CINXE.COM

A planning and execution framework for robotic assembly with deformable objects using a centralized database based on the Rαβγ categorization | Journal of Intelligent Manufacturing

<!DOCTYPE html> <html lang="en" class="no-js"> <head> <meta charset="UTF-8"> <meta http-equiv="X-UA-Compatible" content="IE=edge"> <meta name="applicable-device" content="pc,mobile"> <meta name="viewport" content="width=device-width, initial-scale=1"> <meta name="robots" content="max-image-preview:large"> <meta name="access" content="Yes"> <meta name="360-site-verification" content="1268d79b5e96aecf3ff2a7dac04ad990" /> <title>A planning and execution framework for robotic assembly with deformable objects using a centralized database based on the Rαβγ categorization | Journal of Intelligent Manufacturing </title> <meta name="twitter:site" content="@SpringerLink"/> <meta name="twitter:card" content="summary_large_image"/> <meta name="twitter:image:alt" content="Content cover image"/> <meta name="twitter:title" content="A planning and execution framework for robotic assembly with deformable objects using a centralized database based on the Rαβγ categorization"/> <meta name="twitter:description" content="Journal of Intelligent Manufacturing - Automation of process planning and execution of robotic assembly can lead to process optimization and shorter setup times. Several such automation frameworks..."/> <meta name="twitter:image" content="https://static-content.springer.com/image/art%3A10.1007%2Fs10845-025-02578-5/MediaObjects/10845_2025_2578_Figa_HTML.png"/> <meta name="journal_id" content="10845"/> <meta name="dc.title" content="A planning and execution framework for robotic assembly with deformable objects using a centralized database based on the Rαβγ categorization"/> <meta name="dc.source" content="Journal of Intelligent Manufacturing 2025"/> <meta name="dc.format" content="text/html"/> <meta name="dc.publisher" content="Springer"/> <meta name="dc.date" content="2025-03-06"/> <meta name="dc.type" content="OriginalPaper"/> <meta name="dc.language" content="En"/> <meta name="dc.copyright" content="2025 The Author(s)"/> <meta name="dc.rights" content="2025 The Author(s)"/> <meta name="dc.rightsAgent" content="journalpermissions@springernature.com"/> <meta name="dc.description" content="Automation of process planning and execution of robotic assembly can lead to process optimization and shorter setup times. Several such automation frameworks have been developed for the assembly of rigid objects. However, many products require assembly with deformable objects. Robotic assembly with deformable objects typically incurs more complex dynamics and requires more collaboration during execution than rigid object assembly. In addition, process documentation includes more documents that are less structured. The current research suggests a data-driven planning and execution automation framework suitable for robotic assembly with deformable objects. The framework includes the three required modules: data extraction, process planning, and process execution. The modules interact with a central database constructed according to the R&#945;&#946;&#947; ontology. Data extraction is based on commonly used manufacturing documents. Process planning is based on parametrized hybrid automata models, which encompass process and collaboration complexity using two layers: assembly operations and robotic skills. Process execution integrates a digital twin for sequence validation, process adaptation, and monitoring. The framework was successfully demonstrated in a small factory environment with three case studies for products with deformable objects: two smart light boards which include parts with plastic deformations (electric wires) and a medical infusion kit with parts with elastic deformations (tube, connectors). The framework facilitated optimized planning with significant reuse of assembly operations for all products. Both light boards had a high rate of assembly operation reuse (78%, 86%). The medical infusion kit had a somewhat lower rate (62%) due to the need for dedicated operations."/> <meta name="prism.issn" content="1572-8145"/> <meta name="prism.publicationName" content="Journal of Intelligent Manufacturing"/> <meta name="prism.publicationDate" content="2025-03-06"/> <meta name="prism.section" content="OriginalPaper"/> <meta name="prism.startingPage" content="1"/> <meta name="prism.endingPage" content="21"/> <meta name="prism.copyright" content="2025 The Author(s)"/> <meta name="prism.rightsAgent" content="journalpermissions@springernature.com"/> <meta name="prism.url" content="https://link.springer.com/article/10.1007/s10845-025-02578-5"/> <meta name="prism.doi" content="doi:10.1007/s10845-025-02578-5"/> <meta name="citation_pdf_url" content="https://link.springer.com/content/pdf/10.1007/s10845-025-02578-5.pdf"/> <meta name="citation_fulltext_html_url" content="https://link.springer.com/article/10.1007/s10845-025-02578-5"/> <meta name="citation_journal_title" content="Journal of Intelligent Manufacturing"/> <meta name="citation_journal_abbrev" content="J Intell Manuf"/> <meta name="citation_publisher" content="Springer US"/> <meta name="citation_issn" content="1572-8145"/> <meta name="citation_title" content="A planning and execution framework for robotic assembly with deformable objects using a centralized database based on the Rαβγ categorization"/> <meta name="citation_online_date" content="2025/03/06"/> <meta name="citation_firstpage" content="1"/> <meta name="citation_lastpage" content="21"/> <meta name="citation_article_type" content="Article"/> <meta name="citation_fulltext_world_readable" content=""/> <meta name="citation_language" content="en"/> <meta name="dc.identifier" content="doi:10.1007/s10845-025-02578-5"/> <meta name="DOI" content="10.1007/s10845-025-02578-5"/> <meta name="size" content="231451"/> <meta name="citation_doi" content="10.1007/s10845-025-02578-5"/> <meta name="citation_springer_api_url" content="http://api.springer.com/xmldata/jats?q=doi:10.1007/s10845-025-02578-5&amp;api_key="/> <meta name="description" content="Automation of process planning and execution of robotic assembly can lead to process optimization and shorter setup times. Several such automation framewor"/> <meta name="dc.creator" content="Shneor, Ran"/> <meta name="dc.creator" content="Naveh, Gali"/> <meta name="dc.creator" content="Ben-David, Shir"/> <meta name="dc.creator" content="Shvarzman, Bar"/> <meta name="dc.creator" content="Mann, Zachi"/> <meta name="dc.creator" content="Greenberg, Alex"/> <meta name="dc.creator" content="Efrat, Yotam"/> <meta name="dc.creator" content="Einav, Omer"/> <meta name="dc.creator" content="Berman, Sigal"/> <meta name="dc.subject" content="Production"/> <meta name="dc.subject" content="Manufacturing, Machines, Tools, Processes"/> <meta name="dc.subject" content="Control, Robotics, Mechatronics"/> <meta name="citation_reference" content="citation_journal_title=Archives of Computational Methods in Engineering; citation_title=Optimization of assembly sequence planning using soft computing approaches: A review; citation_author=MA Abdullah, A Rashid, Z Ghazalli; citation_volume=26; citation_issue=2; citation_publication_date=2018; citation_pages=461-474; citation_doi=10.1007/s11831-018-9250-y; citation_id=CR1"/> <meta name="citation_reference" content="Acker, J., &amp; Henrich, D. (2005). Manipulation of deformable linear objects: From geometric model towards program generation. In Proceedings of the 2005 IEEE international conference on robotics and automation. https://doi.org/10.1109/robot.2005.1570333 "/> <meta name="citation_reference" content="citation_journal_title=International Journal of Production Research; citation_title=A review of the current applications of genetic algorithms in mixed-model assembly line sequencing; citation_author=OS Akg&#252;nd&#252;z, S Tunal&#305;; citation_volume=49; citation_issue=15; citation_publication_date=2011; citation_pages=4483-4503; citation_doi=10.1080/00207543.2010.495085; citation_id=CR3"/> <meta name="citation_reference" content="Ben-David, S., &amp; Berman, S. (2023). A multi-objective fitness function for sequencing robotic assembly operations with deformable objects using a genetic algorithm with constraint satisfaction. In&#160;Intelligent and transformative production in pandemic times.&#160;Lecture notes in production engineering&#160;(pp. 175&#8211;185). Springer. https://doi.org/10.1007/978-palli3-031-18641-7_17 "/> <meta name="citation_reference" content="citation_journal_title=IFAC-PapersOnLine; citation_title=Simulation-based two stage sequencing of robotic assembly operations with deformable objects; citation_author=S Ben-David, R Shneor, S Zuler, Z Mann, A Greenberg, S Berman; citation_volume=54; citation_issue=1; citation_publication_date=2021; citation_pages=175-180; citation_doi=10.1016/j.ifacol.2021.08.020; citation_id=CR4"/> <meta name="citation_reference" content="Billard, A., &amp; Kragic, D. (2019). Trends and challenges in robot manipulation. Science. https://doi.org/10.1126/science.aat8414 "/> <meta name="citation_reference" content="citation_journal_title=CIRP Journal of Manufacturing Science and Technology; citation_title=A review of unit level digital twin applications in the manufacturing industry; citation_author=T B&#246;ttjer, D Tola, F Kakavandi, CR Wewer, D Ramanujan, C Gomes, PG Larsen, A Iosifidis; citation_volume=45; citation_publication_date=2023; citation_pages=162-189; citation_doi=10.1016/j.cirpj.2023.06.011; citation_id=CR7"/> <meta name="citation_reference" content="citation_journal_title=European Journal of Operational Research; citation_title=Matching supply and demand in a sharing economy: Classification, computational complexity, and application; citation_author=N Boysen, D Briskorn, S Schwerdfeger; citation_volume=278; citation_issue=2; citation_publication_date=2019; citation_pages=578-595; citation_doi=10.1016/j.ejor.2019.04.032; citation_id=CR8"/> <meta name="citation_reference" content="citation_journal_title=Journal of Intelligent Manufacturing; citation_title=Semantic part segmentation of spatial features via geometric deep learning for Automated Control Cabinet Assembly; citation_author=P Br&#252;ndl, B Scheffler, M Stoidner, H Nguyen, A Baechler, A Abrass, J Franke; citation_volume=35; citation_issue=8; citation_publication_date=2023; citation_pages=3681-3695; citation_doi=10.1007/s10845-023-02267-1; citation_id=CR9"/> <meta name="citation_reference" content="Br&#252;ndl, P., Stoidner, M., Bredthauer, J., Nguyen, H. G., Baechler, A., &amp; Franke, J. (2024). Unlocking the potential of digitalization and automation: A qualitative and quantitative study of the Control Cabinet Manufacturing Industry. Production &amp; Manufacturing Research. https://doi.org/10.1080/21693277.2024.2306820 "/> <meta name="citation_reference" content="citation_journal_title=Procedia Manufacturing; citation_title=The wires experiment: Tools and strategies for robotized switchgear cabling; citation_author=M Busi, A Cirillo, D Gregorio, M Indovini, G Maria, C Melchiorri, C Natale, G Palli, S Pirozzi; citation_volume=11; citation_publication_date=2017; citation_pages=355-363; citation_doi=10.1016/j.promfg.2017.07.118; citation_id=CR11"/> <meta name="citation_reference" content="citation_journal_title=Computers &amp; Industrial Engineering; citation_title=Forty years of computers &amp; industrial engineering: A bibliometric analysis; citation_author=C Cancino, JM Merig&#243;, F Coronado, Y Dessouky, M Dessouky; citation_volume=113; citation_publication_date=2017; citation_pages=614-629; citation_doi=10.1016/j.cie.2017.08.033; citation_id=CR12"/> <meta name="citation_reference" content="citation_journal_title=International Journal of Computer Integrated Manufacturing; citation_title=An online machine learning framework for early detection of product failures in an industry 4.0 context; citation_author=JA Carvajal Soto, F Tavakolizadeh, D Gyulai; citation_volume=32; citation_issue=4&#8211;5; citation_publication_date=2019; citation_pages=452-465; citation_doi=10.1080/0951192x.2019.1571238; citation_id=CR13"/> <meta name="citation_reference" content="citation_journal_title=Artificial Intelligence; citation_title=Network-based heuristics for constraint-satisfaction problems; citation_author=R Dechter, J Pearl; citation_volume=34; citation_issue=1; citation_publication_date=1987; citation_pages=1-38; citation_doi=10.1016/0004-3702(87)90002-6; citation_id=CR14"/> <meta name="citation_reference" content="citation_journal_title=International Journal of Production Research; citation_title=Reinforcement learning applied to production planning and control; citation_author=A Esteso, D Peidro, J Mula, M D&#237;az-Madro&#241;ero; citation_volume=61; citation_issue=16; citation_publication_date=2022; citation_pages=5772-5789; citation_doi=10.1080/00207543.2022.2104180; citation_id=CR15"/> <meta name="citation_reference" content="Fakhurldeen, H., Dailami, F., &amp; Pipe, A. G. (2019). Cara system architecture&#8212;a click and assemble robotic assembly system. In&#160;2019 International conference on robotics and automation (ICRA). https://doi.org/10.1109/icra.2019.8794114 "/> <meta name="citation_reference" content="Goujon, A., Rosin, F., Magnani, F., Lamouri, S., Pellerin, R., &amp; Joblot, L. (2024). Industry 5.0 use cases development framework. International Journal of Production Research. https://doi.org/10.1080/00207543.2024.2307505 "/> <meta name="citation_reference" content="citation_journal_title=International Journal of Production Research; citation_title=A comprehensive approach to operation sequence similarity based part family formation in the reconfigurable manufacturing system; citation_author=KK Goyal, PK Jain, M Jain; citation_volume=51; citation_issue=6; citation_publication_date=2013; citation_pages=1762-1776; citation_doi=10.1080/00207543.2012.701771; citation_id=CR18"/> <meta name="citation_reference" content="Graham, R. L., Lawler, E. L., Lenstra, J. K., &amp; Kan, A. H. G. R. (1979). Optimization and approximation in deterministic sequencing and scheduling: A survey. Annals of Discrete Mathematics. https://doi.org/10.1016/s0167-5060(08)70356-x "/> <meta name="citation_reference" content="Hazarika, S. M., &amp; Dixit, U. S. (2018). Robotics: History, trends, and future directions. In&#160;Introduction to mechanical engineering. Springer.&#160; https://doi.org/10.1007/978-3-319-78488-5_7 "/> <meta name="citation_reference" content="Herguedas, R., Lopez-Nicolas, G., Aragues, R., &amp; Sagues, C. (2019). Survey on multi-robot manipulation of deformable objects. In&#160;2019 24th IEEE International conference on emerging technologies and factory automation (ETFA)&#160;(pp. 977&#8211;984). https://doi.org/10.1109/etfa.2019.8868987 "/> <meta name="citation_reference" content="Ivanov, D. (2023). Conceptualisation of a 7-element digital twin framework in supply chain and Operations Management. International Journal of Production Research. https://doi.org/10.1080/00207543.2023.2217291 "/> <meta name="citation_reference" content="citation_journal_title=Robotics and Computer-Integrated Manufacturing; citation_title=State-of-the-art control strategies for robotic PIH Assembly; citation_author=J Jiang, Z Huang, Z Bi, X Ma, G Yu; citation_volume=65; citation_publication_date=2020; citation_pages=101894; citation_doi=10.1016/j.rcim.2019.101894; citation_id=CR24"/> <meta name="citation_reference" content="citation_journal_title=Robotics and Computer-Integrated Manufacturing; citation_title=A review of Robotic Assembly Strategies for the full operation procedure: Planning, execution and evaluation; citation_author=Y Jiang, Z Huang, B Yang, W Yang; citation_volume=78; citation_publication_date=2022; citation_pages=102366; citation_doi=10.1016/j.rcim.2022.102366; citation_id=CR25"/> <meta name="citation_reference" content="citation_journal_title=Journal of Intelligent Manufacturing; citation_title=Survey on assembly sequencing: A combinatorial and geometrical perspective; citation_author=P Jim&#233;nez; citation_volume=24; citation_issue=2; citation_publication_date=2011; citation_pages=235-250; citation_doi=10.1007/s10845-011-0578-5; citation_id=CR26"/> <meta name="citation_reference" content="citation_journal_title=Robotics and Computer-Integrated Manufacturing; citation_title=Survey on model-based manipulation planning of deformable objects; citation_author=P Jim&#233;nez; citation_volume=28; citation_issue=2; citation_publication_date=2012; citation_pages=154-163; citation_doi=10.1016/j.rcim.2011.08.002; citation_id=CR27"/> <meta name="citation_reference" content="citation_journal_title=Journal of Intelligent Manufacturing; citation_title=Reinforcement learning applications to machine scheduling problems: A comprehensive literature review; citation_author=BM Kayhan, G Yildiz; citation_volume=34; citation_issue=3; citation_publication_date=2021; citation_pages=905-929; citation_doi=10.1007/s10845-021-01847-3; citation_id=CR28"/> <meta name="citation_reference" content="citation_journal_title=2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS); citation_title=On CAD informed Adaptive Robotic Assembly; citation_author=Y Koga, H Kerrick, S Chitta; citation_publication_date=2022; citation_doi=10.1109/iros47612.2022.9982242; citation_id=CR29"/> <meta name="citation_reference" content="citation_journal_title=IEEE Robotics and Automation Letters; citation_title=Reinforcement learning of impedance policies for peg-in-hole tasks: Role of asymmetric matrices; citation_author=S Kozlovsky, E Newman, M Zacksenhouse; citation_volume=7; citation_issue=4; citation_publication_date=2022; citation_pages=10898-10905; citation_doi=10.1109/lra.2022.3191070; citation_id=CR30"/> <meta name="citation_reference" content="Lee, E. A., &amp; Seshia, S. A. (2017). Introduction to embedded systems&#8212;a cyber-physical systems approach (2nd ed.). MIT."/> <meta name="citation_reference" content="citation_journal_title=Ieee Access : Practical Innovations, Open Solutions; citation_title=Narrowing support searching range in maintaining arc consistency for solving constraint satisfaction problems; citation_author=H Li; citation_volume=5; citation_publication_date=2017; citation_pages=5798-5803; citation_doi=10.1109/access.2017.2690672; citation_id=CR32"/> <meta name="citation_reference" content="Liang, Y. S., Pellier, D., Fiorino, H., &amp; Pesty, S. (2019). End-user programming of low-and high-level actions for Robotic Task Planning. In&#160;2019 28th IEEE international conference on robot and human interactive communication (RO-MAN). https://doi.org/10.1109/ro-man46459.2019.8956327 "/> <meta name="citation_reference" content="citation_journal_title=International Journal of Production Research; citation_title=Hybrid evolutionary optimisation with learning for production scheduling: State-of-the-art survey on algorithms and applications; citation_author=L Lin, M Gen; citation_volume=56; citation_issue=1&#8211;2; citation_publication_date=2018; citation_pages=193-223; citation_doi=10.1080/00207543.2018.1437288; citation_id=CR35"/> <meta name="citation_reference" content="citation_journal_title=Robotics and Computer-Integrated Manufacturing; citation_title=Robot learning towards smart robotic manufacturing: A review; citation_author=Z Liu, Q Liu, W Xu, L Wang, Z Zhou; citation_volume=77; citation_publication_date=2022; citation_pages=102360; citation_doi=10.1016/j.rcim.2022.102360; citation_id=CR37"/> <meta name="citation_reference" content="citation_journal_title=Journal of Intelligent Manufacturing; citation_title=Digital twin-based manufacturing system: A survey based on a novel reference model; citation_author=S Liu, P Zheng, J Bao; citation_volume=35; citation_issue=6; citation_publication_date=2023; citation_pages=2517-2546; citation_doi=10.1007/s10845-023-02172-7; citation_id=CR36"/> <meta name="citation_reference" content="citation_journal_title=International Journal of Production Research; citation_title=A state-of-the-art on Production Planning in Industry 4.0; citation_author=D Luo, S Thevenin, A Dolgui; citation_volume=61; citation_issue=19; citation_publication_date=2022; citation_pages=6602-6632; citation_doi=10.1080/00207543.2022.2122622; citation_id=CR38"/> <meta name="citation_reference" content="citation_journal_title=Robotics and Computer-Integrated Manufacturing; citation_title=Assembly sequence and path planning for monotone and nonmonotone assemblies with rigid and flexible parts; citation_author=E Masehian, S Ghandi; citation_volume=72; citation_publication_date=2021; citation_pages=102180; citation_doi=10.1016/j.rcim.2021.102180; citation_id=CR39"/> <meta name="citation_reference" content="Mezouar, Y. (2021). COMMANDIA (Collaborative RObotic Mobile MANipulation of Deformable objects in Industrial Applications). http://commandia.unizar.es/ "/> <meta name="citation_reference" content="citation_journal_title=Journal of Intelligent Manufacturing; citation_title=Revolutionizing sheet metal stamping through industry 5.0 Digital Twins: A comprehensive review; citation_author=OA Modad, J Ryska, A Chehade, G Ayoub; citation_publication_date=2024; citation_doi=10.1007/s10845-024-02453-9; citation_id=CR41"/> <meta name="citation_reference" content="citation_journal_title=Journal of Intelligent Manufacturing; citation_title=Survey on ontology-based explainable AI in manufacturing; citation_author=MR Naqvi, L Elmhadhbi, A Sarkar, B Archimede, MH Karray; citation_volume=35; citation_issue=8; citation_publication_date=2024; citation_pages=3605-3627; citation_doi=10.1007/s10845-023-02304-z; citation_id=CR42"/> <meta name="citation_reference" content="citation_journal_title=Procedia CIRP; citation_title=Review on approaches to generate assembly sequences by extraction of Assembly features from 3D models; citation_author=A Neb; citation_volume=81; citation_publication_date=2019; citation_pages=856-861; citation_doi=10.1016/j.procir.2019.03.213; citation_id=CR43"/> <meta name="citation_reference" content="Neumann, A., Hajji, A., Rekik, M., &amp; Pellerin, R. (2023). Genetic algorithms for planning and scheduling engineer-to-order production: A systematic review. International Journal of Production Research. https://doi.org/10.1080/00207543.2023.2237122 "/> <meta name="citation_reference" content="Nikolov, G. N., Thomsen, A. N., Mikkelstrup, A. F., &amp; Kristiansen, M. (2023). Computer-aided process planning system for laser forming: From CAD to part. International Journal of Production Research.&#160; https://doi.org/10.1080/00207543.2023.2241565 "/> <meta name="citation_reference" content="Overbeck, L., Graves, S. C., &amp; Lanza, G. (2023). Development and analysis of Digital Twins of Production systems. International Journal of Production Research. https://doi.org/10.1080/00207543.2023.2242525 "/> <meta name="citation_reference" content="Palli, G., Pirozzi, S., Indovini, M., De Gregorio, D., Zanella, R., &amp; Melchiorri, C. (2019). Automatized switchgear wiring: An outline of the wires experiment results. In&#160;Springer tracts in advanced robotics&#160;(pp. 107&#8211;123). Springer.&#160; https://doi.org/10.1007/978-3-030-22327-4_6 "/> <meta name="citation_reference" content="Pane, Y., Arbo, M. H., Aertbelien, E., &amp; Decre, W. (2020). A system architecture for CAD-based Robotic Assembly with sensor-based skills. IEEE Transactions on Automation Science and Engineering. https://doi.org/10.1109/tase.2020.2980628 "/> <meta name="citation_reference" content="citation_journal_title=International Journal of Production Research; citation_title=Deep reinforcement learning in production systems: A systematic literature review; citation_author=M Panzer, B Bender; citation_volume=60; citation_issue=13; citation_publication_date=2021; citation_pages=4316-4341; citation_doi=10.1080/00207543.2021.1973138; citation_id=CR49"/> <meta name="citation_reference" content="Pyrih, Y., Klymash, M., Kaidan, M., Hordiichuk-Bublivska, O., &amp; Nodzhak, L. (2024). Investigating the computational complexity of the genetic algorithm with variations in population size and the number of generations. In&#160;2024 IEEE 17th International Conference on Advanced Trends in Radioelectronics Telecommunications and Computer Engineering (TCSET) (Vol. 1, pp. 1&#8211;4). https://doi.org/10.1109/tcset64720.2024.10755729 "/> <meta name="citation_reference" content="citation_journal_title=International Journal of Production Research; citation_title=An abge-aided manufacturing knowledge graph construction approach for heterogeneous IIOT data integration; citation_author=L Ren, Y Li, X Wang, J Cui, L Zhang; citation_volume=61; citation_issue=12; citation_publication_date=2022; citation_pages=4102-4116; citation_doi=10.1080/00207543.2022.2042416; citation_id=CR51"/> <meta name="citation_reference" content="citation_journal_title=IEEE Robotics and Automation Letters; citation_title=Pattern recognition for knowledge transfer in Robotic Assembly sequence planning; citation_author=I Rodr&#237;guez, K Nottensteiner, D Leidner, M Durner, F Stulp, A Albu-Schaffer; citation_volume=5; citation_issue=2; citation_publication_date=2020; citation_pages=3666-3673; citation_doi=10.1109/lra.2020.2979622; citation_id=CR52"/> <meta name="citation_reference" content="citation_journal_title=Industrial Robot: An International Journal; citation_title=Industrial applications of automatic manipulation of flexible materials; citation_author=M Saadat, P Nan; citation_volume=29; citation_issue=5; citation_publication_date=2002; citation_pages=434-442; citation_doi=10.1108/01439910210440255; citation_id=CR53"/> <meta name="citation_reference" content="citation_journal_title=The International Journal of Robotics Research; citation_title=Robotic manipulation and sensing of deformable objects in domestic and industrial applications: A survey; citation_author=J Sanchez, JA Corrales, BC Bouzgarrou, Y Mezouar; citation_volume=37; citation_issue=7; citation_publication_date=2018; citation_pages=688-716; citation_doi=10.1177/0278364918779698; citation_id=CR54"/> <meta name="citation_reference" content="Shneor, R., &amp; Berman, S. (2022a). The R&#945;&#946;&#947; categorisation framework for dexterous robotic Manufacturing processes. International Journal of Production Research. https://doi.org/10.1080/00207543.2022.2150907 "/> <meta name="citation_reference" content="citation_journal_title=IFAC-PapersOnLine; citation_title=Assembly sequence planning with deformable linear objects in the smart factory: Dilemmas and injections; citation_author=R Shneor, S Berman; citation_volume=55; citation_issue=10; citation_publication_date=2022; citation_pages=2457-2462; citation_doi=10.1016/j.ifacol.2022.10.077; citation_id=CR56"/> <meta name="citation_reference" content="Shneor, R., &amp; Berman, S. (2023a). Towards production planning automation: mapping documents for robotic assembly planning with DLO. In&#160;The 27th International conference on production research, Cluj-Napoca, Romania, 23&#8211;28 July 2023."/> <meta name="citation_reference" content="Shneor, R., &amp; Berman, S. (2023b). Robotic Assembly with deformable objects. In&#160;Systems collaboration and integration&#160;(pp. 221&#8211;235). Springer. https://doi.org/10.1007/978-3-031-44373-2_13 "/> <meta name="citation_reference" content="citation_journal_title=International Journal of Production Research; citation_title=Modelling and control of manufacturing systems subject to context recognition and switching; citation_author=LF Southier, D Casanova, L Barbosa, C Torrico, M Barbosa, M Teixeira; citation_volume=61; citation_issue=10; citation_publication_date=2022; citation_pages=3396-3414; citation_doi=10.1080/00207543.2022.2081631; citation_id=CR59"/> <meta name="citation_reference" content="citation_journal_title=Advanced Robotics; citation_title=Generating complex assembly sequences from 3D CAD models considering insertion relations; citation_author=K Tariki, T Kiyokawa, T Nagatani, J Takamatsu, T Ogasawara; citation_volume=35; citation_issue=6; citation_publication_date=2020; citation_pages=337-348; citation_doi=10.1080/01691864.2020.1863258; citation_id=CR60"/> <meta name="citation_reference" content="citation_journal_title=2018 IEEE International Conference on Robotics and Automation (ICRA); citation_title=Learning Robotic Assembly from CAD; citation_author=G Thomas, M Chien, A Tamar, JA Ojea, P Abbeel; citation_publication_date=2018; citation_doi=10.1109/icra.2018.8460696; citation_id=CR61"/> <meta name="citation_reference" content="Tpaviot, T. (2008). Tpaviot/PYTHONOCC-core: Python package for 3D CAD/BIM/PLM/Cam. GitHub. https://github.com/tpaviot/pythonocc-core "/> <meta name="citation_reference" content="citation_journal_title=Procedia CIRP; citation_title=Design for Automatic Assembly: A new approach to classify limp components; citation_author=J Trommnau, A Frommknecht, J Siegert, J W&#246;&#223;ner, T Bauernhansl; citation_volume=91; citation_publication_date=2020; citation_pages=49-54; citation_doi=10.1016/j.procir.2020.01.136; citation_id=CR63"/> <meta name="citation_reference" content="citation_journal_title=Journal of Intelligent Manufacturing; citation_title=Machine learning applied in production planning and control: A state-of-the-art in the era of industry 4.0; citation_author=JP Usuga Cadavid, S Lamouri, B Grabot, R Pellerin, A Fortin; citation_volume=31; citation_issue=6; citation_publication_date=2020; citation_pages=1531-1558; citation_doi=10.1007/s10845-019-01531-7; citation_id=CR64"/> <meta name="citation_reference" content="citation_journal_title=Computers in Industry; citation_title=Perspective on holonic manufacturing systems: Prosa becomes arti; citation_author=P Valckenaers; citation_volume=120; citation_publication_date=2020; citation_pages=103226; citation_doi=10.1016/j.compind.2020.103226; citation_id=CR65"/> <meta name="citation_reference" content="citation_journal_title=Computers in Industry; citation_title=Reference architecture for holonic manufacturing systems: Prosa; citation_author=H Brussel, J Wyns, P Valckenaers, L Bongaerts, P Peeters; citation_volume=37; citation_issue=3; citation_publication_date=1998; citation_pages=255-274; citation_doi=10.1016/s0166-3615(98)00102-x; citation_id=CR66"/> <meta name="citation_reference" content="citation_journal_title=European Journal of Operational Research; citation_title=Robinx: A three-field classification and unified data format for round-robin sports timetabling; citation_author=D Bulck, D Goossens, J Sch&#246;nberger, M Guajardo; citation_volume=280; citation_issue=2; citation_publication_date=2020; citation_pages=568-580; citation_doi=10.1016/j.ejor.2019.07.023; citation_id=CR67"/> <meta name="citation_reference" content="citation_journal_title=Journal of Intelligent Manufacturing; citation_title=Critical analysis of the impact of artificial intelligence integration with cutting-edge technologies for production systems; citation_author=V Varriale, A Cammarano, F Michelino, M Caputo; citation_publication_date=2023; citation_doi=10.1007/s10845-023-02244-8; citation_id=CR68"/> <meta name="citation_reference" content="citation_journal_title=The International Journal of Advanced Manufacturing Technology; citation_title=Assembly process planning and its future in Collaborative Manufacturing: A review; citation_author=L Wang, S Keshavarzmanesh, HY Feng, RO Buchal; citation_volume=41; citation_issue=1&#8211;2; citation_publication_date=2008; citation_pages=132-144; citation_doi=10.1007/s00170-008-1458-9; citation_id=CR69"/> <meta name="citation_reference" content="citation_journal_title=Computers in Industry; citation_title=Data driven production modeling and simulation of Complex Automobile General Assembly Plant; citation_author=J Wang, Q Chang, G Xiao, N Wang, S Li; citation_volume=62; citation_issue=7; citation_publication_date=2011; citation_pages=765-775; citation_doi=10.1016/j.compind.2011.05.004; citation_id=CR70"/> <meta name="citation_reference" content="Wasserman, A., Kruger, K., &amp; Basson, A. H. (2023). ARTI-Based Holonic Manufacturing execution system using the BASE Architecture: A case study implementation. In von K. Leipzig, N. Sacks, &amp; M. Mc Clelland (Eds.), Smart, sustainable manufacturing in an ever-changing world. Lecture notes in production engineering. Springer.&#160; https://doi.org/10.1007/978-3-031-15602-1_4 "/> <meta name="citation_reference" content="citation_journal_title=Journal of Intelligent Manufacturing; citation_title=Flexible job shop scheduling with preventive maintenance consideration; citation_author=MM Wocker, FF Ostermeier, T Wanninger, R Zwinkau, J Deuse; citation_volume=35; citation_issue=4; citation_publication_date=2023; citation_pages=1517-1539; citation_doi=10.1007/s10845-023-02114-3; citation_id=CR72"/> <meta name="citation_reference" content="citation_journal_title=Journal of Intelligent Manufacturing; citation_title=Digital twin-based real-time energy optimization method for production line considering fault disturbances; citation_author=T Xia, H Sun, Y Ding, D Han, W Qin, J Seidelmann, L Xi; citation_volume=36; citation_issue=1; citation_publication_date=2025; citation_pages=569-593; citation_doi=10.1007/s10845-023-02219-9; citation_id=CR73"/> <meta name="citation_reference" content="citation_journal_title=Computers in Industry; citation_title=Assembly operation process planning by mapping a virtual assembly simulation to real operation; citation_author=Q Yang, DL Wu, HM Zhu, JS Bao, ZH Wei; citation_volume=64; citation_issue=7; citation_publication_date=2013; citation_pages=869-879; citation_doi=10.1016/j.compind.2013.06.001; citation_id=CR74"/> <meta name="citation_reference" content="citation_journal_title=Computers &amp; Industrial Engineering; citation_title=Deep learning-based optimization for motion planning of dual-ARM assembly robots; citation_author=KC Ying, P Pourhejazy, CY Cheng, ZY Cai; citation_volume=160; citation_publication_date=2021; citation_pages=107603; citation_doi=10.1016/j.cie.2021.107603; citation_id=CR75"/> <meta name="citation_reference" content="citation_journal_title=Journal of Intelligent Manufacturing; citation_title=Digital-triplet: A new three entities digital-twin paradigm for Equipment Fault diagnosis; citation_author=H Zhang, Z Wang, S Zhang, L Qiu, Y Wang, F Xiang, Z Pan, L Zhu, J Tan; citation_publication_date=2024; citation_doi=10.1007/s10845-024-02471-7; citation_id=CR76"/> <meta name="citation_reference" content="Zhao, X., Zheng, L., Shi, M., Zhang, X., &amp; Zhang, Y. (2023). Unified modelling for continuous&#8211;discrete hybrid adaptive machining CPS of large thin-walled parts. International Journal of Production Research. https://doi.org/10.1080/00207543.2023.2217304 "/> <meta name="citation_reference" content="citation_journal_title=IEEE Robotics &amp; Automation Magazine; citation_title=Challenges and outlook in robotic manipulation of deformable objects; citation_author=J Zhu, A Cherubini, C Dune, D Navarro-Alarcon, F Alambeigi, D Berenson, F Ficuciello, K Harada, J Kober, X Li, J Pan, W Yuan, M Gienger; citation_volume=29; citation_issue=3; citation_publication_date=2022; citation_pages=67-77; citation_doi=10.1109/mra.2022.3147415; citation_id=CR78"/> <meta name="citation_reference" content="citation_journal_title=Procedia Computer Science; citation_title=Improving genetic algorithm using arc consistency technic; citation_author=M Zouita, S Bouamama, K Barkaoui; citation_volume=159; citation_publication_date=2019; citation_pages=1387-1396; citation_doi=10.1016/j.procs.2019.09.309; citation_id=CR79"/> <meta name="citation_author" content="Shneor, Ran"/> <meta name="citation_author_email" content="shneorr@post.bgu.ac.il"/> <meta name="citation_author_institution" content="Department of Industrial Engineering &amp; Management, Ben-Gurion University of the Negev, Beer-Sheva, Israel"/> <meta name="citation_author" content="Naveh, Gali"/> <meta name="citation_author_institution" content="Department of Industrial Engineering &amp; Management, Shamoon College of Engineering, Beer-Sheva, Israel"/> <meta name="citation_author" content="Ben-David, Shir"/> <meta name="citation_author_institution" content="Department of Industrial Engineering &amp; Management, Ben-Gurion University of the Negev, Beer-Sheva, Israel"/> <meta name="citation_author" content="Shvarzman, Bar"/> <meta name="citation_author_institution" content="Department of Industrial Engineering &amp; Management, Ben-Gurion University of the Negev, Beer-Sheva, Israel"/> <meta name="citation_author" content="Mann, Zachi"/> <meta name="citation_author_institution" content="Siemens Digital Industries Software, Airport City, Israel"/> <meta name="citation_author" content="Greenberg, Alex"/> <meta name="citation_author_institution" content="Siemens Digital Industries Software, Airport City, Israel"/> <meta name="citation_author" content="Efrat, Yotam"/> <meta name="citation_author_institution" content="Polygon-Technologies, Zur Yigal, Israel"/> <meta name="citation_author" content="Einav, Omer"/> <meta name="citation_author_institution" content="Polygon-Technologies, Zur Yigal, Israel"/> <meta name="citation_author" content="Berman, Sigal"/> <meta name="citation_author_institution" content="Department of Industrial Engineering &amp; Management, Ben-Gurion University of the Negev, Beer-Sheva, Israel"/> <meta name="format-detection" content="telephone=no"/> <meta property="og:url" content="https://link.springer.com/article/10.1007/s10845-025-02578-5"/> <meta property="og:type" content="article"/> <meta property="og:site_name" content="SpringerLink"/> <meta property="og:title" content="A planning and execution framework for robotic assembly with deformable objects using a centralized database based on the Rαβγ categorization - Journal of Intelligent Manufacturing"/> <meta property="og:description" content="Abstract Automation of process planning and execution of robotic assembly can lead to process optimization and shorter setup times. Several such automation frameworks have been developed for the assembly of rigid objects. However, many products require assembly with deformable objects. Robotic assembly with deformable objects typically incurs more complex dynamics and requires more collaboration during execution than rigid object assembly. In addition, process documentation includes more documents that are less structured. The current research suggests a data-driven planning and execution automation framework suitable for robotic assembly with deformable objects. The framework includes the three required modules: data extraction, process planning, and process execution. The modules interact with a central database constructed according to the R&#945;&#946;&#947; ontology. Data extraction is based on commonly used manufacturing documents. Process planning is based on parametrized hybrid automata models, which encompass process and collaboration complexity using two layers: assembly operations and robotic skills. Process execution integrates a digital twin for sequence validation, process adaptation, and monitoring. The framework was successfully demonstrated in a small factory environment with three case studies for products with deformable objects: two smart light boards which include parts with plastic deformations (electric wires) and a medical infusion kit with parts with elastic deformations (tube, connectors). The framework facilitated optimized planning with significant reuse of assembly operations for all products. Both light boards had a high rate of assembly operation reuse (78%, 86%). The medical infusion kit had a somewhat lower rate (62%) due to the need for dedicated operations. Graphical abstract"/> <meta property="og:image" content="https://static-content.springer.com/image/art%3A10.1007%2Fs10845-025-02578-5/MediaObjects/10845_2025_2578_Figa_HTML.png"/> <meta name="format-detection" content="telephone=no"> <link rel="apple-touch-icon" sizes="180x180" href=/oscar-static/img/favicons/darwin/apple-touch-icon-92e819bf8a.png> <link rel="icon" type="image/png" sizes="192x192" href=/oscar-static/img/favicons/darwin/android-chrome-192x192-6f081ca7e5.png> <link rel="icon" type="image/png" sizes="32x32" href=/oscar-static/img/favicons/darwin/favicon-32x32-1435da3e82.png> <link rel="icon" type="image/png" sizes="16x16" href=/oscar-static/img/favicons/darwin/favicon-16x16-ed57f42bd2.png> <link rel="shortcut icon" data-test="shortcut-icon" href=/oscar-static/img/favicons/darwin/favicon-c6d59aafac.ico> <meta name="theme-color" content="#e6e6e6"> <!-- Please see discussion: https://github.com/springernature/frontend-open-space/issues/316--> <!--TODO: Implement alternative to CTM in here if the discussion concludes we do not continue with CTM as a practice--> <link rel="stylesheet" media="print" href=/oscar-static/app-springerlink/css/print-b8af42253b.css> <style> html{text-size-adjust:100%;line-height:1.15}body{font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif;line-height:1.8;margin:0}details,main{display:block}h1{font-size:2em;margin:.67em 0}a{background-color:transparent;color:#025e8d}sub{bottom:-.25em;font-size:75%;line-height:0;position:relative;vertical-align:baseline}img{border:0;height:auto;max-width:100%;vertical-align:middle}button,input{font-family:inherit;font-size:100%;line-height:1.15;margin:0;overflow:visible}button{text-transform:none}[type=button],[type=submit],button{-webkit-appearance:button}[type=search]{-webkit-appearance:textfield;outline-offset:-2px}summary{display:list-item}[hidden]{display:none}button{cursor:pointer}svg{height:1rem;width:1rem} </style> <style>@media only print, only all and (prefers-color-scheme: no-preference), only all and (prefers-color-scheme: light), only all and (prefers-color-scheme: dark) { body{background:#fff;color:#222;font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif;line-height:1.8;min-height:100%}a{color:#025e8d;text-decoration:underline;text-decoration-skip-ink:auto}button{cursor:pointer}img{border:0;height:auto;max-width:100%;vertical-align:middle}html{box-sizing:border-box;font-size:100%;height:100%;overflow-y:scroll}h1{font-size:2.25rem}h2{font-size:1.75rem}h1,h2,h4{font-weight:700;line-height:1.2}h4{font-size:1.25rem}body{font-size:1.125rem}*{box-sizing:inherit}p{margin-bottom:2rem;margin-top:0}p:last-of-type{margin-bottom:0}.c-ad{text-align:center}@media only screen and (min-width:480px){.c-ad{padding:8px}}.c-ad--728x90{display:none}.c-ad--728x90 .c-ad__inner{min-height:calc(1.5em + 94px)}@media only screen and (min-width:876px){.js .c-ad--728x90{display:none}}.c-ad__label{color:#333;font-size:.875rem;font-weight:400;line-height:1.5;margin-bottom:4px}.c-ad__label,.c-status-message{font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif}.c-status-message{align-items:center;box-sizing:border-box;display:flex;position:relative;width:100%}.c-status-message :last-child{margin-bottom:0}.c-status-message--boxed{background-color:#fff;border:1px solid #ccc;line-height:1.4;padding:16px}.c-status-message__heading{font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif;font-size:.875rem;font-weight:700}.c-status-message__icon{fill:currentcolor;display:inline-block;flex:0 0 auto;height:1.5em;margin-right:8px;transform:translate(0);vertical-align:text-top;width:1.5em}.c-status-message__icon--top{align-self:flex-start}.c-status-message--info .c-status-message__icon{color:#003f8d}.c-status-message--boxed.c-status-message--info{border-bottom:4px solid #003f8d}.c-status-message--error .c-status-message__icon{color:#c40606}.c-status-message--boxed.c-status-message--error{border-bottom:4px solid #c40606}.c-status-message--success .c-status-message__icon{color:#00b8b0}.c-status-message--boxed.c-status-message--success{border-bottom:4px solid #00b8b0}.c-status-message--warning .c-status-message__icon{color:#edbc53}.c-status-message--boxed.c-status-message--warning{border-bottom:4px solid #edbc53}.eds-c-header{background-color:#fff;border-bottom:2px solid #01324b;font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif;font-size:1rem;line-height:1.5;padding:8px 0 0}.eds-c-header__container{align-items:center;display:flex;flex-wrap:nowrap;gap:8px 16px;justify-content:space-between;margin:0 auto 8px;max-width:1280px;padding:0 8px;position:relative}.eds-c-header__nav{border-top:2px solid #c5e0f4;padding-top:4px;position:relative}.eds-c-header__nav-container{align-items:center;display:flex;flex-wrap:wrap;margin:0 auto 4px;max-width:1280px;padding:0 8px;position:relative}.eds-c-header__nav-container>:not(:last-child){margin-right:32px}.eds-c-header__link-container{align-items:center;display:flex;flex:1 0 auto;gap:8px 16px;justify-content:space-between}.eds-c-header__list{list-style:none;margin:0;padding:0}.eds-c-header__list-item{font-weight:700;margin:0 auto;max-width:1280px;padding:8px}.eds-c-header__list-item:not(:last-child){border-bottom:2px solid #c5e0f4}.eds-c-header__item{color:inherit}@media only screen and (min-width:768px){.eds-c-header__item--menu{display:none;visibility:hidden}.eds-c-header__item--menu:first-child+*{margin-block-start:0}}.eds-c-header__item--inline-links{display:none;visibility:hidden}@media only screen and (min-width:768px){.eds-c-header__item--inline-links{display:flex;gap:16px 16px;visibility:visible}}.eds-c-header__item--divider:before{border-left:2px solid #c5e0f4;content:"";height:calc(100% - 16px);margin-left:-15px;position:absolute;top:8px}.eds-c-header__brand{padding:16px 8px}.eds-c-header__brand a{display:block;line-height:1;text-decoration:none}.eds-c-header__brand img{height:1.5rem;width:auto}.eds-c-header__link{color:inherit;display:inline-block;font-weight:700;padding:16px 8px;position:relative;text-decoration-color:transparent;white-space:nowrap;word-break:normal}.eds-c-header__icon{fill:currentcolor;display:inline-block;font-size:1.5rem;height:1em;transform:translate(0);vertical-align:bottom;width:1em}.eds-c-header__icon+*{margin-left:8px}.eds-c-header__expander{background-color:#f0f7fc}.eds-c-header__search{display:block;padding:24px 0}@media only screen and (min-width:768px){.eds-c-header__search{max-width:70%}}.eds-c-header__search-container{position:relative}.eds-c-header__search-label{color:inherit;display:inline-block;font-weight:700;margin-bottom:8px}.eds-c-header__search-input{background-color:#fff;border:1px solid #000;padding:8px 48px 8px 8px;width:100%}.eds-c-header__search-button{background-color:transparent;border:0;color:inherit;height:100%;padding:0 8px;position:absolute;right:0}.has-tethered.eds-c-header__expander{border-bottom:2px solid #01324b;left:0;margin-top:-2px;top:100%;width:100%;z-index:10}@media only screen and (min-width:768px){.has-tethered.eds-c-header__expander--menu{display:none;visibility:hidden}}.has-tethered .eds-c-header__heading{display:none;visibility:hidden}.has-tethered .eds-c-header__heading:first-child+*{margin-block-start:0}.has-tethered .eds-c-header__search{margin:auto}.eds-c-header__heading{margin:0 auto;max-width:1280px;padding:16px 16px 0}.eds-c-pagination{align-items:center;display:flex;flex-wrap:wrap;font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif;font-size:.875rem;gap:16px 0;justify-content:center;line-height:1.4;list-style:none;margin:0;padding:32px 0}@media only screen and (min-width:480px){.eds-c-pagination{padding:32px 16px}}.eds-c-pagination__item{margin-right:8px}.eds-c-pagination__item--prev{margin-right:16px}.eds-c-pagination__item--next .eds-c-pagination__link,.eds-c-pagination__item--prev .eds-c-pagination__link{padding:16px 8px}.eds-c-pagination__item--next{margin-left:8px}.eds-c-pagination__item:last-child{margin-right:0}.eds-c-pagination__link{align-items:center;color:#222;cursor:pointer;display:inline-block;font-size:1rem;margin:0;padding:16px 24px;position:relative;text-align:center;transition:all .2s ease 0s}.eds-c-pagination__link:visited{color:#222}.eds-c-pagination__link--disabled{border-color:#555;color:#555;cursor:default}.eds-c-pagination__link--active{background-color:#01324b;background-image:none;border-radius:8px;color:#fff}.eds-c-pagination__link--active:focus,.eds-c-pagination__link--active:hover,.eds-c-pagination__link--active:visited{color:#fff}.eds-c-pagination__link-container{align-items:center;display:flex}.eds-c-pagination__icon{fill:#222;height:1.5rem;width:1.5rem}.eds-c-pagination__icon--disabled{fill:#555}.eds-c-pagination__visually-hidden{clip:rect(0,0,0,0);border:0;clip-path:inset(50%);height:1px;overflow:hidden;padding:0;position:absolute!important;white-space:nowrap;width:1px}.c-breadcrumbs{color:#333;font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif;font-size:1rem;list-style:none;margin:0;padding:0}.c-breadcrumbs>li{display:inline}svg.c-breadcrumbs__chevron{fill:#333;height:10px;margin:0 .25rem;width:10px}.c-breadcrumbs--contrast,.c-breadcrumbs--contrast .c-breadcrumbs__link{color:#fff}.c-breadcrumbs--contrast svg.c-breadcrumbs__chevron{fill:#fff}@media only screen and (max-width:479px){.c-breadcrumbs .c-breadcrumbs__item{display:none}.c-breadcrumbs .c-breadcrumbs__item:last-child,.c-breadcrumbs .c-breadcrumbs__item:nth-last-child(2){display:inline}}.c-skip-link{background:#01324b;bottom:auto;color:#fff;font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif;font-size:1rem;padding:8px;position:absolute;text-align:center;transform:translateY(-100%);width:100%;z-index:9999}@media (prefers-reduced-motion:reduce){.c-skip-link{transition:top .3s ease-in-out 0s}}@media print{.c-skip-link{display:none}}.c-skip-link:active,.c-skip-link:hover,.c-skip-link:link,.c-skip-link:visited{color:#fff}.c-skip-link:focus{transform:translateY(0)}.l-with-sidebar{display:flex;flex-wrap:wrap}.l-with-sidebar>*{margin:0}.l-with-sidebar__sidebar{flex-basis:var(--with-sidebar--basis,400px);flex-grow:1}.l-with-sidebar>:not(.l-with-sidebar__sidebar){flex-basis:0px;flex-grow:999;min-width:var(--with-sidebar--min,53%)}.l-with-sidebar>:first-child{padding-right:4rem}@supports (gap:1em){.l-with-sidebar>:first-child{padding-right:0}.l-with-sidebar{gap:var(--with-sidebar--gap,4rem)}}.c-header__link{color:inherit;display:inline-block;font-weight:700;padding:16px 8px;position:relative;text-decoration-color:transparent;white-space:nowrap;word-break:normal}.app-masthead__colour-4{--background-color:#ff9500;--gradient-light:rgba(0,0,0,.5);--gradient-dark:rgba(0,0,0,.8)}.app-masthead{background:var(--background-color,#0070a8);position:relative}.app-masthead:after{background:radial-gradient(circle at top right,var(--gradient-light,rgba(0,0,0,.4)),var(--gradient-dark,rgba(0,0,0,.7)));bottom:0;content:"";left:0;position:absolute;right:0;top:0}@media only screen and (max-width:479px){.app-masthead:after{background:linear-gradient(225deg,var(--gradient-light,rgba(0,0,0,.4)),var(--gradient-dark,rgba(0,0,0,.7)))}}.app-masthead__container{color:var(--masthead-color,#fff);margin:0 auto;max-width:1280px;padding:0 16px;position:relative;z-index:1}.u-button{align-items:center;background-color:#01324b;background-image:none;border:4px solid transparent;border-radius:32px;cursor:pointer;display:inline-flex;font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif;font-size:.875rem;font-weight:700;justify-content:center;line-height:1.3;margin:0;padding:16px 32px;position:relative;transition:all .2s ease 0s;width:auto}.u-button svg,.u-button--contrast svg,.u-button--primary svg,.u-button--secondary svg,.u-button--tertiary svg{fill:currentcolor}.u-button,.u-button:visited{color:#fff}.u-button,.u-button:hover{box-shadow:0 0 0 1px #01324b;text-decoration:none}.u-button:hover{border:4px solid #fff}.u-button:focus{border:4px solid #fc0;box-shadow:none;outline:0;text-decoration:none}.u-button:focus,.u-button:hover{background-color:#fff;background-image:none;color:#01324b}.app-masthead--pastel .c-pdf-download .u-button--primary:focus svg path,.app-masthead--pastel .c-pdf-download .u-button--primary:hover svg path,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--primary:focus svg path,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--primary:hover svg path,.u-button--primary:focus svg path,.u-button--primary:hover svg path,.u-button:focus svg path,.u-button:hover svg path{fill:#01324b}.u-button--primary{background-color:#01324b;background-image:none;border:4px solid transparent;box-shadow:0 0 0 1px #01324b;color:#fff;font-weight:700}.u-button--primary:visited{color:#fff}.u-button--primary:hover{border:4px solid #fff;box-shadow:0 0 0 1px #01324b;text-decoration:none}.u-button--primary:focus{border:4px solid #fc0;box-shadow:none;outline:0;text-decoration:none}.u-button--primary:focus,.u-button--primary:hover{background-color:#fff;background-image:none;color:#01324b}.u-button--secondary{background-color:#fff;border:4px solid #fff;color:#01324b;font-weight:700}.u-button--secondary:visited{color:#01324b}.u-button--secondary:hover{border:4px solid #01324b;box-shadow:none}.u-button--secondary:focus,.u-button--secondary:hover{background-color:#01324b;color:#fff}.app-masthead--pastel .c-pdf-download .u-button--secondary:focus svg path,.app-masthead--pastel .c-pdf-download .u-button--secondary:hover svg path,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--secondary:focus svg path,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--secondary:hover svg path,.u-button--secondary:focus svg path,.u-button--secondary:hover svg path,.u-button--tertiary:focus