CINXE.COM
C. Spyropoulos - Academia.edu
<!DOCTYPE html> <html lang="en" xmlns:fb="http://www.facebook.com/2008/fbml" class="wf-loading"> <head prefix="og: https://ogp.me/ns# fb: https://ogp.me/ns/fb# academia: https://ogp.me/ns/fb/academia#"> <meta charset="utf-8"> <meta name=viewport content="width=device-width, initial-scale=1"> <meta rel="search" type="application/opensearchdescription+xml" href="/open_search.xml" title="Academia.edu"> <title>C. Spyropoulos - Academia.edu</title> <!-- _ _ _ | | (_) | | __ _ ___ __ _ __| | ___ _ __ ___ _ __ _ ___ __| |_ _ / _` |/ __/ _` |/ _` |/ _ \ '_ ` _ \| |/ _` | / _ \/ _` | | | | | (_| | (_| (_| | (_| | __/ | | | | | | (_| || __/ (_| | |_| | \__,_|\___\__,_|\__,_|\___|_| |_| |_|_|\__,_(_)___|\__,_|\__,_| We're hiring! See https://www.academia.edu/hiring --> <link href="//a.academia-assets.com/images/favicons/favicon-production.ico" rel="shortcut icon" type="image/vnd.microsoft.icon"> <link rel="apple-touch-icon" sizes="57x57" href="//a.academia-assets.com/images/favicons/apple-touch-icon-57x57.png"> <link rel="apple-touch-icon" sizes="60x60" href="//a.academia-assets.com/images/favicons/apple-touch-icon-60x60.png"> <link rel="apple-touch-icon" sizes="72x72" href="//a.academia-assets.com/images/favicons/apple-touch-icon-72x72.png"> <link rel="apple-touch-icon" sizes="76x76" href="//a.academia-assets.com/images/favicons/apple-touch-icon-76x76.png"> <link rel="apple-touch-icon" sizes="114x114" href="//a.academia-assets.com/images/favicons/apple-touch-icon-114x114.png"> <link rel="apple-touch-icon" sizes="120x120" href="//a.academia-assets.com/images/favicons/apple-touch-icon-120x120.png"> <link rel="apple-touch-icon" sizes="144x144" href="//a.academia-assets.com/images/favicons/apple-touch-icon-144x144.png"> <link rel="apple-touch-icon" sizes="152x152" href="//a.academia-assets.com/images/favicons/apple-touch-icon-152x152.png"> <link rel="apple-touch-icon" sizes="180x180" href="//a.academia-assets.com/images/favicons/apple-touch-icon-180x180.png"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-32x32.png" sizes="32x32"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-194x194.png" sizes="194x194"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-96x96.png" sizes="96x96"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/android-chrome-192x192.png" sizes="192x192"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-16x16.png" sizes="16x16"> <link rel="manifest" href="//a.academia-assets.com/images/favicons/manifest.json"> <meta name="msapplication-TileColor" content="#2b5797"> <meta name="msapplication-TileImage" content="//a.academia-assets.com/images/favicons/mstile-144x144.png"> <meta name="theme-color" content="#ffffff"> <script> window.performance && window.performance.measure && window.performance.measure("Time To First Byte", "requestStart", "responseStart"); </script> <script> (function() { if (!window.URLSearchParams || !window.history || !window.history.replaceState) { return; } var searchParams = new URLSearchParams(window.location.search); var paramsToDelete = [ 'fs', 'sm', 'swp', 'iid', 'nbs', 'rcc', // related content category 'rcpos', // related content carousel position 'rcpg', // related carousel page 'rchid', // related content hit id 'f_ri', // research interest id, for SEO tracking 'f_fri', // featured research interest, for SEO tracking (param key without value) 'f_rid', // from research interest directory for SEO tracking 'f_loswp', // from research interest pills on LOSWP sidebar for SEO tracking 'rhid', // referrring hit id ]; if (paramsToDelete.every((key) => searchParams.get(key) === null)) { return; } paramsToDelete.forEach((key) => { searchParams.delete(key); }); var cleanUrl = new URL(window.location.href); cleanUrl.search = searchParams.toString(); history.replaceState({}, document.title, cleanUrl); })(); </script> <script async src="https://www.googletagmanager.com/gtag/js?id=G-5VKX33P2DS"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-5VKX33P2DS', { cookie_domain: 'academia.edu', send_page_view: false, }); gtag('event', 'page_view', { 'controller': "profiles/works", 'action': "summary", 'controller_action': 'profiles/works#summary', 'logged_in': 'false', 'edge': 'unknown', // Send nil if there is no A/B test bucket, in case some records get logged // with missing data - that way we can distinguish between the two cases. // ab_test_bucket should be of the form <ab_test_name>:<bucket> 'ab_test_bucket': null, }) </script> <script type="text/javascript"> window.sendUserTiming = function(timingName) { if (!(window.performance && window.performance.measure)) return; var entries = window.performance.getEntriesByName(timingName, "measure"); if (entries.length !== 1) return; var timingValue = Math.round(entries[0].duration); gtag('event', 'timing_complete', { name: timingName, value: timingValue, event_category: 'User-centric', }); }; window.sendUserTiming("Time To First Byte"); </script> <meta name="csrf-param" content="authenticity_token" /> <meta name="csrf-token" content="e6W8ABYz1gnoGkwfPDYIaiVsZw/A+8eXOLsJbeO63ylSyi0ExhV9hVbG0PVoA3bz3y05XT4JQF6ffsKsV4pa+Q==" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/wow-77f7b87cb1583fc59aa8f94756ebfe913345937eb932042b4077563bebb5fb4b.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/social/home-1c712297ae3ac71207193b1bae0ecf1aae125886850f62c9c0139dd867630797.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/heading-b2b823dd904da60a48fd1bfa1defd840610c2ff414d3f39ed3af46277ab8df3b.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/button-3cea6e0ad4715ed965c49bfb15dedfc632787b32ff6d8c3a474182b231146ab7.css" /><link crossorigin="" href="https://fonts.gstatic.com/" rel="preconnect" /><link href="https://fonts.googleapis.com/css2?family=DM+Sans:ital,opsz,wght@0,9..40,100..1000;1,9..40,100..1000&family=Gupter:wght@400;500;700&family=IBM+Plex+Mono:wght@300;400&family=Material+Symbols+Outlined:opsz,wght,FILL,GRAD@20,400,0,0&display=swap" rel="stylesheet" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/common-10fa40af19d25203774df2d4a03b9b5771b45109c2304968038e88a81d1215c5.css" /> <meta name="author" content="c. spyropoulos" /> <meta name="description" content="C. Spyropoulos: 14 Followers, 9 Following, 26 Research papers. Research interests: Dental Implantology, Diffusion Tensor Imaging, and Dentistry and…" /> <meta name="google-site-verification" content="bKJMBZA7E43xhDOopFZkssMMkBRjvYERV-NaN4R6mrs" /> <script> var $controller_name = 'works'; var $action_name = "summary"; var $rails_env = 'production'; var $app_rev = '49879c2402910372f4abc62630a427bbe033d190'; var $domain = 'academia.edu'; var $app_host = "academia.edu"; var $asset_host = "academia-assets.com"; var $start_time = new Date().getTime(); var $recaptcha_key = "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB"; var $recaptcha_invisible_key = "6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj"; var $disableClientRecordHit = false; </script> <script> window.Aedu = { hit_data: null }; window.Aedu.SiteStats = {"premium_universities_count":15276,"monthly_visitors":"112 million","monthly_visitor_count":112794806,"monthly_visitor_count_in_millions":112,"user_count":277186164,"paper_count":55203019,"paper_count_in_millions":55,"page_count":432000000,"page_count_in_millions":432,"pdf_count":16500000,"pdf_count_in_millions":16}; window.Aedu.serverRenderTime = new Date(1732459819000); window.Aedu.timeDifference = new Date().getTime() - 1732459819000; window.Aedu.isUsingCssV1 = false; window.Aedu.enableLocalization = true; window.Aedu.activateFullstory = false; window.Aedu.serviceAvailability = { status: {"attention_db":"on","bibliography_db":"on","contacts_db":"on","email_db":"on","indexability_db":"on","mentions_db":"on","news_db":"on","notifications_db":"on","offsite_mentions_db":"on","redshift":"on","redshift_exports_db":"on","related_works_db":"on","ring_db":"on","user_tests_db":"on"}, serviceEnabled: function(service) { return this.status[service] === "on"; }, readEnabled: function(service) { return this.serviceEnabled(service) || this.status[service] === "read_only"; }, }; window.Aedu.viewApmTrace = function() { // Check if x-apm-trace-id meta tag is set, and open the trace in APM // in a new window if it is. var apmTraceId = document.head.querySelector('meta[name="x-apm-trace-id"]'); if (apmTraceId) { var traceId = apmTraceId.content; // Use trace ID to construct URL, an example URL looks like: // https://app.datadoghq.com/apm/traces?query=trace_id%31298410148923562634 var apmUrl = 'https://app.datadoghq.com/apm/traces?query=trace_id%3A' + traceId; window.open(apmUrl, '_blank'); } }; </script> <!--[if lt IE 9]> <script src="//cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.2/html5shiv.min.js"></script> <![endif]--> <link href="https://fonts.googleapis.com/css?family=Roboto:100,100i,300,300i,400,400i,500,500i,700,700i,900,900i" rel="stylesheet"> <link href="//maxcdn.bootstrapcdn.com/font-awesome/4.3.0/css/font-awesome.min.css" rel="stylesheet"> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/libraries-a9675dcb01ec4ef6aa807ba772c7a5a00c1820d3ff661c1038a20f80d06bb4e4.css" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/academia-296162c7af6fd81dcdd76f1a94f1fad04fb5f647401337d136fe8b68742170b1.css" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system_legacy-056a9113b9a0f5343d013b29ee1929d5a18be35fdcdceb616600b4db8bd20054.css" /> <script src="//a.academia-assets.com/assets/webpack_bundles/runtime-bundle-005434038af4252ca37c527588411a3d6a0eabb5f727fac83f8bbe7fd88d93bb.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/webpack_libraries_and_infrequently_changed.wjs-bundle-8d53a22151f33ab413d88fa1c02f979c3f8706d470fc1bced09852c72a9f3454.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/core_webpack.wjs-bundle-f8fe82512740391f81c9e8cc48220144024b425b359b08194e316f4de070b9e8.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/sentry.wjs-bundle-5fe03fddca915c8ba0f7edbe64c194308e8ce5abaed7bffe1255ff37549c4808.js"></script> <script> jade = window.jade || {}; jade.helpers = window.$h; jade._ = window._; </script> <!-- Google Tag Manager --> <script id="tag-manager-head-root">(function(w,d,s,l,i){w[l]=w[l]||[];w[l].push({'gtm.start': new Date().getTime(),event:'gtm.js'});var f=d.getElementsByTagName(s)[0], j=d.createElement(s),dl=l!='dataLayer'?'&l='+l:'';j.async=true;j.src= 'https://www.googletagmanager.com/gtm.js?id='+i+dl;f.parentNode.insertBefore(j,f); })(window,document,'script','dataLayer_old','GTM-5G9JF7Z');</script> <!-- End Google Tag Manager --> <script> window.gptadslots = []; window.googletag = window.googletag || {}; window.googletag.cmd = window.googletag.cmd || []; </script> <script type="text/javascript"> // TODO(jacob): This should be defined, may be rare load order problem. // Checking if null is just a quick fix, will default to en if unset. // Better fix is to run this immedietely after I18n is set. if (window.I18n != null) { I18n.defaultLocale = "en"; I18n.locale = "en"; I18n.fallbacks = true; } </script> <link rel="canonical" href="https://independent.academia.edu/Spyropoulos" /> </head> <!--[if gte IE 9 ]> <body class='ie ie9 c-profiles/works a-summary logged_out'> <![endif]--> <!--[if !(IE) ]><!--> <body class='c-profiles/works a-summary logged_out'> <!--<![endif]--> <div id="fb-root"></div><script>window.fbAsyncInit = function() { FB.init({ appId: "2369844204", version: "v8.0", status: true, cookie: true, xfbml: true }); // Additional initialization code. if (window.InitFacebook) { // facebook.ts already loaded, set it up. window.InitFacebook(); } else { // Set a flag for facebook.ts to find when it loads. window.academiaAuthReadyFacebook = true; } };</script><script>window.fbAsyncLoad = function() { // Protection against double calling of this function if (window.FB) { return; } (function(d, s, id){ var js, fjs = d.getElementsByTagName(s)[0]; if (d.getElementById(id)) {return;} js = d.createElement(s); js.id = id; js.src = "//connect.facebook.net/en_US/sdk.js"; fjs.parentNode.insertBefore(js, fjs); }(document, 'script', 'facebook-jssdk')); } if (!window.defer_facebook) { // Autoload if not deferred window.fbAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.fbAsyncLoad(); }, 5000); }</script> <div id="google-root"></div><script>window.loadGoogle = function() { if (window.InitGoogle) { // google.ts already loaded, set it up. window.InitGoogle("331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"); } else { // Set a flag for google.ts to use when it loads. window.GoogleClientID = "331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"; } };</script><script>window.googleAsyncLoad = function() { // Protection against double calling of this function (function(d) { var js; var id = 'google-jssdk'; var ref = d.getElementsByTagName('script')[0]; if (d.getElementById(id)) { return; } js = d.createElement('script'); js.id = id; js.async = true; js.onload = loadGoogle; js.src = "https://accounts.google.com/gsi/client" ref.parentNode.insertBefore(js, ref); }(document)); } if (!window.defer_google) { // Autoload if not deferred window.googleAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.googleAsyncLoad(); }, 5000); }</script> <div id="tag-manager-body-root"> <!-- Google Tag Manager (noscript) --> <noscript><iframe src="https://www.googletagmanager.com/ns.html?id=GTM-5G9JF7Z" height="0" width="0" style="display:none;visibility:hidden"></iframe></noscript> <!-- End Google Tag Manager (noscript) --> <!-- Event listeners for analytics --> <script> window.addEventListener('load', function() { if (document.querySelector('input[name="commit"]')) { document.querySelector('input[name="commit"]').addEventListener('click', function() { gtag('event', 'click', { event_category: 'button', event_label: 'Log In' }) }) } }); </script> </div> <script>var _comscore = _comscore || []; _comscore.push({ c1: "2", c2: "26766707" }); (function() { var s = document.createElement("script"), el = document.getElementsByTagName("script")[0]; s.async = true; s.src = (document.location.protocol == "https:" ? "https://sb" : "http://b") + ".scorecardresearch.com/beacon.js"; el.parentNode.insertBefore(s, el); })();</script><img src="https://sb.scorecardresearch.com/p?c1=2&c2=26766707&cv=2.0&cj=1" style="position: absolute; visibility: hidden" /> <div id='react-modal'></div> <div class='DesignSystem'> <a class='u-showOnFocus' href='#site'> Skip to main content </a> </div> <div id="upgrade_ie_banner" style="display: none;"><p>Academia.edu no longer supports Internet Explorer.</p><p>To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to <a href="https://www.academia.edu/upgrade-browser">upgrade your browser</a>.</p></div><script>// Show this banner for all versions of IE if (!!window.MSInputMethodContext || /(MSIE)/.test(navigator.userAgent)) { document.getElementById('upgrade_ie_banner').style.display = 'block'; }</script> <div class="DesignSystem bootstrap ShrinkableNav"><div class="navbar navbar-default main-header"><div class="container-wrapper" id="main-header-container"><div class="container"><div class="navbar-header"><div class="nav-left-wrapper u-mt0x"><div class="nav-logo"><a data-main-header-link-target="logo_home" href="https://www.academia.edu/"><img class="visible-xs-inline-block" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015-A.svg" width="24" height="24" /><img width="145.2" height="18" class="hidden-xs" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015.svg" /></a></div><div class="nav-search"><div class="SiteSearch-wrapper select2-no-default-pills"><form class="js-SiteSearch-form DesignSystem" action="https://www.academia.edu/search" accept-charset="UTF-8" method="get"><input name="utf8" type="hidden" value="✓" autocomplete="off" /><i class="SiteSearch-icon fa fa-search u-fw700 u-positionAbsolute u-tcGrayDark"></i><input class="js-SiteSearch-form-input SiteSearch-form-input form-control" data-main-header-click-target="search_input" name="q" placeholder="Search" type="text" value="" /></form></div></div></div><div class="nav-right-wrapper pull-right"><ul class="NavLinks js-main-nav list-unstyled"><li class="NavLinks-link"><a class="js-header-login-url Button Button--inverseGray Button--sm u-mb4x" id="nav_log_in" rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="NavLinks-link u-p0x"><a class="Button Button--inverseGray Button--sm u-mb4x" rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li></ul><button class="hidden-lg hidden-md hidden-sm u-ml4x navbar-toggle collapsed" data-target=".js-mobile-header-links" data-toggle="collapse" type="button"><span class="icon-bar"></span><span class="icon-bar"></span><span class="icon-bar"></span></button></div></div><div class="collapse navbar-collapse js-mobile-header-links"><ul class="nav navbar-nav"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li><li class="u-borderColorGrayLight u-borderBottom1 js-mobile-nav-expand-trigger"><a href="#">more <span class="caret"></span></a></li><li><ul class="js-mobile-nav-expand-section nav navbar-nav u-m0x collapse"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/about">About</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/press">Press</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://medium.com/@academia">Blog</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/documents">Papers</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/hiring"><i class="fa fa-briefcase"></i> We're Hiring!</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://support.academia.edu/"><i class="fa fa-question-circle"></i> Help Center</a></li><li class="js-mobile-nav-collapse-trigger u-borderColorGrayLight u-borderBottom1 dropup" style="display:none"><a href="#">less <span class="caret"></span></a></li></ul></li></ul></div></div></div><script>(function(){ var $moreLink = $(".js-mobile-nav-expand-trigger"); var $lessLink = $(".js-mobile-nav-collapse-trigger"); var $section = $('.js-mobile-nav-expand-section'); $moreLink.click(function(ev){ ev.preventDefault(); $moreLink.hide(); $lessLink.show(); $section.collapse('show'); }); $lessLink.click(function(ev){ ev.preventDefault(); $moreLink.show(); $lessLink.hide(); $section.collapse('hide'); }); })() if ($a.is_logged_in() || false) { new Aedu.NavigationController({ el: '.js-main-nav', showHighlightedNotification: false }); } else { $(".js-header-login-url").attr("href", $a.loginUrlWithRedirect()); } Aedu.autocompleteSearch = new AutocompleteSearch({el: '.js-SiteSearch-form'});</script></div></div> <div id='site' class='fixed'> <div id="content" class="clearfix"> <script>document.addEventListener('DOMContentLoaded', function(){ var $dismissible = $(".dismissible_banner"); $dismissible.click(function(ev) { $dismissible.hide(); }); });</script> <script src="//a.academia-assets.com/assets/webpack_bundles/profile.wjs-bundle-9601d1cc3d68aa07c0a9901d03d3611aec04cc07d2a2039718ebef4ad4d148ca.js" defer="defer"></script><script>Aedu.rankings = { showPaperRankingsLink: false } $viewedUser = Aedu.User.set_viewed( {"id":33409838,"first_name":"C.","middle_initials":null,"last_name":"Spyropoulos","page_name":"Spyropoulos","domain_name":"independent","created_at":"2015-07-28T11:42:54.141-07:00","display_name":"C. Spyropoulos","url":"https://independent.academia.edu/Spyropoulos","photo":"/images/s65_no_pic.png","has_photo":false,"is_analytics_public":false,"interests":[{"id":70181,"name":"Dental Implantology","url":"https://www.academia.edu/Documents/in/Dental_Implantology"},{"id":8929,"name":"Diffusion Tensor Imaging","url":"https://www.academia.edu/Documents/in/Diffusion_Tensor_Imaging"},{"id":191910,"name":"Dentistry and Orthodontics","url":"https://www.academia.edu/Documents/in/Dentistry_and_Orthodontics"},{"id":600,"name":"Orthodontics","url":"https://www.academia.edu/Documents/in/Orthodontics"},{"id":77975,"name":"Reconstruction","url":"https://www.academia.edu/Documents/in/Reconstruction"}]} ); if ($a.is_logged_in() && $viewedUser.is_current_user()) { $('body').addClass('profile-viewed-by-owner'); } $socialProfiles = []</script><div id="js-react-on-rails-context" style="display:none" data-rails-context="{"inMailer":false,"i18nLocale":"en","i18nDefaultLocale":"en","href":"https://independent.academia.edu/Spyropoulos","location":"/Spyropoulos","scheme":"https","host":"independent.academia.edu","port":null,"pathname":"/Spyropoulos","search":null,"httpAcceptLanguage":null,"serverSide":false}"></div> <div class="js-react-on-rails-component" style="display:none" data-component-name="ProfileCheckPaperUpdate" data-props="{}" data-trace="false" data-dom-id="ProfileCheckPaperUpdate-react-component-fbc53e0d-1d0e-4c51-83d9-36c46808729e"></div> <div id="ProfileCheckPaperUpdate-react-component-fbc53e0d-1d0e-4c51-83d9-36c46808729e"></div> <div class="DesignSystem"><div class="onsite-ping" id="onsite-ping"></div></div><div class="profile-user-info DesignSystem"><div class="social-profile-container"><div class="left-panel-container"><div class="user-info-component-wrapper"><div class="user-summary-cta-container"><div class="user-summary-container"><div class="social-profile-avatar-container"><img class="profile-avatar u-positionAbsolute" border="0" alt="" src="//a.academia-assets.com/images/s200_no_pic.png" /></div><div class="title-container"><h1 class="ds2-5-heading-sans-serif-sm">C. Spyropoulos</h1><div class="affiliations-container fake-truncate js-profile-affiliations"></div></div></div><div class="sidebar-cta-container"><button class="ds2-5-button hidden profile-cta-button grow js-profile-follow-button" data-broccoli-component="user-info.follow-button" data-click-track="profile-user-info-follow-button" data-follow-user-fname="C." data-follow-user-id="33409838" data-follow-user-source="profile_button" data-has-google="false"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">add</span>Follow</button><button class="ds2-5-button hidden profile-cta-button grow js-profile-unfollow-button" data-broccoli-component="user-info.unfollow-button" data-click-track="profile-user-info-unfollow-button" data-unfollow-user-id="33409838"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">done</span>Following</button></div></div><div class="user-stats-container"><a><div class="stat-container js-profile-followers"><p class="label">Followers</p><p class="data">14</p></div></a><a><div class="stat-container js-profile-followees" data-broccoli-component="user-info.followees-count" data-click-track="profile-expand-user-info-following"><p class="label">Following</p><p class="data">9</p></div></a><a><div class="stat-container js-profile-coauthors" data-broccoli-component="user-info.coauthors-count" data-click-track="profile-expand-user-info-coauthors"><p class="label">Co-authors</p><p class="data">7</p></div></a><span><div class="stat-container"><p class="label"><span class="js-profile-total-view-text">Public Views</span></p><p class="data"><span class="js-profile-view-count"></span></p></div></span></div><div class="ri-section"><div class="ri-section-header"><span>Interests</span></div><div class="ri-tags-container"><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="33409838" href="https://www.academia.edu/Documents/in/Dental_Implantology"><div id="js-react-on-rails-context" style="display:none" data-rails-context="{"inMailer":false,"i18nLocale":"en","i18nDefaultLocale":"en","href":"https://independent.academia.edu/Spyropoulos","location":"/Spyropoulos","scheme":"https","host":"independent.academia.edu","port":null,"pathname":"/Spyropoulos","search":null,"httpAcceptLanguage":null,"serverSide":false}"></div> <div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{"color":"gray","children":["Dental Implantology"]}" data-trace="false" data-dom-id="Pill-react-component-c495cd73-779c-4691-a1fa-3b4ded52c348"></div> <div id="Pill-react-component-c495cd73-779c-4691-a1fa-3b4ded52c348"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="33409838" href="https://www.academia.edu/Documents/in/Diffusion_Tensor_Imaging"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{"color":"gray","children":["Diffusion Tensor Imaging"]}" data-trace="false" data-dom-id="Pill-react-component-f4f03074-3fd9-44a0-a5b5-67e83a26b66f"></div> <div id="Pill-react-component-f4f03074-3fd9-44a0-a5b5-67e83a26b66f"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="33409838" href="https://www.academia.edu/Documents/in/Dentistry_and_Orthodontics"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{"color":"gray","children":["Dentistry and Orthodontics"]}" data-trace="false" data-dom-id="Pill-react-component-bbb91444-c786-4e6c-94a8-2f93923ad324"></div> <div id="Pill-react-component-bbb91444-c786-4e6c-94a8-2f93923ad324"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="33409838" href="https://www.academia.edu/Documents/in/Orthodontics"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{"color":"gray","children":["Orthodontics"]}" data-trace="false" data-dom-id="Pill-react-component-6be31e0f-8d33-4c2c-8990-88a807e1233a"></div> <div id="Pill-react-component-6be31e0f-8d33-4c2c-8990-88a807e1233a"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="33409838" href="https://www.academia.edu/Documents/in/Reconstruction"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{"color":"gray","children":["Reconstruction"]}" data-trace="false" data-dom-id="Pill-react-component-5c87730c-515e-4dad-a7dc-42c128117300"></div> <div id="Pill-react-component-5c87730c-515e-4dad-a7dc-42c128117300"></div> </a></div></div></div></div><div class="right-panel-container"><div class="user-content-wrapper"><div class="uploads-container" id="social-redesign-work-container"><div class="upload-header"><h2 class="ds2-5-heading-sans-serif-xs">Uploads</h2></div><div class="documents-container backbone-social-profile-documents" style="width: 100%;"><div class="u-taCenter"></div><div class="profile--tab_content_container js-tab-pane tab-pane active" id="all"><div class="profile--tab_heading_container js-section-heading" data-section="Papers" id="Papers"><h3 class="profile--tab_heading_container">Papers by C. Spyropoulos</h3></div><div class="js-work-strip profile--work_container" data-work-id="118655684"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/118655684/The_use_of_terminological_knowledge_bases_in_software_localisation"><img alt="Research paper thumbnail of The use of terminological knowledge bases in software localisation" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/118655684/The_use_of_terminological_knowledge_bases_in_software_localisation">The use of terminological knowledge bases in software localisation</a></div><div class="wp-workCard_item"><span>Lecture Notes in Computer Science</span><span>, 1995</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">ABSTRACT</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="118655684"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="118655684"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 118655684; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=118655684]").text(description); $(".js-view-count[data-work-id=118655684]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 118655684; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='118655684']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 118655684, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=118655684]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":118655684,"title":"The use of terminological knowledge bases in software localisation","translated_title":"","metadata":{"abstract":"ABSTRACT","publication_date":{"day":null,"month":null,"year":1995,"errors":{}},"publication_name":"Lecture Notes in Computer Science"},"translated_abstract":"ABSTRACT","internal_url":"https://www.academia.edu/118655684/The_use_of_terminological_knowledge_bases_in_software_localisation","translated_internal_url":"","created_at":"2024-05-06T13:05:56.276-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33409838,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"The_use_of_terminological_knowledge_bases_in_software_localisation","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":33409838,"first_name":"C.","middle_initials":null,"last_name":"Spyropoulos","page_name":"Spyropoulos","domain_name":"independent","created_at":"2015-07-28T11:42:54.141-07:00","display_name":"C. Spyropoulos","url":"https://independent.academia.edu/Spyropoulos"},"attachments":[],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":5832,"name":"Terminology","url":"https://www.academia.edu/Documents/in/Terminology"},{"id":22615,"name":"Knowledge Representation","url":"https://www.academia.edu/Documents/in/Knowledge_Representation"},{"id":197861,"name":"Domain Knowledge","url":"https://www.academia.edu/Documents/in/Domain_Knowledge"},{"id":246163,"name":"Knowledge base","url":"https://www.academia.edu/Documents/in/Knowledge_base"},{"id":287095,"name":"Knowledge Representation and Reasoning","url":"https://www.academia.edu/Documents/in/Knowledge_Representation_and_Reasoning"},{"id":290799,"name":"Management System","url":"https://www.academia.edu/Documents/in/Management_System"},{"id":1763882,"name":"Representation Politics","url":"https://www.academia.edu/Documents/in/Representation_Politics"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="118655683"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/118655683/A_framework_for_developing_temporal_databases"><img alt="Research paper thumbnail of A framework for developing temporal databases" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/118655683/A_framework_for_developing_temporal_databases">A framework for developing temporal databases</a></div><div class="wp-workCard_item"><span>Lecture Notes in Computer Science</span><span>, 1994</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Computerised information systems tend to become more sophisticated and complicated. In many appli...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Computerised information systems tend to become more sophisticated and complicated. In many application domains, information systems must manage data that change over time, or data that reflect the use of temporal attributes. For these reasons the domain of temporal databases is an active research field. In this paper we present TGDB, a framework for developing temporal database systems that manage both valid and transaction time as well as any kind of user defined time. TGDB offers to the user a relational-like view of the tables and fields, but it is not based on the relational model. Instead it is based on the TGS graph system for time management. TGS combines a very good performance with temporal data management independent from application or domain. The query language of TGDB is an extension of SQL.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="118655683"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="118655683"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 118655683; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=118655683]").text(description); $(".js-view-count[data-work-id=118655683]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 118655683; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='118655683']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 118655683, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=118655683]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":118655683,"title":"A framework for developing temporal databases","translated_title":"","metadata":{"abstract":"Computerised information systems tend to become more sophisticated and complicated. In many application domains, information systems must manage data that change over time, or data that reflect the use of temporal attributes. For these reasons the domain of temporal databases is an active research field. In this paper we present TGDB, a framework for developing temporal database systems that manage both valid and transaction time as well as any kind of user defined time. TGDB offers to the user a relational-like view of the tables and fields, but it is not based on the relational model. Instead it is based on the TGS graph system for time management. TGS combines a very good performance with temporal data management independent from application or domain. The query language of TGDB is an extension of SQL.","publisher":"Springer Berlin Heidelberg","publication_date":{"day":null,"month":null,"year":1994,"errors":{}},"publication_name":"Lecture Notes in Computer Science"},"translated_abstract":"Computerised information systems tend to become more sophisticated and complicated. In many application domains, information systems must manage data that change over time, or data that reflect the use of temporal attributes. For these reasons the domain of temporal databases is an active research field. In this paper we present TGDB, a framework for developing temporal database systems that manage both valid and transaction time as well as any kind of user defined time. TGDB offers to the user a relational-like view of the tables and fields, but it is not based on the relational model. Instead it is based on the TGS graph system for time management. TGS combines a very good performance with temporal data management independent from application or domain. The query language of TGDB is an extension of SQL.","internal_url":"https://www.academia.edu/118655683/A_framework_for_developing_temporal_databases","translated_internal_url":"","created_at":"2024-05-06T13:05:55.990-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33409838,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"A_framework_for_developing_temporal_databases","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":33409838,"first_name":"C.","middle_initials":null,"last_name":"Spyropoulos","page_name":"Spyropoulos","domain_name":"independent","created_at":"2015-07-28T11:42:54.141-07:00","display_name":"C. Spyropoulos","url":"https://independent.academia.edu/Spyropoulos"},"attachments":[],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":460,"name":"Relational Database","url":"https://www.academia.edu/Documents/in/Relational_Database"},{"id":7960,"name":"Temporal Data Mining","url":"https://www.academia.edu/Documents/in/Temporal_Data_Mining"},{"id":105980,"name":"SQL","url":"https://www.academia.edu/Documents/in/SQL"},{"id":106733,"name":"Time Management","url":"https://www.academia.edu/Documents/in/Time_Management"},{"id":173004,"name":"Relational Model","url":"https://www.academia.edu/Documents/in/Relational_Model"},{"id":372874,"name":"Transaction Processing","url":"https://www.academia.edu/Documents/in/Transaction_Processing"},{"id":1119056,"name":"Database","url":"https://www.academia.edu/Documents/in/Database"},{"id":1760148,"name":"Temporal Database","url":"https://www.academia.edu/Documents/in/Temporal_Database"},{"id":2213585,"name":"Information System","url":"https://www.academia.edu/Documents/in/Information_System"},{"id":3647879,"name":"Springer Ebooks","url":"https://www.academia.edu/Documents/in/Springer_Ebooks"}],"urls":[{"id":41712182,"url":"http://link.springer.com/content/pdf/10.1007/3-540-58435-8_188.