CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 195 results for author: <span class="mathjax">Peng, Y</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/cond-mat" aria-role="search"> Searching in archive <strong>cond-mat</strong>. <a href="/search/?searchtype=author&amp;query=Peng%2C+Y">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Peng, Y"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Peng%2C+Y&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Peng, Y"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Peng%2C+Y&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Peng%2C+Y&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Peng%2C+Y&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Peng%2C+Y&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Peng%2C+Y&amp;start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.02314">arXiv:2502.02314</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2502.02314">pdf</a>, <a href="https://arxiv.org/format/2502.02314">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Photo-induced Dynamics and Momentum Distribution of Chiral Charge Density Waves in 1T-TiSe$_{2}$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Qiu%2C+Q">Qingzheng Qiu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chun%2C+S+H">Sae Hwan Chun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Park%2C+J">Jaeku Park</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jang%2C+D">Dogeun Jang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yue%2C+L">Li Yue</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+Y">Yeongkwan Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ahn%2C+Y">Yeojin Ahn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jho%2C+M">Mingi Jho</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Han%2C+K">Kimoon Han</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+X">Xinyi Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiao%2C+Q">Qian Xiao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dong%2C+T">Tao Dong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ji%2C+J">Jia-Yi Ji</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+N">Nanlin Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Brink%2C+J+v+d">Jeroen van den Brink</a>, <a href="/search/cond-mat?searchtype=author&amp;query=van+Wezel%2C+J">Jasper van Wezel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Peng%2C+Y">Yingying Peng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.02314v1-abstract-short" style="display: inline;"> Exploring the photoinduced dynamics of chiral states offers promising avenues for advanced control of condensed matter systems. Photoinduced or photoenhanced chirality in 1T-TiSe$_{2}$ has been suggested as a fascinating platform for optical manipulation of chiral states. However, the mechanisms underlying chirality training and its interplay with the charge density wave (CDW) phase remain elusive&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.02314v1-abstract-full').style.display = 'inline'; document.getElementById('2502.02314v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.02314v1-abstract-full" style="display: none;"> Exploring the photoinduced dynamics of chiral states offers promising avenues for advanced control of condensed matter systems. Photoinduced or photoenhanced chirality in 1T-TiSe$_{2}$ has been suggested as a fascinating platform for optical manipulation of chiral states. However, the mechanisms underlying chirality training and its interplay with the charge density wave (CDW) phase remain elusive. Here, we use time-resolved X-ray diffraction (tr-XRD) with circularly polarized pump lasers to probe the photoinduced dynamics of chirality in 1T-TiSe$_{2}$. We observe a notable ($\sim$20%) difference in CDW intensity suppression between left- and right-circularly polarized pumps. Additionally, we reveal momentum-resolved circular dichroism arising from domains of different chirality, providing a direct link between CDW and chirality. An immediate increase in CDW correlation length upon laser pumping is detected, suggesting the photoinduced expansion of chiral domains. These results both advance the potential of light-driven chirality by elucidating the mechanism driving chirality manipulation in TiSe$_2$, and they demonstrate that tr-XRD with circularly polarized pumps is an effective tool for chirality detection in condensed matter systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.02314v1-abstract-full').style.display = 'none'; document.getElementById('2502.02314v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.09968">arXiv:2501.09968</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2501.09968">pdf</a>, <a href="https://arxiv.org/format/2501.09968">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> In-plane anisotropy of charge density wave fluctuations in 1$T$-TiSe$_2$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+X">Xuefei Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kogar%2C+A">Anshul Kogar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Henke%2C+J">Jans Henke</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Flicker%2C+F">Felix Flicker</a>, <a href="/search/cond-mat?searchtype=author&amp;query=de+Juan%2C+F">Fernando de Juan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+S+X+-">Stella X. -L. Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Khayr%2C+I">Issam Khayr</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Peng%2C+Y">Yingying Peng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+S">Sangjun Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Krogstad%2C+M+J">Matthew J. Krogstad</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rosenkranz%2C+S">Stephan Rosenkranz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Osborn%2C+R">Raymond Osborn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ruff%2C+J+P+C">Jacob P. C. Ruff</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lioi%2C+D+B">David B. Lioi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Karapetrov%2C+G">Goran Karapetrov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Campbell%2C+D+J">Daniel J. Campbell</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Paglione%2C+J">Johnpierre Paglione</a>, <a href="/search/cond-mat?searchtype=author&amp;query=van+Wezel%2C+J">Jasper van Wezel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chiang%2C+T+C">Tai C. Chiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Abbamonte%2C+P">Peter Abbamonte</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.09968v1-abstract-short" style="display: inline;"> We report measurements of anisotropic triple-$q$ charge density wave (CDW) fluctuations in the transition metal dichalcogenide 1$T$-TiSe$_2$ over a large volume of reciprocal space with X-ray diffuse scattering. Above the transition temperature, $T_{\text{CDW}}$, the out-of-plane diffuse scattering is characterized by rod-like structures which indicate that the CDW fluctuations in neighboring laye&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.09968v1-abstract-full').style.display = 'inline'; document.getElementById('2501.09968v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.09968v1-abstract-full" style="display: none;"> We report measurements of anisotropic triple-$q$ charge density wave (CDW) fluctuations in the transition metal dichalcogenide 1$T$-TiSe$_2$ over a large volume of reciprocal space with X-ray diffuse scattering. Above the transition temperature, $T_{\text{CDW}}$, the out-of-plane diffuse scattering is characterized by rod-like structures which indicate that the CDW fluctuations in neighboring layers are largely decoupled. In addition, the in-plane diffuse scattering is marked by ellipses which reveal that the in-plane fluctuations are anisotropic. Our analysis of the diffuse scattering line shapes and orientations suggests that the three charge density wave components contain independent phase fluctuations. At $T_{\text{CDW}}$, long range coherence is established in both the in-plane and out-of-plane directions, consistent with the large observed value of the CDW gap compared to $T_{\text{CDW}}$, and the predicted presence of a hierarchy of energy scales. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.09968v1-abstract-full').style.display = 'none'; document.getElementById('2501.09968v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.20944">arXiv:2412.20944</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.20944">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> </div> <p class="title is-5 mathjax"> One Pot Synthesis of Cubic Gauche Polymeric Nitrogen </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+R">Runteng Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+J">Jun Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Z">Zelong Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+K">Ke Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Peng%2C+Y">Yi Peng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+J">Jianfa Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Feng%2C+S">Shaomin Feng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+C">Changqing Jin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.20944v1-abstract-short" style="display: inline;"> The long sought cubic gauche polymeric nitrogen (cg-N) consisting of N-N single bonds has been synthesized by a simple route using sodium azide as a precursor at ambient conditions. The recrystallization process was designed to expose crystal faces with low activation energy that facilitates initiating the polymeric reaction at ambient conditions. The azide was considered as a precursor due to the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.20944v1-abstract-full').style.display = 'inline'; document.getElementById('2412.20944v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.20944v1-abstract-full" style="display: none;"> The long sought cubic gauche polymeric nitrogen (cg-N) consisting of N-N single bonds has been synthesized by a simple route using sodium azide as a precursor at ambient conditions. The recrystallization process was designed to expose crystal faces with low activation energy that facilitates initiating the polymeric reaction at ambient conditions. The azide was considered as a precursor due to the low energy barrier in transforming double bonded N=N to single bonded cg-N. Raman spectrum measurements detected the emerging vibron peaks at 635 cm-1 for the polymerized sodium azide samples, demonstrating the formation of cg-N with N-N single bonds. Different from traditional high pressure technique and recently developed plasma enhanced chemical vapor deposition method, the route achieves the quantitative synthesis of cg-N at ambient conditions. The simple method to synthesize cg-N offers potential for further scale up production as well as practical applications of polymeric nitrogen based materials as high energy density materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.20944v1-abstract-full').style.display = 'none'; document.getElementById('2412.20944v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 papes, 3 figures, 1 table</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.09577">arXiv:2412.09577</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.09577">pdf</a>, <a href="https://arxiv.org/format/2412.09577">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> </div> <p class="title is-5 mathjax"> Engineering micromotion in Floquet prethermalization via space-time symmetries </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Na%2C+I">Ilyoun Na</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kemp%2C+J">Jack Kemp</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Griffin%2C+S+M">Sin茅ad M. Griffin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Peng%2C+Y">Yang Peng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.09577v1-abstract-short" style="display: inline;"> We present a systematic framework for Floquet prethermalization under strong resonant driving, emphasizing the pivotal role of dynamical space-time symmetries. Our approach demonstrates how dynamical space-time symmetries map onto the projective static symmetry group of the prethermal Hamiltonian governing the prethermal regime. We introduce techniques for detecting dynamical symmetries through th&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.09577v1-abstract-full').style.display = 'inline'; document.getElementById('2412.09577v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.09577v1-abstract-full" style="display: none;"> We present a systematic framework for Floquet prethermalization under strong resonant driving, emphasizing the pivotal role of dynamical space-time symmetries. Our approach demonstrates how dynamical space-time symmetries map onto the projective static symmetry group of the prethermal Hamiltonian governing the prethermal regime. We introduce techniques for detecting dynamical symmetries through the time evolution of local observables, facilitating a detailed analysis of micromotion within each period and surpassing the limitations of conventional stroboscopic Floquet prethermal dynamics. To implement this framework, we present a prethermal protocol that preserves order-two dynamical symmetry in a spin-ladder model, confirming the predicted relationships between the expectation values of local observables at distinct temporal points in the Floquet cycle, linked by this symmetry. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.09577v1-abstract-full').style.display = 'none'; document.getElementById('2412.09577v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8+7 pages, 2+3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.04152">arXiv:2412.04152</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.04152">pdf</a>, <a href="https://arxiv.org/format/2412.04152">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Dissipation-assisted preparation of topological boundary states </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Peng%2C+Y">Yi Peng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+C">Chao Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+H">Haiping Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Yucheng Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.04152v1-abstract-short" style="display: inline;"> Robust states emerging at the boundaries of a system are an important hallmark of topological matter. Here, using the Su-Schrieffer-Heeger model and the Kitaev chain as examples, we study the impact of a type of experimentally realizable bond dissipation on topological systems by calculating the steady-state density matrix, and demonstrate that such dissipation applied near the system boundary can&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.04152v1-abstract-full').style.display = 'inline'; document.getElementById('2412.04152v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.04152v1-abstract-full" style="display: none;"> Robust states emerging at the boundaries of a system are an important hallmark of topological matter. Here, using the Su-Schrieffer-Heeger model and the Kitaev chain as examples, we study the impact of a type of experimentally realizable bond dissipation on topological systems by calculating the steady-state density matrix, and demonstrate that such dissipation applied near the system boundary can assist in preparing topological edge states of the parent Hamiltonian, irrespective of the initial state or filling. This effect stems from the matching between the phase distribution encoded in the topological edge states and the target state prepared through bond dissipation. This work provides new insights into the preparation of topological edge states, particularly in the context of Majorana zero modes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.04152v1-abstract-full').style.display = 'none'; document.getElementById('2412.04152v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.02128">arXiv:2412.02128</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.02128">pdf</a>, <a href="https://arxiv.org/format/2412.02128">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Quantum phase diagram and non-abelian Moore-Read state in double twisted bilayer graphene </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Niu%2C+S">Sen Niu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Peng%2C+Y">Yang Peng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sheng%2C+D+N">D. N. Sheng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.02128v1-abstract-short" style="display: inline;"> Experimental realizations of Abelian fractional Chern insulators (FCIs) have demonstrated the potentials of moir茅 systems in synthesizing exotic quantum phases. Remarkably, twisted multilayer graphene system may also host non-Abelian states competing with charge density wave under Coulomb interaction. Here, through larger scale exact diagonalization simulations, we map out the quantum phase diagra&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.02128v1-abstract-full').style.display = 'inline'; document.getElementById('2412.02128v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.02128v1-abstract-full" style="display: none;"> Experimental realizations of Abelian fractional Chern insulators (FCIs) have demonstrated the potentials of moir茅 systems in synthesizing exotic quantum phases. Remarkably, twisted multilayer graphene system may also host non-Abelian states competing with charge density wave under Coulomb interaction. Here, through larger scale exact diagonalization simulations, we map out the quantum phase diagram for $谓=1/2$ system with electrons occupying the lowest moir猫 band of the double twisted bilayer graphene. By increasing the system size, we find the ground state has six-fold near degeneracy and with a finite spectral gap separating the ground states from excited states across a broad range of parameters. Further computation of many-body Chern number establish the topological order of the state, and we rule out possibility of charge density wave orders based on featureless density structure factor. Furthermore, we inspect the particle-cut entanglement spectrum to identify the topological state as a non-Abelian Moore-Read state. Combining all the above evidences we conclude that Moore-Read ground state dominates the quantum phase diagram for the double twisted bilayer graphene system for a broad range of coupling strength with realistic Coulomb interaction. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.02128v1-abstract-full').style.display = 'none'; document.getElementById('2412.02128v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.16463">arXiv:2411.16463</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.16463">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Lattice dynamics and phonon dispersion of van der Waals layered ferromagnet Fe3GaTe2 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+X">Xia Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+X">Xi Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+W">Wenjie He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Yu Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+J">Jiating Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+D">Dinghua Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+D">Deren Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lei%2C+L">Li Lei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Peng%2C+Y">Yong Peng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiang%2C+G">Gang Xiang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.16463v1-abstract-short" style="display: inline;"> Van der Waals (vdW) layered ferromagnet Fe3GaTe2 shows great potential in two-dimensional spintronic application due to its robust room-temperature ferromagnetism and large perpendicular magnetic anisotropy. Despite the tremendous progress in the spintronic and electronic studies of Fe3GaTe2, much less effort has been spent on the understanding of lattice dynamics and its possible interaction with&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.16463v1-abstract-full').style.display = 'inline'; document.getElementById('2411.16463v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.16463v1-abstract-full" style="display: none;"> Van der Waals (vdW) layered ferromagnet Fe3GaTe2 shows great potential in two-dimensional spintronic application due to its robust room-temperature ferromagnetism and large perpendicular magnetic anisotropy. Despite the tremendous progress in the spintronic and electronic studies of Fe3GaTe2, much less effort has been spent on the understanding of lattice dynamics and its possible interaction with spintronic and electronic degrees of freedom in Fe3GaTe2. In this work, by combining Raman spectroscopic data in a wide range of pressure (atmospheric pressure~19.5 GPa) and temperature (80 K~690 K) with first-principles calculation results, we systematically studied the lattice dynamics and phonon dispersion of Fe3GaTe2. Our results show that the phonon energies of Fe3GaTe2 located at 126.0 cm-1 and 143.5 cm-1 originate from the E_2g^2 and A_1g^1 vibration modes, respectively, and the nature of the E_2g^2 mode is anharmonic while that of the A_1g^1 mode is quasi-harmonic. Furthermore, the spin-phonon coupling in Fe3GaTe2 is discovered by identifying the anomalies in the Raman data right below the Curie temperature of 360 K, in which the phonon energies and the full widths at half maximum of the E_2g^2 mode clearly deviate from the classical anharmonic model. Our findings are valuable for fundamental studies and potential applications of vdW Fe3GaTe2-based materials and devices under variable temperature and pressure conditions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.16463v1-abstract-full').style.display = 'none'; document.getElementById('2411.16463v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.10331">arXiv:2411.10331</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.10331">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.scib.2024.11.004">10.1016/j.scib.2024.11.004 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A facile route to synthesize cubic gauche polymeric nitrogen </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+R">Runteng Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+J">Jun Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Z">Zelong Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+K">Ke Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Peng%2C+Y">Yi Peng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+J">Jianfa Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+X">Xiaodong Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Feng%2C+S">Shaomin Feng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+R">Ruibin Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiao%2C+C">Chuan Xiao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+C">Changqing Jin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.10331v3-abstract-short" style="display: inline;"> In this work, the long-sought cg-N with N-N single bond has been synthesized for the first time by a thermal-driven-only chemical route at ambient conditions. The successful synthesis of cg-N was achieved by first creating a solution of azides, which was then pretreated under vacuum conditions. Following the pretreatment, the resultant concentrated azide was heated at temperatures ranging from 260&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.10331v3-abstract-full').style.display = 'inline'; document.getElementById('2411.10331v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.10331v3-abstract-full" style="display: none;"> In this work, the long-sought cg-N with N-N single bond has been synthesized for the first time by a thermal-driven-only chemical route at ambient conditions. The successful synthesis of cg-N was achieved by first creating a solution of azides, which was then pretreated under vacuum conditions. Following the pretreatment, the resultant concentrated azide was heated at temperatures ranging from 260掳C to 330掳C for a reaction time of 3 hours, ultimately leading to the formation of cg-N. The emergent intense Raman peak characterized of cg-N provides solid evidence that the double bonded nitrogen-nitrogen transforms into a single bond form, which agrees well with cg-N structure. To date, this is the only work achieving the quantity of cg-N synthesized at ambient conditions by a facile route that can be further developed for the scalable synthesis and applications of polymerized nitrogen-based materials as high energy density materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.10331v3-abstract-full').style.display = 'none'; document.getElementById('2411.10331v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 2 figures, published in Science Bulletin</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Science Bulletin, 69(24):3812 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.07610">arXiv:2411.07610</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.07610">pdf</a>, <a href="https://arxiv.org/format/2411.07610">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Exploring Thouless Pumping in the Generalized Creutz Model: A Graphical Method and Modulation Schemes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Lv%2C+Y">Yan-Jue Lv</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Peng%2C+Y">Yang Peng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Y">Yong-Kai Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zheng%2C+Y">Yi Zheng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.07610v2-abstract-short" style="display: inline;"> Thouless pumping with nontrivial topological phases provides a powerful means for the manipulation of matter waves in one-dimensional lattice systems. The band topology is revealed by the quantization of pumped charge. In the context of Thouless pumping, we present a graphical representation for the topological phases characterized by the Chern number of an effective two-dimensional band. We illus&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.07610v2-abstract-full').style.display = 'inline'; document.getElementById('2411.07610v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.07610v2-abstract-full" style="display: none;"> Thouless pumping with nontrivial topological phases provides a powerful means for the manipulation of matter waves in one-dimensional lattice systems. The band topology is revealed by the quantization of pumped charge. In the context of Thouless pumping, we present a graphical representation for the topological phases characterized by the Chern number of an effective two-dimensional band. We illustrate how the two topological phases with distinct Zak phase is connected in the pumping process. Such a visual depiction exhibits typical patterns that is directly related to a linking number and to the Chern number, allowing for the construction of Thouless pumping schemes in a practical way. As a demonstration, we present a generalized Creutz model with tunable Peierls phase, inter-leg imbalance and diagonal hopping. Various modulation schemes for Thouless pumping are studied, focusing on their graphical representations in Bloch space, as well as the quantized pumping phenomenon in real space. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.07610v2-abstract-full').style.display = 'none'; document.getElementById('2411.07610v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 14 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.01585">arXiv:2411.01585</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.01585">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Observation of Majorana zero modes emerged from topological Dirac semimetal states under uniaxial strain </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+Q">Quanxin Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qin%2C+S">Shengshan Qin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Peng%2C+Y">Yi Peng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+Y">Yuke Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+W">Wenyao Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cheng%2C+Y">Yiwei Cheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+R">Renjie Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+Y">Yudong Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Meng%2C+C">Chengnuo Meng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+Y">Yaobo Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+J">Jin Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+C">Changqing Jin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lv%2C+B">Baiqing Lv</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+J">Jinpeng Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ding%2C+H">Hong Ding</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.01585v1-abstract-short" style="display: inline;"> The topological properties observed in iron-based superconductors extend our understanding of vortex Majorana quasiparticle excitations in unexpected ways. Vortex Majorana physics has been extensively studied within the context of the topologically protected surface Dirac state. By employing an in-situ strain device, we demonstrate that uniaxial strain can generate Majorana zero modes out of the t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.01585v1-abstract-full').style.display = 'inline'; document.getElementById('2411.01585v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.01585v1-abstract-full" style="display: none;"> The topological properties observed in iron-based superconductors extend our understanding of vortex Majorana quasiparticle excitations in unexpected ways. Vortex Majorana physics has been extensively studied within the context of the topologically protected surface Dirac state. By employing an in-situ strain device, we demonstrate that uniaxial strain can generate Majorana zero modes out of the topological Dirac semimetal bulk state in LiFeAs. Uniaxial strain along [100] direction is found to enhance the band renormalization of LiFeAs, effectively reducing the energy separation between the Fermi level and the topological Dirac semimetal state, and breaking C4 symmetry. Using scanning tunneling microscopy, we observe the evolution of vortex bound states in the topological Dirac semimetal state region, accompanied by the emergence of Majorana zero modes and vortex bound states contributed by the bulk band. Our work provides a controllable method for experimentally engineering Majorana physics in iron-based superconductors, and offers valuable insights into the topological Dirac semimetal state with intrinsic s-wave superconductivity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.01585v1-abstract-full').style.display = 'none'; document.getElementById('2411.01585v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.23784">arXiv:2410.23784</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.23784">pdf</a>, <a href="https://arxiv.org/format/2410.23784">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> Designed self-assembly of programmable colloidal atom-electron equivalents </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Xia%2C+X">Xiuyang Xia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Peng%2C+Y">Yuhan Peng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+K+K">Ka Ki Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ni%2C+R">Ran Ni</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.23784v2-abstract-short" style="display: inline;"> To unlock the potential for assembling complex colloidal &#34;molecules&#34;, we investigate a minimal binary system of programmable colloidal atom-electron equivalents (PAE-EE), where electron equivalents (EEs) are multivalent linkers with two distinct types of single-stranded DNA (ssDNA) ends complementary to those ssDNAs on binary programmable atom equivalents (PAEs). We derive a statistical mechanical&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.23784v2-abstract-full').style.display = 'inline'; document.getElementById('2410.23784v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.23784v2-abstract-full" style="display: none;"> To unlock the potential for assembling complex colloidal &#34;molecules&#34;, we investigate a minimal binary system of programmable colloidal atom-electron equivalents (PAE-EE), where electron equivalents (EEs) are multivalent linkers with two distinct types of single-stranded DNA (ssDNA) ends complementary to those ssDNAs on binary programmable atom equivalents (PAEs). We derive a statistical mechanical framework for calculating the effective interaction between PAEs mediated by EEs with arbitrary valency, which quantitatively agrees with simulations that explicitly include EEs. Our analysis reveals an anomalous dependence of PAE-PAE interactions on the EE valency, showing that EE-mediated interactions converge at the large valency limit. Moreover, we identify an optimal EE valency that maximizes the interaction difference between targeted and non-targeted binding pairs of PAEs. These findings offer design principles for targeted self-assembly in PAE-EE systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.23784v2-abstract-full').style.display = 'none'; document.getElementById('2410.23784v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 31 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.18219">arXiv:2410.18219</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.18219">pdf</a>, <a href="https://arxiv.org/format/2410.18219">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Self-similar phase diagram of the Fibonacci-driven quantum Ising model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Schmid%2C+H">Harald Schmid</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Peng%2C+Y">Yang Peng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Refael%2C+G">Gil Refael</a>, <a href="/search/cond-mat?searchtype=author&amp;query=von+Oppen%2C+F">Felix von Oppen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.18219v1-abstract-short" style="display: inline;"> We study a stroboscopic quantum Ising model with Fibonacci dynamics. Focusing on boundary spin correlation functions in long but finite chains, our simulations as well as analytical arguments reveal a self-similar phase diagram exhibiting regions with Majorana zero modes (MZM) as well as Majorana golden-ratio modes (MGM). We identify the self-similarity transform which governs the evolution of the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.18219v1-abstract-full').style.display = 'inline'; document.getElementById('2410.18219v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.18219v1-abstract-full" style="display: none;"> We study a stroboscopic quantum Ising model with Fibonacci dynamics. Focusing on boundary spin correlation functions in long but finite chains, our simulations as well as analytical arguments reveal a self-similar phase diagram exhibiting regions with Majorana zero modes (MZM) as well as Majorana golden-ratio modes (MGM). We identify the self-similarity transform which governs the evolution of the phase diagram with increasing simulation time. Integrability-breaking perturbations lead to a temporal decay of the boundary spin correlations, ultimaltely limiting the self-similarity of the phase diagram. Our predictions are testable with current quantum information processors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.18219v1-abstract-full').style.display = 'none'; document.getElementById('2410.18219v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5+4 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.19199">arXiv:2409.19199</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.19199">pdf</a>, <a href="https://arxiv.org/format/2409.19199">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Anisotropic multi-orbital Hubbard model simulated with impurity approximation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Peng%2C+Y">Yan Peng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+M">Mi Jiang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.19199v1-abstract-short" style="display: inline;"> Motivated by the recent experimental findings on the orbital ordering of cuprate SC, we have investigated the multi-orbital Hubbard model in the framework of Cu impurity approximation embedded in the O lattice by incorporating the 3d$^{8}$ multiplet structure coupled to a full O-2p band.Our systematic investigation on the impact of anisotropy of various parameters reveal rich phenomena in terms of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.19199v1-abstract-full').style.display = 'inline'; document.getElementById('2409.19199v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.19199v1-abstract-full" style="display: none;"> Motivated by the recent experimental findings on the orbital ordering of cuprate SC, we have investigated the multi-orbital Hubbard model in the framework of Cu impurity approximation embedded in the O lattice by incorporating the 3d$^{8}$ multiplet structure coupled to a full O-2p band.Our systematic investigation on the impact of anisotropy of various parameters reveal rich phenomena in terms of the ground state (GS) weight asymmetry between $\hat{x}$ and $\hat{y}$ directions.The numerical evidence demonstrate that the GS weight of Zhang-Rice singlet (ZRS) can be affected by the asymmetry of these parameters to distinct extent. Although the experimentally motivated asymmetric charge transfer energy only induces tiny weight difference, the asymmetric $d$-$p$ hybridization can result in considerable change of the weight. Besides, the nearest-neighbor $V_{pd}$ has much stronger impact than the local $U_{pp}$, which stems from the nature of ZRS consisting of nearest-neighbor two holes. Our systematic exploration provide valuable knowledge on the role of the artificial symmetry breaking on the two-hole GS nature and serves as the starting point of more sophisticated many-body simulations to uncover more interesting physics of multi-orbital Hubbard model within the symmetry breaking setup. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.19199v1-abstract-full').style.display = 'none'; document.getElementById('2409.19199v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 9 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.11985">arXiv:2408.11985</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.11985">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1002/smll.202409535">10.1002/smll.202409535 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Flat Band Generation through Interlayer Geometric Frustration in Intercalated Transition Metal Dichalcogenides </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Peng%2C+Y">Yawen Peng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+R">Ren He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+P">Peng Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhdanovich%2C+S">Sergey Zhdanovich</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Michiardi%2C+M">Matteo Michiardi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gorovikov%2C+S">Sergey Gorovikov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zonno%2C+M">Marta Zonno</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Damascelli%2C+A">Andrea Damascelli</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Miao%2C+G">Guo-Xing Miao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.11985v2-abstract-short" style="display: inline;"> Electronic flat bands can lead to rich many-body quantum phases by quenching the electron&#39;s kinetic energy and enhancing many-body correlation. The reduced bandwidth can be realized by either destructive quantum interference in frustrated lattices, or by generating heavy band folding with avoided band crossing in Moire superlattices. Here we propose a general approach to introduce flat bands into&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.11985v2-abstract-full').style.display = 'inline'; document.getElementById('2408.11985v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.11985v2-abstract-full" style="display: none;"> Electronic flat bands can lead to rich many-body quantum phases by quenching the electron&#39;s kinetic energy and enhancing many-body correlation. The reduced bandwidth can be realized by either destructive quantum interference in frustrated lattices, or by generating heavy band folding with avoided band crossing in Moire superlattices. Here we propose a general approach to introduce flat bands into widely studied transition metal dichalcogenide (TMD) materials by dilute intercalation. A flat band with vanishing dispersion is observed by angle-resolved photoemission spectroscopy (ARPES) over the entire momentum space in intercalated Mn1/4TaS2. Polarization dependent ARPES measurements combined with symmetry analysis reveals the orbital characters of the flat band. Supercell tight-binding simulations suggest that such flat bands arising from destructive interference between Mn and Ta on S through hopping pathways, are ubiquitous in a range of TMD families as well as for different intercalation configurations. Our findings establish a new material platform to manipulate flat band structures and explore their corresponding emergent correlated properties. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.11985v2-abstract-full').style.display = 'none'; document.getElementById('2408.11985v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.05726">arXiv:2408.05726</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.05726">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.mtphys.2023.101298">10.1016/j.mtphys.2023.101298 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Superconductivity Discovered in Niobium Polyhydride at High Pressures </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+X">X. He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+C+L">C. L. Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Z+W">Z. W. Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+K">K. Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+S+J">S. J. Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Min%2C+B+S">B. S. Min</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+J">J. Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+L+C">L. C. Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Feng%2C+S+M">S. M. Feng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Q+Q">Q. Q. Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+J">J. Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+X+C">X. C. Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Peng%2C+Y">Y. Peng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+L+H">L. H. Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Prakapenka%2C+V+B">V. B. Prakapenka</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chariton%2C+S">S. Chariton</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+H+Z">H. Z. Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+C+Q">C. Q. Jin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.05726v3-abstract-short" style="display: inline;"> Niobium polyhydride was synthesized at high pressure and high temperature conditions by using diamond anvil cell combined with in situ high pressure laser heating techniques. High pressure electric transport experiments demonstrate that superconducting transition occurs with critical temperature(Tc) 42 K at 187 GPa. The shift of Tc as function of external applied magnetic field is in consistent to&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.05726v3-abstract-full').style.display = 'inline'; document.getElementById('2408.05726v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.05726v3-abstract-full" style="display: none;"> Niobium polyhydride was synthesized at high pressure and high temperature conditions by using diamond anvil cell combined with in situ high pressure laser heating techniques. High pressure electric transport experiments demonstrate that superconducting transition occurs with critical temperature(Tc) 42 K at 187 GPa. The shift of Tc as function of external applied magnetic field is in consistent to the nature of superconductivity while the upper critical field at zero temperature Hc2(0) is estimated to~16.8 Tesla while the GL coherent length ~57 angstrom is estimated. The structure investigation using synchrotron radiation implies that the observed superconductivity may come from Fm-3m phase of NbH3. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.05726v3-abstract-full').style.display = 'none'; document.getElementById('2408.05726v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Materials Today Physics 40, 101298 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.00320">arXiv:2408.00320</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.00320">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Discovery of a metallic room-temperature d-wave altermagnet KV2Se2O </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+B">Bei Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+M">Mingzhe Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bai%2C+J">Jianli Bai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+Z">Ziyin Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mu%2C+C">Chao Mu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qu%2C+G">Gexing Qu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+W">Wan Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+W">Wenliang Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pi%2C+H">Hanqi Pi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wei%2C+Z">Zhongxu Wei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+Y">Yujie Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+Y">Yaobo Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zheng%2C+X">Xiquan Zheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Peng%2C+Y">Yingying Peng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+L">Lunhua He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+S">Shiliang Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Luo%2C+J">Jianlin Luo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Z">Zheng Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+G">Genfu Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+H">Hang Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Weng%2C+H">Hongming Weng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qian%2C+T">Tian Qian</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.00320v2-abstract-short" style="display: inline;"> Beyond conventional ferromagnetism and antiferromagnetism, altermagnetism is a recently discovered unconventional magnetic phase characterized by time-reversal symmetry breaking and spin-split band structures in materials with zero net magnetization. This distinct magnetic phase not only enriches the understanding of fundamental physical concepts but also has profound impacts on condense-matter ph&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.00320v2-abstract-full').style.display = 'inline'; document.getElementById('2408.00320v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.00320v2-abstract-full" style="display: none;"> Beyond conventional ferromagnetism and antiferromagnetism, altermagnetism is a recently discovered unconventional magnetic phase characterized by time-reversal symmetry breaking and spin-split band structures in materials with zero net magnetization. This distinct magnetic phase not only enriches the understanding of fundamental physical concepts but also has profound impacts on condense-matter physics research and practical device applications. Spin-polarized band structures have been recently observed in semiconductors MnTe and MnTe2 with vanishing net magnetization, confirming the existence of this unconventional magnetic order. Metallic altermagnets have unique advantages for exploring novel physical phenomena related to low-energy quasiparticle excitations and for applications in spintronics as electrical conductivity in metals allows the direct manipulation of spin current through electric field. Here, through comprehensive characterization and analysis of the magnetic and electronic structures of KV2Se2O, we have unambiguously demonstrated a metallic room-temperature altermaget with d-wave spin-momentum locking. The highly anisotropic spin-polarized Fermi surfaces and the spin-density-wave order emerging in the altermagnetic phase make it an extraordinary platform for designing high-performance spintronic devices and studying many-body effects coupled with the unconventional magnetism. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.00320v2-abstract-full').style.display = 'none'; document.getElementById('2408.00320v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">25 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.13702">arXiv:2406.13702</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.13702">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41563-024-01914-z">10.1038/s41563-024-01914-z <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Van-Hove annihilation and nematic instability on a Kagome lattice </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+Y">Yu-Xiao Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shao%2C+S">Sen Shao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xia%2C+W">Wei Xia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Denner%2C+M+M">M. Michael Denner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ingham%2C+J">Julian Ingham</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hossain%2C+M+S">Md Shafayat Hossain</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qiu%2C+Q">Qingzheng Qiu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zheng%2C+X">Xiquan Zheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+H">Hongyu Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cheng%2C+Z">Zi-Jia Cheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+X+P">Xian P. Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+B">Byunghoon Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yin%2C+J">Jia-Xin Yin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+S">Songbo Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Litskevich%2C+M">Maksim Litskevich</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Q">Qi Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cochran%2C+T+A">Tyler A. Cochran</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Peng%2C+Y">Yingying Peng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chang%2C+G">Guoqing Chang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+Y">Yanfeng Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Thomale%2C+R">Ronny Thomale</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Neupert%2C+T">Titus Neupert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hasan%2C+M+Z">M. Zahid Hasan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.13702v2-abstract-short" style="display: inline;"> Novel states of matter arise in quantum materials due to strong interactions among electrons. A nematic phase breaks the point group symmetry of the crystal lattice and is known to emerge in correlated materials. Here we report the observation of an intra-unit-cell nematic order and signatures of Pomeranchuk instability in the Kagome metal ScV6Sn6. Using scanning tunneling microscopy and spectrosc&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.13702v2-abstract-full').style.display = 'inline'; document.getElementById('2406.13702v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.13702v2-abstract-full" style="display: none;"> Novel states of matter arise in quantum materials due to strong interactions among electrons. A nematic phase breaks the point group symmetry of the crystal lattice and is known to emerge in correlated materials. Here we report the observation of an intra-unit-cell nematic order and signatures of Pomeranchuk instability in the Kagome metal ScV6Sn6. Using scanning tunneling microscopy and spectroscopy, we reveal a stripe-like nematic order breaking the crystal rotational symmetry within the Kagome lattice itself. Moreover, we identify a set of van Hove singularities adhering to the Kagome layer electrons, which appear along one direction of the Brillouin zone while being annihilated along other high-symmetry directions, revealing a rotational symmetry breaking. Via detailed spectroscopic maps, we further observe an elliptical deformation of Fermi surface, which provides direct evidence for an electronically mediated nematic order. Our work not only bridges the gap between electronic nematicity and Kagome physics, but also sheds light on the potential mechanism for realizing symmetry-broken phases in correlated electron systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.13702v2-abstract-full').style.display = 'none'; document.getElementById('2406.13702v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nat. Mater. (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.04183">arXiv:2406.04183</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.04183">pdf</a>, <a href="https://arxiv.org/format/2406.04183">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.110.104305">10.1103/PhysRevB.110.104305 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Manipulating the Relaxation Time of Boundary-Dissipative Systems through Bond Dissipation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Peng%2C+Y">Yi Peng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+C">Chao Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Yucheng Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.04183v4-abstract-short" style="display: inline;"> Relaxation time plays a crucial role in describing the relaxation processes of quantum systems. We study the effect of a type of bond dissipation on the relaxation time of boundary dissipative systems and find that it can change the scaling of the relaxation time $T_c\sim L^{z}$ from $z=3$ to a value significantly less than $3$. We further reveal that the reason such bond dissipation can significa&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.04183v4-abstract-full').style.display = 'inline'; document.getElementById('2406.04183v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.04183v4-abstract-full" style="display: none;"> Relaxation time plays a crucial role in describing the relaxation processes of quantum systems. We study the effect of a type of bond dissipation on the relaxation time of boundary dissipative systems and find that it can change the scaling of the relaxation time $T_c\sim L^{z}$ from $z=3$ to a value significantly less than $3$. We further reveal that the reason such bond dissipation can significantly reduce the relaxation time is that it can selectively target specific states. For Anderson localized systems, the scaling behavior of the relaxation time changes from an exponential form to a power-law form as the system size varies. This is because the bond dissipation we consider can not only select specific states but also disrupt the localization properties. Our work reveals that in open systems, one type of dissipation can be used to regulate the effects produced by another type of dissipation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.04183v4-abstract-full').style.display = 'none'; document.getElementById('2406.04183v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 110, 104305 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.16109">arXiv:2405.16109</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.16109">pdf</a>, <a href="https://arxiv.org/format/2405.16109">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Gain-loss-engineering: a new platform for extreme anisotropic thermal photon tunneling </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+C">Cheng-Long Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Peng%2C+Y">Yu-Chen Peng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Y">Yong Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yi%2C+H">Hong-Liang Yi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Antezza%2C+M">Mauro Antezza</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Galdi%2C+V">Vincenzo Galdi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.16109v1-abstract-short" style="display: inline;"> We explore a novel approach to achieving anisotropic thermal photon tunneling, inspired by the concept of parity-time symmetry in quantum physics. Our method leverages the modulation of constitutive optical parameters, oscillating between loss and gain regimes. This modulation reveals a variety of distinct effects in thermal photon behavior and dispersion. Specifically, we identify complex tunneli&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.16109v1-abstract-full').style.display = 'inline'; document.getElementById('2405.16109v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.16109v1-abstract-full" style="display: none;"> We explore a novel approach to achieving anisotropic thermal photon tunneling, inspired by the concept of parity-time symmetry in quantum physics. Our method leverages the modulation of constitutive optical parameters, oscillating between loss and gain regimes. This modulation reveals a variety of distinct effects in thermal photon behavior and dispersion. Specifically, we identify complex tunneling modes through gain-loss engineering, which include thermal photonic defect states and Fermi-arc-like phenomena, which surpass those achievable through traditional polariton engineering. Our research also elucidates the laws governing the evolution of radiative energy in the presence of gain and loss interactions, and highlights the unexpected inefficacy of gain in enhancing thermal photon energy transport compared to systems characterized solely by loss. This study not only broadens our understanding of thermal photon tunneling but also establishes a versatile platform for manipulating photon energy transport, with potential applications in thermal management, heat science, and the development of advanced energy devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.16109v1-abstract-full').style.display = 'none'; document.getElementById('2405.16109v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.11854">arXiv:2405.11854</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.11854">pdf</a>, <a href="https://arxiv.org/format/2405.11854">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.110.104109">10.1103/PhysRevB.110.104109 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Unveiling the Impact of Sulfur Doping on Copper-Substituted Lead Apatite: A Theoretical Study </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+M">Ming-Long Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Peng%2C+Y">Yin-Hui Peng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liao%2C+J">Ji-Hai Liao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+X">Xiao-Bao Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yao%2C+Y">Yao Yao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+Y">Yu-Jun Zhao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.11854v1-abstract-short" style="display: inline;"> Room-temperature superconductivity represents a significant scientific milestone, with the initial report of LK-99, a copper-substituted lead apatite $\mathrm{Pb}_{10-x}\mathrm{Cu}_{x}(\mathrm{PO}_{4})_{6}\mathrm{O}$, offering a potential breakthrough. However, other researchers have encountered numerous challenges in replicating the original experimental results. In recent studies, Wang et al. su&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.11854v1-abstract-full').style.display = 'inline'; document.getElementById('2405.11854v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.11854v1-abstract-full" style="display: none;"> Room-temperature superconductivity represents a significant scientific milestone, with the initial report of LK-99, a copper-substituted lead apatite $\mathrm{Pb}_{10-x}\mathrm{Cu}_{x}(\mathrm{PO}_{4})_{6}\mathrm{O}$, offering a potential breakthrough. However, other researchers have encountered numerous challenges in replicating the original experimental results. In recent studies, Wang et al. successfully observed signs of a possible superconducting phase, such as smaller resistance and stronger diamagnetism, upon doping S into the samples. This indicates that the introduction of S is of significant importance for achieving an appropriate structure. To further investigate the role of S, we have considered the $\mathrm{Pb}_{10-x}\mathrm{Cu}_{x}(\mathrm{PO}_{4})_{6}\mathrm{S}$, systematically discussing its thermodynamic stability, as well as the influence of S on the distribution, concentration, and electronic properties of Cu. We find that $\mathrm{Pb}_{10-x}\mathrm{Cu}_{x}(\mathrm{PO}_{4})_{6}\mathrm{S}$ maintains thermodynamic stability, with S primarily influencing the distribution of Cu. The critical element dictating the electronic characteristics of the material post-synthesis is Cu, while the impact of S on the electronic properties is relatively minor. Our work provides valuable insights into the synthesis of potential apatite based room-temperature superconductors and the role of S in facilitating Cu doping. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.11854v1-abstract-full').style.display = 'none'; document.getElementById('2405.11854v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.08181">arXiv:2405.08181</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.08181">pdf</a>, <a href="https://arxiv.org/format/2405.08181">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.110.125142">10.1103/PhysRevB.110.125142 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Topological quantum phase transitions driven by a displacement field in the twisted MoTe2 bilayers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Sharma%2C+P">Prakash Sharma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Peng%2C+Y">Yang Peng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sheng%2C+D+N">D. N. Sheng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.08181v3-abstract-short" style="display: inline;"> We study twisted bilayer MoTe$_2$ systems at fractional fillings of the lowest hole band under an applied out-of-plane displacement field. By employing exact diagonalization in finite-size systems, we systematically map out the ground state quantum phase diagram for two filling fractions, $谓=1/3$ and $2/3$, and provide a detailed characterization of each phase. We identify the phase transition bet&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.08181v3-abstract-full').style.display = 'inline'; document.getElementById('2405.08181v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.08181v3-abstract-full" style="display: none;"> We study twisted bilayer MoTe$_2$ systems at fractional fillings of the lowest hole band under an applied out-of-plane displacement field. By employing exact diagonalization in finite-size systems, we systematically map out the ground state quantum phase diagram for two filling fractions, $谓=1/3$ and $2/3$, and provide a detailed characterization of each phase. We identify the phase transition between a fractional Chern insulator (FCI) and a layer-polarized charge density wave (CDW) at a filling fraction of $谓=1/3$, denoted as CDW-$1$. Additionally, we demonstrate that the competition between the displacement field and twist angle leads to another phase transition from a layer-polarized CDW-$1$ to a layer-hybridized CDW-$2$, identified as a first-order phase transition. Furthermore, at $谓=2/3$ filling of the lowest hole band, we observe that the FCI remains stable against the displacement field until it approaches proximity to a transition in single-particle band topology at a smaller twist angle. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.08181v3-abstract-full').style.display = 'none'; document.getElementById('2405.08181v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 20 Figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.03212">arXiv:2405.03212</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.03212">pdf</a>, <a href="https://arxiv.org/format/2405.03212">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41535-025-00737-8">10.1038/s41535-025-00737-8 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Using magnetic dynamics to measure the spin gap in a candidate Kitaev material </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+X">Xinyi Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qiu%2C+Q">Qingzheng Qiu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Peng%2C+C">Cheng Peng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jang%2C+H">Hoyoung Jang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+W">Wenjie Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+X">Xianghong Jin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yue%2C+L">Li Yue</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+B">Byungjune Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Park%2C+S">Sang-Youn Park</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+M">Minseok Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+H">Hyeong-Do Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cai%2C+X">Xinqiang Cai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Q">Qizhi Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dong%2C+T">Tao Dong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+N">Nanlin Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Turner%2C+J+J">Joshua J. Turner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Yuan Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Yao Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Peng%2C+Y">Yingying Peng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.03212v1-abstract-short" style="display: inline;"> Materials potentially hosting Kitaev spin-liquid states are considered crucial for realizing topological quantum computing. However, the intricate nature of spin interactions within these materials complicates the precise measurement of low-energy spin excitations indicative of fractionalized excitations. Using Na$_{2}$Co$_2$TeO$_{6}$ as an example, we study these low-energy spin excitations using&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.03212v1-abstract-full').style.display = 'inline'; document.getElementById('2405.03212v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.03212v1-abstract-full" style="display: none;"> Materials potentially hosting Kitaev spin-liquid states are considered crucial for realizing topological quantum computing. However, the intricate nature of spin interactions within these materials complicates the precise measurement of low-energy spin excitations indicative of fractionalized excitations. Using Na$_{2}$Co$_2$TeO$_{6}$ as an example, we study these low-energy spin excitations using the time-resolved resonant elastic x-ray scattering (tr-REXS). Our observations unveil remarkably slow spin dynamics at the magnetic peak, whose recovery timescale is several nanoseconds. This timescale aligns with the extrapolated spin gap of $\sim$ 1 $渭$eV, obtained by density matrix renormalization group (DMRG) simulations in the thermodynamic limit. The consistency demonstrates the efficacy of tr-REXS in discerning low-energy spin gaps inaccessible to conventional spectroscopic techniques. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.03212v1-abstract-full').style.display = 'none'; document.getElementById('2405.03212v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> npj Quantum Materials 10, 15 (2025) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.18087">arXiv:2404.18087</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.18087">pdf</a>, <a href="https://arxiv.org/format/2404.18087">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Anomalous Quantum Propagation of Microcavity Exciton Polaritons </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Lingyu%2C+T">Tian Lingyu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Peng%2C+Y">Yutian Peng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiong%2C+Q">Qihua Xiong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ghosh%2C+S">Sanjib Ghosh</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.18087v1-abstract-short" style="display: inline;"> Here, we explore the quantum propagation of exciton polaritons in semiconductor microcavities, exhibiting intriguing effects such as interactions, decay, and disorder scatterings. Our investigation uncovers anomalies in their quantum propagation, deviating from predictions based on existing theories. By applying scaling theory, we elucidate the true nature of exciton polariton propagation, unveili&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.18087v1-abstract-full').style.display = 'inline'; document.getElementById('2404.18087v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.18087v1-abstract-full" style="display: none;"> Here, we explore the quantum propagation of exciton polaritons in semiconductor microcavities, exhibiting intriguing effects such as interactions, decay, and disorder scatterings. Our investigation uncovers anomalies in their quantum propagation, deviating from predictions based on existing theories. By applying scaling theory, we elucidate the true nature of exciton polariton propagation, unveiling a localization phase that characteristically differs from Anderson localization. Our numerical results agree with the self-consistent theory developed for exciton polariton condensates, incorporating non-linearity and finite lifetime. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.18087v1-abstract-full').style.display = 'none'; document.getElementById('2404.18087v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.13129">arXiv:2404.13129</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.13129">pdf</a>, <a href="https://arxiv.org/format/2404.13129">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.110.014309">10.1103/PhysRevB.110.014309 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Real-space topological invariant for time-quasiperiodic Majoranas </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Qi%2C+Z">Zihao Qi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Na%2C+I">Ilyoun Na</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Refael%2C+G">Gil Refael</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Peng%2C+Y">Yang Peng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.13129v2-abstract-short" style="display: inline;"> When subjected to quasiperiodic driving protocols, superconducting systems have been found to harbor robust time-quasiperiodic Majorana modes, extending the concept beyond static and Floquet systems. However, the presence of incommensurate driving frequencies results in dense energy spectra, rendering conventional methods of defining topological invariants based on band structure inadequate. In th&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.13129v2-abstract-full').style.display = 'inline'; document.getElementById('2404.13129v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.13129v2-abstract-full" style="display: none;"> When subjected to quasiperiodic driving protocols, superconducting systems have been found to harbor robust time-quasiperiodic Majorana modes, extending the concept beyond static and Floquet systems. However, the presence of incommensurate driving frequencies results in dense energy spectra, rendering conventional methods of defining topological invariants based on band structure inadequate. In this work, we introduce a real-space topological invariant capable of identifying time-quasiperiodic Majoranas by leveraging the system&#39;s spectral localizer, which integrates information from both Hamiltonian and position operators. Drawing insights from non-Hermitian physics, we establish criteria for constructing the localizer and elucidate the robustness of this invariant in the presence of dense spectra. Our numerical simulations, focusing on a Kitaev chain driven by two incommensurate frequencies, validate the efficacy of our approach. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.13129v2-abstract-full').style.display = 'none'; document.getElementById('2404.13129v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.13521">arXiv:2403.13521</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.13521">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/0256-307X/41/3/037103">10.1088/0256-307X/41/3/037103 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Hybrid skin-topological effect induced by eight-site cells and arbitrary adjustment of the localization of topological edge states </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+J">Jianzhi Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+A">Aoqian Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Peng%2C+Y">Yuchen Peng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Peng%2C+P">Peng Peng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+J">Jianjun Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.13521v1-abstract-short" style="display: inline;"> The hybrid skin-topological effect (HSTE) in non-Hermitian systems exhibits both the skin effect and topological protection, offering a novel mechanism for the localization of topological edge states (TESs) in electrons, circuits, and photons. However, it remains unclear whether the HSTE can be realized in quasicrystals, and the unique structure of quasicrystals with multi-site cells may provide n&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.13521v1-abstract-full').style.display = 'inline'; document.getElementById('2403.13521v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.13521v1-abstract-full" style="display: none;"> The hybrid skin-topological effect (HSTE) in non-Hermitian systems exhibits both the skin effect and topological protection, offering a novel mechanism for the localization of topological edge states (TESs) in electrons, circuits, and photons. However, it remains unclear whether the HSTE can be realized in quasicrystals, and the unique structure of quasicrystals with multi-site cells may provide novel localization phenomena for TESs induced by the HSTE. We propose an eight-site cell in two-dimensional quasicrystals and realize the HSTE with eight-site nonreciprocal intracell hoppings. Furthermore, we can arbitrarily adjust the eigenfield distributions of the TESs and discover domain walls associated with effective dissipation and their correlation with localization. We present a new scheme to precisely adjust the energy distribution in non-Hermitian quasicrystals with arbitrary polygonal outer boundaries. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.13521v1-abstract-full').style.display = 'none'; document.getElementById('2403.13521v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Chinese Physics Letters 41, 037103 (2024) Chinese Physics Letters 41, 037103 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.08461">arXiv:2403.08461</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.08461">pdf</a>, <a href="https://arxiv.org/format/2403.08461">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> The Heisenberg-RIXS instrument at the European XFEL </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Schlappa%2C+J">Justine Schlappa</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ghiringhelli%2C+G">Giacomo Ghiringhelli</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Van+Kuiken%2C+B+E">Benjamin E. Van Kuiken</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Teichmann%2C+M">Martin Teichmann</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Miedema%2C+P+S">Piter S. Miedema</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Delitz%2C+J+T">Jan Torben Delitz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gerasimova%2C+N">Natalia Gerasimova</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Molodtsov%2C+S">Serguei Molodtsov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Adriano%2C+L">Luigi Adriano</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Baranasic%2C+B">Bernard Baranasic</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Broers%2C+C">Carsten Broers</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Carley%2C+R">Robert Carley</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gessler%2C+P">Patrick Gessler</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ghodrati%2C+N">Nahid Ghodrati</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hickin%2C+D">David Hickin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hoang%2C+L+P">Le Phuong Hoang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Izquierdo%2C+M">Manuel Izquierdo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mercadier%2C+L">Laurent Mercadier</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mercurio%2C+G">Giuseppe Mercurio</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Parchenko%2C+S">Sergii Parchenko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Stupar%2C+M">Marijan Stupar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yin%2C+Z">Zhong Yin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Martinelli%2C+L">Leonardo Martinelli</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Merzoni%2C+G">Giacomo Merzoni</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Peng%2C+Y+Y">Ying Ying Peng</a> , et al. (22 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.08461v1-abstract-short" style="display: inline;"> Resonant Inelastic X-ray Scattering (RIXS) is an ideal X-ray spectroscopy method to push the combination of energy and time resolutions to the Fourier transform ultimate limit, because it is unaffected by the core-hole lifetime energy broadening. And in pump-probe experiments the interaction time is made very short by the same core-hole lifetime. RIXS is very photon hungry so it takes great advant&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.08461v1-abstract-full').style.display = 'inline'; document.getElementById('2403.08461v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.08461v1-abstract-full" style="display: none;"> Resonant Inelastic X-ray Scattering (RIXS) is an ideal X-ray spectroscopy method to push the combination of energy and time resolutions to the Fourier transform ultimate limit, because it is unaffected by the core-hole lifetime energy broadening. And in pump-probe experiments the interaction time is made very short by the same core-hole lifetime. RIXS is very photon hungry so it takes great advantage from high repetition rate pulsed X-ray sources like the European XFEL. The hRIXS instrument is designed for RIXS experiments in the soft X-ray range with energy resolution approaching the Fourier and the Heisenberg limits. It is based on a spherical grating with variable line spacing (VLS) and a position-sensitive 2D detector. Initially, two gratings are installed to adequately cover the whole photon energy range. With optimized spot size on the sample and small pixel detector the energy resolution can be better than 40 meV at any photon energy below 1000 eV. At the SCS instrument of the European XFEL the spectrometer can be easily positioned thanks to air-pads on a high-quality floor, allowing the scattering angle to be continuously adjusted over the 65-145 deg range. It can be coupled to two different sample interaction chamber, one for liquid jets and one for solids, each equipped at the state-of-the-art and compatible for optical laser pumping in collinear geometry. The measured performances, in terms of energy resolution and count rate on the detector, closely match design expectations. hRIXS is open to public users since the summer of 2022. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.08461v1-abstract-full').style.display = 'none'; document.getElementById('2403.08461v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">43 pages, 12 figures, Supplemental Material</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.01126">arXiv:2403.01126</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.01126">pdf</a>, <a href="https://arxiv.org/format/2403.01126">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.108.043709">10.1103/PhysRevA.108.043709 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Single photon scattering from a chain of giant atoms coupled to a one-dimensional waveguide </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Peng%2C+Y+P">Y. P. Peng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jia%2C+W+Z">W. Z. Jia</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.01126v1-abstract-short" style="display: inline;"> We investigate coherent single-photon transport in a waveguide quantum electrodynamics structure containing multiple giant atoms. The single-photon scattering amplitudes are solved using a real-space method. The results give rise to a clear picture of the multi-channel scattering process. In the case of identical and equally-spaced giant atoms in a separate configuration, we also use the transfer-&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.01126v1-abstract-full').style.display = 'inline'; document.getElementById('2403.01126v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.01126v1-abstract-full" style="display: none;"> We investigate coherent single-photon transport in a waveguide quantum electrodynamics structure containing multiple giant atoms. The single-photon scattering amplitudes are solved using a real-space method. The results give rise to a clear picture of the multi-channel scattering process. In the case of identical and equally-spaced giant atoms in a separate configuration, we also use the transfer-matrix method to express the scattering amplitudes in terms of compact analytical expressions, which allow us to conveniently analyze the properties of the scattering spectra. Based on these theoretical results, we find that the non-dipole effects of giant atoms, which are relevant to the design of the setup, can strongly manipulate several types of collective properties of the output fields, including the superradiant phenomenon, the multiple Fano interference, and the photonic band gap. This makes it possible to manipulate the photon transport in a more versatile way than with small atoms. We also make a proposal to probe the topological states of a chain of braided giant atoms by using photon scattering spectra, showing that waveguide quantum electrodynamics systems with giant atoms are ideal platforms to merge topological physics and on-chip quantum optics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.01126v1-abstract-full').style.display = 'none'; document.getElementById('2403.01126v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 11 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. A 108, 043709 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.04716">arXiv:2402.04716</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2402.04716">pdf</a>, <a href="https://arxiv.org/format/2402.04716">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.109.L140102">10.1103/PhysRevB.109.L140102 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Observation of scale-free localized states induced by non-Hermitian defects </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Xie%2C+X">Xinrong Xie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liang%2C+G">Gan Liang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ma%2C+F">Fei Ma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Du%2C+Y">Yulin Du</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Peng%2C+Y">Yiwei Peng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+E">Erping Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+H">Hongsheng Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+L">Linhu Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+F">Fei Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xue%2C+H">Haoran Xue</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.04716v1-abstract-short" style="display: inline;"> Wave localization is a fundamental phenomenon that appears universally in both natural materials and artificial structures and plays a crucial role in understanding the various physical properties of a system. Usually, a localized state has an exponential profile with a localization length independent of the system size. Here, we experimentally demonstrate a new class of localized states called sc&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.04716v1-abstract-full').style.display = 'inline'; document.getElementById('2402.04716v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.04716v1-abstract-full" style="display: none;"> Wave localization is a fundamental phenomenon that appears universally in both natural materials and artificial structures and plays a crucial role in understanding the various physical properties of a system. Usually, a localized state has an exponential profile with a localization length independent of the system size. Here, we experimentally demonstrate a new class of localized states called scale-free localized states, which has an unfixed localization length scaling linearly with the system size. Using circuit lattices, we observe that a non-Hermitian defect added to a Hermitian lattice induces an extensive number of states with scale-free localization. Furthermore, we demonstrate that, in a lattice with a parity-time-symmetric non-Hermitian defect, the scale-free localization emerges because of spontaneous parity-time symmetry breaking. Our results uncover a new type of localized states and extend the study of defect physics to the non-Hermitian regime. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.04716v1-abstract-full').style.display = 'none'; document.getElementById('2402.04716v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.16150">arXiv:2401.16150</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.16150">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Sliding ferroelectric memories and synapses </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+X">Xiuzhen Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qin%2C+B">Biao Qin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Yaxian Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xi%2C+Y">Yue Xi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+Z">Zhiheng Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+M">Mengze Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Peng%2C+Y">Yalin Peng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Z">Zitao Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pan%2C+Z">Zitian Pan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+J">Jundong Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cui%2C+C">Chenyang Cui</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+R">Rong Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+W">Wei Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Meng%2C+S">Sheng Meng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+D">Dongxia Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bai%2C+X">Xuedong Bai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+C">Can Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+N">Na Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tang%2C+J">Jianshi Tang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+K">Kaihui Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Du%2C+L">Luojun Du</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+G">Guangyu Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.16150v1-abstract-short" style="display: inline;"> Ferroelectric materials with switchable electric polarization hold great promise for a plethora of emergent applications, such as post-Moore&#39;s law nanoelectronics, beyond-Boltzmann transistors, non-volatile memories, and above-bandgap photovoltaic devices. Recent advances have uncovered an exotic sliding ferroelectric mechanism, which endows to design atomically thin ferroelectrics from non-ferroe&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.16150v1-abstract-full').style.display = 'inline'; document.getElementById('2401.16150v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.16150v1-abstract-full" style="display: none;"> Ferroelectric materials with switchable electric polarization hold great promise for a plethora of emergent applications, such as post-Moore&#39;s law nanoelectronics, beyond-Boltzmann transistors, non-volatile memories, and above-bandgap photovoltaic devices. Recent advances have uncovered an exotic sliding ferroelectric mechanism, which endows to design atomically thin ferroelectrics from non-ferroelectric parent monolayers. Although notable progress has been witnessed in understanding its fundamental properties, functional devices based on sliding ferroelectrics, the key touchstone toward applications, remain elusive. Here, we demonstrate the rewritable, non-volatile memory devices at room-temperature utilizing a two-dimensional (2D) sliding ferroelectric semiconductor of rhombohedral-stacked bilayer molybdenum disulfide. The 2D sliding ferroelectric memories (SFeMs) show superior performances with a large memory window of &gt;8V, a high conductance ratio of above 106, a long retention time of &gt;10 years, and a programming endurance greater than 104 cycles. Remarkably, flexible SFeMs are achieved with state-of-the-art performances competitive to their rigid counterparts and maintain their performances post bending over 103 cycles. Furthermore, synapse-specific Hebbian forms of plasticity and image recognition with a high accuracy of 97.81% are demonstrated based on flexible SFeMs. Our work demonstrates the sliding ferroelectric memories and synaptic plasticity on both rigid and flexible substrates, highlighting the great potential of sliding ferroelectrics for emerging technological applications in brain-inspired in-memory computing, edge intelligence and energy-efficient wearable electronics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.16150v1-abstract-full').style.display = 'none'; document.getElementById('2401.16150v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.15849">arXiv:2401.15849</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.15849">pdf</a>, <a href="https://arxiv.org/format/2401.15849">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Aperiodic-quasiperiodic-periodic properties and topological transitions in twisted nested Moir茅 patterns </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Peng%2C+P">Peng Peng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Peng%2C+Y">Yuchen Peng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+A">Aoqian Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yi%2C+X">Xiaogen Yi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wei%2C+Y">Yizhou Wei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+J">Jianjun Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.15849v2-abstract-short" style="display: inline;"> The Moir茅 patterns generated by altering the structural parameters in a two or more layers of periodic materials, including single-layer structure, interlayer stacking, and twisting parameters, exhibit prosperous topological physical properties. However, the intricate characteristics of twisted nested Moir茅 patterns and their relationship with topological transitions remain unclear. In this Letter&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.15849v2-abstract-full').style.display = 'inline'; document.getElementById('2401.15849v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.15849v2-abstract-full" style="display: none;"> The Moir茅 patterns generated by altering the structural parameters in a two or more layers of periodic materials, including single-layer structure, interlayer stacking, and twisting parameters, exhibit prosperous topological physical properties. However, the intricate characteristics of twisted nested Moir茅 patterns and their relationship with topological transitions remain unclear. In this Letter, based on the proposed twisted nested photonic crystal (TNPC), we derive its spatial geometric functions (SGFs), aperiodic-quasiperiodic-periodic properties in twisted nested Moir茅 patterns, and the SSH蠁 Hamiltonian. We reveal the intrinsic correlation between twisted nested Moir茅 patterns and topological transitions, obtaining higher-order topological states (HOTSs) with C2z symmetry. This work will provide theoretical references for the design and application of twisted topological PC and their devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.15849v2-abstract-full').style.display = 'none'; document.getElementById('2401.15849v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.07881">arXiv:2401.07881</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.07881">pdf</a>, <a href="https://arxiv.org/format/2401.07881">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevApplied.22.014073">10.1103/PhysRevApplied.22.014073 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Programming bistability in geometrically perturbed mechanical metamaterials </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Peng%2C+Y">Yingchao Peng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Niloy%2C+I">Imtiar Niloy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kam%2C+M">Megan Kam</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Celli%2C+P">Paolo Celli</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Plucinsky%2C+P">Paul Plucinsky</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.07881v3-abstract-short" style="display: inline;"> Mechanical metamaterials capable of large deformations are an emerging platform for functional devices and structures across scales. Bistable designs are particularly attractive since they endow a single object with two configurations that display distinct shapes, properties and functionalities. We propose a strategy that takes a common (non-bistable) metamaterial design and transforms it into a b&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.07881v3-abstract-full').style.display = 'inline'; document.getElementById('2401.07881v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.07881v3-abstract-full" style="display: none;"> Mechanical metamaterials capable of large deformations are an emerging platform for functional devices and structures across scales. Bistable designs are particularly attractive since they endow a single object with two configurations that display distinct shapes, properties and functionalities. We propose a strategy that takes a common (non-bistable) metamaterial design and transforms it into a bistable one, specifically, by allowing for irregular patterns through geometric perturbations of the unit cell and by leveraging the intercell constraints inherent to the large deformation response of metamaterials. We exemplify this strategy by producing a design framework for bistable planar kirigami metamaterials starting from the canonical rotating-squares pattern. The framework comprises explicit design formulas for cell-based kirigami with unprecedented control over the shape of the two stable states, and an optimization methodology that allows for efficient tailoring of the geometric features of the designs to achieve target elastic properties as well as shape change. The versatility of this framework is illustrated through a wide variety of examples, including non-periodic designs that achieve two arbitrarily-shaped stable states. Quantitative and qualitative experiments, featuring prototypes with distinct engineering design details, complement the theory and shine light on the strengths and limitations of our design approach. These results show how to design bistable metamaterials from non-bistable templates, paving the way for further discovery of bistable systems and structures that are not simply arrangements of known bistable units. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.07881v3-abstract-full').style.display = 'none'; document.getElementById('2401.07881v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review Applied 22 (1), 014073 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.05671">arXiv:2401.05671</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.05671">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Deciphering Interphase Instability of Lithium Metal Batteries with Localized High-Concentration Electrolytes at Elevated Temperatures </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Meng%2C+T">Tao Meng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+S">Shanshan Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Peng%2C+Y">Yitong Peng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lan%2C+X">Xiwei Lan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+P">Pingan Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+K">Kangjia Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+X">Xianluo Hu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.05671v1-abstract-short" style="display: inline;"> Lithium metal batteries (LMBs), when coupled with a localized high-concentration electrolyte and a high-voltage nickel-rich cathode, offer a solution to the increasing demand for high energy density and long cycle life. However, the aggressive electrode chemistry poses safety risks to LMBs at higher temperatures and cutoff voltages. Here, we decipher the interphase instability in LHCE-based LMBs w&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.05671v1-abstract-full').style.display = 'inline'; document.getElementById('2401.05671v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.05671v1-abstract-full" style="display: none;"> Lithium metal batteries (LMBs), when coupled with a localized high-concentration electrolyte and a high-voltage nickel-rich cathode, offer a solution to the increasing demand for high energy density and long cycle life. However, the aggressive electrode chemistry poses safety risks to LMBs at higher temperatures and cutoff voltages. Here, we decipher the interphase instability in LHCE-based LMBs with a Ni0.8Co0.1Mn0.1O2 cathode at elevated temperatures. Our findings reveal that the generation of fluorine radicals in the electrolyte induces the solvent decomposition and consequent chain reactions, thereby reconstructing the cathode electrolyte interphase (CEI) and degrading battery cyclability. As further evidenced, introducing an acid scavenger of dimethoxydimethylsilane (DODSi) significantly boosts CEI stability with suppressed microcracking. A Ni0.8Co0.1Mn0.1O2||Li cell with this DODSi-functionalized LHCE achieves an unprecedented capacity retention of 93.0% after 100 cycles at 80 掳C. This research provides insights into electrolyte engineering for practical LMBs with high safety under extreme temperatures. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.05671v1-abstract-full').style.display = 'none'; document.getElementById('2401.05671v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 8 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.15862">arXiv:2312.15862</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.15862">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Discovery of a topological exciton insulator with tunable momentum order </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Hossain%2C+M+S">Md Shafayat Hossain</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cochran%2C+T+A">Tyler A. Cochran</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+Y">Yu-Xiao Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+S">Songbo Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+H">Huangyu Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+X">Xiaoxiong Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zheng%2C+X">Xiquan Zheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+B">Byunghoon Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cheng%2C+G">Guangming Cheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Q">Qi Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Litskevich%2C+M">Maksim Litskevich</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+J">Junyi Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cheng%2C+Z">Zi-Jia Cheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+J">Jinjin Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yin%2C+J">Jia-Xin Yin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+X+P">Xian P. Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Denlinger%2C+J">Jonathan Denlinger</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tallarida%2C+M">Massimo Tallarida</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dai%2C+J">Ji Dai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vescovo%2C+E">Elio Vescovo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rajapitamahuni%2C+A">Anil Rajapitamahuni</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Miao%2C+H">Hu Miao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yao%2C+N">Nan Yao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Keselman%2C+A">Anna Keselman</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Peng%2C+Y">Yingying Peng</a> , et al. (5 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.15862v2-abstract-short" style="display: inline;"> Correlated topological materials often maintain a delicate balance among physical symmetries: many topological orders are symmetry protected, while most correlated phenomena arise from spontaneous symmetry breaking. It is rare to find cases where symmetry breaking induces a non-trivial topological phase. Here, we present the discovery of such a phase in Ta2Pd3Te5, where Coulomb interactions form e&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.15862v2-abstract-full').style.display = 'inline'; document.getElementById('2312.15862v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.15862v2-abstract-full" style="display: none;"> Correlated topological materials often maintain a delicate balance among physical symmetries: many topological orders are symmetry protected, while most correlated phenomena arise from spontaneous symmetry breaking. It is rare to find cases where symmetry breaking induces a non-trivial topological phase. Here, we present the discovery of such a phase in Ta2Pd3Te5, where Coulomb interactions form excitons, which condense below 100 K, opening a topological gap and creating a topological excitonic insulator. Our spectroscopy reveals the full spectral bulk gap stemming from exciton condensation. This excitonic insulator state spontaneously breaks mirror symmetries but involves a very weak structural coupling, as indicated by photoemission spectroscopy, thermodynamic measurements, and a detailed structural analysis. Notably, scanning tunneling microscopy uncovers gapless boundary modes in the bulk insulating phase. Their magnetic field response, together with theoretical modeling, suggests a topological origin. These observations establish Ta2Pd3Te5 as the first confirmed topological excitonic insulator in a three-dimensional crystal. This allows to access the associated physics through bulk-sensitive techniques. Furthermore, we uncover another surprising aspect of the topological excitonic insulator, a secondary excitonic instability near 5 K that breaks the translational symmetry. The wavevector of this state shows an unprecedented magnetic field tunability. Thus, we unveil a unique sequence of topological exciton condensations in a bulk crystal, offering new opportunities to study critical behavior and excitations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.15862v2-abstract-full').style.display = 'none'; document.getElementById('2312.15862v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> Journal submission on 7th December 23 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.15728">arXiv:2312.15728</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.15728">pdf</a>, <a href="https://arxiv.org/format/2312.15728">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> </div> <p class="title is-5 mathjax"> Biomimetic Synchronization in biciliated robots </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Xia%2C+Y">Yiming Xia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+Z">Zixian Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wei%2C+D">Da Wei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+K">Ke Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Peng%2C+Y">Yi Peng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+M">Mingcheng Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.15728v1-abstract-short" style="display: inline;"> Direct mechanical coupling is known to be critical for establishing synchronization among cilia. However, the actual role of the connections is still elusive - partly because controlled experiments in live samples are challenging. Here, we employ an artificial ciliary system to address this issue. Two cilia are formed by chains of self-propelling robots and anchored to a shared base so that they a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.15728v1-abstract-full').style.display = 'inline'; document.getElementById('2312.15728v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.15728v1-abstract-full" style="display: none;"> Direct mechanical coupling is known to be critical for establishing synchronization among cilia. However, the actual role of the connections is still elusive - partly because controlled experiments in live samples are challenging. Here, we employ an artificial ciliary system to address this issue. Two cilia are formed by chains of self-propelling robots and anchored to a shared base so that they are purely mechanically-coupled. The system mimics biological ciliary beating but allows fine control over the beating dynamics. We find that the artificial cilia exhibit rich motion behaviors, depending on the mechanical coupling scheme. Particularly, their synchronous beating display two distinct modes - analogous to those observed in C. reinhardtii, the biciliated model organism for studying synchronization. Close examination suggests that the system evolves towards the most dissipative mode. Using this guideline in both simulations and experiments, we are able to direct the system into a desired state by altering the modes&#39; respective dissipation. Our results have significant implications in understanding the synchronization of cilia. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.15728v1-abstract-full').style.display = 'none'; document.getElementById('2312.15728v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.11961">arXiv:2312.11961</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.11961">pdf</a>, <a href="https://arxiv.org/format/2312.11961">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.133.126402">10.1103/PhysRevLett.133.126402 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Observation of giant circular dichroism induced by electronic chirality </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Xiao%2C+Q">Qian Xiao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Janson%2C+O">Oleg Janson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Francoual%2C+S">Sonia Francoual</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qiu%2C+Q">Qingzheng Qiu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Q">Qizhi Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+S">Shilong Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xie%2C+W">Wu Xie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bereciartua%2C+P">Pablo Bereciartua</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Brink%2C+J+v+d">Jeroen van den Brink</a>, <a href="/search/cond-mat?searchtype=author&amp;query=van+Wezel%2C+J">Jasper van Wezel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Peng%2C+Y">Yingying Peng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.11961v1-abstract-short" style="display: inline;"> Chiral phases of matter, characterized by a definite handedness, abound in nature, ranging from the crystal structure of quartz to spiraling spin states in helical magnets. In $1T$-TiSe$_2$ a source of chirality has been proposed that stands apart from these classical examples as it arises from combined electronic charge and quantum orbital fluctuations. This may allow its chirality to be accessed&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.11961v1-abstract-full').style.display = 'inline'; document.getElementById('2312.11961v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.11961v1-abstract-full" style="display: none;"> Chiral phases of matter, characterized by a definite handedness, abound in nature, ranging from the crystal structure of quartz to spiraling spin states in helical magnets. In $1T$-TiSe$_2$ a source of chirality has been proposed that stands apart from these classical examples as it arises from combined electronic charge and quantum orbital fluctuations. This may allow its chirality to be accessed and manipulated without imposing either structural or magnetic handedness. However, direct bulk evidence that broken inversion symmetry and chirality are intrinsic to TiSe$_2$ remains elusive. Here, employing resonant elastic scattering of x-rays, we reveal the presence of giant circular dichroism up to $\sim$ 40$\%$ at forbidden Bragg peaks that emerge at the charge and orbital ordering transition. The dichroism varies dramatically with incident energy and azimuthal angle. Comparison to calculated scattering intensities unambiguously traces its origin to bulk chiral electronic order in ${\mathrm{TiSe}}_2$ and establishes resonant elastic x-ray scattering as a sensitive probe to electronic chirality. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.11961v1-abstract-full').style.display = 'none'; document.getElementById('2312.11961v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 133, 126402 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.11857">arXiv:2312.11857</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.11857">pdf</a>, <a href="https://arxiv.org/format/2312.11857">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s42005-024-01848-7">10.1038/s42005-024-01848-7 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Anderson transition and mobility edges on hyperbolic lattices with randomly connected boundaries </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+T">Tianyu Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Peng%2C+Y">Yi Peng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Yucheng Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+H">Haiping Hu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.11857v2-abstract-short" style="display: inline;"> Hyperbolic lattices, formed by tessellating the hyperbolic plane with regular polygons, exhibit a diverse range of exotic physical phenomena beyond conventional Euclidean lattices. Here, we investigate the impact of disorder on hyperbolic lattices and reveal that the Anderson localization occurs at strong disorder strength, accompanied by the presence of mobility edges. Taking the hyperbolic&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.11857v2-abstract-full').style.display = 'inline'; document.getElementById('2312.11857v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.11857v2-abstract-full" style="display: none;"> Hyperbolic lattices, formed by tessellating the hyperbolic plane with regular polygons, exhibit a diverse range of exotic physical phenomena beyond conventional Euclidean lattices. Here, we investigate the impact of disorder on hyperbolic lattices and reveal that the Anderson localization occurs at strong disorder strength, accompanied by the presence of mobility edges. Taking the hyperbolic $\{p,q\}=\{3,8\}$ and $\{p,q\}=\{4,8\}$ lattices as examples, we employ finite-size scaling of both spectral statistics and the inverse participation ratio to pinpoint the transition point and critical exponents. Our findings indicate that the transition points tend to increase with larger values of $\{p,q\}$ or curvature. In the limiting case of $\{\infty, q\}$, we further determine its Anderson transition using the cavity method, drawing parallels with the random regular graph. Our work lays the cornerstone for a comprehensive understanding of Anderson transition and mobility edges on hyperbolic lattices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.11857v2-abstract-full').style.display = 'none'; document.getElementById('2312.11857v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10+6 pages, 5+5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Commun Phys 7, 371 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.09055">arXiv:2312.09055</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.09055">pdf</a>, <a href="https://arxiv.org/format/2312.09055">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.110.115142">10.1103/PhysRevB.110.115142 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Exploration of magnetoelastic deformations in spin-chain compound CuBr$_2$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+B">Biaoyan Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Peng%2C+Y">Yingying Peng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+X">Xiaoqiang Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Q">Qizhi Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gu%2C+Q">Qiangqiang Gu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Krogstad%2C+M+J">Matthew J. Krogstad</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Osborn%2C+R">Raymond Osborn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Honda%2C+T">Takashi Honda</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Feng%2C+J">Ji Feng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Yuan Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.09055v1-abstract-short" style="display: inline;"> We investigate a spin-$\frac{1}{2}$ antiferromagnet, CuBr$_2$, which has quasi-one-dimensional structural motifs. The system has previously been observed to exhibit unusual Raman modes possibly due to a locally deformed crystal structure driven by the low-dimensional magnetism. Using hard X-ray scattering and neutron total scattering, here we aim to verify a specific form of tetramerized lattice d&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.09055v1-abstract-full').style.display = 'inline'; document.getElementById('2312.09055v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.09055v1-abstract-full" style="display: none;"> We investigate a spin-$\frac{1}{2}$ antiferromagnet, CuBr$_2$, which has quasi-one-dimensional structural motifs. The system has previously been observed to exhibit unusual Raman modes possibly due to a locally deformed crystal structure driven by the low-dimensional magnetism. Using hard X-ray scattering and neutron total scattering, here we aim to verify a specific form of tetramerized lattice deformation proposed in the previous study. Apart from diffuse scattering signals which we can reproduce by performing a thorough modeling of the lattice&#39;s thermal vibrations, we do not observe evidence for a tetramerized lattice structure within our detection sensitivity. As a result, it is more likely that the unusual Raman modes in CuBr$_2$ arise from classical magnon-phonon hybridization, rather than from quantum spin-singlet-driven lattice deformation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.09055v1-abstract-full').style.display = 'none'; document.getElementById('2312.09055v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 110, 115142 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.04461">arXiv:2311.04461</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2311.04461">pdf</a>, <a href="https://arxiv.org/format/2311.04461">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Geophysics">physics.geo-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1029/2023JB028333">10.1029/2023JB028333 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Hydrogen diffusion in the lower mantle revealed by machine learning potentials </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Peng%2C+Y">Yihang Peng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Deng%2C+J">Jie Deng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.04461v2-abstract-short" style="display: inline;"> Hydrogen may be incorporated into nominally anhydrous minerals including bridgmanite and post-perovskite as defects, making the Earth&#39;s deep mantle a potentially significant water reservoir. The diffusion of hydrogen and its contribution to the electrical conductivity in the lower mantle are rarely explored and remain largely unconstrained. Here we calculate hydrogen diffusivity in hydrous bridgma&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.04461v2-abstract-full').style.display = 'inline'; document.getElementById('2311.04461v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.04461v2-abstract-full" style="display: none;"> Hydrogen may be incorporated into nominally anhydrous minerals including bridgmanite and post-perovskite as defects, making the Earth&#39;s deep mantle a potentially significant water reservoir. The diffusion of hydrogen and its contribution to the electrical conductivity in the lower mantle are rarely explored and remain largely unconstrained. Here we calculate hydrogen diffusivity in hydrous bridgmanite and post-perovskite, using molecular dynamics simulations driven by machine learning potentials of ab initio quality. Our findings reveal that hydrogen diffusivity significantly increases with increasing temperature and decreasing pressure, and is considerably sensitive to hydrogen incorporation mechanism. Among the four defect mechanisms examined, (Mg + 2H)$_{\rm Si}$ and (Al + H)$_{\rm Si}$ show similar patterns and yield the highest hydrogen diffusivity. Hydrogen diffusion is generally faster in post-perovskite than in bridgmanite, and these two phases exhibit distinct diffusion anisotropies. Overall, hydrogen diffusion is slow on geological time scales and may result in heterogeneous water distribution in the lower mantle. Additionally, the proton conductivity of bridgmanite for (Mg + 2H)$_{\rm Si}$ and (Al + H)$_{\rm Si}$ defects aligns with the same order of magnitude of lower mantle conductivity, suggesting that the water distribution in the lower mantle may be inferred by examining the heterogeneity of electrical conductivity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.04461v2-abstract-full').style.display = 'none'; document.getElementById('2311.04461v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Journal of Geophysical Research: Solid Earth 129, e2023JB028333 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.10293">arXiv:2310.10293</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.10293">pdf</a>, <a href="https://arxiv.org/format/2310.10293">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-024-53323-0">10.1038/s41467-024-53323-0 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Room-temperature non-volatile optical manipulation of polar