CINXE.COM

Search results for: atmospheric deposition

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: atmospheric deposition</title> <meta name="description" content="Search results for: atmospheric deposition"> <meta name="keywords" content="atmospheric deposition"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="atmospheric deposition" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="atmospheric deposition"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 1508</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: atmospheric deposition</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1358</span> Application of Rapid Prototyping to Create Additive Prototype Using Computer System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Meftah%20O.%20Bashir">Meftah O. Bashir</a>, <a href="https://publications.waset.org/abstracts/search?q=Fatma%20A.%20Karkory"> Fatma A. Karkory</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Rapid prototyping is a new group of manufacturing processes, which allows fabrication of physical of any complexity using a layer by layer deposition technique directly from a computer system. The rapid prototyping process greatly reduces the time and cost necessary to bring a new product to market. The prototypes made by these systems are used in a range of industrial application including design evaluation, verification, testing, and as patterns for casting processes. These processes employ a variety of materials and mechanisms to build up the layers to build the part. The present work was to build a FDM prototyping machine that could control the X-Y motion and material deposition, to generate two-dimensional and three-dimensional complex shapes. This study focused on the deposition of wax material. This work was to find out the properties of the wax materials used in this work in order to enable better control of the FDM process. This study will look at the integration of a computer controlled electro-mechanical system with the traditional FDM additive prototyping process. The characteristics of the wax were also analysed in order to optimize the model production process. These included wax phase change temperature, wax viscosity and wax droplet shape during processing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rapid%20prototyping" title="rapid prototyping">rapid prototyping</a>, <a href="https://publications.waset.org/abstracts/search?q=wax" title=" wax"> wax</a>, <a href="https://publications.waset.org/abstracts/search?q=manufacturing%20processes" title=" manufacturing processes"> manufacturing processes</a>, <a href="https://publications.waset.org/abstracts/search?q=shape" title=" shape "> shape </a> </p> <a href="https://publications.waset.org/abstracts/25158/application-of-rapid-prototyping-to-create-additive-prototype-using-computer-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25158.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">464</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1357</span> Numerical Modelling of Wind Dispersal Seeds of Bromeliad Tillandsia recurvata L. (L.) Attached to Electric Power Lines</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bruna%20P.%20De%20Souza">Bruna P. De Souza</a>, <a href="https://publications.waset.org/abstracts/search?q=Ricardo%20C.%20De%20Almeida"> Ricardo C. De Almeida</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In some cities in the State of Parana – Brazil and in other countries atmospheric bromeliads (Tillandsia spp - Bromeliaceae) are considered weeds in trees, electric power lines, satellite dishes and other artificial supports. In this study, a numerical model was developed to simulate the seed dispersal of the Tillandsia recurvata species by wind with the objective of evaluating seeds displacement in the city of Ponta Grossa – PR, Brazil, since it is considered that the region is already infested. The model simulates the dispersal of each individual seed integrating parameters from the atmospheric boundary layer (ABL) and the local wind, simulated by the Weather Research Forecasting (WRF) mesoscale atmospheric model for the 2012 to 2015 period. The dispersal model also incorporates the approximate number of bromeliads and source height data collected from most infested electric power lines. The seeds terminal velocity, which is an important input data but was not available in the literature, was measured by an experiment with fifty-one seeds of Tillandsia recurvata. Wind is the main dispersal agent acting on plumed seeds whereas atmospheric turbulence is a determinant factor to transport the seeds to distances beyond 200 meters as well as to introduce random variability in the seed dispersal process. Such variability was added to the model through the application of an Inverse Fast Fourier Transform to wind velocity components energy spectra based on boundary-layer meteorology theory and estimated from micrometeorological parameters produced by the WRF model. Seasonal and annual wind means were obtained from the surface wind data simulated by WRF for Ponta Grossa. The mean wind direction is assumed to be the most probable direction of bromeliad seed trajectory. Moreover, the atmospheric turbulence effect and dispersal distances were analyzed in order to identify likely regions of infestation around Ponta Grossa urban area. It is important to mention that this model could be applied to any species and local as long as seed’s biological data and meteorological data for the region of interest are available. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=atmospheric%20turbulence" title="atmospheric turbulence">atmospheric turbulence</a>, <a href="https://publications.waset.org/abstracts/search?q=bromeliad" title=" bromeliad"> bromeliad</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20model" title=" numerical model"> numerical model</a>, <a href="https://publications.waset.org/abstracts/search?q=seed%20dispersal" title=" seed dispersal"> seed dispersal</a>, <a href="https://publications.waset.org/abstracts/search?q=terminal%20velocity" title=" terminal velocity"> terminal velocity</a>, <a href="https://publications.waset.org/abstracts/search?q=wind" title=" wind"> wind</a> </p> <a href="https://publications.waset.org/abstracts/87334/numerical-modelling-of-wind-dispersal-seeds-of-bromeliad-tillandsia-recurvata-l-l-attached-to-electric-power-lines" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/87334.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">141</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1356</span> Selective Oxidation of Ammonia to Nitrogen over Nickel Oxide-hydroxide /Graphite Prepared with an Electro Deposition Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Marzieh%20Joda">Marzieh Joda</a>, <a href="https://publications.waset.org/abstracts/search?q=Narges%20Fallah"> Narges Fallah</a>, <a href="https://publications.waset.org/abstracts/search?q=Neda%20Afsham"> Neda Afsham</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Graphite-supported two different of morphology α and β -Ni (OH)₂ electrodes were prepared by electrochemical deposition at appropriate potentials with regard to Ni (II)/Ni (III) redox couple under alkaline and acidic conditions, respectively, for selective oxidation of ammonia to nitrogen in the direct electro-oxidation process. Cyclic voltammetry (CV) of the electrolyte containing NH₃ indicated mediation of electron transfer by Ni (OH)₂ and the electrode surface was analyzed by X-ray diffraction (XRD), scanning electron microscope (SEM), Raman spectrometer (RS), and X-ray photoelectron spectroscopy (XPS). Results of surface characterization indicated the presence of α polymorphs which is the stable phase of Ni (OH)₂ /Graphite. Cyclic voltammograms gave information on the nature of electron transfer between nitrogen species and working electrode and revealed that the potential has depended on both nature ammonia oxidation and that of concentration. The mechanism of selective ammonia conversion to nitrogen and byproducts, namely NO₂- and NO₃- was established by Cyclic voltammograms and current efficiency. The removal efficiency and selective conversion of ammonia (0.1 M KNO₃ + 0.01 M Ni(NO₃)₂, pH 11, 250°C) on Nickel Oxide-hydroxide /Graphite was determined based on potential controlled experiments. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Electro%20deposition" title="Electro deposition">Electro deposition</a>, <a href="https://publications.waset.org/abstracts/search?q=Nickel%20oxide-hydroxide" title=" Nickel oxide-hydroxide"> Nickel oxide-hydroxide</a>, <a href="https://publications.waset.org/abstracts/search?q=Nitrogen%20selectivity" title=" Nitrogen selectivity"> Nitrogen selectivity</a>, <a href="https://publications.waset.org/abstracts/search?q=Ammonia%20oxidation" title=" Ammonia oxidation"> Ammonia oxidation</a> </p> <a href="https://publications.waset.org/abstracts/132084/selective-oxidation-of-ammonia-to-nitrogen-over-nickel-oxide-hydroxide-graphite-prepared-with-an-electro-deposition-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/132084.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">221</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1355</span> Hardness Properties of 3D Printed PLA Parts by Fused Deposition Modeling Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anis%20A.%20Ansari">Anis A. Ansari</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Kamil"> M. Kamil</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The development of 3D printing technology has allowed the manufacturing industry to create parts with a high degree of automation, increased design freedom, and improved mechanical performance. Fused deposition modelling (FDM) is a 3D printing technique in which successive layers of thermoplastic polymer are deposited and controlled to create a three-dimensional product. In this study, process parameters such as nozzle temperature and printing speed were chosen to investigate their effects on hardness properties. 3D printed specimens were fabricated by an FDM 3D printer from Polylactic acid (PLA) polymer. After analysis, it was observed that the hardness property is much influenced by print speed and nozzle temperature parameters. Maximum hardness was achieved at higher print speed which indicates that the Shore D hardness is directly proportional to the print speed. Moreover, at higher print speed, it has no significant dependence on the nozzle temperature. Hardness is also influenced by nozzle temperature, though to a lesser extent. The hardness slightly lowers when the nozzle temperature is raised from 190 to 210 oC, but due to improved bonding between each raster, a further rise in temperature increases the hardness property. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=3D%20printing" title="3D printing">3D printing</a>, <a href="https://publications.waset.org/abstracts/search?q=fused%20deposition%20modeling%20%28FDM%29" title=" fused deposition modeling (FDM)"> fused deposition modeling (FDM)</a>, <a href="https://publications.waset.org/abstracts/search?q=polylactic%20acid%20%28PLA%29" title=" polylactic acid (PLA)"> polylactic acid (PLA)</a>, <a href="https://publications.waset.org/abstracts/search?q=print%20speed" title=" print speed"> print speed</a>, <a href="https://publications.waset.org/abstracts/search?q=nozzle%20temperature" title=" nozzle temperature"> nozzle temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=hardness%20property" title=" hardness property"> hardness property</a> </p> <a href="https://publications.waset.org/abstracts/163369/hardness-properties-of-3d-printed-pla-parts-by-fused-deposition-modeling-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163369.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">96</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1354</span> Effect of Pack Aluminising Conditions on βNiAl Coatings </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20D.%20Chandio">A. D. Chandio</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Xiao"> P. Xiao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, nickel aluminide coatings were deposited onto CMSX-4 single crystal superalloy and pure Ni substrates by using in-situ chemical vapour deposition (CVD) technique. The microstructural evolutions and coating thickness (CT) were studied upon the variation of processing conditions i.e. time and temperature. The results demonstrated (under identical conditions) that coating formed on pure Ni contains no substrate entrapments and have lower CT in comparison to one deposited on the CMSX-4 counterpart. In addition, the interdiffusion zone (IDZ) of Ni substrate is a &gamma;&rsquo;-Ni3Al in comparison to the CMSX-4 alloy that is &beta;NiAl phase. The higher CT on CMSX-4 superalloy is attributed to presence of &gamma;-Ni/&gamma;&rsquo;-Ni3Al structure which contains ~ 15 at.% Al before deposition (that is already present in superalloy). Two main deposition parameters (time and temperature) of the coatings were also studied in addition to standard comparison of substrate effects. The coating formation time was found to exhibit profound effect on CT, whilst temperature was found to change coating activities. In addition, the CT showed linear trend from 800 to 1000 &deg;C, thereafter reduction was observed. This was attributed to the change in coating activities. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=%CE%B2NiAl" title="βNiAl">βNiAl</a>, <a href="https://publications.waset.org/abstracts/search?q=in-situ%20CVD" title=" in-situ CVD"> in-situ CVD</a>, <a href="https://publications.waset.org/abstracts/search?q=CT" title=" CT"> CT</a>, <a href="https://publications.waset.org/abstracts/search?q=CMSX-4" title=" CMSX-4"> CMSX-4</a>, <a href="https://publications.waset.org/abstracts/search?q=Ni" title=" Ni"> Ni</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructure" title=" microstructure"> microstructure</a> </p> <a href="https://publications.waset.org/abstracts/49095/effect-of-pack-aluminising-conditions-on-vnial-coatings" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49095.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">240</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1353</span> Study of Large-Scale Atmospheric Convection over the Tropical Indian Ocean and Its Association with Oceanic Variables</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Supriya%20Manikrao%20Ovhal">Supriya Manikrao Ovhal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In India, the summer monsoon rainfall occurs owing to large scale convection with reference to continental ITCZ. It was found that convection over tropical ocean increases with SST from 26 to 28 degree C, and when SST is above 29 degree C, it sharply decreases for warm pool areas of Indian and for monsoon areas of West Pacific Ocean. The reduction in convection can be influenced by large scale subsidence forced by nearby or remotely generated deep convection, thus it was observed that under the influence of strong large scale rising motion, convection does not decreases but increases monotonically with SST even if SST value is higher than 29.5 degree C. Since convection is related to SST gradient, that helps to generate low level moisture convergence and upward vertical motion in the atmosphere. Strong wind fields like cross equatorial low level jet stream on equator ward side of the warm pool are produced due to convection initiated by SST gradient. Areas having maximum SST have low SST gradient, and that result in feeble convection. Hence it is imperative to mention that the oceanic role (other than SST) could be prominent in influencing large Scale Atmospheric convection. Since warm oceanic surface somewhere or the other contributes to penetrate the heat radiation to the subsurface of the ocean, and as there is no studies seen related to oceanic subsurface role in large Scale Atmospheric convection, in the present study, we are concentrating on the oceanic subsurface contribution in large Scale Atmospheric convection by considering the SST gradient, mixed layer depth (MLD), thermocline, barrier layer. The present study examines the probable role of subsurface ocean parameters in influencing convection. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sst" title="sst">sst</a>, <a href="https://publications.waset.org/abstracts/search?q=d20" title=" d20"> d20</a>, <a href="https://publications.waset.org/abstracts/search?q=olr" title=" olr"> olr</a>, <a href="https://publications.waset.org/abstracts/search?q=wind" title=" wind"> wind</a> </p> <a href="https://publications.waset.org/abstracts/156972/study-of-large-scale-atmospheric-convection-over-the-tropical-indian-ocean-and-its-association-with-oceanic-variables" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/156972.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">93</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1352</span> Impact of Process Parameters on Tensile Strength of Fused Deposition Modeling Printed Crisscross Poylactic Acid </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shilpesh%20R.%20Rajpurohit">Shilpesh R. Rajpurohit</a>, <a href="https://publications.waset.org/abstracts/search?q=Harshit%20K.%20Dave"> Harshit K. Dave</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Additive manufacturing gains the popularity in recent times, due to its capability to create prototype as well functional as end use product directly from CAD data without any specific requirement of tooling. Fused deposition modeling (FDM) is one of the widely used additive manufacturing techniques that are used to create functional end use part of polymer that is comparable with the injection-molded parts. FDM printed part has an application in various fields such as automobile, aerospace, medical, electronic, etc. However, application of FDM part is greatly affected by poor mechanical properties. Proper selection of the process parameter could enhance the mechanical performance of the printed part. In the present study, experimental investigation has been carried out to study the behavior of the mechanical performance of the printed part with respect to process variables. Three process variables viz. raster angle, raster width and layer height have been varied to understand its effect on tensile strength. Further, effect of process variables on fractured surface has been also investigated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=3D%20Printing" title="3D Printing">3D Printing</a>, <a href="https://publications.waset.org/abstracts/search?q=fused%20deposition%20modeling" title=" fused deposition modeling"> fused deposition modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=layer%20height" title=" layer height"> layer height</a>, <a href="https://publications.waset.org/abstracts/search?q=raster%20angle" title=" raster angle"> raster angle</a>, <a href="https://publications.waset.org/abstracts/search?q=raster%20width" title=" raster width"> raster width</a>, <a href="https://publications.waset.org/abstracts/search?q=tensile%20strength" title=" tensile strength"> tensile strength</a> </p> <a href="https://publications.waset.org/abstracts/86207/impact-of-process-parameters-on-tensile-strength-of-fused-deposition-modeling-printed-crisscross-poylactic-acid" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/86207.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">197</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1351</span> Atmospheric Circulation Types Related to Dust Transport Episodes over Crete in the Eastern Mediterranean</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Alafogiannis">K. Alafogiannis</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20E.%20Houssos"> E. E. Houssos</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Anagnostou"> E. Anagnostou</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Kouvarakis"> G. Kouvarakis</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Mihalopoulos"> N. Mihalopoulos</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Fotiadi"> A. Fotiadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Mediterranean basin is an area where different aerosol types coexist, including urban/industrial, desert dust, biomass burning and marine particles. Particularly, mineral dust aerosols, mostly originated from North African deserts, significantly contribute to high aerosol loads above the Mediterranean. Dust transport, controlled by the variation of the atmospheric circulation throughout the year, results in a strong spatial and temporal variability of aerosol properties. In this study, the synoptic conditions which favor dust transport over the Eastern Mediterranean are thoroughly investigated. For this reason, three datasets are employed. Firstly, ground-based daily data of aerosol properties, namely Aerosol Optical Thickness (AOT), Ångström exponent (α440-870) and fine fraction from the FORTH-AERONET (Aerosol Robotic Network) station along with measurements of PM10 concentrations from Finokalia station, for the period 2003-2011, are used to identify days with high coarse aerosol load (episodes) over Crete. Then, geopotential height at 1000, 850 and 700 hPa levels obtained from the NCEP/NCAR Reanalysis Project, are utilized to depict the atmospheric circulation during the identified episodes. Additionally, air-mass back trajectories, calculated by HYSPLIT, are used to verify the origin of aerosols from neighbouring deserts. For the 227 identified dust episodes, the statistical methods of Factor and Cluster Analysis are applied on the corresponding atmospheric circulation data to reveal the main types of the synoptic conditions favouring dust transport towards Crete (Eastern Mediterranean). The 227 cases are classified into 11 distinct types (clusters). Dust episodes in Eastern Mediterranean, are found to be more frequent (52%) in spring with a secondary maximum in autumn. The main characteristic of the atmospheric circulation associated with dust episodes, is the presence of a low-pressure system at surface, either in southwestern Europe or western/central Mediterranean, which induces a southerly air flow favouring dust transport from African deserts. The exact position and the intensity of the low-pressure system vary notably among clusters. More rarely dust may originate from deserts of Arabian Peninsula. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aerosols" title="aerosols">aerosols</a>, <a href="https://publications.waset.org/abstracts/search?q=atmospheric%20circulation" title=" atmospheric circulation"> atmospheric circulation</a>, <a href="https://publications.waset.org/abstracts/search?q=dust%20particles" title=" dust particles"> dust particles</a>, <a href="https://publications.waset.org/abstracts/search?q=Eastern%20Mediterranean" title=" Eastern Mediterranean"> Eastern Mediterranean</a> </p> <a href="https://publications.waset.org/abstracts/63484/atmospheric-circulation-types-related-to-dust-transport-episodes-over-crete-in-the-eastern-mediterranean" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63484.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">229</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1350</span> Grey Prediction of Atmospheric Pollutants in Shanghai Based on GM(1,1) Model Group</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Diqin%20Qi">Diqin Qi</a>, <a href="https://publications.waset.org/abstracts/search?q=Jiaming%20Li"> Jiaming Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Siman%20Li"> Siman Li</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Based on the use of the three-point smoothing method for selectively processing original data columns, this paper establishes a group of grey GM(1,1) models to predict the concentration ranges of four major air pollutants in Shanghai from 2023 to 2024. The results indicate that PM₁₀, SO₂, and NO₂ maintain the national Grade I standards, while the concentration of PM₂.₅ has decreased but still remains within the national Grade II standards. Combining the forecast results, recommendations are provided for the Shanghai municipal government's efforts in air pollution prevention and control. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=atmospheric%20pollutant%20prediction" title="atmospheric pollutant prediction">atmospheric pollutant prediction</a>, <a href="https://publications.waset.org/abstracts/search?q=Grey%20GM%281" title=" Grey GM(1"> Grey GM(1</a>, <a href="https://publications.waset.org/abstracts/search?q=1%29" title=" 1)"> 1)</a>, <a href="https://publications.waset.org/abstracts/search?q=model%20group" title=" model group"> model group</a>, <a href="https://publications.waset.org/abstracts/search?q=three-point%20smoothing%20method" title=" three-point smoothing method"> three-point smoothing method</a> </p> <a href="https://publications.waset.org/abstracts/185942/grey-prediction-of-atmospheric-pollutants-in-shanghai-based-on-gm11-model-group" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/185942.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">35</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1349</span> Electrophoretic Deposition of p-Type Bi2Te3 for Thermoelectric Applications </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tahereh%20Talebi">Tahereh Talebi</a>, <a href="https://publications.waset.org/abstracts/search?q=Reza%20Ghomashchi"> Reza Ghomashchi</a>, <a href="https://publications.waset.org/abstracts/search?q=Pejman%20Talemi"> Pejman Talemi</a>, <a href="https://publications.waset.org/abstracts/search?q=Sima%20Aminorroaya"> Sima Aminorroaya </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Electrophoretic deposition (EPD) of p-type Bi<sub>2</sub>Te<sub>3</sub> material has been accomplished, and a high quality crack-free thick film has been achieved for thermoelectric (TE) applications. TE generators (TEG) can convert waste heat into electricity, which can potentially solve global warming problems. However, TEG is expensive due to the high cost of materials, as well as the complex and expensive manufacturing process. EPD is a simple and cost-effective method which has been used recently for advanced applications. In EPD, when a DC electric field is applied to the charged powder particles suspended in a suspension, they are attracted and deposited on the substrate with the opposite charge. In this study, it has been shown that it is possible to prepare a TE film using the EPD method and potentially achieve high TE properties at low cost. The relationship between the deposition weight and the EPD-related process parameters, such as applied voltage and time, has been investigated and a linear dependence has been observed, which is in good agreement with the theoretical principles of EPD. A stable EPD suspension of p-type Bi<sub>2</sub>Te<sub>3</sub> was prepared in a mixture of acetone-ethanol with triethanolamine as a stabilizer. To achieve a high quality homogenous film on a copper substrate, the optimum voltage and time of the EPD process was investigated. The morphology and microstructures of the green deposited films have been investigated using a scanning electron microscope (SEM). The green Bi<sub>2</sub>Te<sub>3</sub> films have shown good adhesion to the substrate. In summary, this study has shown that not only EPD of p-type Bi<sub>2</sub>Te<sub>3</sub> material is possible, but its thick film is of high quality for TE applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electrical%20conductivity" title="electrical conductivity">electrical conductivity</a>, <a href="https://publications.waset.org/abstracts/search?q=electrophoretic%20deposition" title=" electrophoretic deposition"> electrophoretic deposition</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20property" title=" mechanical property"> mechanical property</a>, <a href="https://publications.waset.org/abstracts/search?q=p-type%20Bi2Te3" title=" p-type Bi2Te3"> p-type Bi2Te3</a>, <a href="https://publications.waset.org/abstracts/search?q=Seebeck%20coefficient" title=" Seebeck coefficient"> Seebeck coefficient</a>, <a href="https://publications.waset.org/abstracts/search?q=thermoelectric%20materials" title=" thermoelectric materials"> thermoelectric materials</a>, <a href="https://publications.waset.org/abstracts/search?q=thick%20films" title=" thick films"> thick films</a> </p> <a href="https://publications.waset.org/abstracts/54830/electrophoretic-deposition-of-p-type-bi2te3-for-thermoelectric-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54830.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">166</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1348</span> Amyloid Deposition in Granuloma of Tuberculosis Patients: A Pilot Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shreya%20Ghosh">Shreya Ghosh</a>, <a href="https://publications.waset.org/abstracts/search?q=Akansha%20Garg"> Akansha Garg</a>, <a href="https://publications.waset.org/abstracts/search?q=Chayanika%20Kala"> Chayanika Kala</a>, <a href="https://publications.waset.org/abstracts/search?q=Ashwani%20Kumar%20Thakur"> Ashwani Kumar Thakur</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Granuloma formation is one of the characteristic features of tuberculosis. Besides, chronic inflammation underlying tuberculosis is often indicated by an increase in the concentration of serum amyloid A (SAA) protein. The connection between tuberculosis and SAA-driven secondary amyloidosis is well documented. However, SAA-derived amyloid deposition start sites are not well understood in tuberculosis and other chronic inflammatory conditions. It was hypothesized that granuloma could be a potential site for an amyloid deposition because both SAA protein and proteases that cleave SAA into aggregation-prone fragments are reported to be present in the granuloma. Here the authors have shown the presence of SAA-derived amyloid deposits in the granuloma of tuberculosis patients. Methodology: Over a period of two years, tuberculosis patients were screened, and biopsies were collected from the affected organs of the patients. The gold standard, Congo red dye staining, was used to identify amyloid deposits in the tissue sections of tuberculosis patients containing granulomatous structure. Results: 11 out of 150 FFPE biopsy specimens of tuberculosis patients showed eosinophilic hyaline-rich deposits surrounding granuloma. Upon Congo red staining, these deposits exhibited characteristic apple-green birefringence under polarized light, confirming amyloid deposits. Further, upon immunohistochemical staining with anti-SAA, the amyloid enriched areas showed positive immunoreactivity. Conclusion: In this pilot study, we have shown that granuloma can be a potential site for serum amyloid A-derived amyloid formation in tuberculosis patients. Moreover, the presence of amyloid gave significant cues that granuloma might be a probable amyloid deposition start in tuberculosis patients. This study will set a stage to expand the clinical and fundamental research in the understanding of amyloid formation in granuloma underlying tuberculosis and chronic inflammatory conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=amyloid" title="amyloid">amyloid</a>, <a href="https://publications.waset.org/abstracts/search?q=granuloma" title=" granuloma"> granuloma</a>, <a href="https://publications.waset.org/abstracts/search?q=periphery" title=" periphery"> periphery</a>, <a href="https://publications.waset.org/abstracts/search?q=serum%20amyloid%20A" title=" serum amyloid A"> serum amyloid A</a>, <a href="https://publications.waset.org/abstracts/search?q=tuberculosis" title=" tuberculosis"> tuberculosis</a> </p> <a href="https://publications.waset.org/abstracts/136557/amyloid-deposition-in-granuloma-of-tuberculosis-patients-a-pilot-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/136557.