CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 73 results for author: <span class="mathjax">Mravlje, J</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/cond-mat" aria-role="search"> Searching in archive <strong>cond-mat</strong>. <a href="/search/?searchtype=author&amp;query=Mravlje%2C+J">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Mravlje, J"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Mravlje%2C+J&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Mravlje, J"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Mravlje%2C+J&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Mravlje%2C+J&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Mravlje%2C+J&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.05035">arXiv:2502.05035</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2502.05035">pdf</a>, <a href="https://arxiv.org/format/2502.05035">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Quantum anomalous Hall domains in a Quenched Topological Mott Insulator </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Ul%C4%8Dakar%2C+L">Lara Ul膷akar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lemut%2C+G">Gal Lemut</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rejec%2C+T">Toma啪 Rejec</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mravlje%2C+J">Jernej Mravlje</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.05035v1-abstract-short" style="display: inline;"> We study an interacting spinless quadratic band touching model that realizes a topological Mott insulating state. We quench the interaction from a value corresponding to the nematic insulator to that of the quantum anomalous Hall (QAH) ordered phase. We perform time-dependent Hartree-Fock simulations and show that after the quench the system realizes an excited Dirac semimetal state, which is howe&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.05035v1-abstract-full').style.display = 'inline'; document.getElementById('2502.05035v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.05035v1-abstract-full" style="display: none;"> We study an interacting spinless quadratic band touching model that realizes a topological Mott insulating state. We quench the interaction from a value corresponding to the nematic insulator to that of the quantum anomalous Hall (QAH) ordered phase. We perform time-dependent Hartree-Fock simulations and show that after the quench the system realizes an excited Dirac semimetal state, which is however unstable and spontaneously evolves to a state with inhomogeneous nematic and QAH order parameters. The modulations form a stripe pattern that grows exponentially with time until the local Chern marker reaches unity. The alternating QAH order defines a domain structure with boundaries that host chiral sublattice currents. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.05035v1-abstract-full').style.display = 'none'; document.getElementById('2502.05035v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Comments are welcome</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.04022">arXiv:2408.04022</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.04022">pdf</a>, <a href="https://arxiv.org/format/2408.04022">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Strong effects of thermally induced low-spin-to-high-spin crossover on transport properties of correlated metals </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Moser%2C+J">Johanna Moser</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mravlje%2C+J">Jernej Mravlje</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Aichhorn%2C+M">Markus Aichhorn</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.04022v1-abstract-short" style="display: inline;"> We use dynamical mean-field theory to study how electronic transport in multi-orbital metals is influenced by correlated (nominally) empty orbitals that are in proximity to the Fermi level. Specifically, we study 2 + 1 orbital and 3 + 2 orbital (i.e. t2g + eg ) models on a Bethe lattice with a crystal field that is set so that the higher lying orbitals are nearly empty at low temperatures but get&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.04022v1-abstract-full').style.display = 'inline'; document.getElementById('2408.04022v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.04022v1-abstract-full" style="display: none;"> We use dynamical mean-field theory to study how electronic transport in multi-orbital metals is influenced by correlated (nominally) empty orbitals that are in proximity to the Fermi level. Specifically, we study 2 + 1 orbital and 3 + 2 orbital (i.e. t2g + eg ) models on a Bethe lattice with a crystal field that is set so that the higher lying orbitals are nearly empty at low temperatures but get a non-negligible occupancy at elevated temperature. The high temperature regime is characterized by thermal activation of carriers leading to higher magnetic response (i.e., thermally induced low-spin to high-spin transition) and substantial influence on resistivity, where one can distinguish two counteracting effects: increased scattering due to formation of high spin and increased scattering phase space on one hand, and additional parallel conduction channel on the other. The former effect is stronger and one may identify cases where resistivity increases by a factor of three at high temperatures even though the occupancy of the unoccupied band remains small (&lt; 10%). We discuss implications of our findings for transport properties of correlated materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.04022v1-abstract-full').style.display = 'none'; document.getElementById('2408.04022v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.07772">arXiv:2404.07772</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.07772">pdf</a>, <a href="https://arxiv.org/format/2404.07772">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Respective Roles of Electron-Phonon and Electron-Electron Interactions in the Transport and Quasiparticle Properties of SrVO$_3$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Abramovitch%2C+D+J">David J. Abramovitch</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mravlje%2C+J">Jernej Mravlje</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+J">Jin-Jian Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Georges%2C+A">Antoine Georges</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bernardi%2C+M">Marco Bernardi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.07772v1-abstract-short" style="display: inline;"> The spectral and transport properties of strongly correlated metals, such as SrVO$_3$ (SVO), are widely attributed to electron-electron ($e$-$e$) interactions, with lattice vibrations (phonons) playing a secondary role. Here, using first-principles electron-phonon ($e$-ph) and dynamical mean field theory calculations, we show that $e$-ph interactions play an essential role in SVO: they govern the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.07772v1-abstract-full').style.display = 'inline'; document.getElementById('2404.07772v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.07772v1-abstract-full" style="display: none;"> The spectral and transport properties of strongly correlated metals, such as SrVO$_3$ (SVO), are widely attributed to electron-electron ($e$-$e$) interactions, with lattice vibrations (phonons) playing a secondary role. Here, using first-principles electron-phonon ($e$-ph) and dynamical mean field theory calculations, we show that $e$-ph interactions play an essential role in SVO: they govern the electron scattering and resistivity in a wide temperature range down to 30 K, and induce an experimentally observed kink in the spectral function. In contrast, the $e$-$e$ interactions control quasiparticle renormalizations and low temperature transport, and enhance the $e$-ph coupling. We clarify the origin of the near $T^2$ temperature dependence of the resistivity by analyzing the $e$-$e$ and $e$-ph limited transport regimes. Our work disentangles the electronic and lattice degrees of freedom in a prototypical correlated metal, revealing the dominant role of $e$-ph interactions in SVO. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.07772v1-abstract-full').style.display = 'none'; document.getElementById('2404.07772v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.18083">arXiv:2403.18083</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.18083">pdf</a>, <a href="https://arxiv.org/format/2403.18083">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Collective modes and Raman response in Ta$_2$NiSe$_5$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Chatterjee%2C+B">Banhi Chatterjee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mravlje%2C+J">Jernej Mravlje</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gole%C5%BE%2C+D">Denis Gole啪</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.18083v1-abstract-short" style="display: inline;"> We explore the collective response in an excitonic insulator phase in Ta$_2$NiSe$_5$ using a semirealistic model including relevant lattice and electronic instabilities. We calculate order-parameter susceptibility and Raman response within a time-dependent Hartree-Fock approach. Contrary to the standard expectations, the amplitude mode frequency does not coincide with the single-particle gap but h&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.18083v1-abstract-full').style.display = 'inline'; document.getElementById('2403.18083v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.18083v1-abstract-full" style="display: none;"> We explore the collective response in an excitonic insulator phase in Ta$_2$NiSe$_5$ using a semirealistic model including relevant lattice and electronic instabilities. We calculate order-parameter susceptibility and Raman response within a time-dependent Hartree-Fock approach. Contrary to the standard expectations, the amplitude mode frequency does not coincide with the single-particle gap but has a higher frequency. We find a phase mode that is massive because the excitonic condensation breaks a discrete symmetry only and that becomes heavier as the electron-lattice coupling is increased. These features are expected to apply to generic realistic excitonic insulators. We discuss scenarios under which the phase mode does not appear as a sharp in-gap resonance. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.18083v1-abstract-full').style.display = 'none'; document.getElementById('2403.18083v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.12899">arXiv:2402.12899</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2402.12899">pdf</a>, <a href="https://arxiv.org/format/2402.12899">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.109.205130">10.1103/PhysRevB.109.205130 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> High-harmonic generation in semi-Dirac and Weyl semimetals with broken time-reversal symmetry: Exploring merging of Weyl nodes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Medic%2C+L">Luka Medic</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mravlje%2C+J">Jernej Mravlje</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ram%C5%A1ak%2C+A">Anton Ram拧ak</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rejec%2C+T">Toma啪 Rejec</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.12899v1-abstract-short" style="display: inline;"> We explore anomalous high-harmonic generation in a model that realizes a transition from a broken time-reversal symmetry Weyl-semimetal to a semi-Dirac regime, i.e. a gapless semimetal with dispersion that is parabolic in one direction and conical in the other two. We point out the intensity of the induced anomalous high harmonics is high in the semi-Dirac regime. For Weyl semimetals, we reveal an&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.12899v1-abstract-full').style.display = 'inline'; document.getElementById('2402.12899v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.12899v1-abstract-full" style="display: none;"> We explore anomalous high-harmonic generation in a model that realizes a transition from a broken time-reversal symmetry Weyl-semimetal to a semi-Dirac regime, i.e. a gapless semimetal with dispersion that is parabolic in one direction and conical in the other two. We point out the intensity of the induced anomalous high harmonics is high in the semi-Dirac regime. For Weyl semimetals, we reveal anomalous high harmonics are due to excitations at momenta where the dispersion is not strictly linear and that in the linearized low-energy theory the anomalous response is harmonic only. Our findings aid experimental characterization of Weyl, Dirac, and semi-Dirac semimetals. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.12899v1-abstract-full').style.display = 'none'; document.getElementById('2402.12899v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 12 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 109, 205130 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.02313">arXiv:2308.02313</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2308.02313">pdf</a>, <a href="https://arxiv.org/format/2308.02313">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.131.236502">10.1103/PhysRevLett.131.236502 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The fate of quasiparticles at high-temperature </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Hunter%2C+A">A. Hunter</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Beck%2C+S">S. Beck</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cappelli%2C+E">E. Cappelli</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Margot%2C+F">F. Margot</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Straub%2C+M">M. Straub</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Alexanian%2C+Y">Y. Alexanian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gatti%2C+G">G. Gatti</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Watson%2C+M+D">M. D. Watson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+T+K">T. K. Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cacho%2C+C">C. Cacho</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Plumb%2C+N+C">N. C. Plumb</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+M">M. Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Radovi%C4%87%2C+M">M. Radovi膰</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sokolov%2C+D+A">D. A. Sokolov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mackenzie%2C+A+P">A. P. Mackenzie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zingl%2C+M">M. Zingl</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mravlje%2C+J">J. Mravlje</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Georges%2C+A">A. Georges</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Baumberger%2C+F">F. Baumberger</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tamai%2C+A">A. Tamai</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.02313v1-abstract-short" style="display: inline;"> We study the temperature evolution of quasiparticles in the correlated metal Sr$_2$RuO$_4$. Our angle resolved photoemission data show that quasiparticles persist up to temperatures above 200~K, far beyond the Fermi liquid regime. Extracting the quasiparticle self-energy we demonstrate that the quasiparticle residue $Z$ increases with increasing temperature. Quasiparticles eventually disappear on&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.02313v1-abstract-full').style.display = 'inline'; document.getElementById('2308.02313v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.02313v1-abstract-full" style="display: none;"> We study the temperature evolution of quasiparticles in the correlated metal Sr$_2$RuO$_4$. Our angle resolved photoemission data show that quasiparticles persist up to temperatures above 200~K, far beyond the Fermi liquid regime. Extracting the quasiparticle self-energy we demonstrate that the quasiparticle residue $Z$ increases with increasing temperature. Quasiparticles eventually disappear on approaching the bad metal state of Sr$_2$RuO$_4$ not by losing weight but via excessive broadening from super-Planckian scattering. We further show that the Fermi surface of Sr$_2$RuO$_4$ - defined as the loci where the spectral function peaks - deflates with increasing temperature. These findings are in semi-quantitative agreement with dynamical mean field theory calculations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.02313v1-abstract-full').style.display = 'none'; document.getElementById('2308.02313v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Supplemental Material available upon request</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 131, 236502 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.05320">arXiv:2307.05320</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2307.05320">pdf</a>, <a href="https://arxiv.org/format/2307.05320">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.108.155118">10.1103/PhysRevB.108.155118 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Thermoelectric effect on diffusion in the two-dimensional Hubbard model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Ulaga%2C+M">Martin Ulaga</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mravlje%2C+J">Jernej Mravlje</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kokalj%2C+J">Jure Kokalj</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.05320v3-abstract-short" style="display: inline;"> We study charge and heat transport in the square lattice Hubbard model at strong coupling using the finite-temperature Lanczos method. We construct the diffusion matrix and estimate the effect of thermoelectric terms on diffusive and hydrodynamic time evolution. The thermoelectric terms prevent the interpretation of the diffusion in terms of a single time scale. We discuss our results in relation&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.05320v3-abstract-full').style.display = 'inline'; document.getElementById('2307.05320v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.05320v3-abstract-full" style="display: none;"> We study charge and heat transport in the square lattice Hubbard model at strong coupling using the finite-temperature Lanczos method. We construct the diffusion matrix and estimate the effect of thermoelectric terms on diffusive and hydrodynamic time evolution. The thermoelectric terms prevent the interpretation of the diffusion in terms of a single time scale. We discuss our results in relation to cold-atom experiments and measurements of heat conductivity based on the measurements of heat diffusion. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.05320v3-abstract-full').style.display = 'none'; document.getElementById('2307.05320v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.13962">arXiv:2304.13962</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2304.13962">pdf</a>, <a href="https://arxiv.org/format/2304.13962">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Geophysics">physics.geo-ph</span> </div> </div> <p class="title is-5 mathjax"> Influence of oxygen on electronic correlation and transport in iron in the outer Earth&#39;s core </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Blesio%2C+G+G">German G. Blesio</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pourovskii%2C+L+V">Leonid V. Pourovskii</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Aichhorn%2C+M">Markus Aichhorn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pozzo%2C+M">Monica Pozzo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Alf%C3%A8%2C+D">Dario Alf猫</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mravlje%2C+J">Jernej Mravlje</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.13962v1-abstract-short" style="display: inline;"> Knowing the transport properties of iron under realistic conditions present in the Earth&#39;s core is essential for the geophysical modeling of Earth&#39;s magnetic field generation. Besides by extreme pressures and temperatures, transport may be influenced importantly also by the presence of light elements. Using a combination of molecular dynamics, density functional theory, and dynamical mean-field th&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.13962v1-abstract-full').style.display = 'inline'; document.getElementById('2304.13962v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.13962v1-abstract-full" style="display: none;"> Knowing the transport properties of iron under realistic conditions present in the Earth&#39;s core is essential for the geophysical modeling of Earth&#39;s magnetic field generation. Besides by extreme pressures and temperatures, transport may be influenced importantly also by the presence of light elements. Using a combination of molecular dynamics, density functional theory, and dynamical mean-field theory methods we investigate how oxygen impurities influence the electronic correlations and transport in the liquid outer Earth&#39;s core. We consider a case with an oxygen content of ~10 atomic%, a value that is believed to be close to the composition of the core. We find that the electronic correlations are enhanced but their effect on conductivities is moderate (compared to pure Fe, electrical conductivity drops by 10% and thermal conductivity by 18%). The effect of electron-electron scattering alone, whereas not large, is comparable to effects of the compositional disorder. We reveal the mechanism behind the larger suppression of the thermal conductivity and associated reduction of the Lorenz ratio and discuss its geophysical significance. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.13962v1-abstract-full').style.display = 'none'; document.getElementById('2304.13962v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.13563">arXiv:2304.13563</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2304.13563">pdf</a>, <a href="https://arxiv.org/format/2304.13563">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevResearch.6.023124">10.1103/PhysRevResearch.6.023124 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Signatures of Hund Metal and finite-frequency nesting in Sr$_2$RuO$_4$ Revealed by Electronic Raman Scattering </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Blesio%2C+G">Germ谩n Blesio</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Beck%2C+S">Sophie Beck</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gingras%2C+O">Olivier Gingras</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Georges%2C+A">Antoine Georges</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mravlje%2C+J">Jernej Mravlje</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.13563v2-abstract-short" style="display: inline;"> We investigate the electronic Raman scattering of Sr$_2$RuO$_4$ using a material-realistic dynamical mean-field theory approach. We identify the low-energy Fermi liquid behavior and point out that the enhanced Raman response at higher energies is a fingerprint of Hund metals. These signatures originate in the two-stage coherence of Hund metals and associated quasiparticle `unrenormalization&#39;. In a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.13563v2-abstract-full').style.display = 'inline'; document.getElementById('2304.13563v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.13563v2-abstract-full" style="display: none;"> We investigate the electronic Raman scattering of Sr$_2$RuO$_4$ using a material-realistic dynamical mean-field theory approach. We identify the low-energy Fermi liquid behavior and point out that the enhanced Raman response at higher energies is a fingerprint of Hund metals. These signatures originate in the two-stage coherence of Hund metals and associated quasiparticle `unrenormalization&#39;. In agreement with recent experimental observations, we find the $\mathrm{B}_{1g}$ and $\mathrm{B}_{2g}$ responses differ, but our calculations suggest a novel interpretation of this dichotomy. The $\mathrm{B}_{1g}$ response is dominated by the $xy$ orbital and the $\mathrm{B}_{2g}$ response receives contributions from all orbitals and is strongly affected by previously unnoticed finite-frequency interband nesting. We calculate the vertex-corrections to Raman response and show that their effect is nonvanishing but small. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.13563v2-abstract-full').style.display = 'none'; document.getElementById('2304.13563v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 4 figures. SM: 9 pages, 14 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Research 6, 023124 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.06771">arXiv:2304.06771</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2304.06771">pdf</a>, <a href="https://arxiv.org/format/2304.06771">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevMaterials.7.093801">10.1103/PhysRevMaterials.7.093801 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Combining Electron-Phonon and Dynamical Mean-Field Theory Calculations of Correlated Materials: Transport in the Correlated Metal Sr$_2$RuO$_4$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Abramovitch%2C+D+J">David J. Abramovitch</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+J">Jin-Jian Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mravlje%2C+J">Jernej Mravlje</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Georges%2C+A">Antoine Georges</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bernardi%2C+M">Marco Bernardi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.06771v2-abstract-short" style="display: inline;"> Electron-electron ($e$-$e$) and electron-phonon ($e$-ph) interactions are challenging to describe in correlated materials, where their joint effects govern unconventional transport, phase transitions, and superconductivity. Here we combine first-principles $e$-ph calculations with dynamical mean field theory (DMFT) as a step toward a unified description of $e$-$e$ and $e$-ph interactions in correl&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.06771v2-abstract-full').style.display = 'inline'; document.getElementById('2304.06771v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.06771v2-abstract-full" style="display: none;"> Electron-electron ($e$-$e$) and electron-phonon ($e$-ph) interactions are challenging to describe in correlated materials, where their joint effects govern unconventional transport, phase transitions, and superconductivity. Here we combine first-principles $e$-ph calculations with dynamical mean field theory (DMFT) as a step toward a unified description of $e$-$e$ and $e$-ph interactions in correlated materials. We compute the $e$-ph self-energy using the DMFT electron Green&#39;s function, and combine it with the $e$-$e$ self-energy from DMFT to obtain a Green&#39;s function including both interactions. This approach captures the renormalization of quasiparticle dispersion and spectral weight on equal footing. Using our method, we study the $e$-ph and $e$-$e$ contributions to the resistivity and spectral functions in the correlated metal Sr$_2$RuO$_4$. In this material, our results show that $e$-$e$ interactions dominate transport and spectral broadening in the temperature range we study (50$-$310~K), while $e$-ph interactions are relatively weak and account for only $\sim$10\% of the experimental resistivity. We also compute effective scattering rates, and find that the $e$-$e$ interactions result in scattering several times greater than the Planckian value $k_BT$, whereas $e$-ph interactions are associated with scattering rates lower than $k_BT$. Our work demonstrates a first-principles approach to combine electron dynamical correlations from DMFT with $e$-ph interactions in a consistent way, advancing quantitative studies of correlated materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.06771v2-abstract-full').style.display = 'none'; document.getElementById('2304.06771v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 5 figures. This revision has been accepted in PR Materials</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Materials 7, 093801, 2023 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.11349">arXiv:2212.11349</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2212.11349">pdf</a>, <a href="https://arxiv.org/format/2212.11349">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1002/jrs.6491">10.1002/jrs.6491 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Lattice vibrational modes in changchengite from Raman spectroscopy and first principles electronic structure </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Chatterjee%2C+B">B. Chatterjee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vengust%2C+D">D. Vengust</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mrzel%2C+A">A. Mrzel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sutar%2C+P">P. Sutar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Goreshnik%2C+E">E. Goreshnik</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mravlje%2C+J">J. Mravlje</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mertelj%2C+T">T. Mertelj</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.11349v1-abstract-short" style="display: inline;"> We measured room-temperature phonon Raman spectra of changchengite (IrBiS) and compared the experimental phonon wavenumbers to the theoretical ones obtained by means of the \emph{ab initio} density-functional-theory calculations in the presence and absence of the spin-orbit coupling effects. Combining two different excitation photon energies all the symmetry predicted Raman modes are experimentall&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.11349v1-abstract-full').style.display = 'inline'; document.getElementById('2212.11349v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.11349v1-abstract-full" style="display: none;"> We measured room-temperature phonon Raman spectra of changchengite (IrBiS) and compared the experimental phonon wavenumbers to the theoretical ones obtained by means of the \emph{ab initio} density-functional-theory calculations in the presence and absence of the spin-orbit coupling effects. Combining two different excitation photon energies all the symmetry predicted Raman modes are experimentally observed. The electronic properties of IrBiS are found to be similar to the recently studied isostructural compound IrBiSe showing a large Dresselhaus spin-orbit valence band splitting. A good agreement between the experimental and theoretically predicted Raman phonon wavenumbers is found only when the lattice parameter is constrained to the experimental value. The inclusion of the spin orbit coupling does not significantly affect the phonon wavenumbers. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.11349v1-abstract-full').style.display = 'none'; document.getElementById('2212.11349v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 6 figures including the supplementary material</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Journal of Raman Spectroscopy (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.11209">arXiv:2210.11209</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2210.11209">pdf</a>, <a href="https://arxiv.org/format/2210.11209">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.108.L081102">10.1103/PhysRevB.108.L081102 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Hund bands in spectra of multiorbital systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=%C5%9Aroda%2C+M">M. 艢roda</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mravlje%2C+J">J. Mravlje</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Alvarez%2C+G">G. Alvarez</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dagotto%2C+E">E. Dagotto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Herbrych%2C+J">J. Herbrych</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.11209v3-abstract-short" style="display: inline;"> Spectroscopy experiments are routinely used to characterize the behavior of strongly correlated systems. An in-depth understanding of the different spectral features is thus essential. Here, we show that the spectrum of the multiorbital Hubbard model exhibits unique Hund \ms{bands} that occur at energies given only by the Hund coupling $J_\mathrm{H}$, as distinct from the Hubbard satellites follow&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.11209v3-abstract-full').style.display = 'inline'; document.getElementById('2210.11209v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.11209v3-abstract-full" style="display: none;"> Spectroscopy experiments are routinely used to characterize the behavior of strongly correlated systems. An in-depth understanding of the different spectral features is thus essential. Here, we show that the spectrum of the multiorbital Hubbard model exhibits unique Hund \ms{bands} that occur at energies given only by the Hund coupling $J_\mathrm{H}$, as distinct from the Hubbard satellites following the interaction $U$. We focus on experimentally relevant single-particle and optical spectra that we calculate for a model related to iron chalcogenide ladders. The calculations are performed via the density-matrix renormalization group and Lanczos methods. The generality of the implications is verified by considering a generic multiorbital model within dynamical mean-field theory. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.11209v3-abstract-full').style.display = 'none'; document.getElementById('2210.11209v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 108, L081102 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2208.08816">arXiv:2208.08816</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2208.08816">pdf</a>, <a href="https://arxiv.org/format/2208.08816">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.106.245123">10.1103/PhysRevB.106.245123 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Thermal conductivity and heat diffusion in the two-dimensional Hubbard model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Ulaga%2C+M">Martin Ulaga</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mravlje%2C+J">Jernej Mravlje</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Prelov%C5%A1ek%2C+P">Peter Prelov拧ek</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kokalj%2C+J">Jure Kokalj</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2208.08816v2-abstract-short" style="display: inline;"> We study the electronic thermal conductivity $魏_\textrm{el}$ and the thermal diffusion constant $D_\textrm{Q,el}$ in the square lattice Hubbard model using the finite-temperature Lanczos method. We exploit the Nernst-Einstein relation for thermal transport and interpret the strong non-monotonous temperature dependence of $魏_\textrm{el}$ in terms of that of $D_\textrm{Q,el}$ and the electronic spec&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.08816v2-abstract-full').style.display = 'inline'; document.getElementById('2208.08816v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2208.08816v2-abstract-full" style="display: none;"> We study the electronic thermal conductivity $魏_\textrm{el}$ and the thermal diffusion constant $D_\textrm{Q,el}$ in the square lattice Hubbard model using the finite-temperature Lanczos method. We exploit the Nernst-Einstein relation for thermal transport and interpret the strong non-monotonous temperature dependence of $魏_\textrm{el}$ in terms of that of $D_\textrm{Q,el}$ and the electronic specific heat $c_\textrm{el}$. We present also the results for the Heisenberg model on a square lattice and ladder geometries. We study the effects of doping and consider the doped case also with the dynamical mean-field theory. We show that $魏_\textrm{el}$ is below the corresponding Mott-Ioffe-Regel value in almost all calculated regimes, while the mean free path is typically above or close to lattice spacing. We discuss the opposite effect of quasi-particle renormalization on charge and heat diffusion constants. We calculate the Lorenz ratio and show that it differs from the Sommerfeld value. We discuss our results in relation to experiments on cuprates. Additionally, we calculate the thermal conductivity of overdoped cuprates within the anisotropic marginal Fermi liquid phenomenological approach. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.08816v2-abstract-full').style.display = 'none'; document.getElementById('2208.08816v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8+5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2111.05570">arXiv:2111.05570</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2111.05570">pdf</a>, <a href="https://arxiv.org/ps/2111.05570">ps</a>, <a href="https://arxiv.org/format/2111.05570">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Tuning the Fermi Liquid Crossover in Sr$_2$RuO$_4$ with Uniaxial Stress </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Chronister%2C+A">Aaron Chronister</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zingl%2C+M">Manuel Zingl</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pustogow%2C+A">Andrej Pustogow</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Luo%2C+Y">Yongkang Luo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sokolov%2C+D">Dmitry Sokolov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kikugawa%2C+N">Naoki Kikugawa</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hicks%2C+C">Clifford Hicks</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jerzembeck%2C+F">Fabian Jerzembeck</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mravlje%2C+J">Jernei Mravlje</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bauer%2C+E">Eric Bauer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mackenzie%2C+A">Andrew Mackenzie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Georges%2C+A">Antoine Georges</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Brown%2C+S">Stuart Brown</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2111.05570v2-abstract-short" style="display: inline;"> We perform nuclear magnetic resonance (NMR) measurements of the oxygen-17 Knight shifts for Sr$_2$RuO$_4$, while subjected to uniaxial stress applied along [100] direction. The resulting strain is associated with a strong variation of the temperature and magnetic field dependence of the inferred magnetic response. A quasi-particle description based on density-functional theory calculations, supple&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.05570v2-abstract-full').style.display = 'inline'; document.getElementById('2111.05570v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2111.05570v2-abstract-full" style="display: none;"> We perform nuclear magnetic resonance (NMR) measurements of the oxygen-17 Knight shifts for Sr$_2$RuO$_4$, while subjected to uniaxial stress applied along [100] direction. The resulting strain is associated with a strong variation of the temperature and magnetic field dependence of the inferred magnetic response. A quasi-particle description based on density-functional theory calculations, supplemented by many-body renormalizations, is found to reproduce our experimental results, and highlights the key role of a van-Hove singularity. The Fermi liquid coherence scale is shown to be tunable by strain, and driven to low values as the associated Lifshitz transition is approached. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.05570v2-abstract-full').style.display = 'none'; document.getElementById('2111.05570v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2108.01932">arXiv:2108.01932</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2108.01932">pdf</a>, <a href="https://arxiv.org/format/2108.01932">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevResearch.4.023197">10.1103/PhysRevResearch.4.023197 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Spin Seebeck coefficient and spin-thermal diffusion in the two-dimensional Hubbard model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Mravlje%2C+J">Jernej Mravlje</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ulaga%2C+M">Martin Ulaga</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kokalj%2C+J">Jure Kokalj</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2108.01932v4-abstract-short" style="display: inline;"> We investigate the spin Seebeck coefficient $S_s$ in the square lattice Hubbard model at high temperatures of relevance to cold-atom measurements. We solve the model with the finite-temperature Lanczos and with the dynamical mean-field theory methods and find they give similar results in the considered regime. $S_s$ exceeds the atomic &#39;Heikes&#39; estimates and the Kelvin entropic estimates drasticall&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.01932v4-abstract-full').style.display = 'inline'; document.getElementById('2108.01932v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2108.01932v4-abstract-full" style="display: none;"> We investigate the spin Seebeck coefficient $S_s$ in the square lattice Hubbard model at high temperatures of relevance to cold-atom measurements. We solve the model with the finite-temperature Lanczos and with the dynamical mean-field theory methods and find they give similar results in the considered regime. $S_s$ exceeds the atomic &#39;Heikes&#39; estimates and the Kelvin entropic estimates drastically. We analyze the behavior in terms of a mapping onto the problem of a doped attractive model and derive an approximate expression that allows relating the enhancement of $S_s$ to distinct scattering of the spin-majority and the spin-minority excitations. Our analysis reveals the limitations of entropic interpretations of Seebeck coefficient even in the high-temperature regime. Large values of $S_s$ could be observed on optical lattices. We also calculate the full diffusion matrix. We quantify the spin-thermal diffusion, that is, the extent of the mixing between the spin and the thermal diffusion and discuss the results in the context of recent measurements of the spin-diffusion constant in cold atoms. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.01932v4-abstract-full').style.display = 'none'; document.getElementById('2108.01932v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 August, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Research 4, 023197 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2106.05959">arXiv:2106.05959</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2106.05959">pdf</a>, <a href="https://arxiv.org/format/2106.05959">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevX.12.011037">10.1103/PhysRevX.12.011037 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Seebeck coefficient in a cuprate superconductor: particle-hole asymmetry in the strange metal phase and Fermi surface transformation in the pseudogap phase </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Gourgout%2C+A">A. Gourgout</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Grissonnanche%2C+G">G. Grissonnanche</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lalibert%C3%A9%2C+F">F. Lalibert茅</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ataei%2C+A">A. Ataei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+L">L. Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Verret%2C+S">S. Verret</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+J+-">J. -S. Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mravlje%2C+J">J. Mravlje</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Georges%2C+A">A. Georges</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Doiron-Leyraud%2C+N">N. Doiron-Leyraud</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taillefer%2C+L">L. Taillefer</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2106.05959v3-abstract-short" style="display: inline;"> We report measurements of the Seebeck effect in both the $ab$ plane ($S_{\rm a}$) and along the $c$ axis ($S_{\rm c}$) of the cuprate superconductor La$_{1.6-x}$Nd$_{0.4}$Sr$_{x}$CuO$_4$ (Nd-LSCO), performed in magnetic fields large enough to suppress superconductivity down to low temperature. We use the Seebeck coefficient as a probe of the particle-hole asymmetry of the electronic structure acro&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.05959v3-abstract-full').style.display = 'inline'; document.getElementById('2106.05959v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2106.05959v3-abstract-full" style="display: none;"> We report measurements of the Seebeck effect in both the $ab$ plane ($S_{\rm a}$) and along the $c$ axis ($S_{\rm c}$) of the cuprate superconductor La$_{1.6-x}$Nd$_{0.4}$Sr$_{x}$CuO$_4$ (Nd-LSCO), performed in magnetic fields large enough to suppress superconductivity down to low temperature. We use the Seebeck coefficient as a probe of the particle-hole asymmetry of the electronic structure across the pseudogap critical doping $p^{\star} = 0.23$. Outside the pseudogap phase, at $p = 0.24 &gt; p^{\star}$, we observe a positive and essentially isotropic Seebeck coefficient as $T \rightarrow 0$. That $S &gt; 0$ at $p = 0.24$ is at odds with expectations given the electronic band structure of Nd-LSCO above $p^{\star}$ and its known electron-like Fermi surface. We can reconcile this observation by invoking an energy-dependent scattering rate with a particle-hole asymmetry, possibly rooted in the non-Fermi liquid nature of cuprates just above $p^{\star}$. Inside the pseudogap phase, for $ p &lt; p^{\star}$, $S_{\rm a}$ is seen to rise at low temperature as previously reported, consistent with the drop in carrier density $n$ from $n \simeq 1 + p$ to $n \simeq p$ across $p^{\star}$ as inferred from other transport properties. In stark contrast, $S_{\rm c}$ at low temperature becomes negative below $p^{\star}$, a novel signature of the pseudogap phase. The sudden drop in $S_{\rm c}$ reveals a change in the electronic structure of Nd-LSCO upon crossing $p^{\star}$. We can exclude a profound change of the scattering across $p^{\star}$ and conclude that the change in the out-of-plane Seebeck coefficient originates from a transformation of the Fermi surface. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.05959v3-abstract-full').style.display = 'none'; document.getElementById('2106.05959v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 12 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review X 12, 011037 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2102.13224">arXiv:2102.13224</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2102.13224">pdf</a>, <a href="https://arxiv.org/format/2102.13224">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevResearch.3.043132">10.1103/PhysRevResearch.3.043132 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Skewed Non-Fermi Liquids and the Seebeck Effect </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Georges%2C+A">Antoine Georges</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mravlje%2C+J">Jernej Mravlje</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2102.13224v2-abstract-short" style="display: inline;"> We consider non-Fermi liquids in which the inelastic scattering rate has an intrinsic particle-hole asymmetry and obeys $蠅/T$ scaling. We show that, in contrast to Fermi liquids, this asymmetry influences the low-temperature behaviour of the thermopower even in the presence of impurity scattering. Implications for the unconventional sign and temperature dependence of the thermopower in cuprates in&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.13224v2-abstract-full').style.display = 'inline'; document.getElementById('2102.13224v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2102.13224v2-abstract-full" style="display: none;"> We consider non-Fermi liquids in which the inelastic scattering rate has an intrinsic particle-hole asymmetry and obeys $蠅/T$ scaling. We show that, in contrast to Fermi liquids, this asymmetry influences the low-temperature behaviour of the thermopower even in the presence of impurity scattering. Implications for the unconventional sign and temperature dependence of the thermopower in cuprates in the strange metal (Planckian) regime are emphasized. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.13224v2-abstract-full').style.display = 'none'; document.getElementById('2102.13224v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 February, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Research 3, 043132 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2101.03202">arXiv:2101.03202</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2101.03202">pdf</a>, <a href="https://arxiv.org/format/2101.03202">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.103.144304">10.1103/PhysRevB.103.144304 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Photo-induced phase transition and associated time scales in the excitonic insulator Ta$_2$NiSe$_5$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Saha%2C+T">Tanusree Saha</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Golez%2C+D">Denis Golez</a>, <a href="/search/cond-mat?searchtype=author&amp;query=De+Ninno%2C+G">Giovanni De Ninno</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mravlje%2C+J">Jernej Mravlje</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Murakami%2C+Y">Yuta Murakami</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ressel%2C+B">Barbara Ressel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Stupar%2C+M">Matija Stupar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ribic%2C+P+R">Primoz Rebernik Ribic</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2101.03202v1-abstract-short" style="display: inline;"> We investigate the non-equilibrium electronic structure and characteristic time scales in a candidate excitonic insulator, Ta$_2$NiSe$_5$, using time- and angle-resolved photoemission spectroscopy with a temporal resolution of 50 fs. Following a strong photoexcitation, the band gap closes transiently within 100 fs, i.e., on a time scale faster than the typical lattice vibrational period. Furthermo&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.03202v1-abstract-full').style.display = 'inline'; document.getElementById('2101.03202v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2101.03202v1-abstract-full" style="display: none;"> We investigate the non-equilibrium electronic structure and characteristic time scales in a candidate excitonic insulator, Ta$_2$NiSe$_5$, using time- and angle-resolved photoemission spectroscopy with a temporal resolution of 50 fs. Following a strong photoexcitation, the band gap closes transiently within 100 fs, i.e., on a time scale faster than the typical lattice vibrational period. Furthermore, we find that the characteristic time associated with the rise of the photoemission intensity above the Fermi energy decreases with increasing excitation strength, while the relaxation time of the electron population towards equilibrium shows an opposite behaviour. We argue that these experimental observations can be consistently explained by an excitonic origin of the band gap in the material. The excitonic picture is supported by microscopic calculations based on the non-equilibrium Green&#39;s function formalism for an interacting two-band system. We interpret the speedup of the rise time with fluence in terms of an enhanced scattering probability between photo-excited electrons and excitons, leading to an initially faster decay of the order parameter. We show that the inclusion of electron-phonon coupling at a semi-classical level changes only the quantitative aspects of the proposed dynamics, while the qualitative features remain the same. The experimental observations and microscopic calculations allow us to develop a simple and intuitive phenomenological model that captures the main dynamics after photoexcitation in Ta$_2$NiSe$_5$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.03202v1-abstract-full').style.display = 'none'; document.getElementById('2101.03202v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 January, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 103, 144304 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2012.05597">arXiv:2012.05597</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2012.05597">pdf</a>, <a href="https://arxiv.org/format/2012.05597">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.103.165133">10.1103/PhysRevB.103.165133 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> BaOsO$_3$: A Hund&#39;s metal in the presence of strong spin-orbit coupling </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Bramberger%2C+M">Max Bramberger</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mravlje%2C+J">Jernej Mravlje</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Grundner%2C+M">Martin Grundner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schollw%C3%B6ck%2C+U">Ulrich Schollw枚ck</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zingl%2C+M">Manuel Zingl</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2012.05597v2-abstract-short" style="display: inline;"> We investigate the 5d transition metal oxide BaOsO$_3$ within a combination of density functional theory (DFT) and dynamical mean-field theory (DMFT), using a matrix-product-state impurity solver. BaOsO$_3$ has 4 electrons in the t$_{2g}$ shell akin to ruthenates but stronger spin-orbit coupling (SOC) and is thus expected to reveal an interplay of Hund&#39;s metal behavior with SOC. We explore the par&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.05597v2-abstract-full').style.display = 'inline'; document.getElementById('2012.05597v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2012.05597v2-abstract-full" style="display: none;"> We investigate the 5d transition metal oxide BaOsO$_3$ within a combination of density functional theory (DFT) and dynamical mean-field theory (DMFT), using a matrix-product-state impurity solver. BaOsO$_3$ has 4 electrons in the t$_{2g}$ shell akin to ruthenates but stronger spin-orbit coupling (SOC) and is thus expected to reveal an interplay of Hund&#39;s metal behavior with SOC. We explore the paramagnetic phase diagram as a function of SOC and Hubbard interaction strengths, identifying metallic, band (van-Vleck) insulating and Mott insulating regions. At the physical values of the two couplings we find that BaOsO$_3$ is still situated inside the metallic region and has a moderate quasiparticle renormalization $m^*/m \approx 2$; consistent with specific heat measurements. SOC plays an important role in suppressing electronic correlations (found in the vanishing SOC case) through the splitting of a van-Hove singularity (vHs) close to the Fermi energy, but is insufficient to push the material into an insulating van-Vleck regime. In spite of the strong effect of SOC, BaOsO$_3$ can be best pictured as a moderately correlated Hund&#39;s metal. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.05597v2-abstract-full').style.display = 'none'; document.getElementById('2012.05597v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 April, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 7 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 103, 165133 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2011.05750">arXiv:2011.05750</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2011.05750">pdf</a>, <a href="https://arxiv.org/format/2011.05750">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.103.155123">10.1103/PhysRevB.103.155123 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Spin diffusion and spin conductivity in the 2d Hubbard model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Ulaga%2C+M">Martin Ulaga</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mravlje%2C+J">Jernej Mravlje</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kokalj%2C+J">Jure Kokalj</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2011.05750v2-abstract-short" style="display: inline;"> We study the spin diffusion and spin conductivity in the square lattice Hubbard model by using the finite-temperature Lanczos method. We show that the spin diffusion behaves differently from the charge diffusion and has a nonmonotonic $T$ dependence. This is due to a progressive liberation of charges that contribute to spin transport and enhance it beyond that active at low temperature due to the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.05750v2-abstract-full').style.display = 'inline'; document.getElementById('2011.05750v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2011.05750v2-abstract-full" style="display: none;"> We study the spin diffusion and spin conductivity in the square lattice Hubbard model by using the finite-temperature Lanczos method. We show that the spin diffusion behaves differently from the charge diffusion and has a nonmonotonic $T$ dependence. This is due to a progressive liberation of charges that contribute to spin transport and enhance it beyond that active at low temperature due to the Heisenberg exchange. We further show that going away from half-filling and zero magnetization increases the spin diffusion, but that the increase is insufficient to reconcile the difference between the model calculations and the recent measurements on cold-atoms. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.05750v2-abstract-full').style.display = 'none'; document.getElementById('2011.05750v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 5+4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 103, 155123 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2006.01707">arXiv:2006.01707</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2006.01707">pdf</a>, <a href="https://arxiv.org/format/2006.01707">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.102.115142">10.1103/PhysRevB.102.115142 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Charge transport in the Hubbard model at high temperatures: triangular versus square lattice </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Vranic%2C+A">A. Vranic</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vucicevic%2C+J">J. Vucicevic</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kokalj%2C+J">J. Kokalj</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Skolimowski%2C+J">J. Skolimowski</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zitko%2C+R">R. Zitko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mravlje%2C+J">J. Mravlje</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tanaskovic%2C+D">D. Tanaskovic</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2006.01707v2-abstract-short" style="display: inline;"> High-temperature bad-metal transport has been recently studied both theoretically and in experiments as one of the key signatures of strong electronic correlations. Here we use the dynamical mean field theory (DMFT) and its cluster extensions, as well as the finite-temperature Lanczos method (FTLM) to explore the influence of lattice frustration on the thermodynamic and transport properties of the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.01707v2-abstract-full').style.display = 'inline'; document.getElementById('2006.01707v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2006.01707v2-abstract-full" style="display: none;"> High-temperature bad-metal transport has been recently studied both theoretically and in experiments as one of the key signatures of strong electronic correlations. Here we use the dynamical mean field theory (DMFT) and its cluster extensions, as well as the finite-temperature Lanczos method (FTLM) to explore the influence of lattice frustration on the thermodynamic and transport properties of the Hubbard model at high temperatures. We consider the triangular and the square lattice at half-filling and at 15\% hole-doping. We find that for $T \gtrsim 1.5t$ the self-energy becomes practically local, while the finite-size effects become small at lattice-size $4 \times 4$ for both lattice types and doping levels. The vertex corrections to optical conductivity, which are significant on the square lattice even at high temperatures, contribute less on the triangular lattice. We find approximately linear temperature dependence of dc resistivity in doped Mott insulator for both types of lattices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.01707v2-abstract-full').style.display = 'none'; document.getElementById('2006.01707v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 September, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 June, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 102, 115142 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2004.03700">arXiv:2004.03700</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2004.03700">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Geophysics">physics.geo-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-020-18003-9">10.1038/s41467-020-18003-9 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Electronic correlations and transport in iron at Earth&#39;s core conditions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Pourovskii%2C+L+V">L. V. Pourovskii</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mravlje%2C+J">J. Mravlje</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pozzo%2C+M">M. Pozzo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Alf%C3%A8%2C+D">D. Alf猫</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2004.03700v2-abstract-short" style="display: inline;"> The transport properties of iron under Earth&#39;s inner core conditions are essential input for the geophysical modelling but are poorly constrained experimentally. Here we show that the thermal and electrical conductivity of iron at those conditions remains high even if the electron-electron-scattering (EES) is properly taken into account. This result is obtained by ab initio simulations taking into&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.03700v2-abstract-full').style.display = 'inline'; document.getElementById('2004.03700v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2004.03700v2-abstract-full" style="display: none;"> The transport properties of iron under Earth&#39;s inner core conditions are essential input for the geophysical modelling but are poorly constrained experimentally. Here we show that the thermal and electrical conductivity of iron at those conditions remains high even if the electron-electron-scattering (EES) is properly taken into account. This result is obtained by ab initio simulations taking into account consistently both thermal disorder and electronic correlations. Thermal disorder suppresses the non-Fermi-liquid behavior of the body-centered cubic iron phase, hence, reducing the EES; the total calculated thermal conductivity of this phase is 220 Wm$^{-1}$K$^{-1}$ with the EES reduction not exceeding 20%. The EES and electron-lattice scattering are intertwined resulting in breaking of the Matthiessen&#39;s rule with increasing EES. In the hexagonal close-packed iron the EES is also not increased by thermal disorder and remains weak. Our main finding thus holds for the both likely iron phases in the inner core. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.03700v2-abstract-full').style.display = 'none'; document.getElementById('2004.03700v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 August, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 April, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 4 figures, published main text. For supplementary material see https://www.nature.com/articles/s41467-020-18003-9</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Communications 11, 4105 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2003.08439">arXiv:2003.08439</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2003.08439">pdf</a>, <a href="https://arxiv.org/format/2003.08439">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.125.216601">10.1103/PhysRevLett.125.216601 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Kibble-Zurek behavior in disordered Chern insulators </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Ul%C4%8Dakar%2C+L">Lara Ul膷akar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mravlje%2C+J">Jernej Mravlje</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rejec%2C+T">Toma啪 Rejec</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2003.08439v3-abstract-short" style="display: inline;"> Even though no local order parameter in the sense of the Landau theory exists for topological quantum phase transitions in Chern insulators, the highly non-local Berry curvature exhibits critical behavior near a quantum critical point. We investigate the critical properties of its real space analog, the local Chern marker, in weakly disordered Chern insulators. Due to disorder, inhomogeneities app&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2003.08439v3-abstract-full').style.display = 'inline'; document.getElementById('2003.08439v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2003.08439v3-abstract-full" style="display: none;"> Even though no local order parameter in the sense of the Landau theory exists for topological quantum phase transitions in Chern insulators, the highly non-local Berry curvature exhibits critical behavior near a quantum critical point. We investigate the critical properties of its real space analog, the local Chern marker, in weakly disordered Chern insulators. Due to disorder, inhomogeneities appear in the spatial distribution of the local Chern marker. Their size exhibits power-law scaling with the critical exponent matching the one extracted from the Berry curvature of a clean system. We drive the system slowly through such a quantum phase transition. The characteristic size of inhomogeneities in the non-equilibrium post-quench state obeys the Kibble-Zurek scaling. In this setting, the local Chern marker thus does behave in a similar way as a local order parameter for a symmetry breaking second order phase transition. The Kibble-Zurek scaling also holds for the inhomogeneities in the spatial distribution of excitations and of the orbital polarization. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2003.08439v3-abstract-full').style.display = 'none'; document.getElementById('2003.08439v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 March, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 125, 216601 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1911.02960">arXiv:1911.02960</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1911.02960">pdf</a>, <a href="https://arxiv.org/format/1911.02960">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.99.085101">10.1103/PhysRevB.99.085101 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Time-resolved reflectivity and Raman studies of the interplay of enigmatic orders in Mo$_8$O$_{23}$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Nasretdinova%2C+V">Venera Nasretdinova</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Borovsak%2C+M">Milos Borovsak</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mravlje%2C+J">Jernej Mravlje</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sutar%2C+P">Petra Sutar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Goreshnik%2C+E">Evgeny Goreshnik</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mertelj%2C+T">Tomaz Mertelj</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mihailovic%2C+D">Dragan Mihailovic</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1911.02960v1-abstract-short" style="display: inline;"> Monoclinic semi-metallic Mo$_8$O$_{23}$ belongs to a multifunctional series of compounds showing multiple ordering phenomena that have not achieved much attention till now. Previous X-rays studies of this compound have revealed an incommensurate ordering transition at $T_{\mathrm{IC}}\sim350$ K, followed by a structural transition to commensurate order at $T_{\mathrm{IC-C}}=285$ K. In addition, an&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1911.02960v1-abstract-full').style.display = 'inline'; document.getElementById('1911.02960v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1911.02960v1-abstract-full" style="display: none;"> Monoclinic semi-metallic Mo$_8$O$_{23}$ belongs to a multifunctional series of compounds showing multiple ordering phenomena that have not achieved much attention till now. Previous X-rays studies of this compound have revealed an incommensurate ordering transition at $T_{\mathrm{IC}}\sim350$ K, followed by a structural transition to commensurate order at $T_{\mathrm{IC-C}}=285$ K. In addition, an enigmatic resistance maximum is observed at $T_{\mathrm{el}}\sim150$ K, whose origin has so far proved elusive. Aiming to disentangle these multiple orders we use the polarized transient optical spectroscopy supplemented by Raman spectroscopy to study the electronic relaxation dynamics and lattice vibrational modes in Mo$_8$O$_{23}$ single crystals. Remarkably, both the coherent vibrational mode response and single particle response display extrema of damping/relaxation times close to $T_{\mathrm{el}}$ with the concurrent appearance of new coherent vibrational modes and a characteristic polarization asymmetry which saturates below $T_{\mathrm{el}}$. The single-particle relaxation data analysis shows the appearance of a temperature-independent gap in the electronic excitation spectrum below $T_{\mathrm{IC}}$ and additional temperature-dependent gap opening near $T_{\mathrm{el}}$. Concurrently, a low frequency vibrational mode shows anomalous softening around $T_{\mathrm{m}}\sim200$ K, far below $T_{\mathrm{IC-C}}$ and $T_{\mathrm{IC}}$. The observations are interpreted in terms of the appearance of a hidden gapped state below $T_{\mathrm{el}}$ that has so far eluded detection by structural analyses. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1911.02960v1-abstract-full').style.display = 'none'; document.getElementById('1911.02960v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 November, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 10 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 99, 085101 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1911.02894">arXiv:1911.02894</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1911.02894">pdf</a>, <a href="https://arxiv.org/format/1911.02894">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41598-019-52231-4">10.1038/s41598-019-52231-4 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Unveiling the electronic transformations in the semi-metallic correlated-electron transitional oxide Mo$_8$O$_{23}$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Nasretdinova%2C+V">Venera Nasretdinova</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gerasimenko%2C+Y+A">Yaroslav A. Gerasimenko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mravlje%2C+J">Jernej Mravlje</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gatti%2C+G">Gianmarco Gatti</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sutar%2C+P">Petra Sutar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Svetin%2C+D">Damjan Svetin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Meden%2C+A">Anton Meden</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kabanov%2C+V">Viktor Kabanov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kuntsevich%2C+A+Y">Alexander Yu. Kuntsevich</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Grioni%2C+M">Marco Grioni</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mihailovic%2C+D">Dragan Mihailovic</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1911.02894v1-abstract-short" style="display: inline;"> Mo$_8$O$_{23}$ is a low-dimensional chemically robust transition metal oxide coming from a prospective family of functional materials, MoO$_{3-x}$, ranging from a wide gap insulator $(x=0)$ to a metal $(x=1)$. The large number of stoichometric compounds with intermediate $x$ have widely different properties. In Mo$_8$O$_{23}$, an unusual charge density wave transition has been suggested to occur a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1911.02894v1-abstract-full').style.display = 'inline'; document.getElementById('1911.02894v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1911.02894v1-abstract-full" style="display: none;"> Mo$_8$O$_{23}$ is a low-dimensional chemically robust transition metal oxide coming from a prospective family of functional materials, MoO$_{3-x}$, ranging from a wide gap insulator $(x=0)$ to a metal $(x=1)$. The large number of stoichometric compounds with intermediate $x$ have widely different properties. In Mo$_8$O$_{23}$, an unusual charge density wave transition has been suggested to occur above room temperature, but its low temperature behaviour is particularly enigmatic. We present a comprehensive experimental study of the electronic structure associated with various ordering phenomena in this compound, complemented by theory. Density-functional theory (DFT) calculations reveal a cross-over from a semi-metal with vanishing band overlap to narrow-gap semiconductor behaviour with decreasing temperature. A buried Dirac crossing at the zone boundary is confirmed by angle-resolved photoemission spectroscopy (ARPES). Tunnelling spectroscopy (STS) reveals a gradual gap opening corresponding to a metal-to-insulator transition at 343 K in resistivity, consistent with CDW formation and DFT results, but with large non-thermal smearing of the spectra implying strong carrier scattering. At low temperatures, the CDW picture is negated by the observation of a metallic Hall contribution, a non-trivial gap structure in STS below $\sim 170$ K and ARPES spectra, that together represent evidence for the onset of the correlated state at $70$ K and the rapid increase of gap size below $\sim 30$ K. The intricate interplay between electronic correlations and the presence of multiple narrow bands near the Fermi level set the stage for metastability and suggest suitability for memristor applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1911.02894v1-abstract-full').style.display = 'none'; document.getElementById('1911.02894v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 November, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 6 figures, pre-print of an article published in Scientific Reports. The final authenticated version is available online at http://dx.doi.org/10.1038/s41598-019-52231-4</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Sci Rep 9, 15959 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1907.09677">arXiv:1907.09677</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1907.09677">pdf</a>, <a href="https://arxiv.org/format/1907.09677">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.101.085134">10.1103/PhysRevB.101.085134 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Photoemission and Dynamical Mean Field Theory Study of Electronic Correlation in a $t_{2g}^{5}$ Metal of SrRhO$_{3}$ Thin Film </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Y">Yujun Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+M">Minjae Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mravlje%2C+J">Jernej Mravlje</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sohn%2C+C">Changhee Sohn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Choi%2C+Y">Yongseong Choi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Strempfer%2C+J">Joerg Strempfer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hotta%2C+Y">Yasushi Hotta</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yasui%2C+A">Akira Yasui</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nichols%2C+J">John