CINXE.COM
Search results for: Seebeck coefficient
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: Seebeck coefficient</title> <meta name="description" content="Search results for: Seebeck coefficient"> <meta name="keywords" content="Seebeck coefficient"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="Seebeck coefficient" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="Seebeck coefficient"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 2248</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: Seebeck coefficient</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2248</span> Enhancement in Seebeck Coefficient of MBE Grown Un-Doped ZnO by Thermal Annealing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Asghar">M. Asghar</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Mahmood"> K. Mahmood</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Malik"> F. Malik</a>, <a href="https://publications.waset.org/abstracts/search?q=Lu%20Na"> Lu Na</a>, <a href="https://publications.waset.org/abstracts/search?q=Y-H%20Xie"> Y-H Xie</a>, <a href="https://publications.waset.org/abstracts/search?q=Yasin%20A.%20Raja"> Yasin A. Raja</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Ferguson"> I. Ferguson</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we have reported an enhancement in Seebeck coefficient of un-doped zinc oxide (ZnO) grown by molecular beam epitaxy (MBE) on silicon (001) substrate by annealing treatment. The grown ZnO thin films were annealed in oxygen environment at 500°C – 800°C, keeping a step of 100°C for one hour. Room temperature Seebeck measurements showed that Seebeck coefficient and power factor increased from 222 to 510 µV/K and 8.8×10^-6 to 2.6×10^-4 Wm^-1K^-2 as annealing temperature increased from 500°C to 800°C respectively. This is the highest value of Seebeck coefficient ever reported for un-doped MBE grown ZnO according to best of our knowledge. This observation was related with the improvement of crystal structure of grown films with annealing temperature. X-ray diffraction (XRD) results demonstrated that full width half maximum (FWHM) of ZnO (002) plane decreased and crystalline size increased as the annealing temperature increased. Photoluminescence study revealed that the intensity of band edge emission increased and defect emission decreased as annealing temperature increased because the density of oxygen vacancy related donor defects decreased with annealing temperature. This argument was further justified by the Hall measurements which showed a decreasing trend of carrier concentration with annealing temperature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ZnO" title="ZnO">ZnO</a>, <a href="https://publications.waset.org/abstracts/search?q=MBE" title=" MBE"> MBE</a>, <a href="https://publications.waset.org/abstracts/search?q=thermoelectric%20properties" title=" thermoelectric properties"> thermoelectric properties</a>, <a href="https://publications.waset.org/abstracts/search?q=annealing%20temperature" title=" annealing temperature"> annealing temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=crystal%20structure" title=" crystal structure"> crystal structure</a> </p> <a href="https://publications.waset.org/abstracts/6667/enhancement-in-seebeck-coefficient-of-mbe-grown-un-doped-zno-by-thermal-annealing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6667.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">445</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2247</span> Mg Doped CuCrO₂ Thin Oxides Films for Thermoelectric Properties</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=I.%20Sinnarasa">I. Sinnarasa</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Thimont"> Y. Thimont</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Presmanes"> L. Presmanes</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Barnab%C3%A9"> A. Barnabé</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The thermoelectricity is a promising technique to overcome the issues in recovering waste heat to electricity without using moving parts. In fact, the thermoelectric (TE) effect defines as the conversion of a temperature gradient directly into electricity and vice versa. To optimize TE materials, the power factor (PF = σS² where σ is electrical conductivity and S is Seebeck coefficient) must be increased by adjusting the carrier concentration, and/or the lattice thermal conductivity Kₜₕ must be reduced by introducing scattering centers with point defects, interfaces, and nanostructuration. The PF does not show the advantages of the thin film because it does not take into account the thermal conductivity. In general, the thermal conductivity of the thin film is lower than the bulk material due to their microstructure and increasing scattering effects with decreasing thickness. Delafossite type oxides CuᴵMᴵᴵᴵO₂ received main attention for their optoelectronic properties as a p-type semiconductor they exhibit also interesting thermoelectric (TE) properties due to their high electrical conductivity and their stability in room atmosphere. As there are few proper studies on the TE properties of Mg-doped CuCrO₂ thin films, we have investigated, the influence of the annealing temperature on the electrical conductivity and the Seebeck coefficient of Mg-doped CuCrO₂ thin films and calculated the PF in the temperature range from 40 °C to 220 °C. For it, we have deposited Mg-doped CuCrO₂ thin films on fused silica substrates by RF magnetron sputtering. This study was carried out on 300 nm thin films. The as-deposited Mg doped CuCrO₂ thin films have been annealed at different temperatures (from 450 to 650 °C) under primary vacuum. Electrical conductivity and Seebeck coefficient of the thin films have been measured from 40 to 220 °C. The highest electrical conductivity of 0.60 S.cm⁻¹ with a Seebeck coefficient of +329 µV.K⁻¹ at 40 °C have been obtained for the sample annealed at 550 °C. The calculated power factor of optimized CuCrO₂:Mg thin film was 6 µW.m⁻¹K⁻² at 40 °C. Due to the constant Seebeck coefficient and the increasing electrical conductivity with temperature it reached 38 µW.m⁻¹K⁻² at 220 °C that was a quite good result for an oxide thin film. Moreover, the degenerate behavior and the hopping mechanism of CuCrO₂:Mg thin film were elucidated. Their high and constant Seebeck coefficient in temperature and their stability in room atmosphere could be a great advantage for an application of this material in a high accuracy temperature measurement devices. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=thermoelectric" title="thermoelectric">thermoelectric</a>, <a href="https://publications.waset.org/abstracts/search?q=oxides" title=" oxides"> oxides</a>, <a href="https://publications.waset.org/abstracts/search?q=delafossite" title=" delafossite"> delafossite</a>, <a href="https://publications.waset.org/abstracts/search?q=thin%20film" title=" thin film"> thin film</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20factor" title=" power factor"> power factor</a>, <a href="https://publications.waset.org/abstracts/search?q=degenerated%20semiconductor" title=" degenerated semiconductor"> degenerated semiconductor</a>, <a href="https://publications.waset.org/abstracts/search?q=hopping%20mode" title=" hopping mode"> hopping mode</a> </p> <a href="https://publications.waset.org/abstracts/77467/mg-doped-cucro2-thin-oxides-films-for-thermoelectric-properties" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77467.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">199</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2246</span> Designing of Nano-materials for Waste Heat Conversion into Electrical Energy Thermoelectric generator</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wiqar%20Hussain%20Shah">Wiqar Hussain Shah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The electrical and thermal properties of the doped Tellurium Telluride (Tl10Te6) chalcogenide nano-particles are mainly characterized by a competition between metallic (hole doped concentration) and semi-conducting state. We have studied the effects of Sn doping on the electrical and thermoelectric properties of Tl10-xSnxTe6 (1.00 ≤x≤ 2.00), nano-particles, prepared by solid state reactions in sealed silica tubes and ball milling method. Structurally, all these compounds were found to be phase pure as confirmed by the x-rays diffractometery (XRD) and energy dispersive X-ray spectroscopy (EDS) analysis. Additionally crystal structure data were used to model the data and support the findings. The particles size was calculated from the XRD data by Scherrer’s formula. The EDS was used for an elemental analysis of the sample and declares the percentage of elements present in the system. The thermo-power or Seebeck co-efficient (S) was measured for all these compounds which show that S increases with increasing temperature from 295 to 550 K. The Seebeck coefficient is positive for the whole temperature range, showing p-type semiconductor characteristics. The electrical conductivity was investigated by four probe resistivity techniques revealed that the electrical conductivity decreases with increasing temperature, and also simultaneously with increasing Sn concentration. While for Seebeck coefficient the trend is opposite which is increases with increasing temperature. These increasing behavior of Seebeck coefficient leads to high power factor which are increases with increasing temperature and Sn concentration except For Tl8Sn2Te6 because of lowest electrical conductivity but its power factor increases well with increasing temperature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sn%20doping%20in%20Tellurium%20Telluride%20nano-materials" title="Sn doping in Tellurium Telluride nano-materials">Sn doping in Tellurium Telluride nano-materials</a>, <a href="https://publications.waset.org/abstracts/search?q=electron%20holes%20competition" title=" electron holes competition"> electron holes competition</a>, <a href="https://publications.waset.org/abstracts/search?q=Seebeck%20co-efficient" title=" Seebeck co-efficient"> Seebeck co-efficient</a>, <a href="https://publications.waset.org/abstracts/search?q=effects%20of%20Sn%20doping%20on%20Electrical%20conductivity" title=" effects of Sn doping on Electrical conductivity"> effects of Sn doping on Electrical conductivity</a>, <a href="https://publications.waset.org/abstracts/search?q=effects%20on%20Power%20factor" title=" effects on Power factor"> effects on Power factor</a> </p> <a href="https://publications.waset.org/abstracts/163685/designing-of-nano-materials-for-waste-heat-conversion-into-electrical-energy-thermoelectric-generator" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163685.