CINXE.COM
Search results for: Clostridium acetobutylicum
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: Clostridium acetobutylicum</title> <meta name="description" content="Search results for: Clostridium acetobutylicum"> <meta name="keywords" content="Clostridium acetobutylicum"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="Clostridium acetobutylicum" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="Clostridium acetobutylicum"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 58</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: Clostridium acetobutylicum</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">58</span> Heterologous Expression of Heat-Shock Protein Improves Butanol Yield in a High-Speedy Growing Clostridium acetobutylicum Mutant</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Min-Shiuan%20Liou">Min-Shiuan Liou</a>, <a href="https://publications.waset.org/abstracts/search?q=Yi%20Shan%20Yang"> Yi Shan Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=Yang-Zhan%20Huang"> Yang-Zhan Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Chia-Wen%20Hsieh"> Chia-Wen Hsieh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A high speed growing and butanol-tolerant Clostridium acetobutylicum HOL1 mutant was screened throughout continuous adaption culture with C. acetobutylicum ATCC 824. The HOL1 strain can grow well in 10 g/L butanol contained CGM medium and can produce about 12.8 g /L butanol during 24 hrs. The C. acetobutylicum HOL1 strain was able to produce 166 mM butanol with 21 mM acetone at pH 4.8, resulting in a butanol selectivity (a molar ratio of butanol to total solvents) of 0.79, which is much higher than that (0.6) of the wild-type strain C. acetobutylicum ATCC 824. The acetate and butyrate accumulation were not observed during fermentation of the HOL1 strain. A hyper-butanol producing C. acetobutylicum HOL1 (pBPHS-3), which was created to overexpress the Bacillus psychrosaccharolyticus originated specific heat-shock protein gene, hspX, from a clostridial phosphotransbutyrylase promoter, was studied for its potential to produce a high titer of butanol. Overexpression of hspX resulted in increased final butanol yield 47% and 30% higher than those of the the ATCC824 and the HOL1 strains, respectively. The remarkable high-speed growth and butanol tolerance of strain HOL1 (pBPHS-3) demonstrates that overexpression of heterogeneous stress protein-encoding gene, hspX, could help C. acetobutylicum to effectively produce a high concentration of butanol. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Clostridium%20acetobutylicum" title="Clostridium acetobutylicum">Clostridium acetobutylicum</a>, <a href="https://publications.waset.org/abstracts/search?q=butanol" title=" butanol"> butanol</a>, <a href="https://publications.waset.org/abstracts/search?q=heat-shock%20protein" title=" heat-shock protein"> heat-shock protein</a>, <a href="https://publications.waset.org/abstracts/search?q=resistance" title=" resistance"> resistance</a> </p> <a href="https://publications.waset.org/abstracts/67015/heterologous-expression-of-heat-shock-protein-improves-butanol-yield-in-a-high-speedy-growing-clostridium-acetobutylicum-mutant" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67015.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">429</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">57</span> Biobutanol Production from Date Palm Waste by Clostridium acetobutylicum</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Diya%20Alsafadi">Diya Alsafadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Fawwaz%20Khalili"> Fawwaz Khalili</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20W.%20Amer"> Mohammad W. Amer</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Butanol is an important industrial solvent and potentially a better liquid transportation biofuel than ethanol. The cost of feedstock is one key problem associated with the biobutanol production. Date palm is sugar-rich fruit and highly abundant. Thousands of tons of date wastes that generated from date processing industries are thrown away each year and imposing serious environmental problems. To exploit the utilization of renewable biomass feedstock, date palm waste was utilized for butanol production by Clostridium acetobutylicum DSM 1731. Fermentation conditions were optimized by investigating several parameters that affect the production of butanol such as temperature, substrate concentration and pH. The highest butanol yield (1.0 g/L) and acetone, butanol, and ethanol (ABE) content (1.3 g/L) were achieved at 20 g/L date waste, pH 5.0 and 37 °C. These results suggest that date palm waste can be used for biobutanol production. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biofuel" title="biofuel">biofuel</a>, <a href="https://publications.waset.org/abstracts/search?q=acetone-butanol-ethanol%20fermentation" title=" acetone-butanol-ethanol fermentation"> acetone-butanol-ethanol fermentation</a>, <a href="https://publications.waset.org/abstracts/search?q=date%20palm%20waste" title=" date palm waste"> date palm waste</a>, <a href="https://publications.waset.org/abstracts/search?q=Clostridium%20acetobutylicum" title=" Clostridium acetobutylicum"> Clostridium acetobutylicum</a> </p> <a href="https://publications.waset.org/abstracts/55719/biobutanol-production-from-date-palm-waste-by-clostridium-acetobutylicum" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55719.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">353</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">56</span> Clostridium Glycolicum Abdominal Infection in a Patient with Small Bowel Obstruction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Benedikt%20Munzar">Benedikt Munzar</a>, <a href="https://publications.waset.org/abstracts/search?q=Jagraj%20Singh"> Jagraj Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Alice%20Mei"> Alice Mei</a>, <a href="https://publications.waset.org/abstracts/search?q=David%20Musheyev"> David Musheyev</a>, <a href="https://publications.waset.org/abstracts/search?q=Sandeep%20Gandhi"> Sandeep Gandhi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Clostridium is a gram-positive, anaerobic, spore-forming rod that is not commonly identified as a primary human pathogen. Here is presented a case of a 60-year-old patient with a history of opioid use disorder who underwent a number of abdominal surgeries for small bowel obstruction. His hospital course was complicated by Clostridium glycolicum infection, resulting in an acute abdomen. The patient clinically improved with antibiotic therapy. A thorough review of the National Institute of Health database revealed that only a small number of cases have been reported since 2007, with the last postsurgical cases documented in 2009 and the last clinical case documented in 2012. Clostridium glycolicum infections have been noted in patients with immunosuppressive conditions or those undergoing medical treatments that compromise immune function. This case was unusual due to the patient being immunocompetent. We suggest that a case of an acute abdomen should consider this organism as an etiological agent. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acute%20abdomen" title="acute abdomen">acute abdomen</a>, <a href="https://publications.waset.org/abstracts/search?q=bacterial%20infection" title=" bacterial infection"> bacterial infection</a>, <a href="https://publications.waset.org/abstracts/search?q=clostridium%20glycolicum" title=" clostridium glycolicum"> clostridium glycolicum</a>, <a href="https://publications.waset.org/abstracts/search?q=Meckel%E2%80%99s%20diverticulum" title=" Meckel’s diverticulum"> Meckel’s diverticulum</a>, <a href="https://publications.waset.org/abstracts/search?q=pneumoperitoneum" title=" pneumoperitoneum"> pneumoperitoneum</a>, <a href="https://publications.waset.org/abstracts/search?q=small%20bowel%20obstruction" title=" small bowel obstruction"> small bowel obstruction</a> </p> <a href="https://publications.waset.org/abstracts/189319/clostridium-glycolicum-abdominal-infection-in-a-patient-with-small-bowel-obstruction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/189319.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">29</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">55</span> Characterization of an Isopropanol-Butanol Clostridium</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chen%20Zhang">Chen Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Fengxue%20Xin"> Fengxue Xin</a>, <a href="https://publications.waset.org/abstracts/search?q=Jianzhong%20He"> Jianzhong He</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A unique Clostridium beijerinckii species strain BGS1 was obtained from grass land samples, which is capable of producing 8.43g/L butanol and 3.21 isopropanol from 60g/L glucose while generating 4.68g/L volatile fatty acids (VFAs) from 30g/L xylan. The concentration of isopropanol produced by culture BGS1 is ~15% higher than previously reported wild-type Clostridium beijerinckii under similar conditions. Compared to traditional Acetone-Butanol-Ethanol (ABE) fermentation species, culture BGS1 only generates negligible amount of ethanol and acetone, but produces butanol and isopropanol as biosolvent end-products which are pure alcohols and more economical than ABE. More importantly, culture BGS1 can consume acetone to produce isopropanol, e.g., 1.84g/L isopropanol from 0.81g/L acetone in 60g/L glucose medium containing 6.15g/L acetone. The analysis of BGS1 draft genome annotated by RAST server demonstrates that no ethanol production is caused by the lack of pyruvate decarboxylase gene – related to ethanol production. In addition, an alcohol dehydrogenase (adhe gene) was found in BGS1 which could be a potential gene responsible for isopropanol-generation. This is the first report on Isopropanol-Butanol (IB) fermentation by wild-type Clostridium strain and its application for isopropanol and butanol production. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acetone%20conversion" title="acetone conversion">acetone conversion</a>, <a href="https://publications.waset.org/abstracts/search?q=butanol" title=" butanol"> butanol</a>, <a href="https://publications.waset.org/abstracts/search?q=clostridium" title=" clostridium"> clostridium</a>, <a href="https://publications.waset.org/abstracts/search?q=isopropanol" title=" isopropanol"> isopropanol</a> </p> <a href="https://publications.waset.org/abstracts/39599/characterization-of-an-isopropanol-butanol-clostridium" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39599.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">292</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">54</span> Effect of Bacillus subtilis Pb6 on Growth and Gut Microflora in Clostridium perfringens Challenged Broilers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Khalique">A. Khalique</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Naseem"> T. Naseem</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Haque"> N. Haque</a>, <a href="https://publications.waset.org/abstracts/search?q=Z.%20Rasool"> Z. Rasool</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of current study was to investigate the effect of <em>Bacillus subtilis</em> PB6 (CloSTAT) as a probiotic in broilers. The corn-soybean based diet was divided into four treatment groups; T1 (basal diet with no probiotic and no <em>Clostridium perfringens</em>); T2 (basal diet challenged with <em>C. perfringens</em> without probiotic); T3 (basal diet challenged with <em>C. perfringens</em> having 0.05% probiotic); T4 (basal diet challenged with <em>C. perfringens</em> having 0.1% probiotic). Every treatment group had four replicates with 24 birds each. Body weight and feed intake were measured on weekly basis, while ileal bacterial count was recorded on day-28 following <em>Clostridium</em> <em>perfringens</em> challenge. The 0.1% probiotic treatment showed 7.2% increase in average feed intake (P=0.05) and 8% increase in body weight compared to T2. In 0.1% treatment body weight was 5% higher than T3 (P=0.02). It was also observed that 0.1% treatment had improved feed conversion ratio (1.77) on 6<sup>th</sup> week. No effect of treatment was observed on mortality and ileal bacterial count. The current study indicated that 0.1% use of probiotic had positive response in <em>C. perfringens</em> challenged broilers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bacillus%20subtilis%20PB6" title="Bacillus subtilis PB6">Bacillus subtilis PB6</a>, <a href="https://publications.waset.org/abstracts/search?q=antibiotic%20growth%20promoters" title=" antibiotic growth promoters"> antibiotic growth promoters</a>, <a href="https://publications.waset.org/abstracts/search?q=Clostridium%20perfringens" title=" Clostridium perfringens"> Clostridium perfringens</a>, <a href="https://publications.waset.org/abstracts/search?q=broilers" title=" broilers"> broilers</a> </p> <a href="https://publications.waset.org/abstracts/58586/effect-of-bacillus-subtilis-pb6-on-growth-and-gut-microflora-in-clostridium-perfringens-challenged-broilers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58586.