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="118655682"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/118655682/An_expert_loading_system_for_chemical_and_product_carriers"><img alt="Research paper thumbnail of An expert loading system for chemical and product carriers" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/118655682/An_expert_loading_system_for_chemical_and_product_carriers">An expert loading system for chemical and product carriers</a></div><div class="wp-workCard_item"><span>Lecture Notes in Computer Science</span><span>, 1995</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Chemical and Product Carriers (CPC) are ships carrying at a single voyage a variety of liquefied ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Chemical and Product Carriers (CPC) are ships carrying at a single voyage a variety of liquefied chemical and oil product cargos. Because these vessels have a complicated layout of a large number of tanks and they transport dangerous cargos, currently, their loading is carried out using commercially available computer codes, called loadmasters. The loadmasters estimate the ship stresses and the</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="118655682"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="118655682"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 118655682; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=118655682]").text(description); $(".js-view-count[data-work-id=118655682]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 118655682; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='118655682']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 118655682, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=118655682]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":118655682,"title":"An expert loading system for chemical and product carriers","translated_title":"","metadata":{"abstract":"Chemical and Product Carriers (CPC) are ships carrying at a single voyage a variety of liquefied chemical and oil product cargos. Because these vessels have a complicated layout of a large number of tanks and they transport dangerous cargos, currently, their loading is carried out using commercially available computer codes, called loadmasters. The loadmasters estimate the ship stresses and the","publisher":"Springer Berlin Heidelberg","publication_date":{"day":null,"month":null,"year":1995,"errors":{}},"publication_name":"Lecture Notes in Computer Science"},"translated_abstract":"Chemical and Product Carriers (CPC) are ships carrying at a single voyage a variety of liquefied chemical and oil product cargos. Because these vessels have a complicated layout of a large number of tanks and they transport dangerous cargos, currently, their loading is carried out using commercially available computer codes, called loadmasters. The loadmasters estimate the ship stresses and the","internal_url":"https://www.academia.edu/118655682/An_expert_loading_system_for_chemical_and_product_carriers","translated_internal_url":"","created_at":"2024-05-06T13:05:55.815-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33409838,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"An_expert_loading_system_for_chemical_and_product_carriers","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":33409838,"first_name":"C.","middle_initials":null,"last_name":"Spyropoulos","page_name":"Spyropoulos","domain_name":"independent","created_at":"2015-07-28T11:42:54.141-07:00","display_name":"C. Spyropoulos","url":"https://independent.academia.edu/Spyropoulos"},"attachments":[],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":34756,"name":"System Design","url":"https://www.academia.edu/Documents/in/System_Design"},{"id":121337,"name":"expert System","url":"https://www.academia.edu/Documents/in/expert_System"},{"id":247030,"name":"User Acceptance","url":"https://www.academia.edu/Documents/in/User_Acceptance"},{"id":1110461,"name":"Dexa","url":"https://www.academia.edu/Documents/in/Dexa"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="118655681"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/118655681/A_system_for_efficient_scheduling_of_patient_tests_in_hospitals"><img alt="Research paper thumbnail of A system for efficient scheduling of patient tests in hospitals" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/118655681/A_system_for_efficient_scheduling_of_patient_tests_in_hospitals">A system for efficient scheduling of patient tests in hospitals</a></div><div class="wp-workCard_item"><span>Informatics for Health and Social Care</span><span>, 1997</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Patient tests in hospital environments involve a significant percentage of hospital resources. Th...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Patient tests in hospital environments involve a significant percentage of hospital resources. The patient must occupy some of his/her time, personnel and equipment have to be allocated, co-operation between hospital laboratories and departments must be ensured, tests should be performed within rigid time limits and the results should be ready before due times imposed by doctors, nurses or other medical personnel. From the patient&amp;#39;s point of view there must be almost no distress, while hospital management wants as much equipment utilization as possible. In the present paper we propose a system for efficient scheduling of patient tests, while obeying all temporal and managerial limitations as well as observing all medical procedures. This system, which we call HOSTESS, uses a new approach, the dynamic distributed scheduling for managing the patient test requests in large hospitals, with many laboratories that perform a multitude of tests. The system is designed as a modular expandable application, in order to perform efficiently under heavy loads. Doctors, nurses, laboratory technicians and other personnel enter their requests and HOSTESS creates consistent schedules for every equipment needed in the required tests.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="118655681"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="118655681"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 118655681; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=118655681]").text(description); $(".js-view-count[data-work-id=118655681]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 118655681; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='118655681']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 118655681, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=118655681]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":118655681,"title":"A system for efficient scheduling of patient tests in hospitals","translated_title":"","metadata":{"abstract":"Patient tests in hospital environments involve a significant percentage of hospital resources. The patient must occupy some of his/her time, personnel and equipment have to be allocated, co-operation between hospital laboratories and departments must be ensured, tests should be performed within rigid time limits and the results should be ready before due times imposed by doctors, nurses or other medical personnel. From the patient\u0026amp;#39;s point of view there must be almost no distress, while hospital management wants as much equipment utilization as possible. In the present paper we propose a system for efficient scheduling of patient tests, while obeying all temporal and managerial limitations as well as observing all medical procedures. This system, which we call HOSTESS, uses a new approach, the dynamic distributed scheduling for managing the patient test requests in large hospitals, with many laboratories that perform a multitude of tests. The system is designed as a modular expandable application, in order to perform efficiently under heavy loads. Doctors, nurses, laboratory technicians and other personnel enter their requests and HOSTESS creates consistent schedules for every equipment needed in the required tests.","publisher":"Informa UK Limited","publication_date":{"day":null,"month":null,"year":1997,"errors":{}},"publication_name":"Informatics for Health and Social Care"},"translated_abstract":"Patient tests in hospital environments involve a significant percentage of hospital resources. The patient must occupy some of his/her time, personnel and equipment have to be allocated, co-operation between hospital laboratories and departments must be ensured, tests should be performed within rigid time limits and the results should be ready before due times imposed by doctors, nurses or other medical personnel. From the patient\u0026amp;#39;s point of view there must be almost no distress, while hospital management wants as much equipment utilization as possible. In the present paper we propose a system for efficient scheduling of patient tests, while obeying all temporal and managerial limitations as well as observing all medical procedures. This system, which we call HOSTESS, uses a new approach, the dynamic distributed scheduling for managing the patient test requests in large hospitals, with many laboratories that perform a multitude of tests. The system is designed as a modular expandable application, in order to perform efficiently under heavy loads. Doctors, nurses, laboratory technicians and other personnel enter their requests and HOSTESS creates consistent schedules for every equipment needed in the required tests.","internal_url":"https://www.academia.edu/118655681/A_system_for_efficient_scheduling_of_patient_tests_in_hospitals","translated_internal_url":"","created_at":"2024-05-06T13:05:55.636-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33409838,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"A_system_for_efficient_scheduling_of_patient_tests_in_hospitals","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":33409838,"first_name":"C.","middle_initials":null,"last_name":"Spyropoulos","page_name":"Spyropoulos","domain_name":"independent","created_at":"2015-07-28T11:42:54.141-07:00","display_name":"C. Spyropoulos","url":"https://independent.academia.edu/Spyropoulos"},"attachments":[],"research_interests":[{"id":37,"name":"Information Systems","url":"https://www.academia.edu/Documents/in/Information_Systems"},{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":428,"name":"Algorithms","url":"https://www.academia.edu/Documents/in/Algorithms"},{"id":1212,"name":"Medical Informatics","url":"https://www.academia.edu/Documents/in/Medical_Informatics"},{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"},{"id":37745,"name":"Systems Integration","url":"https://www.academia.edu/Documents/in/Systems_Integration"},{"id":48044,"name":"Greece","url":"https://www.academia.edu/Documents/in/Greece"},{"id":57939,"name":"Software Design","url":"https://www.academia.edu/Documents/in/Software_Design"},{"id":59587,"name":"Library and Information Studies","url":"https://www.academia.edu/Documents/in/Library_and_Information_Studies"},{"id":64568,"name":"Humans","url":"https://www.academia.edu/Documents/in/Humans"},{"id":255094,"name":"Computer User Interface Design","url":"https://www.academia.edu/Documents/in/Computer_User_Interface_Design"},{"id":257181,"name":"Hospital Information Systems","url":"https://www.academia.edu/Documents/in/Hospital_Information_Systems"},{"id":1107332,"name":"Modular Design","url":"https://www.academia.edu/Documents/in/Modular_Design"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="118655680"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/118655680/A_temporal_framework_for_managing_retroactive_and_delayed_updates_an_application_to_the_payroll_information_system_of_the_Greek_public_sector"><img alt="Research paper thumbnail of A temporal framework for managing retroactive and delayed updates: an application to the payroll information system of the Greek public sector" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/118655680/A_temporal_framework_for_managing_retroactive_and_delayed_updates_an_application_to_the_payroll_information_system_of_the_Greek_public_sector">A temporal framework for managing retroactive and delayed updates: an application to the payroll information system of the Greek public sector</a></div><div class="wp-workCard_item"><span>European Journal of Information Systems</span><span>, 1993</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Retroactive and delayed updates cause many problems in the maintenance of information systems whi...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Retroactive and delayed updates cause many problems in the maintenance of information systems which deal with accounting, banking, payroll and other applications. In this paper we propose a framework, called TempRuleD, that could manage these problems effectively. This framework is a temporal database, which uses rules, and is based on a generic time management kernel called TGS. TGS has been developed at N.C.S.R. ‘Demokritos’ and is based on a multiroot graph that supports storing, indexing and fast retrieval of time references. The applicability and the expected benefits of the proposed framework are discussed for the payroll information system of Greek public sector organizations. Such a system usually requires many updates and calculations with retroactive and delayed data and rules.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="118655680"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="118655680"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 118655680; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=118655680]").text(description); $(".js-view-count[data-work-id=118655680]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 118655680; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='118655680']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 118655680, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=118655680]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":118655680,"title":"A temporal framework for managing retroactive and delayed updates: an application to the payroll information system of the Greek public sector","translated_title":"","metadata":{"abstract":"Retroactive and delayed updates cause many problems in the maintenance of information systems which deal with accounting, banking, payroll and other applications. In this paper we propose a framework, called TempRuleD, that could manage these problems effectively. This framework is a temporal database, which uses rules, and is based on a generic time management kernel called TGS. TGS has been developed at N.C.S.R. ‘Demokritos’ and is based on a multiroot graph that supports storing, indexing and fast retrieval of time references. The applicability and the expected benefits of the proposed framework are discussed for the payroll information system of Greek public sector organizations. Such a system usually requires many updates and calculations with retroactive and delayed data and rules.","publisher":"Springer Nature","publication_date":{"day":null,"month":null,"year":1993,"errors":{}},"publication_name":"European Journal of Information Systems"},"translated_abstract":"Retroactive and delayed updates cause many problems in the maintenance of information systems which deal with accounting, banking, payroll and other applications. In this paper we propose a framework, called TempRuleD, that could manage these problems effectively. This framework is a temporal database, which uses rules, and is based on a generic time management kernel called TGS. TGS has been developed at N.C.S.R. ‘Demokritos’ and is based on a multiroot graph that supports storing, indexing and fast retrieval of time references. The applicability and the expected benefits of the proposed framework are discussed for the payroll information system of Greek public sector organizations. Such a system usually requires many updates and calculations with retroactive and delayed data and rules.","internal_url":"https://www.academia.edu/118655680/A_temporal_framework_for_managing_retroactive_and_delayed_updates_an_application_to_the_payroll_information_system_of_the_Greek_public_sector","translated_internal_url":"","created_at":"2024-05-06T13:05:55.469-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33409838,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"A_temporal_framework_for_managing_retroactive_and_delayed_updates_an_application_to_the_payroll_information_system_of_the_Greek_public_sector","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":33409838,"first_name":"C.","middle_initials":null,"last_name":"Spyropoulos","page_name":"Spyropoulos","domain_name":"independent","created_at":"2015-07-28T11:42:54.141-07:00","display_name":"C. Spyropoulos","url":"https://independent.academia.edu/Spyropoulos"},"attachments":[],"research_interests":[{"id":37,"name":"Information Systems","url":"https://www.academia.edu/Documents/in/Information_Systems"},{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":459,"name":"Information Science","url":"https://www.academia.edu/Documents/in/Information_Science"},{"id":491,"name":"Information Technology","url":"https://www.academia.edu/Documents/in/Information_Technology"},{"id":492,"name":"Management Information Systems","url":"https://www.academia.edu/Documents/in/Management_Information_Systems"},{"id":1453,"name":"Information Management","url":"https://www.academia.edu/Documents/in/Information_Management"},{"id":6314,"name":"Health Information Systems","url":"https://www.academia.edu/Documents/in/Health_Information_Systems"},{"id":7099,"name":"Case Studies","url":"https://www.academia.edu/Documents/in/Case_Studies"},{"id":8001,"name":"Management Science","url":"https://www.academia.edu/Documents/in/Management_Science"},{"id":14884,"name":"Business Information Systems","url":"https://www.academia.edu/Documents/in/Business_Information_Systems"},{"id":17600,"name":"Accounting Information Systems","url":"https://www.academia.edu/Documents/in/Accounting_Information_Systems"},{"id":52627,"name":"Computer and Information Technology","url":"https://www.academia.edu/Documents/in/Computer_and_Information_Technology"},{"id":73149,"name":"Business and Management","url":"https://www.academia.edu/Documents/in/Business_and_Management"},{"id":92152,"name":"Information Systems Management","url":"https://www.academia.edu/Documents/in/Information_Systems_Management"},{"id":128433,"name":"Business Model","url":"https://www.academia.edu/Documents/in/Business_Model"},{"id":347700,"name":"Information Management System","url":"https://www.academia.edu/Documents/in/Information_Management_System"},{"id":418820,"name":"Information Systems Technology","url":"https://www.academia.edu/Documents/in/Information_Systems_Technology"},{"id":641270,"name":"Computer Information Systems","url":"https://www.academia.edu/Documents/in/Computer_Information_Systems"},{"id":1213131,"name":"Geographic Information Systems","url":"https://www.academia.edu/Documents/in/Geographic_Information_Systems"},{"id":2213585,"name":"Information System","url":"https://www.academia.edu/Documents/in/Information_System"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="118655679"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/118655679/Continual_planning_and_scheduling_for_managing_patient_tests_in_hospital_laboratories"><img alt="Research paper thumbnail of Continual planning and scheduling for managing patient tests in hospital laboratories" class="work-thumbnail" src="https://attachments.academia-assets.com/114230036/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/118655679/Continual_planning_and_scheduling_for_managing_patient_tests_in_hospital_laboratories">Continual planning and scheduling for managing patient tests in hospital laboratories</a></div><div class="wp-workCard_item"><span>Artificial Intelligence in Medicine</span><span>, 2000</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="da7b3c4797b6bdfc01b41326cbba0e02" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":114230036,"asset_id":118655679,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/114230036/download_file?st=MTczMjQ1OTgxOSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="118655679"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="118655679"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 118655679; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=118655679]").text(description); $(".js-view-count[data-work-id=118655679]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 118655679; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='118655679']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 118655679, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "da7b3c4797b6bdfc01b41326cbba0e02" } } $('.js-work-strip[data-work-id=118655679]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":118655679,"title":"Continual planning and scheduling for managing patient tests in hospital laboratories","translated_title":"","metadata":{"publisher":"Elsevier BV","publication_date":{"day":null,"month":null,"year":2000,"errors":{}},"publication_name":"Artificial Intelligence in Medicine"},"translated_abstract":null,"internal_url":"https://www.academia.edu/118655679/Continual_planning_and_scheduling_for_managing_patient_tests_in_hospital_laboratories","translated_internal_url":"","created_at":"2024-05-06T13:05:55.200-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33409838,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":114230036,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/114230036/thumbnails/1.jpg","file_name":"s0933-365728002900061-020240506-1-scfi7w.pdf","download_url":"https://www.academia.edu/attachments/114230036/download_file?st=MTczMjQ1OTgxOSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Continual_planning_and_scheduling_for_ma.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/114230036/s0933-365728002900061-020240506-1-scfi7w-libre.pdf?1715028083=\u0026response-content-disposition=attachment%3B+filename%3DContinual_planning_and_scheduling_for_ma.pdf\u0026Expires=1732457609\u0026Signature=cxYcOWjvmXdwGQuh-9CHuwwgMV7wgoJzdBIRSSL~x382mrVm-lrQzPvGsn0bbEHIM9xb--LlxqoxJjSRoDrGIydP7XSiFHFn0yESugM~Hb7NT7nMpZygs0AlwoFpLGpUWtPoiNypP~baYNKCP03jAgUUQDnuDAEhf3X8eYZ5hJm4rl3LcrDagk3uOJaoneArUD~hrrCFBzkQNuLIlyO8B-i8ZT4cmTRTX8TvtHTPvJ5SiJnKuFx4P5bllshKIhlzIEb6DSvKoGvoaa02fgbXmk8DccASUbKGWKEO0vhiGx9KmdQf-jjDKLpVYOOYcbQGk3ghIooOLIQEvrnS84zJZg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Continual_planning_and_scheduling_for_managing_patient_tests_in_hospital_laboratories","translated_slug":"","page_count":16,"language":"en","content_type":"Work","owner":{"id":33409838,"first_name":"C.","middle_initials":null,"last_name":"Spyropoulos","page_name":"Spyropoulos","domain_name":"independent","created_at":"2015-07-28T11:42:54.141-07:00","display_name":"C. Spyropoulos","url":"https://independent.academia.edu/Spyropoulos"},"attachments":[{"id":114230036,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/114230036/thumbnails/1.jpg","file_name":"s0933-365728002900061-020240506-1-scfi7w.pdf","download_url":"https://www.academia.edu/attachments/114230036/download_file?st=MTczMjQ1OTgxOSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Continual_planning_and_scheduling_for_ma.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/114230036/s0933-365728002900061-020240506-1-scfi7w-libre.pdf?1715028083=\u0026response-content-disposition=attachment%3B+filename%3DContinual_planning_and_scheduling_for_ma.pdf\u0026Expires=1732457609\u0026Signature=cxYcOWjvmXdwGQuh-9CHuwwgMV7wgoJzdBIRSSL~x382mrVm-lrQzPvGsn0bbEHIM9xb--LlxqoxJjSRoDrGIydP7XSiFHFn0yESugM~Hb7NT7nMpZygs0AlwoFpLGpUWtPoiNypP~baYNKCP03jAgUUQDnuDAEhf3X8eYZ5hJm4rl3LcrDagk3uOJaoneArUD~hrrCFBzkQNuLIlyO8B-i8ZT4cmTRTX8TvtHTPvJ5SiJnKuFx4P5bllshKIhlzIEb6DSvKoGvoaa02fgbXmk8DccASUbKGWKEO0vhiGx9KmdQf-jjDKLpVYOOYcbQGk3ghIooOLIQEvrnS84zJZg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":465,"name":"Artificial Intelligence","url":"https://www.academia.edu/Documents/in/Artificial_Intelligence"},{"id":2534,"name":"Multiagent Systems","url":"https://www.academia.edu/Documents/in/Multiagent_Systems"},{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"},{"id":56484,"name":"Spatial and Temporal Reasoning","url":"https://www.academia.edu/Documents/in/Spatial_and_Temporal_Reasoning"},{"id":64568,"name":"Humans","url":"https://www.academia.edu/Documents/in/Humans"},{"id":84107,"name":"Hospital administration","url":"https://www.academia.edu/Documents/in/Hospital_administration"},{"id":87573,"name":"Artificial Intelligence in Medicine","url":"https://www.academia.edu/Documents/in/Artificial_Intelligence_in_Medicine"},{"id":246163,"name":"Knowledge base","url":"https://www.academia.edu/Documents/in/Knowledge_base"},{"id":267766,"name":"Medical Diagnosis","url":"https://www.academia.edu/Documents/in/Medical_Diagnosis"},{"id":379362,"name":"Hospital Planning","url":"https://www.academia.edu/Documents/in/Hospital_Planning"},{"id":870654,"name":"Blackboard Architecture","url":"https://www.academia.edu/Documents/in/Blackboard_Architecture"},{"id":1084699,"name":"Resource Utilization","url":"https://www.academia.edu/Documents/in/Resource_Utilization"},{"id":1276161,"name":"Planning and Scheduling","url":"https://www.academia.edu/Documents/in/Planning_and_Scheduling"},{"id":1631433,"name":"Automated Planning and Scheduling","url":"https://www.academia.edu/Documents/in/Automated_Planning_and_Scheduling"},{"id":2290393,"name":"Multiagent System","url":"https://www.academia.edu/Documents/in/Multiagent_System"},{"id":2796920,"name":"personnel staffing and scheduling","url":"https://www.academia.edu/Documents/in/personnel_staffing_and_scheduling"}],"urls":[{"id":41712181,"url":"https://api.elsevier.com/content/article/PII:S0933365700000610?httpAccept=text/xml"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="118655527"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/118655527/Supporting_tele_health_and_AI_based_clinical_decision_making_with_sensor_data_fusion_and_semantic_interpretation_The_USEFIL_case_study"><img alt="Research paper thumbnail of Supporting tele-health and AI-based clinical decision making with sensor data fusion and semantic interpretation: The USEFIL case study" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/118655527/Supporting_tele_health_and_AI_based_clinical_decision_making_with_sensor_data_fusion_and_semantic_interpretation_The_USEFIL_case_study">Supporting tele-health and AI-based clinical decision making with sensor data fusion and semantic interpretation: The USEFIL case study</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We propose a three-layered architecture for clinical evidencebased Decision Support Systems. Our ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We propose a three-layered architecture for clinical evidencebased Decision Support Systems. Our architecture allows for off-the-shelf low-cost sensors to be deployed in tele-health environments; counterbalancing low confidence in the sensor data by fusing data from multiple sensors. The relevant data fusion and interpretation layer also forms the interface between sensor data and explicit rules encoding medical knowledge. This achieves a complete separation of the non-medical and medical knowledge, an important step for system adoption.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="118655527"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="118655527"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 118655527; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=118655527]").text(description); $(".js-view-count[data-work-id=118655527]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 118655527; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='118655527']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 118655527, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=118655527]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":118655527,"title":"Supporting tele-health and AI-based clinical decision making with sensor data fusion and semantic interpretation: The USEFIL case study","translated_title":"","metadata":{"abstract":"We propose a three-layered architecture for clinical evidencebased Decision Support Systems. Our architecture allows for off-the-shelf low-cost sensors to be deployed in tele-health environments; counterbalancing low confidence in the sensor data by fusing data from multiple sensors. The relevant data fusion and interpretation layer also forms the interface between sensor data and explicit rules encoding medical knowledge. This achieves a complete separation of the non-medical and medical knowledge, an important step for system adoption.","publication_date":{"day":null,"month":null,"year":2012,"errors":{}}},"translated_abstract":"We propose a three-layered architecture for clinical evidencebased Decision Support Systems. Our architecture allows for off-the-shelf low-cost sensors to be deployed in tele-health environments; counterbalancing low confidence in the sensor data by fusing data from multiple sensors. The relevant data fusion and interpretation layer also forms the interface between sensor data and explicit rules encoding medical knowledge. This achieves a complete separation of the non-medical and medical knowledge, an important step for system adoption.","internal_url":"https://www.academia.edu/118655527/Supporting_tele_health_and_AI_based_clinical_decision_making_with_sensor_data_fusion_and_semantic_interpretation_The_USEFIL_case_study","translated_internal_url":"","created_at":"2024-05-06T13:03:01.210-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33409838,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Supporting_tele_health_and_AI_based_clinical_decision_making_with_sensor_data_fusion_and_semantic_interpretation_The_USEFIL_case_study","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":33409838,"first_name":"C.","middle_initials":null,"last_name":"Spyropoulos","page_name":"Spyropoulos","domain_name":"independent","created_at":"2015-07-28T11:42:54.141-07:00","display_name":"C. Spyropoulos","url":"https://independent.academia.edu/Spyropoulos"},"attachments":[],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":3521,"name":"Computational Intelligence","url":"https://www.academia.edu/Documents/in/Computational_Intelligence"},{"id":143115,"name":"Sensor Fusion","url":"https://www.academia.edu/Documents/in/Sensor_Fusion"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="95741577"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/95741577/A_data_mining_approach_for_predicting_main_engine_rotational_speed_from_vessel_data_measurements"><img alt="Research paper thumbnail of A data mining approach for predicting main-engine rotational speed from vessel-data measurements" class="work-thumbnail" src="https://attachments.academia-assets.com/97839530/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/95741577/A_data_mining_approach_for_predicting_main_engine_rotational_speed_from_vessel_data_measurements">A data mining approach for predicting main-engine rotational speed from vessel-data measurements</a></div><div class="wp-workCard_item"><span>Proceedings of the 23rd International Database Applications &amp; Engineering Symposium on - IDEAS '19</span><span>, 2019</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="b21fb5105888506347159b04f38c8f98" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":97839530,"asset_id":95741577,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/97839530/download_file?st=MTczMjQ1OTgxOSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="95741577"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="95741577"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 95741577; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=95741577]").text(description); $(".js-view-count[data-work-id=95741577]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 95741577; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='95741577']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 95741577, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "b21fb5105888506347159b04f38c8f98" } } $('.js-work-strip[data-work-id=95741577]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":95741577,"title":"A data mining approach for predicting main-engine rotational speed from vessel-data measurements","translated_title":"","metadata":{"publisher":"ACM Press","publication_date":{"day":null,"month":null,"year":2019,"errors":{}},"publication_name":"Proceedings of the 23rd International Database Applications \u0026amp; Engineering Symposium on - IDEAS '19"},"translated_abstract":null,"internal_url":"https://www.academia.edu/95741577/A_data_mining_approach_for_predicting_main_engine_rotational_speed_from_vessel_data_measurements","translated_internal_url":"","created_at":"2023-01-26T08:18:05.879-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33409838,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":97839530,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/97839530/thumbnails/1.jpg","file_name":"C90-ppt.pdf","download_url":"https://www.academia.edu/attachments/97839530/download_file?st=MTczMjQ1OTgxOSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"A_data_mining_approach_for_predicting_ma.