svg path,.u-button--tertiary:hover svg path{fill:#fff}.u-button--tertiary{background-color:#ebf1f5;border:4px solid transparent;box-shadow:none;color:#666;font-weight:700}.u-button--tertiary:visited{color:#666}.u-button--tertiary:hover{border:4px solid #01324b;box-shadow:none}.u-button--tertiary:focus,.u-button--tertiary:hover{background-color:#01324b;color:#fff}.u-button--contrast{background-color:transparent;background-image:none;color:#fff;font-weight:400}.u-button--contrast:visited{color:#fff}.u-button--contrast,.u-button--contrast:focus,.u-button--contrast:hover{border:4px solid #fff}.u-button--contrast:focus,.u-button--contrast:hover{background-color:#fff;background-image:none;color:#000}.u-button--contrast:focus svg path,.u-button--contrast:hover svg path{fill:#000}.u-button--disabled,.u-button:disabled{background-color:transparent;background-image:none;border:4px solid #ccc;color:#000;cursor:default;font-weight:400;opacity:.7}.u-button--disabled svg,.u-button:disabled svg{fill:currentcolor}.u-button--disabled:visited,.u-button:disabled:visited{color:#000}.u-button--disabled:focus,.u-button--disabled:hover,.u-button:disabled:focus,.u-button:disabled:hover{border:4px solid #ccc;text-decoration:none}.u-button--disabled:focus,.u-button--disabled:hover,.u-button:disabled:focus,.u-button:disabled:hover{background-color:transparent;background-image:none;color:#000}.u-button--disabled:focus svg path,.u-button--disabled:hover svg path,.u-button:disabled:focus svg path,.u-button:disabled:hover svg path{fill:#000}.u-button--small,.u-button--xsmall{font-size:.875rem;padding:2px 8px}.u-button--small{padding:8px 16px}.u-button--large{font-size:1.125rem;padding:10px 35px}.u-button--full-width{display:flex;width:100%}.u-button--icon-left svg{margin-right:8px}.u-button--icon-right svg{margin-left:8px}.u-clear-both{clear:both}.u-container{margin:0 auto;max-width:1280px;padding:0 16px}.u-justify-content-space-between{justify-content:space-between}.u-display-none{display:none}.js .u-js-hide,.u-hide{display:none;visibility:hidden}.u-visually-hidden{clip:rect(0,0,0,0);border:0;clip-path:inset(50%);height:1px;overflow:hidden;padding:0;position:absolute!important;white-space:nowrap;width:1px}.u-icon{fill:currentcolor;display:inline-block;height:1em;transform:translate(0);vertical-align:text-top;width:1em}.u-list-reset{list-style:none;margin:0;padding:0}.u-ma-16{margin:16px}.u-mt-0{margin-top:0}.u-mt-24{margin-top:24px}.u-mt-32{margin-top:32px}.u-mb-8{margin-bottom:8px}.u-mb-32{margin-bottom:32px}.u-button-reset{background-color:transparent;border:0;padding:0}.u-sans-serif{font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif}.u-serif{font-family:Merriweather,serif}h1,h2,h4{-webkit-font-smoothing:antialiased}p{overflow-wrap:break-word;word-break:break-word}.u-h4{font-size:1.25rem;font-weight:700;line-height:1.2}.u-mbs-0{margin-block-start:0!important}.c-article-header{font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif}.c-article-identifiers{color:#6f6f6f;display:flex;flex-wrap:wrap;font-size:1rem;line-height:1.3;list-style:none;margin:0 0 8px;padding:0}.c-article-identifiers__item{border-right:1px solid #6f6f6f;list-style:none;margin-right:8px;padding-right:8px}.c-article-identifiers__item:last-child{border-right:0;margin-right:0;padding-right:0}@media only screen and (min-width:876px){.c-article-title{font-size:1.875rem;line-height:1.2}}.c-article-author-list{display:inline;font-size:1rem;list-style:none;margin:0 8px 0 0;padding:0;width:100%}.c-article-author-list__item{display:inline;padding-right:0}.c-article-author-list__show-more{display:none;margin-right:4px}.c-article-author-list__button,.js .c-article-author-list__item--hide,.js .c-article-author-list__show-more{display:none}.js .c-article-author-list--long .c-article-author-list__show-more,.js .c-article-author-list--long+.c-article-author-list__button{display:inline}@media only screen and (max-width:767px){.js .c-article-author-list__item--hide-small-screen{display:none}.js .c-article-author-list--short .c-article-author-list__show-more,.js .c-article-author-list--short+.c-article-author-list__button{display:inline}}#uptodate-client,.js .c-article-author-list--expanded .c-article-author-list__show-more{display:none!important}.js .c-article-author-list--expanded .c-article-author-list__item--hide-small-screen{display:inline!important}.c-article-author-list__button,.c-button-author-list{background:#ebf1f5;border:4px solid #ebf1f5;border-radius:20px;color:#666;font-size:.875rem;line-height:1.4;padding:2px 11px 2px 8px;text-decoration:none}.c-article-author-list__button svg,.c-button-author-list svg{margin:1px 4px 0 0}.c-article-author-list__button:hover,.c-button-author-list:hover{background:#025e8d;border-color:transparent;color:#fff}.c-article-body .c-article-access-provider{padding:8px 16px}.c-article-body .c-article-access-provider,.c-notes{border:1px solid #d5d5d5;border-image:initial;border-left:none;border-right:none;margin:24px 0}.c-article-body .c-article-access-provider__text{color:#555}.c-article-body .c-article-access-provider__text,.c-notes__text{font-size:1rem;margin-bottom:0;padding-bottom:2px;padding-top:2px;text-align:center}.c-article-body .c-article-author-affiliation__address{color:inherit;font-weight:700;margin:0}.c-article-body .c-article-author-affiliation__authors-list{list-style:none;margin:0;padding:0}.c-article-body .c-article-author-affiliation__authors-item{display:inline;margin-left:0}.c-article-authors-search{margin-bottom:24px;margin-top:0}.c-article-authors-search__item,.c-article-authors-search__title{font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif}.c-article-authors-search__title{color:#626262;font-size:1.05rem;font-weight:700;margin:0;padding:0}.c-article-authors-search__item{font-size:1rem}.c-article-authors-search__text{margin:0}.c-code-block{border:1px solid #fff;font-family:monospace;margin:0 0 24px;padding:20px}.c-code-block__heading{font-weight:400;margin-bottom:16px}.c-code-block__line{display:block;overflow-wrap:break-word;white-space:pre-wrap}.c-article-share-box{font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif;margin-bottom:24px}.c-article-share-box__description{font-size:1rem;margin-bottom:8px}.c-article-share-box__no-sharelink-info{font-size:.813rem;font-weight:700;margin-bottom:24px;padding-top:4px}.c-article-share-box__only-read-input{border:1px solid #d5d5d5;box-sizing:content-box;display:inline-block;font-size:.875rem;font-weight:700;height:24px;margin-bottom:8px;padding:8px 10px}.c-article-share-box__additional-info{color:#626262;font-size:.813rem}.c-article-share-box__button{background:#fff;box-sizing:content-box;text-align:center}.c-article-share-box__button--link-like{background-color:transparent;border:0;color:#025e8d;cursor:pointer;font-size:.875rem;margin-bottom:8px;margin-left:10px}.c-article-associated-content__container .c-article-associated-content__collection-label{font-size:.875rem;line-height:1.4}.c-article-associated-content__container .c-article-associated-content__collection-title{line-height:1.3}.c-reading-companion{clear:both;min-height:389px}.c-reading-companion__figures-list,.c-reading-companion__references-list{list-style:none;min-height:389px;padding:0}.c-reading-companion__references-list--numeric{list-style:decimal inside}.c-reading-companion__figure-item{border-top:1px solid #d5d5d5;font-size:1rem;padding:16px 8px 16px 0}.c-reading-companion__figure-item:first-child{border-top:none;padding-top:8px}.c-reading-companion__reference-item{font-size:1rem}.c-reading-companion__reference-item:first-child{border-top:none}.c-reading-companion__reference-item a{word-break:break-word}.c-reading-companion__reference-citation{display:inline}.c-reading-companion__reference-links{font-size:.813rem;font-weight:700;list-style:none;margin:8px 0 0;padding:0;text-align:right}.c-reading-companion__reference-links>a{display:inline-block;padding-left:8px}.c-reading-companion__reference-links>a:first-child{display:inline-block;padding-left:0}.c-reading-companion__figure-title{display:block;font-size:1.25rem;font-weight:700;line-height:1.2;margin:0 0 8px}.c-reading-companion__figure-links{display:flex;justify-content:space-between;margin:8px 0 0}.c-reading-companion__figure-links>a{align-items:center;display:flex}.c-article-section__figure-caption{display:block;margin-bottom:8px;word-break:break-word}.c-article-section__figure .video,p.app-article-masthead__access--above-download{margin:0 0 16px}.c-article-section__figure-description{font-size:1rem}.c-article-section__figure-description>*{margin-bottom:0}.c-cod{display:block;font-size:1rem;width:100%}.c-cod__form{background:#ebf0f3}.c-cod__prompt{font-size:1.125rem;line-height:1.3;margin:0 0 24px}.c-cod__label{display:block;margin:0 0 4px}.c-cod__row{display:flex;margin:0 0 16px}.c-cod__row:last-child{margin:0}.c-cod__input{border:1px solid #d5d5d5;border-radius:2px;flex-shrink:0;margin:0;padding:13px}.c-cod__input--submit{background-color:#025e8d;border:1px solid #025e8d;color:#fff;flex-shrink:1;margin-left:8px;transition:background-color .2s ease-out 0s,color .2s ease-out 0s}.c-cod__input--submit-single{flex-basis:100%;flex-shrink:0;margin:0}.c-cod__input--submit:focus,.c-cod__input--submit:hover{background-color:#fff;color:#025e8d}.save-data .c-article-author-institutional-author__sub-division,.save-data .c-article-equation__number,.save-data .c-article-figure-description,.save-data .c-article-fullwidth-content,.save-data .c-article-main-column,.save-data .c-article-satellite-article-link,.save-data .c-article-satellite-subtitle,.save-data .c-article-table-container,.save-data .c-blockquote__body,.save-data .c-code-block__heading,.save-data .c-reading-companion__figure-title,.save-data .c-reading-companion__reference-citation,.save-data .c-site-messages--nature-briefing-email-variant .serif,.save-data .c-site-messages--nature-briefing-email-variant.serif,.save-data .serif,.save-data .u-serif,.save-data h1,.save-data h2,.save-data h3{font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif}.c-pdf-download__link{display:flex;flex:1 1 0%;padding:13px 24px}.c-pdf-download__link:hover{text-decoration:none}@media only screen and (min-width:768px){.c-context-bar--sticky .c-pdf-download__link{align-items:center;flex:1 1 183px}}@media only screen and (max-width:320px){.c-context-bar--sticky .c-pdf-download__link{padding:16px}}.c-article-body .c-article-recommendations-list,.c-book-body .c-article-recommendations-list{display:flex;flex-direction:row;gap:16px 16px;margin:0;max-width:100%;padding:16px 0 0}.c-article-body .c-article-recommendations-list__item,.c-book-body .c-article-recommendations-list__item{flex:1 1 0%}@media only screen and (max-width:767px){.c-article-body .c-article-recommendations-list,.c-book-body .c-article-recommendations-list{flex-direction:column}}.c-article-body .c-article-recommendations-card__authors{display:none;font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif;font-size:.875rem;line-height:1.5;margin:0 0 8px}@media only screen and (max-width:767px){.c-article-body .c-article-recommendations-card__authors{display:block;margin:0}}.c-article-body .c-article-history{margin-top:24px}.app-article-metrics-bar p{margin:0}.app-article-masthead{display:flex;flex-direction:column;gap:16px 16px;padding:16px 0 24px}.app-article-masthead__info{display:flex;flex-direction:column;flex-grow:1}.app-article-masthead__brand{border-top:1px solid hsla(0,0%,100%,.8);display:flex;flex-direction:column;flex-shrink:0;gap:8px 8px;min-height:96px;padding:16px 0 0}.app-article-masthead__brand img{border:1px solid #fff;border-radius:8px;box-shadow:0 4px 15px 0 hsla(0,0%,50%,.25);height:auto;left:0;position:absolute;width:72px}.app-article-masthead__journal-link{display:block;font-size:1.125rem;font-weight:700;margin:0 0 8px;max-width:400px;padding:0 0 0 88px;position:relative}.app-article-masthead__journal-title{-webkit-box-orient:vertical;-webkit-line-clamp:3;display:-webkit-box;overflow:hidden}.app-article-masthead__submission-link{align-items:center;display:flex;font-size:1rem;gap:4px 4px;margin:0 0 0 88px}.app-article-masthead__access{align-items:center;display:flex;flex-wrap:wrap;font-size:.875rem;font-weight:300;gap:4px 4px;margin:0}.app-article-masthead__buttons{display:flex;flex-flow:column wrap;gap:16px 16px}.app-article-masthead__access svg,.app-masthead--pastel .c-pdf-download .u-button--primary svg,.app-masthead--pastel .c-pdf-download .u-button--secondary svg,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--primary svg,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--secondary svg{fill:currentcolor}.app-article-masthead a{color:#fff}.app-masthead--pastel .c-pdf-download .u-button--primary,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--primary{background-color:#025e8d;background-image:none;border:2px solid transparent;box-shadow:none;color:#fff;font-weight:700}.app-masthead--pastel .c-pdf-download .u-button--primary:visited,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--primary:visited{color:#fff}.app-masthead--pastel .c-pdf-download .u-button--primary:hover,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--primary:hover{text-decoration:none}.app-masthead--pastel .c-pdf-download .u-button--primary:focus,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--primary:focus{border:4px solid #fc0;box-shadow:none;outline:0;text-decoration:none}.app-masthead--pastel .c-pdf-download .u-button--primary:focus,.app-masthead--pastel .c-pdf-download .u-button--primary:hover,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--primary:focus,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--primary:hover{background-color:#fff;background-image:none;color:#01324b}.app-masthead--pastel .c-pdf-download .u-button--primary:hover,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--primary:hover{background:0 0;border:2px solid #025e8d;box-shadow:none;color:#025e8d}.app-masthead--pastel .c-pdf-download .u-button--secondary,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--secondary{background:0 0;border:2px solid #025e8d;color:#025e8d;font-weight:700}.app-masthead--pastel .c-pdf-download .u-button--secondary:visited,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--secondary:visited{color:#01324b}.app-masthead--pastel .c-pdf-download .u-button--secondary:hover,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--secondary:hover{background-color:#01324b;background-color:#025e8d;border:2px solid transparent;box-shadow:none;color:#fff}.app-masthead--pastel .c-pdf-download .u-button--secondary:focus,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--secondary:focus{background-color:#fff;background-image:none;border:4px solid #fc0;color:#01324b}@media only screen and (min-width:768px){.app-article-masthead{flex-direction:row;gap:64px 64px;padding:24px 0}.app-article-masthead__brand{border:0;padding:0}.app-article-masthead__brand img{height:auto;position:static;width:auto}.app-article-masthead__buttons{align-items:center;flex-direction:row;margin-top:auto}.app-article-masthead__journal-link{display:flex;flex-direction:column;gap:24px 24px;margin:0 0 8px;padding:0}.app-article-masthead__submission-link{margin:0}}@media only screen and (min-width:1024px){.app-article-masthead__brand{flex-basis:400px}}.app-article-masthead .c-article-identifiers{font-size:.875rem;font-weight:300;line-height:1;margin:0 0 8px;overflow:hidden;padding:0}.app-article-masthead .c-article-identifiers--cite-list{margin:0 0 16px}.app-article-masthead .c-article-identifiers *{color:#fff}.app-article-masthead .c-cod{display:none}.app-article-masthead .c-article-identifiers__item{border-left:1px solid #fff;border-right:0;margin:0 17px 8px -9px;padding:0 0 0 8px}.app-article-masthead .c-article-identifiers__item--cite{border-left:0}.app-article-metrics-bar{display:flex;flex-wrap:wrap;font-size:1rem;padding:16px 0 0;row-gap:24px}.app-article-metrics-bar__item{padding:0 16px 0 0}.app-article-metrics-bar__count{font-weight:700}.app-article-metrics-bar__label{font-weight:400;padding-left:4px}.app-article-metrics-bar__icon{height:auto;margin-right:4px;margin-top:-4px;width:auto}.app-article-metrics-bar__arrow-icon{margin:4px 0 0 4px}.app-article-metrics-bar a{color:#000}.app-article-metrics-bar .app-article-metrics-bar__item--metrics{padding-right:0}.app-overview-section .c-article-author-list,.app-overview-section__authors{line-height:2}.app-article-metrics-bar{margin-top:8px}.c-book-toc-pagination+.c-book-section__back-to-top{margin-top:0}.c-article-body .c-article-access-provider__text--chapter{color:#222;font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif;padding:20px 0}.c-article-body .c-article-access-provider__text--chapter svg.c-status-message__icon{fill:#003f8d;vertical-align:middle}.c-article-body-section__content--separator{padding-top:40px}.c-pdf-download__link{max-height:44px}.app-article-access .u-button--primary,.app-article-access .u-button--primary:visited{color:#fff}.c-article-sidebar{display:none}@media only screen and (min-width:1024px){.c-article-sidebar{display:block}}.c-cod__form{border-radius:12px}.c-cod__label{font-size:.875rem}.c-cod .c-status-message{align-items:center;justify-content:center;margin-bottom:16px;padding-bottom:16px}@media only screen and (min-width:1024px){.c-cod .c-status-message{align-items:inherit}}.c-cod .c-status-message__icon{margin-top:4px}.c-cod .c-cod__prompt{font-size:1rem;margin-bottom:16px}.c-article-body .app-article-access,.c-book-body .app-article-access{display:block}@media only screen and (min-width:1024px){.c-article-body .app-article-access,.c-book-body .app-article-access{display:none}}.c-article-body .app-card-service{margin-bottom:32px}@media only screen and (min-width:1024px){.c-article-body .app-card-service{display:none}}.app-article-access .buybox__buy .u-button--secondary,.app-article-access .u-button--primary,.c-cod__row .u-button--primary{background-color:#025e8d;border:2px solid #025e8d;box-shadow:none;font-size:1rem;font-weight:700;gap:8px 8px;justify-content:center;line-height:1.5;padding:8px 24px}.app-article-access .buybox__buy .u-button--secondary,.app-article-access .u-button--primary:hover,.c-cod__row .u-button--primary:hover{background-color:#fff;color:#025e8d}.app-article-access .buybox__buy .u-button--secondary:hover{background-color:#025e8d;color:#fff}.buybox__buy .c-notes__text{color:#666;font-size:.875rem;padding:0 16px 8px}.c-cod__input{flex-basis:auto;width:100%}.c-article-title{font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif;font-size:2.25rem;font-weight:700;line-height:1.2;margin:12px 0}.c-reading-companion__figure-item figure{margin:0}@media only screen and (min-width:768px){.c-article-title{margin:16px 0}}.app-article-access{border:1px solid #c5e0f4;border-radius:12px}.app-article-access__heading{border-bottom:1px solid #c5e0f4;font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif;font-size:1.125rem;font-weight:700;margin:0;padding:16px;text-align:center}.app-article-access .buybox__info svg{vertical-align:middle}.c-article-body .app-article-access p{margin-bottom:0}.app-article-access .buybox__info{font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif;font-size:1rem;margin:0}.app-article-access{margin:0 0 32px}@media only screen and (min-width:1024px){.app-article-access{margin:0 0 24px}}.c-status-message{font-size:1rem}.c-article-body{font-size:1.125rem}.c-article-body dl,.c-article-body ol,.c-article-body p,.c-article-body ul{margin-bottom:32px;margin-top:0}.c-article-access-provider__text:last-of-type,.c-article-body .c-notes__text:last-of-type{margin-bottom:0}.c-article-body ol p,.c-article-body ul p{margin-bottom:16px}.c-article-section__figure-caption{font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif}.c-reading-companion__figure-item{border-top-color:#c5e0f4}.c-reading-companion__sticky{max-width:400px}.c-article-section .c-article-section__figure-description>*{font-size:1rem;margin-bottom:16px}.c-reading-companion__reference-item{border-top:1px solid #d5d5d5;padding:16px 0}.c-reading-companion__reference-item:first-child{padding-top:0}.c-article-share-box__button,.js .c-article-authors-search__item .c-article-button{background:0 0;border:2px solid #025e8d;border-radius:32px;box-shadow:none;color:#025e8d;font-size:1rem;font-weight:700;line-height:1.5;margin:0;padding:8px 24px;transition:all .2s ease 0s}.c-article-authors-search__item .c-article-button{width:100%}.c-pdf-download .u-button{background-color:#fff;border:2px solid #fff;color:#01324b;justify-content:center}.c-context-bar__container .c-pdf-download .u-button svg,.c-pdf-download .u-button svg{fill:currentcolor}.c-pdf-download .u-button:visited{color:#01324b}.c-pdf-download .u-button:hover{border:4px solid #01324b;box-shadow:none}.c-pdf-download .u-button:focus,.c-pdf-download .u-button:hover{background-color:#01324b}.c-pdf-download .u-button:focus svg path,.c-pdf-download .u-button:hover svg path{fill:#fff}.c-context-bar__container .c-pdf-download .u-button{background-image:none;border:2px solid;color:#fff}.c-context-bar__container .c-pdf-download .u-button:visited{color:#fff}.c-context-bar__container .c-pdf-download .u-button:hover{text-decoration:none}.c-context-bar__container .c-pdf-download .u-button:focus{box-shadow:none;outline:0;text-decoration:none}.c-context-bar__container .c-pdf-download .u-button:focus,.c-context-bar__container .c-pdf-download .u-button:hover{background-color:#fff;background-image:none;color:#01324b}.c-context-bar__container .c-pdf-download .u-button:focus svg path,.c-context-bar__container .c-pdf-download .u-button:hover svg path{fill:#01324b}.c-context-bar__container .c-pdf-download .u-button,.c-pdf-download .u-button{box-shadow:none;font-size:1rem;font-weight:700;line-height:1.5;padding:8px 24px}.c-context-bar__container .c-pdf-download .u-button{background-color:#025e8d}.c-pdf-download .u-button:hover{border:2px solid #fff}.c-pdf-download .u-button:focus,.c-pdf-download .u-button:hover{background:0 0;box-shadow:none;color:#fff}.c-context-bar__container .c-pdf-download .u-button:hover{border:2px solid #025e8d;box-shadow:none;color:#025e8d}.c-context-bar__container .c-pdf-download .u-button:focus,.c-pdf-download .u-button:focus{border:2px solid #025e8d}.c-article-share-box__button:focus:focus,.c-article__pill-button:focus:focus,.c-context-bar__container .c-pdf-download .u-button:focus:focus,.c-pdf-download .u-button:focus:focus{outline:3px solid #08c;will-change:transform}.c-pdf-download__link .u-icon{padding-top:0}.c-bibliographic-information__column button{margin-bottom:16px}.c-article-body .c-article-author-affiliation__list p,.c-article-body .c-article-author-information__list p,figure{margin:0}.c-article-share-box__button{margin-right:16px}.c-status-message--boxed{border-radius:12px}.c-article-associated-content__collection-title{font-size:1rem}.app-card-service__description,.c-article-body .app-card-service__description{color:#222;margin-bottom:0;margin-top:8px}.app-article-access__subscriptions a,.app-article-access__subscriptions a:visited,.app-book-series-listing__item a,.app-book-series-listing__item a:hover,.app-book-series-listing__item a:visited,.c-article-author-list a,.c-article-author-list a:visited,.c-article-buy-box a,.c-article-buy-box a:visited,.c-article-peer-review a,.c-article-peer-review a:visited,.c-article-satellite-subtitle a,.c-article-satellite-subtitle a:visited,.c-breadcrumbs__link,.c-breadcrumbs__link:hover,.c-breadcrumbs__link:visited{color:#000}.c-article-author-list svg{height:24px;margin:0 0 0 6px;width:24px}.c-article-header{margin-bottom:32px}@media only screen and (min-width:876px){.js .c-ad--conditional{display:block}}.u-lazy-ad-wrapper{background-color:#fff;display:none;min-height:149px}@media only screen and (min-width:876px){.u-lazy-ad-wrapper{display:block}}p.c-ad__label{margin-bottom:4px}.c-ad--728x90{background-color:#fff;border-bottom:2px solid #cedbe0} } </style> <style>@media only print, only all and (prefers-color-scheme: no-preference), only all and (prefers-color-scheme: light), only all and (prefers-color-scheme: dark) { .eds-c-header__brand img{height:24px;width:203px}.app-article-masthead__journal-link img{height:93px;width:72px}@media only screen and (min-width:769px){.app-article-masthead__journal-link img{height:161px;width:122px}} } </style> <link rel="stylesheet" data-test="critical-css-handler" data-inline-css-source="critical-css" href=/oscar-static/app-springerlink/css/core-darwin-9fe647df8f.css media="print" onload="this.media='all';this.onload=null"> <link rel="stylesheet" data-test="critical-css-handler" data-inline-css-source="critical-css" href="/oscar-static/app-springerlink/css/enhanced-darwin-article-2a2a17cc99.css" media="print" onload="this.media='only print, only all and (prefers-color-scheme: no-preference), only all and (prefers-color-scheme: light), only all and (prefers-color-scheme: dark)';this.onload=null"> <script type="text/javascript"> config = { env: 'live', site: '10845.springer.com', siteWithPath: '10845.springer.com' + window.location.pathname, twitterHashtag: '10845', cmsPrefix: 'https://studio-cms.springernature.com/studio/', publisherBrand: 'Springer', mustardcut: false }; </script> <script> window.dataLayer = [{"GA Key":"UA-26408784-1","DOI":"10.1007/s10845-025-02578-5","Page":"article","springerJournal":true,"Publishing Model":"Hybrid Access","Country":"SG","japan":false,"doi":"10.1007-s10845-025-02578-5","Journal Id":10845,"Journal Title":"Journal of Intelligent Manufacturing","imprint":"Springer","Keywords":"Robotics, Assembly planning, Deformable objects, Digital twin","kwrd":["Robotics","Assembly_planning","Deformable_objects","Digital_twin"],"Labs":"Y","ksg":"Krux.segments","kuid":"Krux.uid","Has Body":"Y","Features":[],"Open Access":"Y","hasAccess":"Y","bypassPaywall":"N","user":{"license":{"businessPartnerID":[],"businessPartnerIDString":""}},"Access Type":"open","Bpids":"","Bpnames":"","BPID":["1"],"VG Wort Identifier":"vgzm.415900-10.1007-s10845-025-02578-5","Full HTML":"Y","Subject Codes":["SC5","SC519010","SCT22050","SCT19000"],"pmc":["5","519010","T22050","T19000"],"session":{"authentication":{"loginStatus":"N"},"attributes":{"edition":"academic"}},"content":{"serial":{"eissn":"1572-8145","pissn":"0956-5515"},"type":"Article","category":{"pmc":{"primarySubject":"Business and Management","primarySubjectCode":"5","secondarySubjects":{"1":"Production","2":"Manufacturing, Machines, Tools, Processes","3":"Control, Robotics, Mechatronics"},"secondarySubjectCodes":{"1":"519010","2":"T22050","3":"T19000"}},"sucode":"SC16","articleType":"Article"},"attributes":{"deliveryPlatform":"oscar"}},"page":{"attributes":{"environment":"live"},"category":{"pageType":"article"}},"Event Category":"Article"}]; </script> <script data-test="springer-link-article-datalayer"> window.dataLayer = window.dataLayer || []; window.dataLayer.push({ ga4MeasurementId: 'G-B3E4QL2TPR', ga360TrackingId: 'UA-26408784-1', twitterId: 'o47a7', baiduId: 'aef3043f025ccf2305af8a194652d70b', ga4ServerUrl: 'https://collect.springer.com', imprint: 'springerlink', page: { attributes:{ featureFlags: [{ name: 'darwin-orion', active: true }], darwinAvailable: true } } }); </script> <script> (function(w, d) { w.config = w.config || {}; w.config.mustardcut = false; if (w.matchMedia && w.matchMedia('only print, only all and (prefers-color-scheme: no-preference), only all and (prefers-color-scheme: light), only all and (prefers-color-scheme: dark)').matches) { w.config.mustardcut = true; d.classList.add('js'); d.classList.remove('grade-c'); d.classList.remove('no-js'); } })(window, document.documentElement); </script> <script class="js-entry"> if (window.config.mustardcut) { (function(w, d) { window.Component = {}; window.suppressShareButton = false; window.onArticlePage = true; var currentScript = d.currentScript || d.head.querySelector('script.js-entry'); function catchNoModuleSupport() { var scriptEl = d.createElement('script'); return (!('noModule' in scriptEl) && 'onbeforeload' in scriptEl) } var headScripts = [ {'src': '/oscar-static/js/polyfill-es5-bundle-572d4fec60.js', 'async': false} ]; var bodyScripts = [ {'src': '/oscar-static/js/global-article-es5-bundle-f28c859359.js', 'async': false, 'module': false}, {'src': '/oscar-static/js/global-article-es6-bundle-9e329e4cbc.js', 'async': false, 'module': true} ]; function createScript(script) { var scriptEl = d.createElement('script'); scriptEl.src = script.src; scriptEl.async = script.async; if (script.module === true) { scriptEl.type = "module"; if (catchNoModuleSupport()) { scriptEl.src = ''; } } else if (script.module === false) { scriptEl.setAttribute('nomodule', true) } if (script.charset) { scriptEl.setAttribute('charset', script.charset); } return scriptEl; } for (var i = 0; i < headScripts.length; ++i) { var scriptEl = createScript(headScripts[i]); currentScript.parentNode.insertBefore(scriptEl, currentScript.nextSibling); } d.addEventListener('DOMContentLoaded', function() { for (var i = 0; i < bodyScripts.length; ++i) { var scriptEl = createScript(bodyScripts[i]); d.body.appendChild(scriptEl); } }); // Webfont repeat view var config = w.config; if (config && config.publisherBrand && sessionStorage.fontsLoaded === 'true') { d.documentElement.className += ' webfonts-loaded'; } })(window, document); } </script> <script data-src="https://cdn.optimizely.com/js/27195530232.js" data-cc-script="C03"></script> <script data-test="gtm-head"> window.initGTM = function() { if (window.config.mustardcut) { (function (w, d, s, l, i) { w[l] = w[l] || []; w[l].push({'gtm.start': new Date().getTime(), event: 'gtm.js'}); var f = d.getElementsByTagName(s)[0], j = d.createElement(s), dl = l != 'dataLayer' ? '&l=' + l : ''; j.async = true; j.src = 'https://www.googletagmanager.com/gtm.js?id=' + i + dl; f.parentNode.insertBefore(j, f); })(window, document, 'script', 'dataLayer', 'GTM-MRVXSHQ'); } } </script> <script> (function (w, d, t) { function cc() { var h = w.location.hostname; var e = d.createElement(t), s = d.getElementsByTagName(t)[0]; if (h.indexOf('springer.com') > -1 && h.indexOf('biomedcentral.com') === -1 && h.indexOf('springeropen.com') === -1) { if (h.indexOf('link-qa.springer.com') > -1 || h.indexOf('test-www.springer.com') > -1) { e.src = 'https://cmp.springer.com/production_live/en/consent-bundle-17-54.js'; e.setAttribute('onload', "initGTM(window,document,'script','dataLayer','GTM-MRVXSHQ')"); } else { e.src = 'https://cmp.springer.com/production_live/en/consent-bundle-17-54.js'; e.setAttribute('onload', "initGTM(window,document,'script','dataLayer','GTM-MRVXSHQ')"); } } else if (h.indexOf('biomedcentral.com') > -1) { if (h.indexOf('biomedcentral.com.qa') > -1) { e.src = 'https://cmp.biomedcentral.com/production_live/en/consent-bundle-15-39.js'; e.setAttribute('onload', "initGTM(window,document,'script','dataLayer','GTM-MRVXSHQ')"); } else { e.src = 'https://cmp.biomedcentral.com/production_live/en/consent-bundle-15-39.js'; e.setAttribute('onload', "initGTM(window,document,'script','dataLayer','GTM-MRVXSHQ')"); } } else if (h.indexOf('springeropen.com') > -1) { if (h.indexOf('springeropen.com.qa') > -1) { e.src = 'https://cmp.springernature.com/production_live/en/consent-bundle-16-36.js'; e.setAttribute('onload', "initGTM(window,document,'script','dataLayer','GTM-MRVXSHQ')"); } else { e.src = 'https://cmp.springernature.com/production_live/en/consent-bundle-16-36.js'; e.setAttribute('onload', "initGTM(window,document,'script','dataLayer','GTM-MRVXSHQ')"); } } else if (h.indexOf('springernature.com') > -1) { if (h.indexOf('beta-qa.springernature.com') > -1) { e.src = 'https://cmp.springernature.com/production_live/en/consent-bundle-49-43.js'; e.setAttribute('onload', "initGTM(window,document,'script','dataLayer','GTM-NK22KLS')"); } else { e.src = 'https://cmp.springernature.com/production_live/en/consent-bundle-49-43.js'; e.setAttribute('onload', "initGTM(window,document,'script','dataLayer','GTM-NK22KLS')"); } } else { e.src = '/oscar-static/js/cookie-consent-es5-bundle-cb57c2c98a.js'; e.setAttribute('data-consent', h); } s.insertAdjacentElement('afterend', e); } cc(); })(window, document, 'script'); </script> <link rel="canonical" href="https://link.springer.com/article/10.1007/s10845-025-02578-5"/> <script type="application/ld+json">{"mainEntity":{"headline":"A planning and execution framework for robotic assembly with deformable objects using a centralized database based on the Rαβγ categorization","description":"Automation of process planning and execution of robotic assembly can lead to process optimization and shorter setup times. Several such automation frameworks have been developed for the assembly of rigid objects. However, many products require assembly with deformable objects. Robotic assembly with deformable objects typically incurs more complex dynamics and requires more collaboration during execution than rigid object assembly. In addition, process documentation includes more documents that are less structured. The current research suggests a data-driven planning and execution automation framework suitable for robotic assembly with deformable objects. The framework includes the three required modules: data extraction, process planning, and process execution. The modules interact with a central database constructed according to the Rαβγ ontology. Data extraction is based on commonly used manufacturing documents. Process planning is based on parametrized hybrid automata models, which encompass process and collaboration complexity using two layers: assembly operations and robotic skills. Process execution integrates a digital twin for sequence validation, process adaptation, and monitoring. The framework was successfully demonstrated in a small factory environment with three case studies for products with deformable objects: two smart light boards which include parts with plastic deformations (electric wires) and a medical infusion kit with parts with elastic deformations (tube, connectors). The framework facilitated optimized planning with significant reuse of assembly operations for all products. Both light boards had a high rate of assembly operation reuse (78%, 86%). The medical infusion kit had a somewhat lower rate (62%) due to the need for dedicated operations. \n \n \n \n ","datePublished":"2025-03-06T00:00:00Z","dateModified":"2025-03-06T00:00:00Z","pageStart":"1","pageEnd":"21","license":"http://creativecommons.org/licenses/by/4.0/","sameAs":"https://doi.org/10.1007/s10845-025-02578-5","keywords":["Robotics","Assembly planning","Deformable objects","Digital twin","Production","Manufacturing","Machines","Tools","Processes","Control","Mechatronics"],"image":["https://media.springernature.com/lw1200/springer-static/image/art%3A10.1007%2Fs10845-025-02578-5/MediaObjects/10845_2025_2578_Figa_HTML.png","https://media.springernature.com/lw1200/springer-static/image/art%3A10.1007%2Fs10845-025-02578-5/MediaObjects/10845_2025_2578_Fig1_HTML.png","https://media.springernature.com/lw1200/springer-static/image/art%3A10.1007%2Fs10845-025-02578-5/MediaObjects/10845_2025_2578_Fig2_HTML.png","https://media.springernature.com/lw1200/springer-static/image/art%3A10.1007%2Fs10845-025-02578-5/MediaObjects/10845_2025_2578_Fig3_HTML.png","https://media.springernature.com/lw1200/springer-static/image/art%3A10.1007%2Fs10845-025-02578-5/MediaObjects/10845_2025_2578_Fig4_HTML.png","https://media.springernature.com/lw1200/springer-static/image/art%3A10.1007%2Fs10845-025-02578-5/MediaObjects/10845_2025_2578_Fig5_HTML.png","https://media.springernature.com/lw1200/springer-static/image/art%3A10.1007%2Fs10845-025-02578-5/MediaObjects/10845_2025_2578_Fig6_HTML.png","https://media.springernature.com/lw1200/springer-static/image/art%3A10.1007%2Fs10845-025-02578-5/MediaObjects/10845_2025_2578_Fig7a_HTML.png","https://media.springernature.com/lw1200/springer-static/image/art%3A10.1007%2Fs10845-025-02578-5/MediaObjects/10845_2025_2578_Fig7b_HTML.png"],"isPartOf":{"name":"Journal of Intelligent Manufacturing","issn":["1572-8145","0956-5515"],"@type":["Periodical"]},"publisher":{"name":"Springer US","logo":{"url":"https://www.springernature.com/app-sn/public/images/logo-springernature.png","@type":"ImageObject"},"@type":"Organization"},"author":[{"name":"Ran Shneor","url":"http://orcid.org/0000-0001-7736-4193","affiliation":[{"name":"Ben-Gurion University of the Negev","address":{"name":"Department of Industrial Engineering & Management, Ben-Gurion University of the Negev, Beer-Sheva, Israel","@type":"PostalAddress"},"@type":"Organization"}],"email":"shneorr@post.bgu.ac.il","@type":"Person"},{"name":"Gali Naveh","url":"http://orcid.org/0000-0002-7002-2606","affiliation":[{"name":"Shamoon College of Engineering","address":{"name":"Department of Industrial Engineering & Management, Shamoon College of Engineering, Beer-Sheva, Israel","@type":"PostalAddress"},"@type":"Organization"}],"@type":"Person"},{"name":"Shir Ben-David","affiliation":[{"name":"Ben-Gurion University of the Negev","address":{"name":"Department of Industrial Engineering & Management, Ben-Gurion University of the Negev, Beer-Sheva, Israel","@type":"PostalAddress"},"@type":"Organization"}],"@type":"Person"},{"name":"Bar Shvarzman","affiliation":[{"name":"Ben-Gurion University of the Negev","address":{"name":"Department of Industrial Engineering & Management, Ben-Gurion University of the Negev, Beer-Sheva, Israel","@type":"PostalAddress"},"@type":"Organization"}],"@type":"Person"},{"name":"Zachi Mann","affiliation":[{"name":"Siemens Digital Industries Software","address":{"name":"Siemens Digital Industries Software, Airport City, Israel","@type":"PostalAddress"},"@type":"Organization"}],"@type":"Person"},{"name":"Alex Greenberg","affiliation":[{"name":"Siemens Digital Industries Software","address":{"name":"Siemens Digital Industries Software, Airport City, Israel","@type":"PostalAddress"},"@type":"Organization"}],"@type":"Person"},{"name":"Yotam Efrat","affiliation":[{"name":"Polygon-Technologies","address":{"name":"Polygon-Technologies, Zur Yigal, Israel","@type":"PostalAddress"},"@type":"Organization"}],"@type":"Person"},{"name":"Omer Einav","affiliation":[{"name":"Polygon-Technologies","address":{"name":"Polygon-Technologies, Zur Yigal, Israel","@type":"PostalAddress"},"@type":"Organization"}],"@type":"Person"},{"name":"Sigal Berman","url":"http://orcid.org/0000-0001-7717-7259","affiliation":[{"name":"Ben-Gurion University of the Negev","address":{"name":"Department of Industrial Engineering & Management, Ben-Gurion University of the Negev, Beer-Sheva, Israel","@type":"PostalAddress"},"@type":"Organization"}],"@type":"Person"}],"isAccessibleForFree":true,"@type":"ScholarlyArticle"},"@context":"https://schema.org","@type":"WebPage"}</script> </head> <body class="" > <!-- Google Tag Manager (noscript) --> <noscript> <iframe src="https://www.googletagmanager.com/ns.html?id=GTM-MRVXSHQ" height="0" width="0" style="display:none;visibility:hidden"></iframe> </noscript> <!-- End Google Tag Manager (noscript) --> <!-- Google Tag Manager (noscript) --> <noscript data-test="gtm-body"> <iframe src="https://www.googletagmanager.com/ns.html?id=GTM-MRVXSHQ" height="0" width="0" style="display:none;visibility:hidden"></iframe> </noscript> <!-- End Google Tag Manager (noscript) --> <div class="u-visually-hidden" aria-hidden="true" data-test="darwin-icons"> <?xml version="1.0" encoding="UTF-8"?><!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN" "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd"><svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink"><symbol id="icon-eds-i-accesses-medium" viewBox="0 0 24 24"><path d="M15.59 1a1 1 0 0 1 .706.291l5.41 5.385a1 1 0 0 1 .294.709v13.077c0 .674-.269 1.32-.747 1.796a2.549 2.549 0 0 1-1.798.742H15a1 1 0 0 1 0-2h4.455a.549.549 0 0 0 .387-.16.535.535 0 0 0 .158-.378V7.8L15.178 3H5.545a.543.543 0 0 0-.538.451L5 3.538v8.607a1 1 0 0 1-2 0V3.538A2.542 2.542 0 0 1 5.545 1h10.046ZM8 13c2.052 0 4.66 1.61 6.36 3.4l.124.141c.333.41.516.925.516 1.459 0 .6-.232 1.178-.64 1.599C12.666 21.388 10.054 23 8 23c-2.052 0-4.66-1.61-6.353-3.393A2.31 2.31 0 0 1 1 18c0-.6.232-1.178.64-1.6C3.34 14.61 5.948 13 8 13Zm0 2c-1.369 0-3.552 1.348-4.917 2.785A.31.31 0 0 0 3 18c0 .083.031.161.09.222C4.447 19.652 6.631 21 8 21c1.37 0 3.556-1.35 4.917-2.785A.31.31 0 0 0 13 18a.32.32 0 0 0-.048-.17l-.042-.052C11.553 16.348 9.369 15 8 15Zm0 1a2 2 0 1 1 0 4 2 2 0 0 1 0-4Z"/></symbol><symbol id="icon-eds-i-altmetric-medium" viewBox="0 0 24 24"><path d="M12 1c5.978 0 10.843 4.77 10.996 10.712l.004.306-.002.022-.002.248C22.843 18.23 17.978 23 12 23 5.925 23 1 18.075 1 12S5.925 1 12 1Zm-1.726 9.246L8.848 12.53a1 1 0 0 1-.718.461L8.003 13l-4.947.014a9.001 9.001 0 0 0 17.887-.001L16.553 13l-2.205 3.53a1 1 0 0 1-1.735-.068l-.05-.11-2.289-6.106ZM12 3a9.001 9.001 0 0 0-8.947 8.013l4.391-.012L9.652 7.47a1 1 0 0 1 1.784.179l2.288 6.104 1.428-2.283a1 1 0 0 1 .722-.462l.129-.008 4.943.012A9.001 9.001 0 0 0 12 3Z"/></symbol><symbol id="icon-eds-i-arrow-bend-down-medium" viewBox="0 0 24 24"><path d="m11.852 20.989.058.007L12 21l.075-.003.126-.017.111-.03.111-.044.098-.052.104-.074.082-.073 6-6a1 1 0 0 0-1.414-1.414L13 17.585v-12.2C13 4.075 11.964 3 10.667 3H4a1 1 0 1 0 0 2h6.667c.175 0 .333.164.333.385v12.2l-4.293-4.292a1 1 0 0 0-1.32-.083l-.094.083a1 1 0 0 0 0 1.414l6 6c.035.036.073.068.112.097l.11.071.114.054.105.035.118.025Z"/></symbol><symbol id="icon-eds-i-arrow-bend-down-small" viewBox="0 0 16 16"><path d="M1 2a1 1 0 0 0 1 1h5v8.585L3.707 8.293a1 1 0 0 0-1.32-.083l-.094.083a1 1 0 0 0 0 1.414l5 5 .063.059.093.069.081.048.105.048.104.035.105.022.096.01h.136l.122-.018.113-.03.103-.04.1-.053.102-.07.052-.043 5.04-5.037a1 1 0 1 0-1.415-1.414L9 11.583V3a2 2 0 0 0-2-2H2a1 1 0 0 0-1 1Z"/></symbol><symbol id="icon-eds-i-arrow-bend-up-medium" viewBox="0 0 24 24"><path d="m11.852 3.011.058-.007L12 3l.075.003.126.017.111.03.111.044.098.052.104.074.082.073 6 6a1 1 0 1 1-1.414 1.414L13 6.415v12.2C13 19.925 11.964 21 10.667 21H4a1 1 0 0 1 0-2h6.667c.175 0 .333-.164.333-.385v-12.2l-4.293 4.292a1 1 0 0 1-1.32.083l-.094-.083a1 1 0 0 1 0-1.414l6-6c.035-.036.073-.068.112-.097l.11-.071.114-.054.105-.035.118-.025Z"/></symbol><symbol id="icon-eds-i-arrow-bend-up-small" viewBox="0 0 16 16"><path d="M1 13.998a1 1 0 0 1 1-1h5V4.413L3.707 7.705a1 1 0 0 1-1.32.084l-.094-.084a1 1 0 0 1 0-1.414l5-5 .063-.059.093-.068.081-.05.105-.047.104-.035.105-.022L7.94 1l.136.001.122.017.113.03.103.04.1.053.102.07.052.043 5.04 5.037a1 1 0 1 1-1.415 1.414L9 4.415v8.583a2 2 0 0 1-2 2H2a1 1 0 0 1-1-1Z"/></symbol><symbol id="icon-eds-i-arrow-diagonal-medium" viewBox="0 0 24 24"><path d="M14 3h6l.075.003.126.017.111.03.111.044.098.052.096.067.09.08c.036.035.068.073.097.112l.071.11.054.114.035.105.03.148L21 4v6a1 1 0 0 1-2 0V6.414l-4.293 4.293a1 1 0 0 1-1.414-1.414L17.584 5H14a1 1 0 0 1-.993-.883L13 4a1 1 0 0 1 1-1ZM4 13a1 1 0 0 1 1 1v3.584l4.293-4.291a1 1 0 1 1 1.414 1.414L6.414 19H10a1 1 0 0 1 .993.883L11 20a1 1 0 0 1-1 1l-6.075-.003-.126-.017-.111-.03-.111-.044-.098-.052-.096-.067-.09-.08a1.01 1.01 0 0 1-.097-.112l-.071-.11-.054-.114-.035-.105-.025-.118-.007-.058L3 20v-6a1 1 0 0 1 1-1Z"/></symbol><symbol id="icon-eds-i-arrow-diagonal-small" viewBox="0 0 16 16"><path d="m2 15-.082-.004-.119-.016-.111-.03-.111-.044-.098-.052-.096-.067-.09-.08a1.008 1.008 0 0 1-.097-.112l-.071-.11-.031-.062-.034-.081-.024-.076-.025-.118-.007-.058L1 14.02V9a1 1 0 1 1 2 0v2.584l2.793-2.791a1 1 0 1 1 1.414 1.414L4.414 13H7a1 1 0 0 1 .993.883L8 14a1 1 0 0 1-1 1H2ZM14 1l.081.003.12.017.111.03.111.044.098.052.096.067.09.08c.036.035.068.073.097.112l.071.11.031.062.034.081.024.076.03.148L15 2v5a1 1 0 0 1-2 0V4.414l-2.96 2.96A1 1 0 1 1 8.626 5.96L11.584 3H9a1 1 0 0 1-.993-.883L8 2a1 1 0 0 1 1-1h5Z"/></symbol><symbol id="icon-eds-i-arrow-down-medium" viewBox="0 0 24 24"><path d="m20.707 12.728-7.99 7.98a.996.996 0 0 1-.561.281l-.157.011a.998.998 0 0 1-.788-.384l-7.918-7.908a1 1 0 0 1 1.414-1.416L11 17.576V4a1 1 0 0 1 2 0v13.598l6.293-6.285a1 1 0 0 1 1.32-.082l.095.083a1 1 0 0 1-.001 1.414Z"/></symbol><symbol id="icon-eds-i-arrow-down-small" viewBox="0 0 16 16"><path d="m1.293 8.707 6 6 .063.059.093.069.081.048.105.049.104.034.056.013.118.017L8 15l.076-.003.122-.017.113-.03.085-.032.063-.03.098-.058.06-.043.05-.043 6.04-6.037a1 1 0 0 0-1.414-1.414L9 11.583V2a1 1 0 1 0-2 0v9.585L2.707 7.293a1 1 0 0 0-1.32-.083l-.094.083a1 1 0 0 0 0 1.414Z"/></symbol><symbol id="icon-eds-i-arrow-left-medium" viewBox="0 0 24 24"><path d="m11.272 3.293-7.98 7.99a.996.996 0 0 0-.281.561L3 12.001c0 .32.15.605.384.788l7.908 7.918a1 1 0 0 0 1.416-1.414L6.424 13H20a1 1 0 0 0 0-2H6.402l6.285-6.293a1 1 0 0 0 .082-1.32l-.083-.095a1 1 0 0 0-1.414.001Z"/></symbol><symbol id="icon-eds-i-arrow-left-small" viewBox="0 0 16 16"><path d="m7.293 1.293-6 6-.059.063-.069.093-.048.081-.049.105-.034.104-.013.056-.017.118L1 8l.003.076.017.122.03.113.032.085.03.063.058.098.043.06.043.05 6.037 6.04a1 1 0 0 0 1.414-1.414L4.417 9H14a1 1 0 0 0 0-2H4.415l4.292-4.293a1 1 0 0 0 .083-1.32l-.083-.094a1 1 0 0 0-1.414 0Z"/></symbol><symbol id="icon-eds-i-arrow-right-medium" viewBox="0 0 24 24"><path d="m12.728 3.293 7.98 7.99a.996.996 0 0 1 .281.561l.011.157c0 .32-.15.605-.384.788l-7.908 7.918a1 1 0 0 1-1.416-1.414L17.576 13H4a1 1 0 0 1 0-2h13.598l-6.285-6.293a1 1 0 0 1-.082-1.32l.083-.095a1 1 0 0 1 1.414.001Z"/></symbol><symbol id="icon-eds-i-arrow-right-small" viewBox="0 0 16 16"><path d="m8.707 1.293 6 6 .059.063.069.093.048.081.049.105.034.104.013.056.017.118L15 8l-.003.076-.017.122-.03.113-.032.085-.03.063-.058.098-.043.06-.043.05-6.037 6.04a1 1 0 0 1-1.414-1.414L11.583 9H2a1 1 0 1 1 0-2h9.585L7.293 2.707a1 1 0 0 1-.083-1.32l.083-.094a1 1 0 0 1 1.414 0Z"/></symbol><symbol id="icon-eds-i-arrow-up-medium" viewBox="0 0 24 24"><path d="m3.293 11.272 7.99-7.98a.996.996 0 0 1 .561-.281L12.001 3c.32 0 .605.15.788.384l7.918 7.908a1 1 0 0 1-1.414 1.416L13 6.424V20a1 1 0 0 1-2 0V6.402l-6.293 6.285a1 1 0 0 1-1.32.082l-.095-.083a1 1 0 0 1 .001-1.414Z"/></symbol><symbol id="icon-eds-i-arrow-up-small" viewBox="0 0 16 16"><path d="m1.293 7.293 6-6 .063-.059.093-.069.081-.048.105-.049.104-.034.056-.013.118-.017L8 1l.076.003.122.017.113.03.085.032.063.03.098.058.06.043.05.043 6.04 6.037a1 1 0 0 1-1.414 1.414L9 4.417V14a1 1 0 0 1-2 0V4.415L2.707 8.707a1 1 0 0 1-1.32.083l-.094-.083a1 1 0 0 1 0-1.414Z"/></symbol><symbol id="icon-eds-i-article-medium" viewBox="0 0 24 24"><path d="M8 7a1 1 0 0 0 0 2h4a1 1 0 1 0 0-2H8ZM8 11a1 1 0 1 0 0 2h8a1 1 0 1 0 0-2H8ZM7 16a1 1 0 0 1 1-1h8a1 1 0 1 1 0 2H8a1 1 0 0 1-1-1Z"/><path d="M5.545 1A2.542 2.542 0 0 0 3 3.538v16.924A2.542 2.542 0 0 0 5.545 23h12.91A2.542 2.542 0 0 0 21 20.462V3.5A2.5 2.5 0 0 0 18.5 1H5.545ZM5 3.538C5 3.245 5.24 3 5.545 3H18.5a.5.5 0 0 1 .5.5v16.962c0 .293-.24.538-.546.538H5.545A.542.542 0 0 1 5 20.462V3.538Z" clip-rule="evenodd"/></symbol><symbol id="icon-eds-i-book-medium" viewBox="0 0 24 24"><path d="M18.5 1A2.5 2.5 0 0 1 21 3.5v12c0 1.16-.79 2.135-1.86 2.418l-.14.031V21h1a1 1 0 0 1 .993.883L21 22a1 1 0 0 1-1 1H6.5A3.5 3.5 0 0 1 3 19.5v-15A3.5 3.5 0 0 1 6.5 1h12ZM17 18H6.5a1.5 1.5 0 0 0-1.493 1.356L5 19.5A1.5 1.5 0 0 0 6.5 21H17v-3Zm1.5-15h-12A1.5 1.5 0 0 0 5 4.5v11.837l.054-.025a3.481 3.481 0 0 1 1.254-.307L6.5 16h12a.5.5 0 0 0 .492-.41L19 15.5v-12a.5.5 0 0 0-.5-.5ZM15 6a1 1 0 0 1 0 2H9a1 1 0 1 1 0-2h6Z"/></symbol><symbol id="icon-eds-i-book-series-medium" viewBox="0 0 24 24"><path fill-rule="evenodd" d="M1 3.786C1 2.759 1.857 2 2.82 2H6.18c.964 0 1.82.759 1.82 1.786V4h3.168c.668 0 1.298.364 1.616.938.158-.109.333-.195.523-.252l3.216-.965c.923-.277 1.962.204 2.257 1.187l4.146 13.82c.296.984-.307 1.957-1.23 2.234l-3.217.965c-.923.277-1.962-.203-2.257-1.187L13 10.005v10.21c0 1.04-.878 1.785-1.834 1.785H7.833c-.291 0-.575-.07-.83-.195A1.849 1.849 0 0 1 6.18 22H2.821C1.857 22 1 21.241 1 20.214V3.786ZM3 4v11h3V4H3Zm0 16v-3h3v3H3Zm15.075-.04-.814-2.712 2.874-.862.813 2.712-2.873.862Zm1.485-5.49-2.874.862-2.634-8.782 2.873-.862 2.635 8.782ZM8 20V6h3v14H8Z" clip-rule="evenodd"/></symbol><symbol id="icon-eds-i-calendar-acceptance-medium" viewBox="0 0 24 24"><path d="M17 2a1 1 0 0 1 1 1v1h1.5C20.817 4 22 5.183 22 6.5v13c0 1.317-1.183 2.5-2.5 2.5h-15C3.183 22 2 20.817 2 19.5v-13C2 5.183 3.183 4 4.5 4a1 1 0 1 1 0 2c-.212 0-.5.288-.5.5v13c0 .212.288.5.5.5h15c.212 0 .5-.288.5-.5v-13c0-.212-.288-.5-.5-.5H18v1a1 1 0 0 1-2 0V3a1 1 0 0 1 1-1Zm-.534 7.747a1 1 0 0 1 .094 1.412l-4.846 5.538a1 1 0 0 1-1.352.141l-2.77-2.076a1 1 0 0 1 1.2-1.6l2.027 1.519 4.236-4.84a1 1 0 0 1 1.411-.094ZM7.5 2a1 1 0 0 1 1 1v1H14a1 1 0 0 1 0 2H8.5v1a1 1 0 1 1-2 0V3a1 1 0 0 1 1-1Z"/></symbol><symbol id="icon-eds-i-calendar-date-medium" viewBox="0 0 24 24"><path d="M17 2a1 1 0 0 1 1 1v1h1.5C20.817 4 22 5.183 22 6.5v13c0 1.317-1.183 2.5-2.5 2.5h-15C3.183 22 2 20.817 2 19.5v-13C2 5.183 3.183 4 4.5 4a1 1 0 1 1 0 2c-.212 0-.5.288-.5.5v13c0 .212.288.5.5.5h15c.212 0 .5-.288.5-.5v-13c0-.212-.288-.5-.5-.5H18v1a1 1 0 0 1-2 0V3a1 1 0 0 1 1-1ZM8 15a1 1 0 1 1 0 2 1 1 0 0 1 0-2Zm4 0a1 1 0 1 1 0 2 1 1 0 0 1 0-2Zm-4-4a1 1 0 1 1 0 2 1 1 0 0 1 0-2Zm4 0a1 1 0 1 1 0 2 1 1 0 0 1 0-2Zm4 0a1 1 0 1 1 0 2 1 1 0 0 1 0-2ZM7.5 2a1 1 0 0 1 1 1v1H14a1 1 0 0 1 0 2H8.5v1a1 1 0 1 1-2 0V3a1 1 0 0 1 1-1Z"/></symbol><symbol id="icon-eds-i-calendar-decision-medium" viewBox="0 0 24 24"><path d="M17 2a1 1 0 0 1 1 1v1h1.5C20.817 4 22 5.183 22 6.5v13c0 1.317-1.183 2.5-2.5 2.5h-15C3.183 22 2 20.817 2 19.5v-13C2 5.183 3.183 4 4.5 4a1 1 0 1 1 0 2c-.212 0-.5.288-.5.5v13c0 .212.288.5.5.5h15c.212 0 .5-.288.5-.5v-13c0-.212-.288-.5-.5-.5H18v1a1 1 0 0 1-2 0V3a1 1 0 0 1 1-1Zm-2.935 8.246 2.686 2.645c.34.335.34.883 0 1.218l-2.686 2.645a.858.858 0 0 1-1.213-.009.854.854 0 0 1 .009-1.21l1.05-1.035H7.984a.992.992 0 0 1-.984-1c0-.552.44-1 .984-1h5.928l-1.051-1.036a.854.854 0 0 1-.085-1.121l.076-.088a.858.858 0 0 1 1.213-.009ZM7.5 2a1 1 0 0 1 1 1v1H14a1 1 0 0 1 0 2H8.5v1a1 1 0 1 1-2 0V3a1 1 0 0 1 1-1Z"/></symbol><symbol id="icon-eds-i-calendar-impact-factor-medium" viewBox="0 0 24 24"><path d="M17 2a1 1 0 0 1 1 1v1h1.5C20.817 4 22 5.183 22 6.5v13c0 1.317-1.183 2.5-2.5 2.5h-15C3.183 22 2 20.817 2 19.5v-13C2 5.183 3.183 4 4.5 4a1 1 0 1 1 0 2c-.212 0-.5.288-.5.5v13c0 .212.288.5.5.5h15c.212 0 .5-.288.5-.5v-13c0-.212-.288-.5-.5-.5H18v1a1 1 0 0 1-2 0V3a1 1 0 0 1 1-1Zm-3.2 6.924a.48.48 0 0 1 .125.544l-1.52 3.283h2.304c.27 0 .491.215.491.483a.477.477 0 0 1-.13.327l-4.18 4.484a.498.498 0 0 1-.69.031.48.48 0 0 1-.125-.544l1.52-3.284H9.291a.487.487 0 0 1-.491-.482c0-.121.047-.238.13-.327l4.18-4.484a.498.498 0 0 1 .69-.031ZM7.5 2a1 1 0 0 1 1 1v1H14a1 1 0 0 1 0 2H8.5v1a1 1 0 1 1-2 0V3a1 1 0 0 1 1-1Z"/></symbol><symbol id="icon-eds-i-call-papers-medium" viewBox="0 0 24 24"><g><path d="m20.707 2.883-1.414 1.414a1 1 0 0 0 1.414 1.414l1.414-1.414a1 1 0 0 0-1.414-1.414Z"/><path d="M6 16.054c0 2.026 1.052 2.943 3 2.943a1 1 0 1 1 0 2c-2.996 0-5-1.746-5-4.943v-1.227a4.068 4.068 0 0 1-1.83-1.189 4.553 4.553 0 0 1-.87-1.455 4.868 4.868 0 0 1-.3-1.686c0-1.17.417-2.298 1.17-3.14.38-.426.834-.767 1.338-1 .51-.237 1.06-.36 1.617-.36L6.632 6H7l7.932-2.895A2.363 2.363 0 0 1 18 5.36v9.28a2.36 2.36 0 0 1-3.069 2.25l.084.03L7 14.997H6v1.057Zm9.637-11.057a.415.415 0 0 0-.083.008L8 7.638v5.536l7.424 1.786.104.02c.035.01.072.02.109.02.2 0 .363-.16.363-.36V5.36c0-.2-.163-.363-.363-.363Zm-9.638 3h-.874a1.82 1.82 0 0 0-.625.111l-.15.063a2.128 2.128 0 0 0-.689.517c-.42.47-.661 1.123-.661 1.81 0 .34.06.678.176.992.114.308.28.585.485.816.4.447.925.691 1.464.691h.874v-5Z" clip-rule="evenodd"/><path d="M20 8.997h2a1 1 0 1 1 0 2h-2a1 1 0 1 1 0-2ZM20.707 14.293l1.414 1.414a1 1 0 0 1-1.414 1.414l-1.414-1.414a1 1 0 0 1 1.414-1.414Z"/></g></symbol><symbol id="icon-eds-i-card-medium" viewBox="0 0 24 24"><path d="M19.615 2c.315 0 .716.067 1.14.279.76.38 1.245 1.107 1.245 2.106v15.23c0 .315-.067.716-.279 1.14-.38.76-1.107 1.245-2.106 1.245H4.385a2.56 2.56 0 0 1-1.14-.279C2.485 21.341 2 20.614 2 19.615V4.385c0-.315.067-.716.279-1.14C2.659 2.485 3.386 2 4.385 2h15.23Zm0 2H4.385c-.213 0-.265.034-.317.14A.71.71 0 0 0 4 4.385v15.23c0 .213.034.265.14.317a.71.71 0 0 0 .245.068h15.23c.213 0 .265-.034.317-.14a.71.71 0 0 0 .068-.245V4.385c0-.213-.034-.265-.14-.317A.71.71 0 0 0 19.615 4ZM17 16a1 1 0 0 1 0 2H7a1 1 0 0 1 0-2h10Zm0-3a1 1 0 0 1 0 2H7a1 1 0 0 1 0-2h10Zm-.5-7A1.5 1.5 0 0 1 18 7.5v3a1.5 1.5 0 0 1-1.5 1.5h-9A1.5 1.5 0 0 1 6 10.5v-3A1.5 1.5 0 0 1 7.5 6h9ZM16 8H8v2h8V8Z"/></symbol><symbol id="icon-eds-i-cart-medium" viewBox="0 0 24 24"><path d="M5.76 1a1 1 0 0 1 .994.902L7.155 6h13.34c.18 0 .358.02.532.057l.174.045a2.5 2.5 0 0 1 1.693 3.103l-2.069 7.03c-.36 1.099-1.398 1.823-2.49 1.763H8.65c-1.272.015-2.352-.927-2.546-2.244L4.852 3H2a1 1 0 0 1-.993-.883L1 2a1 1 0 0 1 1-1h3.76Zm2.328 14.51a.555.555 0 0 0 .55.488l9.751.001a.533.533 0 0 0 .527-.357l2.059-7a.5.5 0 0 0-.48-.642H7.351l.737 7.51ZM18 19a2 2 0 1 1 0 4 2 2 0 0 1 0-4ZM8 19a2 2 0 1 1 0 4 2 2 0 0 1 0-4Z"/></symbol><symbol id="icon-eds-i-check-circle-medium" viewBox="0 0 24 24"><path d="M12 1c6.075 0 11 4.925 11 11s-4.925 11-11 11S1 18.075 1 12 5.925 1 12 1Zm0 2a9 9 0 1 0 0 18 9 9 0 0 0 0-18Zm5.125 4.72a1 1 0 0 1 .156 1.405l-6 7.5a1 1 0 0 1-1.421.143l-3-2.5a1 1 0 0 1 1.28-1.536l2.217 1.846 5.362-6.703a1 1 0 0 1 1.406-.156Z"/></symbol><symbol id="icon-eds-i-check-filled-medium" viewBox="0 0 24 24"><path d="M12 1c6.075 0 11 4.925 11 11s-4.925 11-11 11S1 18.075 1 12 5.925 1 12 1Zm5.125 6.72a1 1 0 0 0-1.406.155l-5.362 6.703-2.217-1.846a1 1 0 1 0-1.28 1.536l3 2.5a1 1 0 0 0 1.42-.143l6-7.5a1 1 0 0 0-.155-1.406Z"/></symbol><symbol id="icon-eds-i-chevron-down-medium" viewBox="0 0 24 