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">270</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">53</span> Optimization of Multistage Extractor for the Butanol Separation from Aqueous Solution Using Ionic Liquids</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dharamashi%20Rabari">Dharamashi Rabari</a>, <a href="https://publications.waset.org/abstracts/search?q=Anand%20Patel"> Anand Patel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> n-Butanol can be regarded as a potential biofuel. Being resistive to corrosion and having high calorific value, butanol is a very attractive energy source as opposed to ethanol. By fermentation process called ABE (acetone, butanol, ethanol), bio-butanol can be produced. ABE carried out mostly by bacteria Clostridium acetobutylicum. The major drawback of the process is the butanol concentration higher than 10 g/L, delays the growth of microbes resulting in a low yield. It indicates the simultaneous separation of butanol from the fermentation broth. Two hydrophobic Ionic Liquids (ILs) 1-butyl-1-methylpiperidinium bis (trifluoromethylsulfonyl)imide [bmPIP][Tf₂N] and 1-hexyl-3-methylimidazolium bis (trifluoromethylsulfonyl)imide [hmim][Tf₂N] were chosen. The binary interaction parameters for both ternary systems i.e. [bmPIP][Tf₂N] + water + n-butanol and [hmim][Tf₂N] + water +n-butanol were taken from the literature that was generated by NRTL model. Particle swarm optimization (PSO) with the isothermal sum rate (ISR) method was used to optimize the cost of liquid-liquid extractor. For [hmim][Tf₂N] + water +n-butanol system, PSO shows 84% success rate with the number of stages equal to eight and solvent flow rate equal to 461 kmol/hr. The number of stages was three with 269.95 kmol/hr solvent flow rate for [bmPIP][Tf₂N] + water + n-butanol system. Moreover, both ILs were very efficient as the loss of ILs in raffinate phase was negligible. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=particle%20swarm%20optimization" title="particle swarm optimization">particle swarm optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=isothermal%20sum%20rate%20method" title=" isothermal sum rate method"> isothermal sum rate method</a>, <a href="https://publications.waset.org/abstracts/search?q=success%20rate" title=" success rate"> success rate</a>, <a href="https://publications.waset.org/abstracts/search?q=extraction" title=" extraction"> extraction</a> </p> <a href="https://publications.waset.org/abstracts/100616/optimization-of-multistage-extractor-for-the-butanol-separation-from-aqueous-solution-using-ionic-liquids" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/100616.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">122</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">52</span> Clostridium thermocellum DBT-IOC-C19, A Potential CBP Isolate for Ethanol Production</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nisha%20Singh">Nisha Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Munish%20Puri"> Munish Puri</a>, <a href="https://publications.waset.org/abstracts/search?q=Collin%20Barrow"> Collin Barrow</a>, <a href="https://publications.waset.org/abstracts/search?q=Deepak%20Tuli"> Deepak Tuli</a>, <a href="https://publications.waset.org/abstracts/search?q=Anshu%20S.%20Mathur"> Anshu S. Mathur</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The biological conversion of lignocellulosic biomass to ethanol is a promising strategy to solve the present global crisis of exhausting fossil fuels. The existing bioethanol production technologies have cost constraints due to the involvement of mandate pretreatment and extensive enzyme production steps. A unique process configuration known as consolidated bioprocessing (CBP) is believed to be a potential cost-effective process due to its efficient integration of enzyme production, saccharification, and fermentation into one step. Due to several favorable reasons like single step conversion, no need of adding exogenous enzymes and facilitated product recovery, CBP has gained the attention of researchers worldwide. However, there are several technical and economic barriers which need to be overcome for making consolidated bioprocessing a commercially viable process. Finding a natural candidate CBP organism is critically important and thermophilic anaerobes are preferred microorganisms. The thermophilic anaerobes that can represent CBP mainly belong to genus Clostridium, Caldicellulosiruptor, Thermoanaerobacter, Thermoanaero bacterium, and Geobacillus etc. Amongst them, Clostridium thermocellum has received increased attention as a high utility CBP candidate due to its highest growth rate on crystalline cellulose, the presence of highly efficient cellulosome system and ability to produce ethanol directly from cellulose. Recently with the availability of genetic and molecular tools aiding the metabolic engineering of Clostridium thermocellum have further facilitated the viability of commercial CBP process. With this view, we have specifically screened cellulolytic and xylanolytic thermophilic anaerobic ethanol producing bacteria, from unexplored hot spring/s in India. One of the isolates is a potential CBP organism identified as a new strain of Clostridium thermocellum. This strain has shown superior avicel and xylan degradation under unoptimized conditions compared to reported wild type strains of Clostridium thermocellum and produced more than 50 mM ethanol in 72 hours from 1 % avicel at 60°C. Besides, this strain shows good ethanol tolerance and growth on both hexose and pentose sugars. Hence, with further optimization this new strain could be developed as a potential CBP microbe. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Clostridium%20thermocellum" title="Clostridium thermocellum">Clostridium thermocellum</a>, <a href="https://publications.waset.org/abstracts/search?q=consolidated%20bioprocessing" title=" consolidated bioprocessing"> consolidated bioprocessing</a>, <a href="https://publications.waset.org/abstracts/search?q=ethanol" title=" ethanol"> ethanol</a>, <a href="https://publications.waset.org/abstracts/search?q=thermophilic%20anaerobes" title=" thermophilic anaerobes"> thermophilic anaerobes</a> </p> <a href="https://publications.waset.org/abstracts/33981/clostridium-thermocellum-dbt-ioc-c19-a-potential-cbp-isolate-for-ethanol-production" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33981.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">400</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">51</span> Prevalence of Clostridium perfringens β2-Toxin in Type a Isolates of Sheep and Goats</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mudassar%20Mohiuddin">Mudassar Mohiuddin</a>, <a href="https://publications.waset.org/abstracts/search?q=Zahid%20Iqbal"> Zahid Iqbal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Clostridium perfringens is an important pathogen responsible for causing enteric diseases in both human and animals. The bacteria produce several toxins. These toxins play vital role in the pathogenesis of various fatal enteric diseases and are classified into five types, on the basis of the differential production of Alpha, Beta, Epsilon and Iota toxins. In addition to the so-called major toxins, there are other toxins like beta2 toxin, produced by some strains of C. perfringens which may play a role in the pathogenesis of disease. Aim of the study: In this study a multiplex PCR assay was developed and used for detection of cpb2 gene to identify the Beta2 harboring isolates among different types of C. perfringens. Objectives: The primary objective of this study was to identify the prevalence of β2-toxin gene in local isolates of Clostridium perfringens. Methodology: This was an experimental study. Random sampling technique was used. A total of 97 sheep and goats were included in this study. All were Pakistani local breeds. The samples were collected during the period from Sep, 2014 to Mar, 2015 from selected districts of Punjab province (Pakistan). Faecal samples were cultured in cooked meat media. The identification of Clostridium perfringens was made on the basis of biochemical tests. Multiplex PCR was performed to identify the toxin genes. Results: A total of 43 C. perfringens isolates were genotyped using multiplex PCR assay. The gene encoding C. perfringens β2-toxin (cpb2) was present in more than 50% of the isolates genotyped. However, the prevalence of this gene varied between sheep and goat isolates. Conclusion: The present study suggests the high occurrence of C. perfringens b2-toxin (cpb2) in the local isolates of Pakistan. As β2-toxin is present in both healthy and diseased animals, so further studies are suggested to establish the role of β2-toxin in pathogenesis of the clostridial enteric diseases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=beta%202%20toxin%20gene" title="beta 2 toxin gene">beta 2 toxin gene</a>, <a href="https://publications.waset.org/abstracts/search?q=clostridium%20perfringens" title=" clostridium perfringens"> clostridium perfringens</a>, <a href="https://publications.waset.org/abstracts/search?q=enteric%20diseases" title=" enteric diseases"> enteric diseases</a>, <a href="https://publications.waset.org/abstracts/search?q=goats" title=" goats"> goats</a>, <a href="https://publications.waset.org/abstracts/search?q=multiplex%20PCR" title=" multiplex PCR"> multiplex PCR</a>, <a href="https://publications.waset.org/abstracts/search?q=sheep" title=" sheep"> sheep</a> </p> <a href="https://publications.waset.org/abstracts/36854/prevalence-of-clostridium-perfringens-v2-toxin-in-type-a-isolates-of-sheep-and-goats" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36854.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">462</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">50</span> Assessment of Microbiological Feed Safety from Serbian Market from 2013 to 2017</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Danijela%20Vukovi%C4%87">Danijela Vuković</a>, <a href="https://publications.waset.org/abstracts/search?q=Radovan%20%C4%8Cobanovi%C4%87"> Radovan Čobanović</a>, <a href="https://publications.waset.org/abstracts/search?q=Milorad%20Pla%C4%8Dki%C4%87"> Milorad Plačkić</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The expansion of population imposes increase in usage of animal meat, on whose quality directly affects the quality of the feed that the animals are fed with. The selection of raw materials, hygiene during the technological process, various hydrothermal treatments, methods of mixing etc. have an influence on the quality of feed. Monitoring of the feed is very important to obtain information about the quality of feed and the possible prevention of animal diseases which can lead to different human diseases outbreaks. In this study parameters of feed safety were monitored. According to the mentioned, the goal of this study was to evaluate microbiological safety of feed (feedstuffs and complete mixtures). Total number of analyzed samples was 4399. Analyzed feed samples were collected in various retail shops and feed factories during the period of 44 months (from January 2013 untill September 2017). Samples were analyzed on Salmonella spp. and Clostridium perfringens in quantity of 50g according to Serbian regulation. All microorganisms were tested according to ISO methodology: Salmonella spp. ISO 6579:2002 and Clostridium perfringens ISO 7937:2004. Out of 4399 analyzed feed samples 97,5% were satisfactory and 2,5% unsatisfactory concerning Salmonella spp. As far as Clostridium perfringens is concerned 100% of analyzed samples were satisfactory. The obtained results suggest that technological processing of feed in Serbia is at high level when it comes to safety and hygiene of the products, but there are still possibilities for progress and improvement which only can be reached trough the permanent monitoring of feed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=microbiology" title="microbiology">microbiology</a>, <a href="https://publications.waset.org/abstracts/search?q=safety" title=" safety"> safety</a>, <a href="https://publications.waset.org/abstracts/search?q=hygiene" title=" hygiene"> hygiene</a>, <a href="https://publications.waset.org/abstracts/search?q=feed" title=" feed"> feed</a> </p> <a href="https://publications.waset.org/abstracts/71022/assessment-of-microbiological-feed-safety-from-serbian-market-from-2013-to-2017" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71022.