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/97839530/C90-ppt-libre.pdf?1674756707=\u0026response-content-disposition=attachment%3B+filename%3DA_data_mining_approach_for_predicting_ma.pdf\u0026Expires=1732457609\u0026Signature=Ivim5afi0OQarSV5CzZU6b8s~Tlzs9ILsgztBggvSeZcekfP8EPVKRNRaJw8DpaqgkUEG~9Y1VebRkBukcNmbi71rvQu0i~o3eNK7xi6GUXJb2p8L7kiIL3V7cTY~X8u4BH4mvdPqSUVE~pqJmha8j1L-KIK23ea4FbJWoJiVQ6i6hmsC5hbq3jxyQHY~ZnWufJ-rJopsTLPr8pGYlRj9EuHMle2ewk0-RQx3DJHZGyb0JyLD7HJDuiLJrkkSksFWUr2gTvXM9l1TgTWvxWmtwvhR~LcaBgalvuE0UM3yMeXBfDzsU3-H0IZqhsftC3IJ8s9HKZXXJ20hNWLnyCG9A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"A_data_mining_approach_for_predicting_main_engine_rotational_speed_from_vessel_data_measurements","translated_slug":"","page_count":24,"language":"en","content_type":"Work","owner":{"id":33409838,"first_name":"C.","middle_initials":null,"last_name":"Spyropoulos","page_name":"Spyropoulos","domain_name":"independent","created_at":"2015-07-28T11:42:54.141-07:00","display_name":"C. Spyropoulos","url":"https://independent.academia.edu/Spyropoulos"},"attachments":[{"id":97839530,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/97839530/thumbnails/1.jpg","file_name":"C90-ppt.pdf","download_url":"https://www.academia.edu/attachments/97839530/download_file?st=MTczMjQ1OTgxOSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"A_data_mining_approach_for_predicting_ma.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/97839530/C90-ppt-libre.pdf?1674756707=\u0026response-content-disposition=attachment%3B+filename%3DA_data_mining_approach_for_predicting_ma.pdf\u0026Expires=1732457609\u0026Signature=Ivim5afi0OQarSV5CzZU6b8s~Tlzs9ILsgztBggvSeZcekfP8EPVKRNRaJw8DpaqgkUEG~9Y1VebRkBukcNmbi71rvQu0i~o3eNK7xi6GUXJb2p8L7kiIL3V7cTY~X8u4BH4mvdPqSUVE~pqJmha8j1L-KIK23ea4FbJWoJiVQ6i6hmsC5hbq3jxyQHY~ZnWufJ-rJopsTLPr8pGYlRj9EuHMle2ewk0-RQx3DJHZGyb0JyLD7HJDuiLJrkkSksFWUr2gTvXM9l1TgTWvxWmtwvhR~LcaBgalvuE0UM3yMeXBfDzsU3-H0IZqhsftC3IJ8s9HKZXXJ20hNWLnyCG9A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":2009,"name":"Data Mining","url":"https://www.academia.edu/Documents/in/Data_Mining"},{"id":131237,"name":"Cluster Analysis","url":"https://www.academia.edu/Documents/in/Cluster_Analysis"}],"urls":[{"id":28416596,"url":"http://dl.acm.org/ft_gateway.cfm?id=3331123\u0026ftid=2073415\u0026dwn=1"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="95741576"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/95741576/Symbolic_and_Neural_Learning_of_Named_Entity_Recognition_and_Classification_Systems_in_Two_Languages"><img alt="Research paper thumbnail of Symbolic and Neural Learning of Named-Entity Recognition and Classification Systems in Two Languages" class="work-thumbnail" src="https://attachments.academia-assets.com/97839535/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/95741576/Symbolic_and_Neural_Learning_of_Named_Entity_Recognition_and_Classification_Systems_in_Two_Languages">Symbolic and Neural Learning of Named-Entity Recognition and Classification Systems in Two Languages</a></div><div class="wp-workCard_item"><span>International Series in Intelligent Technologies</span><span>, 2002</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="b11a34bff198223425a0743da7118f9b" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":97839535,"asset_id":95741576,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/97839535/download_file?st=MTczMjQ1OTgxOSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="95741576"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="95741576"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 95741576; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=95741576]").text(description); $(".js-view-count[data-work-id=95741576]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 95741576; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='95741576']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 95741576, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "b11a34bff198223425a0743da7118f9b" } } $('.js-work-strip[data-work-id=95741576]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":95741576,"title":"Symbolic and Neural Learning of Named-Entity Recognition and Classification Systems in Two Languages","translated_title":"","metadata":{"publisher":"Springer Netherlands","grobid_abstract":"This paper compares two alternative approaches to the problem of acquiring named-entity recognition and classification systems from training corpora, in two different languages. The process of named-entity recognition and classification is an important subtask in most language engineering applications, in particular information extraction, where different types of named entity are associated with specific roles in events. The manual construction of rules for the recognition of named entities is a tedious and time-consuming task. For this reason, effective methods to acquire such systems automatically from data are very desirable. In this paper we compare two popular learning methods on this task: a decision-tree induction method and a multi-layered feed-forward neural network. Particular emphasis is paid on the selection of the appropriate data representation for each method and the extraction of training examples from unstructured textual data. We compare the performance of the two methods on large corpora of English and Greek texts and present the results. In addition to the good performance of both methods, one very interesting result is the fact that a simple representation of the data, which ignores the order of the words within a named entity, leads to improved results over a more complex approach that preserves word order.","publication_date":{"day":null,"month":null,"year":2002,"errors":{}},"publication_name":"International Series in Intelligent Technologies","grobid_abstract_attachment_id":97839535},"translated_abstract":null,"internal_url":"https://www.academia.edu/95741576/Symbolic_and_Neural_Learning_of_Named_Entity_Recognition_and_Classification_Systems_in_Two_Languages","translated_internal_url":"","created_at":"2023-01-26T08:18:05.745-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33409838,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":97839535,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/97839535/thumbnails/1.jpg","file_name":"COILBook2001.pdf","download_url":"https://www.academia.edu/attachments/97839535/download_file?st=MTczMjQ1OTgxOSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Symbolic_and_Neural_Learning_of_Named_En.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/97839535/COILBook2001-libre.pdf?1674756690=\u0026response-content-disposition=attachment%3B+filename%3DSymbolic_and_Neural_Learning_of_Named_En.pdf\u0026Expires=1732457609\u0026Signature=I2MwUCsHwa2wyDV8b53ub8p3ygw4ai9JI8437ClZg4H-CtyQeVeoZTsIiCD19cg1cm9sAccg~Z6lOUttTVTZkoIsX7p2hMVCsY3vW~JKpd4wNROA4SeCob7l6WZUSS3~fY9k5tX5Fh34n7Lli7VnLZ4T3ihEWU~~nBYRHNqvZBEzYmVUt3w~CNObp9Bu2uw1US~EPw1QdW56Opr6D~VfjUxEv8zCgOiuZk6tHll~nshdgNwEhE84KvxF08I4px0ixNbbSIrOTGDC7gXXnGK6TOxmEXDi6hdvWJ2EeoEX-p-KaGTyu3YVzlgLOrAjztB4ihUiHf4vJa-G7FNRnrOORg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Symbolic_and_Neural_Learning_of_Named_Entity_Recognition_and_Classification_Systems_in_Two_Languages","translated_slug":"","page_count":13,"language":"en","content_type":"Work","owner":{"id":33409838,"first_name":"C.","middle_initials":null,"last_name":"Spyropoulos","page_name":"Spyropoulos","domain_name":"independent","created_at":"2015-07-28T11:42:54.141-07:00","display_name":"C. Spyropoulos","url":"https://independent.academia.edu/Spyropoulos"},"attachments":[{"id":97839535,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/97839535/thumbnails/1.jpg","file_name":"COILBook2001.pdf","download_url":"https://www.academia.edu/attachments/97839535/download_file?st=MTczMjQ1OTgxOSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Symbolic_and_Neural_Learning_of_Named_En.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/97839535/COILBook2001-libre.pdf?1674756690=\u0026response-content-disposition=attachment%3B+filename%3DSymbolic_and_Neural_Learning_of_Named_En.pdf\u0026Expires=1732457609\u0026Signature=I2MwUCsHwa2wyDV8b53ub8p3ygw4ai9JI8437ClZg4H-CtyQeVeoZTsIiCD19cg1cm9sAccg~Z6lOUttTVTZkoIsX7p2hMVCsY3vW~JKpd4wNROA4SeCob7l6WZUSS3~fY9k5tX5Fh34n7Lli7VnLZ4T3ihEWU~~nBYRHNqvZBEzYmVUt3w~CNObp9Bu2uw1US~EPw1QdW56Opr6D~VfjUxEv8zCgOiuZk6tHll~nshdgNwEhE84KvxF08I4px0ixNbbSIrOTGDC7gXXnGK6TOxmEXDi6hdvWJ2EeoEX-p-KaGTyu3YVzlgLOrAjztB4ihUiHf4vJa-G7FNRnrOORg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":465,"name":"Artificial Intelligence","url":"https://www.academia.edu/Documents/in/Artificial_Intelligence"},{"id":1432,"name":"Natural Language Processing","url":"https://www.academia.edu/Documents/in/Natural_Language_Processing"},{"id":11128,"name":"Information Extraction","url":"https://www.academia.edu/Documents/in/Information_Extraction"},{"id":26066,"name":"Neural Network","url":"https://www.academia.edu/Documents/in/Neural_Network"},{"id":29205,"name":"Named Entity Recognition","url":"https://www.academia.edu/Documents/in/Named_Entity_Recognition"},{"id":35499,"name":"Word order","url":"https://www.academia.edu/Documents/in/Word_order"},{"id":271153,"name":"Data representation","url":"https://www.academia.edu/Documents/in/Data_representation"},{"id":903740,"name":"Named Entity","url":"https://www.academia.edu/Documents/in/Named_Entity"},{"id":1138319,"name":"Learning Methods","url":"https://www.academia.edu/Documents/in/Learning_Methods"},{"id":1151059,"name":"Language Engineering","url":"https://www.academia.edu/Documents/in/Language_Engineering"},{"id":1763882,"name":"Representation Politics","url":"https://www.academia.edu/Documents/in/Representation_Politics"},{"id":2003344,"name":"Feed Forward Neural Network","url":"https://www.academia.edu/Documents/in/Feed_Forward_Neural_Network"}],"urls":[{"id":28416595,"url":"http://link.springer.com/content/pdf/10.1007/978-94-010-0324-7_14"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="95741575"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/95741575/From_Web_usage_statistics_to_Web_usage_analysis"><img alt="Research paper thumbnail of From Web usage statistics to Web usage analysis" class="work-thumbnail" src="https://attachments.academia-assets.com/97839536/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/95741575/From_Web_usage_statistics_to_Web_usage_analysis">From Web usage statistics to Web usage analysis</a></div><div class="wp-workCard_item"><span>IEEE SMC'99 Conference Proceedings. 1999 IEEE International Conference on Systems, Man, and Cybernetics (Cat. No.99CH37028)</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="5d514876de53426966c98ccb6418cc35" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":97839536,"asset_id":95741575,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/97839536/download_file?st=MTczMjQ1OTgxOSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="95741575"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="95741575"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 95741575; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=95741575]").text(description); $(".js-view-count[data-work-id=95741575]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 95741575; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='95741575']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 95741575, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "5d514876de53426966c98ccb6418cc35" } } $('.js-work-strip[data-work-id=95741575]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":95741575,"title":"From Web usage statistics to Web usage analysis","translated_title":"","metadata":{"grobid_abstract":"The World Wide Web has become a major source of information that can be turned into valuable knowledge for individuals and organisations. In the work presented here, we are concerned with the extraction of meta-knowledge from the Web. In particular, knowledge about Web usage which is invaluable to the construction of Web sites that meet their purposes and prevent disorientation. Towards this goal, we propose the organisation of the users of a Web site into groups with common navigational behaviour (user communities). We view the task of building user communities as a data mining task, searching for interesting patterns within a database. The database that we use in our experiments consists of access logs collected from the Web site of the Advanced Course on Artificial Intelligence 1999. The unsupervised machine learning algorithm COBWEB is used to organise the users of the site, who follow similar paths, into a small set of communities. Particular attention is paid to the interpretation of the communities that are generated through this process. For this purpose, we use a simple metric to identify the representative navigational behaviour for each community. This information can then be used by the administrators of the site to re-organise it in a way that is tailored to the needs of each community. The proposed Web usage analysis is much more insightful than the common approach of examining simple usage statistics of the Web site.","publication_name":"IEEE SMC'99 Conference Proceedings. 1999 IEEE International Conference on Systems, Man, and Cybernetics (Cat. No.99CH37028)","grobid_abstract_attachment_id":97839536},"translated_abstract":null,"internal_url":"https://www.academia.edu/95741575/From_Web_usage_statistics_to_Web_usage_analysis","translated_internal_url":"","created_at":"2023-01-26T08:18:05.647-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33409838,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":97839536,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/97839536/thumbnails/1.jpg","file_name":"SMC99.pdf","download_url":"https://www.academia.edu/attachments/97839536/download_file?st=MTczMjQ1OTgxOSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"From_Web_usage_statistics_to_Web_usage_a.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/97839536/SMC99-libre.pdf?1674756689=\u0026response-content-disposition=attachment%3B+filename%3DFrom_Web_usage_statistics_to_Web_usage_a.pdf\u0026Expires=1732457609\u0026Signature=TKMq0LlQ4UcHkJcyGSoYZ6iMOvILXQKV8ODBshluiOqAyUsiagWqWhZ8SS3jRnyTqMJtokHrdMc8DsHCo8mn-hvKUlhmJluvlD6mLtlPN3npmV-oBSnZilHz4vyp4rx-4hShmyVPusycHnOm-derNu4pyW1KzFT79wnV10zVUqjPLjCzKH-9j7~PRIQ9mbB5I5nVuRykTnwT8O365IWdLQ82fBhg0luYNqCUr715pE7u7dgfzkwovTdjLvwlpZPdUvjL76zc2B-LFVGgPr~bJC1pbL4bdhkYcSL~Ywy43CnJtukwC5QNtn~XVSbEYSn7CQwaZ1-OeJe-FwydcmB8rA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"From_Web_usage_statistics_to_Web_usage_analysis","translated_slug":"","page_count":6,"language":"en","content_type":"Work","owner":{"id":33409838,"first_name":"C.","middle_initials":null,"last_name":"Spyropoulos","page_name":"Spyropoulos","domain_name":"independent","created_at":"2015-07-28T11:42:54.141-07:00","display_name":"C. Spyropoulos","url":"https://independent.academia.edu/Spyropoulos"},"attachments":[{"id":97839536,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/97839536/thumbnails/1.jpg","file_name":"SMC99.pdf","download_url":"https://www.academia.edu/attachments/97839536/download_file?st=MTczMjQ1OTgxOSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"From_Web_usage_statistics_to_Web_usage_a.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/97839536/SMC99-libre.pdf?1674756689=\u0026response-content-disposition=attachment%3B+filename%3DFrom_Web_usage_statistics_to_Web_usage_a.pdf\u0026Expires=1732457609\u0026Signature=TKMq0LlQ4UcHkJcyGSoYZ6iMOvILXQKV8ODBshluiOqAyUsiagWqWhZ8SS3jRnyTqMJtokHrdMc8DsHCo8mn-hvKUlhmJluvlD6mLtlPN3npmV-oBSnZilHz4vyp4rx-4hShmyVPusycHnOm-derNu4pyW1KzFT79wnV10zVUqjPLjCzKH-9j7~PRIQ9mbB5I5nVuRykTnwT8O365IWdLQ82fBhg0luYNqCUr715pE7u7dgfzkwovTdjLvwlpZPdUvjL76zc2B-LFVGgPr~bJC1pbL4bdhkYcSL~Ywy43CnJtukwC5QNtn~XVSbEYSn7CQwaZ1-OeJe-FwydcmB8rA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":2009,"name":"Data Mining","url":"https://www.academia.edu/Documents/in/Data_Mining"},{"id":4278,"name":"Web Mining","url":"https://www.academia.edu/Documents/in/Web_Mining"},{"id":7640,"name":"Web Standards","url":"https://www.academia.edu/Documents/in/Web_Standards"},{"id":8130,"name":"Web Development","url":"https://www.academia.edu/Documents/in/Web_Development"},{"id":19278,"name":"Web Intelligence","url":"https://www.academia.edu/Documents/in/Web_Intelligence"},{"id":46289,"name":"Web analytics","url":"https://www.academia.edu/Documents/in/Web_analytics"},{"id":93971,"name":"Unsupervised Machine Learning","url":"https://www.academia.edu/Documents/in/Unsupervised_Machine_Learning"},{"id":101530,"name":"Artificial Intelligent","url":"https://www.academia.edu/Documents/in/Artificial_Intelligent"},{"id":132184,"name":"Web Navigation","url":"https://www.academia.edu/Documents/in/Web_Navigation"},{"id":141114,"name":"World Wide Web","url":"https://www.academia.edu/Documents/in/World_Wide_Web"},{"id":197730,"name":"Web Modeling","url":"https://www.academia.edu/Documents/in/Web_Modeling"},{"id":443362,"name":"Web Mapping","url":"https://www.academia.edu/Documents/in/Web_Mapping"},{"id":621171,"name":"WEB DEVELOPMENT","url":"https://www.academia.edu/Documents/in/WEB_DEVELOPMENT-1"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="95741574"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/95741574/eg_GRIDS_Context_Free_Grammatical_Inference_from_Positive_Examples_Using_Genetic_Search"><img alt="Research paper thumbnail of eg-GRIDS: Context-Free Grammatical Inference from Positive Examples Using Genetic Search" class="work-thumbnail" src="https://attachments.academia-assets.com/97839539/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/95741574/eg_GRIDS_Context_Free_Grammatical_Inference_from_Positive_Examples_Using_Genetic_Search">eg-GRIDS: Context-Free Grammatical Inference from Positive Examples Using Genetic Search</a></div><div class="wp-workCard_item"><span>Grammatical Inference: Algorithms and Applications</span><span>, 2004</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="0b81592782df1b6fd274c02900fbf0b7" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":97839539,"asset_id":95741574,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/97839539/download_file?st=MTczMjQ1OTgxOSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="95741574"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="95741574"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 95741574; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=95741574]").text(description); $(".js-view-count[data-work-id=95741574]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 95741574; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='95741574']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 95741574, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "0b81592782df1b6fd274c02900fbf0b7" } } $('.js-work-strip[data-work-id=95741574]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":95741574,"title":"eg-GRIDS: Context-Free Grammatical Inference from Positive Examples Using Genetic Search","translated_title":"","metadata":{"publisher":"Springer Berlin Heidelberg","grobid_abstract":"In this paper we present eg-GRIDS, an algorithm for inducing context-free grammars that is able to learn from positive sample sentences. The presented algorithm, similar to its GRIDS predecessors, uses simplicity as a criterion for directing inference, and a set of operators for exploring the search space. In addition to the basic beam search strategy of GRIDS, eg-GRIDS incorporates an evolutionary grammar selection process, aiming to explore a larger part of the search space. Evaluation results are presented on artificially generated data, comparing the performance of beam search and genetic search. These results show that genetic search performs better than beam search while being significantly more efficient computationally.","publication_date":{"day":null,"month":null,"year":2004,"errors":{}},"publication_name":"Grammatical Inference: Algorithms and Applications","grobid_abstract_attachment_id":97839539},"translated_abstract":null,"internal_url":"https://www.academia.edu/95741574/eg_GRIDS_Context_Free_Grammatical_Inference_from_Positive_Examples_Using_Genetic_Search","translated_internal_url":"","created_at":"2023-01-26T08:18:05.510-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33409838,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":97839539,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/97839539/thumbnails/1.jpg","file_name":"ICGI2004a.pdf","download_url":"https://www.academia.edu/attachments/97839539/download_file?st=MTczMjQ1OTgxOSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"eg_GRIDS_Context_Free_Grammatical_Infere.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/97839539/ICGI2004a-libre.pdf?1674756690=\u0026response-content-disposition=attachment%3B+filename%3Deg_GRIDS_Context_Free_Grammatical_Infere.pdf\u0026Expires=1732457609\u0026Signature=hJ456dmd2WAHeNeMTaFw4o354zfMFUGWchY2-UbKyFFUECW5lLy9XMt0jo29WlJLKcC4oraUfg8xUf64cfhsT1QRH0tKA9xjSGKuVxeGuW4ZLN~0jt-FhUkycCkpQkAxw-yIypDWnSTdAghyYUHmJihN16H5IHoKxUH0pt9Shdw9AgOY4JKfDNtp9hu6gLkgPrv7lOR-NE6eoL6mqaZuAPlgbqZmH5fld32J~shh2Hed0PQ0Sa5~EY~oqEHmIg0CXCO9w-Qa14oI0DyrbJ9GjfJM1zJpk-SEhb-tt9ps6PUSHm7B2xrChf7P4HDo6V1w2eP8vgo7JfoLKYJ~k4R4Vw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"eg_GRIDS_Context_Free_Grammatical_Inference_from_Positive_Examples_Using_Genetic_Search","translated_slug":"","page_count":12,"language":"en","content_type":"Work","owner":{"id":33409838,"first_name":"C.","middle_initials":null,"last_name":"Spyropoulos","page_name":"Spyropoulos","domain_name":"independent","created_at":"2015-07-28T11:42:54.141-07:00","display_name":"C. Spyropoulos","url":"https://independent.academia.edu/Spyropoulos"},"attachments":[{"id":97839539,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/97839539/thumbnails/1.jpg","file_name":"ICGI2004a.pdf","download_url":"https://www.academia.edu/attachments/97839539/download_file?st=MTczMjQ1OTgxOSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"eg_GRIDS_Context_Free_Grammatical_Infere.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/97839539/ICGI2004a-libre.pdf?1674756690=\u0026response-content-disposition=attachment%3B+filename%3Deg_GRIDS_Context_Free_Grammatical_Infere.pdf\u0026Expires=1732457609\u0026Signature=hJ456dmd2WAHeNeMTaFw4o354zfMFUGWchY2-UbKyFFUECW5lLy9XMt0jo29WlJLKcC4oraUfg8xUf64cfhsT1QRH0tKA9xjSGKuVxeGuW4ZLN~0jt-FhUkycCkpQkAxw-yIypDWnSTdAghyYUHmJihN16H5IHoKxUH0pt9Shdw9AgOY4JKfDNtp9hu6gLkgPrv7lOR-NE6eoL6mqaZuAPlgbqZmH5fld32J~shh2Hed0PQ0Sa5~EY~oqEHmIg0CXCO9w-Qa14oI0DyrbJ9GjfJM1zJpk-SEhb-tt9ps6PUSHm7B2xrChf7P4HDo6V1w2eP8vgo7JfoLKYJ~k4R4Vw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":156,"name":"Genetics","url":"https://www.academia.edu/Documents/in/Genetics"},{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":465,"name":"Artificial Intelligence","url":"https://www.academia.edu/Documents/in/Artificial_Intelligence"},{"id":18574,"name":"Inference","url":"https://www.academia.edu/Documents/in/Inference"},{"id":30329,"name":"Genetic Algorithm","url":"https://www.academia.edu/Documents/in/Genetic_Algorithm"},{"id":125917,"name":"Grammatical Inference","url":"https://www.academia.edu/Documents/in/Grammatical_Inference"},{"id":155564,"name":"Search Algorithm","url":"https://www.academia.edu/Documents/in/Search_Algorithm"},{"id":265625,"name":"Evolutionary Algorithm","url":"https://www.academia.edu/Documents/in/Evolutionary_Algorithm"},{"id":287030,"name":"Minimum description length","url":"https://www.academia.edu/Documents/in/Minimum_description_length"},{"id":303727,"name":"Grid","url":"https://www.academia.edu/Documents/in/Grid"},{"id":424636,"name":"Beam Search","url":"https://www.academia.edu/Documents/in/Beam_Search"},{"id":469944,"name":"Search Space","url":"https://www.academia.edu/Documents/in/Search_Space"},{"id":955424,"name":"Context Free Grammars","url":"https://www.academia.edu/Documents/in/Context_Free_Grammars"}],"urls":[{"id":28416594,"url":"http://link.springer.com/content/pdf/10.1007/978-3-540-30195-0_20.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="95741573"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/95741573/The_Role_of_Planning_in_Scheduling_Patient_Tests_in_Hospital_Laboratories"><img alt="Research paper thumbnail of The Role of Planning in Scheduling Patient Tests in Hospital Laboratories" class="work-thumbnail" src="https://attachments.academia-assets.com/97839487/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/95741573/The_Role_of_Planning_in_Scheduling_Patient_Tests_in_Hospital_Laboratories">The Role of Planning in Scheduling Patient Tests in Hospital Laboratories</a></div><div class="wp-workCard_item"><span>Advances in Intelligent Systems</span><span>, 1999</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="d52ba18b9dffb7a871dd718be64b14e0" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":97839487,"asset_id":95741573,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/97839487/download_file?st=MTczMjQ1OTgxOSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="95741573"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="95741573"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 95741573; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=95741573]").text(description); $(".js-view-count[data-work-id=95741573]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 95741573; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='95741573']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 95741573, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "d52ba18b9dffb7a871dd718be64b14e0" } } $('.js-work-strip[data-work-id=95741573]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":95741573,"title":"The Role of Planning in Scheduling Patient Tests in Hospital Laboratories","translated_title":"","metadata":{"publisher":"Springer Netherlands","grobid_abstract":"Recently, many researchers have been interested in applying AI planning technology to practical real-world problems. An interesting problem where planning technology can be applied is the problem of scheduling patient tests in hospital laboratories. Doctors prescribe tests to be performed in order to assist the diagnosis. Hospital laboratories that perform tests, must cooperate in order to maximize the utilization of their equipment and minimize patient waiting time. The actual timing of the tests prescribed for a particular patient. depends on several factors that require both planning and scheduling technology. Until now, approaches that cope with this problem use pure scheduling techniques [1,2]. Among them, there are approaches that consider scheduling tests in a single laboratory [2] and approaches that support multi-laboratory test scheduling by assigning different schedulers to different laboratories [I). In [3], a dynamic distributed scheduling approach has been proposed. In [4] we made a first attempt to integrate planning and scheduling technology to solve problems of this domain. In the present chapter a more thorough approach is given. We first examine the need to J This work was developed during the project PENED 561: CHRONOBAST (TEDRAS). funded by the European Commission (EC) and the Greek General Secretary for Research and Technology of the Ministry of Development. 475 S. G. Tzafestas (ed.","publication_date":{"day":null,"month":null,"year":1999,"errors":{}},"publication_name":"Advances in Intelligent Systems","grobid_abstract_attachment_id":97839487},"translated_abstract":null,"internal_url":"https://www.academia.edu/95741573/The_Role_of_Planning_in_Scheduling_Patient_Tests_in_Hospital_Laboratories","translated_internal_url":"","created_at":"2023-01-26T08:18:05.372-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33409838,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":97839487,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/97839487/thumbnails/1.jpg","file_name":"978-94-011-4840-5_42.pdf","download_url":"https://www.academia.edu/attachments/97839487/download_file?st=MTczMjQ1OTgxOSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"The_Role_of_Planning_in_Scheduling_Patie.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/97839487/978-94-011-4840-5_42-libre.pdf?1674756699=\u0026response-content-disposition=attachment%3B+filename%3DThe_Role_of_Planning_in_Scheduling_Patie.pdf\u0026Expires=1732457609\u0026Signature=AYBh8B1EYnE-SWyhtJH3c7ywGgfBcGxUvJK45Q7J9ngmZWyfdKDp8lkQrCp~2FTxfwW9hp9fs6hasMNJ~QC~OVrt~PRQRRkSazny~PheiUdUJIMbutqqlU9-57QzS81010MqLwrXrIlBPEbPiSwv~3d8OcKK84dcRZVv0UfgcCH1iOOg6baSoiuqyTNRRxf1lTfKSPlxV7WCaslur1~WiKnn0AtMi9gt5-M8fdS31PBYikfphOe4kT6D9~q-lL-GKVdCYVsWmTMMcVGRF~3Nb~BLvl0b4Ry8EO28VUgJgZ5mLWAZN~-T1lSLHSoKw3EnCYy-EcWXqxH6aU7Qii2HGA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"The_Role_of_Planning_in_Scheduling_Patient_Tests_in_Hospital_Laboratories","translated_slug":"","page_count":12,"language":"en","content_type":"Work","owner":{"id":33409838,"first_name":"C.","middle_initials":null,"last_name":"Spyropoulos","page_name":"Spyropoulos","domain_name":"independent","created_at":"2015-07-28T11:42:54.141-07:00","display_name":"C. Spyropoulos","url":"https://independent.academia.edu/Spyropoulos"},"attachments":[{"id":97839487,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/97839487/thumbnails/1.jpg","file_name":"978-94-011-4840-5_42.pdf","download_url":"https://www.academia.edu/attachments/97839487/download_file?st=MTczMjQ1OTgxOSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"The_Role_of_Planning_in_Scheduling_Patie.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/97839487/978-94-011-4840-5_42-libre.pdf?1674756699=\u0026response-content-disposition=attachment%3B+filename%3DThe_Role_of_Planning_in_Scheduling_Patie.pdf\u0026Expires=1732457609\u0026Signature=AYBh8B1EYnE-SWyhtJH3c7ywGgfBcGxUvJK45Q7J9ngmZWyfdKDp8lkQrCp~2FTxfwW9hp9fs6hasMNJ~QC~OVrt~PRQRRkSazny~PheiUdUJIMbutqqlU9-57QzS81010MqLwrXrIlBPEbPiSwv~3d8OcKK84dcRZVv0UfgcCH1iOOg6baSoiuqyTNRRxf1lTfKSPlxV7WCaslur1~WiKnn0AtMi9gt5-M8fdS31PBYikfphOe4kT6D9~q-lL-GKVdCYVsWmTMMcVGRF~3Nb~BLvl0b4Ry8EO28VUgJgZ5mLWAZN~-T1lSLHSoKw3EnCYy-EcWXqxH6aU7Qii2HGA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":10977,"name":"Intelligent Systems","url":"https://www.academia.edu/Documents/in/Intelligent_Systems"},{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"}],"urls":[{"id":28416593,"url":"http://link.springer.com/content/pdf/10.1007/978-94-011-4840-5_42"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="95741572"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/95741572/Automatic_Web_Rating_Filtering_Obscene_Content_on_the_Web"><img alt="Research paper thumbnail of Automatic Web Rating: Filtering Obscene Content on the Web" class="work-thumbnail" src="https://attachments.academia-assets.com/97839534/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/95741572/Automatic_Web_Rating_Filtering_Obscene_Content_on_the_Web">Automatic Web Rating: Filtering Obscene Content on the Web</a></div><div class="wp-workCard_item"><span>Lecture Notes in Computer Science</span><span>, 2000</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="278bd3ae06bfae676c76c159965dd563" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":97839534,"asset_id":95741572,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/97839534/download_file?st=MTczMjQ1OTgxOSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="95741572"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="95741572"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 95741572; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=95741572]").text(description); $(".js-view-count[data-work-id=95741572]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 95741572; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='95741572']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 95741572, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "278bd3ae06bfae676c76c159965dd563" } } $('.js-work-strip[data-work-id=95741572]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":95741572,"title":"Automatic Web Rating: Filtering Obscene Content on the Web","translated_title":"","metadata":{"grobid_abstract":"We present a method to detect automatically pornographic content on the Web. Our method combines techniques from language engineering and image analysis within a machine-learning framework. Experimental results show that it achieves nearly perfect performance on a set of hard cases.","publication_date":{"day":null,"month":null,"year":2000,"errors":{}},"publication_name":"Lecture Notes in Computer Science","grobid_abstract_attachment_id":97839534},"translated_abstract":null,"internal_url":"https://www.academia.edu/95741572/Automatic_Web_Rating_Filtering_Obscene_Content_on_the_Web","translated_internal_url":"","created_at":"2023-01-26T08:18:05.263-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33409838,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":97839534,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/97839534/thumbnails/1.jpg","file_name":"ecdl2000_paper.pdf","download_url":"https://www.academia.edu/attachments/97839534/download_file?st=MTczMjQ1OTgxOSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Automatic_Web_Rating_Filtering_Obscene_C.