Nichols</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+H+N">Ho Nyung Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wadati%2C+H">Hiroki Wadati</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1907.09677v1-abstract-short" style="display: inline;"> Perovskite rhodates are characterized by intermediate strengths of both electronic correlation as well as spin-orbit coupling (SOC) and usually behave as moderately correlated metals. A recent publication (Phys. Rev. B 95, 245121(2017)) on epitaxial SrRhO$_3$ thin films unexpectedly reported a bad-metallic behavior and suggested the occurrence of antiferromagnetism below 100 K. We studied this SrR&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.09677v1-abstract-full').style.display = 'inline'; document.getElementById('1907.09677v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1907.09677v1-abstract-full" style="display: none;"> Perovskite rhodates are characterized by intermediate strengths of both electronic correlation as well as spin-orbit coupling (SOC) and usually behave as moderately correlated metals. A recent publication (Phys. Rev. B 95, 245121(2017)) on epitaxial SrRhO$_3$ thin films unexpectedly reported a bad-metallic behavior and suggested the occurrence of antiferromagnetism below 100 K. We studied this SrRhO$_3$ thin film by hard x-ray photoemission spectroscopy and found a very small density of states (DOS) at Fermi level, which is consistent with the reported bad-metallic behavior. However, this negligible DOS persists up to room temperature, which contradicts with the explanation of antiferromagnetic transition at around 100 K. We also employed electronic structure calculations within the framework of density functional theory and dynamical mean-field theory. In contrast to the experimental results, our calculations indicate metallic behavior of both bulk SrRhO$_3$ and the SrRhO$_3$ thin film. The thin film exhibits stronger correlation effects than the bulk, but the correlation effects are not sufficient to drive a transition to an insulating state. The calculated uniform magnetic susceptibility is substantially larger in the thin film than that in the bulk. The role of SOC was also investigated and only a moderate modulation of the electronic structure was observed. Hence SOC is not expected to play an important role for electronic correlation in SrRhO$_3$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.09677v1-abstract-full').style.display = 'none'; document.getElementById('1907.09677v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 July, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 101, 085134 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1907.07100">arXiv:1907.07100</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1907.07100">pdf</a>, <a href="https://arxiv.org/format/1907.07100">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Non-Fermi-liquid fixed point in multi-orbital Kondo impurity model relevant for Hund&#39;s metals </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Horvat%2C+A">Alen Horvat</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zitko%2C+R">Rok Zitko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mravlje%2C+J">Jernej Mravlje</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1907.07100v2-abstract-short" style="display: inline;"> Due to the separation between the spin and the orbital screening scales, the normal state of Hund&#39;s metals at ambient temperature can be loosely characterized as a partially coherent state with fluctuating spins and quenched orbital moments. With the aim to characterize this situation more precisely, we investigate the Kondo-Kanamori impurity model that describes the low-energy local physics of th&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.07100v2-abstract-full').style.display = 'inline'; document.getElementById('1907.07100v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1907.07100v2-abstract-full" style="display: none;"> Due to the separation between the spin and the orbital screening scales, the normal state of Hund&#39;s metals at ambient temperature can be loosely characterized as a partially coherent state with fluctuating spins and quenched orbital moments. With the aim to characterize this situation more precisely, we investigate the Kondo-Kanamori impurity model that describes the low-energy local physics of three-orbital Hund&#39;s metals occupied by two or four electrons. Within this model one can diminish the mixed spin-orbital terms and thereby enhance the separation between the two screening scales, allowing a more precise investigation of the intermediate state. Using the numerical renormalization group we calculate the impurity entropy as well as the temperature and frequency dependence of the spin and the orbital susceptibilities. We uncover a non-Fermi-liquid two-channel overscreened SU(3) fixed point that controls the behavior in the intermediate regime. We discuss its fingerprints in the frequency dependence of local orbital susceptibility and the shape of the spectral function. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.07100v2-abstract-full').style.display = 'none'; document.getElementById('1907.07100v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 August, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 July, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1905.12691">arXiv:1905.12691</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1905.12691">pdf</a>, <a href="https://arxiv.org/format/1905.12691">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.100.125110">10.1103/PhysRevB.100.125110 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Slow quenches in Chern insulator ribbons </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Ul%C4%8Dakar%2C+L">Lara Ul膷akar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mravlje%2C+J">Jernej Mravlje</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rejec%2C+T">Toma啪 Rejec</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1905.12691v2-abstract-short" style="display: inline;"> We investigate slow quenches in Chern insulators in ribbon geometry. We consider the Qi-Wu-Zhang model and slowly ramp the parameters (large time of the quench $蟿$) from a non-topological (Chern number = 0) to a topological regime (Chern number $\ne$ 0). In contrast to the Haldane model considered in [L. Privitera and G. E. Santoro, Phys. Rev. B 93, 241406(R) (2016)] earlier, the in-gap state dege&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1905.12691v2-abstract-full').style.display = 'inline'; document.getElementById('1905.12691v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1905.12691v2-abstract-full" style="display: none;"> We investigate slow quenches in Chern insulators in ribbon geometry. We consider the Qi-Wu-Zhang model and slowly ramp the parameters (large time of the quench $蟿$) from a non-topological (Chern number = 0) to a topological regime (Chern number $\ne$ 0). In contrast to the Haldane model considered in [L. Privitera and G. E. Santoro, Phys. Rev. B 93, 241406(R) (2016)] earlier, the in-gap state degeneracy point is pinned to an inversion symmetric momentum, which changes the behavior drastically. The density of excitations in the in-gap states scales with the quench time as $蟿^{-1/2}$ as the ramp becomes slow, and the Kibble-Zurek mechanism applies. Despite the slower scaling of the density of in-gap excitations with $蟿$, the Hall conductance after the quench deviates from that of the ground state of the final Hamiltonian by an amount that drops as $蟿^{-1}$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1905.12691v2-abstract-full').style.display = 'none'; document.getElementById('1905.12691v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 September, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 May, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 100, 125110 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1902.05503">arXiv:1902.05503</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1902.05503">pdf</a>, <a href="https://arxiv.org/format/1902.05503">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41535-019-0175-y">10.1038/s41535-019-0175-y <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Hall coefficient signals orbital differentiation in the Hund&#39;s metal Sr$_2$RuO$_4$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zingl%2C+M">Manuel Zingl</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mravlje%2C+J">Jernej Mravlje</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Aichhorn%2C+M">Markus Aichhorn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Parcollet%2C+O">Olivier Parcollet</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Georges%2C+A">Antoine Georges</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1902.05503v2-abstract-short" style="display: inline;"> The Hall coefficient $R_H$ of Sr$_2$RuO$_4$ exhibits a non-monotonic temperature dependence with two sign reversals. We show that this puzzling behavior is the signature of two crossovers which are key to the physics of this material. The increase of $R_H$ and the first sign change upon cooling are associated with a crossover into a regime of coherent quasiparticles with strong orbital differentia&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1902.05503v2-abstract-full').style.display = 'inline'; document.getElementById('1902.05503v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1902.05503v2-abstract-full" style="display: none;"> The Hall coefficient $R_H$ of Sr$_2$RuO$_4$ exhibits a non-monotonic temperature dependence with two sign reversals. We show that this puzzling behavior is the signature of two crossovers which are key to the physics of this material. The increase of $R_H$ and the first sign change upon cooling are associated with a crossover into a regime of coherent quasiparticles with strong orbital differentiation of the inelastic scattering rates. The eventual decrease and the second sign change at lower temperature is driven by the crossover from inelastic to impurity-dominated scattering. This qualitative picture is supported by quantitative calculations of $R_H(T)$ using Boltzmann transport theory in combination with dynamical mean-field theory, taking into account the effect of spin-orbit coupling. Our insights shed new light on the temperature dependence of the Hall coefficient in materials with strong orbital differentiation, as observed in Hund&#39;s metals. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1902.05503v2-abstract-full').style.display = 'none'; document.getElementById('1902.05503v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 May, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 February, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> npj Quantum Materials 4, 35 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1811.08343">arXiv:1811.08343</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1811.08343">pdf</a>, <a href="https://arxiv.org/format/1811.08343">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.123.036601">10.1103/PhysRevLett.123.036601 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Conductivity in the square lattice Hubbard model at high temperatures: importance of vertex corrections </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Vucicevic%2C+J">Jaksa Vucicevic</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kokalj%2C+J">Jure Kokalj</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zitko%2C+R">Rok Zitko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wentzell%2C+N">Nils Wentzell</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tanaskovic%2C+D">Darko Tanaskovic</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mravlje%2C+J">Jernej Mravlje</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1811.08343v4-abstract-short" style="display: inline;"> Recent experiments on cold atoms in optical lattices allow for a quantitative comparison of the measurements to the conductivity calculations in the square lattice Hubbard model. However, the available calculations do not give consistent results and the question of the exact solution for the conductivity in the Hubbard model remained open. In this letter we employ several complementary state-of-th&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1811.08343v4-abstract-full').style.display = 'inline'; document.getElementById('1811.08343v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1811.08343v4-abstract-full" style="display: none;"> Recent experiments on cold atoms in optical lattices allow for a quantitative comparison of the measurements to the conductivity calculations in the square lattice Hubbard model. However, the available calculations do not give consistent results and the question of the exact solution for the conductivity in the Hubbard model remained open. In this letter we employ several complementary state-of-the-art numerical methods to disentangle various contributions to conductivity, and identify the best available result to be compared to experiment. We find that at relevant (high) temperatures, the self-energy is practically local, yet the vertex corrections remain rather important, contrary to expectations. The finite-size effects are small even at the lattice size $4\times 4$ and the corresponding Lanczos diagonalization result is therefore close to the exact result in the thermodynamic limit. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1811.08343v4-abstract-full').style.display = 'none'; document.getElementById('1811.08343v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 July, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 November, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 3 figures + supp.mat. 7 pages, 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 123, 036601 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1807.05106">arXiv:1807.05106</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1807.05106">pdf</a>, <a href="https://arxiv.org/format/1807.05106">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.98.205128">10.1103/PhysRevB.98.205128 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Spin-orbit coupling and correlations in three-orbital systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Triebl%2C+R">Robert Triebl</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kraberger%2C+G+J">Gernot J. Kraberger</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mravlje%2C+J">Jernej Mravlje</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Aichhorn%2C+M">Markus Aichhorn</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1807.05106v2-abstract-short" style="display: inline;"> We investigate the influence of spin-orbit coupling $位$ in strongly-correlated multiorbital systems that we describe by a three-orbital Hubbard-Kanamori model on a Bethe lattice. We solve the problem at all integer fillings $N$ with the dynamical mean-field theory using the continuous-time hybridization expansion Monte Carlo solver. We investigate how the quasiparticle renormalization $Z$ varies w&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1807.05106v2-abstract-full').style.display = 'inline'; document.getElementById('1807.05106v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1807.05106v2-abstract-full" style="display: none;"> We investigate the influence of spin-orbit coupling $位$ in strongly-correlated multiorbital systems that we describe by a three-orbital Hubbard-Kanamori model on a Bethe lattice. We solve the problem at all integer fillings $N$ with the dynamical mean-field theory using the continuous-time hybridization expansion Monte Carlo solver. We investigate how the quasiparticle renormalization $Z$ varies with the strength of spin-orbit coupling. The behavior can be understood for all fillings except $N=2$ in terms of the atomic Hamiltonian (the atomic charge gap) and the polarization in the $j$-basis due to spin-orbit induced changes of orbital degeneracies and the associated kinetic energy. At $N=2$, $位$ increases $Z$ at small $U$ but suppresses it at large $U$, thus eliminating the characteristic Hund&#39;s metal tail in $Z(U)$. We also compare the effects of the spin-orbit coupling to the effects of a tetragonal crystal field. Although this crystal field also lifts the orbital degeneracy, its effects are different, which can be understood in terms of the different form of the interaction Hamiltonian expressed in the respective diagonal single-particle basis. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1807.05106v2-abstract-full').style.display = 'none'; document.getElementById('1807.05106v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 November, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 July, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 98, 205128 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1802.10150">arXiv:1802.10150</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1802.10150">pdf</a>, <a href="https://arxiv.org/format/1802.10150">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.98.085121">10.1103/PhysRevB.98.085121 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Spin-orbit and anisotropic strain effects on the electronic correlations of Sr$_2$RuO$_4$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Facio%2C+J+I">Jorge I. Facio</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mravlje%2C+J">Jernej Mravlje</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pourovskii%2C+L">Leonid Pourovskii</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cornaglia%2C+P+S">Pablo S. Cornaglia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vildosola%2C+V">V. Vildosola</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1802.10150v1-abstract-short" style="display: inline;"> We present an implementation of the rotationally invariant slave boson technique as an impurity solver for density functional theory plus dynamical mean field theory (DFT+DMFT). Our approach provides explicit relations between quantities in the local correlated subspace treated with DMFT and the Bloch basis used to solve the DFT equations. In particular, we present an expression for the mass enhan&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1802.10150v1-abstract-full').style.display = 'inline'; document.getElementById('1802.10150v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1802.10150v1-abstract-full" style="display: none;"> We present an implementation of the rotationally invariant slave boson technique as an impurity solver for density functional theory plus dynamical mean field theory (DFT+DMFT). Our approach provides explicit relations between quantities in the local correlated subspace treated with DMFT and the Bloch basis used to solve the DFT equations. In particular, we present an expression for the mass enhancement of the quasiparticle states in reciprocal space. We apply the method to the study of the electronic correlations in Sr$_2$RuO$_4$ under anisotropic strain. We find that the spin-orbit coupling plays a crucial role in the mass enhancement differentiation between the quasi-one-dimensional $伪$ and $尾$ bands, and on its momentum dependence over the Fermi surface. The mass enhancement, however, is only weakly affected by either uniaxial or biaxial strain, even across the Lifshitz transition induced by the strain. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1802.10150v1-abstract-full').style.display = 'none'; document.getElementById('1802.10150v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 February, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 98, 085121 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1802.05572">arXiv:1802.05572</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1802.05572">pdf</a>, <a href="https://arxiv.org/format/1802.05572">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.97.195127">10.1103/PhysRevB.97.195127 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Slow quenches in two-dimensional time-reversal symmetric Z2 topological insulators </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Ul%C4%8Dakar%2C+L">Lara Ul膷akar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mravlje%2C+J">Jernej Mravlje</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ram%C5%A1ak%2C+A">Anton Ram拧ak</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rejec%2C+T">Toma啪 Rejec</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1802.05572v3-abstract-short" style="display: inline;"> We study the topological properties and transport in the Bernevig-Hughes-Zhang (BHZ) model undergoing a slow quench between different topological regimes. Due to the closing of the band gap during the quench, the system ends up in an excited state. For quenches governed by a Hamiltonian that preserves the symmetries present in the BHZ model (time-reversal, inversion, and conservation of spin proje&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1802.05572v3-abstract-full').style.display = 'inline'; document.getElementById('1802.05572v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1802.05572v3-abstract-full" style="display: none;"> We study the topological properties and transport in the Bernevig-Hughes-Zhang (BHZ) model undergoing a slow quench between different topological regimes. Due to the closing of the band gap during the quench, the system ends up in an excited state. For quenches governed by a Hamiltonian that preserves the symmetries present in the BHZ model (time-reversal, inversion, and conservation of spin projection), the $\mathbb{Z}_2$ invariant remains equal to the one evaluated in the initial state. The bulk spin Hall conductivity does change and its time average approaches that of the ground state of the final Hamiltonian. The deviations from the ground-state spin Hall conductivity as a function of the quench time follow the Kibble-Zurek scaling. We also consider the breaking of the time-reversal symmetry, which restores the correspondence between the bulk invariant and the transport properties after the quench. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1802.05572v3-abstract-full').style.display = 'none'; document.getElementById('1802.05572v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 December, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 February, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">corrected version, references added, corresponding erratum submitted to PRB</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 97, 195127 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1708.06089">arXiv:1708.06089</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1708.06089">pdf</a>, <a href="https://arxiv.org/format/1708.06089">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.96.085122">10.1103/PhysRevB.96.085122 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Spin-orbit coupling in three-orbital Kanamori impurity model and its relevance for transition-metal oxides </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Horvat%2C+A">Alen Horvat</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zitko%2C+R">Rok Zitko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mravlje%2C+J">Jernej Mravlje</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1708.06089v1-abstract-short" style="display: inline;"> We investigate the effects of the spin-orbit coupling (SOC) in a three-orbital impurity model with Kanamori interaction using the numerical renormalization group method. We focus on the impurity occupancy $N_d=2$ relevant to the dynamical mean-field theory studies of Hund&#39;s metals. Depending on the strength of SOC $位$ we identify three regimes: usual Hund&#39;s impurity for $|位|&lt;位_c$, van-Vleck non-ma&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1708.06089v1-abstract-full').style.display = 'inline'; document.getElementById('1708.06089v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1708.06089v1-abstract-full" style="display: none;"> We investigate the effects of the spin-orbit coupling (SOC) in a three-orbital impurity model with Kanamori interaction using the numerical renormalization group method. We focus on the impurity occupancy $N_d=2$ relevant to the dynamical mean-field theory studies of Hund&#39;s metals. Depending on the strength of SOC $位$ we identify three regimes: usual Hund&#39;s impurity for $|位|&lt;位_c$, van-Vleck non-magnetic impurity for $位&gt; 位_c$, and a $J=2$ impurity for $位&lt; -位_c$. They all correspond to a Fermi liquid but with very different quasiparticle phase shifts and different physical properties. The crossover between these regimes is controlled by an emergent scale, the orbital Kondo temperature, $位_c =T_K^\mathrm{orb}$ that drops with increasing interaction strength. This implies that oxides with strong electronic correlations are more prone to the effects of the spin-orbit coupling. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1708.06089v1-abstract-full').style.display = 'none'; document.getElementById('1708.06089v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 August, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 96, 085122 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1707.02462">arXiv:1707.02462</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1707.02462">pdf</a>, <a href="https://arxiv.org/format/1707.02462">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.120.126401">10.1103/PhysRevLett.120.126401 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Spin-Orbit Coupling and Electronic Correlations in Sr2RuO4 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+M">Minjae Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mravlje%2C+J">Jernej Mravlje</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ferrero%2C+M">Michel Ferrero</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Parcollet%2C+O">Olivier Parcollet</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Georges%2C+A">Antoine Georges</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1707.02462v2-abstract-short" style="display: inline;"> We investigate the interplay of spin-orbit coupling (SOC) and electronic correlations in Sr2RuO4 using dynamical mean-field theory. We find that SOC does not affect the correlation-induced renormalizations, which validates the Hund&#39;s metal picture of ruthenates even in the presence of the sizable SOC relevant to these materials. Nonetheless, SOC found to change significantly the electronic structu&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1707.02462v2-abstract-full').style.display = 'inline'; document.getElementById('1707.02462v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1707.02462v2-abstract-full" style="display: none;"> We investigate the interplay of spin-orbit coupling (SOC) and electronic correlations in Sr2RuO4 using dynamical mean-field theory. We find that SOC does not affect the correlation-induced renormalizations, which validates the Hund&#39;s metal picture of ruthenates even in the presence of the sizable SOC relevant to these materials. Nonetheless, SOC found to change significantly the electronic structure at k-points where a degeneracy applies in its absence. We explain why these two observations are consistent with one another and calculate effects of SOC on the correlated electronic structure. The magnitude of these effects is found to depend on the energy of the quasiparticle state under consideration, leading us to introduce the notion of an &#34;energy-dependent quasiparticle spin-orbit coupling&#34;. This notion is generally applicable to all materials in which both the spin-orbit coupling and electronic correlations are sizable. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1707.02462v2-abstract-full').style.display = 'none'; document.getElementById('1707.02462v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 December, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 July, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 120, 126401 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1704.06450">arXiv:1704.06450</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1704.06450">pdf</a>, <a href="https://arxiv.org/format/1704.06450">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/nphys4212">10.1038/nphys4212 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A new high-temperature quantum spin liquid with polaron spins </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Klanjsek%2C+M">Martin Klanjsek</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zorko%2C+A">Andrej Zorko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zitko%2C+R">Rok Zitko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mravlje%2C+J">Jernej Mravlje</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jaglicic%2C+Z">Zvonko Jaglicic</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Biswas%2C+P+K">Pabitra Kumar Biswas</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Prelovsek%2C+P">Peter Prelovsek</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mihailovic%2C+D">Dragan Mihailovic</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Arcon%2C+D">Denis Arcon</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1704.06450v1-abstract-short" style="display: inline;"> The existence of a quantum spin liquid (QSL) in which quantum fluctuations of spins are sufficiently strong to preclude spin ordering down to zero temperature was originally proposed theoretically more than 40 years ago, but its experimental realisation turned out to be very elusive. Here we report on an almost ideal spin liquid state that appears to be realized by atomic-cluster spins on the tria&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1704.06450v1-abstract-full').style.display = 'inline'; document.getElementById('1704.06450v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1704.06450v1-abstract-full" style="display: none;"> The existence of a quantum spin liquid (QSL) in which quantum fluctuations of spins are sufficiently strong to preclude spin ordering down to zero temperature was originally proposed theoretically more than 40 years ago, but its experimental realisation turned out to be very elusive. Here we report on an almost ideal spin liquid state that appears to be realized by atomic-cluster spins on the triangular lattice of a charge-density wave (CDW) state of 1T-TaS$_2$. In this system, the charge excitations have a well-defined gap of $\sim 0.3$ eV, while nuclear magnetic quadrupole resonance and muon spin relaxation experiments reveal that the spins show gapless quantum spin liquid dynamics and no long range magnetic order down to 70~mK. Canonical $T^{2}$ power-law temperature dependence of the spin relaxation dynamics characteristic of a QSL is observed from 200~K to $T_f= 55$ K. Below this temperature we observe a new gapless state with reduced density of spin excitations and high degree of local disorder signifying new quantum spin order emerging from the QSL. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1704.06450v1-abstract-full').style.display = 'none'; document.getElementById('1704.06450v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 April, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 4 figures, submitted for a publication</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Physics 13, 1130-1134 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1608.01600">arXiv:1608.01600</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1608.01600">pdf</a>, <a href="https://arxiv.org/ps/1608.01600">ps</a>, <a href="https://arxiv.org/format/1608.01600">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.94.235115">10.1103/PhysRevB.94.235115 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Transport and Optical Conductivity in the Hubbard Model: A High-Temperature Expansion Perspective </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Perepelitsky%2C+E">Edward Perepelitsky</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Galatas%2C+A">Andrew Galatas</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mravlje%2C+J">Jernej Mravlje</a>, <a href="/search/cond-mat?searchtype=author&amp;query=%C5%BDitko%2C+R">Rok 沤itko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Khatami%2C+E">Ehsan Khatami</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shastry%2C+B+S">B Sriram Shastry</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Georges%2C+A">Antoine Georges</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1608.01600v2-abstract-short" style="display: inline;"> We derive analytical expressions for the spectral moments of the dynamical response functions of the Hubbard model using the high-temperature series expansion. We consider generic dimension $d$ as well as the infinite-$d$ limit, arbitrary electron density $n$, and both finite and infinite repulsion $U$. We use moment-reconstruction methods to obtain the one-electron spectral function, the self-ene&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1608.01600v2-abstract-full').style.display = 'inline'; document.getElementById('1608.01600v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1608.01600v2-abstract-full" style="display: none;"> We derive analytical expressions for the spectral moments of the dynamical response functions of the Hubbard model using the high-temperature series expansion. We consider generic dimension $d$ as well as the infinite-$d$ limit, arbitrary electron density $n$, and both finite and infinite repulsion $U$. We use moment-reconstruction methods to obtain the one-electron spectral function, the self-energy, and the optical conductivity. They are all smooth functions at high-temperature and, at large-$U$, they are featureless with characteristic widths of order the lattice hopping parameter $t$. In the infinite-$d$ limit we compare the series expansion results with accurate numerical renormalization group and interaction expansion quantum Monte-Carlo results. We find excellent agreement down to surprisingly low temperatures, throughout most of the bad-metal regime which applies for $T \gtrsim (1-n)D$, the Brinkman-Rice scale. The resistivity increases linearly in $T$ at high-temperature without saturation. This results from the $1/T$ behaviour of the compressibility or kinetic energy, which play the role of the effective carrier number. In contrast, the scattering time (or diffusion constant) saturate at high-$T$. We find that $蟽(n,T) \approx (1-n)蟽(n=0,T)$ to a very good approximation for all $n$, with $蟽(n=0,T)\propto t/T$ at high temperatures. The saturation at small $n$ occurs due to a compensation between the density-dependence of the effective number of carriers and that of the scattering time. The $T$-dependence of the resistivity displays a knee-like feature which signals a cross-over to the intermediate-temperature regime where the diffusion constant (or scattering time) start increasing with decreasing $T$. At high-temperatures, the thermopower obeys the Heikes formula, while the Wiedemann-Franz law is violated with the Lorenz number vanishing as $1/T^2$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1608.01600v2-abstract-full').style.display = 'none'; document.getElementById('1608.01600v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 November, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 August, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">38 pages, 16 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1606.07654">arXiv:1606.07654</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1606.07654">pdf</a>, <a href="https://arxiv.org/format/1606.07654">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.94.165140">10.1103/PhysRevB.94.165140 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Low-energy physics of three-orbital impurity model with Kanamori interaction </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Horvat%2C+A">Alen Horvat</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zitko%2C+R">Rok Zitko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mravlje%2C+J">Jernej Mravlje</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1606.07654v1-abstract-short" style="display: inline;"> We discuss the low-energy physics of the three-orbital Anderson impurity model with the Coulomb interaction term of the Kanamori form which has orbital SO(3) and spin SU(2) symmetry and describes systems with partially occupied $t_{2g}$ shells. We focus on the case with two electrons in the impurity that is relevant to Hund&#39;s metals. Using the Schrieffer-Wolff transformation we derive an effective&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1606.07654v1-abstract-full').style.display = 'inline'; document.getElementById('1606.07654v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1606.07654v1-abstract-full" style="display: none;"> We discuss the low-energy physics of the three-orbital Anderson impurity model with the Coulomb interaction term of the Kanamori form which has orbital SO(3) and spin SU(2) symmetry and describes systems with partially occupied $t_{2g}$ shells. We focus on the case with two electrons in the impurity that is relevant to Hund&#39;s metals. Using the Schrieffer-Wolff transformation we derive an effective Kondo model with couplings between the bulk and impurity electrons expressed in terms of spin, orbital, and orbital quadrupole operators. The bare spin-spin Kondo interaction is much smaller than the orbit-orbit and spin-orbital couplings or is even ferromagnetic. Furthermore, the perturbative scaling equations indicate faster renormalization of the couplings related to orbital degrees of freedom compared to spin degrees of freedom. Both mechanisms lead to a slow screening of the local spin moment. The model thus behaves similarly to the related quantum impurity problem with a larger