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">304</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">49</span> Association of Clostridium difficile Infection and Bone Cancer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Daniela%20Prado">Daniela Prado</a>, <a href="https://publications.waset.org/abstracts/search?q=Lexi%20Frankel"> Lexi Frankel</a>, <a href="https://publications.waset.org/abstracts/search?q=Amalia%20Ardeljan"> Amalia Ardeljan</a>, <a href="https://publications.waset.org/abstracts/search?q=Lokesh%20Manjani"> Lokesh Manjani</a>, <a href="https://publications.waset.org/abstracts/search?q=Matthew%20Cardeiro"> Matthew Cardeiro</a>, <a href="https://publications.waset.org/abstracts/search?q=Omar%20Rashid"> Omar Rashid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Clostridium difficile (C. diff) is a gram-positive bacterium that is known to cause life-threatening diarrhea and severe inflammation of the colon. It originates as an alteration of the gut microbiome and can be transmitted through spores. Recent studies have shown a high association between the development of C. diff in cancer patients due to extensive hospitalization. However, research is lacking regarding C. diff’s association in the causation or prevention of cancer. The objective of this study was to therefore assess the correlation between Clostridium difficile infection (CDI) and the incidence of bone cancer. Methods: This retrospective analysis used data provided by a Health Insurance Portability and Accountability Act (HIPAA) compliant national database to evaluate the patients infected versus patients not infected with C. diff using ICD-10 and ICD-9 codes. Access to the database was granted by the Holy Cross Health, Fort Lauderdale, for the purpose of academic research. Standard statistical methods were used. Results: Between January 2010 and December 2019, the query was analyzed and resulted in 78863 patients in both the infected and control group, respectively. The two groups were matched by age range and CCI score. The incidence of bone cancer was 659 patients (0.835%) in the C. diff group compared to 1941 patients (2.461%) in the control group. The difference was statistically significant by a P-value < 2.2x10^-16 with an odds ratio (OR)= 0.33 (0.31-0.37) with a 95% confidence interval (CI). Treatment for CDI was analyzed for both C. diff infected and noninfected populations. 91 out of 16,676 (0.55%) patients with a prior C. diff infection and treated with antibiotics were compared to the control group were 275 out of 16,676 (1.65%) patients with no history of CDI and received antibiotic treatment. Results remained statistically significant by P-value <2.2x10-16 with an OR= 0.42 (0.37, 0.48). and a 95% CI. Conclusion: The study shows a statistically significant correlation between C. diff and a reduced incidence of bone cancer. Further evaluation is recommended to assess the potential of C. difficile in reducing bone cancer incidence. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bone%20cancer" title="bone cancer">bone cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=colitis" title=" colitis"> colitis</a>, <a href="https://publications.waset.org/abstracts/search?q=clostridium%20difficile" title=" clostridium difficile"> clostridium difficile</a>, <a href="https://publications.waset.org/abstracts/search?q=microbiome" title=" microbiome"> microbiome</a> </p> <a href="https://publications.waset.org/abstracts/140192/association-of-clostridium-difficile-infection-and-bone-cancer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/140192.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">278</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">48</span> Heterologous Expression of a Clostridium thermocellum Proteins and Assembly of Cellulosomes 'in vitro' for Biotechnology Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jessica%20Pinheiro%20Silva">Jessica Pinheiro Silva</a>, <a href="https://publications.waset.org/abstracts/search?q=Brenda%20Rabello%20De%20Camargo"> Brenda Rabello De Camargo</a>, <a href="https://publications.waset.org/abstracts/search?q=Daniel%20Gusmao%20De%20Morais"> Daniel Gusmao De Morais</a>, <a href="https://publications.waset.org/abstracts/search?q=Eliane%20%20Ferreira%20Noronha"> Eliane Ferreira Noronha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The utilization of lignocellulosic biomass as source of polysaccharides for industrial applications requires an arsenal of enzymes with different mode of action able to hydrolyze its complex and recalcitrant structure. Clostridium thermocellum is gram-positive, thermophilic bacterium producing lignocellulosic hydrolyzing enzymes in the form of multi-enzyme complex, termed celulossomes. This complex has several hydrolytic enzymes attached to a large and enzymically inactive protein known as Cellulosome-integrating protein (CipA), which serves as a scaffolding protein for the complex produced. This attachment occurs through specific interactions between cohesin modules of CipA and dockerin modules in enzymes. The present work aims to construct celulosomes in vitro with the structural protein CipA, a xylanase called Xyn10D and a cellulose called CelJ from C.thermocellum. A mini-scafoldin was constructed from modules derived from CipA containing two cohesion modules. This was cloned and expressed in Escherichia coli. The other two genes were cloned under the control of the alcohol oxidase 1 promoter (AOX1) in the vector pPIC9 and integrated into the genome of the methylotrophic yeast Pichia pastoris GS115. Purification of each protein is being carried out. Further studies regarding enzymatic activity of the cellulosome is going to be evaluated. The cellulosome built in vitro and composed of mini-CipA, CelJ and Xyn10D, can be very interesting for application in industrial processes involving the degradation of plant biomass. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cellulosome" title="cellulosome">cellulosome</a>, <a href="https://publications.waset.org/abstracts/search?q=CipA" title=" CipA"> CipA</a>, <a href="https://publications.waset.org/abstracts/search?q=Clostridium%20thermocellum" title=" Clostridium thermocellum"> Clostridium thermocellum</a>, <a href="https://publications.waset.org/abstracts/search?q=cohesin" title=" cohesin"> cohesin</a>, <a href="https://publications.waset.org/abstracts/search?q=dockerin" title=" dockerin"> dockerin</a>, <a href="https://publications.waset.org/abstracts/search?q=yeast" title=" yeast"> yeast</a> </p> <a href="https://publications.waset.org/abstracts/79260/heterologous-expression-of-a-clostridium-thermocellum-proteins-and-assembly-of-cellulosomes-in-vitro-for-biotechnology-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79260.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">233</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">47</span> Clostridium Difficile in Western Australian Native Animals: Prevalence and Molecular Epidemiology</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Karla%20Cautivo">Karla Cautivo</a>, <a href="https://publications.waset.org/abstracts/search?q=Thomas%20Riley"> Thomas Riley</a>, <a href="https://publications.waset.org/abstracts/search?q=Daniel%20Knight"> Daniel Knight</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Clostridium difficile infection (CDI) is the most common cause of infectious diarrhea in hospitalised humans. C. difficile colonises the gastrointestinal tract, causes disease in a variety of animal species and can persist as a spore in diverse environments. Genetic overlap between C. difficile strains from human, animal and environmental sources suggests CDI has a zoonotic or foodborne aetiology. In Australia, C. difficile PCR ribotype RT014 (MLST clade 1) and several ST11 (MLST clade 5) RTs are found commonly in livestock. The high prevalence and diversity of ST11 strains in Australian production animals indicates Australia might be the ancestral home for this lineage. This project describes for the first time the ecology of C. difficile in Australian native animals, providing insights into the prevalence, molecular epidemiology and evolution of C. difficile in this unique environment and a possible role in CDI in humans and animals in Australia. Faecal samples were collected from wild/captive reptiles (n=37), mammals (n=104) and birds (n=102) in Western Australia in 2020/21. Anaerobic enrichment culture was performed, and C. difficile isolates were characterised by PCR ribotyping and toxin gene profiling. Seventy isolates of C. difficile were recovered (prevalence of C. difficile in faecal samples 28%, n=68/243); 27 unique RTs were identified, 5 were novel. The prevalence of C. difficile was similar for reptiles and mammals, 46% (n=17/37) and 43%(n=45/104), respectively, but significantly lower in birds (7.8%, n=8/102; p<0.00001 for both reptiles and mammals). Of the 57 isolates available for typing, RT237 (clade 5) and RT002 (clade 2) were the most prevalent, 15.8% (n=9/57) and 14% (n=8/57), respectively. The high prevalence of C. difficile in reptiles and mammals, particularly clade 5 strains, supported by previous studies of C. difficile in Australian soils, suggest that Australia might be the ancestral home of MLST clade 5. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Clostridium%20difficile" title="Clostridium difficile">Clostridium difficile</a>, <a href="https://publications.waset.org/abstracts/search?q=zoonosis" title=" zoonosis"> zoonosis</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20epidemiology" title=" molecular epidemiology"> molecular epidemiology</a>, <a href="https://publications.waset.org/abstracts/search?q=ecology%20and%20evolution" title=" ecology and evolution"> ecology and evolution</a> </p> <a href="https://publications.waset.org/abstracts/138521/clostridium-difficile-in-western-australian-native-animals-prevalence-and-molecular-epidemiology" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/138521.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">209</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">46</span> Relationship Between tcdA and tcdB Genes of Clostridium difficile with Duration of Diarrhea in Elderly Patients</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ni%20Luh%20Putu%20Harta%20Wedari">Ni Luh Putu Harta Wedari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Clostridium difficile has two main virulence factors, namely TcdA and TcdB. TcdA encoded by the tcdA gene acts as an enterotoxin, pro-inflammatory and fluid accumulation, while TcdB encoded by the tcdB gene is cytotoxic, causes disruption of the actin cytoskeleton, and causes disruption of tight junctions in colon cells. This study aims to explore the relationship between the tcdA and tcdB genes and the duration of diarrhea in elderly patients. Method: This research was an observational analytic with a prospective cross-sectional with samples of elderly diarrhea patients who met the inclusion criteria in Denpasar City health service facilities from 1 December 2022 until 30 June 2023, and then their feces were analyzed using the real-time PCR method. Results: In this study, 40 elderly diarrhea patients met the inclusion criteria and in accordance with the minimum sample size, 28 (70%) men and 12 (30%) women. 5 patients (12.5%) had a history of azithromycin, 4 (10%) levofloxacin, 17 (42.5%) ciprofloxacin, 8 (20%) metronidazole, 1 (2.5%) cefoperazone, 5 (12, 5%) doxycycline. Comorbids, namely 13 (32.5%) type II diabetes mellitus, 4 (10%) chronic kidney disease, 10 (25%) malignancies, 7 (17.5%) urinary tract infections, 3 (7.5%) %) immunocompromised, 2 (5%) cardiac heart failure, and 1 (2.5%) acute on chronic kidney disease. The overall diarrhea duration average was 5 days. 8 samples (20%) were positive for 16s rRNA, and there was no significant difference in diarrhea duration with negative samples (p=0.166). The relationship between the tcdA gene and the duration of diarrhea could not be performed because all samples were negative. Likewise, relationship analysis between the coexistence of tcdA and tcdB could not be performed. There was no significant difference between tcdB positive 3 (7.5%) and negative with diarrhea duration (p=0.739). Conclusion: There is no significant relationship between the presence of the 16s rRNA and tcdB C. difficile genes with the duration of diarrhea in elderly patients. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=clostridium" title="clostridium">clostridium</a>, <a href="https://publications.waset.org/abstracts/search?q=difficile" title=" difficile"> difficile</a>, <a href="https://publications.waset.org/abstracts/search?q=diarrhea" title=" diarrhea"> diarrhea</a>, <a href="https://publications.waset.org/abstracts/search?q=elderly" title=" elderly"> elderly</a>, <a href="https://publications.waset.org/abstracts/search?q=tcdA" title=" tcdA"> tcdA</a>, <a href="https://publications.waset.org/abstracts/search?q=tcdB" title=" tcdB"> tcdB</a> </p> <a href="https://publications.waset.org/abstracts/183772/relationship-between-tcda-and-tcdb-genes-of-clostridium-difficile-with-duration-of-diarrhea-in-elderly-patients" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/183772.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">86</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">45</span> Electroactivity of Clostridium saccharoperbutylacetonicum 1-4N during Carbon Dioxide Reduction in a Bioelectrosynthesis System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Carlos%20A.