order in a charge density wave </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Q">Qiaomei Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+D">Dong Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+T">Tianyi Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Han%2C+S">Shanshan Han</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Peng%2C+Y">Yiran Peng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yuan%2C+Z">Zhihong Yuan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cheng%2C+Y">Yihan Cheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+B">Bohan Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+T">Tianchen Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yue%2C+L">Li Yue</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+S">Shuxiang Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ding%2C+R">Ruoxuan Ding</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+M">Ming Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+R">Rongsheng Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+S">Sijie Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lv%2C+B">Baiqing Lv</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zong%2C+A">Alfred Zong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Su%2C+Y">Yifan Su</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gedik%2C+N">Nuh Gedik</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yin%2C+Z">Zhiping Yin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dong%2C+T">Tao Dong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+N">Nanlin Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.10293v2-abstract-short" style="display: inline;"> Utilizing ultrafast light-matter interaction to manipulate electronic states of quantum materials is an emerging area of research in condensed matter physics. It has significant implications for the development of future ultrafast electronic devices. However, the ability to induce long-lasting metastable electronic states in a fully reversible manner is a long-standing challenge.Here, by using ult&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.10293v2-abstract-full').style.display = 'inline'; document.getElementById('2310.10293v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.10293v2-abstract-full" style="display: none;"> Utilizing ultrafast light-matter interaction to manipulate electronic states of quantum materials is an emerging area of research in condensed matter physics. It has significant implications for the development of future ultrafast electronic devices. However, the ability to induce long-lasting metastable electronic states in a fully reversible manner is a long-standing challenge.Here, by using ultrafast laser excitations, we demonstrate the capability to manipulate the electronic polar states in the charge-density-wavematerial EuTe4 in a non-volatile manner. The process is completely reversible and is achieved at room temperature with an all-optical approach. Each induced non-volatile state brings about modifications to the electrical resistance and second harmonic generation intensity. The results point to layer-specific phase inversion dynamics by which photoexcitation mediates the stacking polar order of the system. Our findings extend the scope of non-volatile all-optical control of electronic states to ambient conditions, and highlight a distinct role of layerdependent phase manipulation in quasi-two-dimensional systems with inherent sublayer stacking orders. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.10293v2-abstract-full').style.display = 'none'; document.getElementById('2310.10293v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Communications volume 15, Article number: 8937 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.04033">arXiv:2310.04033</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.04033">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/nsr/nwad241">10.1093/nsr/nwad241 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Superconductivity with Tc 116K discovered in antimony polyhydrides </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+K">K. Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+X">X. He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+C+L">C. L. Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Z+W">Z. W. Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+S+J">S. J. Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Min%2C+B+S">B. S. Min</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+J">J. Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+J+F">J. F. Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+L+C">L. C. Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Peng%2C+Y">Y. Peng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Feng%2C+S+M">S. M. Feng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Q+Q">Q. Q. Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+J">J. Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+R+C">R. C. Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+X+C">X. C. Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Y. Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bykov%2C+M">M. Bykov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+C+Q">C. Q. Jin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.04033v3-abstract-short" style="display: inline;"> Superconductivity (SC) was experimentally observed for the first time in antimony polyhydride. The diamond anvil cell combined with laser heating system was used to synthesize the antimony polyhydride sample at high pressure and high temperature conditions. In-situ high pressure transport measurements as function of temperature with applied magnet are performed to study the SC properties. It was f&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.04033v3-abstract-full').style.display = 'inline'; document.getElementById('2310.04033v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.04033v3-abstract-full" style="display: none;"> Superconductivity (SC) was experimentally observed for the first time in antimony polyhydride. The diamond anvil cell combined with laser heating system was used to synthesize the antimony polyhydride sample at high pressure and high temperature conditions. In-situ high pressure transport measurements as function of temperature with applied magnet are performed to study the SC properties. It was found that the antimony polyhydride samples show superconducting transition with critical temperature Tc 116 K at 184 GPa. The investigation of SC at magnetic field revealed that the superconducting coherent length ~40 angstroms based on Ginzburg Landau (GL) equation. Antimony polyhydride superconductor has the second highest Tc in addition to sulfur hydride among the polyhydrides of elements from main group IIIA to VIIA in periodic table. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.04033v3-abstract-full').style.display = 'none'; document.getElementById('2310.04033v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> National Science Review 11, nwad241 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.01649">arXiv:2309.01649</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2309.01649">pdf</a>, <a href="https://arxiv.org/format/2309.01649">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Charge redistribution, charge order and plasmon in La$_{2-x}$Sr$_{x}$CuO$_{4}$/La$_{2}$CuO$_{4}$ superlattices </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Q">Qizhi Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ju%2C+L">Lele Ju</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+H">Hsiaoyu Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Y">Yuxuan Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zou%2C+C">Changwei Zou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ren%2C+T">Tianshuang Ren</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Singh%2C+A">A. Singh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+S">Shilong Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qiu%2C+Q">Qingzheng Qiu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiao%2C+Q">Qian Xiao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+D">Di-Jing Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xie%2C+Y">Yanwu Xie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Z">Zhen Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Peng%2C+Y">Yingying Peng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.01649v1-abstract-short" style="display: inline;"> Interfacial superconductors have the potential to revolutionize electronics, quantum computing, and fundamental physics due to their enhanced superconducting properties and ability to create new types of superconductors. The emergence of superconductivity at the interface of La$_{2-x}$Sr$_{x}$CuO$_{4}$/La$_{2}$CuO$_{4}$ (LSCO/LCO), with a T$_c$ enhancement of $\sim$ 10 K compared to the La&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.01649v1-abstract-full').style.display = 'inline'; document.getElementById('2309.01649v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.01649v1-abstract-full" style="display: none;"> Interfacial superconductors have the potential to revolutionize electronics, quantum computing, and fundamental physics due to their enhanced superconducting properties and ability to create new types of superconductors. The emergence of superconductivity at the interface of La$_{2-x}$Sr$_{x}$CuO$_{4}$/La$_{2}$CuO$_{4}$ (LSCO/LCO), with a T$_c$ enhancement of $\sim$ 10 K compared to the La$_{2-x}$Sr$_{x}$CuO$_{4}$ bulk single crystals, provides an exciting opportunity to study quantum phenomena in reduced dimensions. To investigate the carrier distribution and excitations in interfacial superconductors, we combine O K-edge resonant inelastic X-ray scattering and atomic-resolved scanning transmission electron microscopy measurements to study La$_{2-x}$Sr$_{x}$CuO$_{4}$/La$_{2}$CuO$_{4}$ superlattices (x=0.15, 0.45) and bulk La$_{1.55}$Sr$_{0.45}$CuO$_{4}$ films. We find direct evidence of charge redistribution, charge order and plasmon in LSCO/LCO superlattices. Notably, the observed behaviors of charge order and plasmon deviate from the anticipated properties of individual constituents or the average doping level of the superlattice. Instead, they conform harmoniously to the effective doping, a critical parameter governed by the T$_c$ of interfacial superconductors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.01649v1-abstract-full').style.display = 'none'; document.getElementById('2309.01649v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.10516">arXiv:2308.10516</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2308.10516">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Single laser pulse induced magnetization switching in in-plane magnetized GdCo alloys </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+J">Jun-Xiao Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hehn%2C+M">Michel Hehn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hauet%2C+T">Thomas Hauet</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Peng%2C+Y">Yi Peng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Igarashi%2C+J">Junta Igarashi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guen%2C+Y+L">Yann Le Guen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Remy%2C+Q">Quentin Remy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gorchon%2C+J">Jon Gorchon</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Malinowski%2C+G">Gregory Malinowski</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mangin%2C+S">St茅phane Mangin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hohlfeld%2C+J">Julius Hohlfeld</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.10516v1-abstract-short" style="display: inline;"> The discovery of all-optical ultra-fast deterministic magnetization switching has opened up new possibilities for manipulating magnetization in devices using femtosecond laser pulses. Previous studies on single pulse all-optical helicity-independent switching (AO-HIS) have mainly focused on perpendicularly magnetized thin films. This work presents a comprehensive study on AO-HIS for in-plane magne&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.10516v1-abstract-full').style.display = 'inline'; document.getElementById('2308.10516v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.10516v1-abstract-full" style="display: none;"> The discovery of all-optical ultra-fast deterministic magnetization switching has opened up new possibilities for manipulating magnetization in devices using femtosecond laser pulses. Previous studies on single pulse all-optical helicity-independent switching (AO-HIS) have mainly focused on perpendicularly magnetized thin films. This work presents a comprehensive study on AO-HIS for in-plane magnetized GdxCo100-x thin films. Deterministic single femtosecond laser pulse toggle magnetization switching is demonstrated in a wider concentration range (x=10% to 25%) compared to the perpendicularly magnetized counterparts with GdCo thicknesses up to 30 nm. The switching time strongly depends on the GdxCo100-x concentration, with lower Gd concentration exhibiting shorter switching times (less than 500 fs). Our findings in this geometry provide insights into the underlying mechanisms governing single pulse AO-HIS, which challenge existing theoretical predictions. Moreover, in-plane magnetized GdxCo100-x thin films offer extended potential for opto-spintronic applications compared to their perpendicular magnetized counterparts. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.10516v1-abstract-full').style.display = 'none'; document.getElementById('2308.10516v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.06504">arXiv:2308.06504</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2308.06504">pdf</a>, <a href="https://arxiv.org/format/2308.06504">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.108.054313">10.1103/PhysRevB.108.054313 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Accelerating Relaxation Dynamics in Open Quantum System with Liouvillian Skin Effect </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Z">Zeqing Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+Y">Yao Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Peng%2C+Y">Yi Peng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qi%2C+R">Ran Qi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Yucheng Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jie%2C+J">Jianwen Jie</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.06504v1-abstract-short" style="display: inline;"> We investigate a non-Hermitian model featuring non-reciprocal gradient hoppings. Through an in-depth analysis of the Liouvillian spectrum and dynamics, we confirm the emergence of the Liouvillian skin effect resulting from the non-reciprocal nature of hoppings in this model. Furthermore, we observe that the presence of gradient hopping strength leads to an accelerated relaxation time for the syste&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.06504v1-abstract-full').style.display = 'inline'; document.getElementById('2308.06504v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.06504v1-abstract-full" style="display: none;"> We investigate a non-Hermitian model featuring non-reciprocal gradient hoppings. Through an in-depth analysis of the Liouvillian spectrum and dynamics, we confirm the emergence of the Liouvillian skin effect resulting from the non-reciprocal nature of hoppings in this model. Furthermore, we observe that the presence of gradient hopping strength leads to an accelerated relaxation time for the system. Through numerical investigations of the Liouvillian gap, relaxation time, and steady-state localization length, we discover that the relaxation time in this model cannot be explained by the currently established relationship associated with the Liouvillian skin effect. This discrepancy highlights the need for further exploration and theoretical advancements to fully comprehend the intricate mechanisms underlying quantum relaxation processes. Motivated by these findings, we propose a theoretical approach to realize this non-Hermitian model in an atomic system with a sideband structure by employing adiabatic elimination technique. These results contribute to our deeper comprehension of quantum relaxation dynamics and provide theoretical backing for the development of techniques aimed at controlling quantum relaxation processes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.06504v1-abstract-full').style.display = 'none'; document.getElementById('2308.06504v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 6 figures, To be published in PRB</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 108, 054313 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.15720">arXiv:2307.15720</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2307.15720">pdf</a>, <a href="https://arxiv.org/format/2307.15720">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> </div> </div> <p class="title is-5 mathjax"> Scaling transition of active turbulence from two to three dimensions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wei%2C+D">Da Wei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+Y">Yaochen Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wei%2C+X">Xuefeng Wei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Golestanian%2C+R">Ramin Golestanian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+M">Ming Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Meng%2C+F">Fanlong Meng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Peng%2C+Y">Yi Peng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.15720v1-abstract-short" style="display: inline;"> Turbulent flows are observed in low-Reynolds active fluids. They are intrinsically different from the classical inertial turbulence and behave distinctively in two- and three-dimensions. Understanding the behaviors of this new type of turbulence and their dependence on the system dimensionality is a fundamental challenge in non-equilibrium physics. We experimentally measure flow structures and ene&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.15720v1-abstract-full').style.display = 'inline'; document.getElementById('2307.15720v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.15720v1-abstract-full" style="display: none;"> Turbulent flows are observed in low-Reynolds active fluids. They are intrinsically different from the classical inertial turbulence and behave distinctively in two- and three-dimensions. Understanding the behaviors of this new type of turbulence and their dependence on the system dimensionality is a fundamental challenge in non-equilibrium physics. We experimentally measure flow structures and energy spectra of bacterial turbulence between two large parallel plates spaced by different heights $H$. The turbulence exhibits three regimes as H increases, resulting from the competition of bacterial length, vortex size and H. This is marked by two critical heights ($H_0$ and $H_1$) and a $H^{0.5}$ scaling law of vortex size in the large-$H$ limit. Meanwhile, the spectra display distinct universal scaling laws in quasi-two-dimensional (2D) and three-dimensional (3D) regimes, independent of bacterial activity, length and $H$, whereas scaling exponents exhibit transitions in the crossover. To understand the scaling laws, we develop a hydrodynamic model using image systems to represent the effect of no-slip confining boundaries. This model predicts universal 1 and -4 scaling on large and small length scales, respectively, and -2 and -1 on intermediate length scales in 2D and 3D, respectively, which are consistent with the experimental results. Our study suggests a framework for investigating the effect of dimensionality on