24"><path d="M3.305 8.28a1 1 0 0 0-.024 1.415l7.495 7.762c.314.345.757.543 1.224.543.467 0 .91-.198 1.204-.522l7.515-7.783a1 1 0 1 0-1.438-1.39L12 15.845l-7.28-7.54A1 1 0 0 0 3.4 8.2l-.096.082Z"/></symbol><symbol id="icon-eds-i-chevron-down-small" viewBox="0 0 16 16"><path d="M13.692 5.278a1 1 0 0 1 .03 1.414L9.103 11.51a1.491 1.491 0 0 1-2.188.019L2.278 6.692a1 1 0 0 1 1.444-1.384L8 9.771l4.278-4.463a1 1 0 0 1 1.318-.111l.096.081Z"/></symbol><symbol id="icon-eds-i-chevron-left-medium" viewBox="0 0 24 24"><path d="M15.72 3.305a1 1 0 0 0-1.415-.024l-7.762 7.495A1.655 1.655 0 0 0 6 12c0 .467.198.91.522 1.204l7.783 7.515a1 1 0 1 0 1.39-1.438L8.155 12l7.54-7.28A1 1 0 0 0 15.8 3.4l-.082-.096Z"/></symbol><symbol id="icon-eds-i-chevron-left-small" viewBox="0 0 16 16"><path d="M10.722 2.308a1 1 0 0 0-1.414-.03L4.49 6.897a1.491 1.491 0 0 0-.019 2.188l4.838 4.637a1 1 0 1 0 1.384-1.444L6.229 8l4.463-4.278a1 1 0 0 0 .111-1.318l-.081-.096Z"/></symbol><symbol id="icon-eds-i-chevron-right-medium" viewBox="0 0 24 24"><path d="M8.28 3.305a1 1 0 0 1 1.415-.024l7.762 7.495c.345.314.543.757.543 1.224 0 .467-.198.91-.522 1.204l-7.783 7.515a1 1 0 1 1-1.39-1.438L15.845 12l-7.54-7.28A1 1 0 0 1 8.2 3.4l.082-.096Z"/></symbol><symbol id="icon-eds-i-chevron-right-small" viewBox="0 0 16 16"><path d="M5.278 2.308a1 1 0 0 1 1.414-.03l4.819 4.619a1.491 1.491 0 0 1 .019 2.188l-4.838 4.637a1 1 0 1 1-1.384-1.444L9.771 8 5.308 3.722a1 1 0 0 1-.111-1.318l.081-.096Z"/></symbol><symbol id="icon-eds-i-chevron-up-medium" viewBox="0 0 24 24"><path d="M20.695 15.72a1 1 0 0 0 .024-1.415l-7.495-7.762A1.655 1.655 0 0 0 12 6c-.467 0-.91.198-1.204.522l-7.515 7.783a1 1 0 1 0 1.438 1.39L12 8.155l7.28 7.54a1 1 0 0 0 1.319.106l.096-.082Z"/></symbol><symbol id="icon-eds-i-chevron-up-small" viewBox="0 0 16 16"><path d="M13.692 10.722a1 1 0 0 0 .03-1.414L9.103 4.49a1.491 1.491 0 0 0-2.188-.019L2.278 9.308a1 1 0 0 0 1.444 1.384L8 6.229l4.278 4.463a1 1 0 0 0 1.318.111l.096-.081Z"/></symbol><symbol id="icon-eds-i-citations-medium" viewBox="0 0 24 24"><path d="M15.59 1a1 1 0 0 1 .706.291l5.41 5.385a1 1 0 0 1 .294.709v13.077c0 .674-.269 1.32-.747 1.796a2.549 2.549 0 0 1-1.798.742h-5.843a1 1 0 1 1 0-2h5.843a.549.549 0 0 0 .387-.16.535.535 0 0 0 .158-.378V7.8L15.178 3H5.545a.543.543 0 0 0-.538.451L5 3.538v8.607a1 1 0 0 1-2 0V3.538A2.542 2.542 0 0 1 5.545 1h10.046ZM5.483 14.35c.197.26.17.62-.049.848l-.095.083-.016.011c-.36.24-.628.45-.804.634-.393.409-.59.93-.59 1.562.077-.019.192-.028.345-.028.442 0 .84.158 1.195.474.355.316.532.716.532 1.2 0 .501-.173.9-.518 1.198-.345.298-.767.446-1.266.446-.672 0-1.209-.195-1.612-.585-.403-.39-.604-.976-.604-1.757 0-.744.11-1.39.33-1.938.222-.549.49-1.009.807-1.38a4.28 4.28 0 0 1 .992-.88c.07-.043.148-.087.232-.133a.881.881 0 0 1 1.121.245Zm5 0c.197.26.17.62-.049.848l-.095.083-.016.011c-.36.24-.628.45-.804.634-.393.409-.59.93-.59 1.562.077-.019.192-.028.345-.028.442 0 .84.158 1.195.474.355.316.532.716.532 1.2 0 .501-.173.9-.518 1.198-.345.298-.767.446-1.266.446-.672 0-1.209-.195-1.612-.585-.403-.39-.604-.976-.604-1.757 0-.744.11-1.39.33-1.938.222-.549.49-1.009.807-1.38a4.28 4.28 0 0 1 .992-.88c.07-.043.148-.087.232-.133a.881.881 0 0 1 1.121.245Z"/></symbol><symbol id="icon-eds-i-clipboard-check-medium" viewBox="0 0 24 24"><path d="M14.4 1c1.238 0 2.274.865 2.536 2.024L18.5 3C19.886 3 21 4.14 21 5.535v14.93C21 21.86 19.886 23 18.5 23h-13C4.114 23 3 21.86 3 20.465V5.535C3 4.14 4.114 3 5.5 3h1.57c.27-1.147 1.3-2 2.53-2h4.8Zm4.115 4-1.59.024A2.601 2.601 0 0 1 14.4 7H9.6c-1.23 0-2.26-.853-2.53-2H5.5c-.27 0-.5.234-.5.535v14.93c0 .3.23.535.5.535h13c.27 0 .5-.234.5-.535V5.535c0-.3-.23-.535-.485-.535Zm-1.909 4.205a1 1 0 0 1 .19 1.401l-5.334 7a1 1 0 0 1-1.344.23l-2.667-1.75a1 1 0 1 1 1.098-1.672l1.887 1.238 4.769-6.258a1 1 0 0 1 1.401-.19ZM14.4 3H9.6a.6.6 0 0 0-.6.6v.8a.6.6 0 0 0 .6.6h4.8a.6.6 0 0 0 .6-.6v-.8a.6.6 0 0 0-.6-.6Z"/></symbol><symbol id="icon-eds-i-clipboard-report-medium" viewBox="0 0 24 24"><path d="M14.4 1c1.238 0 2.274.865 2.536 2.024L18.5 3C19.886 3 21 4.14 21 5.535v14.93C21 21.86 19.886 23 18.5 23h-13C4.114 23 3 21.86 3 20.465V5.535C3 4.14 4.114 3 5.5 3h1.57c.27-1.147 1.3-2 2.53-2h4.8Zm4.115 4-1.59.024A2.601 2.601 0 0 1 14.4 7H9.6c-1.23 0-2.26-.853-2.53-2H5.5c-.27 0-.5.234-.5.535v14.93c0 .3.23.535.5.535h13c.27 0 .5-.234.5-.535V5.535c0-.3-.23-.535-.485-.535Zm-2.658 10.929a1 1 0 0 1 0 2H8a1 1 0 0 1 0-2h7.857Zm0-3.929a1 1 0 0 1 0 2H8a1 1 0 0 1 0-2h7.857ZM14.4 3H9.6a.6.6 0 0 0-.6.6v.8a.6.6 0 0 0 .6.6h4.8a.6.6 0 0 0 .6-.6v-.8a.6.6 0 0 0-.6-.6Z"/></symbol><symbol id="icon-eds-i-close-medium" viewBox="0 0 24 24"><path d="M12 1c6.075 0 11 4.925 11 11s-4.925 11-11 11S1 18.075 1 12 5.925 1 12 1Zm0 2a9 9 0 1 0 0 18 9 9 0 0 0 0-18ZM8.707 7.293 12 10.585l3.293-3.292a1 1 0 0 1 1.414 1.414L13.415 12l3.292 3.293a1 1 0 0 1-1.414 1.414L12 13.415l-3.293 3.292a1 1 0 1 1-1.414-1.414L10.585 12 7.293 8.707a1 1 0 0 1 1.414-1.414Z"/></symbol><symbol id="icon-eds-i-cloud-upload-medium" viewBox="0 0 24 24"><path d="m12.852 10.011.028-.004L13 10l.075.003.126.017.086.022.136.052.098.052.104.074.082.073 3 3a1 1 0 0 1 0 1.414l-.094.083a1 1 0 0 1-1.32-.083L14 13.416V20a1 1 0 0 1-2 0v-6.586l-1.293 1.293a1 1 0 0 1-1.32.083l-.094-.083a1 1 0 0 1 0-1.414l3-3 .112-.097.11-.071.114-.054.105-.035.118-.025Zm.587-7.962c3.065.362 5.497 2.662 5.992 5.562l.013.085.207.073c2.117.782 3.496 2.845 3.337 5.097l-.022.226c-.297 2.561-2.503 4.491-5.124 4.502a1 1 0 1 1-.009-2c1.619-.007 2.967-1.186 3.147-2.733.179-1.542-.86-2.979-2.487-3.353-.512-.149-.894-.579-.981-1.165-.21-2.237-2-4.035-4.308-4.308-2.31-.273-4.497 1.06-5.25 3.19l-.049.113c-.234.468-.718.756-1.176.743-1.418.057-2.689.857-3.32 2.084a3.668 3.668 0 0 0 .262 3.798c.796 1.136 2.169 1.764 3.583 1.635a1 1 0 1 1 .182 1.992c-2.125.194-4.193-.753-5.403-2.48a5.668 5.668 0 0 1-.403-5.86c.85-1.652 2.449-2.79 4.323-3.092l.287-.039.013-.028c1.207-2.741 4.125-4.404 7.186-4.042Z"/></symbol><symbol id="icon-eds-i-collection-medium" viewBox="0 0 24 24"><path d="M21 7a1 1 0 0 1 1 1v12.5a2.5 2.5 0 0 1-2.5 2.5H8a1 1 0 0 1 0-2h11.5a.5.5 0 0 0 .5-.5V8a1 1 0 0 1 1-1Zm-5.5-5A2.5 2.5 0 0 1 18 4.5v12a2.5 2.5 0 0 1-2.5 2.5h-11A2.5 2.5 0 0 1 2 16.5v-12A2.5 2.5 0 0 1 4.5 2h11Zm0 2h-11a.5.5 0 0 0-.5.5v12a.5.5 0 0 0 .5.5h11a.5.5 0 0 0 .5-.5v-12a.5.5 0 0 0-.5-.5ZM13 13a1 1 0 0 1 0 2H7a1 1 0 0 1 0-2h6Zm0-3.5a1 1 0 0 1 0 2H7a1 1 0 0 1 0-2h6ZM13 6a1 1 0 0 1 0 2H7a1 1 0 1 1 0-2h6Z"/></symbol><symbol id="icon-eds-i-conference-series-medium" viewBox="0 0 24 24"><path fill-rule="evenodd" d="M4.5 2A2.5 2.5 0 0 0 2 4.5v11A2.5 2.5 0 0 0 4.5 18h2.37l-2.534 2.253a1 1 0 0 0 1.328 1.494L9.88 18H11v3a1 1 0 1 0 2 0v-3h1.12l4.216 3.747a1 1 0 0 0 1.328-1.494L17.13 18h2.37a2.5 2.5 0 0 0 2.5-2.5v-11A2.5 2.5 0 0 0 19.5 2h-15ZM20 6V4.5a.5.5 0 0 0-.5-.5h-15a.5.5 0 0 0-.5.5V6h16ZM4 8v7.5a.5.5 0 0 0 .5.5h15a.5.5 0 0 0 .5-.5V8H4Z" clip-rule="evenodd"/></symbol><symbol id="icon-eds-i-delivery-medium" viewBox="0 0 24 24"><path d="M8.51 20.598a3.037 3.037 0 0 1-3.02 0A2.968 2.968 0 0 1 4.161 19L3.5 19A2.5 2.5 0 0 1 1 16.5v-11A2.5 2.5 0 0 1 3.5 3h10a2.5 2.5 0 0 1 2.45 2.004L16 5h2.527c.976 0 1.855.585 2.27 1.49l2.112 4.62a1 1 0 0 1 .091.416v4.856C23 17.814 21.889 19 20.484 19h-.523a1.01 1.01 0 0 1-.121-.007 2.96 2.96 0 0 1-1.33 1.605 3.037 3.037 0 0 1-3.02 0A2.968 2.968 0 0 1 14.161 19H9.838a2.968 2.968 0 0 1-1.327 1.597Zm-2.024-3.462a.955.955 0 0 0-.481.73L5.999 18l.001.022a.944.944 0 0 0 .388.777l.098.065c.316.181.712.181 1.028 0A.97.97 0 0 0 8 17.978a.95.95 0 0 0-.486-.842 1.037 1.037 0 0 0-1.028 0Zm10 0a.955.955 0 0 0-.481.73l-.005.156a.944.944 0 0 0 .388.777l.098.065c.316.181.712.181 1.028 0a.97.97 0 0 0 .486-.886.95.95 0 0 0-.486-.842 1.037 1.037 0 0 0-1.028 0ZM21 12h-5v3.17a3.038 3.038 0 0 1 2.51.232 2.993 2.993 0 0 1 1.277 1.45l.058.155.058-.005.581-.002c.27 0 .516-.263.516-.618V12Zm-7.5-7h-10a.5.5 0 0 0-.5.5v11a.5.5 0 0 0 .5.5h.662a2.964 2.964 0 0 1 1.155-1.491l.172-.107a3.037 3.037 0 0 1 3.022 0A2.987 2.987 0 0 1 9.843 17H13.5a.5.5 0 0 0 .5-.5v-11a.5.5 0 0 0-.5-.5Zm5.027 2H16v3h4.203l-1.224-2.677a.532.532 0 0 0-.375-.316L18.527 7Z"/></symbol><symbol id="icon-eds-i-download-medium" viewBox="0 0 24 24"><path d="M22 18.5a3.5 3.5 0 0 1-3.5 3.5h-13A3.5 3.5 0 0 1 2 18.5V18a1 1 0 0 1 2 0v.5A1.5 1.5 0 0 0 5.5 20h13a1.5 1.5 0 0 0 1.5-1.5V18a1 1 0 0 1 2 0v.5Zm-3.293-7.793-6 6-.063.059-.093.069-.081.048-.105.049-.104.034-.056.013-.118.017L12 17l-.076-.003-.122-.017-.113-.03-.085-.032-.063-.03-.098-.058-.06-.043-.05-.043-6.04-6.037a1 1 0 0 1 1.414-1.414l4.294 4.29L11 3a1 1 0 0 1 2 0l.001 10.585 4.292-4.292a1 1 0 0 1 1.32-.083l.094.083a1 1 0 0 1 0 1.414Z"/></symbol><symbol id="icon-eds-i-edit-medium" viewBox="0 0 24 24"><path d="M17.149 2a2.38 2.38 0 0 1 1.699.711l2.446 2.46a2.384 2.384 0 0 1 .005 3.38L10.01 19.906a1 1 0 0 1-.434.257l-6.3 1.8a1 1 0 0 1-1.237-1.237l1.8-6.3a1 1 0 0 1 .257-.434L15.443 2.718A2.385 2.385 0 0 1 17.15 2Zm-3.874 5.689-7.586 7.536-1.234 4.319 4.318-1.234 7.54-7.582-3.038-3.039ZM17.149 4a.395.395 0 0 0-.286.126L14.695 6.28l3.029 3.029 2.162-2.173a.384.384 0 0 0 .106-.197L20 6.864c0-.103-.04-.2-.119-.278l-2.457-2.47A.385.385 0 0 0 17.149 4Z"/></symbol><symbol id="icon-eds-i-education-medium" viewBox="0 0 24 24"><path fill-rule="evenodd" d="M12.41 2.088a1 1 0 0 0-.82 0l-10 4.5a1 1 0 0 0 0 1.824L3 9.047v7.124A3.001 3.001 0 0 0 4 22a3 3 0 0 0 1-5.83V9.948l1 .45V14.5a1 1 0 0 0 .087.408L7 14.5c-.913.408-.912.41-.912.41l.001.003.003.006.007.015a1.988 1.988 0 0 0 .083.16c.054.097.131.225.236.373.21.297.53.68.993 1.057C8.351 17.292 9.824 18 12 18c2.176 0 3.65-.707 4.589-1.476.463-.378.783-.76.993-1.057a4.162 4.162 0 0 0 .319-.533l.007-.015.003-.006v-.003h.002s0-.002-.913-.41l.913.408A1 1 0 0 0 18 14.5v-4.103l4.41-1.985a1 1 0 0 0 0-1.824l-10-4.5ZM16 11.297l-3.59 1.615a1 1 0 0 1-.82 0L8 11.297v2.94a3.388 3.388 0 0 0 .677.739C9.267 15.457 10.294 16 12 16s2.734-.543 3.323-1.024a3.388 3.388 0 0 0 .677-.739v-2.94ZM4.437 7.5 12 4.097 19.563 7.5 12 10.903 4.437 7.5ZM3 19a1 1 0 1 1 2 0 1 1 0 0 1-2 0Z" clip-rule="evenodd"/></symbol><symbol id="icon-eds-i-error-diamond-medium" viewBox="0 0 24 24"><path d="M12.002 1c.702 0 1.375.279 1.871.775l8.35 8.353a2.646 2.646 0 0 1 .001 3.744l-8.353 8.353a2.646 2.646 0 0 1-3.742 0l-8.353-8.353a2.646 2.646 0 0 1 0-3.744l8.353-8.353.156-.142c.424-.362.952-.58 1.507-.625l.21-.008Zm0 2a.646.646 0 0 0-.38.123l-.093.08-8.34 8.34a.646.646 0 0 0-.18.355L3 12c0 .171.068.336.19.457l8.353 8.354a.646.646 0 0 0 .914 0l8.354-8.354a.646.646 0 0 0-.001-.914l-8.351-8.354A.646.646 0 0 0 12.002 3ZM12 14.5a1.5 1.5 0 0 1 .144 2.993L12 17.5a1.5 1.5 0 0 1 0-3ZM12 6a1 1 0 0 1 1 1v5a1 1 0 0 1-2 0V7a1 1 0 0 1 1-1Z"/></symbol><symbol id="icon-eds-i-error-filled-medium" viewBox="0 0 24 24"><path d="M12.002 1c.702 0 1.375.279 1.871.775l8.35 8.353a2.646 2.646 0 0 1 .001 3.744l-8.353 8.353a2.646 2.646 0 0 1-3.742 0l-8.353-8.353a2.646 2.646 0 0 1 0-3.744l8.353-8.353.156-.142c.424-.362.952-.58 1.507-.625l.21-.008ZM12 14.5a1.5 1.5 0 0 0 0 3l.144-.007A1.5 1.5 0 0 0 12 14.5ZM12 6a1 1 0 0 0-1 1v5a1 1 0 0 0 2 0V7a1 1 0 0 0-1-1Z"/></symbol><symbol id="icon-eds-i-external-link-medium" viewBox="0 0 24 24"><path d="M9 2a1 1 0 1 1 0 2H4.6c-.371 0-.6.209-.6.5v15c0 .291.229.5.6.5h14.8c.371 0 .6-.209.6-.5V15a1 1 0 0 1 2 0v4.5c0 1.438-1.162 2.5-2.6 2.5H4.6C3.162 22 2 20.938 2 19.5v-15C2 3.062 3.162 2 4.6 2H9Zm6 0h6l.075.003.126.017.111.03.111.044.098.052.096.067.09.08c.036.035.068.073.097.112l.071.11.054.114.035.105.03.148L22 3v6a1 1 0 0 1-2 0V5.414l-6.693 6.693a1 1 0 0 1-1.414-1.414L18.584 4H15a1 1 0 0 1-.993-.883L14 3a1 1 0 0 1 1-1Z"/></symbol><symbol id="icon-eds-i-external-link-small" viewBox="0 0 16 16"><path d="M5 1a1 1 0 1 1 0 2l-2-.001V13L13 13v-2a1 1 0 0 1 2 0v2c0 1.15-.93 2-2.067 2H3.067C1.93 15 1 14.15 1 13V3c0-1.15.93-2 2.067-2H5Zm4 0h5l.075.003.126.017.111.03.111.044.098.052.096.067.09.08.044.047.073.093.051.083.054.113.035.105.03.148L15 2v5a1 1 0 0 1-2 0V4.414L9.107 8.307a1 1 0 0 1-1.414-1.414L11.584 3H9a1 1 0 0 1-.993-.883L8 2a1 1 0 0 1 1-1Z"/></symbol><symbol id="icon-eds-i-file-download-medium" viewBox="0 0 24 24"><path d="M14.5 1a1 1 0 0 1 .707.293l5.5 5.5A1 1 0 0 1 21 7.5v12.962A2.542 2.542 0 0 1 18.455 23H5.545A2.542 2.542 0 0 1 3 20.462V3.538A2.542 2.542 0 0 1 5.545 1H14.5Zm-.415 2h-8.54A.542.542 0 0 0 5 3.538v16.924c0 .296.243.538.545.538h12.91a.542.542 0 0 0 .545-.538V7.915L14.085 3ZM12 7a1 1 0 0 1 1 1v6.585l2.293-2.292a1 1 0 0 1 1.32-.083l.094.083a1 1 0 0 1 0 1.414l-4 4a1.008 1.008 0 0 1-.112.097l-.11.071-.114.054-.105.035-.149.03L12 18l-.075-.003-.126-.017-.111-.03-.111-.044-.098-.052-.096-.067-.09-.08-4-4a1 1 0 0 1 1.414-1.414L11 14.585V8a1 1 0 0 1 1-1Z"/></symbol><symbol id="icon-eds-i-file-report-medium" viewBox="0 0 24 24"><path d="M14.5 1a1 1 0 0 1 .707.293l5.5 5.5A1 1 0 0 1 21 7.5v12.962c0 .674-.269 1.32-.747 1.796a2.549 2.549 0 0 1-1.798.742H5.545c-.674 0-1.32-.267-1.798-.742A2.535 2.535 0 0 1 3 20.462V3.538A2.542 2.542 0 0 1 5.545 1H14.5Zm-.415 2h-8.54A.542.542 0 0 0 5 3.538v16.924c0 .142.057.278.158.379.102.102.242.159.387.159h12.91a.549.549 0 0 0 .387-.16.535.535 0 0 0 .158-.378V7.915L14.085 3ZM16 17a1 1 0 0 1 0 2H8a1 1 0 0 1 0-2h8Zm0-3a1 1 0 0 1 0 2H8a1 1 0 0 1 0-2h8Zm-4.793-6.207L13 9.585l1.793-1.792a1 1 0 0 1 1.32-.083l.094.083a1 1 0 0 1 0 1.414l-2.5 2.5a1 1 0 0 1-1.414 0L10.5 9.915l-1.793 1.792a1 1 0 0 1-1.32.083l-.094-.083a1 1 0 0 1 0-1.414l2.5-2.5a1 1 0 0 1 1.414 0Z"/></symbol><symbol id="icon-eds-i-file-text-medium" viewBox="0 0 24 24"><path d="M14.5 1a1 1 0 0 1 .707.293l5.5 5.5A1 1 0 0 1 21 7.5v12.962A2.542 2.542 0 0 1 18.455 23H5.545A2.542 2.542 0 0 1 3 20.462V3.538A2.542 2.542 0 0 1 5.545 1H14.5Zm-.415 2h-8.54A.542.542 0 0 0 5 3.538v16.924c0 .296.243.538.545.538h12.91a.542.542 0 0 0 .545-.538V7.915L14.085 3ZM16 15a1 1 0 0 1 0 2H8a1 1 0 0 1 0-2h8Zm0-4a1 1 0 0 1 0 2H8a1 1 0 0 1 0-2h8Zm-5-4a1 1 0 0 1 0 2H8a1 1 0 1 1 0-2h3Z"/></symbol><symbol id="icon-eds-i-file-upload-medium" viewBox="0 0 24 24"><path d="M14.5 1a1 1 0 0 1 .707.293l5.5 5.5A1 1 0 0 1 21 7.5v12.962A2.542 2.542 0 0 1 18.455 23H5.545A2.542 2.542 0 0 1 3 20.462V3.538A2.542 2.542 0 0 1 5.545 1H14.5Zm-.415 2h-8.54A.542.542 0 0 0 5 3.538v16.924c0 .296.243.538.545.538h12.91a.542.542 0 0 0 .545-.538V7.915L14.085 3Zm-2.233 4.011.058-.007L12 7l.075.003.126.017.111.03.111.044.098.052.104.074.082.073 4 4a1 1 0 0 1 0 1.414l-.094.083a1 1 0 0 1-1.32-.083L13 10.415V17a1 1 0 0 1-2 0v-6.585l-2.293 2.292a1 1 0 0 1-1.32.083l-.094-.083a1 1 0 0 1 0-1.414l4-4 .112-.097.11-.071.114-.054.105-.035.118-.025Z"/></symbol><symbol id="icon-eds-i-filter-medium" viewBox="0 0 24 24"><path d="M21 2a1 1 0 0 1 .82 1.573L15 13.314V18a1 1 0 0 1-.31.724l-.09.076-4 3A1 1 0 0 1 9 21v-7.684L2.18 3.573a1 1 0 0 1 .707-1.567L3 2h18Zm-1.921 2H4.92l5.9 8.427a1 1 0 0 1 .172.45L11 13v6l2-1.5V13a1 1 0 0 1 .117-.469l.064-.104L19.079 4Z"/></symbol><symbol id="icon-eds-i-funding-medium" viewBox="0 0 24 24"><path fill-rule="evenodd" d="M23 8A7 7 0 1 0 9 8a7 7 0 0 0 14 0ZM9.006 12.225A4.07 4.07 0 0 0 6.12 11.02H2a.979.979 0 1 0 0 1.958h4.12c.558 0 1.094.222 1.489.617l2.207 2.288c.27.27.27.687.012.944a.656.656 0 0 1-.928 0L7.744 15.67a.98.98 0 0 0-1.386 1.384l1.157 1.158c.535.536 1.244.791 1.946.765l.041.002h6.922c.874 0 1.597.748 1.597 1.688 0 .203-.146.354-.309.354H7.755c-.487 0-.96-.178-1.339-.504L2.64 17.259a.979.979 0 0 0-1.28 1.482L5.137 22c.733.631 1.66.979 2.618.979h9.957c1.26 0 2.267-1.043 2.267-2.312 0-2.006-1.584-3.646-3.555-3.646h-4.529a2.617 2.617 0 0 0-.681-2.509l-2.208-2.287ZM16 3a5 5 0 1 0 0 10 5 5 0 0 0 0-10Zm.979 3.5a.979.979 0 1 0-1.958 0v3a.979.979 0 1 0 1.958 0v-3Z" clip-rule="evenodd"/></symbol><symbol id="icon-eds-i-hashtag-medium" viewBox="0 0 24 24"><path d="M12 1c6.075 0 11 4.925 11 11s-4.925 11-11 11S1 18.075 1 12 5.925 1 12 1Zm0 2a9 9 0 1 0 0 18 9 9 0 0 0 0-18ZM9.52 18.189a1 1 0 1 1-1.964-.378l.437-2.274H6a1 1 0 1 1 0-2h2.378l.592-3.076H6a1 1 0 0 1 0-2h3.354l.51-2.65a1 1 0 1 1 1.964.378l-.437 2.272h3.04l.51-2.65a1 1 0 1 1 1.964.378l-.438 2.272H18a1 1 0 0 1 0 2h-1.917l-.592 3.076H18a1 1 0 0 1 0 2h-2.893l-.51 2.652a1 1 0 1 1-1.964-.378l.437-2.274h-3.04l-.51 2.652Zm.895-4.652h3.04l.591-3.076h-3.04l-.591 3.076Z"/></symbol><symbol id="icon-eds-i-home-medium" viewBox="0 0 24 24"><path d="M5 22a1 1 0 0 1-1-1v-8.586l-1.293 1.293a1 1 0 0 1-1.32.083l-.094-.083a1 1 0 0 1 0-1.414l10-10a1 1 0 0 1 1.414 0l10 10a1 1 0 0 1-1.414 1.414L20 12.415V21a1 1 0 0 1-1 1H5Zm7-17.585-6 5.999V20h5v-4a1 1 0 0 1 2 0v4h5v-9.585l-6-6Z"/></symbol><symbol id="icon-eds-i-image-medium" viewBox="0 0 24 24"><path d="M19.615 2A2.385 2.385 0 0 1 22 4.385v15.23A2.385 2.385 0 0 1 19.615 22H4.385A2.385 2.385 0 0 1 2 19.615V4.385A2.385 2.385 0 0 1 4.385 2h15.23Zm0 2H4.385A.385.385 0 0 0 4 4.385v15.23c0 .213.172.385.385.385h1.244l10.228-8.76a1 1 0 0 1 1.254-.037L20 13.392V4.385A.385.385 0 0 0 19.615 4Zm-3.07 9.283L8.703 20h10.912a.385.385 0 0 0 .385-.385v-3.713l-3.455-2.619ZM9.5 6a3.5 3.5 0 1 1 0 7 3.5 3.5 0 0 1 0-7Zm0 2a1.5 1.5 0 1 0 0 3 1.5 1.5 0 0 0 0-3Z"/></symbol><symbol id="icon-eds-i-impact-factor-medium" viewBox="0 0 24 24"><path d="M16.49 2.672c.74.694.986 1.765.632 2.712l-.04.1-1.549 3.54h1.477a2.496 2.496 0 0 1 2.485 2.34l.005.163c0 .618-.23 1.21-.642 1.675l-7.147 7.961a2.48 2.48 0 0 1-3.554.165 2.512 2.512 0 0 1-.633-2.712l.042-.103L9.108 15H7.46c-1.393 0-2.379-1.11-2.455-2.369L5 12.473c0-.593.142-1.145.628-1.692l7.307-7.944a2.48 2.48 0 0 1 3.555-.165ZM14.43 4.164l-7.33 7.97c-.083.093-.101.214-.101.34 0 .277.19.526.46.526h4.163l.097-.009c.015 0 .03.003.046.009.181.078.264.32.186.5l-2.554 5.817a.512.512 0 0 0 .127.552.48.48 0 0 0 .69-.033l7.155-7.97a.513.513 0 0 0 .13-.34.497.497 0 0 0-.49-.502h-3.988a.355.355 0 0 1-.328-.497l2.555-5.844a.512.512 0 0 0-.127-.552.48.48 0 0 0-.69.033Z"/></symbol><symbol id="icon-eds-i-info-circle-medium" viewBox="0 0 24 24"><path d="M12 1c6.075 0 11 4.925 11 11s-4.925 11-11 11S1 18.075 1 12 5.925 1 12 1Zm0 2a9 9 0 1 0 0 18 9 9 0 0 0 0-18Zm0 7a1 1 0 0 1 1 1v5h1.5a1 1 0 0 1 0 2h-5a1 1 0 0 1 0-2H11v-4h-.5a1 1 0 0 1-.993-.883L9.5 11a1 1 0 0 1 1-1H12Zm0-4.5a1.5 1.5 0 0 1 .144 2.993L12 8.5a1.5 1.5 0 0 1 0-3Z"/></symbol><symbol id="icon-eds-i-info-filled-medium" viewBox="0 0 24 24"><path d="M12 1c6.075 0 11 4.925 11 11s-4.925 11-11 11S1 18.075 1 12 5.925 1 12 1Zm0 9h-1.5a1 1 0 0 0-1 1l.007.117A1 1 0 0 0 10.5 12h.5v4H9.5a1 1 0 0 0 0 2h5a1 1 0 0 0 0-2H13v-5a1 1 0 0 0-1-1Zm0-4.5a1.5 1.5 0 0 0 0 3l.144-.007A1.5 1.5 0 0 0 12 5.5Z"/></symbol><symbol id="icon-eds-i-journal-medium" viewBox="0 0 24 24"><path d="M18.5 1A2.5 2.5 0 0 1 21 3.5v14a2.5 2.5 0 0 1-2.5 2.5h-13a.5.5 0 1 0 0 1H20a1 1 0 0 1 0 2H5.5A2.5 2.5 0 0 1 3 20.5v-17A2.5 2.5 0 0 1 5.5 1h13ZM7 3H5.5a.5.5 0 0 0-.5.5v14.549l.016-.002c.104-.02.211-.035.32-.042L5.5 18H7V3Zm11.5 0H9v15h9.5a.5.5 0 0 0 .5-.5v-14a.5.5 0 0 0-.5-.5ZM16 5a1 1 0 0 1 1 1v4a1 1 0 0 1-1 1h-5a1 1 0 0 1-1-1V6a1 1 0 0 1 1-1h5Zm-1 2h-3v2h3V7Z"/></symbol><symbol id="icon-eds-i-mail-medium" viewBox="0 0 24 24"><path d="M20.462 3C21.875 3 23 4.184 23 5.619v12.762C23 19.816 21.875 21 20.462 21H3.538C2.125 21 1 19.816 1 18.381V5.619C1 4.184 2.125 3 3.538 3h16.924ZM21 8.158l-7.378 6.258a2.549 2.549 0 0 1-3.253-.008L3 8.16v10.222c0 .353.253.619.538.619h16.924c.285 0 .538-.266.538-.619V8.158ZM20.462 5H3.538c-.264 0-.5.228-.534.542l8.65 7.334c.2.165.492.165.684.007l8.656-7.342-.001-.025c-.044-.3-.274-.516-.531-.516Z"/></symbol><symbol id="icon-eds-i-mail-send-medium" viewBox="0 0 24 24"><path d="M20.444 5a2.562 2.562 0 0 1 2.548 2.37l.007.078.001.123v7.858A2.564 2.564 0 0 1 20.444 18H9.556A2.564 2.564 0 0 1 7 15.429l.001-7.977.007-.082A2.561 2.561 0 0 1 9.556 5h10.888ZM21 9.331l-5.46 3.51a1 1 0 0 1-1.08 0L9 9.332v6.097c0 .317.251.571.556.571h10.888a.564.564 0 0 0 .556-.571V9.33ZM20.444 7H9.556a.543.543 0 0 0-.32.105l5.763 3.706 5.766-3.706a.543.543 0 0 0-.32-.105ZM4.308 5a1 1 0 1 1 0 2H2a1 1 0 1 1 0-2h2.308Zm0 5.5a1 1 0 0 1 0 2H2a1 1 0 0 1 0-2h2.308Zm0 5.5a1 1 0 0 1 0 2H2a1 1 0 0 1 0-2h2.308Z"/></symbol><symbol id="icon-eds-i-mentions-medium" viewBox="0 0 24 24"><path d="m9.452 1.293 5.92 5.92 2.92-2.92a1 1 0 0 1 1.415 1.414l-2.92 2.92 5.92 5.92a1 1 0 0 1 0 1.415 10.371 10.371 0 0 1-10.378 2.584l.652 3.258A1 1 0 0 1 12 23H2a1 1 0 0 1-.874-1.486l4.789-8.62C4.194 9.074 4.9 4.43 8.038 1.292a1 1 0 0 1 1.414 0Zm-2.355 13.59L3.699 21h7.081l-.689-3.442a10.392 10.392 0 0 1-2.775-2.396l-.22-.28Zm1.69-11.427-.07.09a8.374 8.374 0 0 0 11.737 11.737l.089-.071L8.787 3.456Z"/></symbol><symbol id="icon-eds-i-menu-medium" viewBox="0 0 24 24"><path d="M21 4a1 1 0 0 1 0 2H3a1 1 0 1 1 0-2h18Zm-4 7a1 1 0 0 1 0 2H3a1 1 0 0 1 0-2h14Zm4 7a1 1 0 0 1 0 2H3a1 1 0 0 1 0-2h18Z"/></symbol><symbol id="icon-eds-i-metrics-medium" viewBox="0 0 24 24"><path d="M3 22a1 1 0 0 1-1-1V3a1 1 0 0 1 1-1h6a1 1 0 0 1 1 1v7h4V8a1 1 0 0 1 1-1h6a1 1 0 0 1 1 1v13a1 1 0 0 1-.883.993L21 22H3Zm17-2V9h-4v11h4Zm-6-8h-4v8h4v-8ZM8 4H4v16h4V4Z"/></symbol><symbol id="icon-eds-i-news-medium" viewBox="0 0 24 24"><path d="M17.384 3c.975 0 1.77.787 1.77 1.762v13.333c0 .462.354.846.815.899l.107.006.109-.006a.915.915 0 0 0 .809-.794l.006-.105V8.19a1 1 0 0 1 2 0v9.905A2.914 2.914 0 0 1 20.077 21H3.538a2.547 2.547 0 0 1-1.644-.601l-.147-.135A2.516 2.516 0 0 1 1 18.476V4.762C1 3.787 1.794 3 2.77 3h14.614Zm-.231 2H3v13.476c0 .11.035.216.1.304l.054.063c.101.1.24.157.384.157l13.761-.001-.026-.078a2.88 2.88 0 0 1-.115-.655l-.004-.17L17.153 5ZM14 15.021a.979.979 0 1 1 0 1.958H6a.979.979 0 1 1 0-1.958h8Zm0-8c.54 0 .979.438.979.979v4c0 .54-.438.979-.979.979H6A.979.979 0 0 1 5.021 12V8c0-.54.438-.979.979-.979h8Zm-.98 1.958H6.979v2.041h6.041V8.979Z"/></symbol><symbol id="icon-eds-i-newsletter-medium" viewBox="0 0 24 24"><path d="M21 10a1 1 0 0 1 1 1v9.5a2.5 2.5 0 0 1-2.5 2.5h-15A2.5 2.5 0 0 1 2 20.5V11a1 1 0 0 1 2 0v.439l8 4.888 8-4.889V11a1 1 0 0 1 1-1Zm-1 3.783-7.479 4.57a1 1 0 0 1-1.042 0l-7.48-4.57V20.5a.5.5 0 0 0 .501.5h15a.5.5 0 0 0 .5-.5v-6.717ZM15 9a1 1 0 0 1 0 2H9a1 1 0 0 1 0-2h6Zm2.5-8A2.5 2.5 0 0 1 20 3.5V9a1 1 0 0 1-2 0V3.5a.5.5 0 0 0-.5-.5h-11a.5.5 0 0 0-.5.5V9a1 1 0 1 1-2 0V3.5A2.5 2.5 0 0 1 6.5 1h11ZM15 5a1 1 0 0 1 0 2H9a1 1 0 1 1 0-2h6Z"/></symbol><symbol id="icon-eds-i-notifcation-medium" viewBox="0 0 24 24"><path d="M14 20a1 1 0 0 1 0 2h-4a1 1 0 0 1 0-2h4ZM3 18l-.133-.007c-1.156-.124-1.156-1.862 0-1.986l.3-.012C4.32 15.923 5 15.107 5 14V9.5C5 5.368 8.014 2 12 2s7 3.368 7 7.5V14c0 1.107.68 1.923 1.832 1.995l.301.012c1.156.124 1.156 1.862 0 1.986L21 18H3Zm9-14C9.17 4 7 6.426 7 9.5V14c0 .671-.146 1.303-.416 1.858L6.51 16h10.979l-.073-.142a4.192 4.192 0 0 1-.412-1.658L17 14V9.5C17 6.426 14.83 4 12 4Z"/></symbol><symbol id="icon-eds-i-publish-medium" viewBox="0 0 24 24"><g><path d="M16.296 1.291A1 1 0 0 0 15.591 1H5.545A2.542 2.542 0 0 0 3 3.538V13a1 1 0 1 0 2 0V3.538l.007-.087A.543.543 0 0 1 5.545 3h9.633L20 7.8v12.662a.534.534 0 0 1-.158.379.548.548 0 0 1-.387.159H11a1 1 0 1 0 0 2h8.455c.674 0 1.32-.267 1.798-.742A2.534 2.534 0 0 0 22 20.462V7.385a1 1 0 0 0-.294-.709l-5.41-5.385Z"/><path d="M10.762 16.647a1 1 0 0 0-1.525-1.294l-4.472 5.271-2.153-1.665a1 1 0 1 0-1.224 1.582l2.91 2.25a1 1 0 0 0 1.374-.144l5.09-6ZM16 10a1 1 0 1 1 0 2H8a1 1 0 1 1 0-2h8ZM12 7a1 1 0 0 0-1-1H8a1 1 0 1 0 0 2h3a1 1 0 0 0 1-1Z"/></g></symbol><symbol id="icon-eds-i-refresh-medium" viewBox="0 0 24 24"><g><path d="M7.831 5.636H6.032A8.76 8.76 0 0 1 9 3.631 8.549 8.549 0 0 1 12.232 3c.603 0 1.192.063 1.76.182C17.979 4.017 21 7.632 21 12a1 1 0 1 0 2 0c0-5.296-3.674-9.746-8.591-10.776A10.61 10.61 0 0 0 5 3.851V2.805a1 1 0 0 0-.987-1H4a1 1 0 0 0-1 1v3.831a1 1 0 0 0 1 1h3.831a1 1 0 0 0 .013-2h-.013ZM17.968 18.364c-1.59 1.632-3.784 2.636-6.2 2.636C6.948 21 3 16.993 3 12a1 1 0 1 0-2 0c0 6.053 4.799 11 10.768 11 2.788 0 5.324-1.082 7.232-2.85v1.045a1 1 0 1 0 2 0v-3.831a1 1 0 0 0-1-1h-3.831a1 1 0 0 0 0 2h1.799Z"/></g></symbol><symbol id="icon-eds-i-search-medium" viewBox="0 0 24 24"><path d="M11 1c5.523 0 10 4.477 10 10 0 2.4-.846 4.604-2.256 6.328l3.963 3.965a1 1 0 0 1-1.414 1.414l-3.965-3.963A9.959 9.959 0 0 1 11 21C5.477 21 1 16.523 1 11S5.477 1 11 1Zm0 2a8 8 0 1 0 0 16 8 8 0 0 0 0-16Z"/></symbol><symbol id="icon-eds-i-settings-medium" viewBox="0 0 24 24"><path d="M11.382 1h1.24a2.508 2.508 0 0 1 2.334 1.63l.523 1.378 1.59.933 1.444-.224c.954-.132 1.89.3 2.422 1.101l.095.155.598 1.066a2.56 2.56 0 0 1-.195 2.848l-.894 1.161v1.896l.92 1.163c.6.768.707 1.812.295 2.674l-.09.17-.606 1.08a2.504 2.504 0 0 1-2.531 1.25l-1.428-.223-1.589.932-.523 1.378a2.512 2.512 0 0 1-2.155 1.625L12.65 23h-1.27a2.508 2.508 0 0 1-2.334-1.63l-.524-1.379-1.59-.933-1.443.225c-.954.132-1.89-.3-2.422-1.101l-.095-.155-.598-1.066a2.56 2.56 0 0 1 .195-2.847l.891-1.161v-1.898l-.919-1.162a2.562 2.562 0 0 1-.295-2.674l.09-.17.606-1.08a2.504 2.504 0 0 1 2.531-1.25l1.43.223 1.618-.938.524-1.375.07-.167A2.507 2.507 0 0 1 11.382 1Zm.003 2a.509.509 0 0 0-.47.338l-.65 1.71a1 1 0 0 1-.434.51L7.6 6.85a1 1 0 0 1-.655.123l-1.762-.275a.497.497 0 0 0-.498.252l-.61 1.088a.562.562 0 0 0 .04.619l1.13 1.43a1 1 0 0 1 .216.62v2.585a1 1 0 0 1-.207.61L4.15 15.339a.568.568 0 0 0-.036.634l.601 1.072a.494.494 0 0 0 .484.26l1.78-.278a1 1 0 0 1 .66.126l2.2 1.292a1 1 0 0 1 .43.507l.648 1.71a.508.508 0 0 0 .467.338h1.263a.51.51 0 0 0 .47-.34l.65-1.708a1 1 0 0 1 .428-.507l2.201-1.292a1 1 0 0 1 .66-.126l1.763.275a.497.497 0 0 0 .498-.252l.61-1.088a.562.562 0 0 0-.04-.619l-1.13-1.43a1 1 0 0 1-.216-.62v-2.585a1 1 0 0 1 .207-.61l1.105-1.437a.568.568 0 0 0 .037-.634l-.601-1.072a.494.494 0 0 0-.484-.26l-1.78.278a1 1 0 0 1-.66-.126l-2.2-1.292a1 1 0 0 1-.43-.507l-.649-1.71A.508.508 0 0 0 12.62 3h-1.234ZM12 8a4 4 0 1 1 0 8 4 4 0 0 1 0-8Zm0 2a2 2 0 1 0 0 4 2 2 0 0 0 0-4Z"/></symbol><symbol id="icon-eds-i-shipping-medium" viewBox="0 0 24 24"><path d="M16.515 2c1.406 0 2.706.728 3.352 1.902l2.02 3.635.02.042.036.089.031.105.012.058.01.073.004.075v11.577c0 .64-.244 1.255-.683 1.713a2.356 2.356 0 0 1-1.701.731H4.386a2.356 2.356 0 0 1-1.702-.731 2.476 2.476 0 0 1-.683-1.713V7.948c.01-.217.083-.43.22-.6L4.2 3.905C4.833 2.755 6.089 2.032 7.486 2h9.029ZM20 9H4v10.556a.49.49 0 0 0 .075.26l.053.07a.356.356 0 0 0 .257.114h15.23c.094 0 .186-.04.258-.115a.477.477 0 0 0 .127-.33V9Zm-2 7.5a1 1 0 0 1 0 2h-4a1 1 0 0 1 0-2h4ZM16.514 4H13v3h6.3l-1.183-2.13c-.288-.522-.908-.87-1.603-.87ZM11 3.999H7.51c-.679.017-1.277.36-1.566.887L4.728 7H11V3.999Z"/></symbol><symbol id="icon-eds-i-step-guide-medium" viewBox="0 0 24 24"><path d="M11.394 9.447a1 1 0 1 0-1.788-.894l-.88 1.759-.019-.02a1 1 0 1 0-1.414 1.415l1 1a1 1 0 0 0 1.601-.26l1.5-3ZM12 11a1 1 0 0 1 1-1h3a1 1 0 1 1 0 2h-3a1 1 0 0 1-1-1ZM12 17a1 1 0 0 1 1-1h3a1 1 0 1 1 0 2h-3a1 1 0 0 1-1-1ZM10.947 14.105a1 1 0 0 1 .447 1.342l-1.5 3a1 1 0 0 1-1.601.26l-1-1a1 1 0 1 1 1.414-1.414l.02.019.879-1.76a1 1 0 0 1 1.341-.447Z"/><path d="M5.545 1A2.542 2.542 0 0 0 3 3.538v16.924A2.542 2.542 0 0 0 5.545 23h12.91A2.542 2.542 0 0 0 21 20.462V7.5a1 1 0 0 0-.293-.707l-5.5-5.5A1 1 0 0 0 14.5 1H5.545ZM5 3.538C5 3.245 5.24 3 5.545 3h8.54L19 7.914v12.547c0 .294-.24.539-.546.539H5.545A.542.542 0 0 1 5 20.462V3.538Z" clip-rule="evenodd"/></symbol><symbol id="icon-eds-i-submission-medium" viewBox="0 0 24 24"><g><path d="M5 3.538C5 3.245 5.24 3 5.545 3h9.633L20 7.8v12.662a.535.535 0 0 1-.158.379.549.549 0 0 1-.387.159H6a1 1 0 0 1-1-1v-2.5a1 1 0 1 0-2 0V20a3 3 0 0 0 3 3h13.455c.673 0 1.32-.266 1.798-.742A2.535 2.535 0 0 0 22 20.462V7.385a1 1 0 0 0-.294-.709l-5.41-5.385A1 1 0 0 0 15.591 1H5.545A2.542 2.542 0 0 0 3 3.538V7a1 1 0 0 0 2 0V3.538Z"/><path d="m13.707 13.707-4 4a1 1 0 0 1-1.414 0l-.083-.094a1 1 0 0 1 .083-1.32L10.585 14 2 14a1 1 0 1 1 0-2l8.583.001-2.29-2.294a1 1 0 0 1 1.414-1.414l4.037 4.04.043.05.043.06.059.098.03.063.031.085.03.113.017.122L14 13l-.004.087-.017.118-.013.056-.034.104-.049.105-.048.081-.07.093-.058.063Z"/></g></symbol><symbol id="icon-eds-i-table-1-medium" viewBox="0 0 24 24"><path d="M4.385 22a2.56 2.56 0 0 1-1.14-.279C2.485 21.341 2 20.614 2 19.615V4.385c0-.315.067-.716.279-1.14C2.659 2.485 3.386 2 4.385 2h15.23c.315 0 .716.067 1.14.279.76.38 1.245 1.107 1.245 2.106v15.23c0 .315-.067.716-.279 1.14-.38.76-1.107 1.245-2.106 1.245H4.385ZM4 19.615c0 .213.034.265.14.317a.71.71 0 0 0 .245.068H8v-4H4v3.615ZM20 16H10v4h9.615c.213 0 .265-.034.317-.14a.71.71 0 0 0 .068-.245V16Zm0-2v-4H10v4h10ZM4 14h4v-4H4v4ZM19.615 4H10v4h10V4.385c0-.213-.034-.265-.14-.317A.71.71 0 0 0 19.615 4ZM8 4H4.385l-.082.002c-.146.01-.19.047-.235.138A.71.71 0 0 0 4 4.385V8h4V4Z"/></symbol><symbol id="icon-eds-i-table-2-medium" viewBox="0 0 24 24"><path d="M4.384 22A2.384 2.384 0 0 1 2 19.616V4.384A2.384 2.384 0 0 1 4.384 2h15.232A2.384 2.384 0 0 1 22 4.384v15.232A2.384 2.384 0 0 1 19.616 22H4.384ZM10 15H4v4.616c0 .212.172.384.384.384H10v-5Zm5 0h-3v5h3v-5Zm5 0h-3v5h2.616a.384.384 0 0 0 .384-.384V15ZM10 9H4v4h6V9Zm5 0h-3v4h3V9Zm5 0h-3v4h3V9Zm-.384-5H4.384A.384.384 0 0 0 4 4.384V7h16V4.384A.384.384 0 0 0 19.616 4Z"/></symbol><symbol id="icon-eds-i-tag-medium" viewBox="0 0 24 24"><path d="m12.621 1.998.127.004L20.496 2a1.5 1.5 0 0 1 1.497 1.355L22 3.5l-.005 7.669c.038.456-.133.905-.447 1.206l-9.02 9.018a2.075 2.075 0 0 1-2.932 0l-6.99-6.99a2.075 2.075 0 0 1 .001-2.933L11.61 2.47c.246-.258.573-.418.881-.46l.131-.011Zm.286 2-8.885 8.886a.075.075 0 0 0 0 .106l6.987 6.988c.03.03.077.03.106 0l8.883-8.883L19.999 4l-7.092-.002ZM16 6.5a1.5 1.5 0 0 1 .144 2.993L16 9.5a1.5 1.5 0 0 1 0-3Z"/></symbol><symbol id="icon-eds-i-trash-medium" viewBox="0 0 24 24"><path d="M12 1c2.717 0 4.913 2.232 4.997 5H21a1 1 0 0 1 0 2h-1v12.5c0 1.389-1.152 2.5-2.556 2.5H6.556C5.152 23 4 21.889 4 20.5V8H3a1 1 0 1 1 0-2h4.003l.001-.051C7.114 3.205 9.3 1 12 1Zm6 7H6v12.5c0 .238.19.448.454.492l.102.008h10.888c.315 0 .556-.232.556-.5V8Zm-4 3a1 1 0 0 1 1 1v6.005a1 1 0 0 1-2 0V12a1 1 0 0 1 1-1Zm-4 0a1 1 0 0 1 1 1v6a1 1 0 0 1-2 0v-6a1 1 0 0 1 1-1Zm2-8c-1.595 0-2.914 1.32-2.996 3h5.991v-.02C14.903 4.31 13.589 3 12 3Z"/></symbol><symbol id="icon-eds-i-user-account-medium" viewBox="0 0 24 24"><path d="M12 1c6.075 0 11 4.925 11 11s-4.925 11-11 11S1 18.075 1 12 5.925 1 12 1Zm0 16c-1.806 0-3.52.994-4.664 2.698A8.947 8.947 0 0 0 12 21a8.958 8.958 0 0 0 4.664-1.301C15.52 17.994 13.806 17 12 17Zm0-14a9 9 0 0 0-6.25 15.476C7.253 16.304 9.54 15 12 15s4.747 1.304 6.25 3.475A9 9 0 0 0 12 3Zm0 3a4 4 0 1 1 0 8 4 4 0 0 1 0-8Zm0 2a2 2 0 1 0 0 4 2 2 0 0 0 0-4Z"/></symbol><symbol id="icon-eds-i-user-add-medium" viewBox="0 0 24 24"><path d="M9 1a5 5 0 1 1 0 10A5 5 0 0 1 9 1Zm0 2a3 3 0 1 0 0 6 3 3 0 0 0 0-6Zm9 10a1 1 0 0 1 1 1v3h3a1 1 0 0 1 0 2h-3v3a1 1 0 0 1-2 0v-3h-3a1 1 0 0 1 0-2h3v-3a1 1 0 0 1 1-1Zm-5.545-.15a1 1 0 1 1-.91 1.78 5.713 5.713 0 0 0-5.705.282c-1.67 1.068-2.728 2.927-2.832 4.956L3.004 20 11.5 20a1 1 0 0 1 .993.883L12.5 21a1 1 0 0 1-1 1H2a1 1 0 0 1-1-1v-.876c.028-2.812 1.446-5.416 3.763-6.897a7.713 7.713 0 0 1 7.692-.378Z"/></symbol><symbol id="icon-eds-i-user-assign-medium" viewBox="0 0 24 24"><path d="M16.226 13.298a1 1 0 0 1 1.414-.01l.084.093a1 1 0 0 1-.073 1.32L15.39 17H22a1 1 0 0 1 0 2h-6.611l2.262 2.298a1 1 0 0 1-1.425 1.404l-3.939-4a1 1 0 0 1 0-1.404l3.94-4Zm-3.771-.449a1 1 0 1 1-.91 1.781 5.713 5.713 0 0 0-5.705.282c-1.67 1.068-2.728 2.927-2.832 4.956L3.004 20 10.5 20a1 1 0 0 1 .993.883L11.5 21a1 1 0 0 1-1 1H2a1 1 0 0 1-1-1v-.876c.028-2.812 1.446-5.416 3.763-6.897a7.713 7.713 0 0 1 7.692-.378ZM9 1a5 5 0 1 1 0 10A5 5 0 0 1 9 1Zm0 2a3 3 0 1 0 0 6 3 3 0 0 0 0-6Z"/></symbol><symbol id="icon-eds-i-user-block-medium" viewBox="0 0 24 24"><path d="M9 1a5 5 0 1 1 0 10A5 5 0 0 1 9 1Zm0 2a3 3 0 1 0 0 6 3 3 0 0 0 0-6Zm9 10a5 5 0 1 1 0 10 5 5 0 0 1 0-10Zm-5.545-.15a1 1 0 1 1-.91 1.78 5.713 5.713 0 0 0-5.705.282c-1.67 1.068-2.728 2.927-2.832 4.956L3.004 20 11.5 20a1 1 0 0 1 .993.883L12.5 21a1 1 0 0 1-1 1H2a1 1 0 0 1-1-1v-.876c.028-2.812 1.446-5.416 3.763-6.897a7.713 7.713 0 0 1 7.692-.378ZM15 18a3 3 0 0 0 4.294 2.707l-4.001-4c-.188.391-.293.83-.293 1.293Zm3-3c-.463 0-.902.105-1.294.293l4.001 4A3 3 0 0 0 18 15Z"/></symbol><symbol id="icon-eds-i-user-check-medium" viewBox="0 0 24 24"><path d="M9 1a5 5 0 1 1 0 10A5 5 0 0 1 9 1Zm0 2a3 3 0 1 0 0 6 3 3 0 0 0 0-6Zm13.647 12.237a1 1 0 0 1 .116 1.41l-5.091 6a1 1 0 0 1-1.375.144l-2.909-2.25a1 1 0 1 1 1.224-1.582l2.153 1.665 4.472-5.271a1 1 0 0 1 1.41-.116Zm-8.139-.977c.22.214.428.44.622.678a1 1 0 1 1-1.548 1.266 6.025 6.025 0 0 0-1.795-1.49.86.86 0 0 1-.163-.048l-.079-.036a5.721 5.721 0 0 0-2.62-.63l-.194.006c-2.76.134-5.022 2.177-5.592 4.864l-.035.175-.035.213c-.03.201-.05.405-.06.61L3.003 20 10 20a1 1 0 0 1 .993.883L11 21a1 1 0 0 1-1 1H2a1 1 0 0 1-1-1v-.876l.005-.223.02-.356.02-.222.03-.248.022-.15c.02-.133.044-.265.071-.397.44-2.178 1.725-4.105 3.595-5.301a7.75 7.75 0 0 1 3.755-1.215l.12-.004a7.908 7.908 0 0 1 5.87 2.252Z"/></symbol><symbol id="icon-eds-i-user-delete-medium" viewBox="0 0 24 24"><path d="M9 1a5 5 0 1 1 0 10A5 5 0 0 1 9 1Zm0 2a3 3 0 1 0 0 6 3 3 0 0 0 0-6ZM4.763 13.227a7.713 7.713 0 0 1 7.692-.378 1 1 0 1 1-.91 1.781 5.713 5.713 0 0 0-5.705.282c-1.67 1.068-2.728 2.927-2.832 4.956L3.004 20H11.5a1 1 0 0 1 .993.883L12.5 21a1 1 0 0 1-1 1H2a1 1 0 0 1-1-1v-.876c.028-2.812 1.446-5.416 3.763-6.897Zm11.421 1.543 2.554 2.553 2.555-2.553a1 1 0 0 1 1.414 1.414l-2.554 2.554 2.554 2.555a1 1 0 0 1-1.414 1.414l-2.555-2.554-2.554 2.554a1 1 0 0 1-1.414-1.414l2.553-2.555-2.553-2.554a1 1 0 0 1 1.414-1.414Z"/></symbol><symbol id="icon-eds-i-user-edit-medium" viewBox="0 0 24 24"><path d="m19.876 10.77 2.831 2.83a1 1 0 0 1 0 1.415l-7.246 7.246a1 1 0 0 1-.572.284l-3.277.446a1 1 0 0 1-1.125-1.13l.461-3.277a1 1 0 0 1 .283-.567l7.23-7.246a1 1 0 0 1 1.415-.001Zm-7.421 2.08a1 1 0 1 1-.91 1.78 5.713 5.713 0 0 0-5.705.282c-1.67 1.068-2.728 2.927-2.832 4.956L3.004 20 7.5 20a1 1 0 0 1 .993.883L8.5 21a1 1 0 0 1-1 1H2a1 1 0 0 1-1-1v-.876c.028-2.812 1.446-5.416 3.763-6.897a7.713 7.713 0 0 1 7.692-.378Zm6.715.042-6.29 6.3-.23 1.639 1.633-.222 6.302-6.302-1.415-1.415ZM9 1a5 5 0 1 1 0 10A5 5 0 0 1 9 1Zm0 2a3 3 0 1 0 0 6 3 3 0 0 0 0-6Z"/></symbol><symbol id="icon-eds-i-user-linked-medium" viewBox="0 0 24 24"><path d="M15.65 6c.31 0 .706.066 1.122.274C17.522 6.65 18 7.366 18 8.35v12.3c0 .31-.066.706-.274 1.122-.375.75-1.092 1.228-2.076 1.228H3.35a2.52 2.52 0 0 1-1.122-.274C1.478 22.35 1 21.634 1 20.65V8.35c0-.31.066-.706.274-1.122C1.65 6.478 2.366 6 3.35 6h12.3Zm0 2-12.376.002c-.134.007-.17.04-.21.12A.672.672 0 0 0 3 8.35v12.3c0 .198.028.24.122.287.09.044.2.063.228.063h.887c.788-2.269 2.814-3.5 5.263-3.5 2.45 0 4.475 1.231 5.263 3.5h.887c.198 0 .24-.028.287-.122.044-.09.063-.2.063-.228V8.35c0-.198-.028-.24-.122-.287A.672.672 0 0 0 15.65 8ZM9.5 19.5c-1.36 0-2.447.51-3.06 1.5h6.12c-.613-.99-1.7-1.5-3.06-1.5ZM20.65 1A2.35 2.35 0 0 1 23 3.348V15.65A2.35 2.35 0 0 1 20.65 18H20a1 1 0 0 1 0-2h.65a.35.35 0 0 0 .35-.35V3.348A.35.35 0 0 0 20.65 3H8.35a.35.35 0 0 0-.35.348V4a1 1 0 1 1-2 0v-.652A2.35 2.35 0 0 1 8.35 1h12.3ZM9.5 10a3.5 3.5 0 1 1 0 7 3.5 3.5 0 0 1 0-7Zm0 2a1.5 1.5 0 1 0 0 3 1.5 1.5 0 0 0 0-3Z"/></symbol><symbol id="icon-eds-i-user-multiple-medium" viewBox="0 0 24 24"><path d="M9 1a5 5 0 1 1 0 10A5 5 0 0 1 9 1Zm6 0a5 5 0 0 1 0 10 1 1 0 0 1-.117-1.993L15 9a3 3 0 0 0 0-6 1 1 0 0 1 0-2ZM9 3a3 3 0 1 0 0 6 3 3 0 0 0 0-6Zm8.857 9.545a7.99 7.99 0 0 1 2.651 1.715A8.31 8.31 0 0 1 23 20.134V21a1 1 0 0 1-1 1h-3a1 1 0 0 1 0-2h1.995l-.005-.153a6.307 6.307 0 0 0-1.673-3.945l-.204-.209a5.99 5.99 0 0 0-1.988-1.287 1 1 0 1 1 .732-1.861Zm-3.349 1.715A8.31 8.31 0 0 1 17 20.134V21a1 1 0 0 1-1 1H2a1 1 0 0 1-1-1v-.877c.044-4.343 3.387-7.908 7.638-8.115a7.908 7.908 0 0 1 5.87 2.252ZM9.016 14l-.285.006c-3.104.15-5.58 2.718-5.725 5.9L3.004 20h11.991l-.005-.153a6.307 6.307 0 0 0-1.673-3.945l-.204-.209A5.924 5.924 0 0 0 9.3 14.008L9.016 14Z"/></symbol><symbol id="icon-eds-i-user-notify-medium" viewBox="0 0 24 24"><path d="M9 1a5 5 0 1 1 0 10A5 5 0 0 1 9 1Zm0 2a3 3 0 1 0 0 6 3 3 0 0 0 0-6Zm10 18v1a1 1 0 0 1-2 0v-1h-3a1 1 0 0 1 0-2v-2.818C14 13.885 15.777 12 18 12s4 1.885 4 4.182V19a1 1 0 0 1 0 2h-3Zm-6.545-8.15a1 1 0 1 1-.91 1.78 5.713 5.713 0 0 0-5.705.282c-1.67 1.068-2.728 2.927-2.832 4.956L3.004 20 11.5 20a1 1 0 0 1 .993.883L12.5 21a1 1 0 0 1-1 1H2a1 1 0 0 1-1-1v-.876c.028-2.812 1.446-5.416 3.763-6.897a7.713 7.713 0 0 1 7.692-.378ZM18 14c-1.091 0-2 .964-2 2.182V19h4v-2.818c0-1.165-.832-2.098-1.859-2.177L18 14Z"/></symbol><symbol id="icon-eds-i-user-remove-medium" viewBox="0 0 24 24"><path d="M9 1a5 5 0 1 1 0 10A5 5 0 0 1 9 1Zm0 2a3 3 0 1 0 0 6 3 3 0 0 0 0-6Zm3.455 9.85a1 1 0 1 1-.91 1.78 5.713 5.713 0 0 0-5.705.282c-1.67 1.068-2.728 2.927-2.832 4.956L3.004 20 11.5 20a1 1 0 0 1 .993.883L12.5 21a1 1 0 0 1-1 1H2a1 1 0 0 1-1-1v-.876c.028-2.812 1.446-5.416 3.763-6.897a7.713 7.713 0 0 1 7.692-.378ZM22 17a1 1 0 0 1 0 2h-8a1 1 0 0 1 0-2h8Z"/></symbol><symbol id="icon-eds-i-user-single-medium" viewBox="0 0 24 24"><path d="M12 1a5 5 0 1 1 0 10 5 5 0 0 1 0-10Zm0 2a3 3 0 1 0 0 6 3 3 0 0 0 0-6Zm-.406 9.008a8.965 8.965 0 0 1 6.596 2.494A9.161 9.161 0 0 1 21 21.025V22a1 1 0 0 1-1 1H4a1 1 0 0 1-1-1v-.985c.05-4.825 3.815-8.777 8.594-9.007Zm.39 1.992-.299.006c-3.63.175-6.518 3.127-6.678 6.775L5 21h13.998l-.009-.268a7.157 7.157 0 0 0-1.97-4.573l-.214-.213A6.967 6.967 0 0 0 11.984 14Z"/></symbol><symbol id="icon-eds-i-warning-circle-medium" viewBox="0 0 24 24"><path d="M12 1c6.075 0 11 4.925 11 11s-4.925 11-11 11S1 18.075 1 12 5.925 1 12 1Zm0 2a9 9 0 1 0 0 18 9 9 0 0 0 0-18Zm0 11.5a1.5 1.5 0 0 1 .144 2.993L12 17.5a1.5 1.5 0 0 1 0-3ZM12 6a1 1 0 0 1 1 1v5a1 1 0 0 1-2 0V7a1 1 0 0 1 1-1Z"/></symbol><symbol id="icon-eds-i-warning-filled-medium" viewBox="0 0 24 24"><path d="M12 1c6.075 0 11 4.925 11 11s-4.925 11-11 11S1 18.075 1 12 5.925 1 12 1Zm0 13.5a1.5 1.5 0 0 0 0 3l.144-.007A1.5 1.5 0 0 0 12 14.5ZM12 6a1 1 0 0 0-1 1v5a1 1 0 0 0 2 0V7a1 1 0 0 0-1-1Z"/></symbol><symbol id="icon-chevron-left-medium" viewBox="0 0 24 24"><path d="M15.7194 3.3054C15.3358 2.90809 14.7027 2.89699 14.3054 3.28061L6.54342 10.7757C6.19804 11.09 6 11.5335 6 12C6 12.4665 6.19804 12.91 6.5218 13.204L14.3054 20.7194C14.7027 21.103 15.3358 21.0919 15.7194 20.6946C16.103 20.2973 16.0919 19.6642 15.6946 19.2806L8.155 12L15.6946 4.71939C16.0614 4.36528 16.099 3.79863 15.8009 3.40105L15.7194 3.3054Z"/></symbol><symbol id="icon-chevron-right-medium" viewBox="0 0 24 24"><path d="M8.28061 3.3054C8.66423 2.90809 9.29729 2.89699 9.6946 3.28061L17.4566 10.7757C17.802 11.09 18 11.5335 18 12C18 12.4665 17.802 12.91 17.4782 13.204L9.6946 20.7194C9.29729 21.103 8.66423 21.0919 8.28061 20.6946C7.89699 20.2973 7.90809 19.6642 8.3054 19.2806L15.845 12L8.3054 4.71939C7.93865 4.36528 7.90098 3.79863 8.19908 3.40105L8.28061 3.3054Z"/></symbol><symbol id="icon-eds-alerts" viewBox="0 0 32 32"><path d="M28 12.667c.736 0 1.333.597 1.333 1.333v13.333A3.333 3.333 0 0 1 26 30.667H6a3.333 3.333 0 0 1-3.333-3.334V14a1.333 1.333 0 1 1 2.666 0v1.252L16 21.769l10.667-6.518V14c0-.736.597-1.333 1.333-1.333Zm-1.333 5.71-9.972 6.094c-.427.26-.963.26-1.39 0l-9.972-6.094v8.956c0 .368.299.667.667.667h20a.667.667 0 0 0 .667-.667v-8.956ZM19.333 12a1.333 1.333 0 1 1 0 2.667h-6.666a1.333 1.333 0 1 1 0-2.667h6.666Zm4-10.667a3.333 3.333 0 0 1 3.334 3.334v6.666a1.333 1.333 0 1 1-2.667 0V4.667A.667.667 0 0 0 23.333 4H8.667A.667.667 0 0 0 8 4.667v6.666a1.333 1.333 0 1 1-2.667 0V4.667a3.333 3.333 0 0 1 3.334-3.334h14.666Zm-4 5.334a1.333 1.333 0 0 1 0 2.666h-6.666a1.333 1.333 0 1 1 0-2.666h6.666Z"/></symbol><symbol id="icon-eds-arrow-up" viewBox="0 0 24 24"><path fill-rule="evenodd" d="m13.002 7.408 4.88 4.88a.99.99 0 0 0 1.32.08l.09-.08c.39-.39.39-1.03 0-1.42l-6.58-6.58a1.01 1.01 0 0 0-1.42 0l-6.58 6.58a1 1 0 0 0-.09 1.32l.08.1a1 1 0 0 0 1.42-.01l4.88-4.87v11.59a.99.99 0 0 0 .88.99l.12.01c.55 0 1-.45 1-1V7.408z" class="layer"/></symbol><symbol id="icon-eds-checklist" viewBox="0 0 32 32"><path d="M19.2 1.333a3.468 3.468 0 0 1 3.381 2.699L24.667 4C26.515 4 28 5.52 28 7.38v19.906c0 1.86-1.485 3.38-3.333 3.38H7.333c-1.848 0-3.333-1.52-3.333-3.38V7.38C4 5.52 5.485 4 7.333 4h2.093A3.468 3.468 0 0 1 12.8 1.333h6.4ZM9.426 6.667H7.333c-.36 0-.666.312-.666.713v19.906c0 .401.305.714.666.714h17.334c.36 0 .666-.313.666-.714V7.38c0-.4-.305-.713-.646-.714l-2.121.033A3.468 3.468 0 0 1 19.2 9.333h-6.4a3.468 3.468 0 0 1-3.374-2.666Zm12.715 5.606c.586.446.7 1.283.253 1.868l-7.111 9.334a1.333 1.333 0 0 1-1.792.306l-3.556-2.333a1.333 1.333 0 1 1 1.463-2.23l2.517 1.651 6.358-8.344a1.333 1.333 0 0 1 1.868-.252ZM19.2 4h-6.4a.8.8 0 0 0-.8.8v1.067a.8.8 0 0 0 .8.8h6.4a.8.8 0 0 0 .8-.8V4.8a.8.8 0 0 0-.8-.8Z"/></symbol><symbol id="icon-eds-citation" viewBox="0 0 36 36"><path d="M23.25 1.5a1.5 1.5 0 0 1 1.06.44l8.25 8.25a1.5 1.5 0 0 1 .44 1.06v19.5c0 2.105-1.645 3.75-3.75 3.75H18a1.5 1.5 0 0 1 0-3h11.25c.448 0 .75-.302.75-.75V11.873L22.628 4.5H8.31a.811.811 0 0 0-.8.68l-.011.13V16.5a1.5 1.5 0 0 1-3 0V5.31A3.81 3.81 0 0 1 8.31 1.5h14.94ZM8.223 20.358a.984.984 0 0 1-.192 1.378l-.048.034c-.54.36-.942.676-1.206.951-.59.614-.885 1.395-.885 2.343.115-.028.288-.042.518-.042.662 0 1.26.237 1.791.711.533.474.799 1.074.799 1.799 0 .753-.259 1.352-.777 1.799-.518.446-1.151.669-1.9.669-1.006 0-1.812-.293-2.417-.878C3.302 28.536 3 27.657 3 26.486c0-1.115.165-2.085.496-2.907.331-.823.734-1.513 1.209-2.071.475-.558.971-.997 1.49-1.318a6.01 6.01 0 0 1 .347-.2 1.321 1.321 0 0 1 1.681.368Zm7.5 0a.984.984 0 0 1-.192 1.378l-.048.034c-.54.36-.942.676-1.206.951-.59.614-.885 1.395-.885 2.343.115-.028.288-.042.518-.042.662 0 1.26.237 1.791.711.533.474.799 1.074.799 1.799 0 .753-.259 1.352-.777 1.799-.518.446-1.151.669-1.9.669-1.006 0-1.812-.293-2.417-.878-.604-.586-.906-1.465-.906-2.636 0-1.115.165-2.085.496-2.907.331-.823.734-1.513 1.209-2.071.475-.558.971-.997 1.49-1.318a6.01 6.01 0 0 1 .347-.2 1.321 1.321 0 0 1 1.681.368Z"/></symbol><symbol id="icon-eds-i-access-indicator" viewBox="0 0 16 16"><circle cx="4.5" cy="11.5" r="3.5" style="fill:currentColor"/><path fill-rule="evenodd" d="M4 3v3a1 1 0 0 1-2 0V2.923C2 1.875 2.84 1 3.909 1h5.909a1 1 0 0 1 .713.298l3.181 3.231a1 1 0 0 1 .288.702v7.846c0 .505-.197.993-.554 1.354a1.902 1.902 0 0 1-1.355.569H10a1 1 0 1 1 0-2h2V5.64L9.4 3H4Z" clip-rule="evenodd" style="fill:#222"/></symbol><symbol id="icon-eds-i-copy-link" viewBox="0 0 24 24"><path fill-rule="evenodd" clip-rule="evenodd" d="M19.4594 8.57015C19.0689 8.17963 19.0689 7.54646 19.4594 7.15594L20.2927 6.32261C20.2927 6.32261 20.2927 6.32261 20.2927 6.32261C21.0528 5.56252 21.0528 4.33019 20.2928 3.57014C19.5327 2.81007 18.3004 2.81007 17.5404 3.57014L16.7071 4.40347C16.3165 4.794 15.6834 4.794 15.2928 4.40348C14.9023 4.01296 14.9023 3.3798 15.2928 2.98927L16.1262 2.15594C17.6673 0.614803 20.1659 0.614803 21.707 2.15593C23.2481 3.69705 23.248 6.19569 21.707 7.7368L20.8737 8.57014C20.4831 8.96067 19.85 8.96067 19.4594 8.57015Z"/><path fill-rule="evenodd" clip-rule="evenodd" d="M18.0944 5.90592C18.4849 6.29643 18.4849 6.9296 18.0944 7.32013L16.4278 8.9868C16.0373 9.37733 15.4041 9.37734 15.0136 8.98682C14.6231 8.59631 14.6231 7.96314 15.0136 7.57261L16.6802 5.90594C17.0707 5.51541 17.7039 5.5154 18.0944 5.90592Z"/><path fill-rule="evenodd" clip-rule="evenodd" d="M13.5113 6.32243C13.9018 6.71295 13.9018 7.34611 13.5113 7.73664L12.678 8.56997C12.678 8.56997 12.678 8.56997 12.678 8.56997C11.9179 9.33006 11.9179 10.5624 12.6779 11.3224C13.438 12.0825 14.6703 12.0825 15.4303 11.3224L16.2636 10.4891C16.6542 10.0986 17.2873 10.0986 17.6779 10.4891C18.0684 10.8796 18.0684 11.5128 17.6779 11.9033L16.8445 12.7366C15.3034 14.2778 12.8048 14.2778 11.2637 12.7366C9.72262 11.1955 9.72266 8.69689 11.2637 7.15578L12.097 6.32244C12.4876 5.93191 13.1207 5.93191 13.5113 6.32243Z"/><path d="M8 20V22H19.4619C20.136 22 20.7822 21.7311 21.2582 21.2529C21.7333 20.7757 22 20.1289 22 19.4549V15C22 14.4477 21.5523 14 21 14C20.4477 14 20 14.4477 20 15V19.4549C20 19.6004 19.9426 19.7397 19.8408 19.842C19.7399 19.9433 19.6037 20 19.4619 20H8Z"/><path d="M4 13H2V19.4619C2 20.136 2.26889 20.7822 2.74705 21.2582C3.22434 21.7333 3.87105 22 4.5451 22H9C9.55228 22 10 21.5523 10 21C10 20.4477 9.55228 20 9 20H4.5451C4.39957 20 4.26028 19.9426 4.15804 19.8408C4.05668 19.7399 4 19.6037 4 19.4619V13Z"/><path d="M4 13H2V4.53808C2 3.86398 2.26889 3.21777 2.74705 2.74178C3.22434 2.26666 3.87105 2 4.5451 2H9C9.55228 2 10 2.44772 10 3C10 3.55228 9.55228 4 9 4H4.5451C4.39957 4 4.26028 4.05743 4.15804 4.15921C4.05668 4.26011 4 4.39633 4 4.53808V13Z"/></symbol><symbol id="icon-eds-i-github-medium" viewBox="0 0 24 24"><path d="M 11.964844 0 C 5.347656 0 0 5.269531 0 11.792969 C 0 17.003906 3.425781 21.417969 8.179688 22.976562 C 8.773438 23.09375 8.992188 22.722656 8.992188 22.410156 C 8.992188 22.136719 8.972656 21.203125 8.972656 20.226562 C 5.644531 20.929688 4.953125 18.820312 4.953125 18.820312 C 4.417969 17.453125 3.625 17.101562 3.625 17.101562 C 2.535156 16.378906 3.703125 16.378906 3.703125 16.378906 C 4.914062 16.457031 5.546875 17.589844 5.546875 17.589844 C 6.617188 19.386719 8.339844 18.878906 9.03125 18.566406 C 9.132812 17.804688 9.449219 17.277344 9.785156 16.984375 C 7.132812 16.710938 4.339844 15.695312 4.339844 11.167969 C 4.339844 9.878906 4.8125 8.824219 5.566406 8.003906 C 5.445312 7.710938 5.03125 6.5 5.683594 4.878906 C 5.683594 4.878906 6.695312 4.566406 8.972656 6.089844 C 9.949219 5.832031 10.953125 5.703125 11.964844 5.699219 C 12.972656 5.699219 14.003906 5.835938 14.957031 6.089844 C 17.234375 4.566406 18.242188 4.878906 18.242188 4.878906 C 18.898438 6.5 18.480469 7.710938 18.363281 8.003906 C 19.136719 8.824219 19.589844 9.878906 19.589844 11.167969 C 19.589844 15.695312 16.796875 16.691406 14.125 16.984375 C 14.558594 17.355469 14.933594 18.058594 14.933594 19.171875 C 14.933594 20.753906 14.914062 22.019531 14.914062 22.410156 C 14.914062 22.722656 15.132812 23.09375 15.726562 22.976562 C 20.480469 21.414062 23.910156 17.003906 23.910156 11.792969 C 23.929688 5.269531 18.558594 0 11.964844 0 Z M 11.964844 0 "/></symbol><symbol id="icon-eds-i-institution-medium" viewBox="0 0 24 24"><g><path fill-rule="evenodd" clip-rule="evenodd" d="M11.9967 1C11.6364 1 11.279 1.0898 10.961 1.2646C10.9318 1.28061 10.9035 1.29806 10.8761 1.31689L2.79765 6.87C2.46776 7.08001 2.20618 7.38466 2.07836 7.76668C1.94823 8.15561 1.98027 8.55648 2.12665 8.90067C2.42086 9.59246 3.12798 10 3.90107 10H4.99994V16H4.49994C3.11923 16 1.99994 17.1193 1.99994 18.5V19.5C1.99994 20.8807 3.11923 22 4.49994 22H19.4999C20.8807 22 21.9999 20.8807 21.9999 19.5V18.5C21.9999 17.1193 20.8807 16 19.4999 16H18.9999V10H20.0922C20.8653 10 21.5725 9.59252 21.8667 8.90065C22.0131 8.55642 22.0451 8.15553 21.9149 7.7666C21.7871 7.38459 21.5255 7.07997 21.1956 6.86998L13.1172 1.31689C13.0898 1.29806 13.0615 1.28061 13.0324 1.2646C12.7143 1.0898 12.357 1 11.9967 1ZM4.6844 8L11.9472 3.00755C11.9616 3.00295 11.9783 3 11.9967 3C12.015 3 12.0318 3.00295 12.0461 3.00755L19.3089 8H4.6844ZM16.9999 16V10H14.9999V16H16.9999ZM12.9999 16V10H10.9999V16H12.9999ZM8.99994 16V10H6.99994V16H8.99994ZM3.99994 18.5C3.99994 18.2239 4.2238 18 4.49994 18H19.4999C19.7761 18 19.9999 18.2239 19.9999 18.5V19.5C19.9999 19.7761 19.7761 20 19.4999 20H4.49994C4.2238 20 3.99994 19.7761 3.99994 19.5V18.5Z"/></g></symbol><symbol id="icon-eds-i-limited-access" viewBox="0 0 16 16"><path fill-rule="evenodd" d="M4 3v3a1 1 0 0 1-2 0V2.923C2 1.875 2.84 1 3.909 1h5.909a1 1 0 0 1 .713.298l3.181 3.231a1 1 0 0 1 .288.702V6a1 1 0 1 1-2 0v-.36L9.4 3H4ZM3 8a1 1 0 0 1 1 1v1a1 1 0 1 1-2 0V9a1 1 0 0 1 1-1Zm10 0a1 1 0 0 1 1 1v1a1 1 0 1 1-2 0V9a1 1 0 0 1 1-1Zm-3.5 6a1 1 0 0 1-1 1h-1a1 1 0 1 1 0-2h1a1 1 0 0 1 1 1Zm2.441-1a1 1 0 0 1 2 0c0 .73-.246 1.306-.706 1.664a1.61 1.61 0 0 1-.876.334l-.032.002H11.5a1 1 0 1 1 0-2h.441ZM4 13a1 1 0 0 0-2 0c0 .73.247 1.306.706 1.664a1.609 1.609 0 0 0 .876.334l.032.002H4.5a1 1 0 1 0 0-2H4Z" clip-rule="evenodd"/></symbol><symbol id="icon-eds-i-rss" viewBox="0 0 22 22"><path d="M1.96094 1C1.96094 0.447715 2.40865 0 2.96094 0C5.46109 0 7.93678 0.492038 10.2467 1.44806C12.5565 2.40407 14.6554 3.80534 16.4234 5.57189C18.1913 7.33843 19.5939 9.4357 20.5508 11.744C21.5077 14.0522 22.0001 16.5263 22.0001 19.0247C22.0001 19.577 21.5524 20.0247 21.0001 20.0247C20.4478 20.0247 20.0001 19.577 20.0001 19.0247C20.0001 16.7891 19.5595 14.5753 18.7033 12.5098C17.8471 10.4444 16.5919 8.56762 15.0097 6.98666C13.4275 5.40575 11.5492 4.15167 9.48182 3.29604C7.41447 2.4404 5.19868 2 2.96094 2C2.40865 2 1.96094 1.55228 1.96094 1Z"/><path fill-rule="evenodd" clip-rule="evenodd" d="M0 18.649C0 16.7974 1.50196 15.298 3.35294 15.298C5.20392 15.298 6.70588 16.7974 6.70588 18.649C6.70588 20.5003 5.20397 22 3.35294 22C1.50191 22 0 20.5003 0 18.649ZM3.35294 17.298C2.60493 17.298 2 17.9036 2 18.649C2 19.3943 2.60498 20 3.35294 20C4.1009 20 4.70588 19.3943 4.70588 18.649C4.70588 17.9036 4.10095 17.298 3.35294 17.298Z"/><path d="M3.3374 7.46115C2.78512 7.46115 2.3374 7.90887 2.3374 8.46115C2.3374 9.01344 2.78512 9.46115 3.3374 9.46115C4.54515 9.46115 5.74107 9.69885 6.85684 10.1606C7.97262 10.6224 8.98639 11.2993 9.84028 12.1525C10.6942 13.0057 11.3715 14.0185 11.8336 15.1332C12.2956 16.2478 12.5335 17.4424 12.5335 18.649C12.5335 19.2013 12.9812 19.649 13.5335 19.649C14.0858 19.649 14.5335 19.2013 14.5335 18.649C14.5335 17.1796 14.2438 15.7247 13.6811 14.3673C13.1184 13.0099 12.2936 11.7765 11.2539 10.7377C10.2142 9.69885 8.97999 8.87484 7.62168 8.31266C6.26337 7.75049 4.80757 7.46115 3.3374 7.46115Z"/></symbol><symbol id="icon-eds-i-search-category-medium" viewBox="0 0 32 32"><path fill-rule="evenodd" d="M2 5.306A3.306 3.306 0 0 1 5.306 2h5.833a3.306 3.306 0 0 1 3.306 3.306v5.833a3.306 3.306 0 0 1-3.306 3.305H5.306A3.306 3.306 0 0 1 2 11.14V5.306Zm3.306-.584a.583.583 0 0 0-.584.584v5.833c0 .322.261.583.584.583h5.833a.583.583 0 0 0 .583-.583V5.306a.583.583 0 0 0-.583-.584H5.306Zm15.555 8.945a7.194 7.194 0 1 0 4.034 13.153l2.781 2.781a1.361 1.361 0 1 0 1.925-1.925l-2.781-2.781a7.194 7.194 0 0 0-5.958-11.228Zm3.173 10.346a4.472 4.472 0 1 0-.021.021l.01-.01.011-.011Zm-5.117-19.29a.583.583 0 0 0-.584.583v5.833a1.361 1.361 0 0 1-2.722 0V5.306A3.306 3.306 0 0 1 18.917 2h5.833a3.306 3.306 0 0 1 3.306 3.306v5.833c0 .6-.161 1.166-.443 1.654a1.361 1.361 0 1 1-2.357-1.363.575.575 0 0 0 .078-.291V5.306a.583.583 0 0 0-.584-.584h-5.833ZM2 18.916a3.306 3.306 0 0 1 3.306-3.306h5.833a1.361 1.361 0 1 1 0 2.722H5.306a.583.583 0 0 0-.584.584v5.833c0 .322.261.583.584.583h5.833a.574.574 0 0 0 .29-.077 1.361 1.361 0 1 1 1.364 2.356 3.296 3.296 0 0 1-1.654.444H5.306A3.306 3.306 0 0 1 2 24.75v-5.833Z" clip-rule="evenodd"/></symbol><symbol id="icon-eds-i-subjects-medium" viewBox="0 0 24 24"><g id="icon-subjects-copy" stroke="none" stroke-width="1" fill-rule="evenodd"><path d="M13.3846154,2 C14.7015971,2 15.7692308,3.06762994 15.7692308,4.38461538 L15.7692308,7.15384615 C15.7692308,8.47082629 14.7015955,9.53846154 13.3846154,9.53846154 L13.1038388,9.53925278 C13.2061091,9.85347965 13.3815528,10.1423885 13.6195822,10.3804178 C13.9722182,10.7330539 14.436524,10.9483278 14.9293854,10.9918129 L15.1153846,11 C16.2068332,11 17.2535347,11.433562 18.0254647,12.2054189 C18.6411944,12.8212361 19.0416785,13.6120766 19.1784166,14.4609738 L19.6153846,14.4615385 C20.932386,14.4615385 22,15.5291672 22,16.8461538 L22,19.6153846 C22,20.9323924 20.9323924,22 19.6153846,22 L16.8461538,22 C15.5291672,22 14.4615385,20.932386 14.4615385,19.6153846 L14.4615385,16.8461538 C14.4615385,15.5291737 15.5291737,14.4615385 16.8461538,14.4615385 L17.126925,14.460779 C17.0246537,14.1465537 16.8492179,13.857633 16.6112344,13.6196157 C16.2144418,13.2228606 15.6764136,13 15.1153846,13 C14.0239122,13 12.9771569,12.5664197 12.2053686,11.7946314 C12.1335167,11.7227795 12.0645962,11.6485444 11.9986839,11.5721119 C11.9354038,11.6485444 11.8664833,11.7227795 11.7946314,11.7946314 C11.0228431,12.5664197 9.97608778,13 8.88461538,13 C8.323576,13 7.78552852,13.2228666 7.38881294,13.6195822 C7.15078359,13.8576115 6.97533988,14.1465203 6.8730696,14.4607472 L7.15384615,14.4615385 C8.47082629,14.4615385 9.53846154,15.5291737 9.53846154,16.8461538 L9.53846154,19.6153846 C9.53846154,20.932386 8.47083276,22 7.15384615,22 L4.38461538,22 C3.06762347,22 2,20.9323876 2,19.6153846 L2,16.8461538 C2,15.5291721 3.06762994,14.4615385 4.38461538,14.4615385 L4.8215823,14.4609378 C4.95831893,13.6120029 5.3588057,12.8211623 5.97459937,12.2053686 C6.69125996,11.488708 7.64500941,11.0636656 8.6514968,11.0066017 L8.88461538,11 C9.44565477,11 9.98370225,10.7771334 10.3804178,10.3804178 C10.6184472,10.1423885 10.7938909,9.85347965 10.8961612,9.53925278 L10.6153846,9.53846154 C9.29840448,9.53846154 8.23076923,8.47082629 8.23076923,7.15384615 L8.23076923,4.38461538 C8.23076923,3.06762994 9.29840286,2 10.6153846,2 L13.3846154,2 Z M7.15384615,16.4615385 L4.38461538,16.4615385 C4.17220099,16.4615385 4,16.63374 4,16.8461538 L4,19.6153846 C4,19.8278134 4.17218833,20 4.38461538,20 L7.15384615,20 C7.36626945,20 7.53846154,19.8278103 7.53846154,19.6153846 L7.53846154,16.8461538 C7.53846154,16.6337432 7.36625679,16.4615385 7.15384615,16.4615385 Z M19.6153846,16.4615385 L16.8461538,16.4615385 C16.6337432,16.4615385 16.4615385,16.6337432 16.4615385,16.8461538 L16.4615385,19.6153846 C16.4615385,19.8278103 16.6337306,20 16.8461538,20 L19.6153846,20 C19.8278229,20 20,19.8278229 20,19.6153846 L20,16.8461538 C20,16.6337306 19.8278103,16.4615385 19.6153846,16.4615385 Z M13.3846154,4 L10.6153846,4 C10.4029708,4 10.2307692,4.17220099 10.2307692,4.38461538 L10.2307692,7.15384615 C10.2307692,7.36625679 10.402974,7.53846154 10.6153846,7.53846154 L13.3846154,7.53846154 C13.597026,7.53846154 13.7692308,7.36625679 13.7692308,7.15384615 L13.7692308,4.38461538 C13.7692308,4.17220099 13.5970292,4 13.3846154,4 Z" id="Shape" fill-rule="nonzero"/></g></symbol><symbol id="icon-eds-small-arrow-left" viewBox="0 0 16 17"><path stroke="currentColor" stroke-linecap="round" stroke-linejoin="round" stroke-width="2" d="M14 8.092H2m0 0L8 2M2 8.092l6 6.035"/></symbol><symbol id="icon-eds-small-arrow-right" viewBox="0 0 16 16"><g fill-rule="evenodd" stroke="currentColor" stroke-linecap="round" stroke-linejoin="round" stroke-width="2"><path d="M2 8.092h12M8 2l6 6.092M8 14.127l6-6.035"/></g></symbol><symbol id="icon-orcid-logo" viewBox="0 0 40 40"><path fill-rule="evenodd" d="M12.281 10.453c.875 0 1.578-.719 1.578-1.578 0-.86-.703-1.578-1.578-1.578-.875 0-1.578.703-1.578 1.578 0 .86.703 1.578 1.578 1.578Zm-1.203 18.641h2.406V12.359h-2.406v16.735Z"/><path fill-rule="evenodd" d="M17.016 12.36h6.5c6.187 0 8.906 4.421 8.906 8.374 0 4.297-3.36 8.375-8.875 8.375h-6.531V12.36Zm6.234 14.578h-3.828V14.53h3.703c4.688 0 6.828 2.844 6.828 6.203 0 2.063-1.25 6.203-6.703 6.203Z" clip-rule="evenodd"/></symbol></svg> </div> <a class="c-skip-link" href="#main">Skip to main content</a> <header class="eds-c-header" data-eds-c-header> <div class="eds-c-header__container" data-eds-c-header-expander-anchor> <div class="eds-c-header__brand"> <a href="https://link.springer.com" data-test=springerlink-logo data-track="click_imprint_logo" data-track-context="unified header" data-track-action="click logo link" data-track-category="unified header" data-track-label="link" > <img src="/oscar-static/images/darwin/header/img/logo-springer-nature-link-3149409f62.svg" alt="Springer Nature Link"> </a> </div> <a class="c-header__link eds-c-header__link" id="identity-account-widget" data-track="click_login" data-track-context="header" href='https://idp.springer.com/auth/personal/springernature?redirect_uri=https://link.springer.com/article/10.1007/s10845-025-02578-5?'