%20Garcia-Mogollon">Carlos A. Garcia-Mogollon</a>, <a href="https://publications.waset.org/abstracts/search?q=Juan%20C.%20Quintero-Diaz"> Juan C. Quintero-Diaz</a>, <a href="https://publications.waset.org/abstracts/search?q=Claudio%20Avignone-Rossa"> Claudio Avignone-Rossa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Clostridium saccharoperbutylacetonicum 1-4N (Csb 1-4N) is an industrial reference strain for Acetone-Butanol-Ethanol (ABE) fermentation. Csb 1-4N is a solventogenic clostridium and H₂ producer with a metabolic profile that makes it a good candidate for Bioelectrosynthesis System (BES). The aim of this study was to evaluate the electroactivity of Csb 1-4N by cyclic voltammetry technique (CV). The Bioelectrosynthesis fermentation (BES) started in a Triptone-Yeast extract (TY) medium with trace elements and vitamins, Complex Nitrogen Source (CNS), and bicarbonate (NaHCO₃, 4g/L) as a carbon source, run at -600mVAg/AgCl and adding 200uM NADH. The six BES batches were performed with different media composition with and without NADH, CNS, HCO₃⁻ , and applied potential. The CV was performed as three-electrode system: platinum slice working electrode (WE), nickel contra electrode (CE) and reference electrode Ag/AgCl (ER). CVs were run in a potential range of -0.7V to 0.7V vs. VAg/AgCl at a scan rate 10mV/s. A CV recorded using different NaHCO₃ concentrations (0.25; 0.5; 1.0; 4g/L) were obtained. BES fermentation samples were centrifuged (3000 rpm, 5min, 4C), and supernatant (7mL) was used. CVs were obtained for Csb1-4N BES culture cell-free supernatant at 0h, 24h, and 48h. The electrochemical analysis was carried out with a PalmSens 4.0 potentiostat/galvanostat controlled with the PStrace 5.7 software, and CVs curves were characterized by reduction and oxidation currents and reduction and oxidation peaks. The CVs obtained for NaHCO₃ solutions showed that the reduction current and oxidation current decreased as the NaHCO₃ concentration was decreased. All reduction and oxidation currents decreased until exponential growth stop (24h), independence of initial cathodic current, except in medium with trace elements, vitamins, and NaHCO3, in which reduction current was around half at 24h and followed decreasing at 48. In this medium, Csb1-4N did not grow, but pH was increased, indicating that NaHCO₃ was reduced as the reduction current decreased. In general, at 48h reduction currents did not present important changes between different mediums in BES cultures. In terms of intensities in the peaks (Ip) did not present important variations; except with Ipa and Ipc in BES culture with NaHCO₃ and NADH added are higher than peaks in other cultures. Based on results, cathodic and anodic currents changes were induced by NaHCO₃ reduction reactions during Csb1-4N metabolic activity in different BES experiments. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=clostridium%20saccharoperbutylacetonicum%201-4N" title="clostridium saccharoperbutylacetonicum 1-4N">clostridium saccharoperbutylacetonicum 1-4N</a>, <a href="https://publications.waset.org/abstracts/search?q=bioelectrosynthesis" title=" bioelectrosynthesis"> bioelectrosynthesis</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20dioxide%20fixation" title=" carbon dioxide fixation"> carbon dioxide fixation</a>, <a href="https://publications.waset.org/abstracts/search?q=cyclic%20voltammetry" title=" cyclic voltammetry"> cyclic voltammetry</a> </p> <a href="https://publications.waset.org/abstracts/127614/electroactivity-of-clostridium-saccharoperbutylacetonicum-1-4n-during-carbon-dioxide-reduction-in-a-bioelectrosynthesis-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/127614.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">136</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">44</span> Microbial Fuel Cells in Waste Water Treatment and Electricity Generation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rajalaxmi%20N.">Rajalaxmi N.</a>, <a href="https://publications.waset.org/abstracts/search?q=Padma%20Bhat"> Padma Bhat</a>, <a href="https://publications.waset.org/abstracts/search?q=Pooja%20Garag"> Pooja Garag</a>, <a href="https://publications.waset.org/abstracts/search?q=Pooja%20N.%20M."> Pooja N. M.</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20S.%20Hombalimath"> V. S. Hombalimath</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Microbial fuel cell (MFC) is the advancement of science that aims at utilizing the oxidizing potential of bacteria for wastewater treatment and production of bio-hydrogen and bio-electricity. Salt-bridge is the economic alternative to highly priced proton-exchange membrane in the construction of a microbial fuel cell. This paper studies the electricity generating capacity of E.coli and Clostridium sporogenes in microbial fuel cells (MFCs). Unlike most of MFC research, this targets the long term goals of renewable energy production and wastewater treatment. In present study the feasibility and potential of bioelectricity production from different wastewater was observed. Different wastewater was primarily treated which were confirmed by the COD tests which showed reduction of COD. We observe that the electricity production of MFCs decreases almost linearly after 120 hrs. The sewage wastewater containing Clostridium sporogenes showed bioelectricity production up to 188mV with COD removal of 60.52%. Sewage wastewater efficiently produces bioelectricity and this also helpful to reduce wastewater pollution load. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=microbial%20fuel%20cell" title="microbial fuel cell">microbial fuel cell</a>, <a href="https://publications.waset.org/abstracts/search?q=bioelectricity" title=" bioelectricity"> bioelectricity</a>, <a href="https://publications.waset.org/abstracts/search?q=wastewater" title=" wastewater"> wastewater</a>, <a href="https://publications.waset.org/abstracts/search?q=salt%20bridge" title=" salt bridge"> salt bridge</a>, <a href="https://publications.waset.org/abstracts/search?q=COD" title=" COD"> COD</a> </p> <a href="https://publications.waset.org/abstracts/23470/microbial-fuel-cells-in-waste-water-treatment-and-electricity-generation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23470.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">537</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">43</span> Socio-Demographic Factors and Testing Practices Are Associated with Spatial Patterns of Clostridium difficile Infection in the Australian Capital Territory, 2004-2014</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aparna%20Lal">Aparna Lal</a>, <a href="https://publications.waset.org/abstracts/search?q=Ashwin%20Swaminathan"> Ashwin Swaminathan</a>, <a href="https://publications.waset.org/abstracts/search?q=Teisa%20Holani"> Teisa Holani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Clostridium difficile infections (CDIs) have been on the rise globally. In Australia, rates of CDI in all States and Territories have increased significantly since mid-2011. Identifying risk factors for CDI in the community can help inform targeted interventions to reduce infection. Methods: We examine the role of neighbourhood socio-economic status, demography, testing practices and the number of residential aged care facilities on spatial patterns in CDI incidence in the Australian Capital Territory. Data on all tests conducted for CDI were obtained from ACT Pathology by postcode for the period 1st January 2004 through 31 December 2014. Distribution of age groups and the neighbourhood Index of Relative Socio-economic Advantage Disadvantage (IRSAD) were obtained from the Australian Bureau of Statistics 2011 National Census data. A Bayesian spatial conditional autoregressive model was fitted at the postcode level to quantify the relationship between CDI and socio-demographic factors. To identify CDI hotspots, exceedance probabilities were set at a threshold of twice the estimated relative risk. Results: CDI showed a positive spatial association with the number of tests (RR=1.01, 95% CI 1.00, 1.02) and the resident population over 65 years (RR=1.00, 95% CI 1.00, 1.01). The standardized index of relative socio-economic advantage disadvantage (IRSAD) was significantly negatively associated with CDI (RR=0.74, 95% CI 0.56, 0.94). We identified three postcodes with high probability (0.8-1.0) of excess risk. Conclusions: Here, we demonstrate geographic variations in CDI in the ACT with a positive association of CDI with socioeconomic disadvantage and identify areas with a high probability of elevated risk compared with surrounding communities. These findings highlight community-based risk factors for CDI. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=spatial" title="spatial">spatial</a>, <a href="https://publications.waset.org/abstracts/search?q=socio-demographic" title=" socio-demographic"> socio-demographic</a>, <a href="https://publications.waset.org/abstracts/search?q=infection" title=" infection"> infection</a>, <a href="https://publications.waset.org/abstracts/search?q=Clostridium%20difficile" title=" Clostridium difficile"> Clostridium difficile</a> </p> <a href="https://publications.waset.org/abstracts/47086/socio-demographic-factors-and-testing-practices-are-associated-with-spatial-patterns-of-clostridium-difficile-infection-in-the-australian-capital-territory-2004-2014" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47086.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">320</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">42</span> Genomic Diversity of Clostridium perfringens Strains in Food and Human Sources</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Asma%20Afshari">Asma Afshari</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdollah%20Jamshidi"> Abdollah Jamshidi</a>, <a href="https://publications.waset.org/abstracts/search?q=Jamshid%20Razmyar"> Jamshid Razmyar</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehrnaz%20Rad"> Mehrnaz Rad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Clostridium perfringens is a serious pathogen which causes enteric diseases in domestic animals and food poisoning in humans. Spores can survive cooking processes and play an important role in the possible onset of disease. In this study RAPD-PCR and REP-PCR were used to examine the genetic diversity of 49isolates ofC. Perfringens type A from 3 different sources. The results of RAPD-PCR revealed the most genetic diversity among poultry isolates, while human isolates showed the least genetic diversity. Cluster analysis obtained from RAPD_PCR and based on the genetic distances split the 49 strains into five distinct major clusters (A, B, C, D, and E). Cluster A and C were composed of isolates from poultry meat, cluster B was composed of isolates from human feces, cluster D was composed of isolates from minced meat, poultry meat and human feces and cluster E was composed of isolates from minced meat. Further characterization of these strains by using (GTG) 5 fingerprint repetitive sequence-based PCR analysis did not show further differentiation between various types of strains. To our knowledge, this is the first study in which the genetic diversity of C. perfringens isolates from different types of meats and human feces has been investigated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=C.%20perfringens" title="C. perfringens">C. perfringens</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20diversity" title=" genetic diversity"> genetic diversity</a>, <a href="https://publications.waset.org/abstracts/search?q=RAPD-PCR" title=" RAPD-PCR"> RAPD-PCR</a>, <a href="https://publications.waset.org/abstracts/search?q=REP-PCR" title=" REP-PCR"> REP-PCR</a> </p> <a href="https://publications.waset.org/abstracts/35846/genomic-diversity-of-clostridium-perfringens-strains-in-food-and-human-sources" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35846.