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/97839534/ecdl2000_paper-libre.pdf?1674756687=\u0026response-content-disposition=attachment%3B+filename%3DAutomatic_Web_Rating_Filtering_Obscene_C.pdf\u0026Expires=1732457609\u0026Signature=HJgVNJFZ1AALwPs~ewxN4ubtOpCWGJZPLx1rfCQuHL50plDZYu6kFlBIcFQCy4mYLXJfoy-mc59leLtwZImXA3ba6KTlQVSKaQTNxc4oKA5MMliVNPAm9QokiGKl1N~M~gWKZwuufEug1QYER0Impe-oNetNMrvSC3wqvVoZSJp5KhBDoAOoa2i8zgSKqLiktVZJQdgXHch0Qkkybs5ELY5hPLD6TFOqqjSGU1puJC8iVqpL1OhbpZiUkVP8fItq4A7ooFdQo-te87VtRvZbo3FDBukXkNwjFGB5hj0kxwaa1I7Q9LfKp08OUbABRGDKjuvveK6HaKFPwU6SVSitOA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Automatic_Web_Rating_Filtering_Obscene_Content_on_the_Web","translated_slug":"","page_count":4,"language":"en","content_type":"Work","owner":{"id":33409838,"first_name":"C.","middle_initials":null,"last_name":"Spyropoulos","page_name":"Spyropoulos","domain_name":"independent","created_at":"2015-07-28T11:42:54.141-07:00","display_name":"C. Spyropoulos","url":"https://independent.academia.edu/Spyropoulos"},"attachments":[{"id":97839534,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/97839534/thumbnails/1.jpg","file_name":"ecdl2000_paper.pdf","download_url":"https://www.academia.edu/attachments/97839534/download_file?st=MTczMjQ1OTgxOSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Automatic_Web_Rating_Filtering_Obscene_C.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/97839534/ecdl2000_paper-libre.pdf?1674756687=\u0026response-content-disposition=attachment%3B+filename%3DAutomatic_Web_Rating_Filtering_Obscene_C.pdf\u0026Expires=1732457609\u0026Signature=HJgVNJFZ1AALwPs~ewxN4ubtOpCWGJZPLx1rfCQuHL50plDZYu6kFlBIcFQCy4mYLXJfoy-mc59leLtwZImXA3ba6KTlQVSKaQTNxc4oKA5MMliVNPAm9QokiGKl1N~M~gWKZwuufEug1QYER0Impe-oNetNMrvSC3wqvVoZSJp5KhBDoAOoa2i8zgSKqLiktVZJQdgXHch0Qkkybs5ELY5hPLD6TFOqqjSGU1puJC8iVqpL1OhbpZiUkVP8fItq4A7ooFdQo-te87VtRvZbo3FDBukXkNwjFGB5hj0kxwaa1I7Q9LfKp08OUbABRGDKjuvveK6HaKFPwU6SVSitOA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":464,"name":"Information Retrieval","url":"https://www.academia.edu/Documents/in/Information_Retrieval"},{"id":2008,"name":"Machine Learning","url":"https://www.academia.edu/Documents/in/Machine_Learning"},{"id":6426,"name":"Content Analysis","url":"https://www.academia.edu/Documents/in/Content_Analysis"},{"id":8910,"name":"Evaluation","url":"https://www.academia.edu/Documents/in/Evaluation"},{"id":9351,"name":"Image Analysis","url":"https://www.academia.edu/Documents/in/Image_Analysis"},{"id":13413,"name":"Web page design","url":"https://www.academia.edu/Documents/in/Web_page_design"},{"id":141114,"name":"World Wide Web","url":"https://www.academia.edu/Documents/in/World_Wide_Web"},{"id":728952,"name":"Filtering","url":"https://www.academia.edu/Documents/in/Filtering"},{"id":1151059,"name":"Language Engineering","url":"https://www.academia.edu/Documents/in/Language_Engineering"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="95741571"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/95741571/Learning_Rules_for_Large_Vocabulary_Word_Sense_Disambiguation_A_Comparison_of_Various_Classifiers"><img alt="Research paper thumbnail of Learning Rules for Large-Vocabulary Word Sense Disambiguation: A Comparison of Various Classifiers" class="work-thumbnail" src="https://attachments.academia-assets.com/97839532/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/95741571/Learning_Rules_for_Large_Vocabulary_Word_Sense_Disambiguation_A_Comparison_of_Various_Classifiers">Learning Rules for Large-Vocabulary Word Sense Disambiguation: A Comparison of Various Classifiers</a></div><div class="wp-workCard_item"><span>Lecture Notes in Computer Science</span><span>, 2000</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="6c81c85f2f8beac26f322ecb00774d0f" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":97839532,"asset_id":95741571,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/97839532/download_file?st=MTczMjQ1OTgxOSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="95741571"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="95741571"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 95741571; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=95741571]").text(description); $(".js-view-count[data-work-id=95741571]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 95741571; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='95741571']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 95741571, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "6c81c85f2f8beac26f322ecb00774d0f" } } $('.js-work-strip[data-work-id=95741571]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":95741571,"title":"Learning Rules for Large-Vocabulary Word Sense Disambiguation: A Comparison of Various Classifiers","translated_title":"","metadata":{"grobid_abstract":"Word Sense Disambiguation (WSD) is the process of distinguishing between different senses of a word. In general, the disambiguation rules differ for different words. For this reason, the automatic construction of disambiguation rules is highly desirable. One way to achieve this aim is by applying machine learning techniques to training data containing the various senses of the ambiguous words. In the work presented here, the decision tree learning algorithm C4.5 is applied on a corpus of financial news articles. Instead of concentrating on a small set of ambiguous words, as done in most of the related previous work, all content words of the examined corpus are disambiguated. Furthermore, the effectiveness of word sense disambiguation for different parts of speech (nouns and verbs) is examined empirically.","publication_date":{"day":null,"month":null,"year":2000,"errors":{}},"publication_name":"Lecture Notes in Computer Science","grobid_abstract_attachment_id":97839532},"translated_abstract":null,"internal_url":"https://www.academia.edu/95741571/Learning_Rules_for_Large_Vocabulary_Word_Sense_Disambiguation_A_Comparison_of_Various_Classifiers","translated_internal_url":"","created_at":"2023-01-26T08:18:05.166-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33409838,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":97839532,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/97839532/thumbnails/1.jpg","file_name":"003.pdf","download_url":"https://www.academia.edu/attachments/97839532/download_file?st=MTczMjQ1OTgxOSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Learning_Rules_for_Large_Vocabulary_Word.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/97839532/003-libre.pdf?1674756688=\u0026response-content-disposition=attachment%3B+filename%3DLearning_Rules_for_Large_Vocabulary_Word.pdf\u0026Expires=1732457609\u0026Signature=hQU4MIegony0VGu8gsUalX2tv1mZHp~STETuck14n1q1Ja~B8FiCicum5SJbGL1G39vliIr~4IZtUPkYQYXAzv0fAN9VkyESyr8erWuax7pF-~ievqtY8h8UAIXj2wjeIrSOq0KicoBNo4Ue2wC-IBqtrddFqFPkxhlQOQhPhOP2l-EpVOXCZMP65O5R-WriWpLj-3aNvA~z2hzEcSS-1vqhRHpLv2KTAYXXoquNS6daYZyZuWLE-xXYRmP6c9Kvyq7U7DHXqVkKpEELUL4xL5Co8BZQw9-V6uxNa4wCodnLfIXuNI8G8b7B3b3V4hl2adrHlUBr4xVUjkq52t0pIA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Learning_Rules_for_Large_Vocabulary_Word_Sense_Disambiguation_A_Comparison_of_Various_Classifiers","translated_slug":"","page_count":4,"language":"en","content_type":"Work","owner":{"id":33409838,"first_name":"C.","middle_initials":null,"last_name":"Spyropoulos","page_name":"Spyropoulos","domain_name":"independent","created_at":"2015-07-28T11:42:54.141-07:00","display_name":"C. Spyropoulos","url":"https://independent.academia.edu/Spyropoulos"},"attachments":[{"id":97839532,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/97839532/thumbnails/1.jpg","file_name":"003.pdf","download_url":"https://www.academia.edu/attachments/97839532/download_file?st=MTczMjQ1OTgxOSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Learning_Rules_for_Large_Vocabulary_Word.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/97839532/003-libre.pdf?1674756688=\u0026response-content-disposition=attachment%3B+filename%3DLearning_Rules_for_Large_Vocabulary_Word.pdf\u0026Expires=1732457609\u0026Signature=hQU4MIegony0VGu8gsUalX2tv1mZHp~STETuck14n1q1Ja~B8FiCicum5SJbGL1G39vliIr~4IZtUPkYQYXAzv0fAN9VkyESyr8erWuax7pF-~ievqtY8h8UAIXj2wjeIrSOq0KicoBNo4Ue2wC-IBqtrddFqFPkxhlQOQhPhOP2l-EpVOXCZMP65O5R-WriWpLj-3aNvA~z2hzEcSS-1vqhRHpLv2KTAYXXoquNS6daYZyZuWLE-xXYRmP6c9Kvyq7U7DHXqVkKpEELUL4xL5Co8BZQw9-V6uxNa4wCodnLfIXuNI8G8b7B3b3V4hl2adrHlUBr4xVUjkq52t0pIA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":465,"name":"Artificial Intelligence","url":"https://www.academia.edu/Documents/in/Artificial_Intelligence"},{"id":1432,"name":"Natural Language Processing","url":"https://www.academia.edu/Documents/in/Natural_Language_Processing"},{"id":2008,"name":"Machine Learning","url":"https://www.academia.edu/Documents/in/Machine_Learning"},{"id":5591,"name":"Vocabulary","url":"https://www.academia.edu/Documents/in/Vocabulary"},{"id":9840,"name":"Word Sense Disambiguation","url":"https://www.academia.edu/Documents/in/Word_Sense_Disambiguation"},{"id":162271,"name":"Decision Tree","url":"https://www.academia.edu/Documents/in/Decision_Tree"},{"id":1138319,"name":"Learning Methods","url":"https://www.academia.edu/Documents/in/Learning_Methods"},{"id":1143720,"name":"Decision Tree Learning","url":"https://www.academia.edu/Documents/in/Decision_Tree_Learning"},{"id":2510264,"name":"Decision tree Induction","url":"https://www.academia.edu/Documents/in/Decision_tree_Induction"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="95741570"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/95741570/Realtime_depression_estimation_using_mid_term_audio_features"><img alt="Research paper thumbnail of Realtime depression estimation using mid-term audio features" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/95741570/Realtime_depression_estimation_using_mid_term_audio_features">Realtime depression estimation using mid-term audio features</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="95741570"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="95741570"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 95741570; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=95741570]").text(description); $(".js-view-count[data-work-id=95741570]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 95741570; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='95741570']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 95741570, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=95741570]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":95741570,"title":"Realtime depression estimation using mid-term audio features","translated_title":"","metadata":{},"translated_abstract":null,"internal_url":"https://www.academia.edu/95741570/Realtime_depression_estimation_using_mid_term_audio_features","translated_internal_url":"","created_at":"2023-01-26T08:18:05.086-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33409838,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Realtime_depression_estimation_using_mid_term_audio_features","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":33409838,"first_name":"C.","middle_initials":null,"last_name":"Spyropoulos","page_name":"Spyropoulos","domain_name":"independent","created_at":"2015-07-28T11:42:54.141-07:00","display_name":"C. Spyropoulos","url":"https://independent.academia.edu/Spyropoulos"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="95741569"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/95741569/Content_Collection_for_the_Labelling_of_Health_Related_Web_Content"><img alt="Research paper thumbnail of Content Collection for the Labelling of Health-Related Web Content" class="work-thumbnail" src="https://attachments.academia-assets.com/97839533/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/95741569/Content_Collection_for_the_Labelling_of_Health_Related_Web_Content">Content Collection for the Labelling of Health-Related Web Content</a></div><div class="wp-workCard_item"><span>Lecture Notes in Computer Science</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="395604c039945a0069581e07f870a7f2" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":97839533,"asset_id":95741569,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/97839533/download_file?st=MTczMjQ1OTgxOSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="95741569"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="95741569"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 95741569; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=95741569]").text(description); $(".js-view-count[data-work-id=95741569]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 95741569; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='95741569']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 95741569, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "395604c039945a0069581e07f870a7f2" } } $('.js-work-strip[data-work-id=95741569]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":95741569,"title":"Content Collection for the Labelling of Health-Related Web Content","translated_title":"","metadata":{"grobid_abstract":"As the number of health-related web sites in various languages increases, it is more than necessary to implement control mechanisms that give the users adequate guarantee that the web resources they are visiting, meet a minimum level of quality standards. Based upon state-of-the-art technology in the areas of semantic web, content analysis and quality labeling, the AQUA system, designed for the EC-funded project MedIEQ, aims to support the automation of the labeling process in health-related web content. AQUA provides tools that crawl the web to locate unlabelled health web resources in different European languages, as well as tools that traverse websites, identify and extract information and, upon this information, propose labels or monitor already labeled resources. Two major steps in this automated labeling process are web content collection and information extraction. This paper focuses on content collection. We describe existing approaches, present the architecture of the content collection toolkit and how this is integrated within the AQUA system, and discuss our initial experimental results in the English language (six more languages will be covered by the end of the project).","publication_name":"Lecture Notes in Computer Science","grobid_abstract_attachment_id":97839533},"translated_abstract":null,"internal_url":"https://www.academia.edu/95741569/Content_Collection_for_the_Labelling_of_Health_Related_Web_Content","translated_internal_url":"","created_at":"2023-01-26T08:18:04.991-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33409838,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":97839533,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/97839533/thumbnails/1.jpg","file_name":"aime07draft.pdf","download_url":"https://www.academia.edu/attachments/97839533/download_file?st=MTczMjQ1OTgxOSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Content_Collection_for_the_Labelling_of.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/97839533/aime07draft-libre.pdf?1674756687=\u0026response-content-disposition=attachment%3B+filename%3DContent_Collection_for_the_Labelling_of.pdf\u0026Expires=1732457609\u0026Signature=aZO9M4t~iy9GJVEWQ-GiwzQHj70A-4YcMbZEcpmqueMcTviOgjDTLdrbq6IH9MssLp-uJRfqK25OKISoHMH3719ENJcqCjrZYAhqHPCZNvI84E1-22~5XU2hpbLjmtrhvsRYgHa~AWDJCJDA3SR5IGZnZFcgvHwDYhVLXS6nXb~ce9ky0SozBSlS89UnwuxxpPtAuNqRnfIz-AoE7FAUdtAhWBjVgBlqqFdByDn0hdj2BtGGN-aa-tH7rkf2mvAumgeeZjCV7AFC~Cp2Gz7CjKQ5pMeNS~~CVMzv412Xjo6rueG6O2GAO9t1SKIXQIultNAyFZPIIte3oecBXY2jDw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Content_Collection_for_the_Labelling_of_Health_Related_Web_Content","translated_slug":"","page_count":11,"language":"en","content_type":"Work","owner":{"id":33409838,"first_name":"C.","middle_initials":null,"last_name":"Spyropoulos","page_name":"Spyropoulos","domain_name":"independent","created_at":"2015-07-28T11:42:54.141-07:00","display_name":"C. Spyropoulos","url":"https://independent.academia.edu/Spyropoulos"},"attachments":[{"id":97839533,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/97839533/thumbnails/1.jpg","file_name":"aime07draft.pdf","download_url":"https://www.academia.edu/attachments/97839533/download_file?st=MTczMjQ1OTgxOSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Content_Collection_for_the_Labelling_of.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/97839533/aime07draft-libre.pdf?1674756687=\u0026response-content-disposition=attachment%3B+filename%3DContent_Collection_for_the_Labelling_of.pdf\u0026Expires=1732457609\u0026Signature=aZO9M4t~iy9GJVEWQ-GiwzQHj70A-4YcMbZEcpmqueMcTviOgjDTLdrbq6IH9MssLp-uJRfqK25OKISoHMH3719ENJcqCjrZYAhqHPCZNvI84E1-22~5XU2hpbLjmtrhvsRYgHa~AWDJCJDA3SR5IGZnZFcgvHwDYhVLXS6nXb~ce9ky0SozBSlS89UnwuxxpPtAuNqRnfIz-AoE7FAUdtAhWBjVgBlqqFdByDn0hdj2BtGGN-aa-tH7rkf2mvAumgeeZjCV7AFC~Cp2Gz7CjKQ5pMeNS~~CVMzv412Xjo6rueG6O2GAO9t1SKIXQIultNAyFZPIIte3oecBXY2jDw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":465,"name":"Artificial Intelligence","url":"https://www.academia.edu/Documents/in/Artificial_Intelligence"},{"id":2008,"name":"Machine Learning","url":"https://www.academia.edu/Documents/in/Machine_Learning"},{"id":3979,"name":"English language","url":"https://www.academia.edu/Documents/in/English_language"},{"id":6426,"name":"Content Analysis","url":"https://www.academia.edu/Documents/in/Content_Analysis"},{"id":7640,"name":"Web Standards","url":"https://www.academia.edu/Documents/in/Web_Standards"},{"id":11128,"name":"Information Extraction","url":"https://www.academia.edu/Documents/in/Information_Extraction"},{"id":17711,"name":"Semantic Web","url":"https://www.academia.edu/Documents/in/Semantic_Web"},{"id":34756,"name":"System Design","url":"https://www.academia.edu/Documents/in/System_Design"},{"id":141114,"name":"World Wide Web","url":"https://www.academia.edu/Documents/in/World_Wide_Web"},{"id":319733,"name":"Focused crawling","url":"https://www.academia.edu/Documents/in/Focused_crawling"},{"id":463293,"name":"Quality Standard","url":"https://www.academia.edu/Documents/in/Quality_Standard"},{"id":571767,"name":"Labelling","url":"https://www.academia.edu/Documents/in/Labelling"},{"id":624707,"name":"English Language","url":"https://www.academia.edu/Documents/in/English_Language-2"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="95741568"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/95741568/Machine_Learning_Based_Maintenance_of_Domain_Specific_Application_Ontologies"><img alt="Research paper thumbnail of Machine Learning-Based Maintenance of Domain-Specific Application Ontologies" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/95741568/Machine_Learning_Based_Maintenance_of_Domain_Specific_Application_Ontologies">Machine Learning-Based Maintenance of Domain-Specific Application Ontologies</a></div><div class="wp-workCard_item"><span>Integrated Series in Information Systems</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">... The ontology-based annotation stage exploits the instances in the domain ontology, to automat...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">... The ontology-based annotation stage exploits the instances in the domain ontology, to automatically ... When this stage ends, an iteration of the ontology population process is considered to ... the parameter settings selection for the machine learning-based methods (HMM and ...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="95741568"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="95741568"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 95741568; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=95741568]").text(description); $(".js-view-count[data-work-id=95741568]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 95741568; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='95741568']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 95741568, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=95741568]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":95741568,"title":"Machine Learning-Based Maintenance of Domain-Specific Application Ontologies","translated_title":"","metadata":{"abstract":"... The ontology-based annotation stage exploits the instances in the domain ontology, to automatically ... When this stage ends, an iteration of the ontology population process is considered to ... the parameter settings selection for the machine learning-based methods (HMM and ...","publication_name":"Integrated Series in Information Systems"},"translated_abstract":"... The ontology-based annotation stage exploits the instances in the domain ontology, to automatically ... When this stage ends, an iteration of the ontology population process is considered to ... the parameter settings selection for the machine learning-based methods (HMM and ...","internal_url":"https://www.academia.edu/95741568/Machine_Learning_Based_Maintenance_of_Domain_Specific_Application_Ontologies","translated_internal_url":"","created_at":"2023-01-26T08:18:04.896-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33409838,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Machine_Learning_Based_Maintenance_of_Domain_Specific_Application_Ontologies","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":33409838,"first_name":"C.","middle_initials":null,"last_name":"Spyropoulos","page_name":"Spyropoulos","domain_name":"independent","created_at":"2015-07-28T11:42:54.141-07:00","display_name":"C. Spyropoulos","url":"https://independent.academia.edu/Spyropoulos"},"attachments":[],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":465,"name":"Artificial Intelligence","url":"https://www.academia.edu/Documents/in/Artificial_Intelligence"},{"id":805,"name":"Ontology","url":"https://www.academia.edu/Documents/in/Ontology"},{"id":2008,"name":"Machine Learning","url":"https://www.academia.edu/Documents/in/Machine_Learning"},{"id":51860,"name":"Ontologies","url":"https://www.academia.edu/Documents/in/Ontologies"},{"id":97256,"name":"Process Ontology","url":"https://www.academia.edu/Documents/in/Process_Ontology"},{"id":197861,"name":"Domain Knowledge","url":"https://www.academia.edu/Documents/in/Domain_Knowledge"},{"id":386576,"name":"Domain Specificity","url":"https://www.academia.edu/Documents/in/Domain_Specificity"},{"id":404558,"name":"Domain Ontology","url":"https://www.academia.edu/Documents/in/Domain_Ontology"},{"id":692460,"name":"Ontology Population","url":"https://www.academia.edu/Documents/in/Ontology_Population"},{"id":892890,"name":"Point of View","url":"https://www.academia.edu/Documents/in/Point_of_View"},{"id":1534202,"name":"Bootstrapping Finance","url":"https://www.academia.edu/Documents/in/Bootstrapping_Finance"},{"id":2213585,"name":"Information System","url":"https://www.academia.edu/Documents/in/Information_System"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="95741567"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/95741567/Bootstrapping_Ontology_Evolution_with_Multimedia_Information_Extraction"><img alt="Research paper thumbnail of Bootstrapping Ontology Evolution with Multimedia Information Extraction" class="work-thumbnail" src="https://attachments.academia-assets.com/97839529/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/95741567/Bootstrapping_Ontology_Evolution_with_Multimedia_Information_Extraction">Bootstrapping Ontology Evolution with Multimedia Information Extraction</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="cff14590a40e24eac3c05a485542ab26" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":97839529,"asset_id":95741567,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/97839529/download_file?st=MTczMjQ1OTgxOSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="95741567"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="95741567"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 95741567; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=95741567]").text(description); $(".js-view-count[data-work-id=95741567]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 95741567; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='95741567']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 95741567, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "cff14590a40e24eac3c05a485542ab26" } } $('.js-work-strip[data-work-id=95741567]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":95741567,"title":"Bootstrapping Ontology Evolution with Multimedia Information Extraction","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":2011,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/95741567/Bootstrapping_Ontology_Evolution_with_Multimedia_Information_Extraction","translated_internal_url":"","created_at":"2023-01-26T08:18:04.797-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33409838,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":97839529,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/97839529/thumbnails/1.jpg","file_name":"6050_2011_Chapter1.pdf","download_url":"https://www.academia.edu/attachments/97839529/download_file?st=MTczMjQ1OTgxOSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Bootstrapping_Ontology_Evolution_with_Mu.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/97839529/6050_2011_Chapter1-libre.pdf?1674756700=\u0026response-content-disposition=attachment%3B+filename%3DBootstrapping_Ontology_Evolution_with_Mu.pdf\u0026Expires=1732457610\u0026Signature=N3p8FNJlI-o89tR-3vwwr7nQKzIhbq3x79O7VwIsAlmSdBpOY9cKXaKx80d3XyzaZo9uAf16Y5kqMJwPhBswqb5mSFdTxMZuNuUMpIsklqr4yZKTCvJDaboxSunp9V5GM4qfuXZyzChjz-dJHt8nq84EC4gPhFqIsLO45yKoFeAJJK7h0QgtPx1mcEPDMNRtQSxw-CwlDdkZP8jVjmnQCvKiAQDmfmgqv2Zkkd1WJF2-7y52lZscRNkhaLtZ6EtYbSHI8oi747Z762b4brhonKbDVrZbZGBYyG401vg~cVXKb1XKYD3aNVNXVfE3voBB1UaaNGKITcA0PiL32S9B3g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Bootstrapping_Ontology_Evolution_with_Multimedia_Information_Extraction","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":33409838,"first_name":"C.","middle_initials":null,"last_name":"Spyropoulos","page_name":"Spyropoulos","domain_name":"independent","created_at":"2015-07-28T11:42:54.141-07:00","display_name":"C. Spyropoulos","url":"https://independent.academia.edu/Spyropoulos"},"attachments":[{"id":97839529,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/97839529/thumbnails/1.jpg","file_name":"6050_2011_Chapter1.pdf","download_url":"https://www.academia.edu/attachments/97839529/download_file?st=MTczMjQ1OTgxOSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Bootstrapping_Ontology_Evolution_with_Mu.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/97839529/6050_2011_Chapter1-libre.pdf?1674756700=\u0026response-content-disposition=attachment%3B+filename%3DBootstrapping_Ontology_Evolution_with_Mu.pdf\u0026Expires=1732457610\u0026Signature=N3p8FNJlI-o89tR-3vwwr7nQKzIhbq3x79O7VwIsAlmSdBpOY9cKXaKx80d3XyzaZo9uAf16Y5kqMJwPhBswqb5mSFdTxMZuNuUMpIsklqr4yZKTCvJDaboxSunp9V5GM4qfuXZyzChjz-dJHt8nq84EC4gPhFqIsLO45yKoFeAJJK7h0QgtPx1mcEPDMNRtQSxw-CwlDdkZP8jVjmnQCvKiAQDmfmgqv2Zkkd1WJF2-7y52lZscRNkhaLtZ6EtYbSHI8oi747Z762b4brhonKbDVrZbZGBYyG401vg~cVXKb1XKYD3aNVNXVfE3voBB1UaaNGKITcA0PiL32S9B3g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":805,"name":"Ontology","url":"https://www.academia.edu/Documents/in/Ontology"},{"id":3419,"name":"Multimedia","url":"https://www.academia.edu/Documents/in/Multimedia"},{"id":11128,"name":"Information Extraction","url":"https://www.academia.edu/Documents/in/Information_Extraction"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="95741566"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/95741566/Learning_User_Communities_for_Improving_the_Services_of_Information_Providers"><img alt="Research paper thumbnail of Learning User Communities for Improving the Services of Information Providers" class="work-thumbnail" src="https://attachments.academia-assets.com/97839538/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/95741566/Learning_User_Communities_for_Improving_the_Services_of_Information_Providers">Learning User Communities for Improving the Services of Information Providers</a></div><div class="wp-workCard_item"><span>Lecture Notes in Computer Science</span><span>, 1998</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="e25352799bcf8aca89e98a0861a43c06" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":97839538,"asset_id":95741566,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/97839538/download_file?st=MTczMjQ1OTgxOSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="95741566"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="95741566"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 95741566; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=95741566]").text(description); $(".js-view-count[data-work-id=95741566]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 95741566; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='95741566']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 95741566, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "e25352799bcf8aca89e98a0861a43c06" } } $('.js-work-strip[data-work-id=95741566]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":95741566,"title":"Learning User Communities for Improving the Services of Information Providers","translated_title":"","metadata":{"grobid_abstract":"In this paper we propose a methodology for organising the users of an information providing system into groups with common interests (communities). The communities are built using unsupervised learning techniques on data collected from the users (user models). We examine a system that filters news on the Internet, according to the interests of the registered users. Each user model contains the user's interests on the news categories covered by the information providing system. Two learning algorithms are evaluated: COBWEB and ITERATE. Our main concern is whether meaningful communities can be constructed. We specify a metric to decide which news categories are representative for each community. The construction of meaningful communities can be used for improving the structure of the information providing system as well as for suggesting extensions to individual user models. Encouraging results on a large data-set lead us to consider this work as a first step towards a method that can easily be integrated in a variety of information systems.","publication_date":{"day":null,"month":null,"year":1998,"errors":{}},"publication_name":"Lecture Notes in Computer Science","grobid_abstract_attachment_id":97839538},"translated_abstract":null,"internal_url":"https://www.academia.edu/95741566/Learning_User_Communities_for_Improving_the_Services_of_Information_Providers","translated_internal_url":"","created_at":"2023-01-26T08:18:04.707-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33409838,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":97839538,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/97839538/thumbnails/1.jpg","file_name":"ECDL98.pdf","download_url":"https://www.academia.edu/attachments/97839538/download_file?st=MTczMjQ1OTgxOSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Learning_User_Communities_for_Improving.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/97839538/ECDL98-libre.pdf?1674756694=\u0026response-content-disposition=attachment%3B+filename%3DLearning_User_Communities_for_Improving.pdf\u0026Expires=1732457610\u0026Signature=FaX3AIB14mMJJb5Ue9MLhzbIdQw~eca4U8izG8omkpBEHMGAxIbq946HJt2nysfjEDFDrz3A0pJY7ULQFr1~GZdFGP-6ad1gLBOj5haInnLFPjlqkB32YmpIkRRGA82roaDsUSoBGdqVfQXQh2XsmDy4tJAG7T0PDx-wEOvAo~EmwauOEvXV3JOLobb-mdzG9L2EKnSYCaN2wHKvB2nG-Ifo-VjjfmycDS3Pvyw5TRix~3F4nAdhOC9i9Yp9UDGQn0iScuFQOuK-P2nDCB4OXOhsex1PM~KYCnrnQ2LNH6YLDbnrwAJz7ZKV~HglORd9AR1PjJQTiJI4~v6wyNFO4g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Learning_User_Communities_for_Improving_the_Services_of_Information_Providers","translated_slug":"","page_count":10,"language":"en","content_type":"Work","owner":{"id":33409838,"first_name":"C.","middle_initials":null,"last_name":"Spyropoulos","page_name":"Spyropoulos","domain_name":"independent","created_at":"2015-07-28T11:42:54.141-07:00","display_name":"C. Spyropoulos","url":"https://independent.academia.edu/Spyropoulos"},"attachments":[{"id":97839538,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/97839538/thumbnails/1.jpg","file_name":"ECDL98.pdf","download_url":"https://www.academia.edu/attachments/97839538/download_file?st=MTczMjQ1OTgxOSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Learning_User_Communities_for_Improving.