><span class="eds-c-header__widget-fragment-title">Log in</span></a> </div> <nav class="eds-c-header__nav" aria-label="header navigation"> <div class="eds-c-header__nav-container"> <div class="eds-c-header__item eds-c-header__item--menu"> <a href="#eds-c-header-nav" class="eds-c-header__link" data-eds-c-header-expander> <svg class="eds-c-header__icon" width="24" height="24" aria-hidden="true" focusable="false"> <use xlink:href="#icon-eds-i-menu-medium"></use> </svg><span>Menu</span> </a> </div> <div class="eds-c-header__item eds-c-header__item--inline-links"> <a class="eds-c-header__link" href="https://link.springer.com/journals/" data-track="nav_find_a_journal" data-track-context="unified header" data-track-action="click find a journal" data-track-category="unified header" data-track-label="link" > Find a journal </a> <a class="eds-c-header__link" href="https://www.springernature.com/gp/authors" data-track="nav_how_to_publish" data-track-context="unified header" data-track-action="click publish with us link" data-track-category="unified header" data-track-label="link" > Publish with us </a> <a class="eds-c-header__link" href="https://link.springernature.com/home/" data-track="nav_track_your_research" data-track-context="unified header" data-track-action="click track your research" data-track-category="unified header" data-track-label="link" > Track your research </a> </div> <div class="eds-c-header__link-container"> <div class="eds-c-header__item eds-c-header__item--divider"> <a href="#eds-c-header-popup-search" class="eds-c-header__link" data-eds-c-header-expander data-eds-c-header-test-search-btn> <svg class="eds-c-header__icon" width="24" height="24" aria-hidden="true" focusable="false"> <use xlink:href="#icon-eds-i-search-medium"></use> </svg><span>Search</span> </a> </div> <div id="ecommerce-header-cart-icon-link" class="eds-c-header__item ecommerce-cart" style="display:inline-block"> <a class="eds-c-header__link" href="https://order.springer.com/public/cart" style="appearance:none;border:none;background:none;color:inherit;position:relative"> <svg id="eds-i-cart" class="eds-c-header__icon" xmlns="http://www.w3.org/2000/svg" height="24" width="24" viewBox="0 0 24 24" aria-hidden="true" focusable="false"> <path fill="currentColor" fill-rule="nonzero" d="M2 1a1 1 0 0 0 0 2l1.659.001 2.257 12.808a2.599 2.599 0 0 0 2.435 2.185l.167.004 9.976-.001a2.613 2.613 0 0 0 2.61-1.748l.03-.106 1.755-7.82.032-.107a2.546 2.546 0 0 0-.311-1.986l-.108-.157a2.604 2.604 0 0 0-2.197-1.076L6.042 5l-.56-3.17a1 1 0 0 0-.864-.82l-.12-.007L2.001 1ZM20.35 6.996a.63.63 0 0 1 .54.26.55.55 0 0 1 .082.505l-.028.1L19.2 15.63l-.022.05c-.094.177-.282.299-.526.317l-10.145.002a.61.61 0 0 1-.618-.515L6.394 6.999l13.955-.003ZM18 19a2 2 0 1 0 0 4 2 2 0 0 0 0-4ZM8 19a2 2 0 1 0 0 4 2 2 0 0 0 0-4Z"></path> </svg><span>Cart</span><span class="cart-info" style="display:none;position:absolute;top:10px;right:45px;background-color:#C65301;color:#fff;width:18px;height:18px;font-size:11px;border-radius:50%;line-height:17.5px;text-align:center"></span></a> <script>(function () { var exports = {}; if (window.fetch) { "use strict"; Object.defineProperty(exports, "__esModule", { value: true }); exports.headerWidgetClientInit = void 0; var headerWidgetClientInit = function (getCartInfo) { document.body.addEventListener("updatedCart", function () { updateCartIcon(); }, false); return updateCartIcon(); function updateCartIcon() { return getCartInfo() .then(function (res) { return res.json(); }) .then(refreshCartState) .catch(function (_) { }); } function refreshCartState(json) { var indicator = document.querySelector("#ecommerce-header-cart-icon-link .cart-info"); /* istanbul ignore else */ if (indicator && json.itemCount) { indicator.style.display = 'block'; indicator.textContent = json.itemCount > 9 ? '9+' : json.itemCount.toString(); var moreThanOneItem = json.itemCount > 1; indicator.setAttribute('title', "there ".concat(moreThanOneItem ? "are" : "is", " ").concat(json.itemCount, " item").concat(moreThanOneItem ? "s" : "", " in your cart")); } return json; } }; exports.headerWidgetClientInit = headerWidgetClientInit; headerWidgetClientInit( function () { return window.fetch("https://cart.springer.com/cart-info", { credentials: "include", headers: { Accept: "application/json" } }) } ) }})()</script> </div> </div> </div> </nav> </header> <article lang="en" id="main" class="app-masthead__colour-14"> <section class="app-masthead " aria-label="article masthead"> <div class="app-masthead__container"> <div class="app-article-masthead u-sans-serif js-context-bar-sticky-point-masthead" data-track-component="article" data-test="masthead-component"> <div class="app-article-masthead__info"> <nav aria-label="breadcrumbs" data-test="breadcrumbs"> <ol class="c-breadcrumbs c-breadcrumbs--contrast" itemscope itemtype="https://schema.org/BreadcrumbList"> <li class="c-breadcrumbs__item" id="breadcrumb0" itemprop="itemListElement" itemscope="" itemtype="https://schema.org/ListItem"> <a href="/" class="c-breadcrumbs__link" itemprop="item" data-track="click_breadcrumb" data-track-context="article page" data-track-category="article" data-track-action="breadcrumbs" data-track-label="breadcrumb1"><span itemprop="name">Home</span></a><meta itemprop="position" content="1"> <svg class="c-breadcrumbs__chevron" role="img" aria-hidden="true" focusable="false" width="10" height="10" viewBox="0 0 10 10"> <path d="m5.96738168 4.70639573 2.39518594-2.41447274c.37913917-.38219212.98637524-.38972225 1.35419292-.01894278.37750606.38054586.37784436.99719163-.00013556 1.37821513l-4.03074001 4.06319683c-.37758093.38062133-.98937525.38100976-1.367372-.00003075l-4.03091981-4.06337806c-.37759778-.38063832-.38381821-.99150444-.01600053-1.3622839.37750607-.38054587.98772445-.38240057 1.37006824.00302197l2.39538588 2.4146743.96295325.98624457z" fill-rule="evenodd" transform="matrix(0 -1 1 0 0 10)"/> </svg> </li> <li class="c-breadcrumbs__item" id="breadcrumb1" itemprop="itemListElement" itemscope="" itemtype="https://schema.org/ListItem"> <a href="/journal/10845" class="c-breadcrumbs__link" itemprop="item" data-track="click_breadcrumb" data-track-context="article page" data-track-category="article" data-track-action="breadcrumbs" data-track-label="breadcrumb2"><span itemprop="name">Journal of Intelligent Manufacturing</span></a><meta itemprop="position" content="2"> <svg class="c-breadcrumbs__chevron" role="img" aria-hidden="true" focusable="false" width="10" height="10" viewBox="0 0 10 10"> <path d="m5.96738168 4.70639573 2.39518594-2.41447274c.37913917-.38219212.98637524-.38972225 1.35419292-.01894278.37750606.38054586.37784436.99719163-.00013556 1.37821513l-4.03074001 4.06319683c-.37758093.38062133-.98937525.38100976-1.367372-.00003075l-4.03091981-4.06337806c-.37759778-.38063832-.38381821-.99150444-.01600053-1.3622839.37750607-.38054587.98772445-.38240057 1.37006824.00302197l2.39538588 2.4146743.96295325.98624457z" fill-rule="evenodd" transform="matrix(0 -1 1 0 0 10)"/> </svg> </li> <li class="c-breadcrumbs__item" id="breadcrumb2" itemprop="itemListElement" itemscope="" itemtype="https://schema.org/ListItem"> <span itemprop="name">Article</span><meta itemprop="position" content="3"> </li> </ol> </nav> <h1 class="c-article-title" data-test="article-title" data-article-title="">A planning and execution framework for robotic assembly with deformable objects using a centralized database based on the Rαβγ categorization</h1> <ul class="c-article-identifiers"> <li class="c-article-identifiers__item"> <a href="https://www.springernature.com/gp/open-research/about/the-fundamentals-of-open-access-and-open-research" data-track="click" data-track-action="open access" data-track-label="link" class="u-color-open-access" data-test="open-access">Open access</a> </li> <li class="c-article-identifiers__item"> Published: <time datetime="2025-03-06">06 March 2025</time> </li> </ul> <ul class="c-article-identifiers c-article-identifiers--cite-list"> <li class="c-article-identifiers__item"> (<span data-test="article-publication-year">2025</span>) </li> <li class="c-article-identifiers__item c-article-identifiers__item--cite"> <a href="#citeas" data-track="click" data-track-action="cite this article" data-track-category="article body" data-track-label="link">Cite this article</a> </li> </ul> <div class="app-article-masthead__buttons" data-test="download-article-link-wrapper" data-track-context="masthead"> <div class="c-pdf-container"> <div class="c-pdf-download u-clear-both u-mb-16"> <a href="/content/pdf/10.1007/s10845-025-02578-5.pdf" class="u-button u-button--full-width u-button--primary u-justify-content-space-between c-pdf-download__link" data-article-pdf="true" data-readcube-pdf-url="true" data-test="pdf-link" data-draft-ignore="true" data-track="content_download" data-track-type="article pdf download" data-track-action="download pdf" data-track-label="button" data-track-external download> <span class="c-pdf-download__text">Download PDF</span> <svg aria-hidden="true" focusable="false" width="16" height="16" class="u-icon"><use xlink:href="#icon-eds-i-download-medium"/></svg> </a> </div> </div> <p class="app-article-masthead__access"> <svg width="16" height="16" focusable="false" role="img" aria-hidden="true"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-check-filled-medium"></use></svg> You have full access to this <a href="https://www.springernature.com/gp/open-research/about/the-fundamentals-of-open-access-and-open-research" data-track="click" data-track-action="open access" data-track-label="link">open access</a> article</p> </div> </div> <div class="app-article-masthead__brand"> <a href="/journal/10845" class="app-article-masthead__journal-link" data-track="click_journal_home" data-track-action="journal homepage" data-track-context="article page" data-track-label="link"> <picture> <source type="image/webp" media="(min-width: 768px)" width="120" height="159" srcset="https://media.springernature.com/w120/springer-static/cover-hires/journal/10845?as=webp, https://media.springernature.com/w316/springer-static/cover-hires/journal/10845?as=webp 2x"> <img width="72" height="95" src="https://media.springernature.com/w72/springer-static/cover-hires/journal/10845?as=webp" srcset="https://media.springernature.com/w144/springer-static/cover-hires/journal/10845?as=webp 2x" alt=""> </picture> <span class="app-article-masthead__journal-title">Journal of Intelligent Manufacturing</span> </a> <a href="https://link.springer.com/journal/10845/aims-and-scope" class="app-article-masthead__submission-link" data-track="click_aims_and_scope" data-track-action="aims and scope" data-track-context="article page" data-track-label="link"> Aims and scope <svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-arrow-right-medium"></use></svg> </a> <a href="https://www.editorialmanager.com/jims" class="app-article-masthead__submission-link" data-track="click_submit_manuscript" data-track-context="article masthead on springerlink article page" data-track-action="submit manuscript" data-track-label="link"> Submit manuscript <svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-arrow-right-medium"></use></svg> </a> </div> </div> </div> </section> <div class="c-article-main u-container u-mt-24 u-mb-32 l-with-sidebar" id="main-content" data-component="article-container"> <main class="u-serif js-main-column" data-track-component="article body"> <div class="c-context-bar u-hide" data-test="context-bar" data-context-bar aria-hidden="true"> <div class="c-context-bar__container u-container"> <div class="c-context-bar__title"> A planning and execution framework for robotic assembly with deformable objects using a centralized database based on the Rαβγ categorization </div> <div data-test="inCoD" data-track-context="sticky banner"> <div class="c-pdf-container"> <div class="c-pdf-download u-clear-both u-mb-16"> <a href="/content/pdf/10.1007/s10845-025-02578-5.pdf" class="u-button u-button--full-width u-button--primary u-justify-content-space-between c-pdf-download__link" data-article-pdf="true" data-readcube-pdf-url="true" data-test="pdf-link" data-draft-ignore="true" data-track="content_download" data-track-type="article pdf download" data-track-action="download pdf" data-track-label="button" data-track-external download> <span class="c-pdf-download__text">Download PDF</span> <svg aria-hidden="true" focusable="false" width="16" height="16" class="u-icon"><use xlink:href="#icon-eds-i-download-medium"/></svg> </a> </div> </div> </div> </div> </div> <div class="c-article-header"> <header> <ul class="c-article-author-list c-article-author-list--short" data-test="authors-list" data-component-authors-activator="authors-list"><li class="c-article-author-list__item"><a data-test="author-name" data-track="click" data-track-action="open author" data-track-label="link" href="#auth-Ran-Shneor-Aff1" data-author-popup="auth-Ran-Shneor-Aff1" data-author-search="Shneor, Ran" data-corresp-id="c1">Ran Shneor<svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-mail-medium"></use></svg></a><span class="u-js-hide">  <a class="js-orcid" href="http://orcid.org/0000-0001-7736-4193"><span class="u-visually-hidden">ORCID: </span>orcid.org/0000-0001-7736-4193</a></span><sup class="u-js-hide"><a href="#Aff1">1</a></sup>, </li><li class="c-article-author-list__item"><a data-test="author-name" data-track="click" data-track-action="open author" data-track-label="link" href="#auth-Gali-Naveh-Aff2" data-author-popup="auth-Gali-Naveh-Aff2" data-author-search="Naveh, Gali">Gali Naveh</a><span class="u-js-hide">  <a class="js-orcid" href="http://orcid.org/0000-0002-7002-2606"><span class="u-visually-hidden">ORCID: </span>orcid.org/0000-0002-7002-2606</a></span><sup class="u-js-hide"><a href="#Aff2">2</a></sup>, </li><li class="c-article-author-list__item c-article-author-list__item--hide-small-screen"><a data-test="author-name" data-track="click" data-track-action="open author" data-track-label="link" href="#auth-Shir-Ben_David-Aff1" data-author-popup="auth-Shir-Ben_David-Aff1" data-author-search="Ben-David, Shir">Shir Ben-David</a><sup class="u-js-hide"><a href="#Aff1">1</a></sup>, </li><li class="c-article-author-list__item c-article-author-list__item--hide-small-screen"><a data-test="author-name" data-track="click" data-track-action="open author" data-track-label="link" href="#auth-Bar-Shvarzman-Aff1" data-author-popup="auth-Bar-Shvarzman-Aff1" data-author-search="Shvarzman, Bar">Bar Shvarzman</a><sup class="u-js-hide"><a href="#Aff1">1</a></sup>, </li><li class="c-article-author-list__item c-article-author-list__item--hide-small-screen"><a data-test="author-name" data-track="click" data-track-action="open author" data-track-label="link" href="#auth-Zachi-Mann-Aff3" data-author-popup="auth-Zachi-Mann-Aff3" data-author-search="Mann, Zachi">Zachi Mann</a><sup class="u-js-hide"><a href="#Aff3">3</a></sup>, </li><li class="c-article-author-list__item c-article-author-list__item--hide-small-screen"><a data-test="author-name" data-track="click" data-track-action="open author" data-track-label="link" href="#auth-Alex-Greenberg-Aff3" data-author-popup="auth-Alex-Greenberg-Aff3" data-author-search="Greenberg, Alex">Alex Greenberg</a><sup class="u-js-hide"><a href="#Aff3">3</a></sup>, </li><li class="c-article-author-list__item c-article-author-list__item--hide-small-screen"><a data-test="author-name" data-track="click" data-track-action="open author" data-track-label="link" href="#auth-Yotam-Efrat-Aff4" data-author-popup="auth-Yotam-Efrat-Aff4" data-author-search="Efrat, Yotam">Yotam Efrat</a><sup class="u-js-hide"><a href="#Aff4">4</a></sup>, </li><li class="c-article-author-list__item c-article-author-list__item--hide-small-screen"><a data-test="author-name" data-track="click" data-track-action="open author" data-track-label="link" href="#auth-Omer-Einav-Aff4" data-author-popup="auth-Omer-Einav-Aff4" data-author-search="Einav, Omer">Omer Einav</a><sup class="u-js-hide"><a href="#Aff4">4</a></sup> &amp; </li><li class="c-article-author-list__show-more" aria-label="Show all 9 authors for this article" title="Show all 9 authors for this article">…</li><li class="c-article-author-list__item"><a data-test="author-name" data-track="click" data-track-action="open author" data-track-label="link" href="#auth-Sigal-Berman-Aff1" data-author-popup="auth-Sigal-Berman-Aff1" data-author-search="Berman, Sigal">Sigal Berman</a><span class="u-js-hide">  <a class="js-orcid" href="http://orcid.org/0000-0001-7717-7259"><span class="u-visually-hidden">ORCID: </span>orcid.org/0000-0001-7717-7259</a></span><sup class="u-js-hide"><a href="#Aff1">1</a></sup> </li></ul><button aria-expanded="false" class="c-article-author-list__button"><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-down-medium"></use></svg><span>Show authors</span></button> <div data-test="article-metrics"> <ul class="app-article-metrics-bar u-list-reset"> <li class="app-article-metrics-bar__item"> <p class="app-article-metrics-bar__count"><svg class="u-icon app-article-metrics-bar__icon" width="24" height="24" aria-hidden="true" focusable="false"> <use xlink:href="#icon-eds-i-accesses-medium"></use> </svg>399 <span class="app-article-metrics-bar__label">Accesses</span></p> </li> <li class="app-article-metrics-bar__item app-article-metrics-bar__item--metrics"> <p class="app-article-metrics-bar__details"><a href="/article/10.1007/s10845-025-02578-5/metrics" data-track="click" data-track-action="view metrics" data-track-label="link" rel="nofollow">Explore all metrics <svg class="u-icon app-article-metrics-bar__arrow-icon" width="24" height="24" aria-hidden="true" focusable="false"> <use xlink:href="#icon-eds-i-arrow-right-medium"></use> </svg></a></p> </li> </ul> </div> <div class="u-mt-32"> </div> </header> </div> <div data-article-body="true" data-track-component="article body" class="c-article-body"> <section lang="en"><div class="c-article-section" id="Abs1-section"><div class="c-article-section__content" id="Abs1-content"><h3 class="c-article__sub-heading" data-test="abstract-sub-heading">Abstract</h3><p>Automation of process planning and execution of robotic assembly can lead to process optimization and shorter setup times. Several such automation frameworks have been developed for the assembly of rigid objects. However, many products require assembly with deformable objects. Robotic assembly with deformable objects typically incurs more complex dynamics and requires more collaboration during execution than rigid object assembly. In addition, process documentation includes more documents that are less structured. The current research suggests a data-driven planning and execution automation framework suitable for robotic assembly with deformable objects. The framework includes the three required modules: data extraction, process planning, and process execution. The modules interact with a central database constructed according to the Rαβγ ontology. Data extraction is based on commonly used manufacturing documents. Process planning is based on parametrized hybrid automata models, which encompass process and collaboration complexity using two layers: assembly operations and robotic skills. Process execution integrates a digital twin for sequence validation, process adaptation, and monitoring. The framework was successfully demonstrated in a small factory environment with three case studies for products with deformable objects: two smart light boards which include parts with plastic deformations (electric wires) and a medical infusion kit with parts with elastic deformations (tube, connectors). The framework facilitated optimized planning with significant reuse of assembly operations for all products. Both light boards had a high rate of assembly operation reuse (78%, 86%). The medical infusion kit had a somewhat lower rate (62%) due to the need for dedicated operations.</p><h3 class="c-article__sub-heading" data-test="abstract-sub-heading">Graphical abstract</h3><div class="c-article-section__figure" data-test="figure" data-container-section="figure"><figure><div class="c-article-section__figure-content"><div class="c-article-section__figure-item"><picture><source type="image/webp" srcset="//media.springernature.com/lw685/springer-static/image/art%3A10.1007%2Fs10845-025-02578-5/MediaObjects/10845_2025_2578_Figa_HTML.png?as=webp"><img src="//media.springernature.com/lw685/springer-static/image/art%3A10.1007%2Fs10845-025-02578-5/MediaObjects/10845_2025_2578_Figa_HTML.png" alt="" loading="lazy" width="685" height="271"></picture></div></div></figure></div></div></div></section> <div data-test="cobranding-download"> </div> <section aria-labelledby="inline-recommendations" data-title="Inline Recommendations" class="c-article-recommendations" data-track-component="inline-recommendations"> <h3 class="c-article-recommendations-title" id="inline-recommendations">Similar content being viewed by others</h3> <div class="c-article-recommendations-list"> <div class="c-article-recommendations-list__item"> <article class="c-article-recommendations-card" itemscope itemtype="http://schema.org/ScholarlyArticle"> <div class="c-article-recommendations-card__img"><img src="https://media.springernature.com/w92h120/springer-static/cover-hires/book/978-3-319-58694-6?as&#x3D;webp" loading="lazy" alt=""></div> <div class="c-article-recommendations-card__main"> <h3 class="c-article-recommendations-card__heading" itemprop="name headline"> <a class="c-article-recommendations-card__link" itemprop="url" href="https://link.springer.com/10.1007/978-3-319-58694-6_36?fromPaywallRec=false" data-track="select_recommendations_1" data-track-context="inline recommendations" data-track-action="click recommendations inline - 1" data-track-label="10.1007/978-3-319-58694-6_36">Semantic Data Integration for Industry 4.0 Standards </a> </h3> <div class="c-article-meta-recommendations" data-test="recommendation-info"> <span class="c-article-meta-recommendations__item-type">Chapter</span> <span class="c-article-meta-recommendations__date">© 2017</span> </div> </div> </article> </div> <div class="c-article-recommendations-list__item"> <article class="c-article-recommendations-card" itemscope itemtype="http://schema.org/ScholarlyArticle"> <div class="c-article-recommendations-card__img"><img src="https://media.springernature.com/w92h120/springer-static/cover-hires/book/978-3-319-51100-9?as&#x3D;webp" loading="lazy" alt=""></div> <div class="c-article-recommendations-card__main"> <h3 class="c-article-recommendations-card__heading" itemprop="name headline"> <a class="c-article-recommendations-card__link" itemprop="url" href="https://link.springer.com/10.1007/978-3-319-51100-9_33?fromPaywallRec=false" data-track="select_recommendations_2" data-track-context="inline recommendations" data-track-action="click recommendations inline - 2" data-track-label="10.1007/978-3-319-51100-9_33">A Highly Flexible, Distributed Data Analysis Framework for Industry 4.0 Manufacturing Systems </a> </h3> <div class="c-article-meta-recommendations" data-test="recommendation-info"> <span class="c-article-meta-recommendations__item-type">Chapter</span> <span class="c-article-meta-recommendations__date">© 2017</span> </div> </div> </article> </div> <div class="c-article-recommendations-list__item"> <article class="c-article-recommendations-card" itemscope itemtype="http://schema.org/ScholarlyArticle"> <div class="c-article-recommendations-card__img"><img src="https://media.springernature.com/w92h120/springer-static/cover-hires/book/978-981-99-0301-6?as&#x3D;webp" loading="lazy" alt=""></div> <div class="c-article-recommendations-card__main"> <h3 class="c-article-recommendations-card__heading" itemprop="name headline"> <a class="c-article-recommendations-card__link" itemprop="url" href="https://link.springer.com/10.1007/978-981-99-0301-6_33?fromPaywallRec=false" data-track="select_recommendations_3" data-track-context="inline recommendations" data-track-action="click recommendations inline - 3" data-track-label="10.1007/978-981-99-0301-6_33">Design of an Improved Process Mining Algorithm for Manufacturing Companies with Industrial Robots </a> </h3> <div class="c-article-meta-recommendations" data-test="recommendation-info"> <span class="c-article-meta-recommendations__item-type">Chapter</span> <span class="c-article-meta-recommendations__date">© 2023</span> </div> </div> </article> </div> </div> </section> <script> window.dataLayer = window.dataLayer || []; window.dataLayer.push({ recommendations: { recommender: 'semantic', model: 'specter', policy_id: 'NA', timestamp: 1743006677, embedded_user: 'null' } }); </script> <div class="app-card-service" data-test="article-checklist-banner"> <div> <a class="app-card-service__link" data-track="click_presubmission_checklist" data-track-context="article page top of reading companion" data-track-category="pre-submission-checklist" data-track-action="clicked article page checklist banner test 2 old version" data-track-label="link" href="https://beta.springernature.com/pre-submission?journalId=10845" data-test="article-checklist-banner-link"> <span class="app-card-service__link-text">Use our pre-submission checklist</span> <svg class="app-card-service__link-icon" aria-hidden="true" focusable="false"><use xlink:href="#icon-eds-i-arrow-right-small"></use></svg> </a> <p class="app-card-service__description">Avoid common mistakes on your manuscript.</p> </div> <div class="app-card-service__icon-container"> <svg class="app-card-service__icon" aria-hidden="true" focusable="false"> <use xlink:href="#icon-eds-i-clipboard-check-medium"></use> </svg> </div> </div> <div class="main-content"> <section data-title="Introduction"><div class="c-article-section" id="Sec1-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="Sec1">Introduction</h2><div class="c-article-section__content" id="Sec1-content"><p>Modern robots possess the dexterity required for many assembly tasks, including assembly with deformable objects, i.e., assembly where some or all the assembled objects that form the product are deformable (Billard &amp; Kragic, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2019" title="Billard, A., &amp; Kragic, D. (2019). Trends and challenges in robot manipulation. Science. &#xA; https://doi.org/10.1126/science.aat8414&#xA; &#xA; " href="/article/10.1007/s10845-025-02578-5#ref-CR6" id="ref-link-section-d64739081e455">2019</a>). Deformable objects are made from materials that can change shape or size under external forces (e.g., robotic arm manoeuvres and interaction with other objects). With deformable objects, plastic (lasting shape change) and elastic (temporary shape change) deformations or their combination can be induced during object manipulation (Sanchez et al., <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2018" title="Sanchez, J., Corrales, J. A., Bouzgarrou, B. C., &amp; Mezouar, Y. (2018). Robotic manipulation and sensing of deformable objects in domestic and industrial applications: A survey. The International Journal of Robotics Research, 37(7), 688–716. &#xA; https://doi.org/10.1177/0278364918779698&#xA; &#xA; " href="/article/10.1007/s10845-025-02578-5#ref-CR54" id="ref-link-section-d64739081e458">2018</a>). During assembly, these deformations come in parallel to object pose changes, making assembly process dynamics complex.</p><p>Over the years, several literature reviews of research and industrial applications of robotic manipulation of deformable objects were conducted (Herguedas et al., <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2019" title="Herguedas, R., Lopez-Nicolas, G., Aragues, R., &amp; Sagues, C. (2019). Survey on multi-robot manipulation of deformable objects. In 2019 24th IEEE International conference on emerging technologies and factory automation (ETFA) (pp. 977–984). &#xA; https://doi.org/10.1109/etfa.2019.8868987&#xA; &#xA; " href="/article/10.1007/s10845-025-02578-5#ref-CR21" id="ref-link-section-d64739081e464">2019</a>; Jiménez, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2012" title="Jiménez, P. (2012). Survey on model-based manipulation planning of deformable objects. Robotics and Computer-Integrated Manufacturing, 28(2), 154–163. &#xA; https://doi.org/10.1016/j.rcim.2011.08.002&#xA; &#xA; " href="/article/10.1007/s10845-025-02578-5#ref-CR27" id="ref-link-section-d64739081e467">2012</a>; Saadat &amp; Nan, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2002" title="Saadat, M., &amp; Nan, P. (2002). Industrial applications of automatic manipulation of flexible materials. Industrial Robot: An International Journal, 29(5), 434–442. &#xA; https://doi.org/10.1108/01439910210440255&#xA; &#xA; " href="/article/10.1007/s10845-025-02578-5#ref-CR53" id="ref-link-section-d64739081e470">2002</a>; Sanchez et al., <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2018" title="Sanchez, J., Corrales, J. A., Bouzgarrou, B. C., &amp; Mezouar, Y. (2018). Robotic manipulation and sensing of deformable objects in domestic and industrial applications: A survey. The International Journal of Robotics Research, 37(7), 688–716. &#xA; https://doi.org/10.1177/0278364918779698&#xA; &#xA; " href="/article/10.1007/s10845-025-02578-5#ref-CR54" id="ref-link-section-d64739081e473">2018</a>). Jiménez (<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2012" title="Jiménez, P. (2012). Survey on model-based manipulation planning of deformable objects. Robotics and Computer-Integrated Manufacturing, 28(2), 154–163. &#xA; https://doi.org/10.1016/j.rcim.2011.08.002&#xA; &#xA; " href="/article/10.1007/s10845-025-02578-5#ref-CR27" id="ref-link-section-d64739081e476">2012</a>) classified modelling approaches for deformable objects according to the object’s geometric dimensions (i.e., linear, planar, and volumetric) and the type of manipulation (object path planning, folding/unfolding, topological modifications to the object, assembly). Saadat and Nan (<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2002" title="Saadat, M., &amp; Nan, P. (2002). Industrial applications of automatic manipulation of flexible materials. Industrial Robot: An International Journal, 29(5), 434–442. &#xA; https://doi.org/10.1108/01439910210440255&#xA; &#xA; " href="/article/10.1007/s10845-025-02578-5#ref-CR53" id="ref-link-section-d64739081e480">2002</a>) similarly classified industrial applications based on the object’s geometrical dimensions, with sub-classifications for the type of material (e.g., leather, cable/wire), the type of industry (e.g., food, electronics), and the type of object manipulation. Sanchez et al. (<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2018" title="Sanchez, J., Corrales, J. A., Bouzgarrou, B. C., &amp; Mezouar, Y. (2018). Robotic manipulation and sensing of deformable objects in domestic and industrial applications: A survey. The International Journal of Robotics Research, 37(7), 688–716. &#xA; https://doi.org/10.1177/0278364918779698&#xA; &#xA; " href="/article/10.1007/s10845-025-02578-5#ref-CR54" id="ref-link-section-d64739081e483">2018</a>) proposed an adaptation of the classification of the object’s geometry by adding a category of non-planar surfaces appropriate to cloth-like objects. In addition, further refinements to the object’s manipulation type were proposed. In another survey, on the multi-robot manipulation of deformable objects, Herguedas et al. (<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2019" title="Herguedas, R., Lopez-Nicolas, G., Aragues, R., &amp; Sagues, C. (2019). Survey on multi-robot manipulation of deformable objects. In 2019 24th IEEE International conference on emerging technologies and factory automation (ETFA) (pp. 977–984). &#xA; https://doi.org/10.1109/etfa.2019.8868987&#xA; &#xA; " href="/article/10.1007/s10845-025-02578-5#ref-CR21" id="ref-link-section-d64739081e486">2019</a>) reviewed different research perspectives covering object geometry, object manipulation type, and robotic system components. In all the above reviews, object attributes constituted the main classification axis, with manipulation type typically supporting further divisions. However, such classifications are limited in terms of evaluating synergies between the robotics and the manufacturing process which are critical for processes with multiple manipulation stages and the integration of robotic processes (e.g., assembly) into factory floor operations.</p><p>For robots to successfully perform required assembly operation, dexterous manipulation and intricate collaboration with additional production system components (e.g., multiple robotic arms, end-effectors, designated jigs) are typically required. Developing required operations and programming the collaboration between production agents is challenging and time-consuming. Machine learning methods, such as deep reinforcement learning used today for learning complex robotic behaviour, typically require lengthy learning periods and costly computation facilities (Panzer &amp; Bender, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2021" title="Panzer, M., &amp; Bender, B. (2021). Deep reinforcement learning in production systems: A systematic literature review. International Journal of Production Research, 60(13), 4316–4341. &#xA; https://doi.org/10.1080/00207543.2021.1973138&#xA; &#xA; " href="/article/10.1007/s10845-025-02578-5#ref-CR49" id="ref-link-section-d64739081e492">2021</a>). The prolonged time and the high costs limit the ability to use such advanced deep learning methods in flexible manufacturing environments. The limitations are especially problematic in small batch-size production facilities, where fast setup times and low planning costs are crucial for competitiveness (Carvajal Soto et al., <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2019" title="Carvajal Soto, J. A., Tavakolizadeh, F., &amp; Gyulai, D. (2019). An online machine learning framework for early detection of product failures in an industry 4.0 context. International Journal of Computer Integrated Manufacturing, 32(4–5), 452–465. &#xA; https://doi.org/10.1080/0951192x.2019.1571238&#xA; &#xA; " href="/article/10.1007/s10845-025-02578-5#ref-CR13" id="ref-link-section-d64739081e495">2019</a>; Usuga Cadavid et al., <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2020" title="Usuga Cadavid, J. P., Lamouri, S., Grabot, B., Pellerin, R., &amp; Fortin, A. (2020). Machine learning applied in production planning and control: A state-of-the-art in the era of industry 4.0. Journal of Intelligent Manufacturing, 31(6), 1531–1558. &#xA; https://doi.org/10.1007/s10845-019-01531-7&#xA; &#xA; " href="/article/10.1007/s10845-025-02578-5#ref-CR64" id="ref-link-section-d64739081e498">2020</a>).</p><p>Manufacturing setup times and planning costs can be reduced by operation reuse and end-to-end automation of planning and execution. End-to-end planning and execution methods are typically divided into three modules: data extraction, process planning, and process execution (Wang et al., <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2008" title="Wang, L., Keshavarzmanesh, S., Feng, H. Y., &amp; Buchal, R. O. (2008). Assembly process planning and its future in Collaborative Manufacturing: A review. The International Journal of Advanced Manufacturing Technology, 41(1–2), 132–144. &#xA; https://doi.org/10.1007/s00170-008-1458-9&#xA; &#xA; " href="/article/10.1007/s10845-025-02578-5#ref-CR69" id="ref-link-section-d64739081e504">2008</a>; Yang et al., <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2013" title="Yang, Q., Wu, D. L., Zhu, H. M., Bao, J. S., &amp; Wei, Z. H. (2013). Assembly operation process planning by mapping a virtual assembly simulation to real operation. Computers in Industry, 64(7), 869–879. &#xA; https://doi.org/10.1016/j.compind.2013.06.001&#xA; &#xA; " href="/article/10.1007/s10845-025-02578-5#ref-CR74" id="ref-link-section-d64739081e507">2013</a>). Despite advances in automated manufacturing, there remains a critical gap in the development of a comprehensive framework suitable for dexterous assemblies with deformable objects that integrate data extraction from design documents, robotic sequence planning, and real-time execution control. Particularly a framework that can demonstrate robust performance in various industrial manufacturing environments with commercial products. The current work suggests an end-to-end framework for automatic planning and execution within a centralized database based on a holistic robotic manufacturing ontology (described in “<a data-track="click" data-track-label="link" data-track-action="section anchor" href="/article/10.1007/s10845-025-02578-5#Sec9">Rαβγ database</a>” section) for assembly with deformable objects, which enables reusability of assembly operations. The framework addresses challenges in all three framework modules.</p><p>Data extraction from design documents is required to identify points of interest (e.g., peg-in-hole locations) and the characteristics of the parts influencing the assembly process (e.g., deformation type). Computer-aided design (CAD) models are a widespread documentation form of geometric information, typically used for documenting the assembly of rigid objects, i.e., objects with negligible deformation (Koga et al., <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2022" title="Koga, Y., Kerrick, H., &amp; Chitta, S. (2022). On CAD informed Adaptive Robotic Assembly. 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). &#xA; https://doi.org/10.1109/iros47612.2022.9982242&#xA; &#xA; " href="/article/10.1007/s10845-025-02578-5#ref-CR29" id="ref-link-section-d64739081e517">2022</a>; Nikolov et al., <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2023" title="Nikolov, G. N., Thomsen, A. N., Mikkelstrup, A. F., &amp; Kristiansen, M. (2023). Computer-aided process planning system for laser forming: From CAD to part. International Journal of Production Research. &#xA; https://doi.org/10.1080/00207543.2023.2241565&#xA; &#xA; " href="/article/10.1007/s10845-025-02578-5#ref-CR45" id="ref-link-section-d64739081e520">2023</a>). Assemblies with deformable objects are typically documented using additional documents, e.g., job guides and data sheets (Shneor &amp; Berman, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2023a" title="Shneor, R., &amp; Berman, S. (2023a). Towards production planning automation: mapping documents for robotic assembly planning with DLO. In The 27th International conference on production research, Cluj-Napoca, Romania, 23–28 July 2023." href="/article/10.1007/s10845-025-02578-5#ref-CR57" id="ref-link-section-d64739081e523">2023a</a>). In many cases, the available documentation may not include a CAD module. While CAD documents are structured and have a standardized format (such as STEP), the documents typically used for documenting assembly with deformable objects lack standardization. The current work takes a data-driven approach, integrating data from CAD models and additional manufacturing documents with user interfaces to accommodate manufacturing documents that lack standardization.</p><p>Process planning frameworks for rigid object assembly concentrate on constraints related to the end state of the assembled parts. Due to possible deformations during interaction and mating, assembly planning with deformable objects must consider the dynamic constraints during the entire object manipulation operation rather than solely adhering to constraints related to the end state (Zhu et al., <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2022" title="Zhu, J., Cherubini, A., Dune, C., Navarro-Alarcon, D., Alambeigi, F., Berenson, D., Ficuciello, F., Harada, K., Kober, J., Li, X., Pan, J., Yuan, W., &amp; Gienger, M. (2022). Challenges and outlook in robotic manipulation of deformable objects. IEEE Robotics &amp; Automation Magazine, 29(3), 67–77. &#xA; https://doi.org/10.1109/mra.2022.3147415&#xA; &#xA; " href="/article/10.1007/s10845-025-02578-5#ref-CR78" id="ref-link-section-d64739081e529">2022</a>). This requirement complicates motion planning and collaboration between manufacturing agents during execution.</p><p>A commonly used division in robotic process programming is low-level robotic skills and high-level semantic operations (Liang et al., <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2019" title="Liang, Y. S., Pellier, D., Fiorino, H., &amp; Pesty, S. (2019). End-user programming of low-and high-level actions for Robotic Task Planning. In 2019 28th IEEE international conference on robot and human interactive communication (RO-MAN). &#xA; https://doi.org/10.1109/ro-man46459.2019.8956327&#xA; &#xA; " href="/article/10.1007/s10845-025-02578-5#ref-CR34" id="ref-link-section-d64739081e535">2019</a>). Skills encode robotic motion profiles (profile encoding may include any combination of path, speed, and acceleration definitions) and low-level operations, e.g., open gripper, close gripper. Semantic operations encode process-level operations, e.g., insert wire, glue tube. For deformable object assembly, collaboration between several agents, where each agent executes several skills, may be required to perform each assembly operation. The current work builds on parametrized hybrid automata models to support such a collaboration.</p><p>Process execution streamlines the manufacturing procedures to assemble the desired final product. Industrial process execution requires fine-tuning robotic motion planning to the capabilities of the executing robot and adaptation to environment uncertainties, e.g., part dimension or workstation setup tolerances. In assembly with deformable objects, the need for motion adaptation during assembly is fundamental due to the inherent uncertainty caused by the deformable characteristics of the assembled parts. These operations should undergo validation and testing in simulation before actual production. To support motion adaptation and validation, the current work developed an interface for real-time interaction with the process execution module, integrating a digital twin and a physical production setup.</p><p>The framework presented was developed for robotic work cells using a data-driven approach. The data-driven approach relies on different information sources that are parametrized and stored in the database (Wang et al., <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2011" title="Wang, J., Chang, Q., Xiao, G., Wang, N., &amp; Li, S. (2011). Data driven production modeling and simulation of Complex Automobile General Assembly Plant. Computers in Industry, 62(7), 765–775. &#xA; https://doi.org/10.1016/j.compind.2011.05.004&#xA; &#xA; " href="/article/10.1007/s10845-025-02578-5#ref-CR70" id="ref-link-section-d64739081e544">2011</a>). Parametrizing data into a database simplifies process planning with multiple entities and complex data structures and facilitates process abstraction, enabling skill and process reuse. The current work implements a data-driven approach for robotic assembly planning and execution of commercial products with deformable objects. The contributions and innovations of the current work are described below:</p> <ul class="u-list-style-bullet"> <li> <p>A data-driven approach using a central database that enables central storage of the information needed for data extraction, process planning, and process execution modules. The central database is the main pivot interconnecting the information required for the framework’s modules and their relevant parameters. The parameters and data extracted from multiple data sources regarding deformable objects are stored in the database. The central database includes the relevant information for the robotic assembly of deformable objects, thus contributing to uniformity and consistency in planning and execution.</p> </li> <li> <p>The hybrid automata model encompasses process and collaboration complexity using two layers: assembly operations and robotic skills. The parametrized hybrid automata of robotic skills linked to assembly operations support dexterous operation planning and execution. The parametrization enables the use of high-level assembly operations for dexterous operations by adjusting the values of the robotic skills and efficiently sequencing assembly operations. The parameterization of low-level robotic skills linked to high-level assembly operations reduces manufacturing times and costs by enhancing the reusability of pre-planned and stored assembly operations. Facilitating the reusability of assembly operations contributes to shortening engineering time for planning and execution (e.g., setup times between products), which is important, especially when addressing wiring activities that are considered hard to automate and digitize (Bründl et al., <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2024" title="Bründl, P., Stoidner, M., Bredthauer, J., Nguyen, H. G., Baechler, A., &amp; Franke, J. (2024). Unlocking the potential of digitalization and automation: A qualitative and quantitative study of the Control Cabinet Manufacturing Industry. Production &amp; Manufacturing Research. &#xA; https://doi.org/10.1080/21693277.2024.2306820&#xA; &#xA; " href="/article/10.1007/s10845-025-02578-5#ref-CR10" id="ref-link-section-d64739081e562">2024</a>).</p> </li> <li> <p>Extracting information from multiple data sources of real-world products (e.g., a CAD model for part assembly and object locations, a datasheet for part properties and connections indexes, and an electric scheme for wiring plans) contributes to the concretization of the developed framework. Integrating such sources and data types, together with process planning based on hybrid automata model parametrization for robotic configurations and process execution based on a digital twin, is an additional contribution of this work.</p> </li> <li> <p>The developed framework was demonstrated with different assembly processes of real-world products from different industries. The framework suggested is innovative in its generic structure and reusable building blocks (assembly operations) and facilitates handling various interactions with deformable objects (rigid and deformable, deformable and deformable).</p> </li> </ul><p>The rest of this paper is organized as follows: the second section describes related work; “<a data-track="click" data-track-label="link" data-track-action="section anchor" href="/article/10.1007/s10845-025-02578-5#Sec8">Method</a>” section details the framework and modules; “<a data-track="click" data-track-label="link" data-track-action="section anchor" href="/article/10.1007/s10845-025-02578-5#Sec4">Case study</a>” section presents a case study of the framework with two industry types, electrical (smart light boards) and a medical (infusion kit); the fifth section presents a discussion; and the final section conclusions.</p></div></div></section><section data-title="Related work"><div class="c-article-section" id="Sec2-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="Sec2">Related work</h2><div class="c-article-section__content" id="Sec2-content"><p>Related work is reviewed based on the three modules of planning and execution automation frameworks: data extraction, process planning, and process execution. In the current work, a central database interconnects all three models. The baseline for formally constructing the database is additionally reviewed as well as recent robotic planning and execution frameworks.</p><h3 class="c-article__sub-heading" id="Sec3">Data extraction</h3><p>Automatically extracting manufacturing data from design documents is an initial and important step in manufacturing process automation and its application in intelligent manufacturing. Extracting manufacturing data is challenging due to the heterogeneous multi-sources and diverse locations of manufacturing documents in different systems. In addition, semi-structured characteristics of manufacturing sources are part of the inherent complexity of manufacturing information structure (Ren et al., <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2022" title="Ren, L., Li, Y., Wang, X., Cui, J., &amp; Zhang, L. (2022). An abge-aided manufacturing knowledge graph construction approach for heterogeneous IIOT data integration. International Journal of Production Research, 61(12), 4102–4116. &#xA; https://doi.org/10.1080/00207543.2022.2042416&#xA; &#xA; " href="/article/10.1007/s10845-025-02578-5#ref-CR51" id="ref-link-section-d64739081e604">2022</a>).</p><p>For robotic assembly, the primary source for data extraction is typically CAD models, where there are widespread formats for the geometric representation of objects (Neb, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2019" title="Neb, A. (2019). Review on approaches to generate assembly sequences by extraction of Assembly features from 3D models. Procedia CIRP, 81, 856–861. &#xA; https://doi.org/10.1016/j.procir.2019.03.213&#xA; &#xA; " href="/article/10.1007/s10845-025-02578-5#ref-CR43" id="ref-link-section-d64739081e610">2019</a>; Thomas et al., <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2018" title="Thomas, G., Chien, M., Tamar, A., Ojea, J. A., &amp; Abbeel, P. (2018). Learning Robotic Assembly from CAD. 2018 IEEE International Conference on Robotics and Automation (ICRA). &#xA; https://doi.org/10.1109/icra.2018.8460696&#xA; &#xA; " href="/article/10.1007/s10845-025-02578-5#ref-CR61" id="ref-link-section-d64739081e613">2018</a>). CAD models are based on several common formats (e.g., STEP or IGES). There are CAD models at the part level and CAD models of an assembly, i.e., combining several parts into a product. The end condition of parts in an assembly can be identified in a CAD model and used to determine assembly planning constraints (Pane et al., <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2020" title="Pane, Y., Arbo, M. H., Aertbelien, E., &amp; Decre, W. (2020). A system architecture for CAD-based Robotic Assembly with sensor-based skills. IEEE Transactions on Automation Science and Engineering. &#xA; https://doi.org/10.1109/tase.2020.2980628&#xA; &#xA; " href="/article/10.1007/s10845-025-02578-5#ref-CR48" id="ref-link-section-d64739081e616">2020</a>).</p><p>CAD models do not encode deformable object characteristics (Fakhurldeen et al., <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2019" title="Fakhurldeen, H., Dailami, F., &amp; Pipe, A. G. (2019). Cara system architecture—a click and assemble robotic assembly system. In 2019 International conference on robotics and automation (ICRA). &#xA; https://doi.org/10.1109/icra.2019.8794114&#xA; &#xA; " href="/article/10.1007/s10845-025-02578-5#ref-CR16" id="ref-link-section-d64739081e622">2019</a>; Tariki et al., <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2020" title="Tariki, K., Kiyokawa, T., Nagatani, T., Takamatsu, J., &amp; Ogasawara, T. (2020). Generating complex assembly sequences from 3D CAD models considering insertion relations. Advanced Robotics, 35(6), 337–348. &#xA; https://doi.org/10.1080/01691864.2020.1863258&#xA; &#xA; " href="/article/10.1007/s10845-025-02578-5#ref-CR60" id="ref-link-section-d64739081e625">2020</a>). Therefore, information from additional documents must be incorporated for assembly with deformable objects. These include datasheets that describe part characteristics, e.g., degree of deformation and electrical ports indexes; Electrical schemes that describe required electrical wiring (for electrical parts); The bill of materials which describes the assembled materials (which may not be detailed in the CAD model); A job guide which textually describes how the assembly process is conducted. Unlike datasheets and CAD models, freely available on manufacturers’ or vendors’ websites, job guides are considered company-proprietary and are less accessible documents (Shneor &amp; Berman, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2023a" title="Shneor, R., &amp; Berman, S. (2023a). Towards production planning automation: mapping documents for robotic assembly planning with DLO. In The 27th International conference on production research, Cluj-Napoca, Romania, 23–28 July 2023." href="/article/10.1007/s10845-025-02578-5#ref-CR57" id="ref-link-section-d64739081e628">2023a</a>).