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">492</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">41</span> Safety and Efficacy of Recombinant Clostridium botulinum Types B Vaccine Candidate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mi-Hye%20Hwang">Mi-Hye Hwang</a>, <a href="https://publications.waset.org/abstracts/search?q=Young%20Min%20Son"> Young Min Son</a>, <a href="https://publications.waset.org/abstracts/search?q=Kichan%20Lee"> Kichan Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Bang-Hun%20Hyun"> Bang-Hun Hyun</a>, <a href="https://publications.waset.org/abstracts/search?q=Byeong%20Yeal%20Jung">Byeong Yeal Jung</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Botulism is a paralytic disease of human beings and animals caused by neurotoxin produced by Clostridium botulinum. The neurotoxins are genetically distinguished into 8 types, A to H. Ingestion of performed toxin, usually types B, C, and D, have been shown to produce diseases in most cases of cattle botulism. Vaccination is the best measure to prevent cattle botulism. However, the commercially available toxoid-based vaccines are difficult and hazardous to produce. We produced recombinant protein using gene of heavy chain domain of botulinum toxin B of which binds to cellular receptor of neuron cells and used as immunogen. In this study, we evaluated the safety and efficacy of botulism vaccine composed of recombinant types B. Safety test was done by National Regulation for Veterinary Biologicals. For efficacy test, female ICR mice (5 weeks old) were subcutaneously injected, intraperitoneally challenged, and examined the survival rates compared with vaccination and non-vaccination group. Mouse survival rate of recombinant types B vaccine was above 80%, while one of non-vaccination group was 0%. A vaccine composed of recombinant types B was safe and efficacious in mouse. Our results suggest that recombinant heavy chain receptor binding domain can be used as an effective vaccine candidate for type B botulism. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=botulism" title="botulism">botulism</a>, <a href="https://publications.waset.org/abstracts/search?q=livestock" title=" livestock"> livestock</a>, <a href="https://publications.waset.org/abstracts/search?q=vaccine" title=" vaccine"> vaccine</a>, <a href="https://publications.waset.org/abstracts/search?q=recombinant%20protein" title=" recombinant protein"> recombinant protein</a>, <a href="https://publications.waset.org/abstracts/search?q=toxin" title=" toxin"> toxin</a> </p> <a href="https://publications.waset.org/abstracts/80612/safety-and-efficacy-of-recombinant-clostridium-botulinum-types-b-vaccine-candidate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80612.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">239</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">40</span> Review of Consecutive Patients Treated with a Combination of Vancomycin and Rifaximin for Diarrhea Predominant Irritable Bowel Syndrome (IBS-D)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Portia%20Murphy">Portia Murphy</a>, <a href="https://publications.waset.org/abstracts/search?q=Danica%20Vasic"> Danica Vasic</a>, <a href="https://publications.waset.org/abstracts/search?q=Anoja%20W.%20Gunaratne"> Anoja W. Gunaratne</a>, <a href="https://publications.waset.org/abstracts/search?q=Encarnita%20Sitchon"> Encarnita Sitchon</a>, <a href="https://publications.waset.org/abstracts/search?q=Teresita%20Tugonon"> Teresita Tugonon</a>, <a href="https://publications.waset.org/abstracts/search?q=Marou%20Ison"> Marou Ison</a>, <a href="https://publications.waset.org/abstracts/search?q=Antoinette%20Le%20Busque"> Antoinette Le Busque</a>, <a href="https://publications.waset.org/abstracts/search?q=Christelle%20Pagonis"> Christelle Pagonis</a>, <a href="https://publications.waset.org/abstracts/search?q=Thomas%20J.%20Borody"> Thomas J. Borody</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Irritable bowel syndrome (IBS) is a chronic gastrointestinal disorder that affects an estimated 11% of the population globally with the most predominant symptoms being abdominal pain, bloating and altered bowel movements. All age groups suffer from IBS although the prevalence of IBS decreases for age groups over 50 years. Women are more likely to suffer from IBS than men. IBS can be categorized into 3 groups based on the type of altered bowel movement: diarrhea-predominant IBS (IBS-D), constipation-predominant IBS (IBS-C) and IBS with mixed bowel habit (IBS-M). The contribution of the gut microbiome to the etiology of IBS is becoming increasingly recognized with rising use of anti-microbial agents. Previous studies on vancomycin and rifaximin used as monotherapy or in combination have been conducted mainly on IBS-C and showed marked improvements in the symptoms. According to our knowledge, no studies reported using these two combinations of antibiotics for IBS-D. Here, we report a consecutive cohort of 18 patients treated with both vancomycin and rifaximin for IBS-D. These patients’ records were reviewed retrospectively. In this cohort, patients ages were between 24-74 years (mean 44 years) and 9 were female. Baseline all patients had diarrhea, 4 with mucus and one with blood. Patients reported other symptoms were abdominal pain (n=11) bloating (n=9), flatulence (n=7), fatigue (n=4) and nausea (n=3). Patients treatments were personalized according to their symptom severity and tolerability and were treated with combination of rifaximin (500 - 3000mg/d) and vancomycin (500mg - 1500mg/d) for an ongoing period. Follow-ups were conducted between 2-32 weeks’ time. Of all patients, 89% patients reported improvement of the symptoms, 1 reported no change and 1 patient’s symptoms got worse. The mechanism of action for both vancomycin and rifaximin involves the inhibition of bacterial cell wall and protein synthesis respectively. The role of these medications in improving the symptoms of this cohort suggests that IBS-D may be microbiome infection driven. In this cohort, similar patient presentations to Clostridium difficile, as well as symptom improvement with the use of rifaximin and particularly vancomycin, suggest that the infectious agent may be an unidentified Clostridium. These preliminary results offer an alternative etiology for IBS-D not previously considered and open the avenue for new research. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=clostridium%20deficile" title="clostridium deficile">clostridium deficile</a>, <a href="https://publications.waset.org/abstracts/search?q=diarrhea%20predominant%20Irritable%20Bowel%20Syndrome" title=" diarrhea predominant Irritable Bowel Syndrome"> diarrhea predominant Irritable Bowel Syndrome</a>, <a href="https://publications.waset.org/abstracts/search?q=microbiome" title=" microbiome"> microbiome</a>, <a href="https://publications.waset.org/abstracts/search?q=vancomycin%2Frifaximin%20combination" title=" vancomycin/rifaximin combination"> vancomycin/rifaximin combination</a> </p> <a href="https://publications.waset.org/abstracts/155117/review-of-consecutive-patients-treated-with-a-combination-of-vancomycin-and-rifaximin-for-diarrhea-predominant-irritable-bowel-syndrome-ibs-d" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/155117.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">130</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">39</span> Assessment of Commercial Antimicrobials Incorporated into Gelatin Coatings and Applied to Conventional Heat-Shrinking Material for the Prevention of Blown Pack Spoilage in Vacuum Packaged Beef Cuts</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Andrey%20A.%20Tyuftin">Andrey A. Tyuftin</a>, <a href="https://publications.waset.org/abstracts/search?q=Rachael%20%20Reid"> Rachael Reid</a>, <a href="https://publications.waset.org/abstracts/search?q=Paula%20%20Bourke"> Paula Bourke</a>, <a href="https://publications.waset.org/abstracts/search?q=Patrick%20J.%20%20Cullen"> Patrick J. Cullen</a>, <a href="https://publications.waset.org/abstracts/search?q=Seamus%20%20Fanning"> Seamus Fanning</a>, <a href="https://publications.waset.org/abstracts/search?q=Paul%20%20Whyte"> Paul Whyte</a>, <a href="https://publications.waset.org/abstracts/search?q=Declan%20%20Bolton"> Declan Bolton </a>, <a href="https://publications.waset.org/abstracts/search?q=Joe%20P.%20%20Kerry"> Joe P. Kerry</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the primary spoilage issues associated with vacuum-packed beef products is blown pack spoilage (BPS) caused by the psychrophilic spore-forming strain of Clostridium spp. Spores derived from this organism can be activated after heat-shrinking (eg. 90°C for 3 seconds). To date, research into the control of Clostridium spp in beef packaging is limited. Active packaging in the form of antimicrobially-active coatings may be one approach to its control. Antimicrobial compounds may be incorporated into packaging films or coated onto the internal surfaces of packaging films using a carrier matrix. Three naturally-sourced, commercially-available antimicrobials, namely; Auranta FV (AFV) (bitter oranges extract) from Envirotech Innovative Products Ltd, Ireland; Inbac-MDA (IMDA) from Chemital LLC, Spain, mixture of different organic acids and sodium octanoate (SO) from Sigma-Aldrich, UK, were added into gelatin solutions at 2 concentrations: 2.5 and 3.5 times their minimum inhibition concentration (MIC) against Clostridium estertheticum (DSMZ 8809). These gelatin solutions were coated onto the internal polyethylene layer of cold plasma treated, heat-shrinkable laminates conventionally used for meat packaging applications. Atmospheric plasma was used in order to enhance adhesion between packaging films and gelatin coatings. Pouches were formed from these coated packaging materials, and beef cuts which had been inoculated with C. estertheticum were vacuum packaged. Inoculated beef was vacuum packaged without employing active films and this treatment served as the control. All pouches were heat-sealed and then heat-shrunk at 90°C for 3 seconds and incubated at 2°C for 100 days. During this storage period, packs were monitored for the indicators of blown pack spoilage as follows; gas bubbles in drip, loss of vacuum (onset of BPS), blown, the presence of sufficient gas inside the packs to produce pack distension and tightly stretched, “overblown” packs/ packs leaking. Following storage and assessment of indicator date, it was concluded that AFV- and SO-containing packaging inhibited the growth of C. estertheticum, significantly delaying the blown pack spoilage of beef primals. IMDA did not inhibit the growth of C. estertheticum. This may be attributed to differences in release rates and possible reactions with gelatin. Overall, active films were successfully produced following plasma surface treatment, and experimental data demonstrated clearly that the use of antimicrobially-active films could significantly prolong the storage stability of beef primals through the effective control of BPS. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=active%20packaging" title="active packaging">active packaging</a>, <a href="https://publications.waset.org/abstracts/search?q=blown%20pack%20spoilage" title=" blown pack spoilage"> blown pack spoilage</a>, <a href="https://publications.waset.org/abstracts/search?q=Clostridium" title=" Clostridium"> Clostridium</a>, <a href="https://publications.waset.org/abstracts/search?q=antimicrobials" title=" antimicrobials"> antimicrobials</a>, <a href="https://publications.waset.org/abstracts/search?q=edible%20coatings" title=" edible coatings"> edible coatings</a>, <a href="https://publications.waset.org/abstracts/search?q=food%20packaging" title=" food packaging"> food packaging</a>, <a href="https://publications.waset.org/abstracts/search?q=gelatin%20films" title=" gelatin films"> gelatin films</a>, <a href="https://publications.waset.org/abstracts/search?q=meat%20science" title=" meat science"> meat science</a> </p> <a href="https://publications.waset.org/abstracts/62140/assessment-of-commercial-antimicrobials-incorporated-into-gelatin-coatings-and-applied-to-conventional-heat-shrinking-material-for-the-prevention-of-blown-pack-spoilage-in-vacuum-packaged-beef-cuts" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62140.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">265</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">38</span> Effect of Inoculum Ratio on Dark Fermentative Hydrogen Production</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zeynep%20Yilmazer%20Hitit">Zeynep Yilmazer Hitit</a>, <a href="https://publications.waset.org/abstracts/search?q=Patrick%20C.%20Hallenbeck"> Patrick C. Hallenbeck</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fuel reserve requirements due to depletion of fossil fuels have increased interest in biohydrogen since the 1990’s. In fermentative hydrogen production, pure, mixed, and co-cultures can be used to produce hydrogen. Several previous studies have evaluated hydrogen production by pure cultures of Clostridium butyricum or Enterobacter aerogenes. Evaluating hydrogen production by co-culture of these microorganisms is an interestıng approach since E. aerogenes is a facultative microorganism with resistance to oxygen in contrast to the strict anaerobe C. butyricum, and therefore has the ability to maintain anaerobic conditions. It was found that using co-cultures of facultative E. aerogenes (as a reducing agent and H2 producer) and the obligate anaerobe C. butyricum for producing hydrogen increases the yield of hydrogen by about 50% compared to C. butyricum by itself. Also, using different types of microorganisms for hydrogen production eliminates the need to use expensive reducing agents. C. butyricum strain pre-cultured anaerobically at 37 0C for 15h by inoculating 100 mL of GP medium (pH 6.8) consisting of 1% glucose, 2% polypeptone, 0.2% KH2PO4, 0.05% yeast extract, 0.05% MgSO4. 