SU(3) orbital symmetry (Dworin-Narath interaction) where this was first observed. We find that the two problems actually describe the same low-energy physics since the SU(3) symmetry is dynamically established through the renormalization of the splittings of coupling constants to zero. The perturbative renormalization group results are corroborated with the numerical-renormalization group (NRG) calculations. The dependence of spin Kondo temperatures and orbital Kondo temperatures as a function of interaction parameters, the hybridization, and the impurity occupancy is calculated and discussed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1606.07654v1-abstract-full').style.display = 'none'; document.getElementById('1606.07654v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 June, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 94, 165140 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1603.02287">arXiv:1603.02287</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1603.02287">pdf</a>, <a href="https://arxiv.org/ps/1603.02287">ps</a>, <a href="https://arxiv.org/format/1603.02287">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Geophysics">physics.geo-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1367-2630/aa76c9">10.1088/1367-2630/aa76c9 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Fermi-liquid behavior and thermal conductivity of 蔚-iron at Earth&#39;s core conditions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Pourovskii%2C+L+V">L. V. Pourovskii</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mravlje%2C+J">J. Mravlje</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Georges%2C+A">A. Georges</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Simak%2C+S+I">S. I. Simak</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Abrikosov%2C+I+A">I. A. Abrikosov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1603.02287v3-abstract-short" style="display: inline;"> The electronic state and transport properties of hot dense iron are of the utmost importance to geophysics. Combining the density functional and dynamical mean field theories we study the impact of electron correlations on electrical and thermal resistivity of hexagonal close-packed $蔚$-Fe at Earth&#39;s core conditions. $蔚$-Fe is found to behave as a nearly perfect Fermi liquid. The quadratic depende&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1603.02287v3-abstract-full').style.display = 'inline'; document.getElementById('1603.02287v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1603.02287v3-abstract-full" style="display: none;"> The electronic state and transport properties of hot dense iron are of the utmost importance to geophysics. Combining the density functional and dynamical mean field theories we study the impact of electron correlations on electrical and thermal resistivity of hexagonal close-packed $蔚$-Fe at Earth&#39;s core conditions. $蔚$-Fe is found to behave as a nearly perfect Fermi liquid. The quadratic dependence of the scattering rate in Fermi liquids leads to a modification of the Wiedemann-Franz law with suppression of the thermal conductivity as compared to the electrical one. This significantly increases the electron-electron thermal resistivity which is found to be of comparable magnitude to the electron-phonon one. The implications of this effect on the dynamics of Earth&#39;s core is discussed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1603.02287v3-abstract-full').style.display = 'none'; document.getElementById('1603.02287v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 May, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 March, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> New J. Phys. 19, 073022 ( 2017 ) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1601.08236">arXiv:1601.08236</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1601.08236">pdf</a>, <a href="https://arxiv.org/ps/1601.08236">ps</a>, <a href="https://arxiv.org/format/1601.08236">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.93.165131">10.1103/PhysRevB.93.165131 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> THz conductivity of Sr$_{1-x}$Ca$_x$RuO$_3$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Geiger%2C+D">Diana Geiger</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pracht%2C+U+S">Uwe S. Pracht</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dressel%2C+M">Martin Dressel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mravlje%2C+J">Jernej Mravlje</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schneider%2C+M">Melanie Schneider</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gegenwart%2C+P">Philipp Gegenwart</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Scheffler%2C+M">Marc Scheffler</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1601.08236v1-abstract-short" style="display: inline;"> We investigate the optical conductivity of Sr$_{1-x}$Ca$_x$RuO$_3$ across the ferromagnetic to paramagnetic transition that occurs at $x=0.8$. The thin films were grown by metalorganic aerosol deposition with $0 \leq x \leq 1$ onto NdGaO$_3$ substrates. We performed THz frequency domain spectroscopy in a frequency range from 3~cm$^{-1}$ to 40~cm$^{-1}$ (100~GHz to 1.4~THz) and at temperatures rang&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1601.08236v1-abstract-full').style.display = 'inline'; document.getElementById('1601.08236v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1601.08236v1-abstract-full" style="display: none;"> We investigate the optical conductivity of Sr$_{1-x}$Ca$_x$RuO$_3$ across the ferromagnetic to paramagnetic transition that occurs at $x=0.8$. The thin films were grown by metalorganic aerosol deposition with $0 \leq x \leq 1$ onto NdGaO$_3$ substrates. We performed THz frequency domain spectroscopy in a frequency range from 3~cm$^{-1}$ to 40~cm$^{-1}$ (100~GHz to 1.4~THz) and at temperatures ranging from 5~K to 300~K, measuring transmittivity and phase shift through the films. From this we obtained real and imaginary parts of the optical conductivity. The end-members, ferromagnetic SrRuO$_3$ and paramagnetic CaRuO$_3$, show a strongly frequency-dependent metallic response at temperatures below 20~K. Due to the high quality of these samples we can access pronounced intrinsic electronic contributions to the optical scattering rate, which at 1.4~THz exceeds the residual scattering rate by more than a factor of three. Deviations from a Drude response start at about 0.7~THz for both end-members in a remarkably similar way. For the intermediate members a higher residual scattering originating in the compositional disorder leads to a featureless optical response, instead. The relevance of low-lying interband transitions is addressed by a calculation of the optical conductivity within density functional theory in the local density approximation (LDA). <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1601.08236v1-abstract-full').style.display = 'none'; document.getElementById('1601.08236v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 January, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 93, 165131 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1511.01302">arXiv:1511.01302</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1511.01302">pdf</a>, <a href="https://arxiv.org/ps/1511.01302">ps</a>, <a href="https://arxiv.org/format/1511.01302">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.cpc.2016.03.014">10.1016/j.cpc.2016.03.014 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> TRIQS/DFTTools: A TRIQS application for ab initio calculations of correlated materials </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Aichhorn%2C+M">Markus Aichhorn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pourovskii%2C+L">Leonid Pourovskii</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Seth%2C+P">Priyanka Seth</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vildosola%2C+V">Veronica Vildosola</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zingl%2C+M">Manuel Zingl</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Peil%2C+O+E">Oleg E. Peil</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Deng%2C+X">Xiaoyu Deng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mravlje%2C+J">Jernej Mravlje</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kraberger%2C+G+J">Gernot J. Kraberger</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Martins%2C+C">Cyril Martins</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ferrero%2C+M">Michel Ferrero</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Parcollet%2C+O">Olivier Parcollet</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1511.01302v3-abstract-short" style="display: inline;"> We present the TRIQS/DFTTools package, an application based on the TRIQS library that connects this toolbox to realistic materials calculations based on density functional theory (DFT). In particular, TRIQS/DFTTools together with TRIQS allows an efficient implementation of DFT plus dynamical mean-field theory (DMFT) calculations. It supplies tools and methods to construct Wannier functions and to&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1511.01302v3-abstract-full').style.display = 'inline'; document.getElementById('1511.01302v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1511.01302v3-abstract-full" style="display: none;"> We present the TRIQS/DFTTools package, an application based on the TRIQS library that connects this toolbox to realistic materials calculations based on density functional theory (DFT). In particular, TRIQS/DFTTools together with TRIQS allows an efficient implementation of DFT plus dynamical mean-field theory (DMFT) calculations. It supplies tools and methods to construct Wannier functions and to perform the DMFT self-consistency cycle in this basis set. Post-processing tools, such as band-structure plotting or the calculation of transport properties are also implemented. The package comes with a fully charge self-consistent interface to the Wien2k band structure code, as well as a generic interface that allows to use TRIQS/DFTTools together with a large variety of DFT codes. It is distributed under the GNU General Public License (GPLv3). <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1511.01302v3-abstract-full').style.display = 'none'; document.getElementById('1511.01302v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 March, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 November, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 6 figures, Comp. Phys. Comm. accepted version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Comp. Phys. Comm. 204, 200 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1509.09245">arXiv:1509.09245</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1509.09245">pdf</a>, <a href="https://arxiv.org/format/1509.09245">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Optical spectroscopy and the nature of the insulating state of rare-earth nickelates </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Ruppen%2C+J">J. Ruppen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Teyssier%2C+J">J. Teyssier</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Peil%2C+O+E">O. E. Peil</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Catalano%2C+S">S. Catalano</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gibert%2C+M">M. Gibert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mravlje%2C+J">J. Mravlje</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Triscone%2C+J+-">J. -M. Triscone</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Georges%2C+A">A. Georges</a>, <a href="/search/cond-mat?searchtype=author&amp;query=van+der+Marel%2C+D">D. van der Marel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1509.09245v1-abstract-short" style="display: inline;"> Using a combination of spectroscopic ellipsometry and DC transport measurements, we determine the temperature dependence of the optical conductivity of NdNiO$_3$ and SmNiO$_{3}$ films. The optical spectra show the appearance of a characteristic two-peak structure in the near-infrared when the material passes from the metal to the insulator phase. Dynamical mean-field theory calculations confirm th&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1509.09245v1-abstract-full').style.display = 'inline'; document.getElementById('1509.09245v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1509.09245v1-abstract-full" style="display: none;"> Using a combination of spectroscopic ellipsometry and DC transport measurements, we determine the temperature dependence of the optical conductivity of NdNiO$_3$ and SmNiO$_{3}$ films. The optical spectra show the appearance of a characteristic two-peak structure in the near-infrared when the material passes from the metal to the insulator phase. Dynamical mean-field theory calculations confirm this two-peak structure, and allow to identify these spectral changes and the associated changes in the electronic structure. We demonstrate that the insulating phase in these compounds and the associated characteristic two-peak structure are due to the combined effect of bond-disproportionation and Mott physics associated with half of the disproportionated sites. We also provide insights into the structure of excited states above the gap. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1509.09245v1-abstract-full').style.display = 'none'; document.getElementById('1509.09245v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 September, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 13 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1504.03860">arXiv:1504.03860</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1504.03860">pdf</a>, <a href="https://arxiv.org/ps/1504.03860">ps</a>, <a href="https://arxiv.org/format/1504.03860">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.117.036401">10.1103/PhysRevLett.117.036401 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Thermopower and Entropy: lessons from Sr$_2$RuO$_4$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Mravlje%2C+J">Jernej Mravlje</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Georges%2C+A">Antoine Georges</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1504.03860v1-abstract-short" style="display: inline;"> We calculate the in-plane Seebeck coefficient of Sr$_2$RuO$_4$ within a framework combining electronic structure and dynamical mean-field theory. We show that its temperature-dependence is consistent with entropic considerations embodied in the Kelvin formula, and that it provides a meaningful probe of the crossover out of the Fermi liquid regime into an incoherent metal. This crossover proceeds i&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1504.03860v1-abstract-full').style.display = 'inline'; document.getElementById('1504.03860v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1504.03860v1-abstract-full" style="display: none;"> We calculate the in-plane Seebeck coefficient of Sr$_2$RuO$_4$ within a framework combining electronic structure and dynamical mean-field theory. We show that its temperature-dependence is consistent with entropic considerations embodied in the Kelvin formula, and that it provides a meaningful probe of the crossover out of the Fermi liquid regime into an incoherent metal. This crossover proceeds in two stages: the entropy of spin degrees of freedom is released around room-temperature while orbital degrees of freedom remain quenched up to much higher temperatures. This is confirmed by a direct calculation of the corresponding susceptibilities, and is a hallmark of `Hund&#39;s metals&#39;. We also calculate the c-axis thermopower, and predict that it exceeds substantially the in-plane one at high-temperature, a peculiar behaviour which originates from an interlayer &#39;hole-filtering&#39; mechanism. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1504.03860v1-abstract-full').style.display = 'none'; document.getElementById('1504.03860v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 April, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5+3 pages</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 117, 036401 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1501.03964">arXiv:1501.03964</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1501.03964">pdf</a>, <a href="https://arxiv.org/format/1501.03964">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.91.195149">10.1103/PhysRevB.91.195149 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Electronic correlations, magnetism and Hund&#39;s rule coupling in the ruthenium perovskites SrRuO$_3$ and CaRuO$_3$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Dang%2C+H+T">Hung T. Dang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mravlje%2C+J">Jernej Mravlje</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Georges%2C+A">Antoine Georges</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Millis%2C+A+J">Andrew J. Millis</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1501.03964v2-abstract-short" style="display: inline;"> A comparative density functional plus dynamical mean field theory study of the pseudocubic ruthenate materials CaRuO$_3$ and SrRuO$_3$ is presented. Phase diagrams are determined for both materials as a function of Hubbard repulsion $U$ and Hund&#39;s rule coupling $J$. Metallic and insulating phases are found, as are ferromagnetic and paramagnetic states. The locations of the relevant phase boundarie&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1501.03964v2-abstract-full').style.display = 'inline'; document.getElementById('1501.03964v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1501.03964v2-abstract-full" style="display: none;"> A comparative density functional plus dynamical mean field theory study of the pseudocubic ruthenate materials CaRuO$_3$ and SrRuO$_3$ is presented. Phase diagrams are determined for both materials as a function of Hubbard repulsion $U$ and Hund&#39;s rule coupling $J$. Metallic and insulating phases are found, as are ferromagnetic and paramagnetic states. The locations of the relevant phase boundaries are determined. Based on the computed phase diagrams, Mott-dominated and Hund&#39;s dominated regimes of strong correlation are distinguished. Comparison of calculated properties to experiments indicates that the actual materials are in the Hund&#39;s coupling dominated region of the phase diagram so can be characterized as Hund&#39;s metals, in common with other members of the ruthenate family. Comparison of the phase diagrams for the two materials reveals the role played by rotational and tilt (GdFeO$_3$-type) distortions of the ideal perovskite structure. The presence of magnetism in SrRuO$_3$ and its absence in CaRuO$_3$ despite the larger mass and larger tilt/rotational distortion amplitude of CaRuO$_3$ can be understood in terms of density of states effects in the presence of strong Hund&#39;s coupling. Comparison of the calculated low-$T$ properties of CaRuO$_3$ to those of SrRuO$_3$ provides insight into the effects of magnetic order on the properties of a Hund&#39;s metal. The study provides a simultaneous description of magnetism and correlations and explicates the roles played by band theory and Hubbard and Hund&#39;s interactions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1501.03964v2-abstract-full').style.display = 'none'; document.getElementById('1501.03964v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 May, 2015; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 January, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 91, 195149 (2015) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1501.03033">arXiv:1501.03033</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1501.03033">pdf</a>, <a href="https://arxiv.org/format/1501.03033">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.95.205115">10.1103/PhysRevB.95.205115 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Theoretical prediction of antiferromagnetism in layered perovskite Sr$_2$TcO$_4$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Horvat%2C+A">Alen Horvat</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pourovskii%2C+L">Leonid Pourovskii</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Aichhorn%2C+M">Markus Aichhorn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mravlje%2C+J">Jernej Mravlje</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1501.03033v1-abstract-short" style="display: inline;"> We theoretically investigate magnetic properties of Sr$_2$TcO$_4$, a 4d transition-metal layered perovskite of the K$_2$NiF$_4$-type with half-filled t$_{2g}$ states. The effect of local Coulomb repulsion between the t$_{2g}$ orbitals is included within the density-functional theory (DFT)+U and DFT+dynamical mean-field theory (DMFT) methods. The DFT+DMFT predicts paramagnetic Sr$_2$TcO$_4$ to be c&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1501.03033v1-abstract-full').style.display = 'inline'; document.getElementById('1501.03033v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1501.03033v1-abstract-full" style="display: none;"> We theoretically investigate magnetic properties of Sr$_2$TcO$_4$, a 4d transition-metal layered perovskite of the K$_2$NiF$_4$-type with half-filled t$_{2g}$ states. The effect of local Coulomb repulsion between the t$_{2g}$ orbitals is included within the density-functional theory (DFT)+U and DFT+dynamical mean-field theory (DMFT) methods. The DFT+DMFT predicts paramagnetic Sr$_2$TcO$_4$ to be close to the Mott insulator-to-metal transition, similarly to the cubic compound SrTcO$_3$. The inter-site exchange interactions computed within the DFT+DMFT framework point to a strong antiferromagnetic coupling between the neighboring Tc sites within the layer. We then evaluate the N茅el temperature $T_N$ within a classical Monte Carlo approach including dipolar interactions, which stabilize the magnetic order in the frustrated K$_2$NiF$_4$ lattice structure. Our approach is applied to a set of layered and cubic perovskites. The obtained $T_N$ are in fair agreement with experiment. Within the same approach we predict $T_N$ of Sr$_2$TcO$_4$ to be in the 500-600K range. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1501.03033v1-abstract-full').style.display = 'none'; document.getElementById('1501.03033v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 January, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 95, 205115 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1412.7803">arXiv:1412.7803</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1412.7803">pdf</a>, <a href="https://arxiv.org/format/1412.7803">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.115.107003">10.1103/PhysRevLett.115.107003 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Band Structure and Terahertz Optical Conductivity of Transition Metal Oxides: Theory and Application to CaRuO$_3$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Dang%2C+H+T">Hung T. Dang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mravlje%2C+J">Jernej Mravlje</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Georges%2C+A">Antoine Georges</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Millis%2C+A+J">Andrew J. Millis</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1412.7803v2-abstract-short" style="display: inline;"> Density functional plus dynamical mean field calculations are used to show that in transition metal oxides, rotational and tilting (GdFeO$_3$-type) distortions of the ideal cubic perovskite structure produce a multiplicity of low-energy optical transitions which affect the conductivity down to frequencies of the order of $1$ or $2$~mV (terahertz regime), mimicking non-Fermi-liquid effects even in&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1412.7803v2-abstract-full').style.display = 'inline'; document.getElementById('1412.7803v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1412.7803v2-abstract-full" style="display: none;"> Density functional plus dynamical mean field calculations are used to show that in transition metal oxides, rotational and tilting (GdFeO$_3$-type) distortions of the ideal cubic perovskite structure produce a multiplicity of low-energy optical transitions which affect the conductivity down to frequencies of the order of $1$ or $2$~mV (terahertz regime), mimicking non-Fermi-liquid effects even in systems with a strictly Fermi-liquid self-energy. For CaRuO$_3$, a material whose measured electromagnetic response in the terahertz frequency regime has been interpreted as evidence for non-Fermi-liquid physics, the combination of these band structure effects and a renormalized Fermi-liquid self-energy accounts for the low frequency optical response which had previously been regarded as a signature of exotic physics. Signatures of deviations from Fermi-liquid behavior at higher frequencies ($\sim 100$~meV) are discussed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1412.7803v2-abstract-full').style.display = 'none'; document.getElementById('1412.7803v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 September, 2015; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 December, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 115, 107003 (2015) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1403.5445">arXiv:1403.5445</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1403.5445">pdf</a>, <a href="https://arxiv.org/format/1403.5445">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.113.087404">10.1103/PhysRevLett.113.087404 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Optical Response of Sr$_2$RuO$_4$ Reveals Universal Fermi-liquid Scaling and Quasiparticles Beyond Landau Theory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Stricker%2C+D">D. Stricker</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mravlje%2C+J">J. Mravlje</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Berthod%2C+C">C. Berthod</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fittipaldi%2C+R">R. Fittipaldi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vecchione%2C+A">A. Vecchione</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Georges%2C+A">A. Georges</a>, <a href="/search/cond-mat?searchtype=author&amp;query=van+der+Marel%2C+D">D. van der Marel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1403.5445v2-abstract-short" style="display: inline;"> We report optical measurements demonstrating that the low-energy relaxation rate ($1/蟿$) of the conduction electrons in Sr$_2$RuO$_4$ obeys scaling relations for its frequency ($蠅$) and temperature ($T$) dependence in accordance with Fermi-liquid theory. In the thermal relaxation regime, $1/蟿\propto (\hbar蠅)^2 + (p蟺\kB T)^2$ with $p=2$, and $蠅/T$ scaling applies. Many-body electronic structure cal&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1403.5445v2-abstract-full').style.display = 'inline'; document.getElementById('1403.5445v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1403.5445v2-abstract-full" style="display: none;"> We report optical measurements demonstrating that the low-energy relaxation rate ($1/蟿$) of the conduction electrons in Sr$_2$RuO$_4$ obeys scaling relations for its frequency ($蠅$) and temperature ($T$) dependence in accordance with Fermi-liquid theory. In the thermal relaxation regime, $1/蟿\propto (\hbar蠅)^2 + (p蟺\kB T)^2$ with $p=2$, and $蠅/T$ scaling applies. Many-body electronic structure calculations using dynamical mean-field theory confirm the low-energy Fermi-liquid scaling, and provide quantitative understanding of the deviations from Fermi-liquid behavior at higher energy and temperature. The excess optical spectral weight in this regime provides evidence for strongly dispersing &#34;resilient&#34; quasiparticle excitations above the Fermi energy. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1403.5445v2-abstract-full').style.display = 'none'; document.getElementById('1403.5445v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 August, 2014; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 March, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 113, 087404 (2014) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1312.3809">arXiv:1312.3809</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1312.3809">pdf</a>, <a href="https://arxiv.org/format/1312.3809">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.112.206403">10.1103/PhysRevLett.112.206403 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Low-energy electronic properties of clean CaRuO$_3$: elusive Landau quasiparticles </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Schneider%2C+M">M. Schneider</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Geiger%2C+D">D. Geiger</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Esser%2C+S">S. Esser</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pracht%2C+U+S">U. S. Pracht</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Stingl%2C+C">C. Stingl</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tokiwa%2C+Y">Y. Tokiwa</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Moshnyaga%2C+V">V. Moshnyaga</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sheikin%2C+I">I. Sheikin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mravlje%2C+J">J. Mravlje</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Scheffler%2C+M">M. Scheffler</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gegenwart%2C+P">P. Gegenwart</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1312.3809v1-abstract-short" style="display: inline;"> We have prepared high-quality epitaxial thin films of CaRuO$_3$ with residual resistivity ratios up to 55. Shubnikov-de Haas oscillations in the magnetoresistance and a $T^2$ temperature dependence in the electrical resistivity only below 1.5 K, whose coefficient is substantially suppressed in large magnetic fields, establish CaRuO$_3$ as a Fermi liquid (FL) with anomalously low coherence scale. N&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1312.3809v1-abstract-full').style.display = 'inline'; document.getElementById('1312.3809v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1312.3809v1-abstract-full" style="display: none;"> We have prepared high-quality epitaxial thin films of CaRuO$_3$ with residual resistivity ratios up to 55. Shubnikov-de Haas oscillations in the magnetoresistance and a $T^2$ temperature dependence in the electrical resistivity only below 1.5 K, whose coefficient is substantially suppressed in large magnetic fields, establish CaRuO$_3$ as a Fermi liquid (FL) with anomalously low coherence scale. Non-Fermi liquid (NFL) $T^{3/2}$ dependence is found between 2 and 25 K. The high sample quality allows access to the intrinsic electronic properties via THz spectroscopy. For frequencies below 0.6 THz, the conductivity is Drude-like and can be modeled by FL concepts, while for higher frequencies non-Drude behavior, inconsistent with FL predictions, is found. This establishes CaRuO$_3$ as a prime example of optical NFL behavior in the THz range. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1312.3809v1-abstract-full').style.display = 'none'; document.getElementById('1312.3809v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 December, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 21 figures including supplemental material</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 112, 206403 (2014) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1312.3654">arXiv:1312.3654</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1312.3654">pdf</a>, <a href="https://arxiv.org/ps/1312.3654">ps</a>, <a href="https://arxiv.org/format/1312.3654">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.90.155120">10.1103/PhysRevB.90.155120 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Impact of electronic correlations on the equation of state and transport in $蔚$-Fe </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Pourovskii%2C+L+V">L. V. Pourovskii</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mravlje%2C+J">J. Mravlje</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ferrero%2C+M">M. Ferrero</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Parcollet%2C+O">O. Parcollet</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Abrikosov%2C+I+A">I. A. Abrikosov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1312.3654v1-abstract-short" style="display: inline;"> We have obtained the equilibrium volumes, bulk moduli, equations of state of the ferromagnetic cubic $伪$ and paramagnetic hexagonal $蔚$ phases of iron in close agreement with experiment using an ab initio dynamical mean-field theory approach. The local dynamical correlations are shown to be crucial for a successful description of the ground-state properties of paramagnetic $蔚$-Fe. Moreover, they e&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1312.3654v1-abstract-full').style.display = 'inline'; document.getElementById('1312.3654v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1312.3654v1-abstract-full" style="display: none;"> We have obtained the equilibrium volumes, bulk moduli, equations of state of the ferromagnetic cubic $伪$ and paramagnetic hexagonal $蔚$ phases of iron in close agreement with experiment using an ab initio dynamical mean-field theory approach. The local dynamical correlations are shown to be crucial for a successful description of the ground-state properties of paramagnetic $蔚$-Fe. Moreover, they enhance the effective mass of the quasiparticles and reduce their lifetimes across the $伪\to 蔚$ transition leading to a step-wise increase of the resistivity, as observed in experiment. The calculated magnitude of the jump is significantly underestimated, which points to non-local correlations. The implications of our results for the superconductivity and non-Fermi-liquid behavior of $蔚$-Fe are discussed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1312.3654v1-abstract-full').style.display = 'none'; document.getElementById('1312.3654v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 December, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 90, 155120 (2014) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1309.5284">arXiv:1309.5284</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1309.5284">pdf</a>, <a href="https://arxiv.org/format/1309.5284">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.88.235132">10.1103/PhysRevB.88.235132 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Extremely correlated Fermi liquid theory meets Dynamical mean-field theory: Analytical insights into the doping-driven Mott transition </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zitko%2C+R">R. Zitko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hansen%2C+D">D. Hansen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Perepelitsky%2C+E">E. Perepelitsky</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mravlje%2C+J">J. Mravlje</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Georges%2C+A">A. Georges</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shastry%2C+B+S">B. S. Shastry</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1309.5284v2-abstract-short" style="display: inline;"> We consider a doped Mott insulator in the large dimensionality limit within both the recently developed Extremely Correlated Fermi Liquid (ECFL) theory and the Dynamical Mean-Field Theory (DMFT). We show that the general structure of the ECFL sheds light on the rich frequency-dependence of the DMFT self-energy. Using the leading Fermi-liquid form of the two key auxiliary functions introduced in th&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1309.5284v2-abstract-full').style.display = 'inline'; document.getElementById('1309.5284v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1309.5284v2-abstract-full" style="display: none;"> We consider a doped Mott insulator in the large dimensionality limit within both the recently developed Extremely Correlated Fermi Liquid (ECFL) theory and the Dynamical Mean-Field Theory (DMFT). We show that the general structure of the ECFL sheds light on the rich frequency-dependence of the DMFT self-energy. Using the leading Fermi-liquid form of the two key auxiliary functions introduced in the ECFL theory, we obtain an analytical ansatz which provides a good quantitative description of the DMFT self-energy down to hole doping level 0.2. In particular, the deviation from Fermi-liquid behavior and the corresponding particle-hole asymmetry developing at a low energy scale are well reproduced by this ansatz. The DMFT being exact at large dimensionality, our study also provides a benchmark of the ECFL in this limit. We find that the main features of the self-energy and spectral line-shape are well reproduced by the ECFL calculations in the O(位^2) `minimal scheme&#39;, for not too low doping level &gt;0.3. The DMFT calculations reported here are performed using a state-of-the-art numerical renormalization-group impurity solver, which yields accurate results down to an unprecedentedly small doping level 0.001. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1309.5284v2-abstract-full').style.display = 'none'; document.getElementById('1309.5284v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 December, 2013; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 September, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 18 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 88, 235132 (2013) </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Mravlje%2C+J&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Mravlje%2C+J&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Mravlje%2C+J&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10