</p><h3 class="c-article__sub-heading" id="Sec4">Process planning</h3><p>Planning collaboration between agents and reusing and adapting previously learned robotic skills can be facilitated by modelling the production process using hybrid automata models (Lee &amp; Seshia, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2017" title="Lee, E. A., &amp; Seshia, S. A. (2017). Introduction to embedded systems—a cyber-physical systems approach (2nd ed.). MIT." href="/article/10.1007/s10845-025-02578-5#ref-CR31" id="ref-link-section-d64739081e639">2017</a>). A hybrid automata model is a finite state machine with continuous variables whose values are described by a set of ordinary differential equations. Hybrid automata models are suitable for describing systems, e.g., robotic assembly systems, with timed and event-based transitions between continuous behaviours (Zhao et al., <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2023" title="Zhao, X., Zheng, L., Shi, M., Zhang, X., &amp; Zhang, Y. (2023). Unified modelling for continuous–discrete hybrid adaptive machining CPS of large thin-walled parts. International Journal of Production Research. &#xA; https://doi.org/10.1080/00207543.2023.2217304&#xA; &#xA; " href="/article/10.1007/s10845-025-02578-5#ref-CR77" id="ref-link-section-d64739081e642">2023</a>). Models can be combined serially or in parallel, synchronously, or asynchronously to construct the collaboration between agents, i.e., active production equipment, such as a robot and a controlled gripper. The hybrid automata models also facilitate the use of parameters for adding a level of generalization to the modelled systems (Southier et al., <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2022" title="Southier, L. F., Casanova, D., Barbosa, L., Torrico, C., Barbosa, M., &amp; Teixeira, M. (2022). Modelling and control of manufacturing systems subject to context recognition and switching. International Journal of Production Research, 61(10), 3396–3414. &#xA; https://doi.org/10.1080/00207543.2022.2081631&#xA; &#xA; " href="/article/10.1007/s10845-025-02578-5#ref-CR59" id="ref-link-section-d64739081e645">2022</a>). By replacing the ordinary differential equations model, deep neural networks can be seamlessly integrated with hybrid automata-based control architectures (e.g., through reinforcement learning methods). This capability is a major advantage of hybrid-automata models since deep neural networks are now commonly used for modelling and controlling complex continuous behaviours (Ying et al., <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2021" title="Ying, K. C., Pourhejazy, P., Cheng, C. Y., &amp; Cai, Z. Y. (2021). Deep learning-based optimization for motion planning of dual-ARM assembly robots. Computers &amp; Industrial Engineering, 160, 107603. &#xA; https://doi.org/10.1016/j.cie.2021.107603&#xA; &#xA; " href="/article/10.1007/s10845-025-02578-5#ref-CR75" id="ref-link-section-d64739081e648">2021</a>). An additional advantage of the use of hybrid automata is that it facilitates testing system behaviour at the modelling stage (Lee &amp; Seshia, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2017" title="Lee, E. A., &amp; Seshia, S. A. (2017). Introduction to embedded systems—a cyber-physical systems approach (2nd ed.). MIT." href="/article/10.1007/s10845-025-02578-5#ref-CR31" id="ref-link-section-d64739081e651">2017</a>).</p><p>An example of a complex assembly operation suitable for deep neural network hybrid automata is the peg-in-hole assembly, which is a widespread industrial operation. Robotic peg-in-hole assembly is complex due to force feedback, mechanical impedance, and compliance challenges stemming from setup or part dimension uncertainties. The peg-in-hole operation is even more complicated when deformable objects are involved. Deep reinforcement learning was used to learn an impedance controller for inserting a peg with plastic deformation based on a force and tactile sensor (Kozlovsky et al., <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2022" title="Kozlovsky, S., Newman, E., &amp; Zacksenhouse, M. (2022). Reinforcement learning of impedance policies for peg-in-hole tasks: Role of asymmetric matrices. IEEE Robotics and Automation Letters, 7(4), 10898–10905. &#xA; https://doi.org/10.1109/lra.2022.3191070&#xA; &#xA; " href="/article/10.1007/s10845-025-02578-5#ref-CR30" id="ref-link-section-d64739081e657">2022</a>). Such a learned controller can form a skill and be integrated within a hybrid automata model for robotic peg-in-hole insertion. The model may include additional skills for the initial peg positioning based on an image sensor and integration with a gripper agent with opening and closing skills.</p><p>The assembly sequence planning is a non-polynomial hard problem. Soft computing methods, e.g., genetic algorithms, are commonly used for assembly sequence planning (Abdullah et al., <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2018" title="Abdullah, M. A., Rashid, A., M. F., &amp; Ghazalli, Z. (2018). Optimization of assembly sequence planning using soft computing approaches: A review. Archives of Computational Methods in Engineering, 26(2), 461–474. &#xA; https://doi.org/10.1007/s11831-018-9250-y&#xA; &#xA; " href="/article/10.1007/s10845-025-02578-5#ref-CR1" id="ref-link-section-d64739081e663">2018</a>; Cancino et al., <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2017" title="Cancino, C., Merigó, J. M., Coronado, F., Dessouky, Y., &amp; Dessouky, M. (2017). Forty years of computers &amp; industrial engineering: A bibliometric analysis. Computers &amp; Industrial Engineering, 113, 614–629. &#xA; https://doi.org/10.1016/j.cie.2017.08.033&#xA; &#xA; " href="/article/10.1007/s10845-025-02578-5#ref-CR12" id="ref-link-section-d64739081e666">2017</a>; Jiménez, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2011" title="Jiménez, P. (2011). Survey on assembly sequencing: A combinatorial and geometrical perspective. Journal of Intelligent Manufacturing, 24(2), 235–250. &#xA; https://doi.org/10.1007/s10845-011-0578-5&#xA; &#xA; " href="/article/10.1007/s10845-025-02578-5#ref-CR26" id="ref-link-section-d64739081e669">2011</a>; Neumann et al., <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2023" title="Neumann, A., Hajji, A., Rekik, M., &amp; Pellerin, R. (2023). Genetic algorithms for planning and scheduling engineer-to-order production: A systematic review. International Journal of Production Research. &#xA; https://doi.org/10.1080/00207543.2023.2237122&#xA; &#xA; " href="/article/10.1007/s10845-025-02578-5#ref-CR44" id="ref-link-section-d64739081e672">2023</a>). Many studies have been conducted on automatic robotic assembly planning for rigid object assembly (Fakhurldeen et al., <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2019" title="Fakhurldeen, H., Dailami, F., &amp; Pipe, A. G. (2019). Cara system architecture—a click and assemble robotic assembly system. In 2019 International conference on robotics and automation (ICRA). &#xA; https://doi.org/10.1109/icra.2019.8794114&#xA; &#xA; " href="/article/10.1007/s10845-025-02578-5#ref-CR16" id="ref-link-section-d64739081e675">2019</a>; Rodríguez et al., <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2020" title="Rodríguez, I., Nottensteiner, K., Leidner, D., Durner, M., Stulp, F., &amp; Albu-Schaffer, A. (2020). Pattern recognition for knowledge transfer in Robotic Assembly sequence planning. IEEE Robotics and Automation Letters, 5(2), 3666–3673. &#xA; https://doi.org/10.1109/lra.2020.2979622&#xA; &#xA; " href="/article/10.1007/s10845-025-02578-5#ref-CR52" id="ref-link-section-d64739081e679">2020</a>; Tariki et al., <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2020" title="Tariki, K., Kiyokawa, T., Nagatani, T., Takamatsu, J., &amp; Ogasawara, T. (2020). Generating complex assembly sequences from 3D CAD models considering insertion relations. Advanced Robotics, 35(6), 337–348. &#xA; https://doi.org/10.1080/01691864.2020.1863258&#xA; &#xA; " href="/article/10.1007/s10845-025-02578-5#ref-CR60" id="ref-link-section-d64739081e682">2020</a>).</p><p>Deformable objects require intricate automatic assembly planning and execution due to low documentation standardization, potential object deformations, and the need for collaboration between manufacturing agents. Intricate planning is especially crucial for robotic production with minor human involvement on the production floor. A limited number of research projects on assembly sequence planning consider the challenges of assembly with deformable objects. However, products with deformable objects are common in real-world industrial assemblies. For example, deformable linear objects, e.g., wires for electrical conductivity, gaskets for sealing, or infusion tubes for fluid flow. Notable work on assembly with deformable objects includes contact state representation, e.g., vertex to face, edge to vertex, and transition between contact states (Acker &amp; Henrich, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2005" title="Acker, J., &amp; Henrich, D. (2005). Manipulation of deformable linear objects: From geometric model towards program generation. In Proceedings of the 2005 IEEE international conference on robotics and automation. &#xA; https://doi.org/10.1109/robot.2005.1570333&#xA; &#xA; " href="/article/10.1007/s10845-025-02578-5#ref-CR2" id="ref-link-section-d64739081e688">2005</a>). Another work applied greedy heuristics based on the geometric and mechanical properties of the parts (e.g., precedence relations) for determining the assembly sequence planning containing deformable objects (Masehian &amp; Ghandi, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2021" title="Masehian, E., &amp; Ghandi, S. (2021). Assembly sequence and path planning for monotone and nonmonotone assemblies with rigid and flexible parts. Robotics and Computer-Integrated Manufacturing, 72, 102180. &#xA; https://doi.org/10.1016/j.rcim.2021.102180&#xA; &#xA; " href="/article/10.1007/s10845-025-02578-5#ref-CR39" id="ref-link-section-d64739081e691">2021</a>). However, an end-to-end framework integrating data extraction from design documents, robotic assembly planning, and runtime execution, suitable for shop floor environments and real-world products is lacking.</p><h3 class="c-article__sub-heading" id="Sec5">Process execution</h3><p>Digital twins facilitate a virtual representation of a physical setup with the ability to perform motion planning, simulation-based predictions, stochastic dynamic evaluations, testing, and monitoring of robotic process sequences (Liu et al., <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2023" title="Liu, S., Zheng, P., &amp; Bao, J. (2023). Digital twin-based manufacturing system: A survey based on a novel reference model. Journal of Intelligent Manufacturing, 35(6), 2517–2546. &#xA; https://doi.org/10.1007/s10845-023-02172-7&#xA; &#xA; " href="/article/10.1007/s10845-025-02578-5#ref-CR36" id="ref-link-section-d64739081e702">2023</a>; Luo et al., <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2022" title="Luo, D., Thevenin, S., &amp; Dolgui, A. (2022). A state-of-the-art on Production Planning in Industry 4.0. International Journal of Production Research, 61(19), 6602–6632. &#xA; https://doi.org/10.1080/00207543.2022.2122622&#xA; &#xA; " href="/article/10.1007/s10845-025-02578-5#ref-CR38" id="ref-link-section-d64739081e705">2022</a>; Overbeck et al., <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2023" title="Overbeck, L., Graves, S. C., &amp; Lanza, G. (2023). Development and analysis of Digital Twins of Production systems. International Journal of Production Research. &#xA; https://doi.org/10.1080/00207543.2023.2242525&#xA; &#xA; " href="/article/10.1007/s10845-025-02578-5#ref-CR46" id="ref-link-section-d64739081e708">2023</a>). Digital twins have been applied for multiple domains, including fault diagnosis, sheet metal forming, supply chain, energy optimization, and operation management (Ivanov, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2023" title="Ivanov, D. (2023). Conceptualisation of a 7-element digital twin framework in supply chain and Operations Management. International Journal of Production Research. &#xA; https://doi.org/10.1080/00207543.2023.2217291&#xA; &#xA; " href="/article/10.1007/s10845-025-02578-5#ref-CR22" id="ref-link-section-d64739081e711">2023</a>; Modad et al., <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2024" title="Modad, O. A., Ryska, J., Chehade, A., &amp; Ayoub, G. (2024). Revolutionizing sheet metal stamping through industry 5.0 Digital Twins: A comprehensive review. Journal of Intelligent Manufacturing. &#xA; https://doi.org/10.1007/s10845-024-02453-9&#xA; &#xA; " href="/article/10.1007/s10845-025-02578-5#ref-CR41" id="ref-link-section-d64739081e714">2024</a>; Xia et al., <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2025" title="Xia, T., Sun, H., Ding, Y., Han, D., Qin, W., Seidelmann, J., &amp; Xi, L. (2025). Digital twin-based real-time energy optimization method for production line considering fault disturbances. Journal of Intelligent Manufacturing, 36(1), 569–593. &#xA; https://doi.org/10.1007/s10845-023-02219-9&#xA; &#xA; " href="/article/10.1007/s10845-025-02578-5#ref-CR73" id="ref-link-section-d64739081e718">2025</a>; Zhang et al., <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2024" title="Zhang, H., Wang, Z., Zhang, S., Qiu, L., Wang, Y., Xiang, F., Pan, Z., Zhu, L., &amp; Tan, J. (2024). Digital-triplet: A new three entities digital-twin paradigm for Equipment Fault diagnosis. Journal of Intelligent Manufacturing. &#xA; https://doi.org/10.1007/s10845-024-02471-7&#xA; &#xA; " href="/article/10.1007/s10845-025-02578-5#ref-CR76" id="ref-link-section-d64739081e721">2024</a>). The detailed motion planning capabilities of digital twins facilitate transforming paths planned as waypoints to dynamic robot trajectories for the specific robot module deployed and motion adaptation during process execution (Böttjer et al., <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2023" title="Böttjer, T., Tola, D., Kakavandi, F., Wewer, C. R., Ramanujan, D., Gomes, C., Larsen, P. G., &amp; Iosifidis, A. (2023). A review of unit level digital twin applications in the manufacturing industry. CIRP Journal of Manufacturing Science and Technology, 45, 162–189. &#xA; https://doi.org/10.1016/j.cirpj.2023.06.011&#xA; &#xA; " href="/article/10.1007/s10845-025-02578-5#ref-CR7" id="ref-link-section-d64739081e724">2023</a>; Overbeck et al., <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2023" title="Overbeck, L., Graves, S. C., &amp; Lanza, G. (2023). Development and analysis of Digital Twins of Production systems. International Journal of Production Research. &#xA; https://doi.org/10.1080/00207543.2023.2242525&#xA; &#xA; " href="/article/10.1007/s10845-025-02578-5#ref-CR46" id="ref-link-section-d64739081e727">2023</a>). Moreover, executing a robotic operation sequence with a digital twin before the physical process execution validates the sequence and ensures successful operation on a real-world shop floor during run-time.</p><p>Research efforts for developing industrial applications of robotic assembly of real-world products containing deformable objects concentrate on developing customized robot work cells for specific applications. For example, robotic systems with tactile and vision sensors and dedicated end-effectors were developed in the footwear industry, focusing on collaborative robots (Mezouar, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2021" title="Mezouar, Y. (2021). COMMANDIA (Collaborative RObotic Mobile MANipulation of Deformable objects in Industrial Applications). &#xA; http://commandia.unizar.es/&#xA; &#xA; " href="/article/10.1007/s10845-025-02578-5#ref-CR40" id="ref-link-section-d64739081e733">2021</a>) and in the electronics industry for cabling and wiring (Palli et al., <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2019" title="Palli, G., Pirozzi, S., Indovini, M., De Gregorio, D., Zanella, R., &amp; Melchiorri, C. (2019). Automatized switchgear wiring: An outline of the wires experiment results. In Springer tracts in advanced robotics (pp. 107–123). Springer. &#xA; https://doi.org/10.1007/978-3-030-22327-4_6&#xA; &#xA; " href="/article/10.1007/s10845-025-02578-5#ref-CR47" id="ref-link-section-d64739081e736">2019</a>). Existing commercial solutions for robotic wiring require relatively large space between parts, fixed orientation during assembly, and a low number of wires (Busi et al., <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2017" title="Busi, M., Cirillo, A., De Gregorio, D., Indovini, M., De Maria, G., Melchiorri, C., Natale, C., Palli, G., &amp; Pirozzi, S. (2017). The wires experiment: Tools and strategies for robotized switchgear cabling. Procedia Manufacturing, 11, 355–363. &#xA; https://doi.org/10.1016/j.promfg.2017.07.118&#xA; &#xA; " href="/article/10.1007/s10845-025-02578-5#ref-CR11" id="ref-link-section-d64739081e739">2017</a>).</p><h3 class="c-article__sub-heading" id="Sec6">Database</h3><p>In line with the data-driven concept, database structure is a central framework aspect since the stored data drives both process planning and execution. Constructing the database based on an established robotic process categorization is important to facilitate a comprehensive, coherent representation that is relevant to real-world production environments.</p><p>Classical categorizations of robotic hardware are based on robot characteristics and characteristics of various system elements, e.g., grippers, actuators, and sensors (Hazarika &amp; Dixit, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2018" title="Hazarika, S. M., &amp; Dixit, U. S. (2018). Robotics: History, trends, and future directions. In Introduction to mechanical engineering. Springer. &#xA; https://doi.org/10.1007/978-3-319-78488-5_7&#xA; &#xA; " href="/article/10.1007/s10845-025-02578-5#ref-CR20" id="ref-link-section-d64739081e754">2018</a>). Categorization was also specifically suggested for robotic manipulation of deformable objects, including attributes such as deformable object geometry (e.g., linear, surface, volumetric) or activity type (e.g., inserting, folding) (Jiménez, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2012" title="Jiménez, P. (2012). Survey on model-based manipulation planning of deformable objects. Robotics and Computer-Integrated Manufacturing, 28(2), 154–163. &#xA; https://doi.org/10.1016/j.rcim.2011.08.002&#xA; &#xA; " href="/article/10.1007/s10845-025-02578-5#ref-CR27" id="ref-link-section-d64739081e757">2012</a>; Sanchez et al., <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2018" title="Sanchez, J., Corrales, J. A., Bouzgarrou, B. C., &amp; Mezouar, Y. (2018). Robotic manipulation and sensing of deformable objects in domestic and industrial applications: A survey. The International Journal of Robotics Research, 37(7), 688–716. &#xA; https://doi.org/10.1177/0278364918779698&#xA; &#xA; " href="/article/10.1007/s10845-025-02578-5#ref-CR54" id="ref-link-section-d64739081e760">2018</a>; Trommnau et al., <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2020" title="Trommnau, J., Frommknecht, A., Siegert, J., Wößner, J., &amp; Bauernhansl, T. (2020). Design for Automatic Assembly: A new approach to classify limp components. Procedia CIRP, 91, 49–54. &#xA; https://doi.org/10.1016/j.procir.2020.01.136&#xA; &#xA; " href="/article/10.1007/s10845-025-02578-5#ref-CR63" id="ref-link-section-d64739081e763">2020</a>). However, for constructing a database that can encapsulate interactions between different process components, it is important that the categorization holistically considers all process components, including hardware, software, and processes-related attributes.</p><p>The Rαβγ categorization framework (Shneor &amp; Berman, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2022a" title="Shneor, R., &amp; Berman, S. (2022a). The Rαβγ categorisation framework for dexterous robotic Manufacturing processes. International Journal of Production Research. &#xA; https://doi.org/10.1080/00207543.2022.2150907&#xA; &#xA; " href="/article/10.1007/s10845-025-02578-5#ref-CR55" id="ref-link-section-d64739081e769">2022a</a>) is a holistic categorization for robotic manufacturing processes based on the classical α|β|γ scheduling classification (Graham et al., <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 1979" title="Graham, R. L., Lawler, E. L., Lenstra, J. K., &amp; Kan, A. H. G. R. (1979). Optimization and approximation in deterministic sequencing and scheduling: A survey. Annals of Discrete Mathematics. &#xA; https://doi.org/10.1016/s0167-5060(08)70356-x&#xA; &#xA; " href="/article/10.1007/s10845-025-02578-5#ref-CR19" id="ref-link-section-d64739081e772">1979</a>). The α|β|γ classification is widely applied to classify scheduling problems (Kayhan &amp; Yildiz, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2021" title="Kayhan, B. M., &amp; Yildiz, G. (2021). Reinforcement learning applications to machine scheduling problems: A comprehensive literature review. Journal of Intelligent Manufacturing, 34(3), 905–929. &#xA; https://doi.org/10.1007/s10845-021-01847-3&#xA; &#xA; " href="/article/10.1007/s10845-025-02578-5#ref-CR28" id="ref-link-section-d64739081e775">2021</a>; Wocker et al., <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2023" title="Wocker, M. M., Ostermeier, F. F., Wanninger, T., Zwinkau, R., &amp; Deuse, J. (2023). Flexible job shop scheduling with preventive maintenance consideration. Journal of Intelligent Manufacturing, 35(4), 1517–1539. &#xA; https://doi.org/10.1007/s10845-023-02114-3&#xA; &#xA; " href="/article/10.1007/s10845-025-02578-5#ref-CR72" id="ref-link-section-d64739081e778">2023</a>). Furthermore, the α|β|γ has been adopted for a range of additional fields, including genetic algorithms (Akgündüz &amp; Tunalı, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2011" title="Akgündüz, O. S., &amp; Tunalı, S. (2011). A review of the current applications of genetic algorithms in mixed-model assembly line sequencing. International Journal of Production Research, 49(15), 4483–4503. &#xA; https://doi.org/10.1080/00207543.2010.495085&#xA; &#xA; " href="/article/10.1007/s10845-025-02578-5#ref-CR3" id="ref-link-section-d64739081e781">2011</a>), sports timetabling (Van Bulck et al., <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2020" title="Van Bulck, D., Goossens, D., Schönberger, J., &amp; Guajardo, M. (2020). Robinx: A three-field classification and unified data format for round-robin sports timetabling. European Journal of Operational Research, 280(2), 568–580. &#xA; https://doi.org/10.1016/j.ejor.2019.07.023&#xA; &#xA; " href="/article/10.1007/s10845-025-02578-5#ref-CR67" id="ref-link-section-d64739081e785">2020</a>), and sharing economy (Boysen et al., <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2019" title="Boysen, N., Briskorn, D., &amp; Schwerdfeger, S. (2019). Matching supply and demand in a sharing economy: Classification, computational complexity, and application. European Journal of Operational Research, 278(2), 578–595. &#xA; https://doi.org/10.1016/j.ejor.2019.04.032&#xA; &#xA; " href="/article/10.1007/s10845-025-02578-5#ref-CR8" id="ref-link-section-d64739081e788">2019</a>). The Rαβγ categorization builds upon the α|β|γ three-field nomenclature with additional constructs from robotics, manufacturing, and deformable objects domains. The integration of manufacturing resources, process tasks, and measurements offered by the Rαβγ offers a structured data-based view that facilitates the automation of assembly planning based on process building blocks. Rαβγ establishes a taxonomy through a three-tiered structure, where tiers are characterized based on both qualitative meta-parameters and quantifiable characteristics. The following meta-parameters were applied as part of the Rαβγ: environment, industry, and measurements. The environment is where the work cell components (material and actor) operate. The environment is an important factor for understanding implementation’s implications, and for evaluating implementation feasibility, as the translation of research findings from controlled environment conditions (e.g., laboratory) to industrial manufacturing environments is challenging. The industry classification of industrial sectors facilitates the detection and analysis of domain-specific patterns, characterized by distinct operational requirements and specialized workflows. The measurements are essential for precision and reliability and enable analysis and improvement.</p><p>The Rαβγ categorization was demonstrated in descriptive scenarios such as shipbuilding welding or robotic competitions (Shneor &amp; Berman, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2022a" title="Shneor, R., &amp; Berman, S. (2022a). The Rαβγ categorisation framework for dexterous robotic Manufacturing processes. International Journal of Production Research. &#xA; https://doi.org/10.1080/00207543.2022.2150907&#xA; &#xA; " href="/article/10.1007/s10845-025-02578-5#ref-CR55" id="ref-link-section-d64739081e794">2022a</a>). The Rαβγ categorization can be used for defining different strategies to address uncertainties related to robotic manufacturing with deformable objects. Such strategies can be divided into three categories: reducing process uncertainty (e.g., by designated fixtures or dedicated robotic arms), reducing the susceptibility of the manufacturing system to uncertainty (e.g., by accurate simulation or advanced sequence planning), and perceiving and reacting to the dynamic changes related to the uncertainty (e.g., by advanced tactile sensors or perception based on vision sensors) (Shneor &amp; Berman, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2023b" title="Shneor, R., &amp; Berman, S. (2023b). Robotic Assembly with deformable objects. In Systems collaboration and integration (pp. 221–235). Springer. &#xA; https://doi.org/10.1007/978-3-031-44373-2_13&#xA; &#xA; " href="/article/10.1007/s10845-025-02578-5#ref-CR58" id="ref-link-section-d64739081e797">2023b</a>).</p><h3 class="c-article__sub-heading" id="Sec7">Robotic planning and executing frameworks</h3><p>Planning and execution frameworks developed to date (Table <a data-track="click" data-track-label="link" data-track-action="table anchor" href="/article/10.1007/s10845-025-02578-5#Tab1">1</a>) mainly target rigid object assembly in controlled environments (e.g., laboratory or simulation), typically with a single measure, without emphasis on assembly operation reuse, and with decentralized data storage for the assembly planning and execution modules. The indicators described in Table <a data-track="click" data-track-label="link" data-track-action="table anchor" href="/article/10.1007/s10845-025-02578-5#Tab1">1</a> are based on the meta-parameters of the Rαβγ categorization for robotic manufacturing processes (i.e., environment, industry, and measurement). Rodríguez et al. (<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2020" title="Rodríguez, I., Nottensteiner, K., Leidner, D., Durner, M., Stulp, F., &amp; Albu-Schaffer, A. (2020). Pattern recognition for knowledge transfer in Robotic Assembly sequence planning. IEEE Robotics and Automation Letters, 5(2), 3666–3673. &#xA; https://doi.org/10.1109/lra.2020.2979622&#xA; &#xA; " href="/article/10.1007/s10845-025-02578-5#ref-CR52" id="ref-link-section-d64739081e814">2020</a>) applied knowledge transfer for the robotic assembly sequence planner (KT-RASP) method using graph topology of parts, surfaces, and instances for comparison of a new product assembly to known topologies and deducing assembly rules and constraints. The method was demonstrated on a simple part (containing 3 perpendicular profiles and 2 angle brackets) with three-dimensional (3D) rigid parts. Fakhurldeen et al. (<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2019" title="Fakhurldeen, H., Dailami, F., &amp; Pipe, A. G. (2019). Cara system architecture—a click and assemble robotic assembly system. In 2019 International conference on robotics and automation (ICRA). &#xA; https://doi.org/10.1109/icra.2019.8794114&#xA; &#xA; " href="/article/10.1007/s10845-025-02578-5#ref-CR16" id="ref-link-section-d64739081e817">2019</a>) suggested a click-and-assemble robotic assembly (CARA) system by first generating assembly sequence plans, then producing a robotic assembly plan, and executing it. A CAD file input was disassembled to different parts and reversed to determine assembly sequences, i.e., assembly by disassembly. The technical demonstration was conducted with two products containing 4 parts and 2 subassemblies all with rigid parts. Tariki et al. (<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2020" title="Tariki, K., Kiyokawa, T., Nagatani, T., Takamatsu, J., &amp; Ogasawara, T. (2020). Generating complex assembly sequences from 3D CAD models considering insertion relations. Advanced Robotics, 35(6), 337–348. &#xA; https://doi.org/10.1080/01691864.2020.1863258&#xA; &#xA; " href="/article/10.1007/s10845-025-02578-5#ref-CR60" id="ref-link-section-d64739081e820">2020</a>) defined insertionable properties of parts for robotic assembly planning. The authors propose an insertion matrix derived from the assembly model, representing female and male parts, i.e., inserted parts and parts that are inserted into, respectively, in a product. They use a genetic algorithm to determine the assembly sequence plans and demonstrated it with three products containing 4, 5, and 32 3D rigid parts. Pane et al. (<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2020" title="Pane, Y., Arbo, M. H., Aertbelien, E., &amp; Decre, W. (2020). A system architecture for CAD-based Robotic Assembly with sensor-based skills. IEEE Transactions on Automation Science and Engineering. &#xA; https://doi.org/10.1109/tase.2020.2980628&#xA; &#xA; " href="/article/10.1007/s10845-025-02578-5#ref-CR48" id="ref-link-section-d64739081e824">2020</a>) suggest a three-layered system with separated databases for each layer for robotic assembly using CAD models to generate executable robot skills. The system maps CAD-level assembly specifications to executable robot skills by reasoning about the relationships between geometric primitives, assembly constraints, and robot motion constraints represented in a knowledge database structured as an ontology. The knowledge is used to infer the appropriate skills and parameters to execute both position-based and force-based assembly tasks. The authors found only one study presenting a framework of planning and execution robotic systems with deformable objects (Palli et al., <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2019" title="Palli, G., Pirozzi, S., Indovini, M., De Gregorio, D., Zanella, R., &amp; Melchiorri, C. (2019). Automatized switchgear wiring: An outline of the wires experiment results. In Springer tracts in advanced robotics (pp. 107–123). Springer. &#xA; https://doi.org/10.1007/978-3-030-22327-4_6&#xA; &#xA; " href="/article/10.1007/s10845-025-02578-5#ref-CR47" id="ref-link-section-d64739081e827">2019</a>). Palli et al. (<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2019" title="Palli, G., Pirozzi, S., Indovini, M., De Gregorio, D., Zanella, R., &amp; Melchiorri, C. (2019). Automatized switchgear wiring: An outline of the wires experiment results. In Springer tracts in advanced robotics (pp. 107–123). Springer. &#xA; https://doi.org/10.1007/978-3-030-22327-4_6&#xA; &#xA; " href="/article/10.1007/s10845-025-02578-5#ref-CR47" id="ref-link-section-d64739081e830">2019</a>) developed a framework for an industrial system suitable for switchgear manufacturing which includes wiring. The system extracts data from spreadsheets generated during the design process and switchgear CAD models to plan operation sequences. The robotic system applies sensor fusion of tactile and vision sensors, and a special end-effector suitable for deformable linear objects (the wires). Robotic switchgear production is very challenging and an important industrial application. However, the system is not planned from a generic view and the adaptability of the developed framework to additional applications of robotic manufacturing with deformable objects is not clear.</p><div class="c-article-table" data-test="inline-table" data-container-section="table" id="table-1"><figure><figcaption class="c-article-table__figcaption"><b id="Tab1" data-test="table-caption">Table 1 Literature comparison</b></figcaption><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="table-link" data-track="click" data-track-action="view table" data-track-label="button" rel="nofollow" href="/article/10.1007/s10845-025-02578-5/tables/1" aria-label="Full size table 1"><span>Full size table</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div></div></div></section><section data-title="Method"><div class="c-article-section" id="Sec8-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="Sec8">Method</h2><div class="c-article-section__content" id="Sec8-content"><p>The developed robotic assembly planning and execution framework has three modules (Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1007/s10845-025-02578-5#Fig1">1</a>): data extraction, process planning, and process execution. The modules are interconnected through a central database. The data extraction module retrieves required data from product design and manufacturing documents, determines interactions between parts, and computes required robotic end-point configurations at the part and assembly levels. The process planning module determines sequences of assembly operations (modelled as parametrized hybrid automata with collaborating agents) and calculates the required parameters. Process execution involves real-time production control by a digital twin or in a physical setup. The execution outcome is documented in the database for sequence testing, validation, and production monitoring.</p><p>Parametrized assembly operations, e.g., prepare wire for insertion (for several types of wire), insert pin (for a range of pin diameters) performed by collaboration between production actors e.g., a robotic arm and a gripper, are modelled, validated, and documented in the database a-priori. The model of assembly operations is based on a two-level abstraction of actor operation. At the lower level, parametrized skills model motion profiles, e.g., move to a position, close gripper. The operation of each production actor is modelled as a hybrid automata model of these robotic skills. At the higher level, collaboration between actors is modeled by combing the hybrid automata models in series or in parallel. The models and their combination are validated, e.g., by testing safety and liveliness, during their development. The parametrization and the documentation in the database facilitated operation reuse.</p><div class="c-article-section__figure js-c-reading-companion-figures-item" data-test="figure" data-container-section="figure" id="figure-1" data-title="Fig. 1"><figure><figcaption><b id="Fig1" class="c-article-section__figure-caption" data-test="figure-caption-text">Fig. 1</b></figcaption><div class="c-article-section__figure-content"><div class="c-article-section__figure-item"><a class="c-article-section__figure-link" data-test="img-link" data-track="click" data-track-label="image" data-track-action="view figure" href="/article/10.1007/s10845-025-02578-5/figures/1" rel="nofollow"><picture><source type="image/webp" srcset="//media.springernature.com/lw685/springer-static/image/art%3A10.1007%2Fs10845-025-02578-5/MediaObjects/10845_2025_2578_Fig1_HTML.png?as=webp"><img aria-describedby="Fig1" src="//media.springernature.com/lw685/springer-static/image/art%3A10.1007%2Fs10845-025-02578-5/MediaObjects/10845_2025_2578_Fig1_HTML.png" alt="figure 1" loading="lazy" width="685" height="373"></picture></a></div><div class="c-article-section__figure-description" data-test="bottom-caption" id="figure-1-desc"><p>A framework for planning and execution of robotic assembly processes with deformable objects</p></div></div><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="article-link" data-track="click" data-track-label="button" data-track-action="view figure" href="/article/10.1007/s10845-025-02578-5/figures/1" data-track-dest="link:Figure1 Full size image" aria-label="Full size image figure 1" rel="nofollow"><span>Full size image</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div><h3 class="c-article__sub-heading" id="Sec9">Rαβγ database</h3><p>The Rαβγ categorization was adapted into an ontology to form a relational database suitable for driving robotic assembly planning and execution (Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1007/s10845-025-02578-5#Fig2">2</a>). The Rαβγ categorization tiers and categories are translated into tables, as well as the relationships between them.</p><p>The workcell (α) data tables are divided into the actor (production agents) and the material categories. The actor category tables document the actor description with skills the actor possesses, e.g., moving to a target or inserting a peg. In addition, actors required to assemble a product are documented in the workstation table. The material category tables document part and product data such as the part’s type, the product’s industry domain, and their parameters (e.g., size, deformation). Interactions include geometric, physical, and manufacturing attributes (Shneor &amp; Berman, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2022b" title="Shneor, R., &amp; Berman, S. (2022b). Assembly sequence planning with deformable linear objects in the smart factory: Dilemmas and injections. IFAC-PapersOnLine, 55(10), 2457–2462. &#xA; https://doi.org/10.1016/j.ifacol.2022.10.077&#xA; &#xA; " href="/article/10.1007/s10845-025-02578-5#ref-CR56" id="ref-link-section-d64739081e1171">2022b</a>). Interactions during the assembly process are documented in the interaction table. Each interaction is defined by an interaction identifier, connection type (e.g., peg-in-hole), participating parts, and interaction constraints, e.g., priority constraints define priority with respect to other interactions. An example of a priority interaction for a medical infusion kit product is: {‘id’: 6, ‘connection_type’: ‘glue’, ‘materials’: [‘hose_1’, ‘nozzle_1’], ‘priority’: [5]}. This interaction demonstrates a connection type of glue between a hose and a nozzle, where the constraint for this interaction is a priority constraint.</p><p>The task (β) data tables are divided into the manipulation and production categories. Manipulation category tables document low-level robotic skills that encompass parametrization (e.g., locations, forces) for each actor. The production category tables document high-level assembly operations, which encompass production-based knowledge based on hybrid automata state machines. An assembly operation may consist of several robotic skills and material types. The assembly operations are constructed as generic to allow reuse in different applications while maintaining an accurate definition of essential operation features. Accordingly, assembly operations are defined for material types (materials family) and not for a specific material (for example, material type hose with a diameter of 10 mm) and a group of actors. The connection between an assembly operation and a skill is made via the collaborating actors and their parameters. Assembly operations are performed by actors, where the actor’s activity in the assembly operation is defined by a hybrid automata model of skills. The actor models of the robotic skills are combined, forming the assembly operation. The assembly sequences and execution order are documented in the assembly sequences table. The objective (γ) tables document objective measurement data, such as measure type (e.g., speed) for assembly operations.</p> <div class="c-article-section__figure js-c-reading-companion-figures-item" data-test="figure" data-container-section="figure" id="figure-2" data-title="Fig. 2"><figure><figcaption><b id="Fig2" class="c-article-section__figure-caption" data-test="figure-caption-text">Fig. 2</b></figcaption><div class="c-article-section__figure-content"><div class="c-article-section__figure-item"><a class="c-article-section__figure-link" data-test="img-link" data-track="click" data-track-label="image" data-track-action="view figure" href="/article/10.1007/s10845-025-02578-5/figures/2" rel="nofollow"><picture><source type="image/webp" srcset="//media.springernature.com/lw685/springer-static/image/art%3A10.1007%2Fs10845-025-02578-5/MediaObjects/10845_2025_2578_Fig2_HTML.png?as=webp"><img aria-describedby="Fig2" src="//media.springernature.com/lw685/springer-static/image/art%3A10.1007%2Fs10845-025-02578-5/MediaObjects/10845_2025_2578_Fig2_HTML.png" alt="figure 2" loading="lazy" width="685" height="395"></picture></a></div><div class="c-article-section__figure-description" data-test="bottom-caption" id="figure-2-desc"><p>Rαβγ database, main tables, and connections (partial) between them</p></div></div><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="article-link" data-track="click" data-track-label="button" data-track-action="view figure" href="/article/10.1007/s10845-025-02578-5/figures/2" data-track-dest="link:Figure2 Full size image" aria-label="Full size image figure 2" rel="nofollow"><span>Full size image</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div><h3 class="c-article__sub-heading" id="Sec10">Data extraction</h3><p>Data is automatically extracted from a CAD model and the electric scheme where relevant. Additional data is integrated through a structured user interface that guides the user in retrieving required data from the job guide and datasheets, e.g., port indexes and distance between ports. The extraction methods were fully developed for peg-in-hole interactions. Inserting a peg into a hole is a very common interaction in industrial assembly processes and, in many cases, involves deformable objects (Jiang et al., <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2022" title="Jiang, Y., Huang, Z., Yang, B., &amp; Yang, W. (2022). A review of Robotic Assembly Strategies for the full operation procedure: Planning, execution and evaluation. Robotics and Computer-Integrated Manufacturing, 78, 102366. &#xA; https://doi.org/10.1016/j.rcim.2022.102366&#xA; &#xA; " href="/article/10.1007/s10845-025-02578-5#ref-CR25" id="ref-link-section-d64739081e1205">2022</a>; Panzer &amp; Bender, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2021" title="Panzer, M., &amp; Bender, B. (2021). Deep reinforcement learning in production systems: A systematic literature review. International Journal of Production Research, 60(13), 4316–4341. &#xA; https://doi.org/10.1080/00207543.2021.1973138&#xA; &#xA; " href="/article/10.1007/s10845-025-02578-5#ref-CR49" id="ref-link-section-d64739081e1208">2021</a>).</p><p>Critical landmarks for the peg-in-hole interaction are identified in the data extraction module (see Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1007/s10845-025-02578-5#Fig1">1</a>) in two sub-modules, part level and assembly level. At the part level, cylindrical holes frequently found in industry (Jiang et al., <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2020" title="Jiang, J., Huang, Z., Bi, Z., Ma, X., &amp; Yu, G. (2020). State-of-the-art control strategies for robotic PIH Assembly. Robotics and Computer-Integrated Manufacturing, 65, 101894. &#xA; https://doi.org/10.1016/j.rcim.2019.101894&#xA; &#xA; " href="/article/10.1007/s10845-025-02578-5#ref-CR24" id="ref-link-section-d64739081e1217">2020</a>) are automatically identified. A first hole is defined as a point of reference to other identified characteristics. First hole identification can be based on geometric topologies calculations of closed wires on surfaces, and the intersection of auxiliary lines with the closed wires. For deformable objects, additional information (e.g., holes indexing, type of insertion) is extracted from relevant manufacturing documents (e.g., datasheets, job guides).</p><p>For each hole relevant to a peg-in-hole interaction, three configurations are defined for the robotic wrist: Mate, Free, and Safe. Mate is the wrist configuration at the end of the insertion operation (i.e., peg-in-hole). Free is the wrist configuration just before the onset of the insertion operation. Safe is the wrist configuration near the insertion point, in which no collisions are expected. The robot can use a free motion skill to reach the Safe configuration, where preparatory skills may be used, e.g., exposing a wire. An insertion skill is used between the Free and Safe configurations. The Mate configuration is found based on the CAD model and part datasheet. The relative distances between the Mate, Free, and Safe configurations are parametrized. The configurations are defined in both part and assembly coordinates to facilitate position adaptation with respect to the part. At the assembly level, parts can be positioned in different configurations thus requiring coordinate transformations. Notation and pseudocodes for the part and product calculations of Mate, Free, and Safe configurations based on rotation and transformation matrices are described in Appendix <a data-track="click" data-track-label="link" data-track-action="section anchor" href="/article/10.1007/s10845-025-02578-5#Sec21">A</a>.</p><h3 class="c-article__sub-heading" id="Sec11">Process planning</h3><p>The process planning module (Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1007/s10845-025-02578-5#Fig1">1</a>) contains two sub-modules: sequence planning and sequence parameter calculation. Sequence planning is based on the heuristic generation of feasible sequences of assembly operations and the selection of a subset of the highest-performing sequences (Ben-David et al., <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2021" title="Ben-David, S., Shneor, R., Zuler, S., Mann, Z., Greenberg, A., &amp; Berman, S. (2021). Simulation-based two stage sequencing of robotic assembly operations with deformable objects. IFAC-PapersOnLine, 54(1), 175–180. &#xA; https://doi.org/10.1016/j.ifacol.2021.08.020&#xA; &#xA; " href="/article/10.1007/s10845-025-02578-5#ref-CR4" id="ref-link-section-d64739081e1238">2021</a>). The subset of highest performing sequences is later tested and validated by the process execution module with the digital twin. Prior to execution, required parameters are computed for each assembly operation in the sequence. The sequences and the computed parameters are stored in the Rαβγ database.</p><p>The heuristic sequence generation is conducted using a genetic algorithm, where each assembly operation is considered a “gene,” and their sequence constitutes a “chromosome,” which codes a possible solution to the sequencing problem. The algorithm is initiated by generating an initial population of sequences of assembly operations selected from the database according to product and station characteristics, e.g., object material, production equipment, and interaction types (Ben-David &amp; Berman, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2023" title="Ben-David, S., &amp; Berman, S. (2023). A multi-objective fitness function for sequencing robotic assembly operations with deformable objects using a genetic algorithm with constraint satisfaction. In Intelligent and transformative production in pandemic times. Lecture notes in production engineering (pp. 175–185). Springer. &#xA; https://doi.org/10.1007/978-palli3-031-18641-7_17&#xA; &#xA; " href="/article/10.1007/s10845-025-02578-5#ref-CR5" id="ref-link-section-d64739081e1244">2023</a>). Starting from the initial population, at each iteration of the genetic algorithm, new possible sequences are generated using mutation and crossover operators, and the feasibility of a sequence is verified by checking if it includes all the parts in the product and if it adheres to all the assembly constraints. The performance of the feasible sequences is assessed using a fitness function, and the best-performing subset of sequences is retained for the next iteration.</p><p>The characteristics of the initial population largely affect both genetic algorithm convergence speed and, therefore, the quality of the attained solution (Lin &amp; Gen, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2018" title="Lin, L., &amp; Gen, M. (2018). Hybrid evolutionary optimisation with learning for production scheduling: State-of-the-art survey on algorithms and applications. International Journal of Production Research, 56(1–2), 193–223. &#xA; https://doi.org/10.1080/00207543.2018.1437288&#xA; &#xA; " href="/article/10.1007/s10845-025-02578-5#ref-CR35" id="ref-link-section-d64739081e1250">2018</a>). Constraint satisfaction solution methods can assist in expediting the generation of feasible sequences for the initial population (Zouita et al., <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2019" title="Zouita, M., Bouamama, S., &amp; Barkaoui, K. (2019). Improving genetic algorithm using arc consistency technic. Procedia Computer Science, 159, 1387–1396. &#xA; https://doi.org/10.1016/j.procs.2019.09.309&#xA; &#xA; " href="/article/10.1007/s10845-025-02578-5#ref-CR79" id="ref-link-section-d64739081e1253">2019</a>). Arc consistency is a constraint satisfaction solution method suitable for handling binary constraints, e.g., operation priority or proximity constraints, commonly applied in assembly operation sequencing problems. The arc consistency3 (AC3) algorithm balances simplicity with efficiency, maintaining a relatively small number of data structures when performing the solution search (Li, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2017" title="Li, H. (2017). Narrowing support searching range in maintaining arc consistency for solving constraint satisfaction problems. Ieee Access : Practical Innovations, Open Solutions, 5, 5798–5803. &#xA; https://doi.org/10.1109/access.2017.2690672&#xA; &#xA; " href="/article/10.1007/s10845-025-02578-5#ref-CR32" id="ref-link-section-d64739081e1256">2017</a>; Zouita et al., <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2019" title="Zouita, M., Bouamama, S., &amp; Barkaoui, K. (2019). Improving genetic algorithm using arc consistency technic. Procedia Computer Science, 159, 1387–1396. &#xA; https://doi.org/10.1016/j.procs.2019.09.309&#xA; &#xA; " href="/article/10.1007/s10845-025-02578-5#ref-CR79" id="ref-link-section-d64739081e1259">2019</a>). Therefore, in the current work, the initial population is generated using AC3, where a lower bound for the number of required assembly operations in all sequences is determined based on the number of parts in the product (Ben-David &amp; Berman, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2023" title="Ben-David, S., &amp; Berman, S. (2023). A multi-objective fitness function for sequencing robotic assembly operations with deformable objects using a genetic algorithm with constraint satisfaction. In Intelligent and transformative production in pandemic times. Lecture notes in production engineering (pp. 175–185). Springer. &#xA; https://doi.org/10.1007/978-palli3-031-18641-7_17&#xA; &#xA; " href="/article/10.1007/s10845-025-02578-5#ref-CR5" id="ref-link-section-d64739081e1262">2023</a>).</p><p>The population size, which refers to the number of potential assembly sequences evaluated in each iteration of the genetic algorithm, is a significant factor impacting complexity. As population size grows, computational complexity increases, potentially leading to longer runtimes. Population growth can result in significantly higher computation time, demanding substantial computing resources (Pyrih et al., <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2024" title="Pyrih, Y., Klymash, M., Kaidan, M., Hordiichuk-Bublivska, O., &amp; Nodzhak, L. (2024). Investigating the computational complexity of the genetic algorithm with variations in population size and the number of generations. In 2024 IEEE 17th International Conference on Advanced Trends in Radioelectronics Telecommunications and Computer Engineering (TCSET) (Vol. 1, pp. 1–4). &#xA; https://doi.org/10.1109/tcset64720.2024.10755729&#xA; &#xA; " href="/article/10.1007/s10845-025-02578-5#ref-CR50" id="ref-link-section-d64739081e1268">2024</a>). Adding constraint satisfaction requirements (e.g., using AC3) to the generation process of the initial population assists in reducing the number of required iterations. Although this adds computational complexity to the initial population generation stage it is typically worthwhile since the AC3 algorithm exhibits polynomial time complexity (Dechter &amp; Pearl, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 1987" title="Dechter, R., &amp; Pearl, J. (1987). Network-based heuristics for constraint-satisfaction problems. Artificial Intelligence, 34(1), 1–38. &#xA; https://doi.org/10.1016/0004-3702(87)90002-6&#xA; &#xA; " href="/article/10.1007/s10845-025-02578-5#ref-CR14" id="ref-link-section-d64739081e1271">1987</a>).