CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 1,007 results for author: <span class="mathjax">Liu, X</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/physics" aria-role="search"> Searching in archive <strong>physics</strong>. <a href="/search/?searchtype=author&amp;query=Liu%2C+X">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Liu, X"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Liu%2C+X&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Liu, X"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Liu%2C+X&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Liu%2C+X&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Liu%2C+X&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Liu%2C+X&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Liu%2C+X&amp;start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Liu%2C+X&amp;start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> <li><span class="pagination-ellipsis">&hellip;</span></li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.14339">arXiv:2502.14339</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2502.14339">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Wave-propagation Based Analysis of the Magnetostatic Waves in Ferrite Films Excited by Metallic Transducers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+Z">Zhizhi Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Lai%2C+Y">Yuanming Lai</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Q">Qian Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+X">Xiongzhang Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Wu%2C+C">Chongsheng Wu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.14339v1-abstract-short" style="display: inline;"> It is conventional wisdom that the spectra of the impedances of magnetostatic waves (MSWs) determine the transmissions of MSW devices. In this work, we show that the characteristics of propagating MSWs have critical impacts on the characteristics of transmissions. A wave-propagation based analysis considering the inhomogeneous distributions of magnetic fields is presented for investigating the pro&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.14339v1-abstract-full').style.display = 'inline'; document.getElementById('2502.14339v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.14339v1-abstract-full" style="display: none;"> It is conventional wisdom that the spectra of the impedances of magnetostatic waves (MSWs) determine the transmissions of MSW devices. In this work, we show that the characteristics of propagating MSWs have critical impacts on the characteristics of transmissions. A wave-propagation based analysis considering the inhomogeneous distributions of magnetic fields is presented for investigating the propagations of MSWs. Based on the analysis, it is demonstrated that the metallic nature of transducers causes the high insertion losses in high-frequency bands, while the dips and severe in-band ripples in low-frequency bands are resulted from the complicated interference between the multiple width modes. Simulations in HFSS verify the analysis with good agreements. Our work advances the understanding of MSWs propagating in ferrite films with metallic structures and paves the way to designing MSW devices aimed at implantation in microwave systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.14339v1-abstract-full').style.display = 'none'; document.getElementById('2502.14339v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.14243">arXiv:2502.14243</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2502.14243">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> SMILE: three-dimensional modulation-enhanced localization microscopy with spatially invariant resolution </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Zhu%2C+H">Hongfei Zhu</a>, <a href="/search/physics?searchtype=author&amp;query=Sun%2C+Y">Yile Sun</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+X">Xinxun Yang</a>, <a href="/search/physics?searchtype=author&amp;query=He%2C+E">Enxing He</a>, <a href="/search/physics?searchtype=author&amp;query=Yin%2C+L">Lu Yin</a>, <a href="/search/physics?searchtype=author&amp;query=Wu%2C+H">Hanmeng Wu</a>, <a href="/search/physics?searchtype=author&amp;query=Cai%2C+M">Mingxuan Cai</a>, <a href="/search/physics?searchtype=author&amp;query=Han%2C+Y">Yubing Han</a>, <a href="/search/physics?searchtype=author&amp;query=Zhou%2C+R">Renjie Zhou</a>, <a href="/search/physics?searchtype=author&amp;query=Kuang%2C+C">Cuifang Kuang</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+X">Xu Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.14243v1-abstract-short" style="display: inline;"> Modulation-enhanced localization microscopy (MELM) has demonstrated significant improvements in both lateral and axial localization precision compared to conventional single-molecule localization microscopy (SMLM). However, lateral modulated illumination based MELM (MELMxy) remains fundamentally limited to two-dimensional imaging. Here we present three-dimensional Single-Molecule Modulated Illumin&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.14243v1-abstract-full').style.display = 'inline'; document.getElementById('2502.14243v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.14243v1-abstract-full" style="display: none;"> Modulation-enhanced localization microscopy (MELM) has demonstrated significant improvements in both lateral and axial localization precision compared to conventional single-molecule localization microscopy (SMLM). However, lateral modulated illumination based MELM (MELMxy) remains fundamentally limited to two-dimensional imaging. Here we present three-dimensional Single-Molecule Modulated Illumination Localization Estimator (SMILE) that synergistically integrates lateral illumination modulation with point spread function engineering. By simultaneously exploiting lateral modulation patterns and an accurate point spread function (PSF) model for 3D localization, SMILE achieves near-theoretical-minimum localization uncertainty, demonstrating an average 4-fold enhancement in lateral precision compared to conventional 3D-SMLM. Crucially, SMILE exhibits exceptional compatibility with diverse PSFs and different illumination patterns with various structures including 4Pi configurations, making it a versatile tool that can be easily adapted for different experimental setups. When integrated with 4Pi microscopy, 4Pi-SMILE shows particular promise for achieving sub-10 nm axial resolution and approaching isotropic resolution. From the simulations and proof-of-concept experiments, we verified the superiority of SMILE over 3D-SMLM and ordinary MELM. We highlight SMILE as a novel methodology and robust framework that holds great potential to significantly promote the development of MELM. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.14243v1-abstract-full').style.display = 'none'; document.getElementById('2502.14243v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.12396">arXiv:2502.12396</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2502.12396">pdf</a>, <a href="https://arxiv.org/format/2502.12396">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Engineering, Finance, and Science">cs.CE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> Scientific Machine Learning of Flow Resistance Using Universal Shallow Water Equations with Differentiable Programming </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Liu%2C+X">Xiaofeng Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Song%2C+Y">Yalan Song</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.12396v1-abstract-short" style="display: inline;"> Shallow water equations (SWEs) are the backbone of most hydrodynamics models for flood prediction, river engineering, and many other water resources applications. The estimation of flow resistance, i.e., the Manning&#39;s roughness coefficient $n$, is crucial for ensuring model accuracy, and has been previously determined using empirical formulas or tables. To better account for temporal and spatial v&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.12396v1-abstract-full').style.display = 'inline'; document.getElementById('2502.12396v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.12396v1-abstract-full" style="display: none;"> Shallow water equations (SWEs) are the backbone of most hydrodynamics models for flood prediction, river engineering, and many other water resources applications. The estimation of flow resistance, i.e., the Manning&#39;s roughness coefficient $n$, is crucial for ensuring model accuracy, and has been previously determined using empirical formulas or tables. To better account for temporal and spatial variability in channel roughness, inverse modeling of $n$ using observed flow data is more reliable and adaptable; however, it is challenging when using traditional SWE solvers. Based on the concept of universal differential equation (UDE), which combines physics-based differential equations with neural networks (NNs), we developed a universal SWEs (USWEs) solver, Hydrograd, for hybrid hydrodynamics modeling. It can do accurate forward simulations, support automatic differentiation (AD) for gradient-based sensitivity analysis and parameter inversion, and perform scientific machine