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/97839538/ECDL98-libre.pdf?1674756694=\u0026response-content-disposition=attachment%3B+filename%3DLearning_User_Communities_for_Improving.pdf\u0026Expires=1732457610\u0026Signature=FaX3AIB14mMJJb5Ue9MLhzbIdQw~eca4U8izG8omkpBEHMGAxIbq946HJt2nysfjEDFDrz3A0pJY7ULQFr1~GZdFGP-6ad1gLBOj5haInnLFPjlqkB32YmpIkRRGA82roaDsUSoBGdqVfQXQh2XsmDy4tJAG7T0PDx-wEOvAo~EmwauOEvXV3JOLobb-mdzG9L2EKnSYCaN2wHKvB2nG-Ifo-VjjfmycDS3Pvyw5TRix~3F4nAdhOC9i9Yp9UDGQn0iScuFQOuK-P2nDCB4OXOhsex1PM~KYCnrnQ2LNH6YLDbnrwAJz7ZKV~HglORd9AR1PjJQTiJI4~v6wyNFO4g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":1385,"name":"User Modeling","url":"https://www.academia.edu/Documents/in/User_Modeling"},{"id":30947,"name":"The Internet","url":"https://www.academia.edu/Documents/in/The_Internet"},{"id":119456,"name":"Unsupervised Learning","url":"https://www.academia.edu/Documents/in/Unsupervised_Learning"},{"id":141114,"name":"World Wide Web","url":"https://www.academia.edu/Documents/in/World_Wide_Web"},{"id":153168,"name":"Data Collection","url":"https://www.academia.edu/Documents/in/Data_Collection"},{"id":521483,"name":"Large Data Sets","url":"https://www.academia.edu/Documents/in/Large_Data_Sets"},{"id":2213585,"name":"Information System","url":"https://www.academia.edu/Documents/in/Information_System"},{"id":2821309,"name":"learning algorithm","url":"https://www.academia.edu/Documents/in/learning_algorithm"},{"id":2842924,"name":"user model","url":"https://www.academia.edu/Documents/in/user_model"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="95741565"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/95741565/Transformation_Techniques_for_Branching_Time_Logic_Programs"><img alt="Research paper thumbnail of Transformation Techniques for Branching-Time Logic Programs" class="work-thumbnail" src="https://attachments.academia-assets.com/97839522/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/95741565/Transformation_Techniques_for_Branching_Time_Logic_Programs">Transformation Techniques for Branching-Time Logic Programs</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="49470bbd1583714496a49dd98c0e4604" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":97839522,"asset_id":95741565,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/97839522/download_file?st=MTczMjQ1OTgxOSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="95741565"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="95741565"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 95741565; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=95741565]").text(description); $(".js-view-count[data-work-id=95741565]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 95741565; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='95741565']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 95741565, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "49470bbd1583714496a49dd98c0e4604" } } $('.js-work-strip[data-work-id=95741565]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":95741565,"title":"Transformation Techniques for Branching-Time Logic Programs","translated_title":"","metadata":{"grobid_abstract":"In this paper, we consider program transformation techniques for branching-time logic programs. We define a set of unfold/fold transformation rules and present sufficient conditions to ensure their correctness. Then, using the proposed transformation rules we develop an algorithm which transforms a wide class of Cactus programs into a continuation passing style form.","publication_date":{"day":null,"month":null,"year":1998,"errors":{}},"grobid_abstract_attachment_id":97839522},"translated_abstract":null,"internal_url":"https://www.academia.edu/95741565/Transformation_Techniques_for_Branching_Time_Logic_Programs","translated_internal_url":"","created_at":"2023-01-26T08:18:04.625-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33409838,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":97839522,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/97839522/thumbnails/1.jpg","file_name":"ISLIP-1998-unfold-e.pdf","download_url":"https://www.academia.edu/attachments/97839522/download_file?st=MTczMjQ1OTgxOSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Transformation_Techniques_for_Branching.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/97839522/ISLIP-1998-unfold-e-libre.pdf?1674756697=\u0026response-content-disposition=attachment%3B+filename%3DTransformation_Techniques_for_Branching.pdf\u0026Expires=1732457610\u0026Signature=AlCQbNhDLa6pXmZnFKfkU0ZIJ-qqMyZqE5rZW9unkgJQDdkihhOazLJ~7eU1I3rFgmDv-3PmrDrUEHJbLRMizN0yaeUDRt~U10puqWccz9450xFtzaI-ivr5HxsbLFue5ztGoM7e3QGkpFAzEoXsrP6QEZUddKI1HA7Lb25KZBPgSuwhA685y1cfPKPdy-F5ktaiUKOICEse06H5tSwnmSkWjvBkhpTxEdpbjX3qQgpmlOY0Q~mS6sgQGRhnqYOEf~3AxnrvRyEO9WhEdt5eIER8wlIBozf-xZM~RHxqSRk0GtzmvK84XycA3OrE3yCTyJByZzEI5nQfObuWHsunlQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Transformation_Techniques_for_Branching_Time_Logic_Programs","translated_slug":"","page_count":17,"language":"en","content_type":"Work","owner":{"id":33409838,"first_name":"C.","middle_initials":null,"last_name":"Spyropoulos","page_name":"Spyropoulos","domain_name":"independent","created_at":"2015-07-28T11:42:54.141-07:00","display_name":"C. Spyropoulos","url":"https://independent.academia.edu/Spyropoulos"},"attachments":[{"id":97839522,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/97839522/thumbnails/1.jpg","file_name":"ISLIP-1998-unfold-e.pdf","download_url":"https://www.academia.edu/attachments/97839522/download_file?st=MTczMjQ1OTgxOSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Transformation_Techniques_for_Branching.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/97839522/ISLIP-1998-unfold-e-libre.pdf?1674756697=\u0026response-content-disposition=attachment%3B+filename%3DTransformation_Techniques_for_Branching.pdf\u0026Expires=1732457610\u0026Signature=AlCQbNhDLa6pXmZnFKfkU0ZIJ-qqMyZqE5rZW9unkgJQDdkihhOazLJ~7eU1I3rFgmDv-3PmrDrUEHJbLRMizN0yaeUDRt~U10puqWccz9450xFtzaI-ivr5HxsbLFue5ztGoM7e3QGkpFAzEoXsrP6QEZUddKI1HA7Lb25KZBPgSuwhA685y1cfPKPdy-F5ktaiUKOICEse06H5tSwnmSkWjvBkhpTxEdpbjX3qQgpmlOY0Q~mS6sgQGRhnqYOEf~3AxnrvRyEO9WhEdt5eIER8wlIBozf-xZM~RHxqSRk0GtzmvK84XycA3OrE3yCTyJByZzEI5nQfObuWHsunlQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> </div><div class="profile--tab_content_container js-tab-pane tab-pane" data-section-id="3297025" id="papers"><div class="js-work-strip profile--work_container" data-work-id="118655684"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/118655684/The_use_of_terminological_knowledge_bases_in_software_localisation"><img alt="Research paper thumbnail of The use of terminological knowledge bases in software localisation" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/118655684/The_use_of_terminological_knowledge_bases_in_software_localisation">The use of terminological knowledge bases in software localisation</a></div><div class="wp-workCard_item"><span>Lecture Notes in Computer Science</span><span>, 1995</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">ABSTRACT</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="118655684"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="118655684"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 118655684; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=118655684]").text(description); $(".js-view-count[data-work-id=118655684]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 118655684; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='118655684']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 118655684, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=118655684]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":118655684,"title":"The use of terminological knowledge bases in software localisation","translated_title":"","metadata":{"abstract":"ABSTRACT","publication_date":{"day":null,"month":null,"year":1995,"errors":{}},"publication_name":"Lecture Notes in Computer Science"},"translated_abstract":"ABSTRACT","internal_url":"https://www.academia.edu/118655684/The_use_of_terminological_knowledge_bases_in_software_localisation","translated_internal_url":"","created_at":"2024-05-06T13:05:56.276-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33409838,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"The_use_of_terminological_knowledge_bases_in_software_localisation","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":33409838,"first_name":"C.","middle_initials":null,"last_name":"Spyropoulos","page_name":"Spyropoulos","domain_name":"independent","created_at":"2015-07-28T11:42:54.141-07:00","display_name":"C. Spyropoulos","url":"https://independent.academia.edu/Spyropoulos"},"attachments":[],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":5832,"name":"Terminology","url":"https://www.academia.edu/Documents/in/Terminology"},{"id":22615,"name":"Knowledge Representation","url":"https://www.academia.edu/Documents/in/Knowledge_Representation"},{"id":197861,"name":"Domain Knowledge","url":"https://www.academia.edu/Documents/in/Domain_Knowledge"},{"id":246163,"name":"Knowledge base","url":"https://www.academia.edu/Documents/in/Knowledge_base"},{"id":287095,"name":"Knowledge Representation and Reasoning","url":"https://www.academia.edu/Documents/in/Knowledge_Representation_and_Reasoning"},{"id":290799,"name":"Management System","url":"https://www.academia.edu/Documents/in/Management_System"},{"id":1763882,"name":"Representation Politics","url":"https://www.academia.edu/Documents/in/Representation_Politics"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="118655683"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/118655683/A_framework_for_developing_temporal_databases"><img alt="Research paper thumbnail of A framework for developing temporal databases" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/118655683/A_framework_for_developing_temporal_databases">A framework for developing temporal databases</a></div><div class="wp-workCard_item"><span>Lecture Notes in Computer Science</span><span>, 1994</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Computerised information systems tend to become more sophisticated and complicated. In many appli...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Computerised information systems tend to become more sophisticated and complicated. In many application domains, information systems must manage data that change over time, or data that reflect the use of temporal attributes. For these reasons the domain of temporal databases is an active research field. In this paper we present TGDB, a framework for developing temporal database systems that manage both valid and transaction time as well as any kind of user defined time. TGDB offers to the user a relational-like view of the tables and fields, but it is not based on the relational model. Instead it is based on the TGS graph system for time management. TGS combines a very good performance with temporal data management independent from application or domain. The query language of TGDB is an extension of SQL.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="118655683"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="118655683"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 118655683; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=118655683]").text(description); $(".js-view-count[data-work-id=118655683]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 118655683; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='118655683']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 118655683, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=118655683]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":118655683,"title":"A framework for developing temporal databases","translated_title":"","metadata":{"abstract":"Computerised information systems tend to become more sophisticated and complicated. In many application domains, information systems must manage data that change over time, or data that reflect the use of temporal attributes. For these reasons the domain of temporal databases is an active research field. In this paper we present TGDB, a framework for developing temporal database systems that manage both valid and transaction time as well as any kind of user defined time. TGDB offers to the user a relational-like view of the tables and fields, but it is not based on the relational model. Instead it is based on the TGS graph system for time management. TGS combines a very good performance with temporal data management independent from application or domain. The query language of TGDB is an extension of SQL.","publisher":"Springer Berlin Heidelberg","publication_date":{"day":null,"month":null,"year":1994,"errors":{}},"publication_name":"Lecture Notes in Computer Science"},"translated_abstract":"Computerised information systems tend to become more sophisticated and complicated. In many application domains, information systems must manage data that change over time, or data that reflect the use of temporal attributes. For these reasons the domain of temporal databases is an active research field. In this paper we present TGDB, a framework for developing temporal database systems that manage both valid and transaction time as well as any kind of user defined time. TGDB offers to the user a relational-like view of the tables and fields, but it is not based on the relational model. Instead it is based on the TGS graph system for time management. TGS combines a very good performance with temporal data management independent from application or domain. The query language of TGDB is an extension of SQL.","internal_url":"https://www.academia.edu/118655683/A_framework_for_developing_temporal_databases","translated_internal_url":"","created_at":"2024-05-06T13:05:55.990-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33409838,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"A_framework_for_developing_temporal_databases","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":33409838,"first_name":"C.","middle_initials":null,"last_name":"Spyropoulos","page_name":"Spyropoulos","domain_name":"independent","created_at":"2015-07-28T11:42:54.141-07:00","display_name":"C. Spyropoulos","url":"https://independent.academia.edu/Spyropoulos"},"attachments":[],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":460,"name":"Relational Database","url":"https://www.academia.edu/Documents/in/Relational_Database"},{"id":7960,"name":"Temporal Data Mining","url":"https://www.academia.edu/Documents/in/Temporal_Data_Mining"},{"id":105980,"name":"SQL","url":"https://www.academia.edu/Documents/in/SQL"},{"id":106733,"name":"Time Management","url":"https://www.academia.edu/Documents/in/Time_Management"},{"id":173004,"name":"Relational Model","url":"https://www.academia.edu/Documents/in/Relational_Model"},{"id":372874,"name":"Transaction Processing","url":"https://www.academia.edu/Documents/in/Transaction_Processing"},{"id":1119056,"name":"Database","url":"https://www.academia.edu/Documents/in/Database"},{"id":1760148,"name":"Temporal Database","url":"https://www.academia.edu/Documents/in/Temporal_Database"},{"id":2213585,"name":"Information System","url":"https://www.academia.edu/Documents/in/Information_System"},{"id":3647879,"name":"Springer Ebooks","url":"https://www.academia.edu/Documents/in/Springer_Ebooks"}],"urls":[{"id":41712182,"url":"http://link.springer.com/content/pdf/10.1007/3-540-58435-8_188.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="118655682"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/118655682/An_expert_loading_system_for_chemical_and_product_carriers"><img alt="Research paper thumbnail of An expert loading system for chemical and product carriers" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/118655682/An_expert_loading_system_for_chemical_and_product_carriers">An expert loading system for chemical and product carriers</a></div><div class="wp-workCard_item"><span>Lecture Notes in Computer Science</span><span>, 1995</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Chemical and Product Carriers (CPC) are ships carrying at a single voyage a variety of liquefied ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Chemical and Product Carriers (CPC) are ships carrying at a single voyage a variety of liquefied chemical and oil product cargos. Because these vessels have a complicated layout of a large number of tanks and they transport dangerous cargos, currently, their loading is carried out using commercially available computer codes, called loadmasters. The loadmasters estimate the ship stresses and the</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="118655682"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="118655682"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 118655682; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=118655682]").text(description); $(".js-view-count[data-work-id=118655682]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 118655682; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='118655682']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 118655682, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=118655682]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":118655682,"title":"An expert loading system for chemical and product carriers","translated_title":"","metadata":{"abstract":"Chemical and Product Carriers (CPC) are ships carrying at a single voyage a variety of liquefied chemical and oil product cargos. Because these vessels have a complicated layout of a large number of tanks and they transport dangerous cargos, currently, their loading is carried out using commercially available computer codes, called loadmasters. The loadmasters estimate the ship stresses and the","publisher":"Springer Berlin Heidelberg","publication_date":{"day":null,"month":null,"year":1995,"errors":{}},"publication_name":"Lecture Notes in Computer Science"},"translated_abstract":"Chemical and Product Carriers (CPC) are ships carrying at a single voyage a variety of liquefied chemical and oil product cargos. Because these vessels have a complicated layout of a large number of tanks and they transport dangerous cargos, currently, their loading is carried out using commercially available computer codes, called loadmasters. The loadmasters estimate the ship stresses and the","internal_url":"https://www.academia.edu/118655682/An_expert_loading_system_for_chemical_and_product_carriers","translated_internal_url":"","created_at":"2024-05-06T13:05:55.815-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33409838,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"An_expert_loading_system_for_chemical_and_product_carriers","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":33409838,"first_name":"C.","middle_initials":null,"last_name":"Spyropoulos","page_name":"Spyropoulos","domain_name":"independent","created_at":"2015-07-28T11:42:54.141-07:00","display_name":"C. Spyropoulos","url":"https://independent.academia.edu/Spyropoulos"},"attachments":[],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":34756,"name":"System Design","url":"https://www.academia.edu/Documents/in/System_Design"},{"id":121337,"name":"expert System","url":"https://www.academia.edu/Documents/in/expert_System"},{"id":247030,"name":"User Acceptance","url":"https://www.academia.edu/Documents/in/User_Acceptance"},{"id":1110461,"name":"Dexa","url":"https://www.academia.edu/Documents/in/Dexa"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="118655681"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/118655681/A_system_for_efficient_scheduling_of_patient_tests_in_hospitals"><img alt="Research paper thumbnail of A system for efficient scheduling of patient tests in hospitals" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/118655681/A_system_for_efficient_scheduling_of_patient_tests_in_hospitals">A system for efficient scheduling of patient tests in hospitals</a></div><div class="wp-workCard_item"><span>Informatics for Health and Social Care</span><span>, 1997</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Patient tests in hospital environments involve a significant percentage of hospital resources. Th...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Patient tests in hospital environments involve a significant percentage of hospital resources. The patient must occupy some of his/her time, personnel and equipment have to be allocated, co-operation between hospital laboratories and departments must be ensured, tests should be performed within rigid time limits and the results should be ready before due times imposed by doctors, nurses or other medical personnel. From the patient&amp;#39;s point of view there must be almost no distress, while hospital management wants as much equipment utilization as possible. In the present paper we propose a system for efficient scheduling of patient tests, while obeying all temporal and managerial limitations as well as observing all medical procedures. This system, which we call HOSTESS, uses a new approach, the dynamic distributed scheduling for managing the patient test requests in large hospitals, with many laboratories that perform a multitude of tests. The system is designed as a modular expandable application, in order to perform efficiently under heavy loads. Doctors, nurses, laboratory technicians and other personnel enter their requests and HOSTESS creates consistent schedules for every equipment needed in the required tests.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="118655681"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="118655681"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 118655681; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=118655681]").text(description); $(".js-view-count[data-work-id=118655681]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 118655681; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='118655681']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 118655681, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=118655681]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":118655681,"title":"A system for efficient scheduling of patient tests in hospitals","translated_title":"","metadata":{"abstract":"Patient tests in hospital environments involve a significant percentage of hospital resources. The patient must occupy some of his/her time, personnel and equipment have to be allocated, co-operation between hospital laboratories and departments must be ensured, tests should be performed within rigid time limits and the results should be ready before due times imposed by doctors, nurses or other medical personnel. From the patient\u0026amp;#39;s point of view there must be almost no distress, while hospital management wants as much equipment utilization as possible. In the present paper we propose a system for efficient scheduling of patient tests, while obeying all temporal and managerial limitations as well as observing all medical procedures. This system, which we call HOSTESS, uses a new approach, the dynamic distributed scheduling for managing the patient test requests in large hospitals, with many laboratories that perform a multitude of tests. The system is designed as a modular expandable application, in order to perform efficiently under heavy loads. Doctors, nurses, laboratory technicians and other personnel enter their requests and HOSTESS creates consistent schedules for every equipment needed in the required tests.","publisher":"Informa UK Limited","publication_date":{"day":null,"month":null,"year":1997,"errors":{}},"publication_name":"Informatics for Health and Social Care"},"translated_abstract":"Patient tests in hospital environments involve a significant percentage of hospital resources. The patient must occupy some of his/her time, personnel and equipment have to be allocated, co-operation between hospital laboratories and departments must be ensured, tests should be performed within rigid time limits and the results should be ready before due times imposed by doctors, nurses or other medical personnel. From the patient\u0026amp;#39;s point of view there must be almost no distress, while hospital management wants as much equipment utilization as possible. In the present paper we propose a system for efficient scheduling of patient tests, while obeying all temporal and managerial limitations as well as observing all medical procedures. This system, which we call HOSTESS, uses a new approach, the dynamic distributed scheduling for managing the patient test requests in large hospitals, with many laboratories that perform a multitude of tests. The system is designed as a modular expandable application, in order to perform efficiently under heavy loads. Doctors, nurses, laboratory technicians and other personnel enter their requests and HOSTESS creates consistent schedules for every equipment needed in the required tests.","internal_url":"https://www.academia.edu/118655681/A_system_for_efficient_scheduling_of_patient_tests_in_hospitals","translated_internal_url":"","created_at":"2024-05-06T13:05:55.636-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33409838,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"A_system_for_efficient_scheduling_of_patient_tests_in_hospitals","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":33409838,"first_name":"C.","middle_initials":null,"last_name":"Spyropoulos","page_name":"Spyropoulos","domain_name":"independent","created_at":"2015-07-28T11:42:54.141-07:00","display_name":"C. Spyropoulos","url":"https://independent.academia.edu/Spyropoulos"},"attachments":[],"research_interests":[{"id":37,"name":"Information Systems","url":"https://www.academia.edu/Documents/in/Information_Systems"},{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":428,"name":"Algorithms","url":"https://www.academia.edu/Documents/in/Algorithms"},{"id":1212,"name":"Medical Informatics","url":"https://www.academia.edu/Documents/in/Medical_Informatics"},{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"},{"id":37745,"name":"Systems Integration","url":"https://www.academia.edu/Documents/in/Systems_Integration"},{"id":48044,"name":"Greece","url":"https://www.academia.edu/Documents/in/Greece"},{"id":57939,"name":"Software Design","url":"https://www.academia.edu/Documents/in/Software_Design"},{"id":59587,"name":"Library and Information Studies","url":"https://www.academia.edu/Documents/in/Library_and_Information_Studies"},{"id":64568,"name":"Humans","url":"https://www.academia.edu/Documents/in/Humans"},{"id":255094,"name":"Computer User Interface Design","url":"https://www.academia.edu/Documents/in/Computer_User_Interface_Design"},{"id":257181,"name":"Hospital Information Systems","url":"https://www.academia.edu/Documents/in/Hospital_Information_Systems"},{"id":1107332,"name":"Modular Design","url":"https://www.academia.edu/Documents/in/Modular_Design"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="118655680"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/118655680/A_temporal_framework_for_managing_retroactive_and_delayed_updates_an_application_to_the_payroll_information_system_of_the_Greek_public_sector"><img alt="Research paper thumbnail of A temporal framework for managing retroactive and delayed updates: an application to the payroll information system of the Greek public sector" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/118655680/A_temporal_framework_for_managing_retroactive_and_delayed_updates_an_application_to_the_payroll_information_system_of_the_Greek_public_sector">A temporal framework for managing retroactive and delayed updates: an application to the payroll information system of the Greek public sector</a></div><div class="wp-workCard_item"><span>European Journal of Information Systems</span><span>, 1993</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Retroactive and delayed updates cause many problems in the maintenance of information systems whi...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Retroactive and delayed updates cause many problems in the maintenance of information systems which deal with accounting, banking, payroll and other applications. In this paper we propose a framework, called TempRuleD, that could manage these problems effectively. This framework is a temporal database, which uses rules, and is based on a generic time management kernel called TGS. TGS has been developed at N.C.S.R. ‘Demokritos’ and is based on a multiroot graph that supports storing, indexing and fast retrieval of time references. The applicability and the expected benefits of the proposed framework are discussed for the payroll information system of Greek public sector organizations. Such a system usually requires many updates and calculations with retroactive and delayed data and rules.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="118655680"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="118655680"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 118655680; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=118655680]").text(description); $(".js-view-count[data-work-id=118655680]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 118655680; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='118655680']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 118655680, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=118655680]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":118655680,"title":"A temporal framework for managing retroactive and delayed updates: an application to the payroll information system of the Greek public sector","translated_title":"","metadata":{"abstract":"Retroactive and delayed updates cause many problems in the maintenance of information systems which deal with accounting, banking, payroll and other applications. In this paper we propose a framework, called TempRuleD, that could manage these problems effectively. This framework is a temporal database, which uses rules, and is based on a generic time management kernel called TGS. TGS has been developed at N.C.S.R. ‘Demokritos’ and is based on a multiroot graph that supports storing, indexing and fast retrieval of time references. The applicability and the expected benefits of the proposed framework are discussed for the payroll information system of Greek public sector organizations. Such a system usually requires many updates and calculations with retroactive and delayed data and rules.","publisher":"Springer Nature","publication_date":{"day":null,"month":null,"year":1993,"errors":{}},"publication_name":"European Journal of Information Systems"},"translated_abstract":"Retroactive and delayed updates cause many problems in the maintenance of information systems which deal with accounting, banking, payroll and other applications. In this paper we propose a framework, called TempRuleD, that could manage these problems effectively. This framework is a temporal database, which uses rules, and is based on a generic time management kernel called TGS. TGS has been developed at N.C.S.R. ‘Demokritos’ and is based on a multiroot graph that supports storing, indexing and fast retrieval of time references. The applicability and the expected benefits of the proposed framework are discussed for the payroll information system of Greek public sector organizations. Such a system usually requires many updates and calculations with retroactive and delayed data and rules.","internal_url":"https://www.academia.edu/118655680/A_temporal_framework_for_managing_retroactive_and_delayed_updates_an_application_to_the_payroll_information_system_of_the_Greek_public_sector","translated_internal_url":"","created_at":"2024-05-06T13:05:55.469-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33409838,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"A_temporal_framework_for_managing_retroactive_and_delayed_updates_an_application_to_the_payroll_information_system_of_the_Greek_public_sector","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":33409838,"first_name":"C.","middle_initials":null,"last_name":"Spyropoulos","page_name":"Spyropoulos","domain_name":"independent","created_at":"2015-07-28T11:42:54.141-07:00","display_name":"C. Spyropoulos","url":"https://independent.academia.edu/Spyropoulos"},"attachments":[],"research_interests":[{"id":37,"name":"Information Systems","url":"https://www.academia.edu/Documents/in/Information_Systems"},{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":459,"name":"Information Science","url":"https://www.academia.edu/Documents/in/Information_Science"},{"id":491,"name":"Information Technology","url":"https://www.academia.edu/Documents/in/Information_Technology"},{"id":492,"name":"Management Information Systems","url":"https://www.academia.edu/Documents/in/Management_Information_Systems"},{"id":1453,"name":"Information Management","url":"https://www.academia.edu/Documents/in/Information_Management"},{"id":6314,"name":"Health Information Systems","url":"https://www.academia.edu/Documents/in/Health_Information_Systems"},{"id":7099,"name":"Case Studies","url":"https://www.academia.edu/Documents/in/Case_Studies"},{"id":8001,"name":"Management Science","url":"https://www.academia.edu/Documents/in/Management_Science"},{"id":14884,"name":"Business Information Systems","url":"https://www.academia.edu/Documents/in/Business_Information_Systems"},{"id":17600,"name":"Accounting Information Systems","url":"https://www.academia.edu/Documents/in/Accounting_Information_Systems"},{"id":52627,"name":"Computer and Information Technology","url":"https://www.academia.edu/Documents/in/Computer_and_Information_Technology"},{"id":73149,"name":"Business and Management","url":"https://www.academia.edu/Documents/in/Business_and_Management"},{"id":92152,"name":"Information Systems Management","url":"https://www.academia.edu/Documents/in/Information_Systems_Management"},{"id":128433,"name":"Business Model","url":"https://www.academia.edu/Documents/in/Business_Model"},{"id":347700,"name":"Information Management System","url":"https://www.academia.edu/Documents/in/Information_Management_System"},{"id":418820,"name":"Information Systems Technology","url":"https://www.academia.edu/Documents/in/Information_Systems_Technology"},{"id":641270,"name":"Computer Information Systems","url":"https://www.academia.edu/Documents/in/Computer_Information_Systems"},{"id":1213131,"name":"Geographic Information Systems","url":"https://www.academia.edu/Documents/in/Geographic_Information_Systems"},{"id":2213585,"name":"Information System","url":"https://www.academia.edu/Documents/in/Information_System"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="118655679"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/118655679/Continual_planning_and_scheduling_for_managing_patient_tests_in_hospital_laboratories"><img alt="Research paper thumbnail of Continual planning and scheduling for managing patient tests in hospital laboratories" class="work-thumbnail" src="https://attachments.academia-assets.com/114230036/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/118655679/Continual_planning_and_scheduling_for_managing_patient_tests_in_hospital_laboratories">Continual planning and scheduling for managing patient tests in hospital laboratories</a></div><div class="wp-workCard_item"><span>Artificial Intelligence in Medicine</span><span>, 2000</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="da7b3c4797b6bdfc01b41326cbba0e02" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":114230036,"asset_id":118655679,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/114230036/download_file?st=MTczMjQ1OTgxOSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="118655679"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="118655679"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 118655679; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=118655679]").text(description); $(".js-view-count[data-work-id=118655679]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 118655679; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='118655679']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 118655679, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "da7b3c4797b6bdfc01b41326cbba0e02" } } $('.js-work-strip[data-work-id=118655679]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":118655679,"title":"Continual planning and scheduling for managing patient tests in hospital laboratories","translated_title":"","metadata":{"publisher":"Elsevier BV","publication_date":{"day":null,"month":null,"year":2000,"errors":{}},"publication_name":"Artificial Intelligence in Medicine"},"translated_abstract":null,"internal_url":"https://www.academia.edu/118655679/Continual_planning_and_scheduling_for_managing_patient_tests_in_hospital_laboratories","translated_internal_url":"","created_at":"2024-05-06T13:05:55.200-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33409838,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":114230036,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/114230036/thumbnails/1.jpg","file_name":"s0933-365728002900061-020240506-1-scfi7w.pdf","download_url":"https://www.academia.edu/attachments/114230036/download_file?st=MTczMjQ1OTgxOSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Continual_planning_and_scheduling_for_ma.