7H2O and E. aerogenes strain was pre-cultured aerobically at 30 0C, 150 rpm for 9 h by inoculating 100 mL of TGY medium (pH 6.8), consisting of 0.1% glucose, 0.5% tryptone, 0.1% K2HPO4, 0.5% yeast extract. All duplicate batch experiments were conducted in 100 mL bottles with different inoculum ratios of Clostridium butyricum and Enterobater aerogenes (C:E) using 5x diluted rich media (GP) consisting of 2 g/L glucose, 4g/L polypeptone, 0.4 g/L KH2PO4, 0.1 g/L yeast extract, 0.1 MgSO4.7H2O. The range of inoculum ratio of C. butyricum to E. aerogenes were 2:1,4:1,8:1, 1:2,1:4, 1:8, 1:0, 0:1. Using glucose as a carbon source aided in the observation of microbial behavior as well as making the effect of inoculum ratio more evident. Nearly all the glucose in the medium was used to produce hydrogen, except at a 1:0 ratio of inoculum (i.e. containing only C. butyricum). Low glucose consumption leads to a higher hydrogen yield due to cumulative hydrogen production and consumption of glucose, but not as much as C:E, 8:1. The lowest hydrogen yield was achieved in 1:8 inoculum ratio of C:E, 71.9 mL, 1.007±0.01 mol H2/mol glucose and the highest cumulative hydrogen, hydrogen yield and dry cell weight were achieved in 8:1 inoculum ratio of C:E, 117.4 mL, 2.035±0.082 mol H2/mol glucose, 0.4 g/L respectively. In this study effect of inoculum ratio on dark fermentative biohydrogen production using C. butyricum and E. aerogenes was investigated. The maximum hydrogen yield of 2.035mol H2/mol glucose was obtained using 2g/L glucose, an initial pH of 6 and an inoculum ratio of C. butyricum to E. aerogenes of 8:1. Results showed that inoculum ratio is an important parameter on hydrogen production due to competition between the two microorganisms in using substrate for growth and production of by-products. The results presented here could be of great significance for further waste management studies using co-culture hydrogen production. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biohydrogen" title="biohydrogen">biohydrogen</a>, <a href="https://publications.waset.org/abstracts/search?q=Clostridium%20butyricum" title=" Clostridium butyricum"> Clostridium butyricum</a>, <a href="https://publications.waset.org/abstracts/search?q=dark%20fermentation" title=" dark fermentation"> dark fermentation</a>, <a href="https://publications.waset.org/abstracts/search?q=Enterobacter%20aerogenes" title=" Enterobacter aerogenes"> Enterobacter aerogenes</a>, <a href="https://publications.waset.org/abstracts/search?q=inoculum%20ratio%20in%20biohydrogen%20production" title=" inoculum ratio in biohydrogen production"> inoculum ratio in biohydrogen production</a> </p> <a href="https://publications.waset.org/abstracts/47191/effect-of-inoculum-ratio-on-dark-fermentative-hydrogen-production" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47191.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">236</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">37</span> Microbiological Analysis on Anatomical Specimens of Cats for Use in Veterinary Surgery</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Raphael%20C.%20Zero">Raphael C. Zero</a>, <a href="https://publications.waset.org/abstracts/search?q=Marita%20%20V.%20Cardozo"> Marita V. Cardozo</a>, <a href="https://publications.waset.org/abstracts/search?q=Thiago%20A.%20S.%20S.%20Rocha"> Thiago A. S. S. Rocha</a>, <a href="https://publications.waset.org/abstracts/search?q=Mariana%20T.%20Kihara"> Mariana T. Kihara</a>, <a href="https://publications.waset.org/abstracts/search?q=Fernando%20A.%20%C3%81vila"> Fernando A. Ávila</a>, <a href="https://publications.waset.org/abstracts/search?q=Fabr%C3%ADcio%20%20S.%20Oliveira"> Fabrício S. Oliveira</a> </p> <p class="card-text"><strong>Abstract:</strong></p> There are several fixative and preservative solutions for use on cadavers, many of them using formaldehyde as the fixative or anatomical part preservative. In some countries, such as Brazil, this toxic agent has been increasingly restricted. The objective of this study was to microbiologically identify and quantify the key agents in tanks containing 96GL ethanol or sodium chloride solutions, used respectively as fixatives and preservatives of cat cadavers. Eight adult cat corpses, three females and five males, with an average weight of 4.3 kg, were used. After injection via the external common carotid artery (120 ml/kg, 95% 96GL ethyl alcohol and 5% pure glycerin), the cadavers were fixed in a plastic tank with 96GL ethanol for 60 days. After fixing, they were stored in a 30% sodium chloride aqueous solution for 120 days in a similar tank. Samples were collected at the start of the experiment - before the animals were placed in the ethanol tanks, and monthly thereafter. The bacterial count was performed by Pour Plate Method in BHI agar (Brain Heart Infusion) and the plates were incubated aerobically and anaerobically for 24h at 37ºC. MacConkey agar, SPS agar (Sulfite Polymyxin Sulfadizine) and MYP Agar Base were used to isolate the microorganisms. There was no microbial growth in the samples prior to alcohol fixation. After 30 days of fixation in the alcohol solution, total aerobic and anaerobic (<1.0 x 10 CFU/ml) were found and Pseudomonas sp., Staphylococcus sp., Clostridium sp. were the identified agents. After 60 days in the alcohol fixation solution, total aerobes (<1.0 x 10 CFU/ml) and total anaerobes (<2.2 x 10 CFU/mL) were found, and the identified agents were the same. After 30 days of storage in the aqueous solution of 30% sodium chloride, total aerobic (<5.2 x 10 CFU/ml) and total anaerobes (<3.7 x 10 CFU/mL) were found and the agents identified were Staphylococcus sp., Clostridium sp., and fungi. After 60 days of sodium chloride storage, total aerobic (<3.0 x 10 CFU / ml) and total anaerobes (<7.0 x 10 CFU/mL) were found and the identified agents remained the same: Staphylococcus sp., Clostridium sp., and fungi. The microbiological count was low and visual inspection did not reveal signs of contamination in the tanks. There was no strong odor or purification, which proved the technique to be microbiologically effective in fixing and preserving the cat cadavers for the four-month period in which they are provided to undergraduate students of University of Veterinary Medicine for surgery practice. All experimental procedures were approved by the Municipal Legal Department (protocol 02.2014.000027-1). The project was funded by FAPESP (protocol 2015-08259-9). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anatomy" title="anatomy">anatomy</a>, <a href="https://publications.waset.org/abstracts/search?q=fixation" title=" fixation"> fixation</a>, <a href="https://publications.waset.org/abstracts/search?q=microbiology" title=" microbiology"> microbiology</a>, <a href="https://publications.waset.org/abstracts/search?q=small%20animal" title=" small animal"> small animal</a>, <a href="https://publications.waset.org/abstracts/search?q=surgery" title=" surgery"> surgery</a> </p> <a href="https://publications.waset.org/abstracts/59574/microbiological-analysis-on-anatomical-specimens-of-cats-for-use-in-veterinary-surgery" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59574.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">289</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">36</span> Evaluating Cyanide Biodegradation by Bacteria Isolated from Gold Mine Effluents in Bulawayo, Zimbabwe</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ngonidzashe%20Mangoma">Ngonidzashe Mangoma</a>, <a href="https://publications.waset.org/abstracts/search?q=Caroline%20Marigold%20Sebata"> Caroline Marigold Sebata</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The release of cyanide-rich effluents from gold mines, and other industries, into the environment, is a global concern considering the well-known metabolic effects of cyanide in all forms of life. Such effluents need to be treated to remove cyanide, among other pollutants, before their disposal. This study aimed at investigating the possible use of bacteria in the biological removal of cyanide from cyanide-rich effluents. Firstly, cyanide-degrading bacteria were isolated from gold mine effluents and characterised. The isolates were then tested for their ability to grow in the presence of cyanide and their tolerance to increasing levels of the compound. To evaluate each isolate’s cyanide-degrading activities, isolates were grown in the simulated and actual effluent, and a titrimetric method was used to quantify residual cyanide over a number of days. Cyanide degradation efficiency (DE) was then calculated for each isolate. Identification of positive isolates involved 16S rRNA gene amplification and sequence analysis through BLAST. Six cyanide-utilising bacterial strains were isolated. Two of the isolates were identified as Klebsiella spp. while the other two were shown to be different strains of Clostridium bifermentans. All isolates showed normal growth in the presence of cyanide, with growth being inhibited at 700 mg/L cyanide and beyond. Cyanide degradation efficiency for all isolates in the simulated effluent ranged from 79% to 97%. All isolates were able to remove cyanide from actual gold mine effluent with very high DE values (90 – 94%) being recorded. Isolates obtained in this study were able to efficiently remove cyanide from both simulated and actual effluent. This observation clearly demonstrates the feasibility of the biological removal of cyanide from cyanide-rich gold mine effluents and should, therefore, motivate research towards the possible large-scale application of this technology. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cyanide%20effluent" title="cyanide effluent">cyanide effluent</a>, <a href="https://publications.waset.org/abstracts/search?q=bioremediation" title=" bioremediation"> bioremediation</a>, <a href="https://publications.waset.org/abstracts/search?q=Clostridium%20bifermentans" title=" Clostridium bifermentans"> Clostridium bifermentans</a>, <a href="https://publications.waset.org/abstracts/search?q=Klebsiella%20spp" title=" Klebsiella spp"> Klebsiella spp</a>, <a href="https://publications.waset.org/abstracts/search?q=environment" title=" environment"> environment</a> </p> <a href="https://publications.waset.org/abstracts/100587/evaluating-cyanide-biodegradation-by-bacteria-isolated-from-gold-mine-effluents-in-bulawayo-zimbabwe" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/100587.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">177</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">35</span> Upflow Anaerobic Sludge Blanket Reactor Followed by Dissolved Air Flotation Treating Municipal Sewage</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Priscila%20Ribeiro%20dos%20Santos">Priscila Ribeiro dos Santos</a>, <a href="https://publications.waset.org/abstracts/search?q=Luiz%20Antonio%20Daniel"> Luiz Antonio Daniel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Inadequate access to clean water and sanitation has become one of the most widespread problems affecting people throughout the developing world, leading to an unceasing need for low-cost and sustainable wastewater treatment systems. The UASB technology has been widely employed as a suitable and economical option for the treatment of sewage in developing countries, which involves low initial investment, low energy requirements, low operation and maintenance costs, high loading capacity, short hydraulic retention times, long solids retention times and low sludge production. Whereas dissolved air flotation process is a good option for the post-treatment of anaerobic effluents, being capable of producing high quality effluents in terms of total suspended solids, chemical oxygen demand, phosphorus, and even pathogens. This work presents an evaluation and monitoring, over a period of 6 months, of one compact full-scale system with this configuration, UASB reactors followed by dissolved air flotation units (DAF), operating in Brazil. It was verified as a successful treatment system, and an issue of relevance since dissolved air flotation process treating UASB reactor effluents is not widely encompassed in the literature. The study covered the removal and behavior of several variables, such as turbidity, total suspend solids (TSS), chemical oxygen demand (COD), Escherichia coli, total coliforms and Clostridium perfringens. The physicochemical variables were analyzed according to the protocols established by the Standard Methods for Examination of Water and Wastewater. For microbiological variables, such as Escherichia coli and total coliforms, it was used the “pour plate” technique with Chromocult Coliform Agar (Merk Cat. No.1.10426) serving as the culture medium, while the microorganism Clostridium perfringens was analyzed through the filtering membrane technique, with the Ágar m-CP (Oxoid Ltda, England) serving as the culture medium. Approximately 74% of total COD was removed in the UASB reactor, and the complementary removal done during the flotation process resulted in 88% of COD removal from the raw sewage, thus the initial concentration of COD of 729 mg.L-1 decreased to 87 mg.L-1. Whereas, in terms of particulate COD, the overall removal efficiency for the whole system was about 94%, decreasing from 375 mg.L-1 in raw sewage to 29 mg.L-1 in final effluent. The UASB reactor removed on average 77% of the TSS from raw sewage. While the dissolved air flotation process did not work as expected, removing only 30% of TSS from the anaerobic effluent. The final effluent presented an average concentration of 38 mg.L-1 of TSS. The turbidity was significantly reduced, leading to an overall efficiency removal of 80% and a final turbidity of 28 NTU.The treated effluent still presented a high concentration of fecal pollution indicators (E. coli, total coliforms, and Clostridium perfringens), showing that the system did not present a good performance in removing pathogens. Clostridium perfringens was the organism which suffered the higher removal by the treatment system. The results can be considered satisfactory for the physicochemical variables, taking into account the simplicity of the system, besides that, it is necessary a post-treatment to improve the microbiological quality of the final effluent. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dissolved%20air%20flotation" title="dissolved air flotation">dissolved air flotation</a>, <a href="https://publications.waset.org/abstracts/search?q=municipal%20sewage" title=" municipal sewage"> municipal sewage</a>, <a href="https://publications.waset.org/abstracts/search?q=UASB%20reactor" title=" UASB reactor"> UASB reactor</a>, <a href="https://publications.waset.org/abstracts/search?q=treatment" title=" treatment"> treatment</a> </p> <a href="https://publications.waset.org/abstracts/37925/upflow-anaerobic-sludge-blanket-reactor-followed-by-dissolved-air-flotation-treating-municipal-sewage" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37925.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">331</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">34</span> CLOUD Japan: Prospective Multi-Hospital Study to Determine the Population-Based Incidence of Hospitalized Clostridium difficile Infections</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kazuhiro%20Tateda">Kazuhiro Tateda</a>, <a href="https://publications.waset.org/abstracts/search?q=Elisa%20Gonzalez"> Elisa Gonzalez</a>, <a href="https://publications.waset.org/abstracts/search?q=Shuhei%20Ito"> Shuhei Ito</a>, <a href="https://publications.waset.org/abstracts/search?q=Kirstin%20Heinrich"> Kirstin Heinrich</a>, <a href="https://publications.waset.org/abstracts/search?q=Kevin%20Sweetland"> Kevin Sweetland</a>, <a href="https://publications.waset.org/abstracts/search?q=Pingping%20Zhang"> Pingping Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Catia%20Ferreira"> Catia Ferreira</a>, <a href="https://publications.waset.org/abstracts/search?q=Michael%20Pride"> Michael Pride</a>, <a href="https://publications.waset.org/abstracts/search?q=Jennifer%20Moisi"> Jennifer Moisi</a>, <a href="https://publications.waset.org/abstracts/search?q=Sharon%20Gray"> Sharon Gray</a>, <a href="https://publications.waset.org/abstracts/search?q=Bennett%20Lee"> Bennett Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Fred%20Angulo"> Fred Angulo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Clostridium difficile (C. difficile) is the most common cause of antibiotic-associated diarrhea and infectious diarrhea in healthcare settings. Japan has an aging population; the elderly are at increased risk of hospitalization, antibiotic use, and C. difficile infection (CDI). Little is known about the population-based incidence and disease burden of CDI in Japan although limited hospital-based studies have reported a lower incidence than the United States. To understand CDI disease burden in Japan, CLOUD (Clostridium difficile Infection Burden of Disease in Adults in Japan) was developed. CLOUD will derive population-based incidence estimates of the number of CDI cases per 100,000 population per year in Ota-ku (population 723,341), one of the districts in Tokyo, Japan. CLOUD will include approximately 14 of the 28 Ota-ku hospitals including Toho University Hospital, which is a 1,000 bed tertiary care teaching hospital. During the 12-month patient enrollment period, which is scheduled to begin in November 2018, Ota-ku residents > 50 years of age who are hospitalized at a participating hospital with diarrhea ( > 3 unformed stools (Bristol Stool Chart 5-7) in 24 hours) will be actively ascertained, consented, and enrolled by study surveillance staff. A stool specimen will be collected from enrolled patients and tested at a local reference laboratory (LSI Medience, Tokyo) using QUIK CHEK COMPLETE® (Abbott Laboratories). which simultaneously tests specimens for the presence of glutamate dehydrogenase (GDH) and C. difficile toxins A and B. A frozen stool specimen will also be sent to the Pfizer Laboratory (Pearl River, United States) for analysis using a two-step diagnostic testing algorithm that is based on detection of C. difficile strains/spores harboring toxin B gene by PCR followed by detection of free toxins (A and B) using a proprietary cell cytotoxicity neutralization assay (CCNA) developed by Pfizer. Positive specimens will be anaerobically cultured, and C. difficile isolates will be characterized by ribotyping and whole genomic sequencing. CDI patients enrolled in CLOUD will be contacted weekly for 90 days following diarrhea onset to describe clinical outcomes including recurrence, reinfection, and mortality, and patient reported economic, clinical and humanistic outcomes (e.g., health-related quality of life, worsening of comorbidities, and patient and caregiver work absenteeism). Studies will also be undertaken to fully characterize the catchment area to enable population-based estimates. The 12-month active ascertainment of CDI cases among hospitalized Ota-ku residents with diarrhea in CLOUD, and the characterization of the Ota-ku catchment area, including estimation of the proportion of all hospitalizations of Ota-ku residents that occur in the CLOUD-participating hospitals, will yield CDI population-based incidence estimates, which can be stratified by age groups, risk groups, and source (hospital-acquired or community-acquired). These incidence estimates will be extrapolated, following age standardization using national census data, to yield CDI disease burden estimates for Japan. CLOUD also serves as a model for studies in other countries that can use the CLOUD protocol to estimate CDI disease burden. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Clostridium%20difficile" title="Clostridium difficile">Clostridium difficile</a>, <a href="https://publications.waset.org/abstracts/search?q=disease%20burden" title=" disease burden"> disease burden</a>, <a href="https://publications.waset.org/abstracts/search?q=epidemiology" title=" epidemiology"> epidemiology</a>, <a href="https://publications.waset.org/abstracts/search?q=study%20protocol" title=" study protocol"> study protocol</a> </p> <a href="https://publications.waset.org/abstracts/99749/cloud-japan-prospective-multi-hospital-study-to-determine-the-population-based-incidence-of-hospitalized-clostridium-difficile-infections" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/99749.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">261</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">33</span> The Correlation between Clostridium Difficile Infection and Bronchial Lung Cancer Occurrence</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Molnar%20Catalina">Molnar Catalina</a>, <a href="https://publications.waset.org/abstracts/search?q=Lexi%20Frankel"> Lexi Frankel</a>, <a href="https://publications.waset.org/abstracts/search?q=Amalia%20Ardeljan"> Amalia Ardeljan</a>, <a href="https://publications.waset.org/abstracts/search?q=Enoch%20Kim"> Enoch Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Marissa%20Dallara"> Marissa Dallara</a>, <a href="https://publications.waset.org/abstracts/search?q=Omar%20Rashid"> Omar Rashid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Clostridium difficile (C. diff) is a toxin-producing bacteria that can cause diarrhea and colitis. U.S. Center for Disease Control and Prevention revealed that C. difficile infection (CDI) has increased from 31 cases per 100,000 persons per year in 1996 to 61 per 100,000 in 2003. Approximately 500,000 cases per year occur in the United States. After exposure, the bacteria colonize the colon, where it adheres to the intestinal epithelium where it produces two toxins: TcdA and TcdB. TcdA affects the intestinal epithelium, causing fluid secretion, inflammation, and tissue necrosis, while TcdB acts as a cytotoxin purpose of this study was to evaluate the association between C diff infection and bronchial lung cancer development. Methods: Using ICD- 9 and ICD-10 codes, the data was provided by a Health Insurance Portability and Accountability Act (HIPAA) compliant national database to assess the patients infected with C diff as opposed to the non-infected patients. The Holy Cross Health, Fort Lauderdale, granted access to the database for the purpose of academic research. Patients were matched for age and Charlson Comorbidity Index (CCI). Standard statistical methods were used. Results: Bronchial lung cancer occurrence in the population not infected with C diff infection was 4741, as opposed to the population infected with C. diff, where 2039 cases of lung cancer were observed. The difference was statistically significant (p-value < 2.2x10^e-16), which reveals that C diff might be protective against bronchial lung cancer. The data was then matched by treatment to create to minimize the effect of treatment bias. Bronchial cancer incidence was 422 and 861 in infected vs. non-infected (p-value of < 2.2x10^e-16), which once more indicates that C diff infection could be beneficial in diminishing bronchial cancer development. Conclusion: This retrospective study conveys a statistical correlation between C diff infection and decreased incidence of lung bronchial cancer. Further studies are needed to comprehend the protective mechanisms of C. Diff infection on lung cancer. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=C.%20diff" title="C. diff">C. diff</a>, <a href="https://publications.waset.org/abstracts/search?q=lung%20cancer" title=" lung cancer"> lung cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=protective" title=" protective"> protective</a>, <a href="https://publications.waset.org/abstracts/search?q=microbiology" title=" microbiology"> microbiology</a> </p> <a href="https://publications.waset.org/abstracts/140195/the-correlation-between-clostridium-difficile-infection-and-bronchial-lung-cancer-occurrence" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/140195.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">235</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">32</span> Kinetics Study for the Recombinant Cellulosome to the Degradation of Chlorella Cell Residuals</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=C.%20C.%20Lin">C. C. Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20C.%20Kan"> S. C. Kan</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20W.%20Yeh"> C. W. Yeh</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20I%20Chen"> C. I Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20J.%20Shieh"> C. J. Shieh</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20C.%20Liu"> Y. C. Liu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, lipid-deprived residuals of microalgae were hydrolyzed for the production of reducing sugars by using the recombinant Bacillus cellulosome, carrying eight genes from the Clostridium thermocellum ATCC27405. The obtained cellulosome was found to exist mostly in the broth supernatant with a cellulosome activity of 2.4 U/mL. Furthermore, the Michaelis-Menten constant (Km) and Vmax of cellulosome were found to be 14.832 g/L and 3.522 U/mL. The activation energy of the cellulosome to hydrolyze microalgae LDRs was calculated as 32.804 kJ/mol. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lipid-deprived%20residuals%20of%20microalgae" title="lipid-deprived residuals of microalgae">lipid-deprived residuals of microalgae</a>, <a href="https://publications.waset.org/abstracts/search?q=cellulosome" title=" cellulosome"> cellulosome</a>, <a href="https://publications.waset.org/abstracts/search?q=cellulose" title=" cellulose"> cellulose</a>, <a href="https://publications.waset.org/abstracts/search?q=reducing%20sugars" title=" reducing sugars"> reducing sugars</a>, <a href="https://publications.waset.org/abstracts/search?q=kinetics" title=" kinetics"> kinetics</a> </p> <a href="https://publications.waset.org/abstracts/30811/kinetics-study-for-the-recombinant-cellulosome-to-the-degradation-of-chlorella-cell-residuals" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30811.