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">45</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2245</span> Thermoelectric Properties of Doped Polycrystalline Silicon Film</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Li%20Long">Li Long</a>, <a href="https://publications.waset.org/abstracts/search?q=Thomas%20Ortlepp"> Thomas Ortlepp</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The transport properties of carriers in polycrystalline silicon film affect the performance of polycrystalline silicon-based devices. They depend strongly on the grain structure, grain boundary trap properties and doping concentration, which in turn are determined by the film deposition and processing conditions. Based on the properties of charge carriers, phonons, grain boundaries and their interactions, the thermoelectric properties of polycrystalline silicon are analyzed with the relaxation time approximation of the Boltz- mann transport equation. With this approach, thermal conductivity, electrical conductivity and Seebeck coefficient as a function of grain size, trap properties and doping concentration can be determined. Experiment on heavily doped polycrystalline silicon is carried out and measurement results are compared with the model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=conductivity" title="conductivity">conductivity</a>, <a href="https://publications.waset.org/abstracts/search?q=polycrystalline%20silicon" title=" polycrystalline silicon"> polycrystalline silicon</a>, <a href="https://publications.waset.org/abstracts/search?q=relaxation%20time%20approximation" title=" relaxation time approximation"> relaxation time approximation</a>, <a href="https://publications.waset.org/abstracts/search?q=Seebeck%20coefficient" title=" Seebeck coefficient"> Seebeck coefficient</a>, <a href="https://publications.waset.org/abstracts/search?q=thermoelectric%20property" title=" thermoelectric property"> thermoelectric property</a> </p> <a href="https://publications.waset.org/abstracts/148818/thermoelectric-properties-of-doped-polycrystalline-silicon-film" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/148818.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">125</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2244</span> Thermoelectrical Properties of Cs Doped BiCuSeO as Promising Oxide Materials for Thermoelectric Energy Converter</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdenour%20Achour">Abdenour Achour</a>, <a href="https://publications.waset.org/abstracts/search?q=Kan%20Chen"> Kan Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Mike%20Reece"> Mike Reece</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhaorong%20Huang"> Zhaorong Huang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Here we report the synthesis of pure and cost effective of BiCuSeO by a flux method in air, and the enhancement of the thermoelectric performance by Cs doping. The comparison between our synthesis and the usual vacuum furnace method has been studied for the pristine oxyselenides BiCuSeO. We report for very high Seebeck coefficients up to 516 μV K⁻¹ at room temperature with the electrical conductivity of 5.20 S cm⁻¹ which lead to a high power factor of 140 µWm⁻¹K⁻². We also report at the high temperatures the lowest thermal conductivity value of 0.42 µWm⁻¹K⁻¹. Upon doping with Cs, enhanced electrical conductivity coupled with a moderate Seebeck coefficient lead to a power factor of 338 µWm⁻¹K⁻² at 682 K. Moreover, it shows a very low thermal conductivity in the temperature range of 300 to 682 K (0.75 to 0.35 Wm⁻¹K⁻¹). By optimizing the power factor and reducing the thermal conductivity, this results in a high ZT of ~ 0.66 at 682 K for Bi0.995Cs0.005CuSeO. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=BiCuSeO" title="BiCuSeO">BiCuSeO</a>, <a href="https://publications.waset.org/abstracts/search?q=Cs%20doping" title=" Cs doping"> Cs doping</a>, <a href="https://publications.waset.org/abstracts/search?q=thermoelectric" title=" thermoelectric"> thermoelectric</a>, <a href="https://publications.waset.org/abstracts/search?q=oxyselenide" title=" oxyselenide"> oxyselenide</a> </p> <a href="https://publications.waset.org/abstracts/56690/thermoelectrical-properties-of-cs-doped-bicuseo-as-promising-oxide-materials-for-thermoelectric-energy-converter" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56690.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">300</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2243</span> Determination of Temperature Dependent Characteristic Material Properties of Commercial Thermoelectric Modules</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmet%20Koyuncu">Ahmet Koyuncu</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdullah%20Berkan%20Erdogmus"> Abdullah Berkan Erdogmus</a>, <a href="https://publications.waset.org/abstracts/search?q=Orkun%20Dogu"> Orkun Dogu</a>, <a href="https://publications.waset.org/abstracts/search?q=Sinan%20Uygur"> Sinan Uygur</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Thermoelectric modules are integrated to electronic components to keep their temperature in specific values in electronic cooling applications. They can be used in different ambient temperatures. The cold side temperatures of thermoelectric modules depend on their hot side temperatures, operation currents, and heat loads. Performance curves of thermoelectric modules are given at most two different hot surface temperatures in product catalogs. Characteristic properties are required to select appropriate thermoelectric modules in thermal design phase of projects. Generally, manufacturers do not provide characteristic material property values of thermoelectric modules to customers for confidentiality. Common commercial software applied like ANSYS ICEPAK, FloEFD, etc., include thermoelectric modules in their libraries. Therefore, they can be easily used to predict the effect of thermoelectric usage in thermal design. Some software requires only the performance values in different temperatures. However, others like ICEPAK require three temperature-dependent equations for material properties (Seebeck coefficient (α), electrical resistivity (β), and thermal conductivity (γ)). Since the number and the variety of thermoelectric modules are limited in this software, definitions of characteristic material properties of thermoelectric modules could be required. In this manuscript, the method of derivation of characteristic material properties from the datasheet of thermoelectric modules is presented. Material characteristics were estimated from two different performance curves by experimentally and numerically in this study. Numerical calculations are accomplished in ICEPAK by using a thermoelectric module exists in the ICEPAK library. A new experimental setup was established to perform experimental study. Because of similar results of numerical and experimental studies, it can be said that proposed equations are approved. This approximation can be suggested for the analysis includes different type or brand of TEC modules. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electrical%20resistivity" title="electrical resistivity">electrical resistivity</a>, <a href="https://publications.waset.org/abstracts/search?q=material%20characteristics" title=" material characteristics"> material characteristics</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20conductivity" title=" thermal conductivity"> thermal conductivity</a>, <a href="https://publications.waset.org/abstracts/search?q=thermoelectric%20coolers" title=" thermoelectric coolers"> thermoelectric coolers</a>, <a href="https://publications.waset.org/abstracts/search?q=seebeck%20coefficient" title=" seebeck coefficient"> seebeck coefficient</a> </p> <a href="https://publications.waset.org/abstracts/147420/determination-of-temperature-dependent-characteristic-material-properties-of-commercial-thermoelectric-modules" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/147420.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">179</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2242</span> Theoretical Investigation of Electronic, Structural and Thermoelectric Properties of Mg₂SiSn (110) Surface</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Ramesh">M. Ramesh</a>, <a href="https://publications.waset.org/abstracts/search?q=Manish%20K.%20Niranjan"> Manish K. Niranjan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The electronic, structural and thermoelectric properties of Mg₂SiSn (110) surface are investigated within the framework of first principle density functional theory and semi classical Boltzmann approach. In particular, directional dependent thermoelectric properties such as electrical conductivity, thermal conductivity, Seebeck coefficient and figure of merit are explored. The (110)-oriented Mg₂SiSn surface exhibits narrow indirect band gap of ~0.17 eV. The thermoelectric properties are found to be significant along the y-axis at 300 K and along x-axis at 500 K. The figure of merit (ZT) for hole carrier concentration is found to be significantly large having magnitude 0.83 (along x-axis) at 500 K and 0.26 (y-axis) at 300 K. Our results suggest that Mg₂SiSn (110) surface is promising for various thermoelectric applications due to its overall good thermoelectric properties. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=thermoelectric" title="thermoelectric">thermoelectric</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20science" title=" surface science"> surface science</a>, <a href="https://publications.waset.org/abstracts/search?q=semiconducting%20silicide" title=" semiconducting silicide"> semiconducting silicide</a>, <a href="https://publications.waset.org/abstracts/search?q=first%20principles%20calculations" title=" first principles calculations"> first principles calculations</a> </p> <a href="https://publications.waset.org/abstracts/104968/theoretical-investigation-of-electronic-structural-and-thermoelectric-properties-of-mg2sisn-110-surface" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/104968.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">226</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2241</span> Thermoelectric Blanket for Aiding the Treatment of Cerebral Hypoxia and Other Related Conditions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sarayu%20Vanga">Sarayu Vanga</a>, <a href="https://publications.waset.org/abstracts/search?q=Jorge%20Galeano-Cabral"> Jorge Galeano-Cabral</a>, <a href="https://publications.waset.org/abstracts/search?q=Kaya%20Wei"> Kaya Wei</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cerebral hypoxia refers to a condition in which there is a decrease in oxygen supply to the brain. Patients suffering from this condition experience a decrease in their body temperature. While there isn't any cure to treat cerebral hypoxia as of date, certain procedures are utilized to help aid in the treatment of the condition. Regulating the body temperature is an example of one of those procedures. Hypoxia is well known to reduce the body temperature of mammals, although the neural origins of this response remain uncertain. In order to speed recovery from this condition, it is necessary to maintain a stable body temperature. In this study, we present an approach to regulating body temperature for patients who suffer from cerebral hypoxia or other similar conditions. After a thorough literature study, we propose the use of thermoelectric blankets, which are temperature-controlled thermal blankets based on thermoelectric devices. These blankets are capable of heating up and cooling down the patient to stabilize body temperature. This feature is possible through the reversible effect that thermoelectric devices offer while behaving as a thermal sensor, and it is an effective way to stabilize temperature. Thermoelectricity is the direct conversion of thermal to electrical energy and vice versa. This effect is now known as the Seebeck effect, and it is characterized by the Seebeck coefficient. In such a configuration, the device has cooling and heating sides with temperatures that can be interchanged by simply switching the direction of the current input in the system. This design integrates various aspects, including a humidifier, ventilation machine, IV-administered medication, air conditioning, circulation device, and a body temperature regulation system. The proposed design includes thermocouples that will trigger the blanket to increase or decrease a set temperature through a medical temperature sensor. Additionally, the proposed design allows an efficient way to control fluctuations in body temperature while being cost-friendly, with an expected cost of 150 dollars. We are currently working on developing a prototype of the design to collect thermal and electrical data under different conditions and also intend to perform an optimization analysis to improve the design even further. While this proposal was developed for treating cerebral hypoxia, it can also aid in the treatment of other related conditions, as fluctuations in body temperature appear to be a common symptom that patients have for many illnesses. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=body%20temperature%20regulation" title="body temperature regulation">body temperature regulation</a>, <a href="https://publications.waset.org/abstracts/search?q=cerebral%20hypoxia" title=" cerebral hypoxia"> cerebral hypoxia</a>, <a href="https://publications.waset.org/abstracts/search?q=thermoelectric" title=" thermoelectric"> thermoelectric</a>, <a href="https://publications.waset.org/abstracts/search?q=blanket%20design" title=" blanket design"> blanket design</a> </p> <a href="https://publications.waset.org/abstracts/165923/thermoelectric-blanket-for-aiding-the-treatment-of-cerebral-hypoxia-and-other-related-conditions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165923.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">161</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2240</span> Tandem Concentrated Photovoltaic-Thermoelectric Hybrid System: Feasibility Analysis and Performance Enhancement Through Material Assessment Methodology</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shuwen%20Hu">Shuwen Hu</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuancheng%20Lou"> Yuancheng Lou</a>, <a href="https://publications.waset.org/abstracts/search?q=Dongxu%20Ji"> Dongxu Ji</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Photovoltaic (PV) power generation, as one of the most commercialized methods to utilize solar power, can only convert a limited range of solar spectrum into electricity, whereas the majority of the solar energy is dissipated as heat. To address this problem, thermoelectric (TE) module is often integrated with the concentrated PV module for waste heat recovery and regeneration. In this research, a feasibility analysis is conducted for the tandem concentrated photovoltaic-thermoelectric (CPV-TE) hybrid system considering various operational parameters as well as TE material properties. Furthermore, the power output density of the CPV-TE hybrid system is maximized by selecting the optimal TE material with application of a systematic assessment methodology. In the feasibility analysis, CPV-TE is found to be more advantageous than sole CPV system except under high optical concentration ratio with low cold side convective coefficient. It is also shown that the effects of the TE material properties, including Seebeck coefficient, thermal conductivity, and electrical resistivity, on the feasibility of CPV-TE are interacted with each other and might have opposite effect on the system performance under different operational conditions. In addition, the optimal TE material selected by the proposed assessment methodology can improve the system power output density by 227 W/m2 under highly concentrated solar irradiance hence broaden the feasible range of CPV-TE considering optical concentration ratio. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=feasibility%20analysis" title="feasibility analysis">feasibility analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=material%20assessment%20methodology" title=" material assessment methodology"> material assessment methodology</a>, <a href="https://publications.waset.org/abstracts/search?q=photovoltaic%20waste%20heat%20recovery" title=" photovoltaic waste heat recovery"> photovoltaic waste heat recovery</a>, <a href="https://publications.waset.org/abstracts/search?q=tandem%20photovoltaic-thermoelectric" title=" tandem photovoltaic-thermoelectric"> tandem photovoltaic-thermoelectric</a> </p> <a href="https://publications.waset.org/abstracts/162419/tandem-concentrated-photovoltaic-thermoelectric-hybrid-system-feasibility-analysis-and-performance-enhancement-through-material-assessment-methodology" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/162419.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">72</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2239</span> On Coverage Probability of Confidence Intervals for the Normal Mean with Known Coefficient of Variation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Suparat%20Niwitpong">Suparat Niwitpong</a>, <a href="https://publications.waset.org/abstracts/search?q=Sa-aat%20Niwitpong"> Sa-aat Niwitpong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Statistical inference of normal mean with known coefficient of variation has been investigated recently. This phenomenon occurs normally in environment and agriculture experiments when the scientist knows the coefficient of variation of their experiments. In this paper, we constructed new confidence intervals for the normal population mean with known coefficient of variation. We also derived analytic expressions for the coverage probability of each confidence interval. To confirm our theoretical results, Monte Carlo simulation will be used to assess the performance of these intervals based on their coverage probabilities. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=confidence%20interval" title="confidence interval">confidence interval</a>, <a href="https://publications.waset.org/abstracts/search?q=coverage%20probability" title=" coverage probability"> coverage probability</a>, <a href="https://publications.waset.org/abstracts/search?q=expected%20length" title=" expected length"> expected length</a>, <a href="https://publications.waset.org/abstracts/search?q=known%0D%0Acoefficient%20of%20variation" title=" known coefficient of variation"> known coefficient of variation</a> </p> <a href="https://publications.waset.org/abstracts/11176/on-coverage-probability-of-confidence-intervals-for-the-normal-mean-with-known-coefficient-of-variation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11176.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">396</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2238</span> Performance of Segmented Thermoelectric Materials Using 'Open-Short Circuit' Technique under Different Polarity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20H.%20S.