</p><p>Weighing the resemblance to an existing successful sequence can assist in establishing high-quality sequences. A known method for assessing the resemblance between sequences is the longest common subsequence (LCS). LCS is a heuristic that examines the relative order of operations of two sequences, looking for the longest series of common operations without mandating a consecutive appearance of operations (Goyal et al., <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2013" title="Goyal, K. K., Jain, P. K., &amp; Jain, M. (2013). A comprehensive approach to operation sequence similarity based part family formation in the reconfigurable Manufacturing System. International Journal of Production Research, 51(6), 1762–1776. &#xA; https://doi.org/10.1080/00207543.2012.701771&#xA; &#xA; " href="/article/10.1007/s10845-025-02578-5#ref-CR18" id="ref-link-section-d64739081e1278">2013</a>). This means that for the subsequence identified, the same operations are executed with the same precedence relations. LCS reflects precedence relations between operations, which are common production constraints. Therefore, using the score for LCS can improve the production quality of the found sequence. To enhance efficiency and quality, a multi-objective fitness function incorporating LCS and estimated sequence duration was employed (Ben-David &amp; Berman, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2023" title="Ben-David, S., &amp; Berman, S. (2023). A multi-objective fitness function for sequencing robotic assembly operations with deformable objects using a genetic algorithm with constraint satisfaction. In Intelligent and transformative production in pandemic times. Lecture notes in production engineering (pp. 175–185). Springer. &#xA; https://doi.org/10.1007/978-palli3-031-18641-7_17&#xA; &#xA; " href="/article/10.1007/s10845-025-02578-5#ref-CR5" id="ref-link-section-d64739081e1281">2023</a>). The projected duration for each assembly operation was derived from estimations provided by industry experts, considering the industry sector and its associated product type. After the generation of assembly sequences, pertinent parameters are computed for each sequence selected. The parameters include operational parameter values, e.g., the specific gripper opening required, and waypoint configurations required between and within operations, i.e., forming a robotic motion path.</p><h3 class="c-article__sub-heading" id="Sec12">Process execution</h3><p>The process execution module comprises three sub-modules (Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1007/s10845-025-02578-5#Fig1">1</a>): Mission control, a digital twin, and a physical controller. Mission control connects the central database and the digital twin or the physical robot controller, and through this connection, it controls and facilitates high-level visualization of the assembly operation sequence performed. The digital twin is based on the physical simulation model of the production process environment. The physical controller controls the operations in the physical environment.</p><p>The Mission control sub-module controls and validates execution at the assembly sequence level. Mission control interacts with the digital twin and the physical controller, the Rαβγ database, and the human operator. Based on the data in the Rαβγ database, the user can view available sequences for producing a product and their past performance. Process metrics include operation duration, collisions, near misses (when the robot is closer than a predefined distance), etc. The user can select a sequence for production and target production environment (physical, virtual, or both). After execution is initiated Mission control sends operations, and their parameters sequentially based on the selected sequence to the target controllers. Each operation is sent after the target controllers return process indicators regarding the previous operation. The process indicators are stored in the Rαβγ database. The sequence execution stage is graphically presented to the user during production. In case of failure, e.g., collision production is halted.</p><p>The environment and production agents and operations are modelled with a digital twin software. The operations programmed in the digital twin are manifestations of the parametrized hybrid automata models. The operations in the sequence planned by the process planning module can be interpreted by the controller and transformed into physical and dynamic processes. This transformation involves transforming endpoint configurations to robot joint configurations, generation of motor control signals based on required motion profiles (e.g., jointed, linear, circular), and coordination of inputs and outputs (e.g., transducers and optical sensors) to ensure precise and synchronized assembly. The digital twin software includes an integrated virtual controller that mirrors the functionality of the physical counterparts in the work cell. When the digital twin receives an operation and parameters from the Mission control, it executes the programmed operation using the virtual controller. Upon successful execution of the program by the digital twin, and following validation of process metrics (e.g., operation duration, collisions), Mission control proceeds to transmit identical configuration settings, operations, and parameters to the physical controller. The physical control manages the physical hardware components of the robotic system, encompassing input and output components, actuators, and the robotic platform itself. Sensors within the physical setup measure and give feedback to the physical controller regarding the process advancement and changes in the execution (e.g., object deformation). Using this setup, learned hybrid automata, e.g., impedance-controlled deformable peg insertion demonstrated zero-shot policy transfer to the physical controller (Kozlovsky et al., <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2022" title="Kozlovsky, S., Newman, E., &amp; Zacksenhouse, M. (2022). Reinforcement learning of impedance policies for peg-in-hole tasks: Role of asymmetric matrices. IEEE Robotics and Automation Letters, 7(4), 10898–10905. &#xA; https://doi.org/10.1109/lra.2022.3191070&#xA; &#xA; " href="/article/10.1007/s10845-025-02578-5#ref-CR30" id="ref-link-section-d64739081e1301">2022</a>).</p></div></div></section><section data-title="Case study"><div class="c-article-section" id="Sec13-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="Sec13">Case study</h2><div class="c-article-section__content" id="Sec13-content"><p>The Rαβγ assembly planning and execution framework was tested using a case study approach. The case studies chosen are of actual industrial products or very close prototypes. Such a case-study approach facilitates an examination of the suitability of the concepts upon which the method was developed for the targeted assembly processes with deformable objects. The main difficulty in the developed framework is the integration of all the different components. The case study approach is a common method for examining integration capabilities (Goujon et al., <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2024" title="Goujon, A., Rosin, F., Magnani, F., Lamouri, S., Pellerin, R., &amp; Joblot, L. (2024). Industry 5.0 use cases development framework. International Journal of Production Research. &#xA; https://doi.org/10.1080/00207543.2024.2307505&#xA; &#xA; " href="/article/10.1007/s10845-025-02578-5#ref-CR17" id="ref-link-section-d64739081e1313">2024</a>). The case studies selected contained rigid and linear deformable objects from two industry sectors: electrical and medical. These industries were selected as representative industries for products with and without electronic components. The final demonstration was conducted at the shop floor level of a small local factory and operated by production personnel.</p><h3 class="c-article__sub-heading" id="Sec14">Environment</h3><p>The Rαβγ database was built using MySQL Workbench version 8.0.21 with a cloud-based Amazon Web Services (AWS) environment. Input contained the following manufacturing documents: each part’s CAD model and datasheet, an electric scheme for electrical parts, CAD models of the assemblies, and job guides. The user interface and geometric computations were performed in MATLAB R2022a, 64-bit version. Automatic data extraction from CAD models and process planning was implemented using PythonOCC (Tpaviot, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2008" title="Tpaviot, T. (2008). Tpaviot/PYTHONOCC-core: Python package for 3D CAD/BIM/PLM/Cam. GitHub. &#xA; https://github.com/tpaviot/pythonocc-core&#xA; &#xA; " href="/article/10.1007/s10845-025-02578-5#ref-CR62" id="ref-link-section-d64739081e1323">2008</a>) and Python 3.8 with PyCharm (JetBrains, The Netherlands) environment. Mission control and the digital twin were programmed with Tecnomatix Process Simulate<sup><a href="#Fn1"><span class="u-visually-hidden">Footnote </span>1</a></sup> version 16.1.2 (Siemens, Germany). The deformable linear objects were modelled using the Kineo Flexible Cables module (Siemens, Germany), a physics-based solver for configurations and deformations in response to machine motions. Motion planning is performed using the digital twin toolset, facilitating software commissioning directly to the robot’s controller. The physical robotic work cell was implemented on a single UR5e with Intel@RealSense LIDAR Camera L515 for reorientation and path replanning. A designated end-effector was developed with force sensors on the fingers to manipulate deformable linear objects. The end-effector has an integrated mechanism to strip and cut the electric wire. The operating system for the robot and motion controller was Ubuntu 20.04.5 LTS, running on an Intel Core i7-8559U 2.70 GHz processor with 8GB RAM. The operating system for the vision system was Windows 10 64-bit, running on an Intel Core i9-10900X, up to 4.50 GHz processor with 64GB RAM.</p><h3 class="c-article__sub-heading" id="Sec15">Products</h3><p>The assemblies contained commercial components with rigid parts and deformable linear objects. Three case studies were presented and are described in Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1007/s10845-025-02578-5#Fig3">3</a> (photos and CAD models). All three case studies contained peg-in-hole connections. Two from the electrical industry and one from the medical sector. The products were developed by commercial manufacturers. The electrical case studies are based on an actual product manufactured by a lighting company<sup><a href="#Fn2"><span class="u-visually-hidden">Footnote </span>2</a></sup> that was adopted to exemplify the methodology. Therefore, the assemblies closely model real-world products. The two electrical assemblies are smart light boards with 3D rigid parts and a wire with plastic deformation. The medical assembly is a medical infusion kit developed by a commercial manufacturer<sup><a href="#Fn3"><span class="u-visually-hidden">Footnote </span>3</a></sup> with a deformable tube with elastic deformation and two connectors. A reduced light board (Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1007/s10845-025-02578-5#Fig3">3</a>a) contained a terminal block, a 60 W driver, and three 3 mm wires connecting the terminal and driver ports. An extended light board (Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1007/s10845-025-02578-5#Fig3">3</a>b) contained a terminal block, a 60 W driver in a different orientation from the reduced light board, a 75 W driver, and three 3 mm wires connecting the terminal ports and the 75 W driver ports and two 3 mm wires connecting between the 75 W driver ports and the 60 W driver ports. A medical infusion kit (Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1007/s10845-025-02578-5#Fig3">3</a>c) contained an 8 mm tube with elastic deformation and two funnel connectors with elastic deformation. The tube is dipped into a solvent container and inserted into the funnels.</p><p>The reduced and extended light boards include wires which are relatively light deformable objects characterized by plastic deformations. For this case the strategy of reducing process uncertainty was applied (Shneor &amp; Berman, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2023b" title="Shneor, R., &amp; Berman, S. (2023b). Robotic Assembly with deformable objects. In Systems collaboration and integration (pp. 221–235). Springer. &#xA; https://doi.org/10.1007/978-3-031-44373-2_13&#xA; &#xA; " href="/article/10.1007/s10845-025-02578-5#ref-CR58" id="ref-link-section-d64739081e1386">2023b</a>). Process uncertainty was reduced using an advanced end-effector with an integrated wire cutting and exposing mechanism through which wire flows directly from a connected wire drum. The deformable object in the medical infusion kit, the flow tube is heavier than the wires and it is characterized by elastic deformations. In this case, the strategy of reducing the susceptibility of the manufacturing system to uncertainty was applied. This was achieved by taking the elastic deformations into account during dynamic motion planning. The Kineo Flexible Cables commercial package embedded in the digital twin was used to model the tube and integrate the deformations with dynamic motion planning.</p> <div class="c-article-section__figure js-c-reading-companion-figures-item" data-test="figure" data-container-section="figure" id="figure-3" data-title="Fig. 3"><figure><figcaption><b id="Fig3" class="c-article-section__figure-caption" data-test="figure-caption-text">Fig. 3</b></figcaption><div class="c-article-section__figure-content"><div class="c-article-section__figure-item"><a class="c-article-section__figure-link" data-test="img-link" data-track="click" data-track-label="image" data-track-action="view figure" href="/article/10.1007/s10845-025-02578-5/figures/3" rel="nofollow"><picture><source type="image/webp" srcset="//media.springernature.com/lw685/springer-static/image/art%3A10.1007%2Fs10845-025-02578-5/MediaObjects/10845_2025_2578_Fig3_HTML.png?as=webp"><img aria-describedby="Fig3" src="//media.springernature.com/lw685/springer-static/image/art%3A10.1007%2Fs10845-025-02578-5/MediaObjects/10845_2025_2578_Fig3_HTML.png" alt="figure 3" loading="lazy" width="685" height="633"></picture></a></div><div class="c-article-section__figure-description" data-test="bottom-caption" id="figure-3-desc"><p>Case studies’ photos (left) and 3D models (right): reduced light board (<b>a</b>), extended light board (<b>b</b>), and medical infusion kit (<b>c</b>)</p></div></div><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="article-link" data-track="click" data-track-label="button" data-track-action="view figure" href="/article/10.1007/s10845-025-02578-5/figures/3" data-track-dest="link:Figure3 Full size image" aria-label="Full size image figure 3" rel="nofollow"><span>Full size image</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div><h3 class="c-article__sub-heading" id="Sec16">Data extraction</h3><p>Data from CAD models and the electric schemes were extracted automatically using the PythonOCC library. The holes in the CAD models were automatically identified by calculating close wires on surfaces that intersected an auxiliary line. The robotic wrist configurations (position and orientation) were derived based on the CAD files, where orientations were represented using quaternions. The Mate, Free, and Safe configuration of holes in the assembly coordinate systems were calculated based on the part configuration in the CAD assembly model.</p><p>A user interface was developed for data based on datasheets and the job guide for parts with indexing and parameters such as distance between cylinders or cylinders indexing (Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1007/s10845-025-02578-5#Fig4">4</a>a). Parameters at the part level (e.g., the total number of ports) and the assembled product level (e.g., wrist safe distance) were adapted to data easily deductible from part datasheets, e.g., the distance between ports and first and last port index. For the assembly level, the parts include relevant robotic cell parameters such as wrist safety distances (Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1007/s10845-025-02578-5#Fig4">4</a>b). The configuration data automatically extracted can be recalled from the database and presented to the user, with editing capabilities.</p> <div class="c-article-section__figure js-c-reading-companion-figures-item" data-test="figure" data-container-section="figure" id="figure-4" data-title="Fig. 4"><figure><figcaption><b id="Fig4" class="c-article-section__figure-caption" data-test="figure-caption-text">Fig. 4</b></figcaption><div class="c-article-section__figure-content"><div class="c-article-section__figure-item"><a class="c-article-section__figure-link" data-test="img-link" data-track="click" data-track-label="image" data-track-action="view figure" href="/article/10.1007/s10845-025-02578-5/figures/4" rel="nofollow"><picture><source type="image/webp" srcset="//media.springernature.com/lw685/springer-static/image/art%3A10.1007%2Fs10845-025-02578-5/MediaObjects/10845_2025_2578_Fig4_HTML.png?as=webp"><img aria-describedby="Fig4" src="//media.springernature.com/lw685/springer-static/image/art%3A10.1007%2Fs10845-025-02578-5/MediaObjects/10845_2025_2578_Fig4_HTML.png" alt="figure 4" loading="lazy" width="685" height="639"></picture></a></div><div class="c-article-section__figure-description" data-test="bottom-caption" id="figure-4-desc"><p>User interface screens, part level (<b>a</b>) and assembly level (<b>b</b>)</p></div></div><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="article-link" data-track="click" data-track-label="button" data-track-action="view figure" href="/article/10.1007/s10845-025-02578-5/figures/4" data-track-dest="link:Figure4 Full size image" aria-label="Full size image figure 4" rel="nofollow"><span>Full size image</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div><h3 class="c-article__sub-heading" id="Sec17">Process planning</h3><p>The actors modeled include: a robotic arm, a wire feeder, and a gripper. Hybrid automata models were developed for each actor and composed to describe assembly operations relevant for all three use cases. Overall, 61 assembly operations were modeled. As an example, the “prepare wire” operation is depicted in Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1007/s10845-025-02578-5#Fig5">5</a>.</p> <div class="c-article-section__figure js-c-reading-companion-figures-item" data-test="figure" data-container-section="figure" id="figure-5" data-title="Fig. 5"><figure><figcaption><b id="Fig5" class="c-article-section__figure-caption" data-test="figure-caption-text">Fig. 5</b></figcaption><div class="c-article-section__figure-content"><div class="c-article-section__figure-item"><a class="c-article-section__figure-link" data-test="img-link" data-track="click" data-track-label="image" data-track-action="view figure" href="/article/10.1007/s10845-025-02578-5/figures/5" rel="nofollow"><picture><source type="image/webp" srcset="//media.springernature.com/lw685/springer-static/image/art%3A10.1007%2Fs10845-025-02578-5/MediaObjects/10845_2025_2578_Fig5_HTML.png?as=webp"><img aria-describedby="Fig5" src="//media.springernature.com/lw685/springer-static/image/art%3A10.1007%2Fs10845-025-02578-5/MediaObjects/10845_2025_2578_Fig5_HTML.png" alt="figure 5" loading="lazy" width="685" height="383"></picture></a></div><div class="c-article-section__figure-description" data-test="bottom-caption" id="figure-5-desc"><p>Exposing wire tip operation: an example of a hybrid automata model with three actors: robotic arm, gripper, and wire feeder (presentation based on Lee and Seshia (<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2017" title="Lee, E. A., &amp; Seshia, S. A. (2017). Introduction to embedded systems—a cyber-physical systems approach (2nd ed.). MIT." href="/article/10.1007/s10845-025-02578-5#ref-CR31" id="ref-link-section-d64739081e1488">2017</a>)</p></div></div><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="article-link" data-track="click" data-track-label="button" data-track-action="view figure" href="/article/10.1007/s10845-025-02578-5/figures/5" data-track-dest="link:Figure5 Full size image" aria-label="Full size image figure 5" rel="nofollow"><span>Full size image</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div><p>The assembly operations recorded in the database form the genes for establishing chromosomes for the genetic algorithm. For each use case, a subset of the operations was selected, based on the actors in the work cell, the product domain (electric or medical), and the interactions (connection) defined for each part in the product (place, insert, glue, etc.). An initial population of 10 chromosomes was created for each use case, where chromosome length was defined by the number of interactions in the product, and priority constraints were defined based on connection height for each part (lower connections must be connected before higher connections) (Ben-David &amp; Berman, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2023" title="Ben-David, S., &amp; Berman, S. (2023). A multi-objective fitness function for sequencing robotic assembly operations with deformable objects using a genetic algorithm with constraint satisfaction. In Intelligent and transformative production in pandemic times. Lecture notes in production engineering (pp. 175–185). Springer. &#xA; https://doi.org/10.1007/978-palli3-031-18641-7_17&#xA; &#xA; " href="/article/10.1007/s10845-025-02578-5#ref-CR5" id="ref-link-section-d64739081e1502">2023</a>). The fitness function was defined as an equally weighted sum of process duration and LCS. Process duration was defined as the sum of the duration of each assembly operation in the sequence. LCS was computed with respect to sequences previously found and validated using the digital twin for reminiscent product variants, i.e., two other smart light panels and medical infusion kits (Ben-David and Berman, 2021). The mutation rate was 0.05 and the crossover rate was 0.5 to balance creation of new solutions with maintenance of high-quality solutions from previous generations. The stopping criteria were set as a series of three consecutive generations with a change in the fitness function below 0.01 (Ben-David et al., <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2021" title="Ben-David, S., Shneor, R., Zuler, S., Mann, Z., Greenberg, A., &amp; Berman, S. (2021). Simulation-based two stage sequencing of robotic assembly operations with deformable objects. IFAC-PapersOnLine, 54(1), 175–180. &#xA; https://doi.org/10.1016/j.ifacol.2021.08.020&#xA; &#xA; " href="/article/10.1007/s10845-025-02578-5#ref-CR4" id="ref-link-section-d64739081e1505">2021</a>; Ben-David &amp; Berman, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2023" title="Ben-David, S., &amp; Berman, S. (2023). A multi-objective fitness function for sequencing robotic assembly operations with deformable objects using a genetic algorithm with constraint satisfaction. In Intelligent and transformative production in pandemic times. Lecture notes in production engineering (pp. 175–185). Springer. &#xA; https://doi.org/10.1007/978-palli3-031-18641-7_17&#xA; &#xA; " href="/article/10.1007/s10845-025-02578-5#ref-CR5" id="ref-link-section-d64739081e1508">2023</a>). The sequences found using the genetic algorithm heuristic were validated using the digital twin.</p><h3 class="c-article__sub-heading" id="Sec18">Process execution</h3><p>Mission control, a process execution module was developed for Process Simulate software. Mission control connects the Rαβγ database, and the digital twin or the physical controller. Using a graphic interface, Mission control facilitated visualizing the assembly sequence operations and relevant actors based on the documentation in the Rαβγ database, e.g., the medical tube sequence operations and UR5e robotic arm (Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1007/s10845-025-02578-5#Fig6">6</a>a).</p><p>Mission control also enabled virtual tests and metrics definitions such as total time, allowing collisions (yes/no) and near-miss distance. Mission control allowed running assembly sequences, and the metrics results were highlighted in green if the results met the metrics definitions or in red if the results did not meet the metrics definitions (Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1007/s10845-025-02578-5#Fig6">6</a>b). An interface based on JavaScript Object Notation was developed for interaction with the process execution module.</p><p>The three case studies were executed on the digital twin and the physical controller (Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1007/s10845-025-02578-5#Fig3">3</a> and the supplementary materials Online Resource 1 video depicting the medical pipeline digital twin execution, Online Resource 2 video depicting the medical pipeline physical robot execution, and Online Resource 3 video depicting the extended light board physical robot execution). For the extended light board, 86% of the assembly operations were reused and for the reduced light board, 78% of the assembly operations were reused (Table <a data-track="click" data-track-label="link" data-track-action="table anchor" href="/article/10.1007/s10845-025-02578-5#Tab2">2</a>). The reused assembly operations include picking, exposing, and snapping the wire into the relevant part. The high rate of reused operations in the extended light board is due to the multiplicity of the snap operation in the production sequence. For the medical infusion kit, 62% of the assembly operations were reused. These reused operations include picking, dipping the tube in and out of the solvent, inserting the tube into the funnel, and force-controlled releasing the tube.</p> <div class="c-article-table" data-test="inline-table" data-container-section="table" id="table-2"><figure><figcaption class="c-article-table__figcaption"><b id="Tab2" data-test="table-caption">Table 2 Assembly operations reusability</b></figcaption><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="table-link" data-track="click" data-track-action="view table" data-track-label="button" rel="nofollow" href="/article/10.1007/s10845-025-02578-5/tables/2" aria-label="Full size table 2"><span>Full size table</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div> <div class="c-article-section__figure js-c-reading-companion-figures-item" data-test="figure" data-container-section="figure" id="figure-6" data-title="Fig. 6"><figure><figcaption><b id="Fig6" class="c-article-section__figure-caption" data-test="figure-caption-text">Fig. 6</b></figcaption><div class="c-article-section__figure-content"><div class="c-article-section__figure-item"><a class="c-article-section__figure-link" data-test="img-link" data-track="click" data-track-label="image" data-track-action="view figure" href="/article/10.1007/s10845-025-02578-5/figures/6" rel="nofollow"><picture><source type="image/webp" srcset="//media.springernature.com/lw685/springer-static/image/art%3A10.1007%2Fs10845-025-02578-5/MediaObjects/10845_2025_2578_Fig6_HTML.png?as=webp"><img aria-describedby="Fig6" src="//media.springernature.com/lw685/springer-static/image/art%3A10.1007%2Fs10845-025-02578-5/MediaObjects/10845_2025_2578_Fig6_HTML.png" alt="figure 6" loading="lazy" width="685" height="420"></picture></a></div><div class="c-article-section__figure-description" data-test="bottom-caption" id="figure-6-desc"><p>Mission control screenshots of assembly sequencing (<b>a</b>) and metrics definitions (<b>b</b>). Green and red highlight measures that meet or did not meet specifications, respectively (Color figure online)</p></div></div><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="article-link" data-track="click" data-track-label="button" data-track-action="view figure" href="/article/10.1007/s10845-025-02578-5/figures/6" data-track-dest="link:Figure6 Full size image" aria-label="Full size image figure 6" rel="nofollow"><span>Full size image</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div></div></div></section><section data-title="Discussion"><div class="c-article-section" id="Sec19-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="Sec19">Discussion</h2><div class="c-article-section__content" id="Sec19-content"><p>Adapting the Rαβγ categorization to a database ontology contributed to the structured documentation of the assembly operations. The structure of the Rαβγ database, which includes the resources (i.e., the workcell, α), the process actions (i.e., the task, β), and the measurements (i.e., the objective, γ), facilitates representing the three planning and execution modules (data extraction, process planning, and process execution) and their interactions. The integration of these components in the database contributed to a substantial reuse of assembly operations, thus potentially reducing setup times.</p><p>The data-driven approach simplifies process planning with multiple entities and complex data structures, facilitates process abstraction, and enables skill and process reuse. However, both planning and execution rely on data availability and quality. Taking a different development approach, agent-based modelling concentrates on the participating agents, their capabilities, and their interactions. Agent-based modelling applies rules, constraints, and assumptions regarding how agents interact with other agents and the environment. Agent-based modelling facilitates addressing complex agent behaviour and is suited for scenarios where interactions are central to the process (Li &amp; Vanhaverbeke, 2021). The agent-based approach facilitates handling multiple large-scale interactions and multitasking. Holons are autonomous and cooperative units within a larger system, consisting of information processing and often physical processing components (Van Brussel et al., <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 1998" title="Van Brussel, H., Wyns, J., Valckenaers, P., Bongaerts, L., &amp; Peeters, P. (1998). Reference architecture for holonic manufacturing systems: Prosa. Computers in Industry, 37(3), 255–274. &#xA; https://doi.org/10.1016/s0166-3615(98)00102-x&#xA; &#xA; " href="/article/10.1007/s10845-025-02578-5#ref-CR66" id="ref-link-section-d64739081e1702">1998</a>). Based on holons and advancements in a virtual representation of physical parts and systems (i.e., digital twins), the ARTI (Activity-Resource-Type-Instance) was developed and implemented (Valckenaers, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2020" title="Valckenaers, P. (2020). Perspective on holonic manufacturing systems: Prosa becomes arti. Computers in Industry, 120, 103226. &#xA; https://doi.org/10.1016/j.compind.2020.103226&#xA; &#xA; " href="/article/10.1007/s10845-025-02578-5#ref-CR65" id="ref-link-section-d64739081e1705">2020</a>; Wasserman et al., <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2023" title="Wasserman, A., Kruger, K., &amp; Basson, A. H. (2023). ARTI-Based Holonic Manufacturing execution system using the BASE Architecture: A case study implementation. In von K. Leipzig, N. Sacks, &amp; M. Mc Clelland (Eds.), Smart, sustainable manufacturing in an ever-changing world. Lecture notes in production engineering. Springer. &#xA; https://doi.org/10.1007/978-3-031-15602-1_4&#xA; &#xA; " href="/article/10.1007/s10845-025-02578-5#ref-CR71" id="ref-link-section-d64739081e1708">2023</a>). Future integration of the presented data-driven approach for work cell operations planning and control with the ARTI architecture may facilitate the integration of lower-level reusability and simplified process planning with higher-level multi-tasking and integration capabilities.</p><p>Planning and control of robotic assembly with deformable objects requires additional information in manufacturing documents such as datasheets, job guides, and electric schemes (for relevant products). These documents contained manufacturing information crucial for planning and execution (e.g., points of interest and safe distances of the robotic actuator). Yet, there is little standardization in the abovementioned documents, and this is an important future work that will further enhance the automation of planning and execution for intricate assemblies. Applying artificial intelligence methods such as text mining as part of data extraction is also left for future research.</p><p>The process planning module highlighted that hybrid automata are applicable for establishing robotic skills using deep neural networks. Deep neural network methods such as reinforcement learning have been applied for production planning and scheduling, mainly with a single agent (Esteso et al., <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2022" title="Esteso, A., Peidro, D., Mula, J., &amp; Díaz-Madroñero, M. (2022). Reinforcement learning applied to production planning and control. International Journal of Production Research, 61(16), 5772–5789. &#xA; https://doi.org/10.1080/00207543.2022.2104180&#xA; &#xA; " href="/article/10.1007/s10845-025-02578-5#ref-CR15" id="ref-link-section-d64739081e1717">2022</a>). Reinforcement learning methods have been demonstrated for specific assembly operations of insertion (Kozlovsky et al., <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2022" title="Kozlovsky, S., Newman, E., &amp; Zacksenhouse, M. (2022). Reinforcement learning of impedance policies for peg-in-hole tasks: Role of asymmetric matrices. IEEE Robotics and Automation Letters, 7(4), 10898–10905. &#xA; https://doi.org/10.1109/lra.2022.3191070&#xA; &#xA; " href="/article/10.1007/s10845-025-02578-5#ref-CR30" id="ref-link-section-d64739081e1720">2022</a>; Liu et al., <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2022" title="Liu, Z., Liu, Q., Xu, W., Wang, L., &amp; Zhou, Z. (2022). Robot learning towards smart robotic manufacturing: A review. Robotics and Computer-Integrated Manufacturing, 77, 102360. &#xA; https://doi.org/10.1016/j.rcim.2022.102360&#xA; &#xA; " href="/article/10.1007/s10845-025-02578-5#ref-CR37" id="ref-link-section-d64739081e1723">2022</a>). However, the learning period is time-consuming, especially when deformable objects are involved. Using parametrized hybrid automata stored in the Rαβγ database, enabled skill reuse. Forming high-level assembly operations (e.g., dipping a deformable tube with solvent) by connecting the low-level skills enabled operation reuse. Reusing operations within the production of a single product (i.e., executing the assembly operation several times with different parameters) and in other products (i.e., according to similar sequences of the genetic algorithms) facilitates shortening setups.</p><p>The process execution module highlighted that the digital twin facilitated an accurate representation of the physical system and virtual validation before the physical execution. Mission control and the digital twin were applied for metric evaluation and validation of robotic skills for assembling products containing deformable objects. They emphasized the importance of integrating the developed framework, e.g., process planning sequencing and parametrization, database storage of assembly operations, and robotic skills. Such integration enabled addressing robotic assembly planning and execution with deformable objects. The Mission control interface contains important metrics (e.g., collisions). However, there might be differences in the emphasis by industry sectors. For example, some electrical manufacturers might emphasize time measures, whereas other medical manufacturers might emphasize quality measures. Future research should investigate and develop designated metrics per industry sector.</p><p>Production sequences were successfully planned and executed for case studies from different industry sectors (electric and medical). The rate of reused operations was high, but the products differed. The medical infusion kit required the assembly of parts with elastic deformations, while for the light boards, rigid parts (connectors, drivers) were assembled with parts with plastic deformations (electric wires). The rheological nature of the assembled parts influenced the rate of reused operations, and the medical infusion kit required dedicated operations, leading to a lower rate of reused operations. The rate of reused operations should be further investigated for additional product types, e.g., packaging.</p><p>Incorporating advanced artificial intelligence models in manufacturing, robotics, and digital twins is a promising direction (Varriale et al., <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2023" title="Varriale, V., Cammarano, A., Michelino, F., &amp; Caputo, M. (2023). Critical analysis of the impact of artificial intelligence integration with cutting-edge technologies for production systems. Journal of Intelligent Manufacturing. &#xA; https://doi.org/10.1007/s10845-023-02244-8&#xA; &#xA; " href="/article/10.1007/s10845-025-02578-5#ref-CR68" id="ref-link-section-d64739081e1736">2023</a>). Recent studies applied deep learning to identify geometric features of electrical components from CAD (Bründl et al., <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2023" title="Bründl, P., Scheffler, B., Stoidner, M., Nguyen, H., Baechler, A., Abrass, A., &amp; Franke, J. (2023). Semantic part segmentation of spatial features via geometric deep learning for Automated Control Cabinet Assembly. Journal of Intelligent Manufacturing, 35(8), 3681–3695. &#xA; https://doi.org/10.1007/s10845-023-02267-1&#xA; &#xA; " href="/article/10.1007/s10845-025-02578-5#ref-CR9" id="ref-link-section-d64739081e1739">2023</a>) and explainable artificial intelligence in manufacturing stages (Naqvi et al., <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2024" title="Naqvi, M. R., Elmhadhbi, L., Sarkar, A., Archimede, B., &amp; Karray, M. H. (2024). Survey on ontology-based explainable AI in manufacturing. Journal of Intelligent Manufacturing, 35(8), 3605–3627. &#xA; https://doi.org/10.1007/s10845-023-02304-z&#xA; &#xA; " href="/article/10.1007/s10845-025-02578-5#ref-CR42" id="ref-link-section-d64739081e1742">2024</a>). Incorporating advanced artificial intelligence models can facilitate significant potential in improving the data extraction and process planning modules. In the data extraction module, artificial intelligence models and text mining can be applied to automate the extraction of information (e.g., points of interest) from unstructured manufacturing documents. In the process planning module, artificial intelligence models can contribute meaningfully to the assembly sequence generation and maybe replace the genetic algorithm. Future research directions include conducting an ablation study to evaluate the individual contributions of machine learning components in process planning and to validate the incorporation of artificial intelligence models in the data extraction and process planning modules.</p><p>Some limitations were identified in the current work. The developed framework concentrated on known environments where the workstation layout and the locations of the components are known. Known environments are commonly found in industrial environments containing robotics, however, unknown environments can also be found and are more challenging for production planning and execution (e.g., where the location of the parts is not precise). The investigation and adaptation of the presented framework to unknown production environments are left for future research.</p><p>The work concentrated on the peg-in-hole connection type, which is common for assembling parts in industrial products. There are many additional connection types, e.g., thread-in-channel, where a deformable linear object is placed in a narrow, not fully closed space. Such a connection type is common for sealing, e.g., a gasket in a toolbox cover. Another connection type is peg-in-wrap, where a linear object (usually deformable) is used for wrapping another object by coiling or binding, e.g., binding wires in an electrical cabinet. The connection types will be explored in future work.</p><p>The current study implemented case study assemblies with a limited number of operations (less than thirty) to demonstrate the framework and its modules. Future research should investigate more intricate assemblies, e.g., with a higher number of assembly operations, and additional industry sectors, e.g., plastic. Planning and execution of robotic assembly of an industrial computer with hundreds of components is underway.</p></div></div></section><section data-title="Conclusions"><div class="c-article-section" id="Sec20-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="Sec20">Conclusions</h2><div class="c-article-section__content" id="Sec20-content"><p>The robotic assembly planning and execution framework comprises a data extraction module, a process planning module, and a process execution module. The three modules are parametrized and stored in a relational database built according to the Rαβγ ontology for robotic manufacturing processes. The framework facilitated the production planning and execution of intricate assemblies containing deformable objects from different industry sectors. The integration of data from commonly applied manufacturing documents is important for future industrial implementation. Using sequences with high-level assembly operations comprised of parametrized robotic skills advances the reuse of assembly operations for varied case studies, which is highly relevant to real-world industrial applications.</p><div class="c-article-section__figure js-c-reading-companion-figures-item" data-test="figure" data-container-section="figure" id="figure-7" data-title="Fig. 7"><figure><figcaption><b id="Fig7" class="c-article-section__figure-caption" data-test="figure-caption-text">Fig. 7</b></figcaption><div class="c-article-section__figure-content"><div class="c-article-section__figure-item"><a class="c-article-section__figure-link" data-test="img-link" data-track="click" data-track-label="image" data-track-action="view figure" href="/article/10.1007/s10845-025-02578-5/figures/7" rel="nofollow"><picture><img aria-describedby="Fig7" src="//media.springernature.com/lw685/springer-static/image/art%3A10.1007%2Fs10845-025-02578-5/MediaObjects/10845_2025_2578_Fig7a_HTML.png" alt="figure 7" loading="lazy" width="685" height="1134"></picture><picture><img aria-describedby="Fig7" src="//media.springernature.com/lw685/springer-static/image/art%3A10.1007%2Fs10845-025-02578-5/MediaObjects/10845_2025_2578_Fig7b_HTML.png" alt="figure 7" loading="lazy" width="685" height="428"></picture></a></div><div class="c-article-section__figure-description" data-test="bottom-caption" id="figure-7-desc"><p>Pseudocodes for part (top) and product, assembly (bottom) calculations</p></div></div><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="article-link" data-track="click" data-track-label="button" data-track-action="view figure" href="/article/10.1007/s10845-025-02578-5/figures/7" data-track-dest="link:Figure7 Full size image" aria-label="Full size image figure 7" rel="nofollow"><span>Full size image</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div></div></div></section><section data-title="Appendix A: Part and assembly levels calculations"><div class="c-article-section" id="Sec21-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="Sec21">Appendix A: Part and assembly levels calculations</h2><div class="c-article-section__content" id="Sec21-content"><p>The notation of symbols for calculating Mate, Free, and Safe configurations are listed in Table <a data-track="click" data-track-label="link" data-track-action="table anchor" href="/article/10.1007/s10845-025-02578-5#Tab3">3</a>. The pseudocodes for the part and product (assembly) calculations of Mate, Free, and Safe configurations based on rotation and transformation matrices is described in Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1007/s10845-025-02578-5#Fig7">7</a>.</p> <div class="c-article-table" data-test="inline-table" data-container-section="table" id="table-3"><figure><figcaption class="c-article-table__figcaption"><b id="Tab3" data-test="table-caption">Table 3 Notation</b></figcaption><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="table-link" data-track="click" data-track-action="view table" data-track-label="button" rel="nofollow" href="/article/10.1007/s10845-025-02578-5/tables/3" aria-label="Full size table 3"><span>Full size table</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div></div></div></section> </div> <section data-title="Data availability"><div class="c-article-section" id="data-availability-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="data-availability">Data availability</h2><div class="c-article-section__content" id="data-availability-content"> <p>not applicable.</p> </div></div></section><section data-title="Notes"><div class="c-article-section" id="notes-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="notes">Notes</h2><div class="c-article-section__content" id="notes-content"><ol class="c-article-footnote c-article-footnote--listed"><li class="c-article-footnote--listed__item" id="Fn1" data-counter="1."><div class="c-article-footnote--listed__content"><p><a href="https://plm.sw.siemens.com/en-US/tecnomatix/products/process-simulate-software/">https://plm.sw.siemens.com/en-US/tecnomatix/products/process-simulate-software/</a> Retrieved September 18, 2024.</p></div></li><li class="c-article-footnote--listed__item" id="Fn2" data-counter="2."><div class="c-article-footnote--listed__content"><p><a href="https://www.gaashlighting.com/">https://www.gaashlighting.com/</a> Retrieved September 18, 2024.</p></div></li><li class="c-article-footnote--listed__item" id="Fn3" data-counter="3."><div class="c-article-footnote--listed__content"><p><a href="http://www.mdcindustries.com/home.asp">http://www.mdcindustries.com/home.asp</a> Retrieved September 18, 2024.</p></div></li></ol></div></div></section><div id="MagazineFulltextArticleBodySuffix"><section aria-labelledby="Bib1" data-title="References"><div class="c-article-section" id="Bib1-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="Bib1">References</h2><div class="c-article-section__content" id="Bib1-content"><div data-container-section="references"><ul class="c-article-references" data-track-component="outbound reference" data-track-context="references section"><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR1">Abdullah, M. A., Rashid, A., M. F., &amp; Ghazalli, Z. (2018). Optimization of assembly sequence planning using soft computing approaches: A review. <i>Archives of Computational Methods in Engineering</i>, <i>26</i>(2), 461–474. <a href="https://doi.org/10.1007/s11831-018-9250-y" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1007/s11831-018-9250-y">https://doi.org/10.1007/s11831-018-9250-y</a></p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="noopener" data-track-label="10.1007/s11831-018-9250-y" data-track-item_id="10.1007/s11831-018-9250-y" data-track-value="article reference" data-track-action="article reference" href="https://link.springer.com/doi/10.1007/s11831-018-9250-y" aria-label="Article reference 1" data-doi="10.1007/s11831-018-9250-y">Article</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 1" href="http://scholar.google.com/scholar_lookup?&amp;title=Optimization%20of%20assembly%20sequence%20planning%20using%20soft%20computing%20approaches%3A%20A%20review&amp;journal=Archives%20of%20Computational%20Methods%20in%20Engineering&amp;doi=10.1007%2Fs11831-018-9250-y&amp;volume=26&amp;issue=2&amp;pages=461-474&amp;publication_year=2018&amp;author=Abdullah%2CMA&amp;author=Rashid%2CA&amp;author=Ghazalli%2CZ"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR2">Acker, J., &amp; Henrich, D. (2005). Manipulation of deformable linear objects: From geometric model towards program generation. In <i>Proceedings of the 2005 IEEE international conference on robotics and automation</i>. <a href="https://doi.org/10.1109/robot.2005.1570333" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1109/robot.2005.1570333">https://doi.org/10.1109/robot.2005.1570333</a></p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR3">Akgündüz, O. S., &amp; Tunalı, S. (2011). A review of the current applications of genetic algorithms in mixed-model assembly line sequencing. <i>International Journal of Production Research</i>, <i>49</i>(15), 4483–4503. <a href="https://doi.org/10.1080/00207543.2010.495085" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1080/00207543.2010.495085">https://doi.org/10.1080/00207543.2010.495085</a></p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1080/00207543.2010.495085" data-track-item_id="10.1080/00207543.2010.495085" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1080%2F00207543.2010.495085" aria-label="Article reference 3" data-doi="10.1080/00207543.2010.495085">Article</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 3" href="http://scholar.google.com/scholar_lookup?&amp;title=A%20review%20of%20the%20current%20applications%20of%20genetic%20algorithms%20in%20mixed-model%20assembly%20line%20sequencing&amp;journal=International%20Journal%20of%20Production%20Research&amp;doi=10.1080%2F00207543.2010.495085&amp;volume=49&amp;issue=15&amp;pages=4483-4503&amp;publication_year=2011&amp;author=Akg%C3%BCnd%C3%BCz%2COS&amp;author=Tunal%C4%B1%2CS"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR5">Ben-David, S., &amp; Berman, S. (2023). A multi-objective fitness function for sequencing robotic assembly operations with deformable objects using a genetic algorithm with constraint satisfaction. In <i>Intelligent and transformative production in pandemic times</i>. Lecture notes in production engineering (pp. 175–185). Springer. <a href="https://doi.org/10.1007/978-palli3-031-18641-7_17" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1007/978-palli3-031-18641-7_17">https://doi.org/10.1007/978-palli3-031-18641-7_17</a></p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR4">Ben-David, S., Shneor, R., Zuler, S., Mann, Z., Greenberg, A., &amp; Berman, S. (2021). Simulation-based two stage sequencing of robotic assembly operations with deformable objects. <i>IFAC-PapersOnLine</i>, <i>54</i>(1), 175–180. <a href="https://doi.org/10.1016/j.ifacol.2021.08.020" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1016/j.ifacol.2021.08.020">https://doi.org/10.1016/j.ifacol.2021.08.020</a></p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.ifacol.2021.08.020" data-track-item_id="10.1016/j.ifacol.2021.08.020" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.ifacol.2021.08.020" aria-label="Article reference 5" data-doi="10.1016/j.ifacol.2021.08.020">Article</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 5" href="http://scholar.google.com/scholar_lookup?&amp;title=Simulation-based%20two%20stage%20sequencing%20of%20robotic%20assembly%20operations%20with%20deformable%20objects&amp;journal=IFAC-PapersOnLine&amp;doi=10.1016%2Fj.ifacol.2021.08.020&amp;volume=54&amp;issue=1&amp;pages=175-180&amp;publication_year=2021&amp;author=Ben-David%2CS&amp;author=Shneor%2CR&amp;author=Zuler%2CS&amp;author=Mann%2CZ&amp;author=Greenberg%2CA&amp;author=Berman%2CS"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR6">Billard, A., &amp; Kragic, D. (2019). Trends and challenges in robot manipulation. <i>Science</i>. <a href="https://doi.org/10.1126/science.aat8414" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1126/science.aat8414">https://doi.org/10.1126/science.aat8414</a></p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR7">Böttjer, T., Tola, D., Kakavandi, F., Wewer, C. R., Ramanujan, D., Gomes, C., Larsen, P. G., &amp; Iosifidis, A. (2023). A review of unit level digital twin applications in the manufacturing industry. <i>CIRP Journal of Manufacturing Science and Technology</i>, <i>45</i>, 162–189. <a href="https://doi.org/10.1016/j.cirpj.2023.06.011" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1016/j.cirpj.2023.06.011">https://doi.org/10.1016/j.cirpj.2023.06.011</a></p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.cirpj.2023.06.011" data-track-item_id="10.1016/j.cirpj.2023.06.011" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.cirpj.2023.06.011" aria-label="Article reference 7" data-doi="10.1016/j.cirpj.2023.06.011">Article</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 7" href="http://scholar.google.com/scholar_lookup?&amp;title=A%20review%20of%20unit%20level%20digital%20twin%20applications%20in%20the%20manufacturing%20industry&amp;journal=CIRP%20Journal%20of%20Manufacturing%20Science%20and%20Technology&amp;doi=10.1016%2Fj.cirpj.2023.06.011&amp;volume=45&amp;pages=162-189&amp;publication_year=2023&amp;author=B%C3%B6ttjer%2CT&amp;author=Tola%2CD&amp;author=Kakavandi%2CF&amp;author=Wewer%2CCR&amp;author=Ramanujan%2CD&amp;author=Gomes%2CC&amp;author=Larsen%2CPG&amp;author=Iosifidis%2CA"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR8">Boysen, N., Briskorn, D., &amp; Schwerdfeger, S. (2019). Matching supply and demand in a sharing economy: Classification, computational complexity, and application. <i>European Journal of Operational Research</i>, <i>278</i>(2), 578–595. <a href="https://doi.org/10.1016/j.ejor.2019.04.032" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1016/j.ejor.2019.04.032">https://doi.org/10.1016/j.ejor.2019.04.032</a></p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.ejor.2019.04.032" data-track-item_id="10.1016/j.ejor.2019.04.032" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.ejor.2019.04.032" aria-label="Article reference 8" data-doi="10.1016/j.ejor.2019.04.032">Article</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 8" href="http://scholar.google.com/scholar_lookup?