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">402</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">31</span> Effect of Coated Sodium Butyrate (CM3000®) On Zootechnical Performance, Immune Status and Necrotic Enteritis After Experimental Infection of Broiler Chickens</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Ahmed%20Tony">Mohamed Ahmed Tony</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Hamoud"> Mohamed Hamoud</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present study was conducted to determine the effect of commercially coated slow-release sodium butyrate (CM3000®) as a feed additive on zootechnical performance, immune status and Clostridium perfringens severity after experimental infection. Three hundred 1-d-old broiler chicks (Cobb 500) were randomly distributed into 3 treatment groups (4 replicates each) using 25 chicks per replicate on floor pens. Control (C) birds were offered non-supplemented basal diets. Treatments 1 and 2 (T1 and T2) were fed diets containing CM3000® at 300 and 500 g/ton feed, respectively, during the entire experimental period (35 days). Feed and water were offered ad-libitum. Feed consumption and body weight were recorded weekly to calculate body weight gain and feed conversion. Blood samples were collected to evaluate the immune status of the birds against Newcastle disease vaccines using HI test. At the end of the experimental period, 20 birds were chosen randomly from each group (5 birds from each pen) to compare carcass yield. At day 16 of age 20 birds from each group (5 birds/replicate) were bacteriologically examined and proved to be free from Clostridium perfringens. The isolated birds were challenged orally with 1 ml buffer containing 106 CFU/ml Clostridium perfringens local isolate and prepared from necrotic enteritis (NE) diseased farms. Birds were observed on a regular basis daily for any signs of NE. Birds that died in the challenged group were necropsied to determine the cause of death. On day 28 of age, the surviving chickens were killed by cervical dislocation and necropsied immediately. Intestinal tracts were removed and intestinal lesions were scored. Tissue samples of the duodenum, jejunum, ileum and cecum for histopathological examination were collected. All collected data were statistically analyzed using IBM SPSS® version 19 software for personal computers. Means were compared by one-way ANOVA (P<0.05) followed by the Duncan Post Hoc test. The results revealed that body weight gain was significantly (P<0.05) improved in chicks fed on both doses of CM3000® compared to the control one. Final body weight gain in T1 and T2 were 2064.94 and 2141.37 g/bird, respectively, while in the control group, the weight gain showed 1952.78 g/bird. In addition, supplementation of diets with CM3000® increased significantly feed intake (P<0.05). Total feed intake in T1 and T2 were 3186.32 and 3273.29 g/bird, respectively; however, feed intake in the control group recorded 3081.95 g/bird. The best feed conversion was recorded in T2 group (1.53). Feed conversion in the control and T1 groups were 1.58 and 1.54, respectively. Dressing percentage, liver weights and the other carcasses yields were not different between treatments. The butyrate significantly enhanced immune responses measured against Newcastle disease vaccines. Sodium butyrate significantly reduced NE lesions and healthy improved the intestinal tissues in the samples collected from T1 and T2-challenged chickens versus those collected from the control group. In conclusion, exogenous administration of slow-release butyrate (CM3000®) is capable of improving performance, enhancing immunity and NE disease resistance in broiler chickens. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sodium%20butyrate" title="sodium butyrate">sodium butyrate</a>, <a href="https://publications.waset.org/abstracts/search?q=broiler%20chicken" title=" broiler chicken"> broiler chicken</a>, <a href="https://publications.waset.org/abstracts/search?q=zootechnical%20performance" title=" zootechnical performance"> zootechnical performance</a>, <a href="https://publications.waset.org/abstracts/search?q=immunity" title=" immunity"> immunity</a>, <a href="https://publications.waset.org/abstracts/search?q=necrotic%20enteritis" title=" necrotic enteritis"> necrotic enteritis</a> </p> <a href="https://publications.waset.org/abstracts/170500/effect-of-coated-sodium-butyrate-cm3000-on-zootechnical-performance-immune-status-and-necrotic-enteritis-after-experimental-infection-of-broiler-chickens" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/170500.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">85</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">30</span> Semi-Empirical Modeling of Heat Inactivation of Enterococci and Clostridia During the Hygienisation in Anaerobic Digestion Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jihane%20Saad">Jihane Saad</a>, <a href="https://publications.waset.org/abstracts/search?q=Thomas%20Lendormi"> Thomas Lendormi</a>, <a href="https://publications.waset.org/abstracts/search?q=Caroline%20Le%20Marechal"> Caroline Le Marechal</a>, <a href="https://publications.waset.org/abstracts/search?q=Anne-marie%20Pourcher"> Anne-marie Pourcher</a>, <a href="https://publications.waset.org/abstracts/search?q=C%C3%A9line%20Druilhe"> Céline Druilhe</a>, <a href="https://publications.waset.org/abstracts/search?q=Jean-louis%20Lanoiselle"> Jean-louis Lanoiselle</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Agricultural anaerobic digestion consists in the conversion of animal slurry and manure into biogas and digestate. They need, however, to be treated at 70 ºC during 60 min before anaerobic digestion according to the European regulation (EC n°1069/2009 & EU n°142/2011). The impact of such heat treatment on the outcome of bacteria has been poorly studied up to now. Moreover, a recent study¹ has shown that enterococci and clostridia are still detected despite the application of such thermal treatment, questioning the relevance of this approach for the hygienisation of digestate. The aim of this study is to establish the heat inactivation kinetics of two species of enterococci (Enterococcus faecalis and Enterococcus faecium) and two species of clostridia (Clostridioides difficile and Clostridium novyi as a non-toxic model for Clostridium botulinum of group III). A pure culture of each strain was prepared in a specific sterile medium at concentration of 10⁴ – 10⁷ MPN / mL (Most Probable number), depending on the bacterial species. Bacterial suspensions were then filled in sterilized capillary tubes and placed in a water or oil bath at desired temperature for a specific period of time. Each bacterial suspension was enumerated using a MPN approach, and tests were repeated three times for each temperature/time couple. The inactivation kinetics of the four indicator bacteria is described using the Weibull model and the classical Bigelow model of first-order kinetics. The Weibull model takes biological variation, with respect to thermal inactivation, into account and is basically a statistical model of distribution of inactivation times as the classical first-order approach is a special case of the Weibull model. The heat treatment at 70 ºC / 60 min contributes to a reduction greater than 5 log10 for E. faecium and E. faecalis. However, it results only in a reduction of about 0.7 log10 for C. difficile and an increase of 0.5 log10 for C. novyi. Application of treatments at higher temperatures is required to reach a reduction greater or equal to 3 log10 for C. novyi (such as 30 min / 100 ºC, 13 min / 105 ºC, 3 min / 110 ºC, and 1 min / 115 ºC), raising the question of the relevance of the application of heat treatment at 70 ºC / 60 min for these spore-forming bacteria. To conclude, the heat treatment (70 ºC / 60 min) defined by the European regulation is sufficient to inactivate non-sporulating bacteria. Higher temperatures (> 100 ºC) are required as far as spore-forming bacteria concerns to reach a 3 log10 reduction (sporicidal activity). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heat%20treatment" title="heat treatment">heat treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=enterococci" title=" enterococci"> enterococci</a>, <a href="https://publications.waset.org/abstracts/search?q=clostridia" title=" clostridia"> clostridia</a>, <a href="https://publications.waset.org/abstracts/search?q=inactivation%20kinetics" title=" inactivation kinetics"> inactivation kinetics</a> </p> <a href="https://publications.waset.org/abstracts/162378/semi-empirical-modeling-of-heat-inactivation-of-enterococci-and-clostridia-during-the-hygienisation-in-anaerobic-digestion-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/162378.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">113</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">29</span> Effects of Probiotic Pseudomonas fluorescens on the Growth Performance, Immune Modulation, and Histopathology of African Catfish (Clarias gariepinus)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nelson%20R.%20Osungbemiro">Nelson R. Osungbemiro</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20A.%20Bello-Olusoji"> O. A. Bello-Olusoji</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Oladipupo"> M. Oladipupo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study was carried out to determine the effects of probiotics Pseudomonas fluorescens on the growth performance, histology examination and immune modulation of African Catfish, (Clarias gariepinus) challenged with Clostridium botulinum. P. fluorescens, and C. botulinum isolates were removed from the gut, gill and skin organs of procured adult samples of Clarias gariepinus from commercial fish farms in Akure, Ondo State, Nigeria. The physical and biochemical tests were performed on the bacterial isolates using standard microbiological techniques for their identification. Antibacterial activity tests on P. fluorescens showed inhibition zone with mean value of 3.7 mm which indicates high level of antagonism. The experimental diets were prepared at different probiotics bacterial concentration comprises of five treatments of different bacterial suspension, including the control (T1), T2 (10³), T3 (10⁵), T4 (10⁷) and T5 (10⁹). Three replicates for each treatment type were prepared. Growth performance and nutrients utilization indices were calculated. The proximate analysis of fish carcass and experimental diet was carried out using standard methods. After feeding for 70 days, haematological values and histological test were done following standard methods; also a subgroup from each experimental treatment was challenged by inoculating Intraperitonieally (I/P) with different concentration of pathogenic C. botulinum. Statistically, there were significant differences (P < 0.05) in the growth performance and nutrient utilization of C. gariepinus. Best weight gain and feed conversion ratio were recorded in fish fed T4 (10⁷) and poorest value obtained in the control. Haematological analyses of C. gariepinus fed the experimental diets indicated that all the fish fed diets with P. fluorescens had marked significantly (p < 0.05) higher White Blood Cell than the control diet. The results of the challenge test showed that fish fed the control diet had the highest mortality rate. Histological examination of the gill, intestine, and liver of fish in this study showed several histopathological alterations in fish fed the control diets compared with those fed the P. fluorescens diets. The study indicated that the optimum level of P. fluorescens required for C. gariepinus growth and white blood cells formation is 10⁷ CFU g⁻¹, while carcass protein deposition required 10⁵ CFU g⁻¹ of P. fluorescens concentration. The study also confirmed P. fluorescens as efficient probiotics that is capable of improving the immune response of C. gariepinus against the attack of a virulent fish pathogen, C. botulinum. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Clarias%20gariepinus" title="Clarias gariepinus">Clarias gariepinus</a>, <a href="https://publications.waset.org/abstracts/search?q=Clostridium%20botulinum" title=" Clostridium botulinum"> Clostridium botulinum</a>, <a href="https://publications.waset.org/abstracts/search?q=probiotics" title=" probiotics"> probiotics</a>, <a href="https://publications.waset.org/abstracts/search?q=Pseudomonas%20fluorescens" title=" Pseudomonas fluorescens"> Pseudomonas fluorescens</a> </p> <a href="https://publications.waset.org/abstracts/90399/effects-of-probiotic-pseudomonas-fluorescens-on-the-growth-performance-immune-modulation-and-histopathology-of-african-catfish-clarias-gariepinus" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/90399.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">163</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Clostridium%20acetobutylicum&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Clostridium%20acetobutylicum&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>