%20Mustafa">N. H. S. Mustafa</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20M.%20Yatim"> N. M. Yatim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Thermoelectric materials arrange in segmented design could increase the conversion of heat to electricity performance. This is due to the properties of materials that perform peak at narrow temperature range. Performance of the materials determines by dimensionless figure-of-merit, ZT which consist of thermoelectric properties namely Seebeck coefficient, electrical resistivity, and thermal conductivity. Since different materials were arrange in segmented, determination of ZT cannot be measured using the conventional approach. Therefore, this research used 'open-short circuit' technique to measure the segmented performance. Segmented thermoelectric materials consist of bismuth telluride, and lead telluride was segmented together under cold press technique. The results show thermoelectric properties measured is comparable with calculated based on commercially available of individual material. Performances of segmented sample under different polarity also indicate dependability of material with position and temperature. Segmented materials successfully measured under real condition and optimization of the segmented can be designed from the study of polarity change. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=thermoelectric" title="thermoelectric">thermoelectric</a>, <a href="https://publications.waset.org/abstracts/search?q=segmented" title=" segmented"> segmented</a>, <a href="https://publications.waset.org/abstracts/search?q=ZT" title=" ZT"> ZT</a>, <a href="https://publications.waset.org/abstracts/search?q=polarity" title=" polarity"> polarity</a>, <a href="https://publications.waset.org/abstracts/search?q=performance" title=" performance"> performance</a> </p> <a href="https://publications.waset.org/abstracts/75014/performance-of-segmented-thermoelectric-materials-using-open-short-circuit-technique-under-different-polarity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75014.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">202</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2237</span> Investigation of the Turbulent Cavitating Flows from the Viewpoint of the Lift Coefficient</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ping-Ben%20Liu">Ping-Ben Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Chien-Chou%20Tseng"> Chien-Chou Tseng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this study is to investigate the relationship between the lift coefficient and dynamic behaviors of cavitating flow around a two-dimensional Clark Y hydrofoil at 8° angle of attack, cavitation number of 0.8, and Reynolds number of 7.10⁵. The flow field is investigated numerically by using a vapor transfer equation and a modified turbulence model which applies the filter and local density correction. The results including time-averaged lift/drag coefficient and shedding frequency agree well with experimental observations, which confirmed the reliability of this simulation. According to the variation of lift coefficient, the cycle which consists of growth and shedding of cavitation can be divided into three stages, and the lift coefficient at each stage behaves similarly due to the formation and shedding of the cavity around the trailing edge. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Computational%20Fluid%20Dynamics" title="Computational Fluid Dynamics">Computational Fluid Dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=cavitation" title=" cavitation"> cavitation</a>, <a href="https://publications.waset.org/abstracts/search?q=turbulence" title=" turbulence"> turbulence</a>, <a href="https://publications.waset.org/abstracts/search?q=lift%20coefficient" title=" lift coefficient"> lift coefficient</a> </p> <a href="https://publications.waset.org/abstracts/70047/investigation-of-the-turbulent-cavitating-flows-from-the-viewpoint-of-the-lift-coefficient" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/70047.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">352</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2236</span> Evaluating the Permeability Coefficient of Sandy Soil for Grouting to Reinforce Soft Soil in Binh Duong, Vietnam</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Trung%20Le%20Thanh">Trung Le Thanh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Soil permeability coefficient is an important parameter that affects the effectiveness of mortar restoration work to reinforce soft soil. Currently, there are many methods to determine the permeability coefficient of ground through laboratory and field experiments. However, the value of the permeability coefficient is determined very differently depending on the geology in general and the sand base in particular. This article presents how to determine the permeability coefficient of sand foundation in Phu My Ward, Tan Uyen City, Binh Duong. The author analyzes and evaluates the advantages and disadvantages of assessment methods based on the data and results obtained, and on that basis recommends a suitable method for determining the permeability coefficient for sand foundations. The research results serve the evaluation of the effectiveness of grouting to reinforce soft ground in general, and grouting of bored piles in particular. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=permeability%20coefficient" title="permeability coefficient">permeability coefficient</a>, <a href="https://publications.waset.org/abstracts/search?q=soft%20soil" title=" soft soil"> soft soil</a>, <a href="https://publications.waset.org/abstracts/search?q=shaft%20grouting" title=" shaft grouting"> shaft grouting</a>, <a href="https://publications.waset.org/abstracts/search?q=post%20grouting" title=" post grouting"> post grouting</a>, <a href="https://publications.waset.org/abstracts/search?q=jet%20grouting" title=" jet grouting"> jet grouting</a> </p> <a href="https://publications.waset.org/abstracts/173939/evaluating-the-permeability-coefficient-of-sandy-soil-for-grouting-to-reinforce-soft-soil-in-binh-duong-vietnam" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/173939.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">76</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2235</span> Predicting Trapezoidal Weir Discharge Coefficient Using Evolutionary Algorithm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Roushanger">K. Roushanger</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Soleymanzadeh"> A. Soleymanzadeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Weirs are structures often used in irrigation techniques, sewer networks and flood protection. However, the hydraulic behavior of this type of weir is complex and difficult to predict accurately. An accurate flow prediction over a weir mainly depends on the proper estimation of discharge coefficient. In this study, the Genetic Expression Programming (GEP) approach was used for predicting trapezoidal and rectangular sharp-crested side weirs discharge coefficient. Three different performance indexes are used as comparing criteria for the evaluation of the model’s performances. The obtained results approved capability of GEP in prediction of trapezoidal and rectangular side weirs discharge coefficient. The results also revealed the influence of downstream Froude number for trapezoidal weir and upstream Froude number for rectangular weir in prediction of the discharge coefficient for both of side weirs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=discharge%20coefficient" title="discharge coefficient">discharge coefficient</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20expression%20programming" title=" genetic expression programming"> genetic expression programming</a>, <a href="https://publications.waset.org/abstracts/search?q=trapezoidal%20weir" title=" trapezoidal weir"> trapezoidal weir</a> </p> <a href="https://publications.waset.org/abstracts/61052/predicting-trapezoidal-weir-discharge-coefficient-using-evolutionary-algorithm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61052.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">388</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2234</span> Numerical Study of Flow around Flat Tube between Parallel Walls</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hamidreza%20Bayat">Hamidreza Bayat</a>, <a href="https://publications.waset.org/abstracts/search?q=Arash%20Mirabdolah%20Lavasani"> Arash Mirabdolah Lavasani</a>, <a href="https://publications.waset.org/abstracts/search?q=Meysam%20Bolhasani"> Meysam Bolhasani</a>, <a href="https://publications.waset.org/abstracts/search?q=Sajad%20Moosavi"> Sajad Moosavi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Flow around a flat tube is studied numerically. Reynolds number is defined base on equivalent circular tube and it is varied in range of 100 to 300. Equations are solved by using finite volume method and results are presented in form of drag and lift coefficient. Results show that drag coefficient of flat tube is up to 66% lower than circular tube with equivalent diameter. In addition, by increasing l/D from 1 to 2, the drag coefficient of flat tube is decreased about 14-27%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=laminar%20flow" title="laminar flow">laminar flow</a>, <a href="https://publications.waset.org/abstracts/search?q=flat-tube" title=" flat-tube"> flat-tube</a>, <a href="https://publications.waset.org/abstracts/search?q=drag%20coefficient" title=" drag coefficient"> drag coefficient</a>, <a href="https://publications.waset.org/abstracts/search?q=cross-flow" title=" cross-flow"> cross-flow</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20exchanger" title=" heat exchanger"> heat exchanger</a> </p> <a href="https://publications.waset.org/abstracts/14593/numerical-study-of-flow-around-flat-tube-between-parallel-walls" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14593.