&amp;title=Matching%20supply%20and%20demand%20in%20a%20sharing%20economy%3A%20Classification%2C%20computational%20complexity%2C%20and%20application&amp;journal=European%20Journal%20of%20Operational%20Research&amp;doi=10.1016%2Fj.ejor.2019.04.032&amp;volume=278&amp;issue=2&amp;pages=578-595&amp;publication_year=2019&amp;author=Boysen%2CN&amp;author=Briskorn%2CD&amp;author=Schwerdfeger%2CS"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR9">Bründl, P., Scheffler, B., Stoidner, M., Nguyen, H., Baechler, A., Abrass, A., &amp; Franke, J. (2023). Semantic part segmentation of spatial features via geometric deep learning for Automated Control Cabinet Assembly. <i>Journal of Intelligent Manufacturing</i>, <i>35</i>(8), 3681–3695. <a href="https://doi.org/10.1007/s10845-023-02267-1" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1007/s10845-023-02267-1">https://doi.org/10.1007/s10845-023-02267-1</a></p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="noopener" data-track-label="10.1007/s10845-023-02267-1" data-track-item_id="10.1007/s10845-023-02267-1" data-track-value="article reference" data-track-action="article reference" href="https://link.springer.com/doi/10.1007/s10845-023-02267-1" aria-label="Article reference 9" data-doi="10.1007/s10845-023-02267-1">Article</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 9" href="http://scholar.google.com/scholar_lookup?&amp;title=Semantic%20part%20segmentation%20of%20spatial%20features%20via%20geometric%20deep%20learning%20for%20Automated%20Control%20Cabinet%20Assembly&amp;journal=Journal%20of%20Intelligent%20Manufacturing&amp;doi=10.1007%2Fs10845-023-02267-1&amp;volume=35&amp;issue=8&amp;pages=3681-3695&amp;publication_year=2023&amp;author=Br%C3%BCndl%2CP&amp;author=Scheffler%2CB&amp;author=Stoidner%2CM&amp;author=Nguyen%2CH&amp;author=Baechler%2CA&amp;author=Abrass%2CA&amp;author=Franke%2CJ"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR10">Bründl, P., Stoidner, M., Bredthauer, J., Nguyen, H. G., Baechler, A., &amp; Franke, J. (2024). Unlocking the potential of digitalization and automation: A qualitative and quantitative study of the Control Cabinet Manufacturing Industry. <i>Production &amp; Manufacturing Research</i>. <a href="https://doi.org/10.1080/21693277.2024.2306820" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1080/21693277.2024.2306820">https://doi.org/10.1080/21693277.2024.2306820</a></p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR11">Busi, M., Cirillo, A., De Gregorio, D., Indovini, M., De Maria, G., Melchiorri, C., Natale, C., Palli, G., &amp; Pirozzi, S. (2017). The wires experiment: Tools and strategies for robotized switchgear cabling. <i>Procedia Manufacturing</i>, <i>11</i>, 355–363. <a href="https://doi.org/10.1016/j.promfg.2017.07.118" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1016/j.promfg.2017.07.118">https://doi.org/10.1016/j.promfg.2017.07.118</a></p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.promfg.2017.07.118" data-track-item_id="10.1016/j.promfg.2017.07.118" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.promfg.2017.07.118" aria-label="Article reference 11" data-doi="10.1016/j.promfg.2017.07.118">Article</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 11" href="http://scholar.google.com/scholar_lookup?&amp;title=The%20wires%20experiment%3A%20Tools%20and%20strategies%20for%20robotized%20switchgear%20cabling&amp;journal=Procedia%20Manufacturing&amp;doi=10.1016%2Fj.promfg.2017.07.118&amp;volume=11&amp;pages=355-363&amp;publication_year=2017&amp;author=Busi%2CM&amp;author=Cirillo%2CA&amp;author=Gregorio%2CD&amp;author=Indovini%2CM&amp;author=Maria%2CG&amp;author=Melchiorri%2CC&amp;author=Natale%2CC&amp;author=Palli%2CG&amp;author=Pirozzi%2CS"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR12">Cancino, C., Merigó, J. M., Coronado, F., Dessouky, Y., &amp; Dessouky, M. (2017). Forty years of computers &amp; industrial engineering: A bibliometric analysis. <i>Computers &amp; Industrial Engineering</i>, <i>113</i>, 614–629. <a href="https://doi.org/10.1016/j.cie.2017.08.033" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1016/j.cie.2017.08.033">https://doi.org/10.1016/j.cie.2017.08.033</a></p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.cie.2017.08.033" data-track-item_id="10.1016/j.cie.2017.08.033" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.cie.2017.08.033" aria-label="Article reference 12" data-doi="10.1016/j.cie.2017.08.033">Article</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 12" href="http://scholar.google.com/scholar_lookup?&amp;title=Forty%20years%20of%20computers%20%26%20industrial%20engineering%3A%20A%20bibliometric%20analysis&amp;journal=Computers%20%26%20Industrial%20Engineering&amp;doi=10.1016%2Fj.cie.2017.08.033&amp;volume=113&amp;pages=614-629&amp;publication_year=2017&amp;author=Cancino%2CC&amp;author=Merig%C3%B3%2CJM&amp;author=Coronado%2CF&amp;author=Dessouky%2CY&amp;author=Dessouky%2CM"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR13">Carvajal Soto, J. A., Tavakolizadeh, F., &amp; Gyulai, D. (2019). An online machine learning framework for early detection of product failures in an industry 4.0 context. <i>International Journal of Computer Integrated Manufacturing</i>, <i>32</i>(4–5), 452–465. <a href="https://doi.org/10.1080/0951192x.2019.1571238" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1080/0951192x.2019.1571238">https://doi.org/10.1080/0951192x.2019.1571238</a></p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1080/0951192x.2019.1571238" data-track-item_id="10.1080/0951192x.2019.1571238" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1080%2F0951192x.2019.1571238" aria-label="Article reference 13" data-doi="10.1080/0951192x.2019.1571238">Article</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 13" href="http://scholar.google.com/scholar_lookup?&amp;title=An%20online%20machine%20learning%20framework%20for%20early%20detection%20of%20product%20failures%20in%20an%20industry%204.0%20context&amp;journal=International%20Journal%20of%20Computer%20Integrated%20Manufacturing&amp;doi=10.1080%2F0951192x.2019.1571238&amp;volume=32&amp;issue=4%E2%80%935&amp;pages=452-465&amp;publication_year=2019&amp;author=Carvajal%20Soto%2CJA&amp;author=Tavakolizadeh%2CF&amp;author=Gyulai%2CD"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR14">Dechter, R., &amp; Pearl, J. (1987). Network-based heuristics for constraint-satisfaction problems. <i>Artificial Intelligence</i>, <i>34</i>(1), 1–38. <a href="https://doi.org/10.1016/0004-3702(87)90002-6" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1016/0004-3702(87)90002-6">https://doi.org/10.1016/0004-3702(87)90002-6</a></p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/0004-3702(87)90002-6" data-track-item_id="10.1016/0004-3702(87)90002-6" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2F0004-3702%2887%2990002-6" aria-label="Article reference 14" data-doi="10.1016/0004-3702(87)90002-6">Article</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 14" href="http://scholar.google.com/scholar_lookup?&amp;title=Network-based%20heuristics%20for%20constraint-satisfaction%20problems&amp;journal=Artificial%20Intelligence&amp;doi=10.1016%2F0004-3702%2887%2990002-6&amp;volume=34&amp;issue=1&amp;pages=1-38&amp;publication_year=1987&amp;author=Dechter%2CR&amp;author=Pearl%2CJ"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR15">Esteso, A., Peidro, D., Mula, J., &amp; Díaz-Madroñero, M. (2022). Reinforcement learning applied to production planning and control. <i>International Journal of Production Research</i>, <i>61</i>(16), 5772–5789. <a href="https://doi.org/10.1080/00207543.2022.2104180" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1080/00207543.2022.2104180">https://doi.org/10.1080/00207543.2022.2104180</a></p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1080/00207543.2022.2104180" data-track-item_id="10.1080/00207543.2022.2104180" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1080%2F00207543.2022.2104180" aria-label="Article reference 15" data-doi="10.1080/00207543.2022.2104180">Article</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 15" href="http://scholar.google.com/scholar_lookup?&amp;title=Reinforcement%20learning%20applied%20to%20production%20planning%20and%20control&amp;journal=International%20Journal%20of%20Production%20Research&amp;doi=10.1080%2F00207543.2022.2104180&amp;volume=61&amp;issue=16&amp;pages=5772-5789&amp;publication_year=2022&amp;author=Esteso%2CA&amp;author=Peidro%2CD&amp;author=Mula%2CJ&amp;author=D%C3%ADaz-Madro%C3%B1ero%2CM"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR16">Fakhurldeen, H., Dailami, F., &amp; Pipe, A. G. (2019). Cara system architecture—a click and assemble robotic assembly system. In <i>2019 International conference on robotics and automation (ICRA)</i>. <a href="https://doi.org/10.1109/icra.2019.8794114" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1109/icra.2019.8794114">https://doi.org/10.1109/icra.2019.8794114</a></p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR17">Goujon, A., Rosin, F., Magnani, F., Lamouri, S., Pellerin, R., &amp; Joblot, L. (2024). Industry 5.0 use cases development framework. <i>International Journal of Production Research</i>. <a href="https://doi.org/10.1080/00207543.2024.2307505" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1080/00207543.2024.2307505">https://doi.org/10.1080/00207543.2024.2307505</a></p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR18">Goyal, K. K., Jain, P. K., &amp; Jain, M. (2013). A comprehensive approach to operation sequence similarity based part family formation in the reconfigurable Manufacturing System. <i>International Journal of Production Research</i>, <i>51</i>(6), 1762–1776. <a href="https://doi.org/10.1080/00207543.2012.701771" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1080/00207543.2012.701771">https://doi.org/10.1080/00207543.2012.701771</a></p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1080/00207543.2012.701771" data-track-item_id="10.1080/00207543.2012.701771" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1080%2F00207543.2012.701771" aria-label="Article reference 18" data-doi="10.1080/00207543.2012.701771">Article</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 18" href="http://scholar.google.com/scholar_lookup?&amp;title=A%20comprehensive%20approach%20to%20operation%20sequence%20similarity%20based%20part%20family%20formation%20in%20the%20reconfigurable%20manufacturing%20system&amp;journal=International%20Journal%20of%20Production%20Research&amp;doi=10.1080%2F00207543.2012.701771&amp;volume=51&amp;issue=6&amp;pages=1762-1776&amp;publication_year=2013&amp;author=Goyal%2CKK&amp;author=Jain%2CPK&amp;author=Jain%2CM"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR19">Graham, R. L., Lawler, E. L., Lenstra, J. K., &amp; Kan, A. H. G. R. (1979). Optimization and approximation in deterministic sequencing and scheduling: A survey. <i>Annals of Discrete Mathematics</i>. <a href="https://doi.org/10.1016/s0167-5060(08)70356-x" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1016/s0167-5060(08)70356-x">https://doi.org/10.1016/s0167-5060(08)70356-x</a></p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR20">Hazarika, S. M., &amp; Dixit, U. S. (2018). Robotics: History, trends, and future directions. In <i>Introduction to mechanical engineering</i>. Springer. <a href="https://doi.org/10.1007/978-3-319-78488-5_7" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1007/978-3-319-78488-5_7">https://doi.org/10.1007/978-3-319-78488-5_7</a></p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR21">Herguedas, R., Lopez-Nicolas, G., Aragues, R., &amp; Sagues, C. (2019). Survey on multi-robot manipulation of deformable objects. In <i>2019 24th IEEE International conference on emerging technologies and factory automation (ETFA)</i> (pp. 977–984). <a href="https://doi.org/10.1109/etfa.2019.8868987" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1109/etfa.2019.8868987">https://doi.org/10.1109/etfa.2019.8868987</a></p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR22">Ivanov, D. (2023). Conceptualisation of a 7-element digital twin framework in supply chain and Operations Management. <i>International Journal of Production Research</i>. <a href="https://doi.org/10.1080/00207543.2023.2217291" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1080/00207543.2023.2217291">https://doi.org/10.1080/00207543.2023.2217291</a></p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR24">Jiang, J., Huang, Z., Bi, Z., Ma, X., &amp; Yu, G. (2020). State-of-the-art control strategies for robotic PIH Assembly. <i>Robotics and Computer-Integrated Manufacturing</i>, <i>65</i>, 101894. <a href="https://doi.org/10.1016/j.rcim.2019.101894" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1016/j.rcim.2019.101894">https://doi.org/10.1016/j.rcim.2019.101894</a></p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.rcim.2019.101894" data-track-item_id="10.1016/j.rcim.2019.101894" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.rcim.2019.101894" aria-label="Article reference 23" data-doi="10.1016/j.rcim.2019.101894">Article</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 23" href="http://scholar.google.com/scholar_lookup?&amp;title=State-of-the-art%20control%20strategies%20for%20robotic%20PIH%20Assembly&amp;journal=Robotics%20and%20Computer-Integrated%20Manufacturing&amp;doi=10.1016%2Fj.rcim.2019.101894&amp;volume=65&amp;publication_year=2020&amp;author=Jiang%2CJ&amp;author=Huang%2CZ&amp;author=Bi%2CZ&amp;author=Ma%2CX&amp;author=Yu%2CG"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR25">Jiang, Y., Huang, Z., Yang, B., &amp; Yang, W. (2022). A review of Robotic Assembly Strategies for the full operation procedure: Planning, execution and evaluation. <i>Robotics and Computer-Integrated Manufacturing</i>, <i>78</i>, 102366. <a href="https://doi.org/10.1016/j.rcim.2022.102366" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1016/j.rcim.2022.102366">https://doi.org/10.1016/j.rcim.2022.102366</a></p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.rcim.2022.102366" data-track-item_id="10.1016/j.rcim.2022.102366" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.rcim.2022.102366" aria-label="Article reference 24" data-doi="10.1016/j.rcim.2022.102366">Article</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 24" href="http://scholar.google.com/scholar_lookup?&amp;title=A%20review%20of%20Robotic%20Assembly%20Strategies%20for%20the%20full%20operation%20procedure%3A%20Planning%2C%20execution%20and%20evaluation&amp;journal=Robotics%20and%20Computer-Integrated%20Manufacturing&amp;doi=10.1016%2Fj.rcim.2022.102366&amp;volume=78&amp;publication_year=2022&amp;author=Jiang%2CY&amp;author=Huang%2CZ&amp;author=Yang%2CB&amp;author=Yang%2CW"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR26">Jiménez, P. (2011). Survey on assembly sequencing: A combinatorial and geometrical perspective. <i>Journal of Intelligent Manufacturing</i>, <i>24</i>(2), 235–250. <a href="https://doi.org/10.1007/s10845-011-0578-5" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1007/s10845-011-0578-5">https://doi.org/10.1007/s10845-011-0578-5</a></p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="noopener" data-track-label="10.1007/s10845-011-0578-5" data-track-item_id="10.1007/s10845-011-0578-5" data-track-value="article reference" data-track-action="article reference" href="https://link.springer.com/doi/10.1007/s10845-011-0578-5" aria-label="Article reference 25" data-doi="10.1007/s10845-011-0578-5">Article</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 25" href="http://scholar.google.com/scholar_lookup?&amp;title=Survey%20on%20assembly%20sequencing%3A%20A%20combinatorial%20and%20geometrical%20perspective&amp;journal=Journal%20of%20Intelligent%20Manufacturing&amp;doi=10.1007%2Fs10845-011-0578-5&amp;volume=24&amp;issue=2&amp;pages=235-250&amp;publication_year=2011&amp;author=Jim%C3%A9nez%2CP"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR27">Jiménez, P. (2012). Survey on model-based manipulation planning of deformable objects. <i>Robotics and Computer-Integrated Manufacturing</i>, <i>28</i>(2), 154–163. <a href="https://doi.org/10.1016/j.rcim.2011.08.002" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1016/j.rcim.2011.08.002">https://doi.org/10.1016/j.rcim.2011.08.002</a></p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.rcim.2011.08.002" data-track-item_id="10.1016/j.rcim.2011.08.002" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.rcim.2011.08.002" aria-label="Article reference 26" data-doi="10.1016/j.rcim.2011.08.002">Article</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 26" href="http://scholar.google.com/scholar_lookup?&amp;title=Survey%20on%20model-based%20manipulation%20planning%20of%20deformable%20objects&amp;journal=Robotics%20and%20Computer-Integrated%20Manufacturing&amp;doi=10.1016%2Fj.rcim.2011.08.002&amp;volume=28&amp;issue=2&amp;pages=154-163&amp;publication_year=2012&amp;author=Jim%C3%A9nez%2CP"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR28">Kayhan, B. M., &amp; Yildiz, G. (2021). Reinforcement learning applications to machine scheduling problems: A comprehensive literature review. <i>Journal of Intelligent Manufacturing</i>, <i>34</i>(3), 905–929. <a href="https://doi.org/10.1007/s10845-021-01847-3" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1007/s10845-021-01847-3">https://doi.org/10.1007/s10845-021-01847-3</a></p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="noopener" data-track-label="10.1007/s10845-021-01847-3" data-track-item_id="10.1007/s10845-021-01847-3" data-track-value="article reference" data-track-action="article reference" href="https://link.springer.com/doi/10.1007/s10845-021-01847-3" aria-label="Article reference 27" data-doi="10.1007/s10845-021-01847-3">Article</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 27" href="http://scholar.google.com/scholar_lookup?&amp;title=Reinforcement%20learning%20applications%20to%20machine%20scheduling%20problems%3A%20A%20comprehensive%20literature%20review&amp;journal=Journal%20of%20Intelligent%20Manufacturing&amp;doi=10.1007%2Fs10845-021-01847-3&amp;volume=34&amp;issue=3&amp;pages=905-929&amp;publication_year=2021&amp;author=Kayhan%2CBM&amp;author=Yildiz%2CG"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR29">Koga, Y., Kerrick, H., &amp; Chitta, S. (2022). On CAD informed Adaptive Robotic Assembly. <i>2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)</i>. <a href="https://doi.org/10.1109/iros47612.2022.9982242" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1109/iros47612.2022.9982242">https://doi.org/10.1109/iros47612.2022.9982242</a></p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1109/iros47612.2022.9982242" data-track-item_id="10.1109/iros47612.2022.9982242" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1109%2Firos47612.2022.9982242" aria-label="Article reference 28" data-doi="10.1109/iros47612.2022.9982242">Article</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 28" href="http://scholar.google.com/scholar_lookup?&amp;title=On%20CAD%20informed%20Adaptive%20Robotic%20Assembly&amp;journal=2022%20IEEE%2FRSJ%20International%20Conference%20on%20Intelligent%20Robots%20and%20Systems%20%28IROS%29&amp;doi=10.1109%2Firos47612.2022.9982242&amp;publication_year=2022&amp;author=Koga%2CY&amp;author=Kerrick%2CH&amp;author=Chitta%2CS"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR30">Kozlovsky, S., Newman, E., &amp; Zacksenhouse, M. (2022). Reinforcement learning of impedance policies for peg-in-hole tasks: Role of asymmetric matrices. <i>IEEE Robotics and Automation Letters</i>, <i>7</i>(4), 10898–10905. <a href="https://doi.org/10.1109/lra.2022.3191070" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1109/lra.2022.3191070">https://doi.org/10.1109/lra.2022.3191070</a></p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1109/lra.2022.3191070" data-track-item_id="10.1109/lra.2022.3191070" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1109%2Flra.2022.3191070" aria-label="Article reference 29" data-doi="10.1109/lra.2022.3191070">Article</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 29" href="http://scholar.google.com/scholar_lookup?&amp;title=Reinforcement%20learning%20of%20impedance%20policies%20for%20peg-in-hole%20tasks%3A%20Role%20of%20asymmetric%20matrices&amp;journal=IEEE%20Robotics%20and%20Automation%20Letters&amp;doi=10.1109%2Flra.2022.3191070&amp;volume=7&amp;issue=4&amp;pages=10898-10905&amp;publication_year=2022&amp;author=Kozlovsky%2CS&amp;author=Newman%2CE&amp;author=Zacksenhouse%2CM"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR31">Lee, E. A., &amp; Seshia, S. A. (2017). <i>Introduction to embedded systems—a cyber-physical systems approach</i> (2nd ed.). MIT.</p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR32">Li, H. (2017). Narrowing support searching range in maintaining arc consistency for solving constraint satisfaction problems. <i>Ieee Access : Practical Innovations, Open Solutions</i>, <i>5</i>, 5798–5803. <a href="https://doi.org/10.1109/access.2017.2690672" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1109/access.2017.2690672">https://doi.org/10.1109/access.2017.2690672</a></p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1109/access.2017.2690672" data-track-item_id="10.1109/access.2017.2690672" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1109%2Faccess.2017.2690672" aria-label="Article reference 31" data-doi="10.1109/access.2017.2690672">Article</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 31" href="http://scholar.google.com/scholar_lookup?&amp;title=Narrowing%20support%20searching%20range%20in%20maintaining%20arc%20consistency%20for%20solving%20constraint%20satisfaction%20problems&amp;journal=Ieee%20Access%20%3A%20Practical%20Innovations%2C%20Open%20Solutions&amp;doi=10.1109%2Faccess.2017.2690672&amp;volume=5&amp;pages=5798-5803&amp;publication_year=2017&amp;author=Li%2CH"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR34">Liang, Y. S., Pellier, D., Fiorino, H., &amp; Pesty, S. (2019). End-user programming of low-and high-level actions for Robotic Task Planning. In <i>2019 28th IEEE international conference on robot and human interactive communication (RO-MAN)</i>. <a href="https://doi.org/10.1109/ro-man46459.2019.8956327" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1109/ro-man46459.2019.8956327">https://doi.org/10.1109/ro-man46459.2019.8956327</a></p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR35">Lin, L., &amp; Gen, M. (2018). Hybrid evolutionary optimisation with learning for production scheduling: State-of-the-art survey on algorithms and applications. <i>International Journal of Production Research</i>, <i>56</i>(1–2), 193–223. <a href="https://doi.org/10.1080/00207543.2018.1437288" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1080/00207543.2018.1437288">https://doi.org/10.1080/00207543.2018.1437288</a></p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1080/00207543.2018.1437288" data-track-item_id="10.1080/00207543.2018.1437288" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1080%2F00207543.2018.1437288" aria-label="Article reference 33" data-doi="10.1080/00207543.2018.1437288">Article</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 33" href="http://scholar.google.com/scholar_lookup?&amp;title=Hybrid%20evolutionary%20optimisation%20with%20learning%20for%20production%20scheduling%3A%20State-of-the-art%20survey%20on%20algorithms%20and%20applications&amp;journal=International%20Journal%20of%20Production%20Research&amp;doi=10.1080%2F00207543.2018.1437288&amp;volume=56&amp;issue=1%E2%80%932&amp;pages=193-223&amp;publication_year=2018&amp;author=Lin%2CL&amp;author=Gen%2CM"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR37">Liu, Z., Liu, Q., Xu, W., Wang, L., &amp; Zhou, Z. (2022). Robot learning towards smart robotic manufacturing: A review. <i>Robotics and Computer-Integrated Manufacturing</i>, <i>77</i>, 102360. <a href="https://doi.org/10.1016/j.rcim.2022.102360" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1016/j.rcim.2022.102360">https://doi.org/10.1016/j.rcim.2022.102360</a></p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.rcim.2022.102360" data-track-item_id="10.1016/j.rcim.2022.102360" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.rcim.2022.102360" aria-label="Article reference 34" data-doi="10.1016/j.rcim.2022.102360">Article</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 34" href="http://scholar.google.com/scholar_lookup?&amp;title=Robot%20learning%20towards%20smart%20robotic%20manufacturing%3A%20A%20review&amp;journal=Robotics%20and%20Computer-Integrated%20Manufacturing&amp;doi=10.1016%2Fj.rcim.2022.102360&amp;volume=77&amp;publication_year=2022&amp;author=Liu%2CZ&amp;author=Liu%2CQ&amp;author=Xu%2CW&amp;author=Wang%2CL&amp;author=Zhou%2CZ"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR36">Liu, S., Zheng, P., &amp; Bao, J. (2023). Digital twin-based manufacturing system: A survey based on a novel reference model. <i>Journal of Intelligent Manufacturing</i>, <i>35</i>(6), 2517–2546. <a href="https://doi.org/10.1007/s10845-023-02172-7" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1007/s10845-023-02172-7">https://doi.org/10.1007/s10845-023-02172-7</a></p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="noopener" data-track-label="10.1007/s10845-023-02172-7" data-track-item_id="10.1007/s10845-023-02172-7" data-track-value="article reference" data-track-action="article reference" href="https://link.springer.com/doi/10.1007/s10845-023-02172-7" aria-label="Article reference 35" data-doi="10.1007/s10845-023-02172-7">Article</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 35" href="http://scholar.google.com/scholar_lookup?&amp;title=Digital%20twin-based%20manufacturing%20system%3A%20A%20survey%20based%20on%20a%20novel%20reference%20model&amp;journal=Journal%20of%20Intelligent%20Manufacturing&amp;doi=10.1007%2Fs10845-023-02172-7&amp;volume=35&amp;issue=6&amp;pages=2517-2546&amp;publication_year=2023&amp;author=Liu%2CS&amp;author=Zheng%2CP&amp;author=Bao%2CJ"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR38">Luo, D., Thevenin, S., &amp; Dolgui, A. (2022). A state-of-the-art on Production Planning in Industry 4.0. <i>International Journal of Production Research</i>, <i>61</i>(19), 6602–6632. <a href="https://doi.org/10.1080/00207543.2022.2122622" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1080/00207543.2022.2122622">https://doi.org/10.1080/00207543.2022.2122622</a></p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1080/00207543.2022.2122622" data-track-item_id="10.1080/00207543.2022.2122622" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1080%2F00207543.2022.2122622" aria-label="Article reference 36" data-doi="10.1080/00207543.2022.2122622">Article</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 36" href="http://scholar.google.com/scholar_lookup?&amp;title=A%20state-of-the-art%20on%20Production%20Planning%20in%20Industry%204.0&amp;journal=International%20Journal%20of%20Production%20Research&amp;doi=10.1080%2F00207543.2022.2122622&amp;volume=61&amp;issue=19&amp;pages=6602-6632&amp;publication_year=2022&amp;author=Luo%2CD&amp;author=Thevenin%2CS&amp;author=Dolgui%2CA"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR39">Masehian, E., &amp; Ghandi, S. (2021). Assembly sequence and path planning for monotone and nonmonotone assemblies with rigid and flexible parts. <i>Robotics and Computer-Integrated Manufacturing</i>, <i>72</i>, 102180. <a href="https://doi.org/10.1016/j.rcim.2021.102180" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1016/j.rcim.2021.102180">https://doi.org/10.1016/j.rcim.2021.102180</a></p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.rcim.2021.102180" data-track-item_id="10.1016/j.rcim.2021.102180" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.rcim.2021.102180" aria-label="Article reference 37" data-doi="10.1016/j.rcim.2021.102180">Article</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 37" href="http://scholar.google.com/scholar_lookup?&amp;title=Assembly%20sequence%20and%20path%20planning%20for%20monotone%20and%20nonmonotone%20assemblies%20with%20rigid%20and%20flexible%20parts&amp;journal=Robotics%20and%20Computer-Integrated%20Manufacturing&amp;doi=10.1016%2Fj.rcim.2021.102180&amp;volume=72&amp;publication_year=2021&amp;author=Masehian%2CE&amp;author=Ghandi%2CS"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR40">Mezouar, Y. (2021). <i>COMMANDIA (Collaborative RObotic Mobile MANipulation of Deformable objects in Industrial Applications)</i>. <a href="http://commandia.unizar.es/" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://commandia.unizar.es/">http://commandia.unizar.es/</a></p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR41">Modad, O. A., Ryska, J., Chehade, A., &amp; Ayoub, G. (2024). Revolutionizing sheet metal stamping through industry 5.0 Digital Twins: A comprehensive review. <i>Journal of Intelligent Manufacturing</i>. <a href="https://doi.org/10.1007/s10845-024-02453-9" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1007/s10845-024-02453-9">https://doi.org/10.1007/s10845-024-02453-9</a></p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="noopener" data-track-label="10.1007/s10845-024-02453-9" data-track-item_id="10.1007/s10845-024-02453-9" data-track-value="article reference" data-track-action="article reference" href="https://link.springer.com/doi/10.1007/s10845-024-02453-9" aria-label="Article reference 39" data-doi="10.1007/s10845-024-02453-9">Article</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 39" href="http://scholar.google.com/scholar_lookup?&amp;title=Revolutionizing%20sheet%20metal%20stamping%20through%20industry%205.0%20Digital%20Twins%3A%20A%20comprehensive%20review&amp;journal=Journal%20of%20Intelligent%20Manufacturing&amp;doi=10.1007%2Fs10845-024-02453-9&amp;publication_year=2024&amp;author=Modad%2COA&amp;author=Ryska%2CJ&amp;author=Chehade%2CA&amp;author=Ayoub%2CG"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR42">Naqvi, M. R., Elmhadhbi, L., Sarkar, A., Archimede, B., &amp; Karray, M. H. (2024). Survey on ontology-based explainable AI in manufacturing. <i>Journal of Intelligent Manufacturing</i>, <i>35</i>(8), 3605–3627. <a href="https://doi.org/10.1007/s10845-023-02304-z" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1007/s10845-023-02304-z">https://doi.org/10.1007/s10845-023-02304-z</a></p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="noopener" data-track-label="10.1007/s10845-023-02304-z" data-track-item_id="10.1007/s10845-023-02304-z" data-track-value="article reference" data-track-action="article reference" href="https://link.springer.com/doi/10.1007/s10845-023-02304-z" aria-label="Article reference 40" data-doi="10.1007/s10845-023-02304-z">Article</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 40" href="http://scholar.google.com/scholar_lookup?&amp;title=Survey%20on%20ontology-based%20explainable%20AI%20in%20manufacturing&amp;journal=Journal%20of%20Intelligent%20Manufacturing&amp;doi=10.1007%2Fs10845-023-02304-z&amp;volume=35&amp;issue=8&amp;pages=3605-3627&amp;publication_year=2024&amp;author=Naqvi%2CMR&amp;author=Elmhadhbi%2CL&amp;author=Sarkar%2CA&amp;author=Archimede%2CB&amp;author=Karray%2CMH"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR43">Neb, A. (2019). Review on approaches to generate assembly sequences by extraction of Assembly features from 3D models. <i>Procedia CIRP</i>, <i>81</i>, 856–861. <a href="https://doi.org/10.1016/j.procir.2019.03.213" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1016/j.procir.2019.03.213">https://doi.org/10.1016/j.procir.2019.03.213</a></p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.procir.2019.03.213" data-track-item_id="10.1016/j.procir.2019.03.213" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.procir.2019.03.213" aria-label="Article reference 41" data-doi="10.1016/j.procir.2019.03.213">Article</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 41" href="http://scholar.google.com/scholar_lookup?&amp;title=Review%20on%20approaches%20to%20generate%20assembly%20sequences%20by%20extraction%20of%20Assembly%20features%20from%203D%20models&amp;journal=Procedia%20CIRP&amp;doi=10.1016%2Fj.procir.2019.03.213&amp;volume=81&amp;pages=856-861&amp;publication_year=2019&amp;author=Neb%2CA"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR44">Neumann, A., Hajji, A., Rekik, M., &amp; Pellerin, R. (2023). Genetic algorithms for planning and scheduling engineer-to-order production: A systematic review. <i>International Journal of Production Research</i>. <a href="https://doi.org/10.1080/00207543.2023.2237122" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1080/00207543.2023.2237122">https://doi.org/10.1080/00207543.2023.2237122</a></p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR45">Nikolov, G. N., Thomsen, A. N., Mikkelstrup, A. F., &amp; Kristiansen, M. (2023). Computer-aided process planning system for laser forming: From CAD to part. <i>International Journal of Production Research.</i> <a href="https://doi.org/10.1080/00207543.2023.2241565" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1080/00207543.2023.2241565">https://doi.org/10.1080/00207543.2023.2241565</a></p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR46">Overbeck, L., Graves, S. C., &amp; Lanza, G. (2023). Development and analysis of Digital Twins of Production systems. <i>International Journal of Production Research</i>. <a href="https://doi.org/10.1080/00207543.2023.2242525" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1080/00207543.2023.2242525">https://doi.org/10.1080/00207543.2023.2242525</a></p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR47">Palli, G., Pirozzi, S., Indovini, M., De Gregorio, D., Zanella, R., &amp; Melchiorri, C. (2019). Automatized switchgear wiring: An outline of the wires experiment results. In <i>Springer tracts in advanced robotics</i> (pp. 107–123). Springer. <a href="https://doi.org/10.1007/978-3-030-22327-4_6" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1007/978-3-030-22327-4_6">https://doi.org/10.1007/978-3-030-22327-4_6</a></p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR48">Pane, Y., Arbo, M. H., Aertbelien, E., &amp; Decre, W. (2020). A system architecture for CAD-based Robotic Assembly with sensor-based skills. <i>IEEE Transactions on Automation Science and Engineering</i>. <a href="https://doi.org/10.1109/tase.2020.2980628" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1109/tase.2020.2980628">https://doi.org/10.1109/tase.2020.2980628</a></p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR49">Panzer, M., &amp; Bender, B. (2021). Deep reinforcement learning in production systems: A systematic literature review. <i>International Journal of Production Research</i>, <i>60</i>(13), 4316–4341. <a href="https://doi.org/10.1080/00207543.2021.1973138" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1080/00207543.2021.1973138">https://doi.org/10.1080/00207543.2021.1973138</a></p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1080/00207543.2021.1973138" data-track-item_id="10.1080/00207543.2021.1973138" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1080%2F00207543.2021.1973138" aria-label="Article reference 47" data-doi="10.1080/00207543.2021.1973138">Article</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 47" href="http://scholar.google.com/scholar_lookup?&amp;title=Deep%20reinforcement%20learning%20in%20production%20systems%3A%20A%20systematic%20literature%20review&amp;journal=International%20Journal%20of%20Production%20Research&amp;doi=10.1080%2F00207543.2021.1973138&amp;volume=60&amp;issue=13&amp;pages=4316-4341&amp;publication_year=2021&amp;author=Panzer%2CM&amp;author=Bender%2CB"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR50">Pyrih, Y., Klymash, M., Kaidan, M., Hordiichuk-Bublivska, O., &amp; Nodzhak, L. (2024). Investigating the computational complexity of the genetic algorithm with variations in population size and the number of generations. In <i>2024 IEEE 17th International Conference on Advanced Trends in Radioelectronics Telecommunications and Computer Engineering (TCSET)</i> (Vol. 1, pp. 1–4). <a href="https://doi.org/10.1109/tcset64720.2024.10755729" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1109/tcset64720.2024.10755729">https://doi.org/10.1109/tcset64720.2024.10755729</a></p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR51">Ren, L., Li, Y., Wang, X., Cui, J., &amp; Zhang, L. (2022). An abge-aided manufacturing knowledge graph construction approach for heterogeneous IIOT data integration. <i>International Journal of Production Research</i>, <i>61</i>(12), 4102–4116. <a href="https://doi.org/10.1080/00207543.2022.2042416" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1080/00207543.2022.2042416">https://doi.org/10.1080/00207543.2022.2042416</a></p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1080/00207543.2022.2042416" data-track-item_id="10.1080/00207543.2022.2042416" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1080%2F00207543.2022.2042416" aria-label="Article reference 49" data-doi="10.1080/00207543.2022.2042416">Article</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 49" href="http://scholar.google.com/scholar_lookup?&amp;title=An%20abge-aided%20manufacturing%20knowledge%20graph%20construction%20approach%20for%20heterogeneous%20IIOT%20data%20integration&amp;journal=International%20Journal%20of%20Production%20Research&amp;doi=10.1080%2F00207543.2022.2042416&amp;volume=61&amp;issue=12&amp;pages=4102-4116&amp;publication_year=2022&amp;author=Ren%2CL&amp;author=Li%2CY&amp;author=Wang%2CX&amp;author=Cui%2CJ&amp;author=Zhang%2CL"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR52">Rodríguez, I., Nottensteiner, K., Leidner, D., Durner, M., Stulp, F., &amp; Albu-Schaffer, A. (2020). Pattern recognition for knowledge transfer in Robotic Assembly sequence planning. <i>IEEE Robotics and Automation Letters</i>, <i>5</i>(2), 3666–3673. <a href="https://doi.org/10.1109/lra.2020.2979622" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1109/lra.2020.2979622">https://doi.org/10.1109/lra.2020.2979622</a></p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1109/lra.2020.2979622" data-track-item_id="10.1109/lra.2020.2979622" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1109%2Flra.2020.2979622" aria-label="Article reference 50" data-doi="10.1109/lra.2020.2979622">Article</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 50" href="http://scholar.google.com/scholar_lookup?&amp;title=Pattern%20recognition%20for%20knowledge%20transfer%20in%20Robotic%20Assembly%20sequence%20planning&amp;journal=IEEE%20Robotics%20and%20Automation%20Letters&amp;doi=10.1109%2Flra.2020.2979622&amp;volume=5&amp;issue=2&amp;pages=3666-3673&amp;publication_year=2020&amp;author=Rodr%C3%ADguez%2CI&amp;author=Nottensteiner%2CK&amp;author=Leidner%2CD&amp;author=Durner%2CM&amp;author=Stulp%2CF&amp;author=Albu-Schaffer%2CA"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR53">Saadat, M., &amp; Nan, P. (2002). Industrial applications of automatic manipulation of flexible materials. <i>Industrial Robot: An International Journal</i>, <i>29</i>(5), 434–442. <a href="https://doi.org/10.1108/01439910210440255" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1108/01439910210440255">https://doi.org/10.1108/01439910210440255</a></p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1108/01439910210440255" data-track-item_id="10.1108/01439910210440255" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1108%2F01439910210440255" aria-label="Article reference 51" data-doi="10.1108/01439910210440255">Article</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 51" href="http://scholar.google.com/scholar_lookup?&amp;title=Industrial%20applications%20of%20automatic%20manipulation%20of%20flexible%20materials&amp;journal=Industrial%20Robot%3A%20An%20International%20Journal&amp;doi=10.1108%2F01439910210440255&amp;volume=29&amp;issue=5&amp;pages=434-442&amp;publication_year=2002&amp;author=Saadat%2CM&amp;author=Nan%2CP"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR54">Sanchez, J., Corrales, J. A., Bouzgarrou, B. C., &amp; Mezouar, Y. (2018). Robotic manipulation and sensing of deformable objects in domestic and industrial applications: A survey. <i>The International Journal of Robotics Research</i>, <i>37</i>(7), 688–716. <a href="https://doi.org/10.1177/0278364918779698" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1177/0278364918779698">https://doi.org/10.1177/0278364918779698</a></p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1177/0278364918779698" data-track-item_id="10.1177/0278364918779698" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1177%2F0278364918779698" aria-label="Article reference 52" data-doi="10.1177/0278364918779698">Article</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 52" href="http://scholar.google.com/scholar_lookup?&amp;title=Robotic%20manipulation%20and%20sensing%20of%20deformable%20objects%20in%20domestic%20and%20industrial%20applications%3A%20A%20survey&amp;journal=The%20International%20Journal%20of%20Robotics%20Research&amp;doi=10.1177%2F0278364918779698&amp;volume=37&amp;issue=7&amp;pages=688-716&amp;publication_year=2018&amp;author=Sanchez%2CJ&amp;author=Corrales%2CJA&amp;author=Bouzgarrou%2CBC&amp;author=Mezouar%2CY"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR55">Shneor, R., &amp; Berman, S. (2022a). The Rαβγ categorisation framework for dexterous robotic Manufacturing processes. <i>International Journal of Production Research</i>. <a href="https://doi.org/10.1080/00207543.2022.2150907" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1080/00207543.2022.2150907">https://doi.org/10.1080/00207543.2022.2150907</a></p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR56">Shneor, R., &amp; Berman, S. (2022b). Assembly sequence planning with deformable linear objects in the smart factory: Dilemmas and injections. <i>IFAC-PapersOnLine</i>, <i>55</i>(10), 2457–2462. <a href="https://doi.org/10.1016/j.ifacol.2022.10.077" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1016/j.ifacol.2022.10.077">https://doi.org/10.1016/j.ifacol.2022.10.077</a></p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.ifacol.2022.10.077" data-track-item_id="10.1016/j.ifacol.2022.10.077" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.ifacol.2022.10.077" aria-label="Article reference 54" data-doi="10.1016/j.ifacol.2022.10.077">Article</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 54" href="http://scholar.google.com/scholar_lookup?&amp;title=Assembly%20sequence%20planning%20with%20deformable%20linear%20objects%20in%20the%20smart%20factory%3A%20Dilemmas%20and%20injections&amp;journal=IFAC-PapersOnLine&amp;doi=10.1016%2Fj.ifacol.2022.10.077&amp;volume=55&amp;issue=10&amp;pages=2457-2462&amp;publication_year=2022&amp;author=Shneor%2CR&amp;author=Berman%2CS"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR57">Shneor, R., &amp; Berman, S. (2023a). Towards production planning automation: mapping documents for robotic assembly planning with DLO. In <i>The 27th International conference on production research, Cluj-Napoca, Romania, 23–28 July 2023</i>.</p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR58">Shneor, R., &amp; Berman, S. (2023b). Robotic Assembly with deformable objects. In <i>Systems collaboration and integration</i> (pp. 221–235). Springer. <a href="https://doi.org/10.1007/978-3-031-44373-2_13" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1007/978-3-031-44373-2_13">https://doi.org/10.1007/978-3-031-44373-2_13</a></p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR59">Southier, L. F., Casanova, D., Barbosa, L., Torrico, C., Barbosa, M., &amp; Teixeira, M. (2022). Modelling and control of manufacturing systems subject to context recognition and switching. <i>International Journal of Production Research</i>, <i>61</i>(10), 3396–3414. <a href="https://doi.org/10.1080/00207543.2022.2081631" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1080/00207543.2022.2081631">https://doi.org/10.1080/00207543.2022.2081631</a></p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1080/00207543.2022.2081631" data-track-item_id="10.1080/00207543.2022.2081631" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1080%2F00207543.2022.2081631" aria-label="Article reference 57" data-doi="10.1080/00207543.2022.2081631">Article</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 57" href="http://scholar.google.com/scholar_lookup?&amp;title=Modelling%20and%20control%20of%20manufacturing%20systems%20subject%20to%20context%20recognition%20and%20switching&amp;journal=International%20Journal%20of%20Production%20Research&amp;doi=10.1080%2F00207543.2022.2081631&amp;volume=61&amp;issue=10&amp;pages=3396-3414&amp;publication_year=2022&amp;author=Southier%2CLF&amp;author=Casanova%2CD&amp;author=Barbosa%2CL&amp;author=Torrico%2CC&amp;author=Barbosa%2CM&amp;author=Teixeira%2CM"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR60">Tariki, K., Kiyokawa, T., Nagatani, T., Takamatsu, J., &amp; Ogasawara, T. (2020). Generating complex assembly sequences from 3D CAD models considering insertion relations. <i>Advanced Robotics</i>, <i>35</i>(6), 337–348. <a href="https://doi.org/10.1080/01691864.2020.1863258" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1080/01691864.2020.1863258">https://doi.org/10.1080/01691864.2020.1863258</a></p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1080/01691864.2020.1863258" data-track-item_id="10.1080/01691864.2020.1863258" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1080%2F01691864.2020.1863258" aria-label="Article reference 58" data-doi="10.1080/01691864.2020.1863258">Article</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 58" href="http://scholar.google.com/scholar_lookup?&amp;title=Generating%20complex%20assembly%20sequences%20from%203D%20CAD%20models%20considering%20insertion%20relations&amp;journal=Advanced%20Robotics&amp;doi=10.1080%2F01691864.2020.1863258&amp;volume=35&amp;issue=6&amp;pages=337-348&amp;publication_year=2020&amp;author=Tariki%2CK&amp;author=Kiyokawa%2CT&amp;author=Nagatani%2CT&amp;author=Takamatsu%2CJ&amp;author=Ogasawara%2CT"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR61">Thomas, G., Chien, M., Tamar, A., Ojea, J. A., &amp; Abbeel, P. (2018). Learning Robotic Assembly from CAD. <i>2018 IEEE International Conference on Robotics and Automation (ICRA)</i>. <a href="https://doi.org/10.1109/icra.2018.8460696" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1109/icra.2018.8460696">https://doi.org/10.1109/icra.2018.8460696</a></p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1109/icra.2018.8460696" data-track-item_id="10.1109/icra.2018.8460696" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1109%2Ficra.2018.8460696" aria-label="Article reference 59" data-doi="10.1109/icra.2018.8460696">Article</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 59" href="http://scholar.google.com/scholar_lookup?&amp;title=Learning%20Robotic%20Assembly%20from%20CAD&amp;journal=2018%20IEEE%20International%20Conference%20on%20Robotics%20and%20Automation%20%28ICRA%29&amp;doi=10.1109%2Ficra.2018.8460696&amp;publication_year=2018&amp;author=Thomas%2CG&amp;author=Chien%2CM&amp;author=Tamar%2CA&amp;author=Ojea%2CJA&amp;author=Abbeel%2CP"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR62">Tpaviot, T. (2008). <i>Tpaviot/PYTHONOCC-core: Python package for 3D CAD/BIM/PLM/Cam</i>. GitHub. <a href="https://github.com/tpaviot/pythonocc-core" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="https://github.com/tpaviot/pythonocc-core">https://github.com/tpaviot/pythonocc-core</a></p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR63">Trommnau, J., Frommknecht, A., Siegert, J., Wößner, J., &amp; Bauernhansl, T. (2020). Design for Automatic Assembly: A new approach to classify limp components. <i>Procedia CIRP</i>, <i>91</i>, 49–54. <a href="https://doi.org/10.1016/j.procir.2020.01.136" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1016/j.procir.2020.01.136">https://doi.org/10.1016/j.procir.2020.01.136</a></p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.procir.2020.01.136" data-track-item_id="10.1016/j.procir.2020.01.136" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.procir.2020.01.136" aria-label="Article reference 61" data-doi="10.1016/j.procir.2020.01.136">Article</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 61" href="http://scholar.google.com/scholar_lookup?&amp;title=Design%20for%20Automatic%20Assembly%3A%20A%20new%20approach%20to%20classify%20limp%20components&amp;journal=Procedia%20CIRP&amp;doi=10.1016%2Fj.procir.2020.01.136&amp;volume=91&amp;pages=49-54&amp;publication_year=2020&amp;author=Trommnau%2CJ&amp;author=Frommknecht%2CA&amp;author=Siegert%2CJ&amp;author=W%C3%B6%C3%9Fner%2CJ&amp;author=Bauernhansl%2CT"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR64">Usuga Cadavid, J. P., Lamouri, S., Grabot, B., Pellerin, R., &amp; Fortin, A. (2020). Machine learning applied in production planning and control: A state-of-the-art in the era of industry 4.0. <i>Journal of Intelligent Manufacturing</i>, <i>31</i>(6), 1531–1558. <a href="https://doi.org/10.1007/s10845-019-01531-7" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1007/s10845-019-01531-7">https://doi.org/10.1007/s10845-019-01531-7</a></p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="noopener" data-track-label="10.1007/s10845-019-01531-7" data-track-item_id="10.1007/s10845-019-01531-7" data-track-value="article reference" data-track-action="article reference" href="https://link.springer.com/doi/10.1007/s10845-019-01531-7" aria-label="Article reference 62" data-doi="10.1007/s10845-019-01531-7">Article</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 62" href="http://scholar.google.com/scholar_lookup?&amp;title=Machine%20learning%20applied%20in%20production%20planning%20and%20control%3A%20A%20state-of-the-art%20in%20the%20era%20of%20industry%204.0&amp;journal=Journal%20of%20Intelligent%20Manufacturing&amp;doi=10.1007%2Fs10845-019-01531-7&amp;volume=31&amp;issue=6&amp;pages=1531-1558&amp;publication_year=2020&amp;author=Usuga%20Cadavid%2CJP&amp;author=Lamouri%2CS&amp;author=Grabot%2CB&amp;author=Pellerin%2CR&amp;author=Fortin%2CA"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR65">Valckenaers, P. (2020). Perspective on holonic manufacturing systems: Prosa becomes arti. <i>Computers in Industry</i>, <i>120</i>, 103226. <a href="https://doi.org/10.1016/j.compind.2020.103226" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1016/j.compind.2020.103226">https://doi.org/10.1016/j.compind.2020.103226</a></p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.compind.2020.103226" data-track-item_id="10.1016/j.compind.2020.103226" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.compind.2020.103226" aria-label="Article reference 63" data-doi="10.1016/j.compind.2020.103226">Article</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 63" href="http://scholar.google.com/scholar_lookup?&amp;title=Perspective%20on%20holonic%20manufacturing%20systems%3A%20Prosa%20becomes%20arti&amp;journal=Computers%20in%20Industry&amp;doi=10.1016%2Fj.compind.2020.103226&amp;volume=120&amp;publication_year=2020&amp;author=Valckenaers%2CP"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR66">Van Brussel, H., Wyns, J., Valckenaers, P., Bongaerts, L., &amp; Peeters, P. (1998). Reference architecture for holonic manufacturing systems: Prosa. <i>Computers in Industry</i>, <i>37</i>(3), 255–274. <a href="https://doi.org/10.1016/s0166-3615(98)00102-x" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1016/s0166-3615(98)00102-x">https://doi.org/10.1016/s0166-3615(98)00102-x</a></p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/s0166-3615(98)00102-x" data-track-item_id="10.1016/s0166-3615(98)00102-x" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fs0166-3615%2898%2900102-x" aria-label="Article reference 64" data-doi="10.1016/s0166-3615(98)00102-x">Article</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 64" href="http://scholar.google.com/scholar_lookup?&amp;title=Reference%20architecture%20for%20holonic%20manufacturing%20systems%3A%20Prosa&amp;journal=Computers%20in%20Industry&amp;doi=10.1016%2Fs0166-3615%2898%2900102-x&amp;volume=37&amp;issue=3&amp;pages=255-274&amp;publication_year=1998&amp;author=Brussel%2CH&amp;author=Wyns%2CJ&amp;author=Valckenaers%2CP&amp;author=Bongaerts%2CL&amp;author=Peeters%2CP"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR67">Van Bulck, D., Goossens, D., Schönberger, J., &amp; Guajardo, M. (2020). Robinx: A three-field classification and unified data format for round-robin sports timetabling. <i>European Journal of Operational Research</i>, <i>280</i>(2), 568–580. <a href="https://doi.org/10.1016/j.ejor.2019.07.023" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1016/j.ejor.2019.07.023">https://doi.org/10.1016/j.ejor.2019.07.023</a></p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.ejor.2019.07.023" data-track-item_id="10.1016/j.ejor.2019.07.023" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.ejor.2019.07.023" aria-label="Article reference 65" data-doi="10.1016/j.ejor.2019.07.023">Article</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 65" href="http://scholar.google.com/scholar_lookup?