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/114230036/s0933-365728002900061-020240506-1-scfi7w-libre.pdf?1715028083=\u0026response-content-disposition=attachment%3B+filename%3DContinual_planning_and_scheduling_for_ma.pdf\u0026Expires=1732457609\u0026Signature=cxYcOWjvmXdwGQuh-9CHuwwgMV7wgoJzdBIRSSL~x382mrVm-lrQzPvGsn0bbEHIM9xb--LlxqoxJjSRoDrGIydP7XSiFHFn0yESugM~Hb7NT7nMpZygs0AlwoFpLGpUWtPoiNypP~baYNKCP03jAgUUQDnuDAEhf3X8eYZ5hJm4rl3LcrDagk3uOJaoneArUD~hrrCFBzkQNuLIlyO8B-i8ZT4cmTRTX8TvtHTPvJ5SiJnKuFx4P5bllshKIhlzIEb6DSvKoGvoaa02fgbXmk8DccASUbKGWKEO0vhiGx9KmdQf-jjDKLpVYOOYcbQGk3ghIooOLIQEvrnS84zJZg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Continual_planning_and_scheduling_for_managing_patient_tests_in_hospital_laboratories","translated_slug":"","page_count":16,"language":"en","content_type":"Work","owner":{"id":33409838,"first_name":"C.","middle_initials":null,"last_name":"Spyropoulos","page_name":"Spyropoulos","domain_name":"independent","created_at":"2015-07-28T11:42:54.141-07:00","display_name":"C. Spyropoulos","url":"https://independent.academia.edu/Spyropoulos"},"attachments":[{"id":114230036,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/114230036/thumbnails/1.jpg","file_name":"s0933-365728002900061-020240506-1-scfi7w.pdf","download_url":"https://www.academia.edu/attachments/114230036/download_file?st=MTczMjQ1OTgxOSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Continual_planning_and_scheduling_for_ma.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/114230036/s0933-365728002900061-020240506-1-scfi7w-libre.pdf?1715028083=\u0026response-content-disposition=attachment%3B+filename%3DContinual_planning_and_scheduling_for_ma.pdf\u0026Expires=1732457609\u0026Signature=cxYcOWjvmXdwGQuh-9CHuwwgMV7wgoJzdBIRSSL~x382mrVm-lrQzPvGsn0bbEHIM9xb--LlxqoxJjSRoDrGIydP7XSiFHFn0yESugM~Hb7NT7nMpZygs0AlwoFpLGpUWtPoiNypP~baYNKCP03jAgUUQDnuDAEhf3X8eYZ5hJm4rl3LcrDagk3uOJaoneArUD~hrrCFBzkQNuLIlyO8B-i8ZT4cmTRTX8TvtHTPvJ5SiJnKuFx4P5bllshKIhlzIEb6DSvKoGvoaa02fgbXmk8DccASUbKGWKEO0vhiGx9KmdQf-jjDKLpVYOOYcbQGk3ghIooOLIQEvrnS84zJZg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":465,"name":"Artificial Intelligence","url":"https://www.academia.edu/Documents/in/Artificial_Intelligence"},{"id":2534,"name":"Multiagent Systems","url":"https://www.academia.edu/Documents/in/Multiagent_Systems"},{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"},{"id":56484,"name":"Spatial and Temporal Reasoning","url":"https://www.academia.edu/Documents/in/Spatial_and_Temporal_Reasoning"},{"id":64568,"name":"Humans","url":"https://www.academia.edu/Documents/in/Humans"},{"id":84107,"name":"Hospital administration","url":"https://www.academia.edu/Documents/in/Hospital_administration"},{"id":87573,"name":"Artificial Intelligence in Medicine","url":"https://www.academia.edu/Documents/in/Artificial_Intelligence_in_Medicine"},{"id":246163,"name":"Knowledge base","url":"https://www.academia.edu/Documents/in/Knowledge_base"},{"id":267766,"name":"Medical Diagnosis","url":"https://www.academia.edu/Documents/in/Medical_Diagnosis"},{"id":379362,"name":"Hospital Planning","url":"https://www.academia.edu/Documents/in/Hospital_Planning"},{"id":870654,"name":"Blackboard Architecture","url":"https://www.academia.edu/Documents/in/Blackboard_Architecture"},{"id":1084699,"name":"Resource Utilization","url":"https://www.academia.edu/Documents/in/Resource_Utilization"},{"id":1276161,"name":"Planning and Scheduling","url":"https://www.academia.edu/Documents/in/Planning_and_Scheduling"},{"id":1631433,"name":"Automated Planning and Scheduling","url":"https://www.academia.edu/Documents/in/Automated_Planning_and_Scheduling"},{"id":2290393,"name":"Multiagent System","url":"https://www.academia.edu/Documents/in/Multiagent_System"},{"id":2796920,"name":"personnel staffing and scheduling","url":"https://www.academia.edu/Documents/in/personnel_staffing_and_scheduling"}],"urls":[{"id":41712181,"url":"https://api.elsevier.com/content/article/PII:S0933365700000610?httpAccept=text/xml"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="118655527"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/118655527/Supporting_tele_health_and_AI_based_clinical_decision_making_with_sensor_data_fusion_and_semantic_interpretation_The_USEFIL_case_study"><img alt="Research paper thumbnail of Supporting tele-health and AI-based clinical decision making with sensor data fusion and semantic interpretation: The USEFIL case study" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/118655527/Supporting_tele_health_and_AI_based_clinical_decision_making_with_sensor_data_fusion_and_semantic_interpretation_The_USEFIL_case_study">Supporting tele-health and AI-based clinical decision making with sensor data fusion and semantic interpretation: The USEFIL case study</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We propose a three-layered architecture for clinical evidencebased Decision Support Systems. Our ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We propose a three-layered architecture for clinical evidencebased Decision Support Systems. Our architecture allows for off-the-shelf low-cost sensors to be deployed in tele-health environments; counterbalancing low confidence in the sensor data by fusing data from multiple sensors. The relevant data fusion and interpretation layer also forms the interface between sensor data and explicit rules encoding medical knowledge. This achieves a complete separation of the non-medical and medical knowledge, an important step for system adoption.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="118655527"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="118655527"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 118655527; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=118655527]").text(description); $(".js-view-count[data-work-id=118655527]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 118655527; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='118655527']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 118655527, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=118655527]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":118655527,"title":"Supporting tele-health and AI-based clinical decision making with sensor data fusion and semantic interpretation: The USEFIL case study","translated_title":"","metadata":{"abstract":"We propose a three-layered architecture for clinical evidencebased Decision Support Systems. Our architecture allows for off-the-shelf low-cost sensors to be deployed in tele-health environments; counterbalancing low confidence in the sensor data by fusing data from multiple sensors. The relevant data fusion and interpretation layer also forms the interface between sensor data and explicit rules encoding medical knowledge. This achieves a complete separation of the non-medical and medical knowledge, an important step for system adoption.","publication_date":{"day":null,"month":null,"year":2012,"errors":{}}},"translated_abstract":"We propose a three-layered architecture for clinical evidencebased Decision Support Systems. Our architecture allows for off-the-shelf low-cost sensors to be deployed in tele-health environments; counterbalancing low confidence in the sensor data by fusing data from multiple sensors. The relevant data fusion and interpretation layer also forms the interface between sensor data and explicit rules encoding medical knowledge. This achieves a complete separation of the non-medical and medical knowledge, an important step for system adoption.","internal_url":"https://www.academia.edu/118655527/Supporting_tele_health_and_AI_based_clinical_decision_making_with_sensor_data_fusion_and_semantic_interpretation_The_USEFIL_case_study","translated_internal_url":"","created_at":"2024-05-06T13:03:01.210-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33409838,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Supporting_tele_health_and_AI_based_clinical_decision_making_with_sensor_data_fusion_and_semantic_interpretation_The_USEFIL_case_study","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":33409838,"first_name":"C.","middle_initials":null,"last_name":"Spyropoulos","page_name":"Spyropoulos","domain_name":"independent","created_at":"2015-07-28T11:42:54.141-07:00","display_name":"C. Spyropoulos","url":"https://independent.academia.edu/Spyropoulos"},"attachments":[],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":3521,"name":"Computational Intelligence","url":"https://www.academia.edu/Documents/in/Computational_Intelligence"},{"id":143115,"name":"Sensor Fusion","url":"https://www.academia.edu/Documents/in/Sensor_Fusion"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="95741577"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/95741577/A_data_mining_approach_for_predicting_main_engine_rotational_speed_from_vessel_data_measurements"><img alt="Research paper thumbnail of A data mining approach for predicting main-engine rotational speed from vessel-data measurements" class="work-thumbnail" src="https://attachments.academia-assets.com/97839530/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/95741577/A_data_mining_approach_for_predicting_main_engine_rotational_speed_from_vessel_data_measurements">A data mining approach for predicting main-engine rotational speed from vessel-data measurements</a></div><div class="wp-workCard_item"><span>Proceedings of the 23rd International Database Applications &amp; Engineering Symposium on - IDEAS '19</span><span>, 2019</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="b21fb5105888506347159b04f38c8f98" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":97839530,"asset_id":95741577,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/97839530/download_file?st=MTczMjQ1OTgxOSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="95741577"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="95741577"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 95741577; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=95741577]").text(description); $(".js-view-count[data-work-id=95741577]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 95741577; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='95741577']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 95741577, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "b21fb5105888506347159b04f38c8f98" } } $('.js-work-strip[data-work-id=95741577]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":95741577,"title":"A data mining approach for predicting main-engine rotational speed from vessel-data measurements","translated_title":"","metadata":{"publisher":"ACM Press","publication_date":{"day":null,"month":null,"year":2019,"errors":{}},"publication_name":"Proceedings of the 23rd International Database Applications \u0026amp; Engineering Symposium on - IDEAS '19"},"translated_abstract":null,"internal_url":"https://www.academia.edu/95741577/A_data_mining_approach_for_predicting_main_engine_rotational_speed_from_vessel_data_measurements","translated_internal_url":"","created_at":"2023-01-26T08:18:05.879-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33409838,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":97839530,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/97839530/thumbnails/1.jpg","file_name":"C90-ppt.pdf","download_url":"https://www.academia.edu/attachments/97839530/download_file?st=MTczMjQ1OTgxOSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"A_data_mining_approach_for_predicting_ma.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/97839530/C90-ppt-libre.pdf?1674756707=\u0026response-content-disposition=attachment%3B+filename%3DA_data_mining_approach_for_predicting_ma.pdf\u0026Expires=1732457609\u0026Signature=Ivim5afi0OQarSV5CzZU6b8s~Tlzs9ILsgztBggvSeZcekfP8EPVKRNRaJw8DpaqgkUEG~9Y1VebRkBukcNmbi71rvQu0i~o3eNK7xi6GUXJb2p8L7kiIL3V7cTY~X8u4BH4mvdPqSUVE~pqJmha8j1L-KIK23ea4FbJWoJiVQ6i6hmsC5hbq3jxyQHY~ZnWufJ-rJopsTLPr8pGYlRj9EuHMle2ewk0-RQx3DJHZGyb0JyLD7HJDuiLJrkkSksFWUr2gTvXM9l1TgTWvxWmtwvhR~LcaBgalvuE0UM3yMeXBfDzsU3-H0IZqhsftC3IJ8s9HKZXXJ20hNWLnyCG9A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"A_data_mining_approach_for_predicting_main_engine_rotational_speed_from_vessel_data_measurements","translated_slug":"","page_count":24,"language":"en","content_type":"Work","owner":{"id":33409838,"first_name":"C.","middle_initials":null,"last_name":"Spyropoulos","page_name":"Spyropoulos","domain_name":"independent","created_at":"2015-07-28T11:42:54.141-07:00","display_name":"C. Spyropoulos","url":"https://independent.academia.edu/Spyropoulos"},"attachments":[{"id":97839530,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/97839530/thumbnails/1.jpg","file_name":"C90-ppt.pdf","download_url":"https://www.academia.edu/attachments/97839530/download_file?st=MTczMjQ1OTgxOSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"A_data_mining_approach_for_predicting_ma.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/97839530/C90-ppt-libre.pdf?1674756707=\u0026response-content-disposition=attachment%3B+filename%3DA_data_mining_approach_for_predicting_ma.pdf\u0026Expires=1732457609\u0026Signature=Ivim5afi0OQarSV5CzZU6b8s~Tlzs9ILsgztBggvSeZcekfP8EPVKRNRaJw8DpaqgkUEG~9Y1VebRkBukcNmbi71rvQu0i~o3eNK7xi6GUXJb2p8L7kiIL3V7cTY~X8u4BH4mvdPqSUVE~pqJmha8j1L-KIK23ea4FbJWoJiVQ6i6hmsC5hbq3jxyQHY~ZnWufJ-rJopsTLPr8pGYlRj9EuHMle2ewk0-RQx3DJHZGyb0JyLD7HJDuiLJrkkSksFWUr2gTvXM9l1TgTWvxWmtwvhR~LcaBgalvuE0UM3yMeXBfDzsU3-H0IZqhsftC3IJ8s9HKZXXJ20hNWLnyCG9A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":2009,"name":"Data Mining","url":"https://www.academia.edu/Documents/in/Data_Mining"},{"id":131237,"name":"Cluster Analysis","url":"https://www.academia.edu/Documents/in/Cluster_Analysis"}],"urls":[{"id":28416596,"url":"http://dl.acm.org/ft_gateway.cfm?id=3331123\u0026ftid=2073415\u0026dwn=1"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="95741576"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/95741576/Symbolic_and_Neural_Learning_of_Named_Entity_Recognition_and_Classification_Systems_in_Two_Languages"><img alt="Research paper thumbnail of Symbolic and Neural Learning of Named-Entity Recognition and Classification Systems in Two Languages" class="work-thumbnail" src="https://attachments.academia-assets.com/97839535/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/95741576/Symbolic_and_Neural_Learning_of_Named_Entity_Recognition_and_Classification_Systems_in_Two_Languages">Symbolic and Neural Learning of Named-Entity Recognition and Classification Systems in Two Languages</a></div><div class="wp-workCard_item"><span>International Series in Intelligent Technologies</span><span>, 2002</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="b11a34bff198223425a0743da7118f9b" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":97839535,"asset_id":95741576,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/97839535/download_file?st=MTczMjQ1OTgxOSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="95741576"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="95741576"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 95741576; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=95741576]").text(description); $(".js-view-count[data-work-id=95741576]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 95741576; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='95741576']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 95741576, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "b11a34bff198223425a0743da7118f9b" } } $('.js-work-strip[data-work-id=95741576]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":95741576,"title":"Symbolic and Neural Learning of Named-Entity Recognition and Classification Systems in Two Languages","translated_title":"","metadata":{"publisher":"Springer Netherlands","grobid_abstract":"This paper compares two alternative approaches to the problem of acquiring named-entity recognition and classification systems from training corpora, in two different languages. The process of named-entity recognition and classification is an important subtask in most language engineering applications, in particular information extraction, where different types of named entity are associated with specific roles in events. The manual construction of rules for the recognition of named entities is a tedious and time-consuming task. For this reason, effective methods to acquire such systems automatically from data are very desirable. In this paper we compare two popular learning methods on this task: a decision-tree induction method and a multi-layered feed-forward neural network. Particular emphasis is paid on the selection of the appropriate data representation for each method and the extraction of training examples from unstructured textual data. We compare the performance of the two methods on large corpora of English and Greek texts and present the results. In addition to the good performance of both methods, one very interesting result is the fact that a simple representation of the data, which ignores the order of the words within a named entity, leads to improved results over a more complex approach that preserves word order.","publication_date":{"day":null,"month":null,"year":2002,"errors":{}},"publication_name":"International Series in Intelligent Technologies","grobid_abstract_attachment_id":97839535},"translated_abstract":null,"internal_url":"https://www.academia.edu/95741576/Symbolic_and_Neural_Learning_of_Named_Entity_Recognition_and_Classification_Systems_in_Two_Languages","translated_internal_url":"","created_at":"2023-01-26T08:18:05.745-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33409838,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":97839535,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/97839535/thumbnails/1.jpg","file_name":"COILBook2001.pdf","download_url":"https://www.academia.edu/attachments/97839535/download_file?st=MTczMjQ1OTgxOSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Symbolic_and_Neural_Learning_of_Named_En.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/97839535/COILBook2001-libre.pdf?1674756690=\u0026response-content-disposition=attachment%3B+filename%3DSymbolic_and_Neural_Learning_of_Named_En.pdf\u0026Expires=1732457609\u0026Signature=I2MwUCsHwa2wyDV8b53ub8p3ygw4ai9JI8437ClZg4H-CtyQeVeoZTsIiCD19cg1cm9sAccg~Z6lOUttTVTZkoIsX7p2hMVCsY3vW~JKpd4wNROA4SeCob7l6WZUSS3~fY9k5tX5Fh34n7Lli7VnLZ4T3ihEWU~~nBYRHNqvZBEzYmVUt3w~CNObp9Bu2uw1US~EPw1QdW56Opr6D~VfjUxEv8zCgOiuZk6tHll~nshdgNwEhE84KvxF08I4px0ixNbbSIrOTGDC7gXXnGK6TOxmEXDi6hdvWJ2EeoEX-p-KaGTyu3YVzlgLOrAjztB4ihUiHf4vJa-G7FNRnrOORg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Symbolic_and_Neural_Learning_of_Named_Entity_Recognition_and_Classification_Systems_in_Two_Languages","translated_slug":"","page_count":13,"language":"en","content_type":"Work","owner":{"id":33409838,"first_name":"C.","middle_initials":null,"last_name":"Spyropoulos","page_name":"Spyropoulos","domain_name":"independent","created_at":"2015-07-28T11:42:54.141-07:00","display_name":"C. Spyropoulos","url":"https://independent.academia.edu/Spyropoulos"},"attachments":[{"id":97839535,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/97839535/thumbnails/1.jpg","file_name":"COILBook2001.pdf","download_url":"https://www.academia.edu/attachments/97839535/download_file?st=MTczMjQ1OTgxOSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Symbolic_and_Neural_Learning_of_Named_En.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/97839535/COILBook2001-libre.pdf?1674756690=\u0026response-content-disposition=attachment%3B+filename%3DSymbolic_and_Neural_Learning_of_Named_En.pdf\u0026Expires=1732457609\u0026Signature=I2MwUCsHwa2wyDV8b53ub8p3ygw4ai9JI8437ClZg4H-CtyQeVeoZTsIiCD19cg1cm9sAccg~Z6lOUttTVTZkoIsX7p2hMVCsY3vW~JKpd4wNROA4SeCob7l6WZUSS3~fY9k5tX5Fh34n7Lli7VnLZ4T3ihEWU~~nBYRHNqvZBEzYmVUt3w~CNObp9Bu2uw1US~EPw1QdW56Opr6D~VfjUxEv8zCgOiuZk6tHll~nshdgNwEhE84KvxF08I4px0ixNbbSIrOTGDC7gXXnGK6TOxmEXDi6hdvWJ2EeoEX-p-KaGTyu3YVzlgLOrAjztB4ihUiHf4vJa-G7FNRnrOORg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":465,"name":"Artificial Intelligence","url":"https://www.academia.edu/Documents/in/Artificial_Intelligence"},{"id":1432,"name":"Natural Language Processing","url":"https://www.academia.edu/Documents/in/Natural_Language_Processing"},{"id":11128,"name":"Information Extraction","url":"https://www.academia.edu/Documents/in/Information_Extraction"},{"id":26066,"name":"Neural Network","url":"https://www.academia.edu/Documents/in/Neural_Network"},{"id":29205,"name":"Named Entity Recognition","url":"https://www.academia.edu/Documents/in/Named_Entity_Recognition"},{"id":35499,"name":"Word order","url":"https://www.academia.edu/Documents/in/Word_order"},{"id":271153,"name":"Data representation","url":"https://www.academia.edu/Documents/in/Data_representation"},{"id":903740,"name":"Named Entity","url":"https://www.academia.edu/Documents/in/Named_Entity"},{"id":1138319,"name":"Learning Methods","url":"https://www.academia.edu/Documents/in/Learning_Methods"},{"id":1151059,"name":"Language Engineering","url":"https://www.academia.edu/Documents/in/Language_Engineering"},{"id":1763882,"name":"Representation Politics","url":"https://www.academia.edu/Documents/in/Representation_Politics"},{"id":2003344,"name":"Feed Forward Neural Network","url":"https://www.academia.edu/Documents/in/Feed_Forward_Neural_Network"}],"urls":[{"id":28416595,"url":"http://link.springer.com/content/pdf/10.1007/978-94-010-0324-7_14"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="95741575"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/95741575/From_Web_usage_statistics_to_Web_usage_analysis"><img alt="Research paper thumbnail of From Web usage statistics to Web usage analysis" class="work-thumbnail" src="https://attachments.academia-assets.com/97839536/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/95741575/From_Web_usage_statistics_to_Web_usage_analysis">From Web usage statistics to Web usage analysis</a></div><div class="wp-workCard_item"><span>IEEE SMC'99 Conference Proceedings. 1999 IEEE International Conference on Systems, Man, and Cybernetics (Cat. No.99CH37028)</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="5d514876de53426966c98ccb6418cc35" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":97839536,"asset_id":95741575,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/97839536/download_file?st=MTczMjQ1OTgxOSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="95741575"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="95741575"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 95741575; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=95741575]").text(description); $(".js-view-count[data-work-id=95741575]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 95741575; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='95741575']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 95741575, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "5d514876de53426966c98ccb6418cc35" } } $('.js-work-strip[data-work-id=95741575]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":95741575,"title":"From Web usage statistics to Web usage analysis","translated_title":"","metadata":{"grobid_abstract":"The World Wide Web has become a major source of information that can be turned into valuable knowledge for individuals and organisations. In the work presented here, we are concerned with the extraction of meta-knowledge from the Web. In particular, knowledge about Web usage which is invaluable to the construction of Web sites that meet their purposes and prevent disorientation. Towards this goal, we propose the organisation of the users of a Web site into groups with common navigational behaviour (user communities). We view the task of building user communities as a data mining task, searching for interesting patterns within a database. The database that we use in our experiments consists of access logs collected from the Web site of the Advanced Course on Artificial Intelligence 1999. The unsupervised machine learning algorithm COBWEB is used to organise the users of the site, who follow similar paths, into a small set of communities. Particular attention is paid to the interpretation of the communities that are generated through this process. For this purpose, we use a simple metric to identify the representative navigational behaviour for each community. This information can then be used by the administrators of the site to re-organise it in a way that is tailored to the needs of each community. The proposed Web usage analysis is much more insightful than the common approach of examining simple usage statistics of the Web site.","publication_name":"IEEE SMC'99 Conference Proceedings. 1999 IEEE International Conference on Systems, Man, and Cybernetics (Cat. No.99CH37028)","grobid_abstract_attachment_id":97839536},"translated_abstract":null,"internal_url":"https://www.academia.edu/95741575/From_Web_usage_statistics_to_Web_usage_analysis","translated_internal_url":"","created_at":"2023-01-26T08:18:05.647-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33409838,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":97839536,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/97839536/thumbnails/1.jpg","file_name":"SMC99.pdf","download_url":"https://www.academia.edu/attachments/97839536/download_file?st=MTczMjQ1OTgxOSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"From_Web_usage_statistics_to_Web_usage_a.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/97839536/SMC99-libre.pdf?1674756689=\u0026response-content-disposition=attachment%3B+filename%3DFrom_Web_usage_statistics_to_Web_usage_a.pdf\u0026Expires=1732457609\u0026Signature=TKMq0LlQ4UcHkJcyGSoYZ6iMOvILXQKV8ODBshluiOqAyUsiagWqWhZ8SS3jRnyTqMJtokHrdMc8DsHCo8mn-hvKUlhmJluvlD6mLtlPN3npmV-oBSnZilHz4vyp4rx-4hShmyVPusycHnOm-derNu4pyW1KzFT79wnV10zVUqjPLjCzKH-9j7~PRIQ9mbB5I5nVuRykTnwT8O365IWdLQ82fBhg0luYNqCUr715pE7u7dgfzkwovTdjLvwlpZPdUvjL76zc2B-LFVGgPr~bJC1pbL4bdhkYcSL~Ywy43CnJtukwC5QNtn~XVSbEYSn7CQwaZ1-OeJe-FwydcmB8rA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"From_Web_usage_statistics_to_Web_usage_analysis","translated_slug":"","page_count":6,"language":"en","content_type":"Work","owner":{"id":33409838,"first_name":"C.","middle_initials":null,"last_name":"Spyropoulos","page_name":"Spyropoulos","domain_name":"independent","created_at":"2015-07-28T11:42:54.141-07:00","display_name":"C. Spyropoulos","url":"https://independent.academia.edu/Spyropoulos"},"attachments":[{"id":97839536,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/97839536/thumbnails/1.jpg","file_name":"SMC99.pdf","download_url":"https://www.academia.edu/attachments/97839536/download_file?st=MTczMjQ1OTgxOSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"From_Web_usage_statistics_to_Web_usage_a.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/97839536/SMC99-libre.pdf?1674756689=\u0026response-content-disposition=attachment%3B+filename%3DFrom_Web_usage_statistics_to_Web_usage_a.pdf\u0026Expires=1732457609\u0026Signature=TKMq0LlQ4UcHkJcyGSoYZ6iMOvILXQKV8ODBshluiOqAyUsiagWqWhZ8SS3jRnyTqMJtokHrdMc8DsHCo8mn-hvKUlhmJluvlD6mLtlPN3npmV-oBSnZilHz4vyp4rx-4hShmyVPusycHnOm-derNu4pyW1KzFT79wnV10zVUqjPLjCzKH-9j7~PRIQ9mbB5I5nVuRykTnwT8O365IWdLQ82fBhg0luYNqCUr715pE7u7dgfzkwovTdjLvwlpZPdUvjL76zc2B-LFVGgPr~bJC1pbL4bdhkYcSL~Ywy43CnJtukwC5QNtn~XVSbEYSn7CQwaZ1-OeJe-FwydcmB8rA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":2009,"name":"Data Mining","url":"https://www.academia.edu/Documents/in/Data_Mining"},{"id":4278,"name":"Web Mining","url":"https://www.academia.edu/Documents/in/Web_Mining"},{"id":7640,"name":"Web Standards","url":"https://www.academia.edu/Documents/in/Web_Standards"},{"id":8130,"name":"Web Development","url":"https://www.academia.edu/Documents/in/Web_Development"},{"id":19278,"name":"Web Intelligence","url":"https://www.academia.edu/Documents/in/Web_Intelligence"},{"id":46289,"name":"Web analytics","url":"https://www.academia.edu/Documents/in/Web_analytics"},{"id":93971,"name":"Unsupervised Machine Learning","url":"https://www.academia.edu/Documents/in/Unsupervised_Machine_Learning"},{"id":101530,"name":"Artificial Intelligent","url":"https://www.academia.edu/Documents/in/Artificial_Intelligent"},{"id":132184,"name":"Web Navigation","url":"https://www.academia.edu/Documents/in/Web_Navigation"},{"id":141114,"name":"World Wide Web","url":"https://www.academia.edu/Documents/in/World_Wide_Web"},{"id":197730,"name":"Web Modeling","url":"https://www.academia.edu/Documents/in/Web_Modeling"},{"id":443362,"name":"Web Mapping","url":"https://www.academia.edu/Documents/in/Web_Mapping"},{"id":621171,"name":"WEB DEVELOPMENT","url":"https://www.academia.edu/Documents/in/WEB_DEVELOPMENT-1"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="95741574"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/95741574/eg_GRIDS_Context_Free_Grammatical_Inference_from_Positive_Examples_Using_Genetic_Search"><img alt="Research paper thumbnail of eg-GRIDS: Context-Free Grammatical Inference from Positive Examples Using Genetic Search" class="work-thumbnail" src="https://attachments.academia-assets.com/97839539/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/95741574/eg_GRIDS_Context_Free_Grammatical_Inference_from_Positive_Examples_Using_Genetic_Search">eg-GRIDS: Context-Free Grammatical Inference from Positive Examples Using Genetic Search</a></div><div class="wp-workCard_item"><span>Grammatical Inference: Algorithms and Applications</span><span>, 2004</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="0b81592782df1b6fd274c02900fbf0b7" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":97839539,"asset_id":95741574,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/97839539/download_file?st=MTczMjQ1OTgxOSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="95741574"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="95741574"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 95741574; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=95741574]").text(description); $(".js-view-count[data-work-id=95741574]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 95741574; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='95741574']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 95741574, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "0b81592782df1b6fd274c02900fbf0b7" } } $('.js-work-strip[data-work-id=95741574]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":95741574,"title":"eg-GRIDS: Context-Free Grammatical Inference from Positive Examples Using Genetic Search","translated_title":"","metadata":{"publisher":"Springer Berlin Heidelberg","grobid_abstract":"In this paper we present eg-GRIDS, an algorithm for inducing context-free grammars that is able to learn from positive sample sentences. The presented algorithm, similar to its GRIDS predecessors, uses simplicity as a criterion for directing inference, and a set of operators for exploring the search space. In addition to the basic beam search strategy of GRIDS, eg-GRIDS incorporates an evolutionary grammar selection process, aiming to explore a larger part of the search space. Evaluation results are presented on artificially generated data, comparing the performance of beam search and genetic search. These results show that genetic search performs better than beam search while being significantly more efficient computationally.","publication_date":{"day":null,"month":null,"year":2004,"errors":{}},"publication_name":"Grammatical Inference: Algorithms and Applications","grobid_abstract_attachment_id":97839539},"translated_abstract":null,"internal_url":"https://www.academia.edu/95741574/eg_GRIDS_Context_Free_Grammatical_Inference_from_Positive_Examples_Using_Genetic_Search","translated_internal_url":"","created_at":"2023-01-26T08:18:05.510-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33409838,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":97839539,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/97839539/thumbnails/1.jpg","file_name":"ICGI2004a.pdf","download_url":"https://www.academia.edu/attachments/97839539/download_file?st=MTczMjQ1OTgxOSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"eg_GRIDS_Context_Free_Grammatical_Infere.