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">504</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2233</span> The Design Optimization for Sound Absorption Material of Multi-Layer Structure</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Un-Hwan%20Park">Un-Hwan Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Jun-Hyeok%20Heo"> Jun-Hyeok Heo</a>, <a href="https://publications.waset.org/abstracts/search?q=In-Sung%20Lee"> In-Sung Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Tae-Hyeon%20Oh"> Tae-Hyeon Oh</a>, <a href="https://publications.waset.org/abstracts/search?q=Dae-Kyu%20Park"> Dae-Kyu Park</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sound absorbing material is used as automotive interior material. Sound absorption coefficient should be predicted to design it. But it is difficult to predict sound absorbing coefficient because it is comprised of several material layers. So, its targets are achieved through many experimental tunings. It causes a lot of cost and time. In this paper, we propose the process to estimate the sound absorption coefficient with multi-layer structure. In order to estimate the coefficient, physical properties of each material are used. These properties also use predicted values by Foam-X software using the sound absorption coefficient data measured by impedance tube. Since there are many physical properties and the measurement equipment is expensive, the values predicted by software are used. Through the measurement of the sound absorption coefficient of each material, its physical properties are calculated inversely. The properties of each material are used to calculate the sound absorption coefficient of the multi-layer material. Since the absorption coefficient of multi-layer can be calculated, optimization design is possible through simulation. Then, we will compare and analyze the calculated sound absorption coefficient with the data measured by scaled reverberation chamber and impedance tubes for a prototype. If this method is used when developing automotive interior materials with multi-layer structure, the development effort can be reduced because it can be optimized by simulation. So, cost and time can be saved. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sound%20absorption%20material" title="sound absorption material">sound absorption material</a>, <a href="https://publications.waset.org/abstracts/search?q=sound%20impedance%20tube" title=" sound impedance tube"> sound impedance tube</a>, <a href="https://publications.waset.org/abstracts/search?q=sound%20absorption%20coefficient" title=" sound absorption coefficient"> sound absorption coefficient</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization%20design" title=" optimization design"> optimization design</a> </p> <a href="https://publications.waset.org/abstracts/82871/the-design-optimization-for-sound-absorption-material-of-multi-layer-structure" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82871.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">291</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2232</span> A Study on the Determinants of Earnings Response Coefficient in an Emerging Market</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bita%20Mashayekhi">Bita Mashayekhi</a>, <a href="https://publications.waset.org/abstracts/search?q=Zeynab%20Lotfi%20Aghel"> Zeynab Lotfi Aghel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The determinants of Earnings Response Coefficient (ERC), including firm size, earnings growth, and earnings persistence are studied in this research. These determinants are supposed to be moderator variables that affect ERC and Return Response Coefficient. The research sample contains 82 Iranian listed companies in Tehran Stock Exchange (TSE) from 2001 to 2012. Gathered data have been processed by EVIEWS Software. Results show a significant positive relation between firm size and ERC, and also between earnings growth and ERC; however, there is no significant relation between earnings persistence and ERC. Also, the results show that ERC will be increased by firm size and earnings growth, but there is no relation between earnings persistence and ERC. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=earnings%20response%20coefficient%20%28ERC%29" title="earnings response coefficient (ERC)">earnings response coefficient (ERC)</a>, <a href="https://publications.waset.org/abstracts/search?q=return%20response%20coefficient%20%28RRC%29" title=" return response coefficient (RRC)"> return response coefficient (RRC)</a>, <a href="https://publications.waset.org/abstracts/search?q=firm%20size" title=" firm size"> firm size</a>, <a href="https://publications.waset.org/abstracts/search?q=earnings%20growth" title=" earnings growth"> earnings growth</a>, <a href="https://publications.waset.org/abstracts/search?q=earnings%20persistence" title=" earnings persistence"> earnings persistence</a> </p> <a href="https://publications.waset.org/abstracts/54086/a-study-on-the-determinants-of-earnings-response-coefficient-in-an-emerging-market" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54086.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">335</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2231</span> Effect of Drag Coefficient Models concerning Global Air-Sea Momentum Flux in Broad Wind Range including Extreme Wind Speeds</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Takeshi%20Takemoto">Takeshi Takemoto</a>, <a href="https://publications.waset.org/abstracts/search?q=Naoya%20Suzuki"> Naoya Suzuki</a>, <a href="https://publications.waset.org/abstracts/search?q=Naohisa%20Takagaki"> Naohisa Takagaki</a>, <a href="https://publications.waset.org/abstracts/search?q=Satoru%20Komori"> Satoru Komori</a>, <a href="https://publications.waset.org/abstracts/search?q=Masako%20Terui"> Masako Terui</a>, <a href="https://publications.waset.org/abstracts/search?q=George%20Truscott"> George Truscott</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Drag coefficient is an important parameter in order to correctly estimate the air-sea momentum flux. However, The parameterization of the drag coefficient hasn’t been established due to the variation in the field data. Instead, a number of drag coefficient model formulae have been proposed, even though almost all these models haven’t discussed the extreme wind speed range. With regards to such models, it is unclear how the drag coefficient changes in the extreme wind speed range as the wind speed increased. In this study, we investigated the effect of the drag coefficient models concerning the air-sea momentum flux in the extreme wind range on a global scale, comparing two different drag coefficient models. Interestingly, one model didn’t discuss the extreme wind speed range while the other model considered it. We found that the difference of the models in the annual global air-sea momentum flux was small because the occurrence frequency of strong wind was approximately 1% with a wind speed of 20m/s or more. However, we also discovered that the difference of the models was shown in the middle latitude where the annual mean air-sea momentum flux was large and the occurrence frequency of strong wind was high. In addition, the estimated data showed that the difference of the models in the drag coefficient was large in the extreme wind speed range and that the largest difference became 23% with a wind speed of 35m/s or more. These results clearly show that the difference of the two models concerning the drag coefficient has a significant impact on the estimation of a regional air-sea momentum flux in an extreme wind speed range such as that seen in a tropical cyclone environment. Furthermore, we estimated each air-sea momentum flux using several kinds of drag coefficient models. We will also provide data from an observation tower and result from CFD (Computational Fluid Dynamics) concerning the influence of wind flow at and around the place. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=air-sea%20interaction" title="air-sea interaction">air-sea interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=drag%20coefficient" title=" drag coefficient"> drag coefficient</a>, <a href="https://publications.waset.org/abstracts/search?q=air-sea%20momentum%20flux" title=" air-sea momentum flux"> air-sea momentum flux</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD%20%28Computational%20Fluid%20Dynamics%29" title=" CFD (Computational Fluid Dynamics)"> CFD (Computational Fluid Dynamics)</a> </p> <a href="https://publications.waset.org/abstracts/41397/effect-of-drag-coefficient-models-concerning-global-air-sea-momentum-flux-in-broad-wind-range-including-extreme-wind-speeds" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41397.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">372</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2230</span> Estimation of Coefficient of Discharge of Side Trapezoidal Labyrinth Weir Using Group Method of Data Handling Technique</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Ansari">M. A. Ansari</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Hussain"> A. Hussain</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Uddin"> A. Uddin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A side weir is a flow diversion structure provided in the side wall of a channel to divert water from the main channel to a branch channel. The trapezoidal labyrinth weir is a special type of weir in which crest length of the weir is increased to pass higher discharge. Experimental and numerical studies related to the coefficient of discharge of trapezoidal labyrinth weir in an open channel have been presented in the present study. Group Method of Data Handling (GMDH) with the transfer function of quadratic polynomial has been used to predict the coefficient of discharge for the side trapezoidal labyrinth weir. A new model is developed for coefficient of discharge of labyrinth weir by regression method. Generalized models for predicting the coefficient of discharge for labyrinth weir using Group Method of Data Handling (GMDH) network have also been developed. The prediction based on GMDH model is more satisfactory than those given by traditional regression equations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=discharge%20coefficient" title="discharge coefficient">discharge coefficient</a>, <a href="https://publications.waset.org/abstracts/search?q=group%20method%20of%20data%20handling" title=" group method of data handling"> group method of data handling</a>, <a href="https://publications.waset.org/abstracts/search?q=open%20channel" title=" open channel"> open channel</a>, <a href="https://publications.waset.org/abstracts/search?q=side%20labyrinth%20weir" title=" side labyrinth weir"> side labyrinth weir</a> </p> <a href="https://publications.waset.org/abstracts/115809/estimation-of-coefficient-of-discharge-of-side-trapezoidal-labyrinth-weir-using-group-method-of-data-handling-technique" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/115809.