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">195</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1347</span> Contribution of Hydrogen Peroxide in the Selective Aspect of Prostate Cancer Treatment by Cold Atmospheric Plasma</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maxime%20Moreau">Maxime Moreau</a>, <a href="https://publications.waset.org/abstracts/search?q=Silv%C3%A8re%20Baron"> Silvère Baron</a>, <a href="https://publications.waset.org/abstracts/search?q=Jean-Marc%20Lobaccaro"> Jean-Marc Lobaccaro</a>, <a href="https://publications.waset.org/abstracts/search?q=Karine%20Charlet"> Karine Charlet</a>, <a href="https://publications.waset.org/abstracts/search?q=S%C3%A9bastien%20Menecier"> Sébastien Menecier</a>, <a href="https://publications.waset.org/abstracts/search?q=Fr%C3%A9d%C3%A9ric%20Perisse"> Frédéric Perisse</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cold Atmospheric Plasma (CAP) is an ionized gas generated at atmospheric pressure with the temperature of heavy particles (molecules, ions, atoms) close to the room temperature. Recent studies have shown that both in-vitro and in-vivo plasma exposition to many cancer cell lines are efficient to induce the apoptotic way of cell death. In some other works, normal cell lines seem to be less impacted by plasma than cancer cell lines. This is called selectivity of plasma. It is highly likely that the generated RNOS (Reactive Nitrogen Oxygen Species) in the plasma jet, but also in the medium, play a key-role in this selectivity. In this study, two CAP devices will be compared to electrical power, chemical species composition and their efficiency to kill cancer cells. A particular focus on the action of hydrogen peroxide will be made. The experiments will take place as described next for both devices: electrical and spectroscopic characterization for different voltages, plasma treatment of normal and cancer cells to compare the CAP efficiency between cell lines and to show that death is induced by an oxidative stress. To enlighten the importance of hydrogen peroxide, an inhibitor of H2O2 will be added in cell culture medium before treatment and a comparison will be made between the results of cell viability in this case and those from a simple plasma exposition. Besides, H2O2 production will be measured by only treating medium with plasma. Cell lines will also be exposed to different concentrations of hydrogen peroxide in order to characterize the cytotoxic threshold for cells and to make a comparison with the quantity of H2O2 produced by CAP devices. Finally, the activity of catalase for different cell lines will be quantified. This enzyme is an important antioxidant agent against hydrogen peroxide. A correlation between cells response to plasma exposition and this activity could be a strong argument in favor of the predominant role of H2O2 to explain the selectivity of plasma cancer treatment by cold atmospheric plasma. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cold%20atmospheric%20plasma" title="cold atmospheric plasma">cold atmospheric plasma</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogen%20peroxide" title=" hydrogen peroxide"> hydrogen peroxide</a>, <a href="https://publications.waset.org/abstracts/search?q=prostate%20cancer" title=" prostate cancer"> prostate cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=selectivity" title=" selectivity"> selectivity</a> </p> <a href="https://publications.waset.org/abstracts/153096/contribution-of-hydrogen-peroxide-in-the-selective-aspect-of-prostate-cancer-treatment-by-cold-atmospheric-plasma" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/153096.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">148</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1346</span> Process Optimization for 2205 Duplex Stainless Steel by Laser Metal Deposition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Siri%20Marthe%20Arbo">Siri Marthe Arbo</a>, <a href="https://publications.waset.org/abstracts/search?q=Afaf%20Saai"> Afaf Saai</a>, <a href="https://publications.waset.org/abstracts/search?q=Sture%20S%C3%B8rli"> Sture Sørli</a>, <a href="https://publications.waset.org/abstracts/search?q=Mette%20Nedreberg"> Mette Nedreberg</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work aims to establish a reliable approach for optimizing a Laser Metal Deposition (LMD) process for a critical maritime component, based on the material properties and structural performance required by the maritime industry. The component of interest is a water jet impeller, for which specific requirements for material properties are defined. The developed approach is based on the assessment of the effects of LMD process parameters on microstructure and material performance of standard AM 2205 duplex stainless steel powder. Duplex stainless steel offers attractive properties for maritime applications, combining high strength, enhanced ductility and excellent corrosion resistance due to the specific amounts of ferrite and austenite. These properties are strongly affected by the microstructural characteristics in addition to microstructural defects such as porosity and welding defects, all strongly influenced by the chosen LMD process parameters. In this study, the influence of deposition speed and heat input was evaluated. First, the influences of deposition speed and heat input on the microstructure characteristics, including ferrite/austenite fraction, amount of porosity and welding defects, were evaluated. Then, the achieved mechanical properties were evaluated by standard testing methods, measuring the hardness, tensile strength and elongation, bending force and impact energy. The measured properties were compared to the requirements of the water jet impeller. The results show that the required amounts of ferrite and austenite can be achieved directly by the LMD process without post-weld heat treatments. No intermetallic phases were observed in the material produced by the investigated process parameters. A high deposition speed was found to reduce the ductility due to the formation of welding defects. An increased heat input was associated with reduced strength due to the coarsening of the ferrite/austenite microstructure. The microstructure characterizations and measured mechanical performance demonstrate the great potential of the LMD process and generate a valuable database for the optimization of the LMD process for duplex stainless steels. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=duplex%20stainless%20steel" title="duplex stainless steel">duplex stainless steel</a>, <a href="https://publications.waset.org/abstracts/search?q=laser%20metal%20deposition" title=" laser metal deposition"> laser metal deposition</a>, <a href="https://publications.waset.org/abstracts/search?q=process%20optimization" title=" process optimization"> process optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructure" title=" microstructure"> microstructure</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a> </p> <a href="https://publications.waset.org/abstracts/140052/process-optimization-for-2205-duplex-stainless-steel-by-laser-metal-deposition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/140052.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">218</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1345</span> Atmospheric Transport Modeling of Radio-Xenon Detections Possibly Related to the Announced Nuclear Test in North Korea on February 12, 2013</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kobi%20Kutsher">Kobi Kutsher</a> </p> <p class="card-text"><strong>Abstract:</strong></p> On February 12th 2013, monitoring stations of the Preparatory Commission of the Comprehensive Nuclear Test-Ban Treaty Organization (CTBTO) detected a seismic event with explosion-like underground characteristics in the Democratic People’s Republic of Korea (DPRK). The location was found to be in the vicinity of the two previous announced nuclear tests in 2006 and 2009.The nuclear test was also announced by the government of the DPRK.After an underground nuclear explosion, radioactive fission products (mostly noble gases) can seep through layers of rock and sediment until they escape into the atmosphere. The fission products are dispersed in the atmosphere and may be detected thousands of kilometers downwind from the test site. Indeed, more than 7 weeks after the explosion, unusual detections of noble gases was reported at the radionuclide station in Takasaki, Japan. The radionuclide station is a part of the International Monitoring System, operated to verify the CTBT. This study provides an estimation of the possible source region and the total radioactivity of the release using Atmospheric Transport Modeling. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=atmospheric%20transport%20modeling" title="atmospheric transport modeling">atmospheric transport modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=CTBTO" title=" CTBTO"> CTBTO</a>, <a href="https://publications.waset.org/abstracts/search?q=nuclear%20tests" title=" nuclear tests"> nuclear tests</a>, <a href="https://publications.waset.org/abstracts/search?q=radioactive%20fission%20products" title=" radioactive fission products "> radioactive fission products </a> </p> <a href="https://publications.waset.org/abstracts/25903/atmospheric-transport-modeling-of-radio-xenon-detections-possibly-related-to-the-announced-nuclear-test-in-north-korea-on-february-12-2013" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25903.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">425</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1344</span> Characteristics of the Particle Size Distribution and Exposure Concentrations of Nanoparticles Generated from the Laser Metal Deposition Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yu-Hsuan%20Liu">Yu-Hsuan Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Ying-Fang%20Wang"> Ying-Fang Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objectives of the present study are to characterize nanoparticles generated from the laser metal deposition (LMD) process and to estimate particle concentrations deposited in the head (H), that the tracheobronchial (TB) and alveolar (A) regions, respectively. The studied LMD chamber (3.6m × 3.8m × 2.9m) is installed with a robot laser metal deposition machine. Direct-reading instrument of a scanning mobility particle sizer (SMPS, Model 3082, TSI Inc., St. Paul, MN, USA) was used to conduct static sampling inside the chamber for nanoparticle number concentration and particle size distribution measurements. The SMPS obtained particle number concentration at every 3 minutes, the diameter of the SMPS ranged from 11~372 nm when the aerosol and sheath flow rates were set at 0.6 and 6 L / min, respectively. The resultant size distributions were used to predict depositions of nanoparticles at the H, TB, and A regions of the respiratory tract using the UK National Radiological Protection Board’s (NRPB’s) LUDEP Software. Result that the number concentrations of nanoparticles in indoor background and LMD chamber were 4.8×10³ and 4.3×10⁵ # / cm³, respectively. However, the nanoparticles emitted from the LMD process was in the form of the uni-modal with number median diameter (NMD) and geometric standard deviation (GSD) as 142nm and 1.86, respectively. The fractions of the nanoparticles deposited on the alveolar region (A: 69.8%) were higher than the other two regions of the head region (H: 10.9%), tracheobronchial region (TB: 19.3%). This study conducted static sampling to measure the nanoparticles in the LMD process, and the results show that the fraction of particles deposited on the A region was higher than the other two regions. Therefore, applying the characteristics of nanoparticles emitted from LMD process could be provided valuable scientific-based evidence for exposure assessments in the future. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=exposure%20assessment" title="exposure assessment">exposure assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=laser%20metal%20deposition%20process" title=" laser metal deposition process"> laser metal deposition process</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoparticle" title=" nanoparticle"> nanoparticle</a>, <a href="https://publications.waset.org/abstracts/search?q=respiratory%20region" title=" respiratory region"> respiratory region</a> </p> <a href="https://publications.waset.org/abstracts/71496/characteristics-of-the-particle-size-distribution-and-exposure-concentrations-of-nanoparticles-generated-from-the-laser-metal-deposition-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71496.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">284</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1343</span> A Method for Harvesting Atmospheric Lightning-Energy and Utilization of Extra Generated Power of Nuclear Power Plants during the Low Energy Demand Periods</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Akbar%20Rahmani%20Nejad">Akbar Rahmani Nejad</a>, <a href="https://publications.waset.org/abstracts/search?q=Pejman%20Rahmani%20Nejad"> Pejman Rahmani Nejad</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmad%20Rahmani%20Nejad"> Ahmad Rahmani Nejad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> we proposed the arresting of atmospheric lightning and passing the electrical current of lightning-bolts through underground water tanks to produce Hydrogen and restoring Hydrogen in reservoirs to be used later as clean and sustainable energy. It is proposed to implement this method for storage of extra electrical power (instead of lightning energy) during low energy demand periods to produce hydrogen as a clean energy source to store in big reservoirs and later generate electricity by burning the stored hydrogen at an appropriate time. This method prevents the complicated process of changing the output power of nuclear power plants. It is possible to pass an electric current through sodium chloride solution to produce chlorine and sodium or human waste to produce Methane, etc. however atmospheric lightning is an accidental phenomenon, but using this free energy just by connecting the output of lightning arresters to the output of power plant during low energy demand period which there is no significant change in the design of power plant or have no cost, can be considered completely an economical design <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hydrogen%20gas" title="hydrogen gas">hydrogen gas</a>, <a href="https://publications.waset.org/abstracts/search?q=lightning%20energy" title=" lightning energy"> lightning energy</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20plant" title=" power plant"> power plant</a>, <a href="https://publications.waset.org/abstracts/search?q=resistive%20element" title=" resistive element "> resistive element </a> </p> <a href="https://publications.waset.org/abstracts/129213/a-method-for-harvesting-atmospheric-lightning-energy-and-utilization-of-extra-generated-power-of-nuclear-power-plants-during-the-low-energy-demand-periods" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/129213.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">141</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1342</span> Flow Characterization in Complex Terrain for Aviation Safety</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adil%20Rasheed">Adil Rasheed</a>, <a href="https://publications.waset.org/abstracts/search?q=Mandar%20Tabib"> Mandar Tabib</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper describes the ability of a high-resolution Computational Fluid Dynamics model to predict terrain-induced turbulence and wind shear close to the ground. Various sensitivity studies to choose the optimal simulation setup for modeling the flow characteristics in a complex terrain are presented. The capabilities of the model are demonstrated by applying it to the Sandnessjøen Airport, Stokka in Norway, an airport that is located in a mountainous area. The model is able to forecast turbulence in real time and trigger an alert when atmospheric conditions might result in high wind shear and turbulence. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aviation%20safety" title="aviation safety">aviation safety</a>, <a href="https://publications.waset.org/abstracts/search?q=terrain-induced%20turbulence" title=" terrain-induced turbulence"> terrain-induced turbulence</a>, <a href="https://publications.waset.org/abstracts/search?q=atmospheric%20flow" title=" atmospheric flow"> atmospheric flow</a>, <a href="https://publications.waset.org/abstracts/search?q=alert%20system" title=" alert system"> alert system</a> </p> <a href="https://publications.waset.org/abstracts/42780/flow-characterization-in-complex-terrain-for-aviation-safety" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42780.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">416</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1341</span> Molecular Dynamic Simulation of Cold Spray Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aneesh%20Joshi">Aneesh Joshi</a>, <a href="https://publications.waset.org/abstracts/search?q=Sagil%20James"> Sagil James</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cold Spray (CS) process is deposition of solid particles over a substrate above a certain critical impact velocity. Unlike thermal spray processes, CS process does not melt the particles thus retaining their original physical and chemical properties. These characteristics make CS process ideal for various engineering applications involving metals, polymers, ceramics and composites. The bonding mechanism involved in CS process is extremely complex considering the dynamic nature of the process. Though CS process offers great promise for several engineering applications, the realization of its full potential is limited by the lack of understanding of the complex mechanisms involved in this process and the effect of critical process parameters on the deposition efficiency. The goal of this research is to understand the complex nanoscale mechanisms involved in CS process. The study uses Molecular Dynamics (MD) simulation technique to understand the material deposition phenomenon during the CS process. Impact of a single crystalline copper nanoparticle on copper substrate is modelled under varying process conditions. The quantitative results of the impacts at different velocities, impact angle and size of the particles are evaluated using flattening ratio, von Mises stress distribution and local shear strain. The study finds that the flattening ratio and hence the quality of deposition was highest for an impact velocity of 700 m/s, particle size of 20 Å and an impact angle of 90°. The stress and strain analysis revealed regions of shear instabilities in the periphery of impact and also revealed plastic deformation of the particles after the impact. The results of this study can be used to augment our existing knowledge in the field of CS processes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cold%20spray%20process" title="cold spray process">cold spray process</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20dynamics%20simulation" title=" molecular dynamics simulation"> molecular dynamics simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoparticles" title=" nanoparticles"> nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=particle%20impact" title=" particle impact"> particle impact</a> </p> <a href="https://publications.waset.org/abstracts/69846/molecular-dynamic-simulation-of-cold-spray-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69846.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">367</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1340</span> Effect of O2 Pressure of Fe-Doped TiO2 Nanostructure on Morphology Properties for Gas Sensing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Samar%20Y.%20Al-Dabagh">Samar Y. Al-Dabagh</a>, <a href="https://publications.waset.org/abstracts/search?q=Adawiya%20J.%20Haider"> Adawiya J. Haider</a>, <a href="https://publications.waset.org/abstracts/search?q=Mirvat%20D.%20Majed"> Mirvat D. Majed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Pure nanostructure TiO2 and thin films doped with transition metal Fe were prepared by pulsed laser deposition (PLD) on Si (111) substrate. The thin films structures were determined by X-ray diffraction (XRD). The morphology properties were determined from atomic force microscopy (AFM), which shows that the roughness increases when TiO2 is doped with Fe. Results show TiO2 doped with Fe metal thin films deposited on Si (111) substrate has maximum sensitivity to ethanol vapor at 10 mbar oxygen pressure than at 0.01 and 0.1 mbar with optimum operation temperature of 250°C. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pulsed%20laser%20deposition%20%28PLD%29" title="pulsed laser deposition (PLD)">pulsed laser deposition (PLD)</a>, <a href="https://publications.waset.org/abstracts/search?q=TiO2%20doped%20thin%20films" title=" TiO2 doped thin films"> TiO2 doped thin films</a>, <a href="https://publications.waset.org/abstracts/search?q=nanostructure" title=" nanostructure"> nanostructure</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20sensor" title=" gas sensor"> gas sensor</a> </p> <a href="https://publications.waset.org/abstracts/12159/effect-of-o2-pressure-of-fe-doped-tio2-nanostructure-on-morphology-properties-for-gas-sensing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12159.