07581v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.07581v1-abstract-full" style="display: none;"> Lead (Pb2+) toxification in society is one of the most concerning public health crisis that remains unaddressed. The exposure to Pb2+ poisoning leads to a multitude of enduring health issues, even at the part-per-billion scale (ppb). Yet, public action dwarfs its impact. Pb2+ poisoning is estimated to account for 1 million deaths per year globally, which is in addition to its chronic impact on children. With their ring-shaped cavities, crown ethers are uniquely capable of selectively binding to specific ions. In this work, for the first time, the synergistic integration of highly-scalable silicon photonics, with crown ether amine conjugation via Fischer esterification in an environmentally-friendly fashion is demonstrated. This realises a photonic platform that enables the in-situ, highly-selective and quantitative detection of various ions. The development dispels the existing notion that Fischer esterification is restricted to organic compounds, laying the ground for subsequent amine conjugation for various crown ethers. In this work, the platform is engineered for Pb2+ detection, demonstrating a large dynamic detection range of 1 - 262000 ppb with high selectivity against a wide range of relevant ions. These results indicate the potential for the pervasive implementation of the technology to safeguard against ubiquitous lead poisoning in our society. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.07581v1-abstract-full').style.display = 'none'; document.getElementById('2311.07581v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.00387">arXiv:2311.00387</a> <span> </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> </div> <p class="title is-5 mathjax"> Mapping electrostatic potential in electrolyte solution </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Huang%2C+B">Bo Huang</a>, <a href="/search/physics?searchtype=author&query=Yang%2C+Y">Yining Yang</a>, <a href="/search/physics?searchtype=author&query=Han%2C+R">Ruinong Han</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+K">Keke Chen</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+Z">Zhiyuan Wang</a>, <a href="/search/physics?searchtype=author&query=Yun%2C+L">Longteng Yun</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+Y">Yian Wang</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+H">Haowei Chen</a>, <a href="/search/physics?searchtype=author&query=Du%2C+Y">Yingchao Du</a>, <a href="/search/physics?searchtype=author&query=Hao%2C+Y">Yuxia Hao</a>, <a href="/search/physics?searchtype=author&query=Lv%2C+P">Peng Lv</a>, <a href="/search/physics?searchtype=author&query=Ma%2C+H">Haoran Ma</a>, <a href="/search/physics?searchtype=author&query=Ji%2C+P">Pengju Ji</a>, <a href="/search/physics?searchtype=author&query=Tan%2C+Y">Yuemei Tan</a>, <a href="/search/physics?searchtype=author&query=Zheng%2C+L">Lianmin Zheng</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+L">Lihong Liu</a>, <a href="/search/physics?searchtype=author&query=Li%2C+R">Renkai Li</a>, <a href="/search/physics?searchtype=author&query=Yang%2C+J">Jie Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.00387v2-abstract-short" style="display: inline;"> Mapping the electrostatic potential (ESP) distribution around ions in electrolyte solution is crucial for the establishment of a microscopic understanding of electrolyte solution properties. For solutions in the bulk phase, it has not been possible to measure the ESP distribution on Angstrom scale. Here we show that liquid electron scattering experiment using state-of-the-art relativistic electron… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.00387v2-abstract-full').style.display = 'inline'; document.getElementById('2311.00387v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.00387v2-abstract-full" style="display: none;"> Mapping the electrostatic potential (ESP) distribution around ions in electrolyte solution is crucial for the establishment of a microscopic understanding of electrolyte solution properties. For solutions in the bulk phase, it has not been possible to measure the ESP distribution on Angstrom scale. Here we show that liquid electron scattering experiment using state-of-the-art relativistic electron beam can be used to measure the Debye screening length of aqueous LiCl, KCl, and KI solutions across a wide range of concentrations. We observe that the Debye screening length is long-ranged at low concentration and short-ranged at high concentration, providing key insight into the decades-long debate over whether the impact of ions in water is long-ranged or short-ranged. In addition, we show that the measured ESP can be used to retrieve the non-local dielectric function of electrolyte solution, which can serve as a promising route to investigate the electrostatic origin of special ion effects. Our observations show that, interaction, as one of the two fundamental perspectives for understanding electrolyte solution, can provide much richer information than structure. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.00387v2-abstract-full').style.display = 'none'; document.getElementById('2311.00387v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">The small-angle signal in Fig. 2 C-H is highly likely to be an experimental artifact, due to that the electron beam is placed too close to the edge of the liquid sheet. This artifact invalidates the main conclusion of the paper</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.18380">arXiv:2310.18380</a> <span> [<a href="https://arxiv.org/pdf/2310.18380">pdf</a>, <a href="https://arxiv.org/format/2310.18380">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Experimental demonstration of picometer level signal extraction with time-delay interferometry technique </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Xu%2C+M">Mingyang Xu</a>, <a href="/search/physics?searchtype=author&query=Tan%2C+Y">Yujie Tan</a>, <a href="/search/physics?searchtype=author&query=Liang%2C+Y">Yurong Liang</a>, <a href="/search/physics?searchtype=author&query=Zhi%2C+J">Jiawen Zhi</a>, <a href="/search/physics?searchtype=author&query=Guo%2C+X">Xiaoyang Guo</a>, <a href="/search/physics?searchtype=author&query=Luo%2C+D">Dan Luo</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+P">Panpan Wang</a>, <a href="/search/physics?searchtype=author&query=Wu%2C+H">Hanzhong Wu</a>, <a href="/search/physics?searchtype=author&query=Shao%2C+C">Chenggang Shao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.18380v1-abstract-short" style="display: inline;"> In this work, we have built an experimental setup to simulate the clock noise transmission with two spacecrafts and two optical links, and further demonstrated the extraction of picometer level signal drowned by the large laser frequency noise and clock noise with the data post-processing method. Laser frequency noise is almost eliminated by using the idea of time-delay interferometry (TDI) to con… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.18380v1-abstract-full').style.display = 'inline'; document.getElementById('2310.18380v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.18380v1-abstract-full" style="display: none;"> In this work, we have built an experimental setup to simulate the clock noise transmission with two spacecrafts and two optical links, and further demonstrated the extraction of picometer level signal drowned by the large laser frequency noise and clock noise with the data post-processing method. Laser frequency noise is almost eliminated by using the idea of time-delay interferometry (TDI) to construct an equal arm interferometer. Clock asynchronism and clock jitter noise are significantly suppressed by laser sideband transmitting the clock noise using an electro-optic modulator (EOM). Experimental results show a reduction in laser frequency noise by approximately 10^5 and clock noise by 10^2, recovering a weak displacement signal with an average amplitude about 60 picometer and period 1 second. This work has achieved the principle verification of the noise reduction function of TDI technique to some extent, serving the data processing research of space-borne gravitational wave detection. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.18380v1-abstract-full').style.display = 'none'; document.getElementById('2310.18380v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.18379">arXiv:2310.18379</a> <span> [<a href="https://arxiv.org/pdf/2310.18379">pdf</a>, <a href="https://arxiv.org/format/2310.18379">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Influence of EOM sideband modulation noise on space-borne gravitational wave detection </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Xu%2C+M">Mingyang Xu</a>, <a href="/search/physics?searchtype=author&query=Tan%2C+Y">Yujie Tan</a>, <a href="/search/physics?searchtype=author&query=Wu%2C+H">Hanzhong Wu</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+P">Panpan Wang</a>, <a href="/search/physics?searchtype=author&query=Yan%2C+H">Hao Yan</a>, <a href="/search/physics?searchtype=author&query=Liang%2C+Y">Yurong Liang</a>, <a href="/search/physics?searchtype=author&query=Shao%2C+C">Chenggang Shao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.18379v1-abstract-short" style="display: inline;"> Clock noise is one of the dominant noises in the space-borne gravitational wave (GW) detection. To suppress this noise, the clock noise-calibrated time-delay-interferometry (TDI) technique is proposed. In this technique, an inter-spacecraft clock tone transfer chain is necessary to obtain the comparison information of the clock noises in two spacecraft, during which an electro-optic-modulator (EOM… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.18379v1-abstract-full').style.display = 'inline'; document.getElementById('2310.18379v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.18379v1-abstract-full" style="display: none;"> Clock noise is one of the dominant noises in the space-borne gravitational wave (GW) detection. To suppress this noise, the clock noise-calibrated time-delay-interferometry (TDI) technique is proposed. In this technique, an inter-spacecraft clock tone transfer chain is necessary to obtain the comparison information of the clock noises in two spacecraft, during which an electro-optic-modulator (EOM) is critical and used to modulate the clock noise to the laser phase. Since the EOM sideband modulation process introduces modulation noise, it is significant to put forward the corresponding requirements and assess whether the commercial EOM meets. In this work, based on the typical Michelson TDI algorithm and the fundamental noise requirement of GW detectors, the analytic expression of the modulation noise requirement is strictly derived, which relax the component indicator need compared to the existing commonly used rough assessments. Furthermore, a commercial EOM (iXblue-NIR-10 GHz) is tested, and the experimental results show that it can meet the requirement of the typical GW detection mission LISA in whole scientific bandwidth by taking the optimal combination of the data stream. Even when the displacement measurement accuracy of LISA is improved to 1 pm/ $\mathrm{Hz^{1/2}}$ in the future, it still meets the demand. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.18379v1-abstract-full').style.display = 'none'; document.getElementById('2310.18379v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.16852">arXiv:2310.16852</a> <span> [<a href="https://arxiv.org/pdf/2310.16852">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Six-degrees-of-freedom test mass readout via optical phase-locking heterodyne interferometry </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Xu%2C+X">Xin Xu</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+J">Jinsong Liu</a>, <a href="/search/physics?searchtype=author&query=Mu%2C+H">Henglin Mu</a>, <a href="/search/physics?searchtype=author&query=Li%2C+Y">Yan Li</a>, <a href="/search/physics?searchtype=author&query=Tan%2C+Y">Yidong Tan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.16852v1-abstract-short" style="display: inline;"> Accurate position and posture measurements of the freely-falling test mass are crucial for the success of spaceborne gravitational wave detection missions. This paper presents a novel laboratory-developed test mass motion readout that utilizes quadrant photodetectors to measure the translation and tilt of a test mass. Departing from conventional methods like Zeeman effect or AOM frequency shift mo… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.16852v1-abstract-full').style.display = 'inline'; document.getElementById('2310.16852v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.16852v1-abstract-full" style="display: none;"> Accurate position and posture measurements of the freely-falling test mass are crucial for the success of spaceborne gravitational wave detection missions. This paper presents a novel laboratory-developed test mass motion readout that utilizes quadrant photodetectors to measure the translation and tilt of a test mass. Departing from conventional methods like Zeeman effect or AOM frequency shift modulation, the readout system employs the phase locking of two lasers to generate the dual-frequency heterodyne source. Notably, the out-of-loop sensitivity of the phase locking reaches below 30 pm/Hz1/2 within the frequency band of 1 mHz and 10 Hz. The system comprises three measurement interferometers and one reference interferometer, featuring a symmetric design that enables measurements of up to six degrees of freedom based on polarization-multiplexing and differential wavefront sensing. Ground-simulated experimental results demonstrate that the proposed system has achieved a measurement sensitivity of 4 pm/Hz1/2 and 2 nrad/Hz1/2 at 1 Hz, a resolution of 5 nm and 0.1 urad, a range of 200 um and 600 urad, respectively. These findings showcase the system's potential as an alternative method for precisely monitoring the motion of test masses in spaceborne gravitational wave detection missions and other applications requiring accurate positioning and multi-degrees-of-freedom sensing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.16852v1-abstract-full').style.display = 'none'; document.getElementById('2310.16852v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 10 figures. arXiv admin note: substantial text overlap with arXiv:2207.06420</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.04989">arXiv:2309.04989</a> <span> [<a href="https://arxiv.org/pdf/2309.04989">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Classical Physics">physics.class-ph</span> </div> </div> <p class="title is-5 mathjax"> Non-zero Integral Spin of Acoustic Vortices and Spin-orbit Interaction in Longitudinal Acoustics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Wang%2C+W">Wei Wang</a>, <a href="/search/physics?searchtype=author&query=Tan%2C+Y">Yang Tan</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+J">Jingjing Liu</a>, <a href="/search/physics?searchtype=author&query=Liang%2C+B">Bin Liang</a>, <a href="/search/physics?searchtype=author&query=Cheng%2C+J">Jianchun Cheng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.04989v1-abstract-short" style="display: inline;"> Spin and orbital angular momenta (AM) are of fundamental interest in wave physics. Acoustic wave, as a typical longitudinal wave, has been well studied in terms of orbital AM, but still considered unable to carry non-zero integral spin AM or spin-orbital interaction in homogeneous media due to its spin-0 nature. Here we give the first self-consistent analytical calculations of spin, orbital and to… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.04989v1-abstract-full').style.display = 'inline'; document.getElementById('2309.04989v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.04989v1-abstract-full" style="display: none;"> Spin and orbital angular momenta (AM) are of fundamental interest in wave physics. Acoustic wave, as a typical longitudinal wave, has been well studied in terms of orbital AM, but still considered unable to carry non-zero integral spin AM or spin-orbital interaction in homogeneous media due to its spin-0 nature. Here we give the first self-consistent analytical calculations of spin, orbital and total AM of guided vortices under different boundary conditions, revealing that vortex field can carry non-zero integral spin AM. We also introduce for acoustic waves the canonical-Minkowski and kinetic-Abraham AM, which has aroused long-lasting debate in optics, and prove that only the former is conserved with the corresponding symmetries. Furthermore, we present the theoretical and experimental observation of the spin-orbit interaction of vortices in longitudinal acoustics, which is thought beyond attainable in longitudinal waves in the absence of spin degree of freedom. Our work provides a solid platform for future studies of the spin and orbital AM of guided acoustic waves and may open up a new dimension for acoustic vortex-based applications such as underwater communications and object manipulations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.04989v1-abstract-full').style.display = 'none'; document.getElementById('2309.04989v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.14973">arXiv:2308.14973</a> <span> [<a href="https://arxiv.org/pdf/2308.14973">pdf</a>, <a href="https://arxiv.org/format/2308.14973">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> </div> </div> <p class="title is-5 mathjax"> Revisitation of algebraic approach for time delay interferometry </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Huang%2C+W">Weisheng Huang</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+P">Pan-Pan Wang</a>, <a href="/search/physics?searchtype=author&query=Tan%2C+Y">Yu-Jie Tan</a>, <a href="/search/physics?searchtype=author&query=Shao%2C+C">Cheng-Gang Shao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.14973v1-abstract-short" style="display: inline;"> Time Delay Interferometry (TDI) is often utilized in the data pre-processing of space-based gravitational wave detectors, primarily for suppressing laser frequency noise. About twenty years ago, assuming armlengths remain constant over time, researchers presented comprehensive mathematical descriptions for the first-generation and modified first-generation TDI. However, maintaining a steady distan… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.14973v1-abstract-full').style.display = 'inline'; document.getElementById('2308.14973v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.14973v1-abstract-full" style="display: none;"> Time Delay Interferometry (TDI) is often utilized in the data pre-processing of space-based gravitational wave detectors, primarily for suppressing laser frequency noise. About twenty years ago, assuming armlengths remain constant over time, researchers presented comprehensive mathematical descriptions for the first-generation and modified first-generation TDI. However, maintaining a steady distance between satellites is pragmatically challenging. Hence, the operator equation that neutralizes laser frequency noise, though provided, was deemed difficult to resolve. In this paper, we solve this equation in the context of a non-static scenario where distances between spacecrafts vary over time. Surprisingly, contrary to what previous researchers thought, the study reveals that the equation has only the zero solution, which suggests that no nonzero TDI combination can entirely suppress laser frequency noise under time-varying armlengths. This necessitates the persistent search for second-generation TDI combinations through alternative methods besides directly solving the operator equation. We establish the connections between TDI combinations of different generations and propose a search strategy for finding higher-generation TDI combinations by using generators of lower-generation TDI. The findings contribute to the ongoing discussion on gravitational waves and provide a novel insight into the hurdles faced in space-based gravitational wave detection. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.14973v1-abstract-full').style.display = 'none'; document.getElementById('2308.14973v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">accepted by Physical Review D</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.10450">arXiv:2307.10450</a> <span> [<a href="https://arxiv.org/pdf/2307.10450">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> </div> </div> <p class="title is-5 mathjax"> Electron Cloud Measurements in Fermilab Booster </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Wijethunga%2C+S+A+K">S. A. K. Wijethunga</a>, <a href="/search/physics?searchtype=author&query=Eddy%2C+N">N. Eddy</a>, <a href="/search/physics?searchtype=author&query=Eldred%2C+J">J. Eldred</a>, <a href="/search/physics?searchtype=author&query=Tan%2C+C+Y">C. Y. Tan</a>, <a href="/search/physics?searchtype=author&query=Fellenz%2C+B">B. Fellenz</a>, <a href="/search/physics?searchtype=author&query=Pozdeyev%2C+E">E. Pozdeyev</a>, <a href="/search/physics?searchtype=author&query=Sharankova%2C+R+V">R. V. Sharankova</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.10450v1-abstract-short" style="display: inline;"> Fermilab Booster synchrotron requires an intensity upgrade from 4.5x1012 to 6.5x1012 protons per pulse as a part of Fermilab's Proton Improvement Plan-II (PIP-II). One of the factors which may limit the high-intensity performance is the fast transverse instabilities caused by electron cloud effects. According to the experience in the Recycler, the electron cloud gradually builds up over multiple t… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.10450v1-abstract-full').style.display = 'inline'; document.getElementById('2307.10450v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.10450v1-abstract-full" style="display: none;"> Fermilab Booster synchrotron requires an intensity upgrade from 4.5x1012 to 6.5x1012 protons per pulse as a part of Fermilab's Proton Improvement Plan-II (PIP-II). One of the factors which may limit the high-intensity performance is the fast transverse instabilities caused by electron cloud effects. According to the experience in the Recycler, the electron cloud gradually builds up over multiple turns inside the combined function magnets and can reach final intensities orders of magnitude greater than in a pure dipole. Since the Booster synchrotron also incorporates combined function magnets, it is important to measure the presence of electron cloud. The presence or apparent absence of the electron cloud was investigated using two different methods: measuring bunch-by-bunch tune shift by changing the bunch train structure at different intensities and propagating a microwave carrier signal through the beampipe and analyzing the phase modulation of the signal. This paper presents the results of the two methods and corresponding simulation results conducted using PyECLOUD software. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.10450v1-abstract-full').style.display = 'none'; document.getElementById('2307.10450v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">International Particle Accelerator Conference 2023</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-CONF-23-165-AD-PIP2 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.08035">arXiv:2307.08035</a> <span> [<a href="https://arxiv.org/pdf/2307.08035">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> Electrostatic shielding effect and Binding energy shift of MoS2, MoSe2 and MoTe2 materials </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Tan%2C+Y">Yaorui Tan</a>, <a href="/search/physics?searchtype=author&query=Bo%2C+M">Maolin Bo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.08035v4-abstract-short" style="display: inline;"> In this paper, the electronic structure and bond properties of MoS2, MoSe2 and MoTe2 are studied. Density functional theory (DFT) calculates combined with the binding energy and bond-charge (BBC) model to obtain electronic structure, binding energy shift and bond properties. It is found that electrostatic shielding by electron exchange is the main cause of density fluctuation. A method for calcula… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.08035v4-abstract-full').style.display = 'inline'; document.getElementById('2307.08035v4-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.08035v4-abstract-full" style="display: none;"> In this paper, the electronic structure and bond properties of MoS2, MoSe2 and MoTe2 are studied. Density functional theory (DFT) calculates combined with the binding energy and bond-charge (BBC) model to obtain electronic structure, binding energy shift and bond properties. It is found that electrostatic shielding by electron exchange is the main cause of density fluctuation. A method for calculating the density of Green's function with energy level shift is established. It provides new methods and ideas for the further study of the binding energy, bond states and electronic properties of nanomaterials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.08035v4-abstract-full').style.display = 'none'; document.getElementById('2307.08035v4-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.07364">arXiv:2307.07364</a> <span> [<a href="https://arxiv.org/pdf/2307.07364">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Single-sensor and real-time ultrasonic imaging using an AI-driven disordered metasurface </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Wang%2C+W">Wei Wang</a>, <a href="/search/physics?searchtype=author&query=Hu%2C+J">Jie Hu</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+J">Jingjing Liu</a>, <a href="/search/physics?searchtype=author&query=Tan%2C+Y">Yang Tan</a>, <a href="/search/physics?searchtype=author&query=Yang%2C+J">Jing Yang</a>, <a href="/search/physics?searchtype=author&query=Liang%2C+B">Bin Liang</a>, <a href="/search/physics?searchtype=author&query=Christensen%2C+J">Johan Christensen</a>, <a href="/search/physics?searchtype=author&query=Cheng%2C+J">Jianchun Cheng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.07364v1-abstract-short" style="display: inline;"> Non-destructive testing and medical diagnostic techniques using ultrasound has become indispensable in evaluating the state of materials or imaging the internal human body, respectively. To conduct spatially resolved high-quality observations, conventionally, sophisticated phased arrays are used both at the emitting and receiving ends of the setup. In comparison, single-sensor imaging techniques o… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.07364v1-abstract-full').style.display = 'inline'; document.getElementById('2307.07364v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.07364v1-abstract-full" style="display: none;"> Non-destructive testing and medical diagnostic techniques using ultrasound has become indispensable in evaluating the state of materials or imaging the internal human body, respectively. To conduct spatially resolved high-quality observations, conventionally, sophisticated phased arrays are used both at the emitting and receiving ends of the setup. In comparison, single-sensor imaging techniques offer significant benefits including compact physical dimensions and reduced manufacturing expenses. However, recent advances such as compressive sensing have shown that this improvement comes at the cost of additional time-consuming dynamic spatial scanning or multi-mode mask switching, which severely hinders the quest for real-time imaging. Consequently, real-time single-sensor imaging, at low cost and simple design, still represents a demanding and largely unresolved challenge till this day. Here, we bestow on ultrasonic metasurface with both disorder and artificial intelligence (AI). The former ensures strong dispersion and highly complex scattering to encode the spatial information into frequency spectra at an arbitrary location, while the latter is used to decode instantaneously the amplitude and spectral component of the sample under investigation. Thus, thanks to this symbiosis, we demonstrate that a single fixed sensor suffices to recognize complex ultrasonic objects through the random scattered field from an unpretentious metasurface, which enables real-time and low-cost imaging, easily extendable to 3D. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.07364v1-abstract-full').style.display = 'none'; document.getElementById('2307.07364v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.16002">arXiv:2306.16002</a> <span> [<a href="https://arxiv.org/pdf/2306.16002">pdf</a>, <a href="https://arxiv.org/format/2306.16002">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Medical Physics">physics.med-ph</span> </div> </div> <p class="title is-5 mathjax"> Super resolution dual-layer CBCT imaging with model-guided deep learning </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Zhu%2C+J">Jiongtao Zhu</a>, <a href="/search/physics?searchtype=author&query=Su%2C+T">Ting Su</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+X">Xin Zhang</a>, <a href="/search/physics?searchtype=author&query=Cui%2C+H">Han Cui</a>, <a href="/search/physics?searchtype=author&query=Tan%2C+Y">Yuhang Tan</a>, <a href="/search/physics?searchtype=author&query=Zheng%2C+H">Hairong Zheng</a>, <a href="/search/physics?searchtype=author&query=Liang%2C+D">Dong Liang</a>, <a href="/search/physics?searchtype=author&query=Guo%2C+J">Jinchuan Guo</a>, <a href="/search/physics?searchtype=author&query=Ge%2C+Y">Yongshuai Ge</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.16002v1-abstract-short" style="display: inline;"> Objective: This study aims at investigating a novel super resolution CBCT imaging technique with the dual-layer flat panel detector (DL-FPD). Approach: In DL-FPD based CBCT imaging, the low-energy and high-energy projections acquired from the top and bottom detector layers contain intrinsically mismatched spatial information, from which super resolution CBCT images can be generated. To explain, a… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.16002v1-abstract-full').style.display = 'inline'; document.getElementById('2306.16002v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.16002v1-abstract-full" style="display: none;"> Objective: This study aims at investigating a novel super resolution CBCT imaging technique with the dual-layer flat panel detector (DL-FPD). Approach: In DL-FPD based CBCT imaging, the low-energy and high-energy projections acquired from the top and bottom detector layers contain intrinsically mismatched spatial information, from which super resolution CBCT images can be generated. To explain, a simple mathematical model is established according to the signal formation procedure in DL-FPD. Next, a dedicated recurrent neural network (RNN), named as suRi-Net, is designed by referring to the above imaging model to retrieve the high resolution dual-energy information. Different phantom experiments are conducted to validate the performance of this newly developed super resolution CBCT imaging method. Main Results: Results show that the proposed suRi-Net can retrieve high spatial resolution information accurately from the low-energy and high-energy projections having lower spatial resolution. Quantitatively, the spatial resolution of the reconstructed CBCT images of the top and bottom detector layers is increased by about 45% and 54%, respectively. Significance: In future, suRi-Net provides a new approach to achieve high spatial resolution dual-energy imaging in DL-FPD based CBCT systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.16002v1-abstract-full').style.display = 'none'; document.getElementById('2306.16002v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.06552">arXiv:2306.06552</a> <span> [<a href="https://arxiv.org/pdf/2306.06552">pdf</a>, <a href="https://arxiv.org/format/2306.06552">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Physics and Society">physics.soc-ph</span> </div> </div> <p class="title is-5 mathjax"> School Bullying Results in Poor Psychological Conditions: Evidence from a Survey of 95,545 Subjects </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Zhao%2C+N">Na Zhao</a>, <a href="/search/physics?searchtype=author&query=Yang%2C+S">Shenglong Yang</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+Q">Qiangjian Zhang</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+J">Jian Wang</a>, <a href="/search/physics?searchtype=author&query=Xie%2C+W">Wei Xie</a>, <a href="/search/physics?searchtype=author&query=Tan%2C+Y">Youguo Tan</a>, <a href="/search/physics?searchtype=author&query=Zhou%2C+T">Tao Zhou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.06552v1-abstract-short" style="display: inline;"> To investigate whether bullying and psychological conditions are correlated, this study analyzed a survey of primary and secondary school students from Zigong City, Sichuan Province. A total of 95,545 students completed a personal information questionnaire, the Multidimensional Peer-Victimization Scale (MPVS), and eight other scales pertaining to various psychological problems. The data showed tha… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.06552v1-abstract-full').style.display = 'inline'; document.getElementById('2306.06552v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.06552v1-abstract-full" style="display: none;"> To investigate whether bullying and psychological conditions are correlated, this study analyzed a survey of primary and secondary school students from Zigong City, Sichuan Province. A total of 95,545 students completed a personal information questionnaire, the Multidimensional Peer-Victimization Scale (MPVS), and eight other scales pertaining to various psychological problems. The data showed that 68,315 (71.5\%) participants experienced school bullying at varying degrees, indicating the prevalence of bullying among adolescents. The chi-square tests revealed a strong correlation between school bullying and psychological conditions. This correlation was further explored through multivariate logistic regression, showing that students who experienced mild bullying had a 3.10 times higher probability of emotional and behavioral problems, 4.06 times higher probability of experiencing prodromal symptoms of mental illness, 4.72 times higher probability of anxiety, 3.28 times higher probability of developing post-traumatic stress disorder (PTSD) , 4.07 times higher probability of poor sleep quality, 3.13 times higher probability of internet addiction, 2.18 times higher probability of poor mental health, and 3.64 times higher probability of depression than students who did not experience bullying. The corresponding probabilities for students who experienced severe bullying were 11.35, 17.35, 18.52, 12.59, 11.67, 12.03, 4.64, and 5.34 times higher, respectively. In conclusion, school bullying and psychological conditions are significantly correlated among primary and secondary school students, and the more severe the bullying, the higher the probability to suffer from psychological problems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.06552v1-abstract-full').style.display = 'none'; document.getElementById('2306.06552v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 1 figure, 7 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.14895">arXiv:2305.14895</a> <span> [<a href="https://arxiv.org/pdf/2305.14895">pdf</a>, <a href="https://arxiv.org/format/2305.14895">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1674-4527/acd593">10.1088/1674-4527/acd593 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Lobster Eye Imager for Astronomy Onboard the SATech-01 Satellite </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Ling%2C+Z+X">Z. X. Ling</a>, <a href="/search/physics?searchtype=author&query=Sun%2C+X+J">X. J. Sun</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+C">C. Zhang</a>, <a href="/search/physics?searchtype=author&query=Sun%2C+S+L">S. L. Sun</a>, <a href="/search/physics?searchtype=author&query=Jin%2C+G">G. Jin</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+S+N">S. N. Zhang</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+X+F">X. F. Zhang</a>, <a href="/search/physics?searchtype=author&query=Chang%2C+J+B">J. B. Chang</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+F+S">F. S. Chen</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+Y+F">Y. F. Chen</a>, <a href="/search/physics?searchtype=author&query=Cheng%2C+Z+W">Z. W. Cheng</a>, <a href="/search/physics?searchtype=author&query=Fu%2C+W">W. Fu</a>, <a href="/search/physics?searchtype=author&query=Han%2C+Y+X">Y. X. Han</a>, <a href="/search/physics?searchtype=author&query=Li%2C+H">H. Li</a>, <a href="/search/physics?searchtype=author&query=Li%2C+J+F">J. F. Li</a>, <a href="/search/physics?searchtype=author&query=Li%2C+Y">Y. Li</a>, <a href="/search/physics?searchtype=author&query=Li%2C+Z+D">Z. D. Li</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+P+R">P. R. Liu</a>, <a href="/search/physics?searchtype=author&query=Lv%2C+Y+H">Y. H. Lv</a>, <a href="/search/physics?searchtype=author&query=Ma%2C+X+H">X. H. Ma</a>, <a href="/search/physics?searchtype=author&query=Tang%2C+Y+J">Y. J. Tang</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+C+B">C. B. Wang</a>, <a href="/search/physics?searchtype=author&query=Xie%2C+R+J">R. J. Xie</a>, <a href="/search/physics?searchtype=author&query=Xue%2C+Y+L">Y. L. Xue</a>, <a href="/search/physics?searchtype=author&query=Yan%2C+A+L">A. L. Yan</a> , et al. (101 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.14895v1-abstract-short" style="display: inline;"> The Lobster Eye Imager for Astronomy (LEIA), a pathfinder of the Wide-field X-ray Telescope of the Einstein Probe (EP) mission, was successfully launched onboard the SATech-01 satellite of the Chinese Academy of Sciences on 27 July 2022. In this paper, we introduce the design and on-ground test results of the LEIA instrument. Using state-of-the-art Micro-Pore Optics (MPO), a wide field-of-view (Fo… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.14895v1-abstract-full').style.display = 'inline'; document.getElementById('2305.14895v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.14895v1-abstract-full" style="display: none;"> The Lobster Eye Imager for Astronomy (LEIA), a pathfinder of the Wide-field X-ray Telescope of the Einstein Probe (EP) mission, was successfully launched onboard the SATech-01 satellite of the Chinese Academy of Sciences on 27 July 2022. In this paper, we introduce the design and on-ground test results of the LEIA instrument. Using state-of-the-art Micro-Pore Optics (MPO), a wide field-of-view (FoV) of 346 square degrees (18.6 degrees * 18.6 degrees) of the X-ray imager is realized. An optical assembly composed of 36 MPO chips is used to focus incident X-ray photons, and four large-format complementary metal-oxide semiconductor (CMOS) sensors, each of 6 cm * 6 cm, are used as the focal plane detectors. The instrument has an angular resolution of 4 - 8 arcmin (in FWHM) for the central focal spot of the point spread function, and an effective area of 2 - 3 cm2 at 1 keV in essentially all the directions within the field of view. The detection passband is 0.5 - 4 keV in the soft X-rays and the sensitivity is 2 - 3 * 10-11 erg s-1 cm-2 (about 1 mini-Crab) at 1,000 second observation. The total weight of LEIA is 56 kg and the power is 85 W. The satellite, with a design lifetime of 2 years, operates in a Sun-synchronous orbit of 500 km with an orbital period of 95 minutes. LEIA is paving the way for future missions by verifying in flight the technologies of both novel focusing imaging optics and CMOS sensors for X-ray observation, and by optimizing the working setups of the instrumental parameters. In addition, LEIA is able to carry out scientific observations to find new transients and to monitor known sources in the soft X-ray band, albeit limited useful observing time available. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.14895v1-abstract-full').style.display = 'none'; document.getElementById('2305.14895v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted by RAA</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.10515">arXiv:2305.10515</a> <span> [<a href="https://arxiv.org/pdf/2305.10515">pdf</a>, <a href="https://arxiv.org/format/2305.10515">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/19/05/P05065">10.1088/1748-0221/19/05/P05065 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The LHCb upgrade I </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=LHCb+collaboration"> LHCb collaboration</a>, <a href="/search/physics?searchtype=author&query=Aaij%2C+R">R. Aaij</a>, <a href="/search/physics?searchtype=author&query=Abdelmotteleb%2C+A+S+W">A. S. W. Abdelmotteleb</a>, <a href="/search/physics?searchtype=author&query=Beteta%2C+C+A">C. Abellan Beteta</a>, <a href="/search/physics?searchtype=author&query=Abudin%C3%A9n%2C+F">F. Abudin茅n</a>, <a href="/search/physics?searchtype=author&query=Achard%2C+C">C. Achard</a>, <a href="/search/physics?searchtype=author&query=Ackernley%2C+T">T. Ackernley</a>, <a href="/search/physics?searchtype=author&query=Adeva%2C+B">B. Adeva</a>, <a href="/search/physics?searchtype=author&query=Adinolfi%2C+M">M. Adinolfi</a>, <a href="/search/physics?searchtype=author&query=Adlarson%2C+P">P. Adlarson</a>, <a href="/search/physics?searchtype=author&query=Afsharnia%2C+H">H. Afsharnia</a>, <a href="/search/physics?searchtype=author&query=Agapopoulou%2C+C">C. Agapopoulou</a>, <a href="/search/physics?searchtype=author&query=Aidala%2C+C+A">C. A. Aidala</a>, <a href="/search/physics?searchtype=author&query=Ajaltouni%2C+Z">Z. Ajaltouni</a>, <a href="/search/physics?searchtype=author&query=Akar%2C+S">S. Akar</a>, <a href="/search/physics?searchtype=author&query=Akiba%2C+K">K. Akiba</a>, <a href="/search/physics?searchtype=author&query=Albicocco%2C+P">P. Albicocco</a>, <a href="/search/physics?searchtype=author&query=Albrecht%2C+J">J. Albrecht</a>, <a href="/search/physics?searchtype=author&query=Alessio%2C+F">F. Alessio</a>, <a href="/search/physics?searchtype=author&query=Alexander%2C+M">M. Alexander</a>, <a href="/search/physics?searchtype=author&query=Albero%2C+A+A">A. Alfonso Albero</a>, <a href="/search/physics?searchtype=author&query=Aliouche%2C+Z">Z. Aliouche</a>, <a href="/search/physics?searchtype=author&query=Cartelle%2C+P+A">P. Alvarez Cartelle</a>, <a href="/search/physics?searchtype=author&query=Amalric%2C+R">R. Amalric</a>, <a href="/search/physics?searchtype=author&query=Amato%2C+S">S. Amato</a> , et al. (1298 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.10515v2-abstract-short" style="display: inline;"> The LHCb upgrade represents a major change of the experiment. The detectors have been almost completely renewed to allow running at an instantaneous luminosity five times larger than that of the previous running periods. Readout of all detectors into an all-software trigger is central to the new design, facilitating the reconstruction of events at the maximum LHC interaction rate, and their select… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.10515v2-abstract-full').style.display = 'inline'; document.getElementById('2305.10515v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.10515v2-abstract-full" style="display: none;"> The LHCb upgrade represents a major change of the experiment. The detectors have been almost completely renewed to allow running at an instantaneous luminosity five times larger than that of the previous running periods. Readout of all detectors into an all-software trigger is central to the new design, facilitating the reconstruction of events at the maximum LHC interaction rate, and their selection in real time. The experiment's tracking system has been completely upgraded with a new pixel vertex detector, a silicon tracker upstream of the dipole magnet and three scintillating fibre tracking stations downstream of the magnet. The whole photon detection system of the RICH detectors has been renewed and the readout electronics of the calorimeter and muon systems have been fully overhauled. The first stage of the all-software trigger is implemented on a GPU farm. The output of the trigger provides a combination of totally reconstructed physics objects, such as tracks and vertices, ready for final analysis, and of entire events which need further offline reprocessing. This scheme required a complete revision of the computing model and rewriting of the experiment's software. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.10515v2-abstract-full').style.display = 'none'; document.getElementById('2305.10515v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">All figures and tables, along with any supplementary material and additional information, are available at http://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/LHCb-DP-2022-002.html (LHCb public pages)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LHCb-DP-2022-002 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> JINST 19 (2024) P05065 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.08882">arXiv:2305.08882</a> <span> [<a href="https://arxiv.org/pdf/2305.08882">pdf</a>, <a href="https://arxiv.org/format/2305.08882">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Image and Video Processing">eess.IV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Medical Physics">physics.med-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Model-driven CT reconstruction algorithm for nano-resolution X-ray phase contrast imaging </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Cai%2C+X">Xuebao Cai</a>, <a href="/search/physics?searchtype=author&query=Tan%2C+Y">Yuhang Tan</a>, <a href="/search/physics?searchtype=author&query=Su%2C+T">Ting Su</a>, <a href="/search/physics?searchtype=author&query=Liang%2C+D">Dong Liang</a>, <a href="/search/physics?searchtype=author&query=Zheng%2C+H">Hairong Zheng</a>, <a href="/search/physics?searchtype=author&query=Xu%2C+J">Jinyou Xu</a>, <a href="/search/physics?searchtype=author&query=Zhu%2C+P">Peiping Zhu</a>, <a href="/search/physics?searchtype=author&query=Ge%2C+Y">Yongshuai Ge</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.08882v2-abstract-short" style="display: inline;"> The low-density imaging performance of a zone plate based nano-resolution hard X-ray computed tomography (CT) system can be significantly improved by incorporating a grating-based Lau interferometer. Due to the diffraction, however, the acquired nano-resolution phase signal may suffer splitting problem, which impedes the direct reconstruction of phase contrast CT (nPCT) images. To overcome, a new… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.08882v2-abstract-full').style.display = 'inline'; document.getElementById('2305.08882v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.08882v2-abstract-full" style="display: none;"> The low-density imaging performance of a zone plate based nano-resolution hard X-ray computed tomography (CT) system can be significantly improved by incorporating a grating-based Lau interferometer. Due to the diffraction, however, the acquired nano-resolution phase signal may suffer splitting problem, which impedes the direct reconstruction of phase contrast CT (nPCT) images. To overcome, a new model-driven nPCT image reconstruction algorithm is developed in this study. In it, the diffraction procedure is mathematically modeled into a matrix B, from which the projections without signal splitting can be generated invertedly. Furthermore, a penalized weighed least-square model with total variation (PWLS-TV) is employed to denoise these projections, from which nPCT images with high accuracy are directly reconstructed. Numerical and physical experiments demonstrate that this new algorithm is able to work with phase projections having any splitting distances. Results also reveal that nPCT images with higher signal-to-noise-ratio (SNR) would be reconstructed from projections with larger signal splittings. In conclusion, a novel model-driven nPCT image reconstruction algorithm with high accuracy and robustness is verified for the Lau interferometer based hard X-ray nano-resolution phase contrast imaging. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.08882v2-abstract-full').style.display = 'none'; document.getElementById('2305.08882v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.00073">arXiv:2303.00073</a> <span> [<a href="https://arxiv.org/pdf/2303.00073">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Cross-correlated quantum thermometry using diamond containing dual-defect centers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Gupta%2C+M">Madhav Gupta</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+T">Tongtong Zhang</a>, <a href="/search/physics?searchtype=author&query=Yeung%2C+L">Lambert Yeung</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+J">Jiahua Zhang</a>, <a href="/search/physics?searchtype=author&query=Tan%2C+Y">Yayin Tan</a>, <a href="/search/physics?searchtype=author&query=Yiu%2C+Y+C">Yau Chuen Yiu</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+S">Shuxiang Zhang</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+Q">Qi Wang</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+Z">Zhongqiang Wang</a>, <a href="/search/physics?searchtype=author&query=Chu%2C+Z">Zhiqin Chu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.00073v3-abstract-short" style="display: inline;"> The contactless temperature measurement at micro/nanoscale is vital to a broad range of fields in modern science and technology. The nitrogen vacancy (NV) center, a kind of diamond defect with unique spin-dependent photoluminescence, has been recognized as one of the most promising nanothermometers. However, this quantum thermometry technique has been prone to a number of possible perturbations, w… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.00073v3-abstract-full').style.display = 'inline'; document.getElementById('2303.00073v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.00073v3-abstract-full" style="display: none;"> The contactless temperature measurement at micro/nanoscale is vital to a broad range of fields in modern science and technology. The nitrogen vacancy (NV) center, a kind of diamond defect with unique spin-dependent photoluminescence, has been recognized as one of the most promising nanothermometers. However, this quantum thermometry technique has been prone to a number of possible perturbations, which will unavoidably degrade its actual temperature sensitivity. Here, for the first time, we have developed a cross-validated optical thermometry method using a bulk diamond sample containing both NV centers and silicon vacancy (SiV) centers. Particularly, the latter allowing all-optical method has been intrinsically immune to those influencing perturbations for the NV-based quantum thermometry, hence serving as a real-time cross validation system. As a proof-of-concept demonstration, we have shown a trustworthy temperature measurement under the influence of varying magnetic fields. This multi-modality approach allows a synchronized cross-validation of the measured temperature, which is required for micro/nanoscale quantum thermometry in complicated environments such as a living cell. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.00073v3-abstract-full').style.display = 'none'; document.getElementById('2303.00073v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2302.07076">arXiv:2302.07076</a> <span> [<a href="https://arxiv.org/pdf/2302.07076">pdf</a>, <a href="https://arxiv.org/format/2302.07076">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Medical Physics">physics.med-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acsphotonics.3c01209">10.1021/acsphotonics.3c01209 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Miniaturized 2D Scanning Microscopy with a Single 1D Actuation for Multi-Beam Optical Coherence Tomography </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Tan%2C+R+Y">Rachel Yixuan Tan</a>, <a href="/search/physics?searchtype=author&query=Chan%2C+R+C+K">Rachel Chi Kei Chan</a>, <a href="/search/physics?searchtype=author&query=Loh%2C+W+J+Y">Whitney Jia Ying Loh</a>, <a href="/search/physics?searchtype=author&query=Liang%2C+K">Kaicheng Liang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2302.07076v3-abstract-short" style="display: inline;"> Miniaturized optical imaging systems typically utilize 2-dimensional (2D) actuators to acquire images over a 2D field of view (FOV). Piezoelectric tubes are most compact, but usually produce sub-millimeter FOVs and are difficult to fabricate at scale, leading to high costs. Planar piezoelectric bending actuators (benders) are capable of much larger actuations and are substantially lower cost, but… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.07076v3-abstract-full').style.display = 'inline'; document.getElementById('2302.07076v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2302.07076v3-abstract-full" style="display: none;"> Miniaturized optical imaging systems typically utilize 2-dimensional (2D) actuators to acquire images over a 2D field of view (FOV). Piezoelectric tubes are most compact, but usually produce sub-millimeter FOVs and are difficult to fabricate at scale, leading to high costs. Planar piezoelectric bending actuators (benders) are capable of much larger actuations and are substantially lower cost, but inadequate for 2D steering. We presented a multi-beam fiber scanning platform that generated multi-millimeter 2D scans with a 1D actuator by maximizing the mechanical coupling effect in its orthogonal axis. We further expanded the FOV by demonstrating mosaiced fields driven with spiral and cycloid trajectories, where three optical fibers were optimized to resonate with identical paths in synchronicity. Leveraging optical coherence tomography with a long coherence length laser, we acquired depth-multiplexed images of biological samples at 12.6 um resolution. This multi-fold improvement in scanning coverage and cost-effectiveness promises to accelerate the advent of piezoelectric optomechanics in compact devices such as endoscopes and headsets, and miniaturized microscopes at point-of-care. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.07076v3-abstract-full').style.display = 'none'; document.getElementById('2302.07076v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.09973">arXiv:2212.09973</a> <span> [<a href="https://arxiv.org/pdf/2212.09973">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atmospheric and Oceanic Physics">physics.ao-ph</span> </div> </div> <p class="title is-5 mathjax"> Handling errors in four-dimensional variational data assimilation by balancing the degrees of freedom and the model constraints: A new approach </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Tian%2C+X">Xiangjun Tian</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+H">Hongqin Zhang</a>, <a href="/search/physics?searchtype=author&query=Jin%2C+Z">Zhe Jin</a>, <a href="/search/physics?searchtype=author&query=Zhao%2C+M">Min Zhao</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+Y">Yilong Wang</a>, <a href="/search/physics?searchtype=author&query=Luo%2C+Y">Yinhai Luo</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+Z">Ziqing Zhang</a>, <a href="/search/physics?searchtype=author&query=Tan%2C+Y">Yanyan Tan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.09973v1-abstract-short" style="display: inline;"> For many years, strongly and weakly constrained approaches were the only options to deal with errors in four-dimensional variational data assimilation (4DVar), with the aim of balancing the degrees of freedom and model constraints. Strong model constraints were imposed to reduce the degrees of freedom encountered when optimizing the strongly constrained 4DVar problem, and it was assumed that the m… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.09973v1-abstract-full').style.display = 'inline'; document.getElementById('2212.09973v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.09973v1-abstract-full" style="display: none;"> For many years, strongly and weakly constrained approaches were the only options to deal with errors in four-dimensional variational data assimilation (4DVar), with the aim of balancing the degrees of freedom and model constraints. Strong model constraints were imposed to reduce the degrees of freedom encountered when optimizing the strongly constrained 4DVar problem, and it was assumed that the models were perfect. The weakly constrained approach sought to distinguish initial errors from model errors, and to correct them separately using weak model constraints. Our proposed i4DVar* method exploits the hidden mechanism that corrects initial and model errors simultaneously in the strongly constrained 4DVar. The i4DVar* method divides the assimilation window into several sub-windows, each of which has a unique integral and flow-dependent correction term to simultaneously handle the initial and model errors over a relatively short period. To overcome the high degrees of freedom of the weakly constrained 4DVar, for the first time we use ensemble simulations not only to solve the 4DVar optimization problem, but also to formulate this method. Thus, the i4DVar* problem is solvable even if there are many degrees of freedom. We experimentally show that i4DVar* provides superior performance with much lower computational costs than existing methods, and is simple to implement. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.09973v1-abstract-full').style.display = 'none'; document.getElementById('2212.09973v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">27 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.01065">arXiv:2212.01065</a> <span> [<a href="https://arxiv.org/pdf/2212.01065">pdf</a>, <a href="https://arxiv.org/format/2212.01065">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0129345">10.1063/5.0129345 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Initial experimental results on a superconducting-qubit reset based on photon-assisted quasiparticle tunneling </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Sevriuk%2C+V+A">V. A. Sevriuk</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+W">W. Liu</a>, <a href="/search/physics?searchtype=author&query=R%C3%B6nkk%C3%B6%2C+J">J. R枚nkk枚</a>, <a href="/search/physics?searchtype=author&query=Hsu%2C+H">H. Hsu</a>, <a href="/search/physics?searchtype=author&query=Marxer%2C+F">F. Marxer</a>, <a href="/search/physics?searchtype=author&query=M%C3%B6rstedt%2C+T+F">T. F. M枚rstedt</a>, <a href="/search/physics?searchtype=author&query=Partanen%2C+M">M. Partanen</a>, <a href="/search/physics?searchtype=author&query=R%C3%A4bin%C3%A4%2C+J">J. R盲bin盲</a>, <a href="/search/physics?searchtype=author&query=Venkatesh%2C+M">M. Venkatesh</a>, <a href="/search/physics?searchtype=author&query=Hotari%2C+J">J. Hotari</a>, <a href="/search/physics?searchtype=author&query=Gr%C3%B6nberg%2C+L">L. Gr枚nberg</a>, <a href="/search/physics?searchtype=author&query=Heinsoo%2C+J">J. Heinsoo</a>, <a href="/search/physics?searchtype=author&query=Li%2C+T">T. Li</a>, <a href="/search/physics?searchtype=author&query=Tuorila%2C+J">J. Tuorila</a>, <a href="/search/physics?searchtype=author&query=Chan%2C+K+W">K. W. Chan</a>, <a href="/search/physics?searchtype=author&query=Hassel%2C+J">J. Hassel</a>, <a href="/search/physics?searchtype=author&query=Tan%2C+K+Y">K. Y. Tan</a>, <a href="/search/physics?searchtype=author&query=M%C3%B6tt%C3%B6nen%2C+M">M. M枚tt枚nen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.01065v1-abstract-short" style="display: inline;"> We present here our recent results on qubit reset scheme based on a quantum-circuit refrigerator (QCR). In particular, we use the photon-assisted quasiparticle tunneling through a superconductor--insulator--normal-metal--insulator--superconductor junction to controllably decrease the energy relaxation time of the qubit during the QCR operation. In our experiment, we use a transmon qubit with dispe… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.01065v1-abstract-full').style.display = 'inline'; document.getElementById('2212.01065v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.01065v1-abstract-full" style="display: none;"> We present here our recent results on qubit reset scheme based on a quantum-circuit refrigerator (QCR). In particular, we use the photon-assisted quasiparticle tunneling through a superconductor--insulator--normal-metal--insulator--superconductor junction to controllably decrease the energy relaxation time of the qubit during the QCR operation. In our experiment, we use a transmon qubit with dispersive readout. The QCR is capacitively coupled to the qubit through its normal-metal island. We employ rapid, square-shaped QCR control voltage pulses with durations in the range of 2--350 ns and a variety of amplitudes to optimize the reset time and fidelity. Consequently, we reach a qubit ground-state probability of roughly 97% with 80-ns pulses starting from the first excited state. The qubit state probability is extracted from averaged readout signal, where the calibration is based of the Rabi oscillations, thus not distinguishing the residual thermal population of the qubit. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.01065v1-abstract-full').style.display = 'none'; document.getElementById('2212.01065v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Appl. Phys. Lett. 121, 234002 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.05884">arXiv:2210.05884</a> <span> [<a href="https://arxiv.org/pdf/2210.05884">pdf</a>, <a href="https://arxiv.org/format/2210.05884">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Medical Physics">physics.med-ph</span> </div> </div> <p class="title is-5 mathjax"> Super resolution dual-energy cone-beam CT imaging with dual-layer flat-panel detector </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Su%2C+T">Ting Su</a>, <a href="/search/physics?searchtype=author&query=Zhu%2C+J">Jiongtao Zhu</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+X">Xin Zhang</a>, <a href="/search/physics?searchtype=author&query=Zeng%2C+D">Dong Zeng</a>, <a href="/search/physics?searchtype=author&query=Tan%2C+Y">Yuhang Tan</a>, <a href="/search/physics?searchtype=author&query=Cui%2C+H">Han Cui</a>, <a href="/search/physics?searchtype=author&query=Zheng%2C+H">Hairong Zheng</a>, <a href="/search/physics?searchtype=author&query=Ma%2C+J">Jianhua Ma</a>, <a href="/search/physics?searchtype=author&query=Liang%2C+D">Dong Liang</a>, <a href="/search/physics?searchtype=author&query=Ge%2C+Y">Yongshuai Ge</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.05884v2-abstract-short" style="display: inline;"> For medical cone-beam computed tomography (CBCT) imaging, the native receptor array of the flat-panel detector (FPD) is usually binned into a reduced matrix size. By doing so, the signal readout speed can be increased by over 4-9 times at the expense of sacrificing the spatial resolution by at least 50%-67%. Clearly, such tradition poses a main bottleneck in generating high spatial resolution and… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.05884v2-abstract-full').style.display = 'inline'; document.getElementById('2210.05884v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.05884v2-abstract-full" style="display: none;"> For medical cone-beam computed tomography (CBCT) imaging, the native receptor array of the flat-panel detector (FPD) is usually binned into a reduced matrix size. By doing so, the signal readout speed can be increased by over 4-9 times at the expense of sacrificing the spatial resolution by at least 50%-67%. Clearly, such tradition poses a main bottleneck in generating high spatial resolution and high temporal resolution CBCT images at the same time. In addition, the conventional FPD is also difficult in generating dual-energy CBCT images. In this paper, we propose an innovative super resolution dual-energy CBCT imaging method, named as suRi, based on dual-layer FPD (DL-FPD) to overcome these aforementioned difficulties at once. With suRi, specifically, an 1D or 2D sub-pixel (half pixel in this study) shifted binning is applied to replace the conventionally aligned binning to double the spatial sampling rate during the dual-energy data acquisition. As a result, the suRi approach provides a new strategy to enable high signal readout speed and high spatial resolution CBCT imaging with FPD. Moreover, a penalized likelihood material decomposition algorithm is developed to directly reconstruct the high resolution bases from the dual-energy CBCT projections containing spatial sub-pixel shifts. Experiments based on the single-layer FPD and DL-FPD are performed with physical phantoms and biological specimen to validate this newly developed suRi method. The synthesized monochromatic CT imaging results demonstrate that suRi can significantly improve the spatial image resolution by 46.15%. We believe the developed suRi method would be capable to greatly enhance the imaging performance of the DL-FPD based dual-energy CBCT systems in future. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.05884v2-abstract-full').style.display = 'none'; document.getElementById('2210.05884v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.07049">arXiv:2209.07049</a> <span> [<a href="https://arxiv.org/pdf/2209.07049">pdf</a>, <a href="https://arxiv.org/ps/2209.07049">ps</a>, <a href="https://arxiv.org/format/2209.07049">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Data Analysis, Statistics and Probability">physics.data-an</span> </div> </div> <p class="title is-5 mathjax"> Testing the polarization of gravitational wave background with LISA-TianQin network </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Hu%2C+Y">Yu Hu</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+P">Pan-Pan Wang</a>, <a href="/search/physics?searchtype=author&query=Tan%2C+Y">Yu-Jie Tan</a>, <a href="/search/physics?searchtype=author&query=Shao%2C+C">Cheng-Gang Shao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.07049v2-abstract-short" style="display: inline;"> While general relativity predicts only two tensor modes for gravitational wave polarization, general metric theories of gravity allows up to four additional modes, including two vector and two scalar modes. Observing the polarization modes of gravitational waves could provide a direct test of the modified gravity. The stochastic gravitational wave background (SGWB), which may be detected by space-… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.07049v2-abstract-full').style.display = 'inline'; document.getElementById('2209.07049v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.07049v2-abstract-full" style="display: none;"> While general relativity predicts only two tensor modes for gravitational wave polarization, general metric theories of gravity allows up to four additional modes, including two vector and two scalar modes. Observing the polarization modes of gravitational waves could provide a direct test of the modified gravity. The stochastic gravitational wave background (SGWB), which may be detected by space-based laser-interferometric detectors at design sensitivity, will provide an opportunity to directly measure alternative polarization. In this paper, we investigate the performance of the LISA-TianQin network for detecting alternative polarizations of stochastic backgrounds, and propose a method to separate different polarization modes. First, we generalize the small antenna approximation to compute the overlap reduction functions for SGWB with arbitrary polarization, which is suitable for any time-delay interferometry combination. Then we analyze the detection capability of LISA-TianQin for SGWB with different polarizations. Based on the LISA-TianQin orbital characteristics, we propose a method to distinguish different polarization modes from their mixed data. Compared with ground-based detectors, the LISA-TianQin network is more capable of resolving polarizations of SGWB. In particular, the LISA-TianQin network has the potential to resolve two scalar modes that ground-based detectors cannot. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.07049v2-abstract-full').style.display = 'none'; document.getElementById('2209.07049v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.02488">arXiv:2209.02488</a> <span> [<a href="https://arxiv.org/pdf/2209.02488">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> </div> </div> <p class="title is-5 mathjax"> Operation of the H- Linac at FNAL </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Seiya%2C+K">K. Seiya</a>, <a href="/search/physics?searchtype=author&query=Butler%2C+T">T. Butler</a>, <a href="/search/physics?searchtype=author&query=Jones%2C+D">D. Jones</a>, <a href="/search/physics?searchtype=author&query=Kapin%2C+V">V. Kapin</a>, <a href="/search/physics?searchtype=author&query=Hartman%2C+K">K. Hartman</a>, <a href="/search/physics?searchtype=author&query=Moua%2C+S">S. Moua</a>, <a href="/search/physics?searchtype=author&query=Ostiguy%2C+J+-">J. -F. Ostiguy</a>, <a href="/search/physics?searchtype=author&query=Ridgway%2C+R">R. Ridgway</a>, <a href="/search/physics?searchtype=author&query=Sharankova%2C+R">R. Sharankova</a>, <a href="/search/physics?searchtype=author&query=Stanzil%2C+B">B. Stanzil</a>, <a href="/search/physics?searchtype=author&query=Tan%2C+C+Y">C. Y. Tan</a>, <a href="/search/physics?searchtype=author&query=Walters%2C+J">J. Walters</a>, <a href="/search/physics?searchtype=author&query=Wesley%2C+M">M. Wesley</a>, <a href="/search/physics?searchtype=author&query=Mwaniki%2C+M">M. Mwaniki</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.02488v1-abstract-short" style="display: inline;"> The Fermi National Accelerator Laboratory (FNAL) Linac has been in operation for 52 years. In approximately four years, it will be replaced by a new 800 MeV superconducting machine, the PIP-II SRF Linac. In the current configuration, the Linac delivers H- ions at 400 MeV and injects protons by charge exchange into the Booster synchrotron. Despite its age, the Linac is the most stable accelerator i… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.02488v1-abstract-full').style.display = 'inline'; document.getElementById('2209.02488v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.02488v1-abstract-full" style="display: none;"> The Fermi National Accelerator Laboratory (FNAL) Linac has been in operation for 52 years. In approximately four years, it will be replaced by a new 800 MeV superconducting machine, the PIP-II SRF Linac. In the current configuration, the Linac delivers H- ions at 400 MeV and injects protons by charge exchange into the Booster synchrotron. Despite its age, the Linac is the most stable accelerator in the FNAL complex, reliably sending 22 mA in daily operations. We will discuss the status of the operation, beam studies, and plans. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.02488v1-abstract-full').style.display = 'none'; document.getElementById('2209.02488v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-CONF-22-634-AD </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2208.11517">arXiv:2208.11517</a> <span> [<a href="https://arxiv.org/pdf/2208.11517">pdf</a>, <a href="https://arxiv.org/format/2208.11517">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantitative Methods">q-bio.QM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Physics and Society">physics.soc-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Populations and Evolution">q-bio.PE</span> </div> </div> <p class="title is-5 mathjax"> EpiGNN: Exploring Spatial Transmission with Graph Neural Network for Regional Epidemic Forecasting </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Xie%2C+F">Feng Xie</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+Z">Zhong Zhang</a>, <a href="/search/physics?searchtype=author&query=Li%2C+L">Liang Li</a>, <a href="/search/physics?searchtype=author&query=Zhou%2C+B">Bin Zhou</a>, <a href="/search/physics?searchtype=author&query=Tan%2C+Y">Yusong Tan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2208.11517v1-abstract-short" style="display: inline;"> Epidemic forecasting is the key to effective control of epidemic transmission and helps the world mitigate the crisis that threatens public health. To better understand the transmission and evolution of epidemics, we propose EpiGNN, a graph neural network-based model for epidemic forecasting. Specifically, we design a transmission risk encoding module to characterize local and global spatial effec… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.11517v1-abstract-full').style.display = 'inline'; document.getElementById('2208.11517v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2208.11517v1-abstract-full" style="display: none;"> Epidemic forecasting is the key to effective control of epidemic transmission and helps the world mitigate the crisis that threatens public health. To better understand the transmission and evolution of epidemics, we propose EpiGNN, a graph neural network-based model for epidemic forecasting. Specifically, we design a transmission risk encoding module to characterize local and global spatial effects of regions in epidemic processes and incorporate them into the model. Meanwhile, we develop a Region-Aware Graph Learner (RAGL) that takes transmission risk, geographical dependencies, and temporal information into account to better explore spatial-temporal dependencies and makes regions aware of related regions' epidemic situations. The RAGL can also combine with external resources, such as human mobility, to further improve prediction performance. Comprehensive experiments on five real-world epidemic-related datasets (including influenza and COVID-19) demonstrate the effectiveness of our proposed method and show that EpiGNN outperforms state-of-the-art baselines by 9.48% in RMSE. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.11517v1-abstract-full').style.display = 'none'; document.getElementById('2208.11517v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 6 figures, ECML-PKDD2022</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2208.08788">arXiv:2208.08788</a> <span> [<a href="https://arxiv.org/pdf/2208.08788">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic and Molecular Clusters">physics.atm-clus</span> </div> </div> <p class="title is-5 mathjax"> Fano Interference in a Single-Molecule Junction </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Ouyang%2C+Y">Yiping Ouyang</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+R">Rui Wang</a>, <a href="/search/physics?searchtype=author&query=Guo%2C+D">Deping Guo</a>, <a href="/search/physics?searchtype=author&query=Ju%2C+Y">Yang-Yang Ju</a>, <a href="/search/physics?searchtype=author&query=Pan%2C+D">Danfeng Pan</a>, <a href="/search/physics?searchtype=author&query=Tu%2C+X">Xuecou Tu</a>, <a href="/search/physics?searchtype=author&query=Kang%2C+L">Lin Kang</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+J">Jian Chen</a>, <a href="/search/physics?searchtype=author&query=Wu%2C+P">Peiheng Wu</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+X">Xuefeng Wang</a>, <a href="/search/physics?searchtype=author&query=Wan%2C+J">Jianguo Wan</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+M">Minhao Zhang</a>, <a href="/search/physics?searchtype=author&query=Ji%2C+W">Wei Ji</a>, <a href="/search/physics?searchtype=author&query=Tan%2C+Y">Yuan-Zhi Tan</a>, <a href="/search/physics?searchtype=author&query=Xie%2C+S">Su-Yuan Xie</a>, <a href="/search/physics?searchtype=author&query=Song%2C+F">Fengqi Song</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2208.08788v1-abstract-short" style="display: inline;"> Trends of miniaturized devices and quantum interference electronics lead to the long desire of Fano interference in single-molecule junctions, here, which is successfully demonstrated using the 2,7-di(4-pyridyl)-9,9'-spirobifluorene molecule with a long backbone group and a short side group. Experimentally, the two electrically coupled groups are found to contribute to two blurred degenerate point… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.08788v1-abstract-full').style.display = 'inline'; document.getElementById('2208.08788v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2208.08788v1-abstract-full" style="display: none;"> Trends of miniaturized devices and quantum interference electronics lead to the long desire of Fano interference in single-molecule junctions, here, which is successfully demonstrated using the 2,7-di(4-pyridyl)-9,9'-spirobifluorene molecule with a long backbone group and a short side group. Experimentally, the two electrically coupled groups are found to contribute to two blurred degenerate points in the differential conductance mapping. This forms a characteristic non-centrosymmetric double-crossing feature, with distinct temperature response for each crossing. Theoretically, we describe the practical in-junction electron transmission using a new two-tunnelling-channel coupling model and obtain a working formula with a Fano term and a Breit-Wigner term. The formula is shown to provide a good fit for all the mapping data and their temperature dependence in three dimensions, identifying the Fano component. Our work thus forms a complete set of evidence of the Fano interference in a single-molecule junction induced by two-tunnelling-channel coupling transport. Density functional theory calculations are used to corroborate this new physics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.08788v1-abstract-full').style.display = 'none'; document.getElementById('2208.08788v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages (main text), 4000 Words (main text), 5 figures</span> </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Tan%2C+Y&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Tan%2C+Y&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Tan%2C+Y&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&query=Tan%2C+Y&start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&query=Tan%2C+Y&start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>