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">160</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2229</span> Generalization of Clustering Coefficient on Lattice Networks Applied to Criminal Networks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Christian%20H.%20Sanabria-Monta%C3%B1a">Christian H. Sanabria-Montaña</a>, <a href="https://publications.waset.org/abstracts/search?q=Rodrigo%20Huerta-Quintanilla"> Rodrigo Huerta-Quintanilla</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A lattice network is a special type of network in which all nodes have the same number of links, and its boundary conditions are periodic. The most basic lattice network is the ring, a one-dimensional network with periodic border conditions. In contrast, the Cartesian product of d rings forms a d-dimensional lattice network. An analytical expression currently exists for the clustering coefficient in this type of network, but the theoretical value is valid only up to certain connectivity value; in other words, the analytical expression is incomplete. Here we obtain analytically the clustering coefficient expression in d-dimensional lattice networks for any link density. Our analytical results show that the clustering coefficient for a lattice network with density of links that tend to 1, leads to the value of the clustering coefficient of a fully connected network. We developed a model on criminology in which the generalized clustering coefficient expression is applied. The model states that delinquents learn the know-how of crime business by sharing knowledge, directly or indirectly, with their friends of the gang. This generalization shed light on the network properties, which is important to develop new models in different fields where network structure plays an important role in the system dynamic, such as criminology, evolutionary game theory, econophysics, among others. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=clustering%20coefficient" title="clustering coefficient">clustering coefficient</a>, <a href="https://publications.waset.org/abstracts/search?q=criminology" title=" criminology"> criminology</a>, <a href="https://publications.waset.org/abstracts/search?q=generalized" title=" generalized"> generalized</a>, <a href="https://publications.waset.org/abstracts/search?q=regular%20network%20d-dimensional" title=" regular network d-dimensional"> regular network d-dimensional</a> </p> <a href="https://publications.waset.org/abstracts/71972/generalization-of-clustering-coefficient-on-lattice-networks-applied-to-criminal-networks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71972.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">412</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2228</span> Estimation of Longitudinal Dispersion Coefficient Using Tracer Data</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Ebrahimi">K. Ebrahimi</a>, <a href="https://publications.waset.org/abstracts/search?q=Sh.%20Shahid"> Sh. Shahid</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Mohammadi%20Ghaleni"> M. Mohammadi Ghaleni</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20H.%20Omid"> M. H. Omid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The longitudinal dispersion coefficient is a crucial parameter for 1-D water quality analysis of riverine flows. So far, different types of empirical equations for estimation of the coefficient have been developed, based on various case studies. The main objective of this paper is to develop an empirical equation for estimation of the coefficient for a riverine flow. For this purpose, a set of tracer experiments was conducted, involving salt tracer, at three sections located in downstream of a lengthy canal. Tracer data were measured in three mixing lengths along the canal including; 45, 75 and 100m. According to the results, the obtained coefficients from new developed empirical equation gave an encouraging level of agreement with the theoretical values. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coef%EF%AC%81cients" title="coefficients">coefficients</a>, <a href="https://publications.waset.org/abstracts/search?q=dispersion" title=" dispersion"> dispersion</a>, <a href="https://publications.waset.org/abstracts/search?q=river" title=" river"> river</a>, <a href="https://publications.waset.org/abstracts/search?q=tracer" title=" tracer"> tracer</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20quality" title=" water quality"> water quality</a> </p> <a href="https://publications.waset.org/abstracts/31418/estimation-of-longitudinal-dispersion-coefficient-using-tracer-data" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31418.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">389</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2227</span> Statistical Optimization of Distribution Coefficient for Reactive Extraction of Lactic Acid Using Tri-n-octyl Amine in Oleyl Alcohol and n-Hexane</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Avinash%20Thakur">Avinash Thakur</a>, <a href="https://publications.waset.org/abstracts/search?q=Parmjit%20S.%20Panesar"> Parmjit S. Panesar</a>, <a href="https://publications.waset.org/abstracts/search?q=Manohar%20Singh"> Manohar Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The distribution coefficient, KD for the reactive extraction of lactic acid from aqueous solutions of lactic acid using 10-30% (v/v) tri-n-octyl amine (extractant) dissolved in n-hexane (inert diluent) and 20% (v/v) oleyl alcohol (modifier) was optimized by using response surface methodology (RSM). A three level Box-Behnken design was employed for experimental design, analysis of the results and to depict the combined interactive effect of seven independent variables, viz lactic acid concentration (cl), pH, TOA concentration in organic phase (ψ), treat ratio (φ), temperature (T), agitation speed (ω) and batch agitation time (τ) on distribution coefficient of lactic acid. The regression analysis recommended that the quadratic model is significant (R2 and adjusted R2 are 98.72 % and 98.69 % respectively) for analysis. A numerical optimization had resulted in maximum lactic acid distribution coefficient (KD) of 3.16 at the optimized values for test variables, cl, pH, ψ, φ, T, ω and τ as 0.15 [M], 3.0, 22.75% (v/v), 1.0 (v/v), 26°C, 145 rpm and 23 min respectively. A good agreement between the predicted and experimentally obtained values for distribution coefficient using the optimized conditions was exhibited. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Distribution%20coefficient" title="Distribution coefficient">Distribution coefficient</a>, <a href="https://publications.waset.org/abstracts/search?q=tri-n-octylamine" title=" tri-n-octylamine"> tri-n-octylamine</a>, <a href="https://publications.waset.org/abstracts/search?q=lactic%20acid" title=" lactic acid"> lactic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=response%20surface%20methodology" title=" response surface methodology"> response surface methodology</a> </p> <a href="https://publications.waset.org/abstracts/29876/statistical-optimization-of-distribution-coefficient-for-reactive-extraction-of-lactic-acid-using-tri-n-octyl-amine-in-oleyl-alcohol-and-n-hexane" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29876.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">458</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2226</span> The Evaluation of the Safety Coefficient of Soil Slope Stability by Group Pile</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seyed%20Abolhassan%20Naeini">Seyed Abolhassan Naeini</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamed%20Yekehdehghan"> Hamed Yekehdehghan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the factors that affect the constructions adjacent to a slope is stability. There are various methods for the stability of the slopes, one of which is the use of concrete group piles. This study, using FLAC3D software, has tried to investigate the changes in safety coefficient because of the use of concrete group piles. In this research, furthermore, the optimal position of the piles has been investigated and the results show that the group pile does not affect the toe of the slope. In addition, the effect of the piles' burial depth on the slope has been studied. Results show that by increasing the piles burial depth on a slope, the level of stability and as a result the safety coefficient increases. In the investigation of reducing the distance between the piles and increasing the depth of underground water, it was observed that the obtained safety coefficient increased. Finally, the effect of the resistance of the lower stabilizing layer of the slope on stabilization was investigated by the pile group. The results showed that due to the behavior of the pile as a deep foundation, the stronger the soil layers are in the stable part of a stronger slope (in terms of resistance parameters), the more influential the piles are in enhancing the coefficient of safety. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=safety%20coefficient" title="safety coefficient">safety coefficient</a>, <a href="https://publications.waset.org/abstracts/search?q=group%20pile" title=" group pile"> group pile</a>, <a href="https://publications.waset.org/abstracts/search?q=slope" title=" slope"> slope</a>, <a href="https://publications.waset.org/abstracts/search?q=stability" title=" stability"> stability</a>, <a href="https://publications.waset.org/abstracts/search?q=FLAC3D%20software" title=" FLAC3D software"> FLAC3D software</a> </p> <a href="https://publications.waset.org/abstracts/155667/the-evaluation-of-the-safety-coefficient-of-soil-slope-stability-by-group-pile" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/155667.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">94</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2225</span> Validation of the Formula for Air Attenuation Coefficient for Acoustic Scale Models</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Katarzyna%20Baruch">Katarzyna Baruch</a>, <a href="https://publications.waset.org/abstracts/search?q=Agata%20Szelag"> Agata Szelag</a>, <a href="https://publications.waset.org/abstracts/search?q=Aleksandra%20Majchrzak"> Aleksandra Majchrzak</a>, <a href="https://publications.waset.org/abstracts/search?q=Tadeusz%20Kamisinski"> Tadeusz Kamisinski</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Methodology of measurement of sound absorption coefficient in scaled models is based on the ISO 354 standard. The measurement is realised indirectly - the coefficient is calculated from the reverberation time of an empty chamber as well as a chamber with an inserted sample. It is crucial to maintain the atmospheric conditions stable during both measurements. Possible differences may be amended basing on the formulas for atmospheric attenuation coefficient α given in ISO 9613-1. Model studies require scaling particular factors in compliance with specified characteristic numbers. For absorption coefficient measurement, these are for example: frequency range or the value of attenuation coefficient m. Thanks to the possibilities of modern electroacoustic transducers, it is no longer a problem to scale the frequencies which have to be proportionally higher. However, it may be problematic to reduce values of the attenuation coefficient. It is practically obtained by drying the air down to a defined relative humidity. Despite the change of frequency range and relative humidity of the air, ISO 9613-1 standard still allows the calculation of the amendment for little differences of the atmospheric conditions in the chamber during measurements. The paper discusses a number of theoretical analyses and experimental measurements performed in order to obtain consistency between the values of attenuation coefficient calculated from the formulas given in the standard and by measurement. The authors performed measurements of reverberation time in a chamber made in a 1/8 scale in a corresponding frequency range, i.e. 800 Hz - 40 kHz and in different values of the relative air humidity (40% 5%). Based on the measurements, empirical values of attenuation coefficient were calculated and compared with theoretical ones. In general, the values correspond with each other, but for high frequencies and low values of relative air humidity the differences are significant. Those discrepancies may directly influence the values of measured sound absorption coefficient and cause errors. Therefore, the authors made an effort to determine an amendment minimizing described inaccuracy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=air%20absorption%20correction" title="air absorption correction">air absorption correction</a>, <a href="https://publications.waset.org/abstracts/search?q=attenuation%20coefficient" title=" attenuation coefficient"> attenuation coefficient</a>, <a href="https://publications.waset.org/abstracts/search?q=dimensional%20analysis" title=" dimensional analysis"> dimensional analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=model%20study" title=" model study"> model study</a>, <a href="https://publications.waset.org/abstracts/search?q=scaled%20modelling" title=" scaled modelling"> scaled modelling</a> </p> <a href="https://publications.waset.org/abstracts/78693/validation-of-the-formula-for-air-attenuation-coefficient-for-acoustic-scale-models" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78693.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">421</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2224</span> Determination of the Friction Coefficient of AL5754 Alloy by Ring Compression Test: Experimental and Numerical Survey</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20M.%20Keshtiban">P. M. Keshtiban</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Zadshakoyan"> M. Zadshakoyan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the important factors that alter different process and geometrical parameters on metal forming processes is friction between contacting surfaces. Some important factors that effected directly by friction are: stress, strain, required load, wear of surfaces and then geometrical parameters. In order to control friction effects permanent lubrication is necessary. In this article, the friction coefficient is elicited by the most effective method, ring compression tests. The tests were done by both finite element method and practical tests. Different friction curves that extracted by finite element simulations and has good conformity with published results, used for obtaining final friction coefficient. In this study Mos2 is used as the lubricant and Al5754 alloy used as the specimens material. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=experiment" title="experiment">experiment</a>, <a href="https://publications.waset.org/abstracts/search?q=FEM" title=" FEM"> FEM</a>, <a href="https://publications.waset.org/abstracts/search?q=friction%20coefficient" title=" friction coefficient"> friction coefficient</a>, <a href="https://publications.waset.org/abstracts/search?q=ring%20compression" title=" ring compression"> ring compression</a> </p> <a href="https://publications.waset.org/abstracts/37586/determination-of-the-friction-coefficient-of-al5754-alloy-by-ring-compression-test-experimental-and-numerical-survey" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37586.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">463</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2223</span> Friction Coefficient of Epiphen Epoxy System Filled with Powder Resulting from the Grinding of Pine Needles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=I.%20Graur">I. Graur</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Bria"> V. Bria</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Muntenita"> C. Muntenita</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recent ecological interests have resulted in scientific concerns regarding natural-organic powder composites. Because natural-organic powders are cheap and biodegradable, green composites represent a substantial contribution in polymer science area. The aim of this study is to point out the effect of natural-organic powder resulting from the grinding of pine needles used as a modifying agent for Epiphen epoxy resin and is focused on friction coefficient behavior. A pin-on-disc setup is used for friction coefficient experiments. Epiphen epoxy resin was used with the different ratio of organic powder from the grinding of pine needles. Because of the challenges of natural organic powder, more and more companies are looking at organic composite materials. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=epoxy" title="epoxy">epoxy</a>, <a href="https://publications.waset.org/abstracts/search?q=friction%20coefficient" title=" friction coefficient"> friction coefficient</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20powder" title=" organic powder"> organic powder</a>, <a href="https://publications.waset.org/abstracts/search?q=pine%20needles" title=" pine needles"> pine needles</a> </p> <a href="https://publications.waset.org/abstracts/96794/friction-coefficient-of-epiphen-epoxy-system-filled-with-powder-resulting-from-the-grinding-of-pine-needles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/96794.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">177</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2222</span> Experimental Investigation on the Effect of Cross Flow on Discharge Coefficient of an Orifice</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mathew%20Saxon%20A">Mathew Saxon A</a>, <a href="https://publications.waset.org/abstracts/search?q=Aneeh%20Rajan"> Aneeh Rajan</a>, <a href="https://publications.waset.org/abstracts/search?q=Sajeev%20P"> Sajeev P</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Many fluid flow applications employ different types of orifices to control the flow rate or to reduce the pressure. Discharge coefficients generally vary from 0.6 to 0.95 depending on the type of the orifice. The tabulated value of discharge coefficients of various types of orifices available can be used in most common applications. The upstream and downstream flow condition of an orifice is hardly considered while choosing the discharge coefficient of an orifice. But literature shows that the discharge coefficient can be affected by the presence of cross flow. Cross flow is defined as the condition wherein; a fluid is injected nearly perpendicular to a flowing fluid. Most researchers have worked on water being injected into a cross-flow of water. The present work deals with water to gas systems in which water is injected in a normal direction into a flowing stream of gas. The test article used in the current work is called thermal regulator, which is used in a liquid rocket engine to reduce the temperature of hot gas tapped from the gas generator by injecting water into the hot gas so that a cooler gas can be supplied to the turbine. In a thermal regulator, water is injected through an orifice in a normal direction into the hot gas stream. But the injection orifice had been calibrated under backpressure by maintaining a stagnant gas medium at the downstream. The motivation of the present study aroused due to the observation of a lower Cd of the orifice in flight compared to the calibrated Cd. A systematic experimental investigation is carried out in this paper to study the effect of cross-flow on the discharge coefficient of an orifice in water to a gas system. The study reveals that there is an appreciable reduction in the discharge coefficient with cross flow compared to that without cross flow. It is found that the discharge coefficient greatly depends on the ratio of momentum of water injected to the momentum of the gas cross flow. The effective discharge coefficient of different orifices was normalized using the discharge coefficient without cross-flow and it is observed that normalized curves of effective discharge coefficient of different orifices with momentum ratio collapsing into a single curve. Further, an equation is formulated using the test data to predict the effective discharge coefficient with cross flow using the calibrated Cd value without cross flow. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cross%20flow" title="cross flow">cross flow</a>, <a href="https://publications.waset.org/abstracts/search?q=discharge%20coefficient" title=" discharge coefficient"> discharge coefficient</a>, <a href="https://publications.waset.org/abstracts/search?q=orifice" title=" orifice"> orifice</a>, <a href="https://publications.waset.org/abstracts/search?q=momentum%20ratio" title=" momentum ratio"> momentum ratio</a> </p> <a href="https://publications.waset.org/abstracts/124296/experimental-investigation-on-the-effect-of-cross-flow-on-discharge-coefficient-of-an-orifice" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/124296.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">144</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2221</span> Prediction of Physical Properties and Sound Absorption Performance of Automotive Interior Materials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Un-Hwan%20Park">Un-Hwan Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Jun-Hyeok%20Heo"> Jun-Hyeok Heo</a>, <a href="https://publications.waset.org/abstracts/search?q=In-Sung%20Lee"> In-Sung Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Seong-Jin%20Cho"> Seong-Jin Cho</a>, <a href="https://publications.waset.org/abstracts/search?q=Tae-Hyeon%20Oh"> Tae-Hyeon Oh</a>, <a href="https://publications.waset.org/abstracts/search?q=Dae-Kyu%20Park"> Dae-Kyu Park</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sound absorption coefficient is considered important when designing because noise affects emotion quality of car. It is designed with lots of experiment tunings in the field because it is unreliable to predict it for multi-layer material. In this paper, we present the design of sound absorption for automotive interior material with multiple layers using estimation software of sound absorption coefficient for reverberation chamber. Additionally, we introduce the method for estimation of physical properties required to predict sound absorption coefficient of car interior materials with multiple layers too. It is calculated by inverse algorithm. It is very economical to get information about physical properties without expensive equipment. Correlation test is carried out to ensure reliability for accuracy. The data to be used for the correlation is sound absorption coefficient measured in the reverberation chamber. In this way, it is considered economical and efficient to design automotive interior materials. And design optimization for sound absorption coefficient is also easy to implement when it is designed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sound%20absorption%20coefficient" title="sound absorption coefficient">sound absorption coefficient</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization%20design" title=" optimization design"> optimization design</a>, <a href="https://publications.waset.org/abstracts/search?q=inverse%20algorithm" title=" inverse algorithm"> inverse algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=automotive%20interior%20material" title=" automotive interior material"> automotive interior material</a>, <a href="https://publications.waset.org/abstracts/search?q=multiple%20layers%20nonwoven" title=" multiple layers nonwoven"> multiple layers nonwoven</a>, <a href="https://publications.waset.org/abstracts/search?q=scaled%20reverberation%20chamber" title=" scaled reverberation chamber"> scaled reverberation chamber</a>, <a href="https://publications.waset.org/abstracts/search?q=sound%20impedance%20tubes" title=" sound impedance tubes"> sound impedance tubes</a> </p> <a href="https://publications.waset.org/abstracts/93919/prediction-of-physical-properties-and-sound-absorption-performance-of-automotive-interior-materials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/93919.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">309</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2220</span> On Quasi Conformally Flat LP-Sasakian Manifolds with a Coefficient α</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jay%20Prakash%20Singh">Jay Prakash Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of the present paper is to study properties of Quasi conformally flat LP-Sasakian manifolds with a coefficient α. In this paper, we prove that a Quasi conformally flat LP-Sasakian manifold M (n > 3) with a constant coefficient α is an η−Einstein and in a quasi conformally flat LP-Sasakian manifold M (n > 3) with a constant coefficient α if the scalar curvature tensor is constant then M is of constant curvature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=LP-Sasakian%20manifolds" title="LP-Sasakian manifolds">LP-Sasakian manifolds</a>, <a href="https://publications.waset.org/abstracts/search?q=quasi-conformal%20curvature%20tensor" title=" quasi-conformal curvature tensor"> quasi-conformal curvature tensor</a>, <a href="https://publications.waset.org/abstracts/search?q=concircular%20vector%20%0Cfield" title=" concircular vector field"> concircular vector field</a>, <a href="https://publications.waset.org/abstracts/search?q=torse%20forming%20vector%20%0Cfield" title=" torse forming vector field"> torse forming vector field</a>, <a href="https://publications.waset.org/abstracts/search?q=Einstein%20manifold" title=" Einstein manifold"> Einstein manifold</a> </p> <a href="https://publications.waset.org/abstracts/50415/on-quasi-conformally-flat-lp-sasakian-manifolds-with-a-coefficient-a" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50415.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">792</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2219</span> Numerical Simulation of Turbulent Flow around Two Cam Shaped Cylinders in Tandem Arrangement</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arash%20Mir%20Abdolah%20Lavasani">Arash Mir Abdolah Lavasani</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Ebrahimisabet"> M. Ebrahimisabet</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, the 2-D unsteady viscous flow around two cam shaped cylinders in tandem arrangement is numerically simulated in order to study the characteristics of the flow in turbulent regimes. The investigation covers the effects of high subcritical and supercritical Reynolds numbers and L/D ratio on total drag coefficient. The equivalent diameter of cylinders is 27.6 mm The space between center to center of two cam shaped cylinders is define as longitudinal pitch ratio and it varies in range of 1.5 < L/D < 6. Reynolds number base on equivalent circular cylinder varies in range of 27×103 < Re < 166×103 Results show that drag coefficient of both cylinders depends on pitch ratio. However drag coefficient of downstream cylinder is more dependent on the pitch ratio. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cam%20shaped" title="cam shaped">cam shaped</a>, <a href="https://publications.waset.org/abstracts/search?q=tandem" title=" tandem"> tandem</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical" title=" numerical"> numerical</a>, <a href="https://publications.waset.org/abstracts/search?q=drag%20coefficient" title=" drag coefficient"> drag coefficient</a>, <a href="https://publications.waset.org/abstracts/search?q=turbulent" title=" turbulent"> turbulent</a> </p> <a href="https://publications.waset.org/abstracts/36258/numerical-simulation-of-turbulent-flow-around-two-cam-shaped-cylinders-in-tandem-arrangement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36258.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">463</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Seebeck%20coefficient&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Seebeck%20coefficient&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Seebeck%20coefficient&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Seebeck%20coefficient&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Seebeck%20coefficient&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Seebeck%20coefficient&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Seebeck%20coefficient&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Seebeck%20coefficient&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Seebeck%20coefficient&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Seebeck%20coefficient&page=74">74</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Seebeck%20coefficient&page=75">75</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Seebeck%20coefficient&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>