&amp;title=Robinx%3A%20A%20three-field%20classification%20and%20unified%20data%20format%20for%20round-robin%20sports%20timetabling&amp;journal=European%20Journal%20of%20Operational%20Research&amp;doi=10.1016%2Fj.ejor.2019.07.023&amp;volume=280&amp;issue=2&amp;pages=568-580&amp;publication_year=2020&amp;author=Bulck%2CD&amp;author=Goossens%2CD&amp;author=Sch%C3%B6nberger%2CJ&amp;author=Guajardo%2CM"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR68">Varriale, V., Cammarano, A., Michelino, F., &amp; Caputo, M. (2023). Critical analysis of the impact of artificial intelligence integration with cutting-edge technologies for production systems. <i>Journal of Intelligent Manufacturing</i>. <a href="https://doi.org/10.1007/s10845-023-02244-8" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1007/s10845-023-02244-8">https://doi.org/10.1007/s10845-023-02244-8</a></p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="noopener" data-track-label="10.1007/s10845-023-02244-8" data-track-item_id="10.1007/s10845-023-02244-8" data-track-value="article reference" data-track-action="article reference" href="https://link.springer.com/doi/10.1007/s10845-023-02244-8" aria-label="Article reference 66" data-doi="10.1007/s10845-023-02244-8">Article</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 66" href="http://scholar.google.com/scholar_lookup?&amp;title=Critical%20analysis%20of%20the%20impact%20of%20artificial%20intelligence%20integration%20with%20cutting-edge%20technologies%20for%20production%20systems&amp;journal=Journal%20of%20Intelligent%20Manufacturing&amp;doi=10.1007%2Fs10845-023-02244-8&amp;publication_year=2023&amp;author=Varriale%2CV&amp;author=Cammarano%2CA&amp;author=Michelino%2CF&amp;author=Caputo%2CM"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR69">Wang, L., Keshavarzmanesh, S., Feng, H. Y., &amp; Buchal, R. O. (2008). Assembly process planning and its future in Collaborative Manufacturing: A review. <i>The International Journal of Advanced Manufacturing Technology</i>, <i>41</i>(1–2), 132–144. <a href="https://doi.org/10.1007/s00170-008-1458-9" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1007/s00170-008-1458-9">https://doi.org/10.1007/s00170-008-1458-9</a></p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="noopener" data-track-label="10.1007/s00170-008-1458-9" data-track-item_id="10.1007/s00170-008-1458-9" data-track-value="article reference" data-track-action="article reference" href="https://link.springer.com/doi/10.1007/s00170-008-1458-9" aria-label="Article reference 67" data-doi="10.1007/s00170-008-1458-9">Article</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 67" href="http://scholar.google.com/scholar_lookup?&amp;title=Assembly%20process%20planning%20and%20its%20future%20in%20Collaborative%20Manufacturing%3A%20A%20review&amp;journal=The%20International%20Journal%20of%20Advanced%20Manufacturing%20Technology&amp;doi=10.1007%2Fs00170-008-1458-9&amp;volume=41&amp;issue=1%E2%80%932&amp;pages=132-144&amp;publication_year=2008&amp;author=Wang%2CL&amp;author=Keshavarzmanesh%2CS&amp;author=Feng%2CHY&amp;author=Buchal%2CRO"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR70">Wang, J., Chang, Q., Xiao, G., Wang, N., &amp; Li, S. (2011). Data driven production modeling and simulation of Complex Automobile General Assembly Plant. <i>Computers in Industry</i>, <i>62</i>(7), 765–775. <a href="https://doi.org/10.1016/j.compind.2011.05.004" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1016/j.compind.2011.05.004">https://doi.org/10.1016/j.compind.2011.05.004</a></p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.compind.2011.05.004" data-track-item_id="10.1016/j.compind.2011.05.004" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.compind.2011.05.004" aria-label="Article reference 68" data-doi="10.1016/j.compind.2011.05.004">Article</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 68" href="http://scholar.google.com/scholar_lookup?&amp;title=Data%20driven%20production%20modeling%20and%20simulation%20of%20Complex%20Automobile%20General%20Assembly%20Plant&amp;journal=Computers%20in%20Industry&amp;doi=10.1016%2Fj.compind.2011.05.004&amp;volume=62&amp;issue=7&amp;pages=765-775&amp;publication_year=2011&amp;author=Wang%2CJ&amp;author=Chang%2CQ&amp;author=Xiao%2CG&amp;author=Wang%2CN&amp;author=Li%2CS"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR71">Wasserman, A., Kruger, K., &amp; Basson, A. H. (2023). ARTI-Based Holonic Manufacturing execution system using the BASE Architecture: A case study implementation. In von K. Leipzig, N. Sacks, &amp; M. Mc Clelland (Eds.), <i>Smart, sustainable manufacturing in an ever-changing world</i>. Lecture notes in production engineering. Springer. <a href="https://doi.org/10.1007/978-3-031-15602-1_4" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1007/978-3-031-15602-1_4">https://doi.org/10.1007/978-3-031-15602-1_4</a></p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR72">Wocker, M. M., Ostermeier, F. F., Wanninger, T., Zwinkau, R., &amp; Deuse, J. (2023). Flexible job shop scheduling with preventive maintenance consideration. <i>Journal of Intelligent Manufacturing</i>, <i>35</i>(4), 1517–1539. <a href="https://doi.org/10.1007/s10845-023-02114-3" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1007/s10845-023-02114-3">https://doi.org/10.1007/s10845-023-02114-3</a></p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="noopener" data-track-label="10.1007/s10845-023-02114-3" data-track-item_id="10.1007/s10845-023-02114-3" data-track-value="article reference" data-track-action="article reference" href="https://link.springer.com/doi/10.1007/s10845-023-02114-3" aria-label="Article reference 70" data-doi="10.1007/s10845-023-02114-3">Article</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 70" href="http://scholar.google.com/scholar_lookup?&amp;title=Flexible%20job%20shop%20scheduling%20with%20preventive%20maintenance%20consideration&amp;journal=Journal%20of%20Intelligent%20Manufacturing&amp;doi=10.1007%2Fs10845-023-02114-3&amp;volume=35&amp;issue=4&amp;pages=1517-1539&amp;publication_year=2023&amp;author=Wocker%2CMM&amp;author=Ostermeier%2CFF&amp;author=Wanninger%2CT&amp;author=Zwinkau%2CR&amp;author=Deuse%2CJ"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR73">Xia, T., Sun, H., Ding, Y., Han, D., Qin, W., Seidelmann, J., &amp; Xi, L. (2025). Digital twin-based real-time energy optimization method for production line considering fault disturbances. <i>Journal of Intelligent Manufacturing</i>, <i>36</i>(1), 569–593. <a href="https://doi.org/10.1007/s10845-023-02219-9" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1007/s10845-023-02219-9">https://doi.org/10.1007/s10845-023-02219-9</a></p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="noopener" data-track-label="10.1007/s10845-023-02219-9" data-track-item_id="10.1007/s10845-023-02219-9" data-track-value="article reference" data-track-action="article reference" href="https://link.springer.com/doi/10.1007/s10845-023-02219-9" aria-label="Article reference 71" data-doi="10.1007/s10845-023-02219-9">Article</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 71" href="http://scholar.google.com/scholar_lookup?&amp;title=Digital%20twin-based%20real-time%20energy%20optimization%20method%20for%20production%20line%20considering%20fault%20disturbances&amp;journal=Journal%20of%20Intelligent%20Manufacturing&amp;doi=10.1007%2Fs10845-023-02219-9&amp;volume=36&amp;issue=1&amp;pages=569-593&amp;publication_year=2025&amp;author=Xia%2CT&amp;author=Sun%2CH&amp;author=Ding%2CY&amp;author=Han%2CD&amp;author=Qin%2CW&amp;author=Seidelmann%2CJ&amp;author=Xi%2CL"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR74">Yang, Q., Wu, D. L., Zhu, H. M., Bao, J. S., &amp; Wei, Z. H. (2013). Assembly operation process planning by mapping a virtual assembly simulation to real operation. <i>Computers in Industry</i>, <i>64</i>(7), 869–879. <a href="https://doi.org/10.1016/j.compind.2013.06.001" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1016/j.compind.2013.06.001">https://doi.org/10.1016/j.compind.2013.06.001</a></p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.compind.2013.06.001" data-track-item_id="10.1016/j.compind.2013.06.001" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.compind.2013.06.001" aria-label="Article reference 72" data-doi="10.1016/j.compind.2013.06.001">Article</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 72" href="http://scholar.google.com/scholar_lookup?&amp;title=Assembly%20operation%20process%20planning%20by%20mapping%20a%20virtual%20assembly%20simulation%20to%20real%20operation&amp;journal=Computers%20in%20Industry&amp;doi=10.1016%2Fj.compind.2013.06.001&amp;volume=64&amp;issue=7&amp;pages=869-879&amp;publication_year=2013&amp;author=Yang%2CQ&amp;author=Wu%2CDL&amp;author=Zhu%2CHM&amp;author=Bao%2CJS&amp;author=Wei%2CZH"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR75">Ying, K. C., Pourhejazy, P., Cheng, C. Y., &amp; Cai, Z. Y. (2021). Deep learning-based optimization for motion planning of dual-ARM assembly robots. <i>Computers &amp; Industrial Engineering</i>, <i>160</i>, 107603. <a href="https://doi.org/10.1016/j.cie.2021.107603" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1016/j.cie.2021.107603">https://doi.org/10.1016/j.cie.2021.107603</a></p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.cie.2021.107603" data-track-item_id="10.1016/j.cie.2021.107603" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.cie.2021.107603" aria-label="Article reference 73" data-doi="10.1016/j.cie.2021.107603">Article</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 73" href="http://scholar.google.com/scholar_lookup?&amp;title=Deep%20learning-based%20optimization%20for%20motion%20planning%20of%20dual-ARM%20assembly%20robots&amp;journal=Computers%20%26%20Industrial%20Engineering&amp;doi=10.1016%2Fj.cie.2021.107603&amp;volume=160&amp;publication_year=2021&amp;author=Ying%2CKC&amp;author=Pourhejazy%2CP&amp;author=Cheng%2CCY&amp;author=Cai%2CZY"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR76">Zhang, H., Wang, Z., Zhang, S., Qiu, L., Wang, Y., Xiang, F., Pan, Z., Zhu, L., &amp; Tan, J. (2024). Digital-triplet: A new three entities digital-twin paradigm for Equipment Fault diagnosis. <i>Journal of Intelligent Manufacturing</i>. <a href="https://doi.org/10.1007/s10845-024-02471-7" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1007/s10845-024-02471-7">https://doi.org/10.1007/s10845-024-02471-7</a></p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="noopener" data-track-label="10.1007/s10845-024-02471-7" data-track-item_id="10.1007/s10845-024-02471-7" data-track-value="article reference" data-track-action="article reference" href="https://link.springer.com/doi/10.1007/s10845-024-02471-7" aria-label="Article reference 74" data-doi="10.1007/s10845-024-02471-7">Article</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 74" href="http://scholar.google.com/scholar_lookup?&amp;title=Digital-triplet%3A%20A%20new%20three%20entities%20digital-twin%20paradigm%20for%20Equipment%20Fault%20diagnosis&amp;journal=Journal%20of%20Intelligent%20Manufacturing&amp;doi=10.1007%2Fs10845-024-02471-7&amp;publication_year=2024&amp;author=Zhang%2CH&amp;author=Wang%2CZ&amp;author=Zhang%2CS&amp;author=Qiu%2CL&amp;author=Wang%2CY&amp;author=Xiang%2CF&amp;author=Pan%2CZ&amp;author=Zhu%2CL&amp;author=Tan%2CJ"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR77">Zhao, X., Zheng, L., Shi, M., Zhang, X., &amp; Zhang, Y. (2023). Unified modelling for continuous–discrete hybrid adaptive machining CPS of large thin-walled parts. <i>International Journal of Production Research</i>. <a href="https://doi.org/10.1080/00207543.2023.2217304" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1080/00207543.2023.2217304">https://doi.org/10.1080/00207543.2023.2217304</a></p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR78">Zhu, J., Cherubini, A., Dune, C., Navarro-Alarcon, D., Alambeigi, F., Berenson, D., Ficuciello, F., Harada, K., Kober, J., Li, X., Pan, J., Yuan, W., &amp; Gienger, M. (2022). Challenges and outlook in robotic manipulation of deformable objects. <i>IEEE Robotics &amp; Automation Magazine</i>, <i>29</i>(3), 67–77. <a href="https://doi.org/10.1109/mra.2022.3147415" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1109/mra.2022.3147415">https://doi.org/10.1109/mra.2022.3147415</a></p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1109/mra.2022.3147415" data-track-item_id="10.1109/mra.2022.3147415" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1109%2Fmra.2022.3147415" aria-label="Article reference 76" data-doi="10.1109/mra.2022.3147415">Article</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 76" href="http://scholar.google.com/scholar_lookup?&amp;title=Challenges%20and%20outlook%20in%20robotic%20manipulation%20of%20deformable%20objects&amp;journal=IEEE%20Robotics%20%26%20Automation%20Magazine&amp;doi=10.1109%2Fmra.2022.3147415&amp;volume=29&amp;issue=3&amp;pages=67-77&amp;publication_year=2022&amp;author=Zhu%2CJ&amp;author=Cherubini%2CA&amp;author=Dune%2CC&amp;author=Navarro-Alarcon%2CD&amp;author=Alambeigi%2CF&amp;author=Berenson%2CD&amp;author=Ficuciello%2CF&amp;author=Harada%2CK&amp;author=Kober%2CJ&amp;author=Li%2CX&amp;author=Pan%2CJ&amp;author=Yuan%2CW&amp;author=Gienger%2CM"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR79">Zouita, M., Bouamama, S., &amp; Barkaoui, K. (2019). Improving genetic algorithm using arc consistency technic. <i>Procedia Computer Science</i>, <i>159</i>, 1387–1396. <a href="https://doi.org/10.1016/j.procs.2019.09.309" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1016/j.procs.2019.09.309">https://doi.org/10.1016/j.procs.2019.09.309</a></p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.procs.2019.09.309" data-track-item_id="10.1016/j.procs.2019.09.309" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.procs.2019.09.309" aria-label="Article reference 77" data-doi="10.1016/j.procs.2019.09.309">Article</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 77" href="http://scholar.google.com/scholar_lookup?&amp;title=Improving%20genetic%20algorithm%20using%20arc%20consistency%20technic&amp;journal=Procedia%20Computer%20Science&amp;doi=10.1016%2Fj.procs.2019.09.309&amp;volume=159&amp;pages=1387-1396&amp;publication_year=2019&amp;author=Zouita%2CM&amp;author=Bouamama%2CS&amp;author=Barkaoui%2CK"> Google Scholar</a>  </p></li></ul><p class="c-article-references__download u-hide-print"><a data-track="click" data-track-action="download citation references" data-track-label="link" rel="nofollow" href="https://citation-needed.springer.com/v2/references/10.1007/s10845-025-02578-5?format=refman&amp;flavour=references">Download references<svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-download-medium"></use></svg></a></p></div></div></div></section></div><section data-title="Acknowledgements"><div class="c-article-section" id="Ack1-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="Ack1">Acknowledgements</h2><div class="c-article-section__content" id="Ack1-content"><p>Special thanks to Oriya Mendelbaum from Polygon, Ori Gadot from Siemens, Shai Chereshnia, Eran Turgeman, and Nissim Abuhazira from Ben-Gurion University for their valuable contributions in various stages of the development.</p></div></div></section><section data-title="Funding"><div class="c-article-section" id="Fun-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="Fun">Funding</h2><div class="c-article-section__content" id="Fun-content"><p>Open access funding provided by Ben-Gurion University. The work was supported by Ben-Gurion University of the Negev through the Agricultural, Biological, and Cognitive Robotics Initiative (funded by the Marcus Endowment Fund and the Helmsley Charitable Trust) and by the Israel Innovation Authority as part of the ART (Assembly by Robotic Technology) consortium (grant number 67436).</p></div></div></section><section aria-labelledby="author-information" data-title="Author information"><div class="c-article-section" id="author-information-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="author-information">Author information</h2><div class="c-article-section__content" id="author-information-content"><h3 class="c-article__sub-heading" id="affiliations">Authors and Affiliations</h3><ol class="c-article-author-affiliation__list"><li id="Aff1"><p class="c-article-author-affiliation__address">Department of Industrial Engineering &amp; Management, Ben-Gurion University of the Negev, Beer-Sheva, Israel</p><p class="c-article-author-affiliation__authors-list">Ran Shneor, Shir Ben-David, Bar Shvarzman &amp; Sigal Berman</p></li><li id="Aff2"><p class="c-article-author-affiliation__address">Department of Industrial Engineering &amp; Management, Shamoon College of Engineering, Beer-Sheva, Israel</p><p class="c-article-author-affiliation__authors-list">Gali Naveh</p></li><li id="Aff3"><p class="c-article-author-affiliation__address">Siemens Digital Industries Software, Airport City, Israel</p><p class="c-article-author-affiliation__authors-list">Zachi Mann &amp; Alex Greenberg</p></li><li id="Aff4"><p class="c-article-author-affiliation__address">Polygon-Technologies, Mitzpe Sapir, Zur Yigal, Israel</p><p class="c-article-author-affiliation__authors-list">Yotam Efrat &amp; Omer Einav</p></li></ol><div class="u-js-hide u-hide-print" data-test="author-info"><span class="c-article__sub-heading">Authors</span><ol class="c-article-authors-search u-list-reset"><li id="auth-Ran-Shneor-Aff1"><span class="c-article-authors-search__title u-h3 js-search-name">Ran Shneor</span><div class="c-article-authors-search__list"><div class="c-article-authors-search__item c-article-authors-search__list-item--left"><a href="/search?sortBy=newestFirst&amp;dc.creator=Ran%20Shneor" class="c-article-button" data-track="click" data-track-action="author link - publication" data-track-label="link" rel="nofollow">View author publications</a></div><div class="c-article-authors-search__item c-article-authors-search__list-item--right"><p class="search-in-title-js c-article-authors-search__text"><span class="c-article-authors-search__links-text">You can also search for this author in</span><span class="c-article-identifiers"><a class="c-article-identifiers__item" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&amp;term=Ran%20Shneor" data-track="click" data-track-action="author link - pubmed" data-track-label="link" rel="nofollow">PubMed</a><span class="u-hide"> </span><a class="c-article-identifiers__item" href="https://scholar.google.co.uk/scholar?as_q=&amp;num=10&amp;btnG=Search+Scholar&amp;as_epq=&amp;as_oq=&amp;as_eq=&amp;as_occt=any&amp;as_sauthors=%22Ran%20Shneor%22&amp;as_publication=&amp;as_ylo=&amp;as_yhi=&amp;as_allsubj=all&amp;hl=en" data-track="click" data-track-action="author link - scholar" data-track-label="link" rel="nofollow">Google Scholar</a></span></p></div></div></li><li id="auth-Gali-Naveh-Aff2"><span class="c-article-authors-search__title u-h3 js-search-name">Gali Naveh</span><div class="c-article-authors-search__list"><div class="c-article-authors-search__item c-article-authors-search__list-item--left"><a href="/search?sortBy=newestFirst&amp;dc.creator=Gali%20Naveh" class="c-article-button" data-track="click" data-track-action="author link - publication" data-track-label="link" rel="nofollow">View author publications</a></div><div class="c-article-authors-search__item c-article-authors-search__list-item--right"><p class="search-in-title-js c-article-authors-search__text"><span class="c-article-authors-search__links-text">You can also search for this author in</span><span class="c-article-identifiers"><a class="c-article-identifiers__item" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&amp;term=Gali%20Naveh" data-track="click" data-track-action="author link - pubmed" data-track-label="link" rel="nofollow">PubMed</a><span class="u-hide"> </span><a class="c-article-identifiers__item" href="https://scholar.google.co.uk/scholar?as_q=&amp;num=10&amp;btnG=Search+Scholar&amp;as_epq=&amp;as_oq=&amp;as_eq=&amp;as_occt=any&amp;as_sauthors=%22Gali%20Naveh%22&amp;as_publication=&amp;as_ylo=&amp;as_yhi=&amp;as_allsubj=all&amp;hl=en" data-track="click" data-track-action="author link - scholar" data-track-label="link" rel="nofollow">Google Scholar</a></span></p></div></div></li><li id="auth-Shir-Ben_David-Aff1"><span class="c-article-authors-search__title u-h3 js-search-name">Shir Ben-David</span><div class="c-article-authors-search__list"><div class="c-article-authors-search__item c-article-authors-search__list-item--left"><a href="/search?sortBy=newestFirst&amp;dc.creator=Shir%20Ben-David" class="c-article-button" data-track="click" data-track-action="author link - publication" data-track-label="link" rel="nofollow">View author publications</a></div><div class="c-article-authors-search__item c-article-authors-search__list-item--right"><p class="search-in-title-js c-article-authors-search__text"><span class="c-article-authors-search__links-text">You can also search for this author in</span><span class="c-article-identifiers"><a class="c-article-identifiers__item" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&amp;term=Shir%20Ben-David" data-track="click" data-track-action="author link - pubmed" data-track-label="link" rel="nofollow">PubMed</a><span class="u-hide"> </span><a class="c-article-identifiers__item" href="https://scholar.google.co.uk/scholar?as_q=&amp;num=10&amp;btnG=Search+Scholar&amp;as_epq=&amp;as_oq=&amp;as_eq=&amp;as_occt=any&amp;as_sauthors=%22Shir%20Ben-David%22&amp;as_publication=&amp;as_ylo=&amp;as_yhi=&amp;as_allsubj=all&amp;hl=en" data-track="click" data-track-action="author link - scholar" data-track-label="link" rel="nofollow">Google Scholar</a></span></p></div></div></li><li id="auth-Bar-Shvarzman-Aff1"><span class="c-article-authors-search__title u-h3 js-search-name">Bar Shvarzman</span><div class="c-article-authors-search__list"><div class="c-article-authors-search__item c-article-authors-search__list-item--left"><a href="/search?sortBy=newestFirst&amp;dc.creator=Bar%20Shvarzman" class="c-article-button" data-track="click" data-track-action="author link - publication" data-track-label="link" rel="nofollow">View author publications</a></div><div class="c-article-authors-search__item c-article-authors-search__list-item--right"><p class="search-in-title-js c-article-authors-search__text"><span class="c-article-authors-search__links-text">You can also search for this author in</span><span class="c-article-identifiers"><a class="c-article-identifiers__item" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&amp;term=Bar%20Shvarzman" data-track="click" data-track-action="author link - pubmed" data-track-label="link" rel="nofollow">PubMed</a><span class="u-hide"> </span><a class="c-article-identifiers__item" href="https://scholar.google.co.uk/scholar?as_q=&amp;num=10&amp;btnG=Search+Scholar&amp;as_epq=&amp;as_oq=&amp;as_eq=&amp;as_occt=any&amp;as_sauthors=%22Bar%20Shvarzman%22&amp;as_publication=&amp;as_ylo=&amp;as_yhi=&amp;as_allsubj=all&amp;hl=en" data-track="click" data-track-action="author link - scholar" data-track-label="link" rel="nofollow">Google Scholar</a></span></p></div></div></li><li id="auth-Zachi-Mann-Aff3"><span class="c-article-authors-search__title u-h3 js-search-name">Zachi Mann</span><div class="c-article-authors-search__list"><div class="c-article-authors-search__item c-article-authors-search__list-item--left"><a href="/search?sortBy=newestFirst&amp;dc.creator=Zachi%20Mann" class="c-article-button" data-track="click" data-track-action="author link - publication" data-track-label="link" rel="nofollow">View author publications</a></div><div class="c-article-authors-search__item c-article-authors-search__list-item--right"><p class="search-in-title-js c-article-authors-search__text"><span class="c-article-authors-search__links-text">You can also search for this author in</span><span class="c-article-identifiers"><a class="c-article-identifiers__item" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&amp;term=Zachi%20Mann" data-track="click" data-track-action="author link - pubmed" data-track-label="link" rel="nofollow">PubMed</a><span class="u-hide"> </span><a class="c-article-identifiers__item" href="https://scholar.google.co.uk/scholar?as_q=&amp;num=10&amp;btnG=Search+Scholar&amp;as_epq=&amp;as_oq=&amp;as_eq=&amp;as_occt=any&amp;as_sauthors=%22Zachi%20Mann%22&amp;as_publication=&amp;as_ylo=&amp;as_yhi=&amp;as_allsubj=all&amp;hl=en" data-track="click" data-track-action="author link - scholar" data-track-label="link" rel="nofollow">Google Scholar</a></span></p></div></div></li><li id="auth-Alex-Greenberg-Aff3"><span class="c-article-authors-search__title u-h3 js-search-name">Alex Greenberg</span><div class="c-article-authors-search__list"><div class="c-article-authors-search__item c-article-authors-search__list-item--left"><a href="/search?sortBy=newestFirst&amp;dc.creator=Alex%20Greenberg" class="c-article-button" data-track="click" data-track-action="author link - publication" data-track-label="link" rel="nofollow">View author publications</a></div><div class="c-article-authors-search__item c-article-authors-search__list-item--right"><p class="search-in-title-js c-article-authors-search__text"><span class="c-article-authors-search__links-text">You can also search for this author in</span><span class="c-article-identifiers"><a class="c-article-identifiers__item" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&amp;term=Alex%20Greenberg" data-track="click" data-track-action="author link - pubmed" data-track-label="link" rel="nofollow">PubMed</a><span class="u-hide"> </span><a class="c-article-identifiers__item" href="https://scholar.google.co.uk/scholar?as_q=&amp;num=10&amp;btnG=Search+Scholar&amp;as_epq=&amp;as_oq=&amp;as_eq=&amp;as_occt=any&amp;as_sauthors=%22Alex%20Greenberg%22&amp;as_publication=&amp;as_ylo=&amp;as_yhi=&amp;as_allsubj=all&amp;hl=en" data-track="click" data-track-action="author link - scholar" data-track-label="link" rel="nofollow">Google Scholar</a></span></p></div></div></li><li id="auth-Yotam-Efrat-Aff4"><span class="c-article-authors-search__title u-h3 js-search-name">Yotam Efrat</span><div class="c-article-authors-search__list"><div class="c-article-authors-search__item c-article-authors-search__list-item--left"><a href="/search?sortBy=newestFirst&amp;dc.creator=Yotam%20Efrat" class="c-article-button" data-track="click" data-track-action="author link - publication" data-track-label="link" rel="nofollow">View author publications</a></div><div class="c-article-authors-search__item c-article-authors-search__list-item--right"><p class="search-in-title-js c-article-authors-search__text"><span class="c-article-authors-search__links-text">You can also search for this author in</span><span class="c-article-identifiers"><a class="c-article-identifiers__item" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&amp;term=Yotam%20Efrat" data-track="click" data-track-action="author link - pubmed" data-track-label="link" rel="nofollow">PubMed</a><span class="u-hide"> </span><a class="c-article-identifiers__item" href="https://scholar.google.co.uk/scholar?as_q=&amp;num=10&amp;btnG=Search+Scholar&amp;as_epq=&amp;as_oq=&amp;as_eq=&amp;as_occt=any&amp;as_sauthors=%22Yotam%20Efrat%22&amp;as_publication=&amp;as_ylo=&amp;as_yhi=&amp;as_allsubj=all&amp;hl=en" data-track="click" data-track-action="author link - scholar" data-track-label="link" rel="nofollow">Google Scholar</a></span></p></div></div></li><li id="auth-Omer-Einav-Aff4"><span class="c-article-authors-search__title u-h3 js-search-name">Omer Einav</span><div class="c-article-authors-search__list"><div class="c-article-authors-search__item c-article-authors-search__list-item--left"><a href="/search?sortBy=newestFirst&amp;dc.creator=Omer%20Einav" class="c-article-button" data-track="click" data-track-action="author link - publication" data-track-label="link" rel="nofollow">View author publications</a></div><div class="c-article-authors-search__item c-article-authors-search__list-item--right"><p class="search-in-title-js c-article-authors-search__text"><span class="c-article-authors-search__links-text">You can also search for this author in</span><span class="c-article-identifiers"><a class="c-article-identifiers__item" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&amp;term=Omer%20Einav" data-track="click" data-track-action="author link - pubmed" data-track-label="link" rel="nofollow">PubMed</a><span class="u-hide"> </span><a class="c-article-identifiers__item" href="https://scholar.google.co.uk/scholar?as_q=&amp;num=10&amp;btnG=Search+Scholar&amp;as_epq=&amp;as_oq=&amp;as_eq=&amp;as_occt=any&amp;as_sauthors=%22Omer%20Einav%22&amp;as_publication=&amp;as_ylo=&amp;as_yhi=&amp;as_allsubj=all&amp;hl=en" data-track="click" data-track-action="author link - scholar" data-track-label="link" rel="nofollow">Google Scholar</a></span></p></div></div></li><li id="auth-Sigal-Berman-Aff1"><span class="c-article-authors-search__title u-h3 js-search-name">Sigal Berman</span><div class="c-article-authors-search__list"><div class="c-article-authors-search__item c-article-authors-search__list-item--left"><a href="/search?sortBy=newestFirst&amp;dc.creator=Sigal%20Berman" class="c-article-button" data-track="click" data-track-action="author link - publication" data-track-label="link" rel="nofollow">View author publications</a></div><div class="c-article-authors-search__item c-article-authors-search__list-item--right"><p class="search-in-title-js c-article-authors-search__text"><span class="c-article-authors-search__links-text">You can also search for this author in</span><span class="c-article-identifiers"><a class="c-article-identifiers__item" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&amp;term=Sigal%20Berman" data-track="click" data-track-action="author link - pubmed" data-track-label="link" rel="nofollow">PubMed</a><span class="u-hide"> </span><a class="c-article-identifiers__item" href="https://scholar.google.co.uk/scholar?as_q=&amp;num=10&amp;btnG=Search+Scholar&amp;as_epq=&amp;as_oq=&amp;as_eq=&amp;as_occt=any&amp;as_sauthors=%22Sigal%20Berman%22&amp;as_publication=&amp;as_ylo=&amp;as_yhi=&amp;as_allsubj=all&amp;hl=en" data-track="click" data-track-action="author link - scholar" data-track-label="link" rel="nofollow">Google Scholar</a></span></p></div></div></li></ol></div><h3 class="c-article__sub-heading" id="contributions">Contributions</h3><p>RS and SB conceptualized the methodology. SBD, GN, BS, and SB developed the database. RS and SB developed the data extraction module. SBD, BS, and SB developed the process planning module. ZM, AG, YE, and OE developed the process execution module. RS and SB wrote the initial draft of the manuscript. All authors discussed the results and contributed to the final manuscript. All authors read and approved the final manuscript.</p><h3 class="c-article__sub-heading" id="corresponding-author">Corresponding author</h3><p id="corresponding-author-list">Correspondence to <a id="corresp-c1" href="mailto:shneorr@post.bgu.ac.il">Ran Shneor</a>.</p></div></div></section><section data-title="Ethics declarations"><div class="c-article-section" id="ethics-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="ethics">Ethics declarations</h2><div class="c-article-section__content" id="ethics-content"> <h3 class="c-article__sub-heading" id="FPar2">Competing interests</h3> <p>The authors report there are no competing interests to declare.</p> <h3 class="c-article__sub-heading" id="FPar3">Ethical approval</h3> <p>Not applicable.</p> <h3 class="c-article__sub-heading" id="FPar1">Consent for publication</h3> <p>Not applicable.</p> <h3 class="c-article__sub-heading" id="FPar4">Consent to participate</h3> <p>Not applicable.</p> </div></div></section><section data-title="Additional information"><div class="c-article-section" id="additional-information-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="additional-information">Additional information</h2><div class="c-article-section__content" id="additional-information-content"><h3 class="c-article__sub-heading">Publisher’s note</h3><p>Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.</p></div></div></section><section data-title="Supplementary Information"><div class="c-article-section" id="Sec30-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="Sec30">Supplementary Information</h2><div class="c-article-section__content" id="Sec30-content"><div data-test="supplementary-info"><div id="figshareContainer" class="c-article-figshare-container" data-test="figshare-container"></div><p>Below is the link to the electronic supplementary material. </p><div id="MOESM1"><div class="video" id="mijsvdivEvya3JvZ6WQSPtXDD4CtVM"><div mi24-video-player="true" video-id="Evya3JvZ6WQSPtXDD4CtVM" player-id="8PcXmCm9nWqE6posBEkd1h" config-type="vmpro" flash-path="//e.video-cdn.net/v2/" api-url="//d.video-cdn.net/play"></div><script src="//e.video-cdn.net/v2/embed.js"></script></div><div class="serif u-mb-0 u-mt-32 standard-space-below" data-test="bottom-caption" id="video-description-Evya3JvZ6WQSPtXDD4CtVM"><p>Supplementary file 2 (mp4 7870 KB)</p></div></div><div id="MOESM2"><div class="video" id="mijsvdiv4Hw9ygQ9pooEpcH71cZEii"><div mi24-video-player="true" video-id="4Hw9ygQ9pooEpcH71cZEii" player-id="8PcXmCm9nWqE6posBEkd1h" config-type="vmpro" flash-path="//e.video-cdn.net/v2/" api-url="//d.video-cdn.net/play"></div><script src="//e.video-cdn.net/v2/embed.js"></script></div><div class="serif u-mb-0 u-mt-32 standard-space-below" data-test="bottom-caption" id="video-description-4Hw9ygQ9pooEpcH71cZEii"><p>Supplementary file 3 (mp4 14164 KB)</p></div></div><div id="MOESM3"><div class="video" id="mijsvdivAfbQjAFjVD77UmJy7DNaja"><div mi24-video-player="true" video-id="AfbQjAFjVD77UmJy7DNaja" player-id="8PcXmCm9nWqE6posBEkd1h" config-type="vmpro" flash-path="//e.video-cdn.net/v2/" api-url="//d.video-cdn.net/play"></div><script src="//e.video-cdn.net/v2/embed.js"></script></div><div class="serif u-mb-0 u-mt-32 standard-space-below" data-test="bottom-caption" id="video-description-AfbQjAFjVD77UmJy7DNaja"><p>Supplementary file 4 (mp4 42211 KB)</p></div></div></div></div></div></section><section data-title="Rights and permissions"><div class="c-article-section" id="rightslink-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="rightslink">Rights and permissions</h2><div class="c-article-section__content" id="rightslink-content"> <p><b>Open Access</b> This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit <a href="http://creativecommons.org/licenses/by/4.0/" rel="license">http://creativecommons.org/licenses/by/4.0/</a>.</p> <p class="c-article-rights"><a data-track="click" data-track-action="view rights and permissions" data-track-label="link" href="https://s100.copyright.com/AppDispatchServlet?title=A%20planning%20and%20execution%20framework%20for%20robotic%20assembly%20with%20deformable%20objects%20using%20a%20centralized%20database%20based%20on%20the%20R%CE%B1%CE%B2%CE%B3%20categorization&amp;author=Ran%20Shneor%20et%20al&amp;contentID=10.1007%2Fs10845-025-02578-5&amp;copyright=The%20Author%28s%29&amp;publication=0956-5515&amp;publicationDate=2025-03-06&amp;publisherName=SpringerNature&amp;orderBeanReset=true&amp;oa=CC%20BY">Reprints and permissions</a></p></div></div></section><section aria-labelledby="article-info" data-title="About this article"><div class="c-article-section" id="article-info-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="article-info">About this article</h2><div class="c-article-section__content" id="article-info-content"><div class="c-bibliographic-information"><div class="u-hide-print c-bibliographic-information__column c-bibliographic-information__column--border"><a data-crossmark="10.1007/s10845-025-02578-5" target="_blank" rel="noopener" href="https://crossmark.crossref.org/dialog/?doi=10.1007/s10845-025-02578-5" data-track="click" data-track-action="Click Crossmark" data-track-label="link" data-test="crossmark"><img loading="lazy" width="57" height="81" alt="Check for updates. Verify currency and authenticity via CrossMark" src=""></a></div><div class="c-bibliographic-information__column"><h3 class="c-article__sub-heading" id="citeas">Cite this article</h3><p class="c-bibliographic-information__citation">Shneor, R., Naveh, G., Ben-David, S. <i>et al.</i> A planning and execution framework for robotic assembly with deformable objects using a centralized database based on the Rαβγ categorization. <i>J Intell Manuf</i> (2025). https://doi.org/10.1007/s10845-025-02578-5</p><p class="c-bibliographic-information__download-citation u-hide-print"><a data-test="citation-link" data-track="click" data-track-action="download article citation" data-track-label="link" data-track-external="" rel="nofollow" href="https://citation-needed.springer.com/v2/references/10.1007/s10845-025-02578-5?format=refman&amp;flavour=citation">Download citation<svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-download-medium"></use></svg></a></p><ul class="c-bibliographic-information__list" data-test="publication-history"><li class="c-bibliographic-information__list-item"><p>Received<span class="u-hide">: </span><span class="c-bibliographic-information__value"><time datetime="2024-09-19">19 September 2024</time></span></p></li><li class="c-bibliographic-information__list-item"><p>Accepted<span class="u-hide">: </span><span class="c-bibliographic-information__value"><time datetime="2025-01-21">21 January 2025</time></span></p></li><li class="c-bibliographic-information__list-item"><p>Published<span class="u-hide">: </span><span class="c-bibliographic-information__value"><time datetime="2025-03-06">06 March 2025</time></span></p></li><li class="c-bibliographic-information__list-item c-bibliographic-information__list-item--full-width"><p><abbr title="Digital Object Identifier">DOI</abbr><span class="u-hide">: </span><span class="c-bibliographic-information__value">https://doi.org/10.1007/s10845-025-02578-5</span></p></li></ul><div data-component="share-box"><div class="c-article-share-box u-display-none" hidden=""><h3 class="c-article__sub-heading">Share this article</h3><p class="c-article-share-box__description">Anyone you share the following link with will be able to read this content:</p><button class="js-get-share-url c-article-share-box__button" type="button" id="get-share-url" data-track="click" data-track-label="button" data-track-external="" data-track-action="get shareable link">Get shareable link</button><div class="js-no-share-url-container u-display-none" hidden=""><p class="js-c-article-share-box__no-sharelink-info c-article-share-box__no-sharelink-info">Sorry, a shareable link is not currently available for this article.</p></div><div class="js-share-url-container u-display-none" hidden=""><p class="js-share-url c-article-share-box__only-read-input" id="share-url" data-track="click" data-track-label="button" data-track-action="select share url"></p><button class="js-copy-share-url c-article-share-box__button--link-like" type="button" id="copy-share-url" data-track="click" data-track-label="button" data-track-action="copy share url" data-track-external="">Copy to clipboard</button></div><p class="js-c-article-share-box__additional-info c-article-share-box__additional-info"> Provided by the Springer Nature SharedIt content-sharing initiative </p></div></div><h3 class="c-article__sub-heading">Keywords</h3><ul class="c-article-subject-list"><li class="c-article-subject-list__subject"><span><a href="/search?query=Robotics&amp;facet-discipline=&#34;Business%20and%20Management&#34;" data-track="click" data-track-action="view keyword" data-track-label="link">Robotics</a></span></li><li class="c-article-subject-list__subject"><span><a href="/search?query=Assembly%20planning&amp;facet-discipline=&#34;Business%20and%20Management&#34;" data-track="click" data-track-action="view keyword" data-track-label="link">Assembly planning</a></span></li><li class="c-article-subject-list__subject"><span><a href="/search?query=Deformable%20objects&amp;facet-discipline=&#34;Business%20and%20Management&#34;" data-track="click" data-track-action="view keyword" data-track-label="link">Deformable objects</a></span></li><li class="c-article-subject-list__subject"><span><a href="/search?query=Digital%20twin&amp;facet-discipline=&#34;Business%20and%20Management&#34;" data-track="click" data-track-action="view keyword" data-track-label="link">Digital twin</a></span></li></ul><div data-component="article-info-list"></div></div></div></div></div></section><script src="https://e.video-cdn.net/v2/embed.js"></script> </div> </main> <div class="c-article-sidebar u-text-sm u-hide-print l-with-sidebar__sidebar" id="sidebar" data-container-type="reading-companion" data-track-component="reading companion"> <aside aria-label="reading companion"> <div class="app-card-service" data-test="article-checklist-banner"> <div> <a class="app-card-service__link" data-track="click_presubmission_checklist" data-track-context="article page top of reading companion" data-track-category="pre-submission-checklist" data-track-action="clicked article page checklist banner test 2 old version" data-track-label="link" href="https://beta.springernature.com/pre-submission?journalId=10845" data-test="article-checklist-banner-link"> <span class="app-card-service__link-text">Use our pre-submission checklist</span> <svg class="app-card-service__link-icon" aria-hidden="true" focusable="false"><use xlink:href="#icon-eds-i-arrow-right-small"></use></svg> </a> <p class="app-card-service__description">Avoid common mistakes on your manuscript.</p> </div> <div class="app-card-service__icon-container"> <svg class="app-card-service__icon" aria-hidden="true" focusable="false"> <use xlink:href="#icon-eds-i-clipboard-check-medium"></use> </svg> </div> </div> <div data-test="collections"> </div> <div data-test="editorial-summary"> </div> <div class="c-reading-companion"> <div class="c-reading-companion__sticky" data-component="reading-companion-sticky" data-test="reading-companion-sticky"> <div class="c-reading-companion__panel c-reading-companion__sections c-reading-companion__panel--active" id="tabpanel-sections"> <div class="u-lazy-ad-wrapper u-mt-16 u-hide" data-component-mpu><div class="c-ad c-ad--300x250"> <div class="c-ad__inner"> <p class="c-ad__label">Advertisement</p> <div id="div-gpt-ad-MPU1" class="div-gpt-ad grade-c-hide" data-pa11y-ignore data-gpt data-gpt-unitpath="/270604982/springerlink/10845/article" data-gpt-sizes="300x250" data-test="MPU1-ad" data-gpt-targeting="pos=MPU1;articleid=s10845-025-02578-5;"> </div> </div> </div> </div> </div> <div class="c-reading-companion__panel c-reading-companion__figures c-reading-companion__panel--full-width" id="tabpanel-figures"></div> <div class="c-reading-companion__panel c-reading-companion__references c-reading-companion__panel--full-width" id="tabpanel-references"></div> </div> </div> </aside> </div> </div> </article> <div class="app-elements"> <nav aria-label="expander navigation"> <div class="eds-c-header__expander eds-c-header__expander--search" id="eds-c-header-popup-search"> <h2 class="eds-c-header__heading">Search</h2> <div class="u-container"> <search class="eds-c-header__search" role="search" aria-label="Search from the header"> <form method="GET" action="//link.springer.com/search" data-test="header-search" data-track="search" data-track-context="search from header" data-track-action="submit search form" data-track-category="unified header" data-track-label="form" > <label for="eds-c-header-search" class="eds-c-header__search-label">Search by keyword or author</label> <div class="eds-c-header__search-container"> <input id="eds-c-header-search" class="eds-c-header__search-input" autocomplete="off" name="query" type="search" value="" required> <button class="eds-c-header__search-button" type="submit"> <svg class="eds-c-header__icon" aria-hidden="true" focusable="false"> <use xlink:href="#icon-eds-i-search-medium"></use> </svg> <span class="u-visually-hidden">Search</span> </button> </div> </form> </search> </div> </div> <div class="eds-c-header__expander eds-c-header__expander--menu" id="eds-c-header-nav"> <h2 class="eds-c-header__heading">Navigation</h2> <ul class="eds-c-header__list"> <li class="eds-c-header__list-item"> <a class="eds-c-header__link" href="https://link.springer.com/journals/" data-track="nav_find_a_journal" data-track-context="unified header" data-track-action="click find a journal" data-track-category="unified header" data-track-label="link" > Find a journal </a> </li> <li class="eds-c-header__list-item"> <a class="eds-c-header__link" href="https://www.springernature.com/gp/authors" data-track="nav_how_to_publish" data-track-context="unified header" data-track-action="click publish with us link" data-track-category="unified header" data-track-label="link" > Publish with us </a> </li> <li class="eds-c-header__list-item"> <a class="eds-c-header__link" href="https://link.springernature.com/home/" data-track="nav_track_your_research" data-track-context="unified header" data-track-action="click track your research" data-track-category="unified header" data-track-label="link" > Track your research </a> </li> </ul> </div> </nav> <footer > <div class="eds-c-footer" > <div class="eds-c-footer__container"> <div class="eds-c-footer__grid eds-c-footer__group--separator"> <div class="eds-c-footer__group"> <h3 class="eds-c-footer__heading">Discover content</h3> <ul class="eds-c-footer__list"> <li class="eds-c-footer__item"><a class="eds-c-footer__link" href="https://link.springer.com/journals/a/1" data-track="nav_journals_a_z" data-track-action="journals a-z" data-track-context="unified footer" data-track-label="link">Journals A-Z</a></li> <li class="eds-c-footer__item"><a class="eds-c-footer__link" href="https://link.springer.com/books/a/1" data-track="nav_books_a_z" data-track-action="books a-z" data-track-context="unified footer" data-track-label="link">Books A-Z</a></li> </ul> </div> <div class="eds-c-footer__group"> <h3 class="eds-c-footer__heading">Publish with us</h3> <ul class="eds-c-footer__list"> <li class="eds-c-footer__item"><a class="eds-c-footer__link" href="https://link.springer.com/journals" data-track="nav_journal_finder" data-track-action="journal finder" data-track-context="unified footer" data-track-label="link">Journal finder</a></li> <li class="eds-c-footer__item"><a class="eds-c-footer__link" href="https://www.springernature.com/gp/authors" data-track="nav_publish_your_research" data-track-action="publish your research" data-track-context="unified footer" data-track-label="link">Publish your research</a></li> <li class="eds-c-footer__item"><a class="eds-c-footer__link" href="https://www.springernature.com/gp/open-research/about/the-fundamentals-of-open-access-and-open-research" data-track="nav_open_access_publishing" data-track-action="open access publishing" data-track-context="unified footer" data-track-label="link">Open access publishing</a></li> </ul> </div> <div class="eds-c-footer__group"> <h3 class="eds-c-footer__heading">Products and services</h3> <ul class="eds-c-footer__list"> <li class="eds-c-footer__item"><a class="eds-c-footer__link" href="https://www.springernature.com/gp/products" data-track="nav_our_products" data-track-action="our products" data-track-context="unified footer" data-track-label="link">Our products</a></li> <li class="eds-c-footer__item"><a class="eds-c-footer__link" href="https://www.springernature.com/gp/librarians" data-track="nav_librarians" data-track-action="librarians" data-track-context="unified footer" data-track-label="link">Librarians</a></li> <li class="eds-c-footer__item"><a class="eds-c-footer__link" href="https://www.springernature.com/gp/societies" data-track="nav_societies" data-track-action="societies" data-track-context="unified footer" data-track-label="link">Societies</a></li> <li class="eds-c-footer__item"><a class="eds-c-footer__link" href="https://www.springernature.com/gp/partners" data-track="nav_partners_and_advertisers" data-track-action="partners and advertisers" data-track-context="unified footer" data-track-label="link">Partners and advertisers</a></li> </ul> </div> <div class="eds-c-footer__group"> <h3 class="eds-c-footer__heading">Our brands</h3> <ul class="eds-c-footer__list"> <li class="eds-c-footer__item"><a class="eds-c-footer__link" href="https://www.springer.com/" data-track="nav_imprint_Springer" data-track-action="Springer" data-track-context="unified footer" data-track-label="link">Springer</a></li> <li class="eds-c-footer__item"><a class="eds-c-footer__link" href="https://www.nature.com/" data-track="nav_imprint_Nature_Portfolio" data-track-action="Nature Portfolio" data-track-context="unified footer" data-track-label="link">Nature Portfolio</a></li> <li class="eds-c-footer__item"><a class="eds-c-footer__link" href="https://www.biomedcentral.com/" data-track="nav_imprint_BMC" data-track-action="BMC" data-track-context="unified footer" data-track-label="link">BMC</a></li> <li class="eds-c-footer__item"><a class="eds-c-footer__link" href="https://www.palgrave.com/" data-track="nav_imprint_Palgrave_Macmillan" data-track-action="Palgrave Macmillan" data-track-context="unified footer" data-track-label="link">Palgrave Macmillan</a></li> <li class="eds-c-footer__item"><a class="eds-c-footer__link" href="https://www.apress.com/" data-track="nav_imprint_Apress" data-track-action="Apress" data-track-context="unified footer" data-track-label="link">Apress</a></li> <li class="eds-c-footer__item"><a class="eds-c-footer__link" href="https://link.springer.com/brands/discover" data-track="nav_imprint_Discover" data-track-action="Discover" data-track-context="unified footer" data-track-label="link">Discover</a></li> </ul> </div> </div> </div> <div class="eds-c-footer__container"> <nav aria-label="footer navigation"> <ul class="eds-c-footer__links"> <li class="eds-c-footer__item"> <button class="eds-c-footer__link" data-cc-action="preferences" data-track="dialog_manage_cookies" data-track-action="Manage cookies" data-track-context="unified footer" data-track-label="link"><span class="eds-c-footer__button-text">Your privacy choices/Manage cookies</span></button> </li> <li class="eds-c-footer__item"> <a class="eds-c-footer__link" href="https://www.springernature.com/gp/legal/ccpa" data-track="nav_california_privacy_statement" data-track-action="california privacy statement" data-track-context="unified footer" data-track-label="link">Your US state privacy rights</a> </li> <li class="eds-c-footer__item"> <a class="eds-c-footer__link" href="https://www.springernature.com/gp/info/accessibility" data-track="nav_accessibility_statement" data-track-action="accessibility statement" data-track-context="unified footer" data-track-label="link">Accessibility statement</a> </li> <li class="eds-c-footer__item"> <a class="eds-c-footer__link" href="https://link.springer.com/termsandconditions" data-track="nav_terms_and_conditions" data-track-action="terms and conditions" data-track-context="unified footer" data-track-label="link">Terms and conditions</a> </li> <li class="eds-c-footer__item"> <a class="eds-c-footer__link" href="https://link.springer.com/privacystatement" data-track="nav_privacy_policy" data-track-action="privacy policy" data-track-context="unified footer" data-track-label="link">Privacy policy</a> </li> <li class="eds-c-footer__item"> <a class="eds-c-footer__link" href="https://support.springernature.com/en/support/home" data-track="nav_help_and_support" data-track-action="help and support" data-track-context="unified footer" data-track-label="link">Help and support</a> </li> <li class="eds-c-footer__item"> <a class="eds-c-footer__link" href="https://link.springer.com/legal-notice" data-track="nav_legal_notice" data-track-action="legal notice" data-track-context="unified footer" data-track-label="link">Legal notice</a> </li> <li class="eds-c-footer__item"> <a class="eds-c-footer__link" href="https://support.springernature.com/en/support/solutions/articles/6000255911-subscription-cancellations" data-track-action="cancel contracts here">Cancel contracts here</a> </li> </ul> </nav> <div class="eds-c-footer__user"> <p class="eds-c-footer__user-info"> <span data-test="footer-user-ip">8.222.208.146</span> </p> <p class="eds-c-footer__user-info" data-test="footer-business-partners">Not affiliated</p> </div> <a href="https://www.springernature.com/" class="eds-c-footer__link"> <img src="/oscar-static/images/logo-springernature-white-19dd4ba190.svg" alt="Springer Nature" loading="lazy" width="200" height="20"/> </a> <p class="eds-c-footer__legal" data-test="copyright">&copy; 2025 Springer Nature</p> </div> </div> </footer> </div> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10