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/97839539/ICGI2004a-libre.pdf?1674756690=\u0026response-content-disposition=attachment%3B+filename%3Deg_GRIDS_Context_Free_Grammatical_Infere.pdf\u0026Expires=1732457609\u0026Signature=hJ456dmd2WAHeNeMTaFw4o354zfMFUGWchY2-UbKyFFUECW5lLy9XMt0jo29WlJLKcC4oraUfg8xUf64cfhsT1QRH0tKA9xjSGKuVxeGuW4ZLN~0jt-FhUkycCkpQkAxw-yIypDWnSTdAghyYUHmJihN16H5IHoKxUH0pt9Shdw9AgOY4JKfDNtp9hu6gLkgPrv7lOR-NE6eoL6mqaZuAPlgbqZmH5fld32J~shh2Hed0PQ0Sa5~EY~oqEHmIg0CXCO9w-Qa14oI0DyrbJ9GjfJM1zJpk-SEhb-tt9ps6PUSHm7B2xrChf7P4HDo6V1w2eP8vgo7JfoLKYJ~k4R4Vw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"eg_GRIDS_Context_Free_Grammatical_Inference_from_Positive_Examples_Using_Genetic_Search","translated_slug":"","page_count":12,"language":"en","content_type":"Work","owner":{"id":33409838,"first_name":"C.","middle_initials":null,"last_name":"Spyropoulos","page_name":"Spyropoulos","domain_name":"independent","created_at":"2015-07-28T11:42:54.141-07:00","display_name":"C. Spyropoulos","url":"https://independent.academia.edu/Spyropoulos"},"attachments":[{"id":97839539,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/97839539/thumbnails/1.jpg","file_name":"ICGI2004a.pdf","download_url":"https://www.academia.edu/attachments/97839539/download_file?st=MTczMjQ1OTgxOSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"eg_GRIDS_Context_Free_Grammatical_Infere.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/97839539/ICGI2004a-libre.pdf?1674756690=\u0026response-content-disposition=attachment%3B+filename%3Deg_GRIDS_Context_Free_Grammatical_Infere.pdf\u0026Expires=1732457609\u0026Signature=hJ456dmd2WAHeNeMTaFw4o354zfMFUGWchY2-UbKyFFUECW5lLy9XMt0jo29WlJLKcC4oraUfg8xUf64cfhsT1QRH0tKA9xjSGKuVxeGuW4ZLN~0jt-FhUkycCkpQkAxw-yIypDWnSTdAghyYUHmJihN16H5IHoKxUH0pt9Shdw9AgOY4JKfDNtp9hu6gLkgPrv7lOR-NE6eoL6mqaZuAPlgbqZmH5fld32J~shh2Hed0PQ0Sa5~EY~oqEHmIg0CXCO9w-Qa14oI0DyrbJ9GjfJM1zJpk-SEhb-tt9ps6PUSHm7B2xrChf7P4HDo6V1w2eP8vgo7JfoLKYJ~k4R4Vw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":156,"name":"Genetics","url":"https://www.academia.edu/Documents/in/Genetics"},{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":465,"name":"Artificial Intelligence","url":"https://www.academia.edu/Documents/in/Artificial_Intelligence"},{"id":18574,"name":"Inference","url":"https://www.academia.edu/Documents/in/Inference"},{"id":30329,"name":"Genetic Algorithm","url":"https://www.academia.edu/Documents/in/Genetic_Algorithm"},{"id":125917,"name":"Grammatical Inference","url":"https://www.academia.edu/Documents/in/Grammatical_Inference"},{"id":155564,"name":"Search Algorithm","url":"https://www.academia.edu/Documents/in/Search_Algorithm"},{"id":265625,"name":"Evolutionary Algorithm","url":"https://www.academia.edu/Documents/in/Evolutionary_Algorithm"},{"id":287030,"name":"Minimum description length","url":"https://www.academia.edu/Documents/in/Minimum_description_length"},{"id":303727,"name":"Grid","url":"https://www.academia.edu/Documents/in/Grid"},{"id":424636,"name":"Beam Search","url":"https://www.academia.edu/Documents/in/Beam_Search"},{"id":469944,"name":"Search Space","url":"https://www.academia.edu/Documents/in/Search_Space"},{"id":955424,"name":"Context Free Grammars","url":"https://www.academia.edu/Documents/in/Context_Free_Grammars"}],"urls":[{"id":28416594,"url":"http://link.springer.com/content/pdf/10.1007/978-3-540-30195-0_20.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="95741573"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/95741573/The_Role_of_Planning_in_Scheduling_Patient_Tests_in_Hospital_Laboratories"><img alt="Research paper thumbnail of The Role of Planning in Scheduling Patient Tests in Hospital Laboratories" class="work-thumbnail" src="https://attachments.academia-assets.com/97839487/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/95741573/The_Role_of_Planning_in_Scheduling_Patient_Tests_in_Hospital_Laboratories">The Role of Planning in Scheduling Patient Tests in Hospital Laboratories</a></div><div class="wp-workCard_item"><span>Advances in Intelligent Systems</span><span>, 1999</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="d52ba18b9dffb7a871dd718be64b14e0" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":97839487,"asset_id":95741573,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/97839487/download_file?st=MTczMjQ1OTgxOSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="95741573"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="95741573"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 95741573; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=95741573]").text(description); $(".js-view-count[data-work-id=95741573]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 95741573; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='95741573']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 95741573, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "d52ba18b9dffb7a871dd718be64b14e0" } } $('.js-work-strip[data-work-id=95741573]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":95741573,"title":"The Role of Planning in Scheduling Patient Tests in Hospital Laboratories","translated_title":"","metadata":{"publisher":"Springer Netherlands","grobid_abstract":"Recently, many researchers have been interested in applying AI planning technology to practical real-world problems. An interesting problem where planning technology can be applied is the problem of scheduling patient tests in hospital laboratories. Doctors prescribe tests to be performed in order to assist the diagnosis. Hospital laboratories that perform tests, must cooperate in order to maximize the utilization of their equipment and minimize patient waiting time. The actual timing of the tests prescribed for a particular patient. depends on several factors that require both planning and scheduling technology. Until now, approaches that cope with this problem use pure scheduling techniques [1,2]. Among them, there are approaches that consider scheduling tests in a single laboratory [2] and approaches that support multi-laboratory test scheduling by assigning different schedulers to different laboratories [I). In [3], a dynamic distributed scheduling approach has been proposed. In [4] we made a first attempt to integrate planning and scheduling technology to solve problems of this domain. In the present chapter a more thorough approach is given. We first examine the need to J This work was developed during the project PENED 561: CHRONOBAST (TEDRAS). funded by the European Commission (EC) and the Greek General Secretary for Research and Technology of the Ministry of Development. 475 S. G. Tzafestas (ed.","publication_date":{"day":null,"month":null,"year":1999,"errors":{}},"publication_name":"Advances in Intelligent Systems","grobid_abstract_attachment_id":97839487},"translated_abstract":null,"internal_url":"https://www.academia.edu/95741573/The_Role_of_Planning_in_Scheduling_Patient_Tests_in_Hospital_Laboratories","translated_internal_url":"","created_at":"2023-01-26T08:18:05.372-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33409838,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":97839487,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/97839487/thumbnails/1.jpg","file_name":"978-94-011-4840-5_42.pdf","download_url":"https://www.academia.edu/attachments/97839487/download_file?st=MTczMjQ1OTgxOSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"The_Role_of_Planning_in_Scheduling_Patie.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/97839487/978-94-011-4840-5_42-libre.pdf?1674756699=\u0026response-content-disposition=attachment%3B+filename%3DThe_Role_of_Planning_in_Scheduling_Patie.pdf\u0026Expires=1732457609\u0026Signature=AYBh8B1EYnE-SWyhtJH3c7ywGgfBcGxUvJK45Q7J9ngmZWyfdKDp8lkQrCp~2FTxfwW9hp9fs6hasMNJ~QC~OVrt~PRQRRkSazny~PheiUdUJIMbutqqlU9-57QzS81010MqLwrXrIlBPEbPiSwv~3d8OcKK84dcRZVv0UfgcCH1iOOg6baSoiuqyTNRRxf1lTfKSPlxV7WCaslur1~WiKnn0AtMi9gt5-M8fdS31PBYikfphOe4kT6D9~q-lL-GKVdCYVsWmTMMcVGRF~3Nb~BLvl0b4Ry8EO28VUgJgZ5mLWAZN~-T1lSLHSoKw3EnCYy-EcWXqxH6aU7Qii2HGA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"The_Role_of_Planning_in_Scheduling_Patient_Tests_in_Hospital_Laboratories","translated_slug":"","page_count":12,"language":"en","content_type":"Work","owner":{"id":33409838,"first_name":"C.","middle_initials":null,"last_name":"Spyropoulos","page_name":"Spyropoulos","domain_name":"independent","created_at":"2015-07-28T11:42:54.141-07:00","display_name":"C. Spyropoulos","url":"https://independent.academia.edu/Spyropoulos"},"attachments":[{"id":97839487,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/97839487/thumbnails/1.jpg","file_name":"978-94-011-4840-5_42.pdf","download_url":"https://www.academia.edu/attachments/97839487/download_file?st=MTczMjQ1OTgxOSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"The_Role_of_Planning_in_Scheduling_Patie.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/97839487/978-94-011-4840-5_42-libre.pdf?1674756699=\u0026response-content-disposition=attachment%3B+filename%3DThe_Role_of_Planning_in_Scheduling_Patie.pdf\u0026Expires=1732457609\u0026Signature=AYBh8B1EYnE-SWyhtJH3c7ywGgfBcGxUvJK45Q7J9ngmZWyfdKDp8lkQrCp~2FTxfwW9hp9fs6hasMNJ~QC~OVrt~PRQRRkSazny~PheiUdUJIMbutqqlU9-57QzS81010MqLwrXrIlBPEbPiSwv~3d8OcKK84dcRZVv0UfgcCH1iOOg6baSoiuqyTNRRxf1lTfKSPlxV7WCaslur1~WiKnn0AtMi9gt5-M8fdS31PBYikfphOe4kT6D9~q-lL-GKVdCYVsWmTMMcVGRF~3Nb~BLvl0b4Ry8EO28VUgJgZ5mLWAZN~-T1lSLHSoKw3EnCYy-EcWXqxH6aU7Qii2HGA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":10977,"name":"Intelligent Systems","url":"https://www.academia.edu/Documents/in/Intelligent_Systems"},{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"}],"urls":[{"id":28416593,"url":"http://link.springer.com/content/pdf/10.1007/978-94-011-4840-5_42"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="95741572"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/95741572/Automatic_Web_Rating_Filtering_Obscene_Content_on_the_Web"><img alt="Research paper thumbnail of Automatic Web Rating: Filtering Obscene Content on the Web" class="work-thumbnail" src="https://attachments.academia-assets.com/97839534/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/95741572/Automatic_Web_Rating_Filtering_Obscene_Content_on_the_Web">Automatic Web Rating: Filtering Obscene Content on the Web</a></div><div class="wp-workCard_item"><span>Lecture Notes in Computer Science</span><span>, 2000</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="278bd3ae06bfae676c76c159965dd563" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":97839534,"asset_id":95741572,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/97839534/download_file?st=MTczMjQ1OTgxOSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="95741572"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="95741572"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 95741572; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=95741572]").text(description); $(".js-view-count[data-work-id=95741572]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 95741572; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='95741572']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 95741572, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "278bd3ae06bfae676c76c159965dd563" } } $('.js-work-strip[data-work-id=95741572]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":95741572,"title":"Automatic Web Rating: Filtering Obscene Content on the Web","translated_title":"","metadata":{"grobid_abstract":"We present a method to detect automatically pornographic content on the Web. Our method combines techniques from language engineering and image analysis within a machine-learning framework. Experimental results show that it achieves nearly perfect performance on a set of hard cases.","publication_date":{"day":null,"month":null,"year":2000,"errors":{}},"publication_name":"Lecture Notes in Computer Science","grobid_abstract_attachment_id":97839534},"translated_abstract":null,"internal_url":"https://www.academia.edu/95741572/Automatic_Web_Rating_Filtering_Obscene_Content_on_the_Web","translated_internal_url":"","created_at":"2023-01-26T08:18:05.263-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33409838,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":97839534,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/97839534/thumbnails/1.jpg","file_name":"ecdl2000_paper.pdf","download_url":"https://www.academia.edu/attachments/97839534/download_file?st=MTczMjQ1OTgxOSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Automatic_Web_Rating_Filtering_Obscene_C.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/97839534/ecdl2000_paper-libre.pdf?1674756687=\u0026response-content-disposition=attachment%3B+filename%3DAutomatic_Web_Rating_Filtering_Obscene_C.pdf\u0026Expires=1732457609\u0026Signature=HJgVNJFZ1AALwPs~ewxN4ubtOpCWGJZPLx1rfCQuHL50plDZYu6kFlBIcFQCy4mYLXJfoy-mc59leLtwZImXA3ba6KTlQVSKaQTNxc4oKA5MMliVNPAm9QokiGKl1N~M~gWKZwuufEug1QYER0Impe-oNetNMrvSC3wqvVoZSJp5KhBDoAOoa2i8zgSKqLiktVZJQdgXHch0Qkkybs5ELY5hPLD6TFOqqjSGU1puJC8iVqpL1OhbpZiUkVP8fItq4A7ooFdQo-te87VtRvZbo3FDBukXkNwjFGB5hj0kxwaa1I7Q9LfKp08OUbABRGDKjuvveK6HaKFPwU6SVSitOA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Automatic_Web_Rating_Filtering_Obscene_Content_on_the_Web","translated_slug":"","page_count":4,"language":"en","content_type":"Work","owner":{"id":33409838,"first_name":"C.","middle_initials":null,"last_name":"Spyropoulos","page_name":"Spyropoulos","domain_name":"independent","created_at":"2015-07-28T11:42:54.141-07:00","display_name":"C. Spyropoulos","url":"https://independent.academia.edu/Spyropoulos"},"attachments":[{"id":97839534,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/97839534/thumbnails/1.jpg","file_name":"ecdl2000_paper.pdf","download_url":"https://www.academia.edu/attachments/97839534/download_file?st=MTczMjQ1OTgxOSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Automatic_Web_Rating_Filtering_Obscene_C.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/97839534/ecdl2000_paper-libre.pdf?1674756687=\u0026response-content-disposition=attachment%3B+filename%3DAutomatic_Web_Rating_Filtering_Obscene_C.pdf\u0026Expires=1732457609\u0026Signature=HJgVNJFZ1AALwPs~ewxN4ubtOpCWGJZPLx1rfCQuHL50plDZYu6kFlBIcFQCy4mYLXJfoy-mc59leLtwZImXA3ba6KTlQVSKaQTNxc4oKA5MMliVNPAm9QokiGKl1N~M~gWKZwuufEug1QYER0Impe-oNetNMrvSC3wqvVoZSJp5KhBDoAOoa2i8zgSKqLiktVZJQdgXHch0Qkkybs5ELY5hPLD6TFOqqjSGU1puJC8iVqpL1OhbpZiUkVP8fItq4A7ooFdQo-te87VtRvZbo3FDBukXkNwjFGB5hj0kxwaa1I7Q9LfKp08OUbABRGDKjuvveK6HaKFPwU6SVSitOA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":464,"name":"Information Retrieval","url":"https://www.academia.edu/Documents/in/Information_Retrieval"},{"id":2008,"name":"Machine Learning","url":"https://www.academia.edu/Documents/in/Machine_Learning"},{"id":6426,"name":"Content Analysis","url":"https://www.academia.edu/Documents/in/Content_Analysis"},{"id":8910,"name":"Evaluation","url":"https://www.academia.edu/Documents/in/Evaluation"},{"id":9351,"name":"Image Analysis","url":"https://www.academia.edu/Documents/in/Image_Analysis"},{"id":13413,"name":"Web page design","url":"https://www.academia.edu/Documents/in/Web_page_design"},{"id":141114,"name":"World Wide Web","url":"https://www.academia.edu/Documents/in/World_Wide_Web"},{"id":728952,"name":"Filtering","url":"https://www.academia.edu/Documents/in/Filtering"},{"id":1151059,"name":"Language Engineering","url":"https://www.academia.edu/Documents/in/Language_Engineering"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="95741571"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/95741571/Learning_Rules_for_Large_Vocabulary_Word_Sense_Disambiguation_A_Comparison_of_Various_Classifiers"><img alt="Research paper thumbnail of Learning Rules for Large-Vocabulary Word Sense Disambiguation: A Comparison of Various Classifiers" class="work-thumbnail" src="https://attachments.academia-assets.com/97839532/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/95741571/Learning_Rules_for_Large_Vocabulary_Word_Sense_Disambiguation_A_Comparison_of_Various_Classifiers">Learning Rules for Large-Vocabulary Word Sense Disambiguation: A Comparison of Various Classifiers</a></div><div class="wp-workCard_item"><span>Lecture Notes in Computer Science</span><span>, 2000</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="6c81c85f2f8beac26f322ecb00774d0f" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":97839532,"asset_id":95741571,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/97839532/download_file?st=MTczMjQ1OTgxOSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="95741571"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="95741571"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 95741571; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=95741571]").text(description); $(".js-view-count[data-work-id=95741571]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 95741571; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='95741571']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 95741571, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "6c81c85f2f8beac26f322ecb00774d0f" } } $('.js-work-strip[data-work-id=95741571]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":95741571,"title":"Learning Rules for Large-Vocabulary Word Sense Disambiguation: A Comparison of Various Classifiers","translated_title":"","metadata":{"grobid_abstract":"Word Sense Disambiguation (WSD) is the process of distinguishing between different senses of a word. In general, the disambiguation rules differ for different words. For this reason, the automatic construction of disambiguation rules is highly desirable. One way to achieve this aim is by applying machine learning techniques to training data containing the various senses of the ambiguous words. In the work presented here, the decision tree learning algorithm C4.5 is applied on a corpus of financial news articles. Instead of concentrating on a small set of ambiguous words, as done in most of the related previous work, all content words of the examined corpus are disambiguated. Furthermore, the effectiveness of word sense disambiguation for different parts of speech (nouns and verbs) is examined empirically.","publication_date":{"day":null,"month":null,"year":2000,"errors":{}},"publication_name":"Lecture Notes in Computer Science","grobid_abstract_attachment_id":97839532},"translated_abstract":null,"internal_url":"https://www.academia.edu/95741571/Learning_Rules_for_Large_Vocabulary_Word_Sense_Disambiguation_A_Comparison_of_Various_Classifiers","translated_internal_url":"","created_at":"2023-01-26T08:18:05.166-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33409838,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":97839532,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/97839532/thumbnails/1.jpg","file_name":"003.pdf","download_url":"https://www.academia.edu/attachments/97839532/download_file?st=MTczMjQ1OTgxOSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Learning_Rules_for_Large_Vocabulary_Word.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/97839532/003-libre.pdf?1674756688=\u0026response-content-disposition=attachment%3B+filename%3DLearning_Rules_for_Large_Vocabulary_Word.pdf\u0026Expires=1732457609\u0026Signature=hQU4MIegony0VGu8gsUalX2tv1mZHp~STETuck14n1q1Ja~B8FiCicum5SJbGL1G39vliIr~4IZtUPkYQYXAzv0fAN9VkyESyr8erWuax7pF-~ievqtY8h8UAIXj2wjeIrSOq0KicoBNo4Ue2wC-IBqtrddFqFPkxhlQOQhPhOP2l-EpVOXCZMP65O5R-WriWpLj-3aNvA~z2hzEcSS-1vqhRHpLv2KTAYXXoquNS6daYZyZuWLE-xXYRmP6c9Kvyq7U7DHXqVkKpEELUL4xL5Co8BZQw9-V6uxNa4wCodnLfIXuNI8G8b7B3b3V4hl2adrHlUBr4xVUjkq52t0pIA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Learning_Rules_for_Large_Vocabulary_Word_Sense_Disambiguation_A_Comparison_of_Various_Classifiers","translated_slug":"","page_count":4,"language":"en","content_type":"Work","owner":{"id":33409838,"first_name":"C.","middle_initials":null,"last_name":"Spyropoulos","page_name":"Spyropoulos","domain_name":"independent","created_at":"2015-07-28T11:42:54.141-07:00","display_name":"C. Spyropoulos","url":"https://independent.academia.edu/Spyropoulos"},"attachments":[{"id":97839532,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/97839532/thumbnails/1.jpg","file_name":"003.pdf","download_url":"https://www.academia.edu/attachments/97839532/download_file?st=MTczMjQ1OTgxOSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Learning_Rules_for_Large_Vocabulary_Word.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/97839532/003-libre.pdf?1674756688=\u0026response-content-disposition=attachment%3B+filename%3DLearning_Rules_for_Large_Vocabulary_Word.pdf\u0026Expires=1732457609\u0026Signature=hQU4MIegony0VGu8gsUalX2tv1mZHp~STETuck14n1q1Ja~B8FiCicum5SJbGL1G39vliIr~4IZtUPkYQYXAzv0fAN9VkyESyr8erWuax7pF-~ievqtY8h8UAIXj2wjeIrSOq0KicoBNo4Ue2wC-IBqtrddFqFPkxhlQOQhPhOP2l-EpVOXCZMP65O5R-WriWpLj-3aNvA~z2hzEcSS-1vqhRHpLv2KTAYXXoquNS6daYZyZuWLE-xXYRmP6c9Kvyq7U7DHXqVkKpEELUL4xL5Co8BZQw9-V6uxNa4wCodnLfIXuNI8G8b7B3b3V4hl2adrHlUBr4xVUjkq52t0pIA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":465,"name":"Artificial Intelligence","url":"https://www.academia.edu/Documents/in/Artificial_Intelligence"},{"id":1432,"name":"Natural Language Processing","url":"https://www.academia.edu/Documents/in/Natural_Language_Processing"},{"id":2008,"name":"Machine Learning","url":"https://www.academia.edu/Documents/in/Machine_Learning"},{"id":5591,"name":"Vocabulary","url":"https://www.academia.edu/Documents/in/Vocabulary"},{"id":9840,"name":"Word Sense Disambiguation","url":"https://www.academia.edu/Documents/in/Word_Sense_Disambiguation"},{"id":162271,"name":"Decision Tree","url":"https://www.academia.edu/Documents/in/Decision_Tree"},{"id":1138319,"name":"Learning Methods","url":"https://www.academia.edu/Documents/in/Learning_Methods"},{"id":1143720,"name":"Decision Tree Learning","url":"https://www.academia.edu/Documents/in/Decision_Tree_Learning"},{"id":2510264,"name":"Decision tree Induction","url":"https://www.academia.edu/Documents/in/Decision_tree_Induction"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="95741570"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/95741570/Realtime_depression_estimation_using_mid_term_audio_features"><img alt="Research paper thumbnail of Realtime depression estimation using mid-term audio features" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/95741570/Realtime_depression_estimation_using_mid_term_audio_features">Realtime depression estimation using mid-term audio features</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="95741570"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="95741570"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 95741570; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=95741570]").text(description); $(".js-view-count[data-work-id=95741570]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 95741570; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='95741570']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 95741570, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=95741570]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":95741570,"title":"Realtime depression estimation using mid-term audio features","translated_title":"","metadata":{},"translated_abstract":null,"internal_url":"https://www.academia.edu/95741570/Realtime_depression_estimation_using_mid_term_audio_features","translated_internal_url":"","created_at":"2023-01-26T08:18:05.086-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33409838,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Realtime_depression_estimation_using_mid_term_audio_features","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":33409838,"first_name":"C.","middle_initials":null,"last_name":"Spyropoulos","page_name":"Spyropoulos","domain_name":"independent","created_at":"2015-07-28T11:42:54.141-07:00","display_name":"C. Spyropoulos","url":"https://independent.academia.edu/Spyropoulos"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="95741569"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/95741569/Content_Collection_for_the_Labelling_of_Health_Related_Web_Content"><img alt="Research paper thumbnail of Content Collection for the Labelling of Health-Related Web Content" class="work-thumbnail" src="https://attachments.academia-assets.com/97839533/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/95741569/Content_Collection_for_the_Labelling_of_Health_Related_Web_Content">Content Collection for the Labelling of Health-Related Web Content</a></div><div class="wp-workCard_item"><span>Lecture Notes in Computer Science</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="395604c039945a0069581e07f870a7f2" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":97839533,"asset_id":95741569,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/97839533/download_file?st=MTczMjQ1OTgxOSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="95741569"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="95741569"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 95741569; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=95741569]").text(description); $(".js-view-count[data-work-id=95741569]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 95741569; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='95741569']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 95741569, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "395604c039945a0069581e07f870a7f2" } } $('.js-work-strip[data-work-id=95741569]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":95741569,"title":"Content Collection for the Labelling of Health-Related Web Content","translated_title":"","metadata":{"grobid_abstract":"As the number of health-related web sites in various languages increases, it is more than necessary to implement control mechanisms that give the users adequate guarantee that the web resources they are visiting, meet a minimum level of quality standards. Based upon state-of-the-art technology in the areas of semantic web, content analysis and quality labeling, the AQUA system, designed for the EC-funded project MedIEQ, aims to support the automation of the labeling process in health-related web content. AQUA provides tools that crawl the web to locate unlabelled health web resources in different European languages, as well as tools that traverse websites, identify and extract information and, upon this information, propose labels or monitor already labeled resources. Two major steps in this automated labeling process are web content collection and information extraction. This paper focuses on content collection. We describe existing approaches, present the architecture of the content collection toolkit and how this is integrated within the AQUA system, and discuss our initial experimental results in the English language (six more languages will be covered by the end of the project).","publication_name":"Lecture Notes in Computer Science","grobid_abstract_attachment_id":97839533},"translated_abstract":null,"internal_url":"https://www.academia.edu/95741569/Content_Collection_for_the_Labelling_of_Health_Related_Web_Content","translated_internal_url":"","created_at":"2023-01-26T08:18:04.991-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33409838,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":97839533,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/97839533/thumbnails/1.jpg","file_name":"aime07draft.pdf","download_url":"https://www.academia.edu/attachments/97839533/download_file?st=MTczMjQ1OTgxOSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Content_Collection_for_the_Labelling_of.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/97839533/aime07draft-libre.pdf?1674756687=\u0026response-content-disposition=attachment%3B+filename%3DContent_Collection_for_the_Labelling_of.pdf\u0026Expires=1732457609\u0026Signature=aZO9M4t~iy9GJVEWQ-GiwzQHj70A-4YcMbZEcpmqueMcTviOgjDTLdrbq6IH9MssLp-uJRfqK25OKISoHMH3719ENJcqCjrZYAhqHPCZNvI84E1-22~5XU2hpbLjmtrhvsRYgHa~AWDJCJDA3SR5IGZnZFcgvHwDYhVLXS6nXb~ce9ky0SozBSlS89UnwuxxpPtAuNqRnfIz-AoE7FAUdtAhWBjVgBlqqFdByDn0hdj2BtGGN-aa-tH7rkf2mvAumgeeZjCV7AFC~Cp2Gz7CjKQ5pMeNS~~CVMzv412Xjo6rueG6O2GAO9t1SKIXQIultNAyFZPIIte3oecBXY2jDw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Content_Collection_for_the_Labelling_of_Health_Related_Web_Content","translated_slug":"","page_count":11,"language":"en","content_type":"Work","owner":{"id":33409838,"first_name":"C.","middle_initials":null,"last_name":"Spyropoulos","page_name":"Spyropoulos","domain_name":"independent","created_at":"2015-07-28T11:42:54.141-07:00","display_name":"C. Spyropoulos","url":"https://independent.academia.edu/Spyropoulos"},"attachments":[{"id":97839533,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/97839533/thumbnails/1.jpg","file_name":"aime07draft.pdf","download_url":"https://www.academia.edu/attachments/97839533/download_file?st=MTczMjQ1OTgxOSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Content_Collection_for_the_Labelling_of.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/97839533/aime07draft-libre.pdf?1674756687=\u0026response-content-disposition=attachment%3B+filename%3DContent_Collection_for_the_Labelling_of.pdf\u0026Expires=1732457609\u0026Signature=aZO9M4t~iy9GJVEWQ-GiwzQHj70A-4YcMbZEcpmqueMcTviOgjDTLdrbq6IH9MssLp-uJRfqK25OKISoHMH3719ENJcqCjrZYAhqHPCZNvI84E1-22~5XU2hpbLjmtrhvsRYgHa~AWDJCJDA3SR5IGZnZFcgvHwDYhVLXS6nXb~ce9ky0SozBSlS89UnwuxxpPtAuNqRnfIz-AoE7FAUdtAhWBjVgBlqqFdByDn0hdj2BtGGN-aa-tH7rkf2mvAumgeeZjCV7AFC~Cp2Gz7CjKQ5pMeNS~~CVMzv412Xjo6rueG6O2GAO9t1SKIXQIultNAyFZPIIte3oecBXY2jDw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":465,"name":"Artificial Intelligence","url":"https://www.academia.edu/Documents/in/Artificial_Intelligence"},{"id":2008,"name":"Machine Learning","url":"https://www.academia.edu/Documents/in/Machine_Learning"},{"id":3979,"name":"English language","url":"https://www.academia.edu/Documents/in/English_language"},{"id":6426,"name":"Content Analysis","url":"https://www.academia.edu/Documents/in/Content_Analysis"},{"id":7640,"name":"Web Standards","url":"https://www.academia.edu/Documents/in/Web_Standards"},{"id":11128,"name":"Information Extraction","url":"https://www.academia.edu/Documents/in/Information_Extraction"},{"id":17711,"name":"Semantic Web","url":"https://www.academia.edu/Documents/in/Semantic_Web"},{"id":34756,"name":"System Design","url":"https://www.academia.edu/Documents/in/System_Design"},{"id":141114,"name":"World Wide Web","url":"https://www.academia.edu/Documents/in/World_Wide_Web"},{"id":319733,"name":"Focused crawling","url":"https://www.academia.edu/Documents/in/Focused_crawling"},{"id":463293,"name":"Quality Standard","url":"https://www.academia.edu/Documents/in/Quality_Standard"},{"id":571767,"name":"Labelling","url":"https://www.academia.edu/Documents/in/Labelling"},{"id":624707,"name":"English Language","url":"https://www.academia.edu/Documents/in/English_Language-2"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="95741568"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/95741568/Machine_Learning_Based_Maintenance_of_Domain_Specific_Application_Ontologies"><img alt="Research paper thumbnail of Machine Learning-Based Maintenance of Domain-Specific Application Ontologies" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/95741568/Machine_Learning_Based_Maintenance_of_Domain_Specific_Application_Ontologies">Machine Learning-Based Maintenance of Domain-Specific Application Ontologies</a></div><div class="wp-workCard_item"><span>Integrated Series in Information Systems</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">... The ontology-based annotation stage exploits the instances in the domain ontology, to automat...