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">382</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1339</span> Simulation on Influence of Environmental Conditions on Part Distortion in Fused Deposition Modelling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anto%20Antony%20Samy">Anto Antony Samy</a>, <a href="https://publications.waset.org/abstracts/search?q=Atefeh%20Golbang"> Atefeh Golbang</a>, <a href="https://publications.waset.org/abstracts/search?q=Edward%20Archer"> Edward Archer</a>, <a href="https://publications.waset.org/abstracts/search?q=Alistair%20McIlhagger"> Alistair McIlhagger</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fused deposition modelling (FDM) is one of the additive manufacturing techniques that has become highly attractive in the industrial and academic sectors. However, parts fabricated through FDM are highly susceptible to geometrical defects such as warpage, shrinkage, and delamination that can severely affect their function. Among the thermoplastic polymer feedstock for FDM, semi-crystalline polymers are highly prone to part distortion due to polymer crystallization. In this study, the influence of FDM processing conditions such as chamber temperature and print bed temperature on the induced thermal residual stress and resulting warpage are investigated using the 3D transient thermal model for a semi-crystalline polymer. The thermo-mechanical properties and the viscoelasticity of the polymer, as well as the crystallization physics, which considers the crystallinity of the polymer, are coupled with the evolving temperature gradient of the print model. From the results, it was observed that increasing the chamber temperature from 25°C to 75°C lead to a decrease of 1.5% residual stress, while decreasing bed temperature from 100°C to 60°C, resulted in a 33% increase in residual stress and a significant rise of 138% in warpage. The simulated warpage data is validated by comparing it with the measured warpage values of the samples using 3D scanning. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20analysis" title="finite element analysis">finite element analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=fused%20deposition%20modelling" title=" fused deposition modelling"> fused deposition modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=residual%20stress" title=" residual stress"> residual stress</a>, <a href="https://publications.waset.org/abstracts/search?q=warpage" title=" warpage"> warpage</a> </p> <a href="https://publications.waset.org/abstracts/135610/simulation-on-influence-of-environmental-conditions-on-part-distortion-in-fused-deposition-modelling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/135610.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">187</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1338</span> Impact of Ship Traffic to PM 2.5 and Particle Number Concentrations in Three Port-Cities of the Adriatic/Ionian Area</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Daniele%20Contini">Daniele Contini</a>, <a href="https://publications.waset.org/abstracts/search?q=Antonio%20Donateo"> Antonio Donateo</a>, <a href="https://publications.waset.org/abstracts/search?q=Andrea%20Gambaro"> Andrea Gambaro</a>, <a href="https://publications.waset.org/abstracts/search?q=Athanasios%20Argiriou"> Athanasios Argiriou</a>, <a href="https://publications.waset.org/abstracts/search?q=Dimitrios%20Melas"> Dimitrios Melas</a>, <a href="https://publications.waset.org/abstracts/search?q=Daniela%20Cesari"> Daniela Cesari</a>, <a href="https://publications.waset.org/abstracts/search?q=Anastasia%20Poupkou"> Anastasia Poupkou</a>, <a href="https://publications.waset.org/abstracts/search?q=Athanasios%20Karagiannidis"> Athanasios Karagiannidis</a>, <a href="https://publications.waset.org/abstracts/search?q=Apostolos%20Tsakis"> Apostolos Tsakis</a>, <a href="https://publications.waset.org/abstracts/search?q=Eva%20Merico"> Eva Merico</a>, <a href="https://publications.waset.org/abstracts/search?q=Rita%20Cesari"> Rita Cesari</a>, <a href="https://publications.waset.org/abstracts/search?q=Adelaide%20Dinoi"> Adelaide Dinoi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Emissions of atmospheric pollutants from ships and harbour activities are a growing concern at International level given their potential impacts on air quality and climate. These close-to-land emissions have potential impact on local communities in terms of air quality and health. Recent studies show that the impact of maritime traffic to atmospheric particulate matter concentrations in several coastal urban areas is comparable with the impact of road traffic of a medium size town. However, several different approaches have been used for these estimates making difficult a direct comparison of results. In this work an integrated approach based on emission inventories and dedicated measurement campaigns has been applied to give a comparable estimate of the impact of maritime traffic to PM2.5 and particle number concentrations in three major harbours of the Adriatic/Ionian Seas. The influences of local meteorology and of the logistic layout of the harbours are discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ship%20emissions" title="ship emissions">ship emissions</a>, <a href="https://publications.waset.org/abstracts/search?q=PM2.5" title=" PM2.5"> PM2.5</a>, <a href="https://publications.waset.org/abstracts/search?q=particle%20number%20concentrations" title=" particle number concentrations"> particle number concentrations</a>, <a href="https://publications.waset.org/abstracts/search?q=impact%20of%20shipping%20to%20atmospheric%20aerosol" title=" impact of shipping to atmospheric aerosol"> impact of shipping to atmospheric aerosol</a> </p> <a href="https://publications.waset.org/abstracts/18334/impact-of-ship-traffic-to-pm-25-and-particle-number-concentrations-in-three-port-cities-of-the-adriaticionian-area" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18334.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">753</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1337</span> Investigation of the Technological Demonstrator 14x B in Different Angle of Attack in Hypersonic Velocity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Victor%20Alves%20Barros%20Galv%C3%A3o">Victor Alves Barros Galvão</a>, <a href="https://publications.waset.org/abstracts/search?q=Israel%20Da%20Silveira%20Rego"> Israel Da Silveira Rego</a>, <a href="https://publications.waset.org/abstracts/search?q=Antonio%20Carlos%20Oliveira"> Antonio Carlos Oliveira</a>, <a href="https://publications.waset.org/abstracts/search?q=Paulo%20Gilberto%20De%20Paula%20Toro"> Paulo Gilberto De Paula Toro</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Brazilian hypersonic aerospace vehicle 14-X B, VHA 14-X B, is a vehicle integrated with the hypersonic airbreathing propulsion system based on supersonic combustion (scramjet), developing in Aerothermodynamics and hypersonic Prof. Henry T. Nagamatsu Laboratory, to conduct demonstration in atmospheric flight at the speed corresponding to Mach number 7 at an altitude of 30km. In the experimental procedure the hypersonic shock tunnel T3 was used, installed in that laboratory. This device simulates the flow over a model is fixed in the test section and can also simulate different atmospheric conditions. The scramjet technology offers substantial advantages to improve aerospace vehicle performance which flies at a hypersonic speed through the Earth's atmosphere by reducing fuel consumption on board. Basically, the scramjet is an aspirated aircraft engine fully integrated that uses oblique/conic shock waves generated during hypersonic flight, to promote the deceleration and compression of atmospheric air in scramjet inlet. During the hypersonic flight, the vehicle VHA 14-X will suffer atmospheric influences, promoting changes in the vehicle's angles of attack (angle that the mean line of vehicle makes with respect to the direction of the flow). Based on this information, a study is conducted to analyze the influences of changes in the vehicle's angle of attack during the atmospheric flight. Analytical theoretical analysis, simulation computational fluid dynamics and experimental investigation are the methodologies used to design a technological demonstrator prior to the flight in the atmosphere. This paper considers analysis of the thermodynamic properties (pressure, temperature, density, sound velocity) in lower surface of the VHA 14-X B. Also, it considers air as an ideal gas and chemical equilibrium, with and without boundary layer, considering changes in the vehicle's angle of attack (positive and negative in relation to the flow) and bi-dimensional expansion wave theory at the expansion section (Theory of Prandtl-Meyer). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=angle%20of%20attack" title="angle of attack">angle of attack</a>, <a href="https://publications.waset.org/abstracts/search?q=experimental%20hypersonic" title=" experimental hypersonic"> experimental hypersonic</a>, <a href="https://publications.waset.org/abstracts/search?q=hypersonic%20airbreathing%20propulsion" title=" hypersonic airbreathing propulsion"> hypersonic airbreathing propulsion</a>, <a href="https://publications.waset.org/abstracts/search?q=Scramjet" title=" Scramjet"> Scramjet</a> </p> <a href="https://publications.waset.org/abstracts/59619/investigation-of-the-technological-demonstrator-14x-b-in-different-angle-of-attack-in-hypersonic-velocity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59619.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">409</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1336</span> Renal Amyloidosis in Domestic Iranian Sheep</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Keivan%20Jamshidi">Keivan Jamshidi</a>, <a href="https://publications.waset.org/abstracts/search?q=Fateme%20Behbahani"> Fateme Behbahani</a>, <a href="https://publications.waset.org/abstracts/search?q=Sara%20Omidi"> Sara Omidi</a>, <a href="https://publications.waset.org/abstracts/search?q=Nadia%20Shahi"> Nadia Shahi</a>, <a href="https://publications.waset.org/abstracts/search?q=Alireza%20Farkhonde"> Alireza Farkhonde</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Amyloidosis represents a heterogenous group of diseases that have in common the deposition of fibrils composed of proteins of beta-pleated sheet structure, which can be specifically identified by histochemistry using the Congo red or similar stains. Between October 2013 to April 2014 (6 months) different patterns of renal amyloidosis was diagnosed on histopathological examination of kidneys belong to 196 out of 7065 slaughtered sheep subjected to postmortem examination. Microscopic examination of renal tissue sections stained with H&E and CR staining techniques revealed 3 patterns of renal amyloid deposition; including glomerular (22.72%), medullary (68.18%), and vascular (9.09%) were recognized. Renal medullary amyloidosis (RMA) was detected as the most prevalence pattern of renal amyloidosis in domestic sheep. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sheep" title="sheep">sheep</a>, <a href="https://publications.waset.org/abstracts/search?q=amyloidosis" title=" amyloidosis"> amyloidosis</a>, <a href="https://publications.waset.org/abstracts/search?q=kidney" title=" kidney"> kidney</a>, <a href="https://publications.waset.org/abstracts/search?q=slaughterhouse" title=" slaughterhouse"> slaughterhouse</a> </p> <a href="https://publications.waset.org/abstracts/79052/renal-amyloidosis-in-domestic-iranian-sheep" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79052.