non-equilibrium self-organized systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.15720v1-abstract-full').style.display = 'none'; document.getElementById('2307.15720v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.09616">arXiv:2306.09616</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2306.09616">pdf</a>, <a href="https://arxiv.org/format/2306.09616">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Probing the Anomalous Hall Transport and Magnetic Reversal of Chiral-Lattice Antiferromagnet Co$_{1/3}$NbS$_2$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Gu%2C+P">Pingfan Gu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Peng%2C+Y">Yuxuan Peng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+S">Shiqi Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+H">Huan Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ye%2C+S">Shenyong Ye</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+H">Hanwen Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Yanping Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xia%2C+T">Tianlong Xia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+J">Jinbo Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ye%2C+Y">Yu Ye</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.09616v1-abstract-short" style="display: inline;"> Antiferromagnets exhibiting giant anomalous Hall effect (AHE) and anomalous Nernst effect (ANE) have recently aroused broad interest, not only for their potential applications in future electronic devices, but also because of the rich physics arising from the Berry curvature near the Fermi level. $\rm{Co_{1/3}NbS_2}$, by intercalating $\rm{Co^{2+}}$ ions between $\rm{NbS_2}$ layers, is a quasi-two&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.09616v1-abstract-full').style.display = 'inline'; document.getElementById('2306.09616v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.09616v1-abstract-full" style="display: none;"> Antiferromagnets exhibiting giant anomalous Hall effect (AHE) and anomalous Nernst effect (ANE) have recently aroused broad interest, not only for their potential applications in future electronic devices, but also because of the rich physics arising from the Berry curvature near the Fermi level. $\rm{Co_{1/3}NbS_2}$, by intercalating $\rm{Co^{2+}}$ ions between $\rm{NbS_2}$ layers, is a quasi-two-dimensional layered antiferromagnet with a chiral lattice. A large AHE has been observed in $\rm{Co_{1/3}NbS_2}$, but its origin is under debate. In this letter, we report the large AHE and ANE in exfoliated $\rm{Co_{1/3}NbS_2}$ flakes. By analyzing the thermoelectric data via the Mott relation, we determined that the observed large AHE and ANE primarily result from the intrinsic Berry curvature. We also observed the magnetic domains in $\rm{Co_{1/3}NbS_2}$ by reflective magnetic circular dichroism measurements. Combined with electrical transport measurements, we confirmed that the magnetic reversal in $\rm{Co_{1/3}NbS_2}$ is determined by domain wall motion, and the critical field ($H_c$) exhibits a memory effect of consecutive magnetic sweeps. Our work provides insight into the topological properties of $\rm{Co_{1/3}NbS_2}$ and paves the way to studying the spin configuration and magnetic domain dynamics in this fascinating antiferromagnet. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.09616v1-abstract-full').style.display = 'none'; document.getElementById('2306.09616v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.18532">arXiv:2305.18532</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2305.18532">pdf</a>, <a href="https://arxiv.org/format/2305.18532">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.108.L180302">10.1103/PhysRevB.108.L180302 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Distinct Floquet topological classifications from color-decorated frequency lattices with space-time symmetries </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Na%2C+I">Ilyoun Na</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kemp%2C+J">Jack Kemp</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Slager%2C+R">Robert-Jan Slager</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Peng%2C+Y">Yang Peng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.18532v1-abstract-short" style="display: inline;"> We consider nontrivial topological phases in Floquet systems using unitary loops and stroboscopic evolutions under a static Floquet Hamiltonian $H_F$ in the presence of dynamical space-time symmetries $G$. While the latter has been subject of out-of-equilibrium classifications that extend the ten-fold way and systems with additional crystalline symmetries to periodically driven systems, we explore&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.18532v1-abstract-full').style.display = 'inline'; document.getElementById('2305.18532v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.18532v1-abstract-full" style="display: none;"> We consider nontrivial topological phases in Floquet systems using unitary loops and stroboscopic evolutions under a static Floquet Hamiltonian $H_F$ in the presence of dynamical space-time symmetries $G$. While the latter has been subject of out-of-equilibrium classifications that extend the ten-fold way and systems with additional crystalline symmetries to periodically driven systems, we explore the anomalous topological zero modes that arise in $H_F$ from the coexistence of a dynamical space-time symmetry $M$ and antisymmetry $A$ of $G$, and classify them using a frequency-domain formulation. Moreover, we provide an interpretation of the resulting Floquet topological phases using a frequency lattice with a decoration represented by color degrees of freedom on the lattice vertices. These colors correspond to the coefficient $N$ of the group extension $\tilde{G}$ of $G$ along the frequency lattice, given by $N=Z\rtimes H^1[A,M]$. The distinct topological classifications that arise at different energy gaps in its quasi-energy spectrum are described by the torsion product of the cohomology group $H^{2}[G,N]$ classifying the group extension. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.18532v1-abstract-full').style.display = 'none'; document.getElementById('2305.18532v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 pages + supplementary material</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 108, L180302 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.14860">arXiv:2304.14860</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2304.14860">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Electron-infrared phonon coupling in ABC trilayer graphene </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zan%2C+X">Xiaozhou Zan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+X">Xiangdong Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Deng%2C+A">Aolin Deng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+Z">Zhiheng Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+L">Le Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+F">Fanfan Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yuan%2C+Y">Yalong Yuan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+J">Jiaojiao Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Peng%2C+Y">Yalin Peng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+L">Lu Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Y">Yangkun Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+X">Xiuzhen Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+J">Jundong Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dong%2C+J">Jingwei Dong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+D">Dongxia Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+W">Wei Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+X">Xiaoxia Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+Z">Zhiwen Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Du%2C+L">Luojun Du</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dai%2C+Q">Qing Dai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+G">Guangyu Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.14860v1-abstract-short" style="display: inline;"> Stacking order plays a crucial role in determining the crystal symmetry and has significant impacts on electronic, optical, magnetic, and topological properties. Electron-phonon coupling, which is central to a wide range of intriguing quantum phenomena, is expected to be intricately connected with stacking order. Understanding the stacking order-dependent electron-phonon coupling is essential for&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.14860v1-abstract-full').style.display = 'inline'; document.getElementById('2304.14860v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.14860v1-abstract-full" style="display: none;"> Stacking order plays a crucial role in determining the crystal symmetry and has significant impacts on electronic, optical, magnetic, and topological properties. Electron-phonon coupling, which is central to a wide range of intriguing quantum phenomena, is expected to be intricately connected with stacking order. Understanding the stacking order-dependent electron-phonon coupling is essential for understanding peculiar physical phenomena associated with electron-phonon coupling, such as superconductivity and charge density waves. In this study, we investigate the effect of stacking order on electron-infrared phonon coupling in graphene trilayers. By using gate-tunable Raman spectroscopy and excitation frequency-dependent near-field infrared nanoscopy, we show that rhombohedral ABC-stacked trilayer graphene has a significantly stronger electron-infrared phonon coupling strength than the Bernal ABA-stacked trilayer graphene. Our findings provide novel insights into the superconductivity and other fundamental physical properties of rhombohedral ABC-stacked trilayer graphene, and can enable nondestructive and high-throughput imaging of trilayer graphene stacking order using Raman scattering. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.14860v1-abstract-full').style.display = 'none'; document.getElementById('2304.14860v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.12735">arXiv:2304.12735</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2304.12735">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.132.197202">10.1103/PhysRevLett.132.197202 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Demonstration of acoustic high-order Stiefel-Whitney semimetal in bilayer graphene sonic crystals </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Xiang%2C+X">Xiao Xiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ni%2C+X">Xiang Ni</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+F">Feng Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+X">Xiaoxiao Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Z">Zhaoxian Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Peng%2C+Y">Yu-Gui Peng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+X">Xue-Feng Zhu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.12735v1-abstract-short" style="display: inline;"> Recently, higher-order topological phases have endowed materials many exotic topological phases. For three-dimensional (3D) higher-order topologies, it hosts topologically protected 1D hinge states or 0D corner states, which extend the bulk-boundary correspondence of 3D topological phases. Meanwhile, the enrichment of group symmetries with exploration of projective symmetry algebras redefined the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.12735v1-abstract-full').style.display = 'inline'; document.getElementById('2304.12735v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.12735v1-abstract-full" style="display: none;"> Recently, higher-order topological phases have endowed materials many exotic topological phases. For three-dimensional (3D) higher-order topologies, it hosts topologically protected 1D hinge states or 0D corner states, which extend the bulk-boundary correspondence of 3D topological phases. Meanwhile, the enrichment of group symmetries with exploration of projective symmetry algebras redefined the fundamentals of nontrivial topological matter with artificial gauge fields, leading to the discovery of new topological phases in classical wave systems. In this Letter, we construct an acoustic topological semimetal characterized by both the first and the second Stiefel-Whitney (SW) topological charges by utilizing the projective symmetry. Different from conventional high-order topologies with multiple bulk-boundary correspondences protected by different class topological invariants, acoustic high-order Stiefel-Whitney semimetal (HOSWS) has two different bulk-edge correspondences protected by only one class (SW class) topological invariant. Two types of topological hinge and surface states are embedded in bulk bands at the same frequency, featuring similar characteristics of bound states in the continuum (BICs). In experiments, we demonstrate the existence of high-quality surface state and hinge state at the interested frequency window with polarized intensity field distributions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.12735v1-abstract-full').style.display = 'none'; document.getElementById('2304.12735v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 132, 197202 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.01740">arXiv:2304.01740</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2304.01740">pdf</a>, <a href="https://arxiv.org/format/2304.01740">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevMaterials.7.074801">10.1103/PhysRevMaterials.7.074801 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Evolution of charge density waves from three-dimensional to quasi-two-dimensional in Kagome superconductors Cs(V$_{1-x}M_{x}$)$_3$Sb$_5$ ($M$ = Nb, Ta) </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Xiao%2C+Q">Qian Xiao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Q">Qizhi Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+J">Jinjin Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Yongkai Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xia%2C+W">Wei Xia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zheng%2C+X">Xiquan Zheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+Y">Yanfeng Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yao%2C+Y">Yugui Yao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Z">Zhiwei Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Peng%2C+Y">Yingying Peng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.01740v1-abstract-short" style="display: inline;"> The Kagome material $A{\mathrm{V}}_3{\mathrm{Sb}}_5$ ($A$ = K, Rb, Cs) with geometry frustration hosts non-trivial topological electronic structures, electronic nematicity, charge density wave (CDW) and superconductivity, providing an ideal platform to study the interplay between these phases. Specifically, in pressurized- or substituted-${\mathrm{CsV}}_3{\mathrm{Sb}}_5$, the relationship between&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.01740v1-abstract-full').style.display = 'inline'; document.getElementById('2304.01740v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.01740v1-abstract-full" style="display: none;"> The Kagome material $A{\mathrm{V}}_3{\mathrm{Sb}}_5$ ($A$ = K, Rb, Cs) with geometry frustration hosts non-trivial topological electronic structures, electronic nematicity, charge density wave (CDW) and superconductivity, providing an ideal platform to study the interplay between these phases. Specifically, in pressurized- or substituted-${\mathrm{CsV}}_3{\mathrm{Sb}}_5$, the relationship between CDW and superconductivity is unusual and remains to be fully understood. Recently, coexisting and competing 2 $\times$ 2 $\times$ 4 and 2 $\times$ 2 $\times$ 2 CDW phases were discovered in ${\mathrm{CsV}}_3{\mathrm{Sb}}_5$. To investigate the evolution of the CDW phases with the substitution of V atoms, we performed x-ray diffraction (XRD) experiments on ${\mathrm{Cs(V}}_{1-x}{\mathrm{Ta}}_{x}{\mathrm{)}}_3{\mathrm{Sb}}_5$ and ${\mathrm{Cs(V}}_{1-x}{\mathrm{Nb}}_{x}{\mathrm{)}}_3{\mathrm{Sb}}_5$. Our results indicate that in all substituted samples, the discrete CDW reflection points in pristine ${\mathrm{CsV}}_3{\mathrm{Sb}}_5$ change to rod-like structures along the $c^\star$ direction. This suggests that the long-ranged three-dimensional CDW becomes quasi-two-dimensional by the substitution of V by Ta/Nb. Moreover, our temperature-dependent measurements show that there is no hysteresis behavior of CDW signals, indicating that the 2 $\times$ 2 $\times$ 4 CDW phase is easily suppressed by even a slight substitution of V with Nb/Ta. These findings uncover the CDW evolution upon substitution of V atoms in CsV$_3$Sb$_5$, providing insights into the microscopic mechanism of CDW and helping to understand the interplay between intertwined phases and superconductivity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.01740v1-abstract-full').style.display = 'none'; document.getElementById('2304.01740v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Materials 7, 074801 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.06718">arXiv:2303.06718</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2303.06718">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/0256-307X/40/4/046101">10.1088/0256-307X/40/4/046101 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Pressure-induced color change in the lutetium dihydride LuH2 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Shan%2C+P">Pengfei Shan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+N">Ningning Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zheng%2C+X">Xiquan Zheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qiu%2C+Q">Qingzheng Qiu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Peng%2C+Y">Yingying Peng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cheng%2C+J">Jinguang Cheng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.06718v1-abstract-short" style="display: inline;"> The lutetium dihydride LuH2 is stable at ambient conditions. Here we show that its color undergoes sequential changes from dark blue at ambient pressure to pink at ~2.2 GPa and then to bright red at ~4 GPa upon compression in a diamond anvil cell. Such a pressure-induced color change in LuH2 is reversible and it is very similar to that recently reported in the N-doped lutetium hydride. However, ou&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.06718v1-abstract-full').style.display = 'inline'; document.getElementById('2303.06718v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.06718v1-abstract-full" style="display: none;"> The lutetium dihydride LuH2 is stable at ambient conditions. Here we show that its color undergoes sequential changes from dark blue at ambient pressure to pink at ~2.2 GPa and then to bright red at ~4 GPa upon compression in a diamond anvil cell. Such a pressure-induced color change in LuH2 is reversible and it is very similar to that recently reported in the N-doped lutetium hydride. However, our preliminary resistance measurements on LuH2 under pressures up to 7.7 GPa evidenced no superconductivity down to 1.5 K. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.06718v1-abstract-full').style.display = 'none'; document.getElementById('2303.06718v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Chin. Phys. Lett. 40, 046101, 2023 </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Peng%2C+Y&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Peng%2C+Y&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Peng%2C+Y&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Peng%2C+Y&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Peng%2C+Y&amp;start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10