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">... The ontology-based annotation stage exploits the instances in the domain ontology, to automatically ... When this stage ends, an iteration of the ontology population process is considered to ... the parameter settings selection for the machine learning-based methods (HMM and ...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="95741568"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="95741568"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 95741568; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=95741568]").text(description); $(".js-view-count[data-work-id=95741568]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 95741568; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='95741568']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 95741568, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=95741568]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":95741568,"title":"Machine Learning-Based Maintenance of Domain-Specific Application Ontologies","translated_title":"","metadata":{"abstract":"... The ontology-based annotation stage exploits the instances in the domain ontology, to automatically ... When this stage ends, an iteration of the ontology population process is considered to ... the parameter settings selection for the machine learning-based methods (HMM and ...","publication_name":"Integrated Series in Information Systems"},"translated_abstract":"... The ontology-based annotation stage exploits the instances in the domain ontology, to automatically ... When this stage ends, an iteration of the ontology population process is considered to ... the parameter settings selection for the machine learning-based methods (HMM and ...","internal_url":"https://www.academia.edu/95741568/Machine_Learning_Based_Maintenance_of_Domain_Specific_Application_Ontologies","translated_internal_url":"","created_at":"2023-01-26T08:18:04.896-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33409838,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Machine_Learning_Based_Maintenance_of_Domain_Specific_Application_Ontologies","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":33409838,"first_name":"C.","middle_initials":null,"last_name":"Spyropoulos","page_name":"Spyropoulos","domain_name":"independent","created_at":"2015-07-28T11:42:54.141-07:00","display_name":"C. Spyropoulos","url":"https://independent.academia.edu/Spyropoulos"},"attachments":[],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":465,"name":"Artificial Intelligence","url":"https://www.academia.edu/Documents/in/Artificial_Intelligence"},{"id":805,"name":"Ontology","url":"https://www.academia.edu/Documents/in/Ontology"},{"id":2008,"name":"Machine Learning","url":"https://www.academia.edu/Documents/in/Machine_Learning"},{"id":51860,"name":"Ontologies","url":"https://www.academia.edu/Documents/in/Ontologies"},{"id":97256,"name":"Process Ontology","url":"https://www.academia.edu/Documents/in/Process_Ontology"},{"id":197861,"name":"Domain Knowledge","url":"https://www.academia.edu/Documents/in/Domain_Knowledge"},{"id":386576,"name":"Domain Specificity","url":"https://www.academia.edu/Documents/in/Domain_Specificity"},{"id":404558,"name":"Domain Ontology","url":"https://www.academia.edu/Documents/in/Domain_Ontology"},{"id":692460,"name":"Ontology Population","url":"https://www.academia.edu/Documents/in/Ontology_Population"},{"id":892890,"name":"Point of View","url":"https://www.academia.edu/Documents/in/Point_of_View"},{"id":1534202,"name":"Bootstrapping Finance","url":"https://www.academia.edu/Documents/in/Bootstrapping_Finance"},{"id":2213585,"name":"Information System","url":"https://www.academia.edu/Documents/in/Information_System"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="95741567"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/95741567/Bootstrapping_Ontology_Evolution_with_Multimedia_Information_Extraction"><img alt="Research paper thumbnail of Bootstrapping Ontology Evolution with Multimedia Information Extraction" class="work-thumbnail" src="https://attachments.academia-assets.com/97839529/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/95741567/Bootstrapping_Ontology_Evolution_with_Multimedia_Information_Extraction">Bootstrapping Ontology Evolution with Multimedia Information Extraction</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="cff14590a40e24eac3c05a485542ab26" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":97839529,"asset_id":95741567,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/97839529/download_file?st=MTczMjQ1OTgxOSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="95741567"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="95741567"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 95741567; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=95741567]").text(description); $(".js-view-count[data-work-id=95741567]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 95741567; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='95741567']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 95741567, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "cff14590a40e24eac3c05a485542ab26" } } $('.js-work-strip[data-work-id=95741567]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":95741567,"title":"Bootstrapping Ontology Evolution with Multimedia Information Extraction","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":2011,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/95741567/Bootstrapping_Ontology_Evolution_with_Multimedia_Information_Extraction","translated_internal_url":"","created_at":"2023-01-26T08:18:04.797-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33409838,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":97839529,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/97839529/thumbnails/1.jpg","file_name":"6050_2011_Chapter1.pdf","download_url":"https://www.academia.edu/attachments/97839529/download_file?st=MTczMjQ1OTgxOSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Bootstrapping_Ontology_Evolution_with_Mu.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/97839529/6050_2011_Chapter1-libre.pdf?1674756700=\u0026response-content-disposition=attachment%3B+filename%3DBootstrapping_Ontology_Evolution_with_Mu.pdf\u0026Expires=1732457610\u0026Signature=N3p8FNJlI-o89tR-3vwwr7nQKzIhbq3x79O7VwIsAlmSdBpOY9cKXaKx80d3XyzaZo9uAf16Y5kqMJwPhBswqb5mSFdTxMZuNuUMpIsklqr4yZKTCvJDaboxSunp9V5GM4qfuXZyzChjz-dJHt8nq84EC4gPhFqIsLO45yKoFeAJJK7h0QgtPx1mcEPDMNRtQSxw-CwlDdkZP8jVjmnQCvKiAQDmfmgqv2Zkkd1WJF2-7y52lZscRNkhaLtZ6EtYbSHI8oi747Z762b4brhonKbDVrZbZGBYyG401vg~cVXKb1XKYD3aNVNXVfE3voBB1UaaNGKITcA0PiL32S9B3g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Bootstrapping_Ontology_Evolution_with_Multimedia_Information_Extraction","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":33409838,"first_name":"C.","middle_initials":null,"last_name":"Spyropoulos","page_name":"Spyropoulos","domain_name":"independent","created_at":"2015-07-28T11:42:54.141-07:00","display_name":"C. Spyropoulos","url":"https://independent.academia.edu/Spyropoulos"},"attachments":[{"id":97839529,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/97839529/thumbnails/1.jpg","file_name":"6050_2011_Chapter1.pdf","download_url":"https://www.academia.edu/attachments/97839529/download_file?st=MTczMjQ1OTgxOSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Bootstrapping_Ontology_Evolution_with_Mu.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/97839529/6050_2011_Chapter1-libre.pdf?1674756700=\u0026response-content-disposition=attachment%3B+filename%3DBootstrapping_Ontology_Evolution_with_Mu.pdf\u0026Expires=1732457610\u0026Signature=N3p8FNJlI-o89tR-3vwwr7nQKzIhbq3x79O7VwIsAlmSdBpOY9cKXaKx80d3XyzaZo9uAf16Y5kqMJwPhBswqb5mSFdTxMZuNuUMpIsklqr4yZKTCvJDaboxSunp9V5GM4qfuXZyzChjz-dJHt8nq84EC4gPhFqIsLO45yKoFeAJJK7h0QgtPx1mcEPDMNRtQSxw-CwlDdkZP8jVjmnQCvKiAQDmfmgqv2Zkkd1WJF2-7y52lZscRNkhaLtZ6EtYbSHI8oi747Z762b4brhonKbDVrZbZGBYyG401vg~cVXKb1XKYD3aNVNXVfE3voBB1UaaNGKITcA0PiL32S9B3g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":805,"name":"Ontology","url":"https://www.academia.edu/Documents/in/Ontology"},{"id":3419,"name":"Multimedia","url":"https://www.academia.edu/Documents/in/Multimedia"},{"id":11128,"name":"Information Extraction","url":"https://www.academia.edu/Documents/in/Information_Extraction"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="95741566"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/95741566/Learning_User_Communities_for_Improving_the_Services_of_Information_Providers"><img alt="Research paper thumbnail of Learning User Communities for Improving the Services of Information Providers" class="work-thumbnail" src="https://attachments.academia-assets.com/97839538/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/95741566/Learning_User_Communities_for_Improving_the_Services_of_Information_Providers">Learning User Communities for Improving the Services of Information Providers</a></div><div class="wp-workCard_item"><span>Lecture Notes in Computer Science</span><span>, 1998</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="e25352799bcf8aca89e98a0861a43c06" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":97839538,"asset_id":95741566,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/97839538/download_file?st=MTczMjQ1OTgxOSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="95741566"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="95741566"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 95741566; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=95741566]").text(description); $(".js-view-count[data-work-id=95741566]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 95741566; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='95741566']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 95741566, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "e25352799bcf8aca89e98a0861a43c06" } } $('.js-work-strip[data-work-id=95741566]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":95741566,"title":"Learning User Communities for Improving the Services of Information Providers","translated_title":"","metadata":{"grobid_abstract":"In this paper we propose a methodology for organising the users of an information providing system into groups with common interests (communities). The communities are built using unsupervised learning techniques on data collected from the users (user models). We examine a system that filters news on the Internet, according to the interests of the registered users. Each user model contains the user's interests on the news categories covered by the information providing system. Two learning algorithms are evaluated: COBWEB and ITERATE. Our main concern is whether meaningful communities can be constructed. We specify a metric to decide which news categories are representative for each community. The construction of meaningful communities can be used for improving the structure of the information providing system as well as for suggesting extensions to individual user models. Encouraging results on a large data-set lead us to consider this work as a first step towards a method that can easily be integrated in a variety of information systems.","publication_date":{"day":null,"month":null,"year":1998,"errors":{}},"publication_name":"Lecture Notes in Computer Science","grobid_abstract_attachment_id":97839538},"translated_abstract":null,"internal_url":"https://www.academia.edu/95741566/Learning_User_Communities_for_Improving_the_Services_of_Information_Providers","translated_internal_url":"","created_at":"2023-01-26T08:18:04.707-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33409838,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":97839538,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/97839538/thumbnails/1.jpg","file_name":"ECDL98.pdf","download_url":"https://www.academia.edu/attachments/97839538/download_file?st=MTczMjQ1OTgxOSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Learning_User_Communities_for_Improving.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/97839538/ECDL98-libre.pdf?1674756694=\u0026response-content-disposition=attachment%3B+filename%3DLearning_User_Communities_for_Improving.pdf\u0026Expires=1732457610\u0026Signature=FaX3AIB14mMJJb5Ue9MLhzbIdQw~eca4U8izG8omkpBEHMGAxIbq946HJt2nysfjEDFDrz3A0pJY7ULQFr1~GZdFGP-6ad1gLBOj5haInnLFPjlqkB32YmpIkRRGA82roaDsUSoBGdqVfQXQh2XsmDy4tJAG7T0PDx-wEOvAo~EmwauOEvXV3JOLobb-mdzG9L2EKnSYCaN2wHKvB2nG-Ifo-VjjfmycDS3Pvyw5TRix~3F4nAdhOC9i9Yp9UDGQn0iScuFQOuK-P2nDCB4OXOhsex1PM~KYCnrnQ2LNH6YLDbnrwAJz7ZKV~HglORd9AR1PjJQTiJI4~v6wyNFO4g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Learning_User_Communities_for_Improving_the_Services_of_Information_Providers","translated_slug":"","page_count":10,"language":"en","content_type":"Work","owner":{"id":33409838,"first_name":"C.","middle_initials":null,"last_name":"Spyropoulos","page_name":"Spyropoulos","domain_name":"independent","created_at":"2015-07-28T11:42:54.141-07:00","display_name":"C. Spyropoulos","url":"https://independent.academia.edu/Spyropoulos"},"attachments":[{"id":97839538,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/97839538/thumbnails/1.jpg","file_name":"ECDL98.pdf","download_url":"https://www.academia.edu/attachments/97839538/download_file?st=MTczMjQ1OTgxOSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Learning_User_Communities_for_Improving.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/97839538/ECDL98-libre.pdf?1674756694=\u0026response-content-disposition=attachment%3B+filename%3DLearning_User_Communities_for_Improving.pdf\u0026Expires=1732457610\u0026Signature=FaX3AIB14mMJJb5Ue9MLhzbIdQw~eca4U8izG8omkpBEHMGAxIbq946HJt2nysfjEDFDrz3A0pJY7ULQFr1~GZdFGP-6ad1gLBOj5haInnLFPjlqkB32YmpIkRRGA82roaDsUSoBGdqVfQXQh2XsmDy4tJAG7T0PDx-wEOvAo~EmwauOEvXV3JOLobb-mdzG9L2EKnSYCaN2wHKvB2nG-Ifo-VjjfmycDS3Pvyw5TRix~3F4nAdhOC9i9Yp9UDGQn0iScuFQOuK-P2nDCB4OXOhsex1PM~KYCnrnQ2LNH6YLDbnrwAJz7ZKV~HglORd9AR1PjJQTiJI4~v6wyNFO4g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":1385,"name":"User Modeling","url":"https://www.academia.edu/Documents/in/User_Modeling"},{"id":30947,"name":"The Internet","url":"https://www.academia.edu/Documents/in/The_Internet"},{"id":119456,"name":"Unsupervised Learning","url":"https://www.academia.edu/Documents/in/Unsupervised_Learning"},{"id":141114,"name":"World Wide Web","url":"https://www.academia.edu/Documents/in/World_Wide_Web"},{"id":153168,"name":"Data Collection","url":"https://www.academia.edu/Documents/in/Data_Collection"},{"id":521483,"name":"Large Data Sets","url":"https://www.academia.edu/Documents/in/Large_Data_Sets"},{"id":2213585,"name":"Information System","url":"https://www.academia.edu/Documents/in/Information_System"},{"id":2821309,"name":"learning algorithm","url":"https://www.academia.edu/Documents/in/learning_algorithm"},{"id":2842924,"name":"user model","url":"https://www.academia.edu/Documents/in/user_model"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="95741565"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/95741565/Transformation_Techniques_for_Branching_Time_Logic_Programs"><img alt="Research paper thumbnail of Transformation Techniques for Branching-Time Logic Programs" class="work-thumbnail" src="https://attachments.academia-assets.com/97839522/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/95741565/Transformation_Techniques_for_Branching_Time_Logic_Programs">Transformation Techniques for Branching-Time Logic Programs</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="49470bbd1583714496a49dd98c0e4604" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":97839522,"asset_id":95741565,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/97839522/download_file?st=MTczMjQ1OTgxOSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="95741565"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="95741565"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 95741565; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=95741565]").text(description); $(".js-view-count[data-work-id=95741565]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 95741565; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='95741565']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 95741565, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "49470bbd1583714496a49dd98c0e4604" } } $('.js-work-strip[data-work-id=95741565]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":95741565,"title":"Transformation Techniques for Branching-Time Logic Programs","translated_title":"","metadata":{"grobid_abstract":"In this paper, we consider program transformation techniques for branching-time logic programs. We define a set of unfold/fold transformation rules and present sufficient conditions to ensure their correctness. Then, using the proposed transformation rules we develop an algorithm which transforms a wide class of Cactus programs into a continuation passing style form.","publication_date":{"day":null,"month":null,"year":1998,"errors":{}},"grobid_abstract_attachment_id":97839522},"translated_abstract":null,"internal_url":"https://www.academia.edu/95741565/Transformation_Techniques_for_Branching_Time_Logic_Programs","translated_internal_url":"","created_at":"2023-01-26T08:18:04.625-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33409838,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":97839522,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/97839522/thumbnails/1.jpg","file_name":"ISLIP-1998-unfold-e.pdf","download_url":"https://www.academia.edu/attachments/97839522/download_file?st=MTczMjQ1OTgxOSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Transformation_Techniques_for_Branching.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/97839522/ISLIP-1998-unfold-e-libre.pdf?1674756697=\u0026response-content-disposition=attachment%3B+filename%3DTransformation_Techniques_for_Branching.pdf\u0026Expires=1732457610\u0026Signature=AlCQbNhDLa6pXmZnFKfkU0ZIJ-qqMyZqE5rZW9unkgJQDdkihhOazLJ~7eU1I3rFgmDv-3PmrDrUEHJbLRMizN0yaeUDRt~U10puqWccz9450xFtzaI-ivr5HxsbLFue5ztGoM7e3QGkpFAzEoXsrP6QEZUddKI1HA7Lb25KZBPgSuwhA685y1cfPKPdy-F5ktaiUKOICEse06H5tSwnmSkWjvBkhpTxEdpbjX3qQgpmlOY0Q~mS6sgQGRhnqYOEf~3AxnrvRyEO9WhEdt5eIER8wlIBozf-xZM~RHxqSRk0GtzmvK84XycA3OrE3yCTyJByZzEI5nQfObuWHsunlQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Transformation_Techniques_for_Branching_Time_Logic_Programs","translated_slug":"","page_count":17,"language":"en","content_type":"Work","owner":{"id":33409838,"first_name":"C.","middle_initials":null,"last_name":"Spyropoulos","page_name":"Spyropoulos","domain_name":"independent","created_at":"2015-07-28T11:42:54.141-07:00","display_name":"C. Spyropoulos","url":"https://independent.academia.edu/Spyropoulos"},"attachments":[{"id":97839522,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/97839522/thumbnails/1.jpg","file_name":"ISLIP-1998-unfold-e.pdf","download_url":"https://www.academia.edu/attachments/97839522/download_file?st=MTczMjQ1OTgxOSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Transformation_Techniques_for_Branching.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/97839522/ISLIP-1998-unfold-e-libre.pdf?1674756697=\u0026response-content-disposition=attachment%3B+filename%3DTransformation_Techniques_for_Branching.pdf\u0026Expires=1732457610\u0026Signature=AlCQbNhDLa6pXmZnFKfkU0ZIJ-qqMyZqE5rZW9unkgJQDdkihhOazLJ~7eU1I3rFgmDv-3PmrDrUEHJbLRMizN0yaeUDRt~U10puqWccz9450xFtzaI-ivr5HxsbLFue5ztGoM7e3QGkpFAzEoXsrP6QEZUddKI1HA7Lb25KZBPgSuwhA685y1cfPKPdy-F5ktaiUKOICEse06H5tSwnmSkWjvBkhpTxEdpbjX3qQgpmlOY0Q~mS6sgQGRhnqYOEf~3AxnrvRyEO9WhEdt5eIER8wlIBozf-xZM~RHxqSRk0GtzmvK84XycA3OrE3yCTyJByZzEI5nQfObuWHsunlQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> </div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/google_contacts-0dfb882d836b94dbcb4a2d123d6933fc9533eda5be911641f20b4eb428429600.js"], function() { // from javascript_helper.rb $('.js-google-connect-button').click(function(e) { e.preventDefault(); GoogleContacts.authorize_and_show_contacts(); Aedu.Dismissibles.recordClickthrough("WowProfileImportContactsPrompt"); }); $('.js-update-biography-button').click(function(e) { e.preventDefault(); Aedu.Dismissibles.recordClickthrough("UpdateUserBiographyPrompt"); $.ajax({ url: $r.api_v0_profiles_update_about_path({ subdomain_param: 'api', about: "", }), type: 'PUT', success: function(response) { location.reload(); } }); }); $('.js-work-creator-button').click(function (e) { e.preventDefault(); window.location = $r.upload_funnel_document_path({ source: encodeURIComponent(""), }); }); $('.js-video-upload-button').click(function (e) { e.preventDefault(); window.location = $r.upload_funnel_video_path({ source: encodeURIComponent(""), }); }); $('.js-do-this-later-button').click(function() { $(this).closest('.js-profile-nag-panel').remove(); Aedu.Dismissibles.recordDismissal("WowProfileImportContactsPrompt"); }); $('.js-update-biography-do-this-later-button').click(function(){ $(this).closest('.js-profile-nag-panel').remove(); Aedu.Dismissibles.recordDismissal("UpdateUserBiographyPrompt"); }); $('.wow-profile-mentions-upsell--close').click(function(){ $('.wow-profile-mentions-upsell--panel').hide(); Aedu.Dismissibles.recordDismissal("WowProfileMentionsUpsell"); }); $('.wow-profile-mentions-upsell--button').click(function(){ Aedu.Dismissibles.recordClickthrough("WowProfileMentionsUpsell"); }); new WowProfile.SocialRedesignUserWorks({ initialWorksOffset: 20, allWorksOffset: 20, maxSections: 1 }) }); </script> </div></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile_edit-5ea339ee107c863779f560dd7275595239fed73f1a13d279d2b599a28c0ecd33.js","https://a.academia-assets.com/assets/add_coauthor-22174b608f9cb871d03443cafa7feac496fb50d7df2d66a53f5ee3c04ba67f53.js","https://a.academia-assets.com/assets/tab-dcac0130902f0cc2d8cb403714dd47454f11fc6fb0e99ae6a0827b06613abc20.js","https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js"], function() { // from javascript_helper.rb window.ae = window.ae || {}; window.ae.WowProfile = window.ae.WowProfile || {}; if(Aedu.User.current && Aedu.User.current.id === $viewedUser.id) { window.ae.WowProfile.current_user_edit = {}; new WowProfileEdit.EditUploadView({ el: '.js-edit-upload-button-wrapper', model: window.$current_user, }); new AddCoauthor.AddCoauthorsController(); } var userInfoView = new WowProfile.SocialRedesignUserInfo({ recaptcha_key: "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB" }); WowProfile.router = new WowProfile.Router({ userInfoView: userInfoView }); Backbone.history.start({ pushState: true, root: "/" + $viewedUser.page_name }); new WowProfile.UserWorksNav() }); </script> </div> <div class="bootstrap login"><div class="modal fade login-modal" id="login-modal"><div class="login-modal-dialog modal-dialog"><div class="modal-content"><div class="modal-header"><button class="close close" data-dismiss="modal" type="button"><span aria-hidden="true">×</span><span class="sr-only">Close</span></button><h4 class="modal-title text-center"><strong>Log In</strong></h4></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><button class="btn btn-fb btn-lg btn-block btn-v-center-content" id="login-facebook-oauth-button"><svg style="float: left; width: 19px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="facebook-square" class="svg-inline--fa fa-facebook-square fa-w-14" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512"><path fill="currentColor" d="M400 32H48A48 48 0 0 0 0 80v352a48 48 0 0 0 48 48h137.25V327.69h-63V256h63v-54.64c0-62.15 37-96.48 93.67-96.48 27.14 0 55.52 4.84 55.52 4.84v61h-31.27c-30.81 0-40.42 19.12-40.42 38.73V256h68.78l-11 71.69h-57.78V480H400a48 48 0 0 0 48-48V80a48 48 0 0 0-48-48z"></path></svg><small><strong>Log in</strong> with <strong>Facebook</strong></small></button><br /><button class="btn btn-google btn-lg btn-block btn-v-center-content" id="login-google-oauth-button"><svg style="float: left; width: 22px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="google-plus" class="svg-inline--fa fa-google-plus fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M256,8C119.1,8,8,119.1,8,256S119.1,504,256,504,504,392.9,504,256,392.9,8,256,8ZM185.3,380a124,124,0,0,1,0-248c31.3,0,60.1,11,83,32.3l-33.6,32.6c-13.2-12.9-31.3-19.1-49.4-19.1-42.9,0-77.2,35.5-77.2,78.1S142.3,334,185.3,334c32.6,0,64.9-19.1,70.1-53.3H185.3V238.1H302.2a109.2,109.2,0,0,1,1.9,20.7c0,70.8-47.5,121.2-118.8,121.2ZM415.5,273.8v35.5H380V273.8H344.5V238.3H380V202.8h35.5v35.5h35.2v35.5Z"></path></svg><small><strong>Log in</strong> with <strong>Google</strong></small></button><br /><style type="text/css">.sign-in-with-apple-button { width: 100%; height: 52px; border-radius: 3px; border: 1px solid black; cursor: pointer; }</style><script src="https://appleid.cdn-apple.com/appleauth/static/jsapi/appleid/1/en_US/appleid.auth.js" type="text/javascript"></script><div class="sign-in-with-apple-button" data-border="false" data-color="white" id="appleid-signin"><span ="Sign Up with Apple" class="u-fs11"></span></div><script>AppleID.auth.init({ clientId: 'edu.academia.applesignon', scope: 'name email', redirectURI: 'https://www.academia.edu/sessions', state: "acccd2ca91e514807eb3c9bc18bcc1d457ea511628b1c7caeac56568434b8f4c", });</script><script>// Hacky way of checking if on fast loswp if (window.loswp == null) { (function() { const Google = window?.Aedu?.Auth?.OauthButton?.Login?.Google; const Facebook = window?.Aedu?.Auth?.OauthButton?.Login?.Facebook; if (Google) { new Google({ el: '#login-google-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } if (Facebook) { new Facebook({ el: '#login-facebook-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } })(); }</script></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><div class="hr-heading login-hr-heading"><span class="hr-heading-text">or</span></div></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><form class="js-login-form" action="https://www.academia.edu/sessions" accept-charset="UTF-8" method="post"><input name="utf8" type="hidden" value="✓" autocomplete="off" /><input type="hidden" name="authenticity_token" value="9YJ+9n17k8XPpAeMe9fdik1wKOLa4t4NO9dXbdMJa8/c7e/yrV04SXF4m2Yv4qMTtzF2sCQQWcScEpysZznuHw==" autocomplete="off" /><div class="form-group"><label class="control-label" for="login-modal-email-input" style="font-size: 14px;">Email</label><input class="form-control" id="login-modal-email-input" name="login" type="email" /></div><div class="form-group"><label class="control-label" for="login-modal-password-input" style="font-size: 14px;">Password</label><input class="form-control" id="login-modal-password-input" name="password" type="password" /></div><input type="hidden" name="post_login_redirect_url" id="post_login_redirect_url" value="https://independent.academia.edu/Spyropoulos" autocomplete="off" /><div class="checkbox"><label><input type="checkbox" name="remember_me" id="remember_me" value="1" checked="checked" /><small style="font-size: 12px; margin-top: 2px; display: inline-block;">Remember me on this computer</small></label></div><br><input type="submit" name="commit" value="Log In" class="btn btn-primary btn-block btn-lg js-login-submit" data-disable-with="Log In" /></br></form><script>typeof window?.Aedu?.recaptchaManagedForm === 'function' && window.Aedu.recaptchaManagedForm( document.querySelector('.js-login-form'), document.querySelector('.js-login-submit') );</script><small style="font-size: 12px;"><br />or <a data-target="#login-modal-reset-password-container" data-toggle="collapse" href="javascript:void(0)">reset password</a></small><div class="collapse" id="login-modal-reset-password-container"><br /><div class="well margin-0x"><form class="js-password-reset-form" action="https://www.academia.edu/reset_password" accept-charset="UTF-8" method="post"><input name="utf8" type="hidden" value="✓" autocomplete="off" /><input type="hidden" name="authenticity_token" value="CRwGSak9Q8bJHV13ZcrJpomZ32VH12HdF6IlFPsrlZUgc5dNeRvoSnfBwZ0x/7c/c9iBN7kl5hSwZ+7VTxsQRQ==" autocomplete="off" /><p>Enter the email address you signed up with and we'll email you a reset link.</p><div class="form-group"><input class="form-control" name="email" type="email" /></div><script src="https://recaptcha.net/recaptcha/api.js" async defer></script> <script> var invisibleRecaptchaSubmit = function () { var closestForm = function (ele) { var curEle = ele.parentNode; while (curEle.nodeName !== 'FORM' && curEle.nodeName !== 'BODY'){ curEle = curEle.parentNode; } return curEle.nodeName === 'FORM' ? curEle : null }; var eles = document.getElementsByClassName('g-recaptcha'); if (eles.length > 0) { var form = closestForm(eles[0]); if (form) { form.submit(); } } }; </script> <input type="submit" data-sitekey="6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj" data-callback="invisibleRecaptchaSubmit" class="g-recaptcha btn btn-primary btn-block" value="Email me a link" value=""/> </form></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/collapse-45805421cf446ca5adf7aaa1935b08a3a8d1d9a6cc5d91a62a2a3a00b20b3e6a.js"], function() { // from javascript_helper.rb $("#login-modal-reset-password-container").on("shown.bs.collapse", function() { $(this).find("input[type=email]").focus(); }); }); </script> </div></div></div><div class="modal-footer"><div class="text-center"><small style="font-size: 12px;">Need an account? <a rel="nofollow" href="https://www.academia.edu/signup">Click here to sign up</a></small></div></div></div></div></div></div><script>// If we are on subdomain or non-bootstrapped page, redirect to login page instead of showing modal (function(){ if (typeof $ === 'undefined') return; var host = window.location.hostname; if ((host === $domain || host === "www."+$domain) && (typeof $().modal === 'function')) { $("#nav_log_in").click(function(e) { // Don't follow the link and open the modal e.preventDefault(); $("#login-modal").on('shown.bs.modal', function() { $(this).find("#login-modal-email-input").focus() }).modal('show'); }); } })()</script> <div class="bootstrap" id="footer"><div class="footer-content clearfix text-center padding-top-7x" style="width:100%;"><ul class="footer-links-secondary footer-links-wide list-inline margin-bottom-1x"><li><a href="https://www.academia.edu/about">About</a></li><li><a href="https://www.academia.edu/press">Press</a></li><li><a rel="nofollow" href="https://medium.com/academia">Blog</a></li><li><a href="https://www.academia.edu/documents">Papers</a></li><li><a href="https://www.academia.edu/topics">Topics</a></li><li><a href="https://www.academia.edu/journals">Academia.edu Journals</a></li><li><a rel="nofollow" href="https://www.academia.edu/hiring"><svg style="width: 13px; height: 13px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="briefcase" class="svg-inline--fa fa-briefcase fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M320 336c0 8.84-7.16 16-16 16h-96c-8.84 0-16-7.16-16-16v-48H0v144c0 25.6 22.4 48 48 48h416c25.6 0 48-22.4 48-48V288H320v48zm144-208h-80V80c0-25.6-22.4-48-48-48H176c-25.6 0-48 22.4-48 48v48H48c-25.6 0-48 22.4-48 48v80h512v-80c0-25.6-22.4-48-48-48zm-144 0H192V96h128v32z"></path></svg> <strong>We're Hiring!</strong></a></li><li><a rel="nofollow" href="https://support.academia.edu/"><svg style="width: 12px; height: 12px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="question-circle" class="svg-inline--fa fa-question-circle fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M504 256c0 136.997-111.043 248-248 248S8 392.997 8 256C8 119.083 119.043 8 256 8s248 111.083 248 248zM262.655 90c-54.497 0-89.255 22.957-116.549 63.758-3.536 5.286-2.353 12.415 2.715 16.258l34.699 26.31c5.205 3.947 12.621 3.008 16.665-2.122 17.864-22.658 30.113-35.797 57.303-35.797 20.429 0 45.698 13.148 45.698 32.958 0 14.976-12.363 22.667-32.534 33.976C247.128 238.528 216 254.941 216 296v4c0 6.627 5.373 12 12 12h56c6.627 0 12-5.373 12-12v-1.333c0-28.462 83.186-29.647 83.186-106.667 0-58.002-60.165-102-116.531-102zM256 338c-25.365 0-46 20.635-46 46 0 25.364 20.635 46 46 46s46-20.636 46-46c0-25.365-20.635-46-46-46z"></path></svg> <strong>Help Center</strong></a></li></ul><ul class="footer-links-tertiary list-inline margin-bottom-1x"><li class="small">Find new research papers in:</li><li class="small"><a href="https://www.academia.edu/Documents/in/Physics">Physics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Chemistry">Chemistry</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Biology">Biology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Health_Sciences">Health Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Ecology">Ecology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Earth_Sciences">Earth Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Cognitive_Science">Cognitive Science</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Mathematics">Mathematics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Computer_Science">Computer Science</a></li></ul></div></div><div class="DesignSystem" id="credit" style="width:100%;"><ul class="u-pl0x footer-links-legal list-inline"><li><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li>Academia ©2024</li></ul></div><script> //<![CDATA[ window.detect_gmtoffset = true; window.Academia && window.Academia.set_gmtoffset && Academia.set_gmtoffset('/gmtoffset'); //]]> </script> <div id='overlay_background'></div> <div id='bootstrap-modal-container' class='bootstrap'></div> <div id='ds-modal-container' class='bootstrap DesignSystem'></div> <div id='full-screen-modal'></div> </div> </body> </html>