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">375</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1335</span> Conformal Noble Metal High-Entropy Alloy Nanofilms by Atomic Layer Deposition for Enhanced Hydrogen Evolution Reaction/Oxygen Evolution Reaction Electrocatalysis Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jing%20Lin">Jing Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Zou%20Yiming"> Zou Yiming</a>, <a href="https://publications.waset.org/abstracts/search?q=Goei%20Ronn"> Goei Ronn</a>, <a href="https://publications.waset.org/abstracts/search?q=Li%20Yun"> Li Yun</a>, <a href="https://publications.waset.org/abstracts/search?q=Amanda%20Ong%20Jiamin"> Amanda Ong Jiamin</a>, <a href="https://publications.waset.org/abstracts/search?q=Alfred%20Tok%20Iing%20Yoong"> Alfred Tok Iing Yoong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> High-entropy alloy (HEA) coatings comprise multiple (five or more) principal elements that give superior mechanical, electrical, and thermal properties. However, the current synthesis methods of HEA coating still face huge challenges in facile and controllable preparation, as well as conformal integration, which seriously restricts their potential applications. Herein, we report a controllable synthesis of conformal quinary HEA coating consisting of noble metals (Rh, Ru, Ir, Pt, and Pd) by using the atomic layer deposition (ALD) with a post-annealing approach. This approach realizes low temperature (below 200 °C), precise control (nanoscale), and conformal synthesis (over complex substrates) of HEA coating. Furthermore, the resulting quinary HEA coating shows promising potential as a platform for catalysis, exhibiting substantially enhanced electrocatalytic hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) performances as compared to other noble metal-based structures such as single metal coating or multi-layered metal composites. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=high-entropy%20alloy" title="high-entropy alloy">high-entropy alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=thin-film" title=" thin-film"> thin-film</a>, <a href="https://publications.waset.org/abstracts/search?q=catalysis" title=" catalysis"> catalysis</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20splitting" title=" water splitting"> water splitting</a>, <a href="https://publications.waset.org/abstracts/search?q=atomic%20layer%20deposition" title=" atomic layer deposition"> atomic layer deposition</a> </p> <a href="https://publications.waset.org/abstracts/150935/conformal-noble-metal-high-entropy-alloy-nanofilms-by-atomic-layer-deposition-for-enhanced-hydrogen-evolution-reactionoxygen-evolution-reaction-electrocatalysis-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/150935.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">125</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1334</span> Study of Nanocrystalline Al Doped Zns Thin Films by Chemical Bath Deposition Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hamid%20Merzouk">Hamid Merzouk</a>, <a href="https://publications.waset.org/abstracts/search?q=Djahida%20Touati-Talantikite"> Djahida Touati-Talantikite</a>, <a href="https://publications.waset.org/abstracts/search?q=Amina%20Zaabar"> Amina Zaabar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> New nanosized materials are in huge expansion worldwide. They play a fundamental role in various industrial applications thanks their unique and functional properties. Moreover, in recent years, a great effort has been made to the design and control fabrication of nanostructured semiconductors such zinc sulphide. In recent years, much attention has been accorded in doped and co-doped ZnS to improve the ZnS films quality. We present in this work the preparation and characterization of ZnS and Al doped ZnS thin films. Nanoparticles ZnS and Al doped ZnS films are prepared by chemical bath deposition method (CBD), for various dopant concentrations. Thin films are deposed onto commercial microscope glass slides substrates. Thiourea is used as sulfide ion source, zinc acetate as zinc ion source and manganese acetate as manganese ion source in alkaline bath at 90 °C. X-ray diffraction (XRD) analyses are carried out at room temperature on films and powders with a powder diffractometer, using CuKα radiation. The average grain size obtained from the Debye–Scherrer’s formula is around 10 nm. Films morphology is examined by scanning electron microscopy. IR spectra of representative sample are recorded with the FTIR between 400 and 4000 cm-1.The transmittance (70 %) is performed with the UV–VIS spectrometer in the wavelength range 200–800 nm. This value is enhanced by Al doping. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ZnS" title="ZnS">ZnS</a>, <a href="https://publications.waset.org/abstracts/search?q=nanostructured%20semiconductors" title=" nanostructured semiconductors"> nanostructured semiconductors</a>, <a href="https://publications.waset.org/abstracts/search?q=thin%20films" title=" thin films"> thin films</a>, <a href="https://publications.waset.org/abstracts/search?q=chemical%20bath%20deposition" title=" chemical bath deposition"> chemical bath deposition</a> </p> <a href="https://publications.waset.org/abstracts/17656/study-of-nanocrystalline-al-doped-zns-thin-films-by-chemical-bath-deposition-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17656.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">524</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1333</span> GIS Based Atmospheric Analysis to Predict Future Temperature Rise Caused by Land Use and Land Cover in Okara by Using Environmental Remote Sensing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sumaira%20Hafeez">Sumaira Hafeez</a>, <a href="https://publications.waset.org/abstracts/search?q=Saira%20Akram"> Saira Akram</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Albeit the populace in metropolitan regions on the planet develops each year, the urban communities battling to adapt to the expanded metropolitan movement grow at different rates. Land Surface Temperature and other atmospheric parameters of the area of not really settled using Landsat pictures more than 10 years isolated. The LULC types were moreover arranged using managed gathering techniques. Quick urbanization is changing the current examples of Land Use Land Cover (LULC) all around the world, which is thusly expanding the Land Surface Temperature (LST) other atmospheric parameters in numerous districts. Present review was centered around assessing the current and recreating the future LULC and Land Surface Temperature patterns in the elevated climate of lower Himalayan district of Pakistan. Past examples of LULC and Land Surface Temperature were distinguished through the multi-unearthly Landsat satellite pictures during the 1995–2019 information period. The future forecasts were made for the year 2030 to work out LULC and LST changes separately, utilizing their previous examples. The review presumes that the reliably extending encroachment of the city's as of late advanced provincial regions over the totally open have went with an overall warming of the district's typical. Meteorological parameters over the earlier ten years and that permitting the land to lie void for a significant long time resulting to clearing the country fields for future metropolitan improvement is a preparation that has lamentable natural effects. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=surface%20urban%20heat%20island" title="surface urban heat island">surface urban heat island</a>, <a href="https://publications.waset.org/abstracts/search?q=land%20surface%20temperature" title=" land surface temperature"> land surface temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20climate%20change" title=" urban climate change"> urban climate change</a>, <a href="https://publications.waset.org/abstracts/search?q=spatial%20analysis%20of%20meterological%20and%20atmospheric%20science" title=" spatial analysis of meterological and atmospheric science"> spatial analysis of meterological and atmospheric science</a> </p> <a href="https://publications.waset.org/abstracts/150975/gis-based-atmospheric-analysis-to-predict-future-temperature-rise-caused-by-land-use-and-land-cover-in-okara-by-using-environmental-remote-sensing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/150975.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">135</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1332</span> Cu Nanoparticle Embedded-Zno Nanoplate Thin Films for Highly Efficient Photocatalytic Hydrogen Production </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Premrudee%20Promdet">Premrudee Promdet</a>, <a href="https://publications.waset.org/abstracts/search?q=Fan%20Cui"> Fan Cui</a>, <a href="https://publications.waset.org/abstracts/search?q=Gi%20Byoung%20%20Hwang"> Gi Byoung Hwang</a>, <a href="https://publications.waset.org/abstracts/search?q=Ka%20Chuen%20To"> Ka Chuen To</a>, <a href="https://publications.waset.org/abstracts/search?q=Sanjayan%20Sathasivam"> Sanjayan Sathasivam</a>, <a href="https://publications.waset.org/abstracts/search?q=Claire%20J.%20%20Carmalt"> Claire J. Carmalt</a>, <a href="https://publications.waset.org/abstracts/search?q=Ivan%20P.%20Parkin"> Ivan P. Parkin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A novel single-step fabrication of Cu nanoparticle embedded ZnO (Cu.ZnO) thin films was developed by aerosol-assisted chemical vapor deposition for stable and efficient hydrogen production in Photoelectrochemical (PEC) cell. In this approach, the Cu.ZnO nanoplate thin films were grown by using acetic acid to promote preferential growth and enhance surface active sites, where Cu nanoparticles can be formed under chemical deposition by reduction of Cu salt. Studies using photoluminescence spectroscopy indicate the enhanced photocatalytic performance is attributed to hot electron generated from SPR. The Cu metal in the composite material is functioning as a sensitizer to supply electrons to the semiconductor resulting in enhanced electron density for redox reaction. This work not only describes a way to obtain photoanodes with high photocatalytic activity but also suggests a low-cost route towards production of photocatalysts for hydrogen production. This work also supports a vital need to understand electron transfer between photoexcited semiconductor materials and metals, a requirement for tailoring the properties of semiconductor/metal composites. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=photocatalysis" title="photocatalysis">photocatalysis</a>, <a href="https://publications.waset.org/abstracts/search?q=photoelectrochemical%20cell%20%28PEC%29" title=" photoelectrochemical cell (PEC)"> photoelectrochemical cell (PEC)</a>, <a href="https://publications.waset.org/abstracts/search?q=aerosol-assisted%20chemical%20vapor%20deposition%20%28AACVD%29" title=" aerosol-assisted chemical vapor deposition (AACVD)"> aerosol-assisted chemical vapor deposition (AACVD)</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20plasmon%20resonance%20%28SPR%29" title=" surface plasmon resonance (SPR)"> surface plasmon resonance (SPR)</a> </p> <a href="https://publications.waset.org/abstracts/138288/cu-nanoparticle-embedded-zno-nanoplate-thin-films-for-highly-efficient-photocatalytic-hydrogen-production" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/138288.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">219</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1331</span> Atomic Layer Deposition of MoO₃ on Mesoporous γ-Al₂O₃ Prepared by Sol-Gel Method as Efficient Catalyst for Oxidative Desulfurization of Refractory Dibenzothiophene Compound</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Said">S. Said</a>, <a href="https://publications.waset.org/abstracts/search?q=Asmaa%20A.%20Abdulrahman"> Asmaa A. Abdulrahman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> MoOₓ/Al₂O₃ based catalyst has long been widely used as an active catalyst in oxidative desulfurization reaction due to its high stability under severe reaction conditions and high resistance to sulfur poisoning. In this context, 4 & 9wt.% MoO₃ grafted on mesoporous γ-Al₂O₃ has been synthesized using the modified atomic layer deposition (ALD) method. Another MoO₃/Al₂O₃ sample was prepared by the conventional wetness impregnation (IM) method, for comparison. The effect of the preparation methods on the metal-support interaction was evaluated using different characterization techniques, including X-ray diffraction, X-ray photoelectron spectroscopy (XPS), N₂-physisorption, transmission electron microscopy (TEM), H₂- temperature-programmed reduction and FT-IR. Oxidative desulfurization (ODS) reaction of the model fuel oil was used as a probe reaction to examine the catalytic efficiency of the prepared catalysts. ALD method led to samples with much better physicochemical properties than those of the prepared one via the impregnation method. However, the 9 wt.%MoO₃/Al₂O₃ (ALD) catalyst in the ODS reaction of model fuel oil shows enhanced catalytic performance with ~90%, which has been attributed to the more Mo⁶⁺ surface concentrations relative to Al³⁺ with large pore diameter and surface area. The kinetic study shows that the ODS of DBT follows a pseudo first-order rate reaction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mesoporous%20Al%E2%82%82O%E2%82%83" title="mesoporous Al₂O₃">mesoporous Al₂O₃</a>, <a href="https://publications.waset.org/abstracts/search?q=xMoO%E2%82%83%2FAl%E2%82%82O%E2%82%83" title=" xMoO₃/Al₂O₃"> xMoO₃/Al₂O₃</a>, <a href="https://publications.waset.org/abstracts/search?q=atomic%20layer%20deposition" title=" atomic layer deposition"> atomic layer deposition</a>, <a href="https://publications.waset.org/abstracts/search?q=wetness%20impregnation" title=" wetness impregnation"> wetness impregnation</a>, <a href="https://publications.waset.org/abstracts/search?q=ODS" title=" ODS"> ODS</a>, <a href="https://publications.waset.org/abstracts/search?q=DBT" title=" DBT"> DBT</a> </p> <a href="https://publications.waset.org/abstracts/118237/atomic-layer-deposition-of-moo3-on-mesoporous-gh-al2o3-prepared-by-sol-gel-method-as-efficient-catalyst-for-oxidative-desulfurization-of-refractory-dibenzothiophene-compound" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/118237.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">105</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1330</span> Coastline Change at Koh Tao Island, Thailand</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cherdvong%20Saengsupavanich">Cherdvong Saengsupavanich</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Human utilizes coastal resources as well as deteriorates them. Coastal tourism may degrade the environment if poorly managed. This research investigated the shoreline change at Koa Toa Island, one of the most famous tourist destinations. Aerial photographs and satellite images from three different periods were collected and analyzed. The results showed that the noticeable shoreline change before and after the tourism on the island had expanded. Between 1995 and 2002 when the tourism on Koh Toa Island was not intensive, sediment deposition occurred along most of the coastline. However, after the tourism had grown during 2002 to 2015, the coast evidently experienced less deposition and more erosion. The erosion resulted from less land-based sediment being provided to the littoral system. If the coastline of Koh Toa Island is not carefully sustained, the tourism will disappear along with the beautiful beach. &nbsp; <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coastal%20engineering%20and%20management" title="coastal engineering and management">coastal engineering and management</a>, <a href="https://publications.waset.org/abstracts/search?q=coastal%20erosion" title=" coastal erosion"> coastal erosion</a>, <a href="https://publications.waset.org/abstracts/search?q=coastal%20tourism" title=" coastal tourism"> coastal tourism</a>, <a href="https://publications.waset.org/abstracts/search?q=Koh%20Toa%20Island" title=" Koh Toa Island"> Koh Toa Island</a>, <a href="https://publications.waset.org/abstracts/search?q=Thailand" title=" Thailand"> Thailand</a> </p> <a href="https://publications.waset.org/abstracts/45746/coastline-change-at-koh-tao-island-thailand" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45746.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">305</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1329</span> Low-Surface Roughness and High Optical Quality CdS Thin Film Deposited on Heated Substrate Using Room-Temperature Chemical Solution</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Elsayed">A. Elsayed</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20H.%20Dewaidar"> M. H. Dewaidar</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Ghali"> M. Ghali</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Elkemary"> M. Elkemary</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The high production cost of the conventional solar cells requires the search for economic methods suitable for solar energy conversion. Cadmium Sulfide (CdS) is one of the most important semiconductors used in photovoltaics, especially in large area solar cells; and can be prepared in a thin film form by a wide variety of deposition techniques. The preparation techniques include vacuum evaporation, sputtering and molecular beam epitaxy. Other techniques, based on chemical solutions, are also used for depositing CdS films with dramatically low-cost compared to other vacuum-based methods. Although this technique is widely used during the last decades, due to simplicity and low-deposition temperature (~100°C), there is still a strong need for more information on the growth process and its relation with the quality of the deposited films. Here, we report on deposition of high-quality CdS thin films; with low-surface roughness ( < 3.0 nm) and sharp optical absorption edge; on low-temperature glass substrates (70°C) using a new method based on the room-temperature chemical solution. In this method, a mixture solution of cadmium acetate and thiourea at room temperature was used under special growth conditions for deposition of CdS films. X-ray diffraction (XRD) measurements were used to examine the crystal structure properties of the deposited CdS films. In addition, UV-VIS transmittance and low-temperature (4K) photoluminescence (PL) measurements were performed for quantifying optical properties of the deposited films. The deposited films show high optical quality as confirmed by observation of both, sharp edge in the transmittance spectra and strong PL intensity at room temperature. Furthermore, we found a strong effect of the growth conditions on the optical band gap of the deposited films; where remarkable red-shift in the absorption edge with temperature is clearly seen in both transmission and PL spectra. Such tuning of both optical band gap of the deposited CdS films can be utilized for tuning the electronic bands' alignments between CdS and other light-harvesting materials, like CuInGaSe or CdTe, for potential improvement in the efficiency of solar cells devices based on these heterostructures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chemical%20deposition" title="chemical deposition">chemical deposition</a>, <a href="https://publications.waset.org/abstracts/search?q=CdS" title=" CdS"> CdS</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20properties" title=" optical properties"> optical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=surface" title=" surface"> surface</a>, <a href="https://publications.waset.org/abstracts/search?q=thin%20film" title=" thin film"> thin film</a> </p> <a href="https://publications.waset.org/abstracts/95393/low-surface-roughness-and-high-optical-quality-cds-thin-film-deposited-on-heated-substrate-using-room-temperature-chemical-solution" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/95393.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">162</span> </span> </div> </div> <ul class="pagination"> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=atmospheric%20deposition&amp;page=5" rel="prev">&lsaquo;</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=atmospheric%20deposition&amp;page=1">1</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=atmospheric%20deposition&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=atmospheric%20deposition&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=atmospheric%20deposition&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=atmospheric%20deposition&amp;page=5">5</a></li> <li class="page-item active"><span class="page-link">6</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=atmospheric%20deposition&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=atmospheric%20deposition&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=atmospheric%20deposition&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=atmospheric%20deposition&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=atmospheric%20deposition&amp;page=50">50</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=atmospheric%20deposition&amp;page=51">51</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=atmospheric%20deposition&amp;page=7" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10