learning for physics discovery. In this work, we first validated the accuracy of its forward modeling, then applied a real-world case to demonstrate the ability of USWEs to capture model sensitivity (gradients) and perform inverse modeling of Manning&#39;s $n$. Furthermore, we used a NN to learn a universal relationship between $n$, hydraulic parameters, and flow in a real river channel. Unlike inverse modeling using surrogate models, Hydrograd uses a two-dimensional SWEs solver as its physics backbone, which eliminates the need for data-intensive pretraining and resolves the generalization problem when applied to out-of-sample scenarios. This differentiable modeling approach, with seamless integration with NNs, provides a new pathway for solving complex inverse problems and discovering new physics in hydrodynamics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.12396v1-abstract-full').style.display = 'none'; document.getElementById('2502.12396v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.11549">arXiv:2502.11549</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2502.11549">pdf</a>, <a href="https://arxiv.org/format/2502.11549">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> </div> </div> <p class="title is-5 mathjax"> A Radio-Frequency Emitter Design for the Low-Frequency Regime in Atomic Experiments </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Wei%2C+Y">Yudong Wei</a>, <a href="/search/physics?searchtype=author&amp;query=Hu%2C+Z">Zhongshu Hu</a>, <a href="/search/physics?searchtype=author&amp;query=Guo%2C+Y">Yajing Guo</a>, <a href="/search/physics?searchtype=author&amp;query=Qian%2C+Z">Zhentian Qian</a>, <a href="/search/physics?searchtype=author&amp;query=Jin%2C+S">Shengjie Jin</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+X">Xuzong Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+X">Xiong-jun Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.11549v1-abstract-short" style="display: inline;"> Radio frequency (RF) control is a key technique in cold atom experiments. Here, we present a new design based on virtual load, where a low-frequency coil with a frequency of up to 30\,MHz, functions as both an inductor and a power-sharing element in a capacitive transformer circuit. This design enables a highly efficient RF circuit with tunable matching bandwidth. It integrates broadband and narro&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.11549v1-abstract-full').style.display = 'inline'; document.getElementById('2502.11549v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.11549v1-abstract-full" style="display: none;"> Radio frequency (RF) control is a key technique in cold atom experiments. Here, we present a new design based on virtual load, where a low-frequency coil with a frequency of up to 30\,MHz, functions as both an inductor and a power-sharing element in a capacitive transformer circuit. This design enables a highly efficient RF circuit with tunable matching bandwidth. It integrates broadband and narrowband coils into a compact configuration, overcoming the distance limitations of metallic chambers. The broadband RF system, tested in a 10-second evaporative cooling experiment, reduced input power from 14.7\,dBW to -3.5\,dBW due to its low-pass behavior, effectively cooling the Bose-Fermi mixture to below 10\,$渭$K. The narrowband RF system was tested in a Landau-Zener experiment and transferred 80\,\% of Rb atoms from |F=2, m_F=2&gt; to |2, -2&gt; in 1 second, yielding a Rabi frequency of 7.6\,kHz at 0.1\,dBW. The power-sharing properties of the virtual load ensure impedance closely matches the ideal lumped-element simulations, demonstrating the design&#39;s robustness to disturbances. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.11549v1-abstract-full').style.display = 'none'; document.getElementById('2502.11549v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.09856">arXiv:2502.09856</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2502.09856">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Strain energy enhanced room-temperature magnetocaloric effect in second-order magnetic transition materials </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Liu%2C+X">Xiaohe Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Song%2C+P">Ping Song</a>, <a href="/search/physics?searchtype=author&amp;query=Yao%2C+S">Sen Yao</a>, <a href="/search/physics?searchtype=author&amp;query=Lei%2C+Y">Yuhao Lei</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+L">Ling Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Du%2C+S">Shenxiang Du</a>, <a href="/search/physics?searchtype=author&amp;query=Deng%2C+Y">Yiran Deng</a>, <a href="/search/physics?searchtype=author&amp;query=Guo%2C+D">Defeng Guo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.09856v1-abstract-short" style="display: inline;"> Large magnetic entropy change (deltaSM) can realize a prominent heat transformation under the magnetic field and directly strengthen the efficacy of the magnetocaloric effect, which provides a pioneering environmentally friendly solid-state strategy to improve refrigeration capacities and efficiencies. The second-order magnetic transition (SOMT) materials have broader deltaSM peaks without thermal&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.09856v1-abstract-full').style.display = 'inline'; document.getElementById('2502.09856v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.09856v1-abstract-full" style="display: none;"> Large magnetic entropy change (deltaSM) can realize a prominent heat transformation under the magnetic field and directly strengthen the efficacy of the magnetocaloric effect, which provides a pioneering environmentally friendly solid-state strategy to improve refrigeration capacities and efficiencies. The second-order magnetic transition (SOMT) materials have broader deltaSM peaks without thermal hysteresis compared with most first-order magnetic transition materials, making them highly attractive in magnetic refrigeration, especially in the room temperature range. Here, we report a significant enhancement of deltaSM at room temperature in single-crystal Mn5Ge3. In this SOMT system, we realize a 60% improvement of -deltaSM from 3.5 J/kgK to 5.6 J/kgK at T = 300K. This considerable enhancement of deltaSM is achieved by intentionally introducing strain energy through high-pressure constrained deformation. Both experimental results and Monte Carlo simulations demonstrate that the enhancement of deltaSM originates from the microscopic strain and lattice deformation induced by strain energy after deformation. This strain energy will reconstruct the energy landscape of this ferromagnetic system and enhance magnetization, resulting in a giant intensity of magnetocaloric responses. Our findings provide an approach to increase magnetic entropy change and may give fresh ideas for exploring advanced magnetocaloric materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.09856v1-abstract-full').style.display = 'none'; document.getElementById('2502.09856v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.09429">arXiv:2502.09429</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2502.09429">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Numerical Analysis">math.NA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> Fatigue reliability analysis of offshore wind turbines under combined wind-wave excitation via DPIM </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Ding%2C+J">Jingyi Ding</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+H">Hanshu Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+X">Xiaoting Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Rashed%2C+Y+F">Youssef F. Rashed</a>, <a href="/search/physics?searchtype=author&amp;query=Fu%2C+Z">Zhuojia Fu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.09429v1-abstract-short" style="display: inline;"> As offshore wind turbines develop into deepwater operations, accurately quantifying the impact of stochastic excitations in complex sea environments on offshore wind turbines and conducting structural fatigue reliability analysis has become challenging. In this paper, based on long-term wind-wave reanalysis data from a site in the South China Sea, a novel direct probability integral method (DPIM)&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.09429v1-abstract-full').style.display = 'inline'; document.getElementById('2502.09429v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.09429v1-abstract-full" style="display: none;"> As offshore wind turbines develop into deepwater operations, accurately quantifying the impact of stochastic excitations in complex sea environments on offshore wind turbines and conducting structural fatigue reliability analysis has become challenging. In this paper, based on long-term wind-wave reanalysis data from a site in the South China Sea, a novel direct probability integral method (DPIM) is developed for the stochastic response and fatigue reliability analyses of the key components for the floating offshore wind turbine structures under combined wind-wave excitation. A 5MW floating offshore wind turbine is considered as the research object, and a fully coupled dynamic response analysis of the wind turbine system is conducted to calculate the short-term fatigue damage value of tower base and blade root. The DPIM is applied to calculate the fatigue reliability of the wind turbine structure. The accuracy and efficiency of the proposed method are validated by comparing the obtained results with those of Monte Carlo simulations. Furthermore, the results indicate that the fatigue life of floating offshore wind turbine structures under combined wind-wave excitation meets the design requirements. Notably, the fatigue reliability of the wind turbine under aligned wind-wave condition is lower compared to misaligned wind-wave condition. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.09429v1-abstract-full').style.display = 'none'; document.getElementById('2502.09429v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 9 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.08917">arXiv:2502.08917</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2502.08917">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> All-optical and ultrafast control of high-order exciton-polariton orbital modes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+Y">Yuyang Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Zeng%2C+X">Xin Zeng</a>, <a href="/search/physics?searchtype=author&amp;query=Du%2C+W">Wenna Du</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+Z">Zhiyong Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Xia%2C+Y">Yuexing Xia</a>, <a href="/search/physics?searchtype=author&amp;query=Song%2C+J">Jiepeng Song</a>, <a href="/search/physics?searchtype=author&amp;query=Fu%2C+J">Jianhui Fu</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+S">Shuai Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Zhong%2C+Y">Yangguang Zhong</a>, <a href="/search/physics?searchtype=author&amp;query=Tian%2C+Y">Yubo Tian</a>, <a href="/search/physics?searchtype=author&amp;query=Gong%2C+Y">Yiyang Gong</a>, <a href="/search/physics?searchtype=author&amp;query=Yue%2C+S">Shuai Yue</a>, <a href="/search/physics?searchtype=author&amp;query=Zheng%2C+Y">Yuanyuan Zheng</a>, <a href="/search/physics?searchtype=author&amp;query=Bao%2C+X">Xiaotian Bao</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+Y">Yutong Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+Q">Qing Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+X">Xinfeng Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.08917v1-abstract-short" style="display: inline;"> Exciton-polaritons flows within closed quantum circuits can spontaneously form phase-locked modes that carry orbital angular momentum (OAM). With its infinite set of angular momentum quantum numbers, high-order OAM represents a transformative solution to the bandwidth bottleneck in multiplexed optical communication. However, its practical application is hindered by the limited choice of materials&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.08917v1-abstract-full').style.display = 'inline'; document.getElementById('2502.08917v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.08917v1-abstract-full" style="display: none;"> Exciton-polaritons flows within closed quantum circuits can spontaneously form phase-locked modes that carry orbital angular momentum (OAM). With its infinite set of angular momentum quantum numbers, high-order OAM represents a transformative solution to the bandwidth bottleneck in multiplexed optical communication. However, its practical application is hindered by the limited choice of materials which in general requires cryogenic temperatures and the reliance on mechanical switching. In this work, we achieve stable and high-order (up to order of 33) OAM modes by constructing a closed quantum circuit using the halide perovskite microcavities at room temperature. By controlling the spatial and temporal symmetry of the closed quantum circuits using another laser pulse, we achieve significant tuning OAM of EP flows from 8 to 12. Our work demonstrate all-optical and ultrafast control of high-order OAM using exciton-polariton condensates in perovskite microcavities that would have important applications in high-throughput optical communications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.08917v1-abstract-full').style.display = 'none'; document.getElementById('2502.08917v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">23 pages,5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.02359">arXiv:2502.02359</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2502.02359">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="General Physics">physics.gen-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Suppressing Mechanical Property Variability in Recycled Plastics via Bio-inspired Design </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Georgiou%2C+D">Dimitrios Georgiou</a>, <a href="/search/physics?searchtype=author&amp;query=Sun%2C+D">Danqi Sun</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+X">Xing Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Athanasiou%2C+C+E">Christos E Athanasiou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.02359v1-abstract-short" style="display: inline;"> The escalating plastic waste crisis demands global action, yet mechanical recycling - currently the most prevalent strategy - remains severely underutilized. Only a small fraction of the total plastic waste is recycled in this manner, largely due to the significant variability in recycled plastics&#39; mechanical properties. This variability stems from compositional fluctuations and impurities introdu&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.02359v1-abstract-full').style.display = 'inline'; document.getElementById('2502.02359v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.02359v1-abstract-full" style="display: none;"> The escalating plastic waste crisis demands global action, yet mechanical recycling - currently the most prevalent strategy - remains severely underutilized. Only a small fraction of the total plastic waste is recycled in this manner, largely due to the significant variability in recycled plastics&#39; mechanical properties. This variability stems from compositional fluctuations and impurities introduced throughout the materials&#39; lifecycle and the recycling process, deterring industries with stringent product specifications from adopting recycled plastics on a wider scale. To overcome this challenge, we propose a composite structure inspired by nacre&#39;s microstructure - a natural material known for its exceptional mechanical performance despite its inherent randomness across multiple length scales. This bio-inspired design features stiff recycled plastic platelets (&#34;bricks&#34;) within a soft polymeric matrix (&#34;mortar&#34;). We use a tension-shear-chain model to capture the deformation mechanism of the structure, and demonstrate, through a case study of commercial stretch wrap, that the proposed design reduces variability in effective elastic modulus by 89.5% and in elongation at break by 42%, while achieving the same modulus as the virgin stretch wrap material. These findings highlight the potential of the proposed bio-inspired design to enhance the mechanical performance of recycled plastics, but also demonstrate that a universally applicable, chemistry-agnostic approach can substantially broaden their applications, paving the way for sustainable plastic waste management. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.02359v1-abstract-full').style.display = 'none'; document.getElementById('2502.02359v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.01112">arXiv:2502.01112</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2502.01112">pdf</a>, <a href="https://arxiv.org/ps/2502.01112">ps</a>, <a href="https://arxiv.org/format/2502.01112">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> </div> <p class="title is-5 mathjax"> Relativistic configuration-interaction and coupled-cluster calculations of Ir$^{17+}$ transition energies and properties for optical clock applications </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Liu%2C+H+X">H. X. Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Yu%2C+Y+M">Y. M. Yu</a>, <a href="/search/physics?searchtype=author&amp;query=Suo%2C+B+B">B. B. Suo</a>, <a href="/search/physics?searchtype=author&amp;query=Ge%2C+Y+F">Y. F. Ge</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Y">Y. Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.01112v2-abstract-short" style="display: inline;"> The transition energies and properties of the Ir$^{17+}$ ion are calculated using the Kramers-restricted configuration-interaction (KRCI) and Fock-space coupled-cluster (FSCC) methods within the Dirac-Coulomb-Gaunt Hamiltonian framework. These calculations show several forbidden optical transitions between the $4f^{13}5s$ ground state and the $4f^{14}$ and $4f^{12}5s^2$ excited states, underscorin&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.01112v2-abstract-full').style.display = 'inline'; document.getElementById('2502.01112v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.01112v2-abstract-full" style="display: none;"> The transition energies and properties of the Ir$^{17+}$ ion are calculated using the Kramers-restricted configuration-interaction (KRCI) and Fock-space coupled-cluster (FSCC) methods within the Dirac-Coulomb-Gaunt Hamiltonian framework. These calculations show several forbidden optical transitions between the $4f^{13}5s$ ground state and the $4f^{14}$ and $4f^{12}5s^2$ excited states, underscoring their potential as candidates for optical clock applications. Additionally, key properties of the ground and low-lying excited states are reported, including Lande $g_J$ factors, lifetimes, electric dipole polarizabilities, electric quadrupole moments, hyperfine structure constants, relativistic sensitivities, Lorentz-invariance coefficient tensor, and isotope shifts. The excellent agreement between the results from the KRCI and FSCC methods demonstrates the robustness of the calculations and confirms the reliability of the proposed clock transitions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.01112v2-abstract-full').style.display = 'none'; document.getElementById('2502.01112v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 4 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.16398">arXiv:2501.16398</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2501.16398">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> </div> <p class="title is-5 mathjax"> Visualizing the Local Atomic Environment Features of Machine Learning Interatomic Potential </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Shao%2C+X">Xuqiang Shao</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+Y">Yuqi Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+D">Di Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Gao%2C+T">Tianxiang Gao</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+X">Xinyuan Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Gan%2C+Z">Zhiran Gan</a>, <a href="/search/physics?searchtype=author&amp;query=Meng%2C+F">Fanshun Meng</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+H">Hao Li</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+W">Weijie Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.16398v1-abstract-short" style="display: inline;"> This paper addresses the challenges of creating efficient and high-quality datasets for machine learning potential functions. We present a novel approach, termed DV-LAE (Difference Vectors based on Local Atomic Environments), which utilizes the properties of atomic local environments and employs histogram statistics to generate difference vectors. This technique facilitates dataset screening and o&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.16398v1-abstract-full').style.display = 'inline'; document.getElementById('2501.16398v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.16398v1-abstract-full" style="display: none;"> This paper addresses the challenges of creating efficient and high-quality datasets for machine learning potential functions. We present a novel approach, termed DV-LAE (Difference Vectors based on Local Atomic Environments), which utilizes the properties of atomic local environments and employs histogram statistics to generate difference vectors. This technique facilitates dataset screening and optimization, effectively minimizing redundancy while maintaining data diversity. We have validated the optimized datasets in high-temperature and high-pressure hydrogen systems as well as the 伪-Fe/H binary system, demonstrating a significant reduction in computational resource usage without compromising prediction accuracy. Additionally, our method has revealed new structures that emerge during simulations but were underrepresented in the initial training datasets. The redundancy in the datasets and the distribution of these new structures can be visually analyzed through the visualization of difference vectors. This approach enhances our understanding of the characteristics of these newly formed structures and their impact on physical processes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.16398v1-abstract-full').style.display = 'none'; document.getElementById('2501.16398v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.16358">arXiv:2501.16358</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2501.16358">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> The OpenLAM Challenges </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Peng%2C+A">Anyang Peng</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+X">Xinzijian Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Guo%2C+M">Ming-Yu Guo</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+L">Linfeng Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+H">Han Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.16358v1-abstract-short" style="display: inline;"> Inspired by the success of Large Language Models (LLMs), the development of Large Atom Models (LAMs) has gained significant momentum in scientific computation. Since 2022, the Deep Potential team has been actively pretraining LAMs and launched the OpenLAM Initiative to develop an open-source foundation model spanning the periodic table. A core objective is establishing comprehensive benchmarks for&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.16358v1-abstract-full').style.display = 'inline'; document.getElementById('2501.16358v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.16358v1-abstract-full" style="display: none;"> Inspired by the success of Large Language Models (LLMs), the development of Large Atom Models (LAMs) has gained significant momentum in scientific computation. Since 2022, the Deep Potential team has been actively pretraining LAMs and launched the OpenLAM Initiative to develop an open-source foundation model spanning the periodic table. A core objective is establishing comprehensive benchmarks for reliable LAM evaluation, addressing limitations in existing datasets. As a first step, the LAM Crystal Philately competition has collected over 19.8 million valid structures, including 1 million on the OpenLAM convex hull, driving advancements in generative modeling and materials science applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.16358v1-abstract-full').style.display = 'none'; document.getElementById('2501.16358v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.11426">arXiv:2501.11426</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2501.11426">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Perfect Spatiotemporal Optical Vortices </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Fan%2C+H">Haifa Fan</a>, <a href="/search/physics?searchtype=author&amp;query=Cao%2C+Q">Qian Cao</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+X">Xin Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Chong%2C+A">Andy Chong</a>, <a href="/search/physics?searchtype=author&amp;query=Zhan%2C+Q">Qiwen Zhan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.11426v1-abstract-short" style="display: inline;"> Recently, spatiotemporal optical vortices (STOVs) with transverse orbital angular momentum have emerged as a significant research topic. While various STOV fields have been explored, they often suffer from a critical limitation: the spatial and temporal dimentions of the STOV wavepacket are strongly correlated with the topological charge. This dependence hinders the simultaneous achievement of hig&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.11426v1-abstract-full').style.display = 'inline'; document.getElementById('2501.11426v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.11426v1-abstract-full" style="display: none;"> Recently, spatiotemporal optical vortices (STOVs) with transverse orbital angular momentum have emerged as a significant research topic. While various STOV fields have been explored, they often suffer from a critical limitation: the spatial and temporal dimentions of the STOV wavepacket are strongly correlated with the topological charge. This dependence hinders the simultaneous achievement of high spatial accuracy and high topological charge. To address this limitation, we theoretically and experimentally investigate a new class of STOV wavepackets generated through the spatiotemporal Fourier transform of polychromatic Bessel-Gaussian beams, which we term as perfect spatiotemporal optical vortices. Unlike conventional STOVs, perfect STOVs exhibit spatial and temporal diameters that are independent of the topological charge. Furthermore, we demonstrate the generation of spatiotemporal optical vortex lattices by colliding perfect STOV wavepackets, enabling flexible manipulation of the number and sign of sub-vortices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.11426v1-abstract-full').style.display = 'none'; document.getElementById('2501.11426v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.10934">arXiv:2501.10934</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2501.10934">pdf</a>, <a href="https://arxiv.org/format/2501.10934">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optimization and Control">math.OC</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> Automatic Calibration of Mesoscopic Traffic Simulation Using Vehicle Trajectory Data </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Sun%2C+R">Ran Sun</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+Z">Zihao Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+X">Xingmin Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+H+X">Henry X. Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.10934v1-abstract-short" style="display: inline;"> Traffic simulation models have long been popular in modern traffic planning and operation applications. Efficient calibration of simulation models is usually a crucial step in a simulation study. However, traditional calibration procedures are often resource-intensive and time-consuming, limiting the broader adoption of simulation models. In this study, a vehicle trajectory-based automatic calibra&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.10934v1-abstract-full').style.display = 'inline'; document.getElementById('2501.10934v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.10934v1-abstract-full" style="display: none;"> Traffic simulation models have long been popular in modern traffic planning and operation applications. Efficient calibration of simulation models is usually a crucial step in a simulation study. However, traditional calibration procedures are often resource-intensive and time-consuming, limiting the broader adoption of simulation models. In this study, a vehicle trajectory-based automatic calibration framework for mesoscopic traffic simulation is proposed. The framework incorporates behavior models from both the demand and the supply sides of a traffic network. An optimization-based network flow estimation model is designed for demand and route choice calibration. Dimensionality reduction techniques are incorporated to define the zoning system and the path choice set. A stochastic approximation model is established for capacity and driving behavior parameter calibration. The applicability and performance of the calibration framework are demonstrated through a case study for the City of Birmingham network in Michigan. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.10934v1-abstract-full').style.display = 'none'; document.getElementById('2501.10934v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.07012">arXiv:2501.07012</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2501.07012">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Metamaterial sound absorbers based on microperforated panels: an approach toward enhanced flexibility and near-limit broadband performance </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Shi%2C+J">Jinjie Shi</a>, <a href="/search/physics?searchtype=author&amp;query=Luo%2C+J">Jie Luo</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+C">Chenkai Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Chu%2C+H">Hongchen Chu</a>, <a href="/search/physics?searchtype=author&amp;query=Jing%2C+Y">Yongxin Jing</a>, <a href="/search/physics?searchtype=author&amp;query=Xu%2C+C">Changqing Xu</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+X">Xiaozhou Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+J">Jensen Li</a>, <a href="/search/physics?searchtype=author&amp;query=Lai%2C+Y">Yun Lai</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.07012v2-abstract-short" style="display: inline;"> Traditional microperforated panels (MPPs) and metamaterial-based sound absorbers rely on local resonances or multi-resonator designs, which limit their bandwidth, angular applicability, and ease of fabrication. Leveraging the reciprocity theorem and cavity resonances, we introduce a new class of robust MPP absorbers, termed meta-MPPs, capable of achieving ultrabroadband near-total sound absorption&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.07012v2-abstract-full').style.display = 'inline'; document.getElementById('2501.07012v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.07012v2-abstract-full" style="display: none;"> Traditional microperforated panels (MPPs) and metamaterial-based sound absorbers rely on local resonances or multi-resonator designs, which limit their bandwidth, angular applicability, and ease of fabrication. Leveraging the reciprocity theorem and cavity resonances, we introduce a new class of robust MPP absorbers, termed meta-MPPs, capable of achieving ultrabroadband near-total sound absorption across a range of 0.37 to 10 kHz. These absorbers demonstrate average performance exceeding that of traditional MPPs by over 100%, approaching the theoretical causality limit. Notably, their absorption performance can be tuned between angularly asymmetric and omnidirectional modes and remains highly robust to variations in MPP parameters and geometrical configurations. Validated through simulations and experiments, our findings present a simpler, more robust, and highly adaptable solution for noise control. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.07012v2-abstract-full').style.display = 'none'; document.getElementById('2501.07012v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.06197">arXiv:2501.06197</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2501.06197">pdf</a>, <a href="https://arxiv.org/format/2501.06197">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Algebraic Topology">math.AT</span> </div> </div> <p class="title is-5 mathjax"> A Physics-informed Sheaf Model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Hu%2C+C">Chuan-Shen Hu</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+X">Xiang Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Xia%2C+K">Kelin Xia</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.06197v1-abstract-short" style="display: inline;"> Normal mode analysis (NMA) provides a mathematical framework for exploring the intrinsic global dynamics of molecules through the definition of an energy function, where normal modes correspond to the eigenvectors of the Hessian matrix derived from the second derivatives of this function. The energy required to &#39;trigger&#39; each normal mode is proportional to the square of its eigenvalue, with six ze&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.06197v1-abstract-full').style.display = 'inline'; document.getElementById('2501.06197v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.06197v1-abstract-full" style="display: none;"> Normal mode analysis (NMA) provides a mathematical framework for exploring the intrinsic global dynamics of molecules through the definition of an energy function, where normal modes correspond to the eigenvectors of the Hessian matrix derived from the second derivatives of this function. The energy required to &#39;trigger&#39; each normal mode is proportional to the square of its eigenvalue, with six zero-eigenvalue modes representing universal translation and rotation, common to all molecular systems. In contrast, modes associated with small non-zero eigenvalues are more easily excited by external forces and are thus closely related to molecular functions. Inspired by the anisotropic network model (ANM), this work establishes a novel connection between normal mode analysis and sheaf theory by introducing a cellular sheaf structure, termed the anisotropic sheaf, defined on undirected, simple graphs, and identifying the conventional Hessian matrix as the sheaf Laplacian. By interpreting the global section space of the anisotropic sheaf as the kernel of the Laplacian matrix, we demonstrate a one-to-one correspondence between the zero-eigenvalue-related normal modes and a basis for the global section space. We further analyze the dimension of this global section space, representing the space of harmonic signals, under conditions typically considered in normal mode analysis. Additionally, we propose a systematic method to streamline the Delaunay triangulation-based construction for more efficient graph generation while preserving the ideal number of normal modes with zero eigenvalues in ANM analysis. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.06197v1-abstract-full').style.display = 'none'; document.getElementById('2501.06197v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.05958">arXiv:2501.05958</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2501.05958">pdf</a>, <a href="https://arxiv.org/format/2501.05958">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Numerical Analysis">math.NA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> Complexity of Tensor Product Functions in Representing Antisymmetry </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Wang%2C+Y">Yuyang Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Hu%2C+Y">Yukuan Hu</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+X">Xin Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.05958v1-abstract-short" style="display: inline;"> Tensor product function (TPF) approximations have been widely adopted in solving high-dimensional problems, such as partial differential equations and eigenvalue problems, achieving desirable accuracy with computational overhead that scales linearly with problem dimensions. However, recent studies have underscored the extraordinarily high computational cost of TPFs on quantum many-body problems, e&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.05958v1-abstract-full').style.display = 'inline'; document.getElementById('2501.05958v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.05958v1-abstract-full" style="display: none;"> Tensor product function (TPF) approximations have been widely adopted in solving high-dimensional problems, such as partial differential equations and eigenvalue problems, achieving desirable accuracy with computational overhead that scales linearly with problem dimensions. However, recent studies have underscored the extraordinarily high computational cost of TPFs on quantum many-body problems, even for systems with as few as three particles. A key distinction in these problems is the antisymmetry requirement on the unknown functions. In the present work, we rigorously establish that the minimum number of involved terms for a class of TPFs to be exactly antisymmetric increases exponentially fast with the problem dimension. This class encompasses both traditionally discretized TPFs and the recent ones parameterized by neural networks. Our proof exploits the link between the antisymmetric TPFs in this class and the corresponding antisymmetric tensors and focuses on the Canonical Polyadic rank of the latter. As a result, our findings uncover a fundamental incompatibility between antisymmetry and low-rank TPFs in high-dimensional contexts and offer new insights for further developments. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.05958v1-abstract-full').style.display = 'none'; document.getElementById('2501.05958v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.05244">arXiv:2501.05244</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2501.05244">pdf</a>, <a href="https://arxiv.org/format/2501.05244">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Image and Video Processing">eess.IV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Signal Processing">eess.SP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Optimized Sampling for Non-Line-of-Sight Imaging Using Modified Fast Fourier Transforms </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Sultan%2C+T">Talha Sultan</a>, <a href="/search/physics?searchtype=author&amp;query=Bocchieri%2C+A">Alex Bocchieri</a>, <a href="/search/physics?searchtype=author&amp;query=Gu%2C+C">Chaoying Gu</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+X">Xiaochun Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Polynkin%2C+P">Pavel Polynkin</a>, <a href="/search/physics?searchtype=author&amp;query=Velten%2C+A">Andreas Velten</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.05244v1-abstract-short" style="display: inline;"> Non-line-of-Sight (NLOS) imaging systems collect light at a diffuse relay surface and input this measurement into computational algorithms that output a 3D volumetric reconstruction. These algorithms utilize the Fast Fourier Transform (FFT) to accelerate the reconstruction process but require both input and output to be sampled spatially with uniform grids. However, the geometry of NLOS imaging in&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.05244v1-abstract-full').style.display = 'inline'; document.getElementById('2501.05244v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.05244v1-abstract-full" style="display: none;"> Non-line-of-Sight (NLOS) imaging systems collect light at a diffuse relay surface and input this measurement into computational algorithms that output a 3D volumetric reconstruction. These algorithms utilize the Fast Fourier Transform (FFT) to accelerate the reconstruction process but require both input and output to be sampled spatially with uniform grids. However, the geometry of NLOS imaging inherently results in non-uniform sampling on the relay surface when using multi-pixel detector arrays, even though such arrays significantly reduce acquisition times. Furthermore, using these arrays increases the data rate required for sensor readout, posing challenges for real-world deployment. In this work, we utilize the phasor field framework to demonstrate that existing NLOS imaging setups typically oversample the relay surface spatially, explaining why the measurement can be compressed without significantly sacrificing reconstruction quality. This enables us to utilize the Non-Uniform Fast Fourier Transform (NUFFT) to reconstruct from sparse measurements acquired from irregularly sampled relay surfaces of arbitrary shapes. Furthermore, we utilize the NUFFT to reconstruct at arbitrary locations in the hidden volume, ensuring flexible sampling schemes for both the input and output. Finally, we utilize the Scaled Fast Fourier Transform (SFFT) to reconstruct larger volumes without increasing the number of samples stored in memory. All algorithms introduced in this paper preserve the computational complexity of FFT-based methods, ensuring scalability for practical NLOS imaging applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.05244v1-abstract-full').style.display = 'none'; document.getElementById('2501.05244v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.05038">arXiv:2501.05038</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2501.05038">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Photon-recycling dielectric laser accelerator </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Li%2C+C">Changying Li</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+L">Li Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Zheng%2C+D">Dingguo Zheng</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+X">Xiaoping Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Pan%2C+Y">Yiming Pan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.05038v1-abstract-short" style="display: inline;"> We propose a photon-recycling dielectric laser accelerator (DLA) system based on silicon photonic device. Our DLA system employs guided electromagnetic waves as a primary energy source, modulated to inject into the electron-light interaction region to accelerate or modulate electron beams and recycled the energy for the next round-trip. Long-distance acceleration takes place as electrons interact&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.05038v1-abstract-full').style.display = 'inline'; document.getElementById('2501.05038v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.05038v1-abstract-full" style="display: none;"> We propose a photon-recycling dielectric laser accelerator (DLA) system based on silicon photonic device. Our DLA system employs guided electromagnetic waves as a primary energy source, modulated to inject into the electron-light interaction region to accelerate or modulate electron beams and recycled the energy for the next round-trip. Long-distance acceleration takes place as electrons interact with the pre-modulated light field. Our loop recycles post-interaction light field, enabling photons reuse across successive cycles. To optimize the interaction process, we developed an adaptive algorithm to refine waveguide structures, and identified an &#34;optimal waveguide accelerator&#34; with superior performance on our dataset. We find that the optimized DLA loop only requires low-power light injection to sufficiently sustain high acceleration gradients for continuous electron beams. Under optimal electron beam intensity, the system achieves exceptionally high photon utilization, ensuring that nearly all injected light power transferred to electrons. Using spectral analysis, we demonstrate that the optimal waveguide also operates as an electron energy filter, selecting and manipulating phase-matched electrons over a broad energy range, even for quantum electron wavefunction shaping. Our photon-recycling DLA setup is not only suitable for low-energy beam accelerators, but also offers versatility as a beam filter or a narrow energy selection combined with other optical elements, the total setup can be further applied to explore free electron quantum optics engaging with the advancing field of photonic integrated circuits. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.05038v1-abstract-full').style.display = 'none'; document.getElementById('2501.05038v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">27 pages, 5+2 figures, 1 table</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.04845">arXiv:2501.04845</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2501.04845">pdf</a>, <a href="https://arxiv.org/ps/2501.04845">ps</a>, <a href="https://arxiv.org/format/2501.04845">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> </div> <p class="title is-5 mathjax"> Intelligent experiments through real-time AI: Fast Data Processing and Autonomous Detector Control for sPHENIX and future EIC detectors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Kvapil%2C+J">J. Kvapil</a>, <a href="/search/physics?searchtype=author&amp;query=Borca-Tasciuc%2C+G">G. Borca-Tasciuc</a>, <a href="/search/physics?searchtype=author&amp;query=Bossi%2C+H">H. Bossi</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+K">K. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Y">Y. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Morales%2C+Y+C">Y. Corrales Morales</a>, <a href="/search/physics?searchtype=author&amp;query=Da+Costa%2C+H">H. Da Costa</a>, <a href="/search/physics?searchtype=author&amp;query=Da+Silva%2C+C">C. Da Silva</a>, <a href="/search/physics?searchtype=author&amp;query=Dean%2C+C">C. Dean</a>, <a href="/search/physics?searchtype=author&amp;query=Durham%2C+J">J. Durham</a>, <a href="/search/physics?searchtype=author&amp;query=Fu%2C+S">S. Fu</a>, <a href="/search/physics?searchtype=author&amp;query=Hao%2C+C">C. Hao</a>, <a href="/search/physics?searchtype=author&amp;query=Harris%2C+P">P. Harris</a>, <a href="/search/physics?searchtype=author&amp;query=Hen%2C+O">O. Hen</a>, <a href="/search/physics?searchtype=author&amp;query=Jheng%2C+H">H. Jheng</a>, <a href="/search/physics?searchtype=author&amp;query=Lee%2C+Y">Y. Lee</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+P">P. Li</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+X">X. Li</a>, <a href="/search/physics?searchtype=author&amp;query=Lin%2C+Y">Y. Lin</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+M+X">M. X. Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Loncar%2C+V">V. Loncar</a>, <a href="/search/physics?searchtype=author&amp;query=Mitrevski%2C+J+P">J. P. Mitrevski</a>, <a href="/search/physics?searchtype=author&amp;query=Olvera%2C+A">A. Olvera</a>, <a href="/search/physics?searchtype=author&amp;query=Purschke%2C+M+L">M. L. Purschke</a>, <a href="/search/physics?searchtype=author&amp;query=Renck%2C+J+S">J. S. Renck</a> , et al. (8 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.04845v1-abstract-short" style="display: inline;"> This R\&amp;D project, initiated by the DOE Nuclear Physics AI-Machine Learning initiative in 2022, leverages AI to address data processing challenges in high-energy nuclear experiments (RHIC, LHC, and future EIC). Our focus is on developing a demonstrator for real-time processing of high-rate data streams from sPHENIX experiment tracking detectors. The limitations of a 15 kHz maximum trigger rate imp&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.04845v1-abstract-full').style.display = 'inline'; document.getElementById('2501.04845v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.04845v1-abstract-full" style="display: none;"> This R\&amp;D project, initiated by the DOE Nuclear Physics AI-Machine Learning initiative in 2022, leverages AI to address data processing challenges in high-energy nuclear experiments (RHIC, LHC, and future EIC). Our focus is on developing a demonstrator for real-time processing of high-rate data streams from sPHENIX experiment tracking detectors. The limitations of a 15 kHz maximum trigger rate imposed by the calorimeters can be negated by intelligent use of streaming technology in the tracking system. The approach efficiently identifies low momentum rare heavy flavor events in high-rate p+p collisions (3MHz), using Graph Neural Network (GNN) and High Level Synthesis for Machine Learning (hls4ml). Success at sPHENIX promises immediate benefits, minimizing resources and accelerating the heavy-flavor measurements. The approach is transferable to other fields. For the EIC, we develop a DIS-electron tagger using Artificial Intelligence - Machine Learning (AI-ML) algorithms for real-time identification, showcasing the transformative potential of AI and FPGA technologies in high-energy nuclear and particle experiments real-time data processing pipelines. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.04845v1-abstract-full').style.display = 'none'; document.getElementById('2501.04845v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">proceedings for 42nd International Conference on High Energy Physics (ICHEP2024), 18-24 July 2024, Prague, Czech Republic</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LA-UR-24-30394 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.03759">arXiv:2501.03759</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2501.03759">pdf</a>, <a href="https://arxiv.org/format/2501.03759">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> Modelling anisotropic Cahn-Hilliard equation with the lattice Boltzmann method </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Liu%2C+X">Xinyue Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+L">Lei Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+C">Chenrui Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.03759v1-abstract-short" style="display: inline;"> The anisotropic Cahn-Hilliard equation is often used to model the formation of faceted pyramids on nanoscale crystal surfaces. In comparison to the isotropic Cahn-Hilliard model, the nonlinear terms associated with strong anisotropic coefficients present challenges for developing an effective numerical scheme. In this work, we propose a multiple-relaxation-time lattice Boltzmann method to solve th&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.03759v1-abstract-full').style.display = 'inline'; document.getElementById('2501.03759v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.03759v1-abstract-full" style="display: none;"> The anisotropic Cahn-Hilliard equation is often used to model the formation of faceted pyramids on nanoscale crystal surfaces. In comparison to the isotropic Cahn-Hilliard model, the nonlinear terms associated with strong anisotropic coefficients present challenges for developing an effective numerical scheme. In this work, we propose a multiple-relaxation-time lattice Boltzmann method to solve the anisotropic Cahn-Hilliard equation. To this end, we reformulate the original equation into a nonlinear convection-diffusion equation with source terms. Then the modified equilibrium distribution function and source terms are incorporated into the computations. Through Chapman-Enskog analysis, it successfully recovers the macroscopic governing equation. To validate the proposed approach, we perform numerical simulations, including cases like droplet deformation and spinodal decomposition. These results consistent with available works, confirming the effectiveness of the proposed approach. Furthermore, the simulations demonstrate that the model adheres to the energy dissipation law, further highlighting the effectiveness of the developed lattice Boltzmann method. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.03759v1-abstract-full').style.display = 'none'; document.getElementById('2501.03759v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.01766">arXiv:2501.01766</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2501.01766">pdf</a>, <a href="https://arxiv.org/format/2501.01766">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Customizing pseudospin unidirectional states of acoustic and electromagnetic waves in two-dimensional phoxonic topological insulators via multi-objective strategies </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Xu%2C+G">Gang-Gang Xu</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+X">Xiao-Shuang Li</a>, <a href="/search/physics?searchtype=author&amp;query=Ma%2C+T">Tian-Xue Ma</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+X">Xi-Xian Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Sun%2C+X">Xiao-Wei Sun</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+Y">Yue-Sheng Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.01766v1-abstract-short" style="display: inline;"> Topological materials for classical waves offer remarkable potential in applications such as sensing, waveguiding and signal processing, leveraging topological protection effects like strong robustness, immunity to backscattering and unidirectional transmission. This work presents the simultaneous inverse design of pseudospin-dependent topological edge states for acoustic and electromagnetic waves&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.01766v1-abstract-full').style.display = 'inline'; document.getElementById('2501.01766v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.01766v1-abstract-full" style="display: none;"> Topological materials for classical waves offer remarkable potential in applications such as sensing, waveguiding and signal processing, leveraging topological protection effects like strong robustness, immunity to backscattering and unidirectional transmission. This work presents the simultaneous inverse design of pseudospin-dependent topological edge states for acoustic and electromagnetic waves in two-dimensional $C_{\textrm{6v}}$ phoxonic crystals. The phoxonic crystals are created by arranging the silicon columns periodically in the air background. We propose a multi-objective optimization framework based on the NSGA-II collaborated with the finite element approach, where the bandgaps of acoustic and electromagnetic waves are treated separately as the objective values. The topological nature of bandgaps is determined by analyzing the positional relationships of paired degenerate modes through the modal field calculations, enabling the customization of one of the two bandgaps within the same unit cell. Unlike traditional approaches relying on the band inversion to induce topological phase transitions, the proposed approach directly generates a pair of unit cells with distinct topological properties for both wave types, achieving the maximum bandgap matching in each case. We further demonstrate the existence of the pseudospin-dependent topological edge states for both acoustic and electromagnetic waves, verifying their unidirectionality and robustness against backscattering and defects. This work establishes a systematic strategy for customizing phoxonic topological states, offering a new avenue for the inverse design of multi-functional devices based on both sound and light. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.01766v1-abstract-full').style.display = 'none'; document.getElementById('2501.01766v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.20938">arXiv:2412.20938</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.20938">pdf</a>, <a href="https://arxiv.org/format/2412.20938">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Electrical switching of altermagnetism </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Y">Yiyuan Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+X">Xiaoxiong Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Lu%2C+H">Hai-Zhou Lu</a>, <a href="/search/physics?searchtype=author&amp;query=Xie%2C+X+C">X. C. Xie</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.20938v1-abstract-short" style="display: inline;"> Switching magnetism using only electricity is of great significance for information applications but remains challenging. We find that, altermagnetism, as a newly discovered unconventional magnetism, may open an avenue along this effort. Specifically, to have deterministic switching, i.e., reversing current direction must reverse magnetic structure, parity symmetry has to be broken. We discover th&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.20938v1-abstract-full').style.display = 'inline'; document.getElementById('2412.20938v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.20938v1-abstract-full" style="display: none;"> Switching magnetism using only electricity is of great significance for information applications but remains challenging. We find that, altermagnetism, as a newly discovered unconventional magnetism, may open an avenue along this effort. Specifically, to have deterministic switching, i.e., reversing current direction must reverse magnetic structure, parity symmetry has to be broken. We discover that due to their symmetry that depends on chemical environments, altermagnet devices may naturally carry the parity symmetry breaking required for deterministic electrical switching of magnetism. More importantly, we identify MnTe and FeS bilayers as candidate devices. This scheme will inspire further explorations on unconventional magnetism and potential applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.20938v1-abstract-full').style.display = 'none'; document.getElementById('2412.20938v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.16863">arXiv:2412.16863</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.16863">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> SAMA-IR: comprehensive input refinement methodology for optical networks with field-trial validation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+Y">Yihao Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Qiu%2C+Q">Qizhi Qiu</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+X">Xiaomin Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Wu%2C+J">Jiaping Wu</a>, <a href="/search/physics?searchtype=author&amp;query=Yi%2C+L">Lilin Yi</a>, <a href="/search/physics?searchtype=author&amp;query=Hu%2C+W">Weisheng Hu</a>, <a href="/search/physics?searchtype=author&amp;query=Zhuge%2C+Q">Qunbi Zhuge</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.16863v2-abstract-short" style="display: inline;"> We propose a novel input refinement methodology incorporating sensitivity analysis and memory-aware weighting for jointly refining numerous diverse inputs. Field trials show ~2.5 dB and ~2.3 dB improvements in Q-factor and power estimation, respectively. </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.16863v2-abstract-full" style="display: none;"> We propose a novel input refinement methodology incorporating sensitivity analysis and memory-aware weighting for jointly refining numerous diverse inputs. Field trials show ~2.5 dB and ~2.3 dB improvements in Q-factor and power estimation, respectively. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.16863v2-abstract-full').style.display = 'none'; document.getElementById('2412.16863v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">3 pages, 2 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.16427">arXiv:2412.16427</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.16427">pdf</a>, <a href="https://arxiv.org/format/2412.16427">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cell Behavior">q-bio.CB</span> </div> </div> <p class="title is-5 mathjax"> High-fidelity microsecond-scale cellular imaging using two-axis compressed streak imaging fluorescence microscopy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Keppler%2C+M+A">Mark A. Keppler</a>, <a href="/search/physics?searchtype=author&amp;query=O%27Connor%2C+S+P">Sean P. O&#39;Connor</a>, <a href="/search/physics?searchtype=author&amp;query=Steelman%2C+Z+A">Zachary A. Steelman</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+X">Xianglei Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Liang%2C+J">Jinyang Liang</a>, <a href="/search/physics?searchtype=author&amp;query=Yakovlev%2C+V+V">Vladislav V. Yakovlev</a>, <a href="/search/physics?searchtype=author&amp;query=Bixler%2C+J+N">Joel N. Bixler</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.16427v1-abstract-short" style="display: inline;"> Compressed streak imaging (CSI), introduced in 2014, has proven to be a powerful imaging technology for recording ultrafast phenomena such as light propagation and fluorescence lifetimes at over 150 trillion frames per second. Despite these achievements, CSI has faced challenges in detecting subtle intensity fluctuations in slow-moving, continuously illuminated objects. This limitation, largely at&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.16427v1-abstract-full').style.display = 'inline'; document.getElementById('2412.16427v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.16427v1-abstract-full" style="display: none;"> Compressed streak imaging (CSI), introduced in 2014, has proven to be a powerful imaging technology for recording ultrafast phenomena such as light propagation and fluorescence lifetimes at over 150 trillion frames per second. Despite these achievements, CSI has faced challenges in detecting subtle intensity fluctuations in slow-moving, continuously illuminated objects. This limitation, largely attributable to high streak compression and motion blur, has curtailed broader adoption of CSI in applications such as cellular fluorescence microscopy. To address these issues and expand the utility of CSI, we present a novel encoding strategy, termed two-axis compressed streak imaging (TACSI) that results in significant improvements to the reconstructed image fidelity. TACSI introduces a second scanning axis which shuttles a conjugate image of the object with respect to the coded aperture. The moving image decreases the streak compression ratio and produces a flash and shutter phenomenon that reduces coded aperture motion blur, overcoming the limitations of current CSI technologies. We support this approach with an analytical model describing the two-axis streak compression ratio, along with both simulated and empirical measurements. As proof of concept, we demonstrate the ability of TACSI to measure rapid variations in cell membrane potentials using voltage-sensitive dye, which were previously unattainable with conventional CSI. This method has broad implications for high-speed photography, including the visualization of action potentials, muscle contractions, and enzymatic reactions that occur on microsecond and faster timescales using fluorescence microscopy. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.16427v1-abstract-full').style.display = 'none'; document.getElementById('2412.16427v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">29 pages, 11 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.16124">arXiv:2412.16124</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.16124">pdf</a>, <a href="https://arxiv.org/format/2412.16124">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Space Physics">physics.space-ph</span> </div> </div> <p class="title is-5 mathjax"> Observational Properties of Harmonic EMIC waves: Statistical Study </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Gu%2C+S">Shujie Gu</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+X">Xu Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+L">Lunjin Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Usanova%2C+M">Maria Usanova</a>, <a href="/search/physics?searchtype=author&amp;query=Xia%2C+Z">Zhiyang Xia</a>, <a href="/search/physics?searchtype=author&amp;query=Gu%2C+W">Wenyao Gu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.16124v1-abstract-short" style="display: inline;"> Electromagnetic ion cyclotron (EMIC) waves are discrete electromagnetic emissions separated by multiple ion gyrofrequencies. Harmonic EMIC waves are defined as waves with a strong electric or magnetic field (or both) at the harmonics of the fundamental EMIC mode. In this paper, for the first time, we present a statistical study on harmonic EMIC waves by the Van Allen Probes. The EMIC waves are cat&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.16124v1-abstract-full').style.display = 'inline'; document.getElementById('2412.16124v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.16124v1-abstract-full" style="display: none;"> Electromagnetic ion cyclotron (EMIC) waves are discrete electromagnetic emissions separated by multiple ion gyrofrequencies. Harmonic EMIC waves are defined as waves with a strong electric or magnetic field (or both) at the harmonics of the fundamental EMIC mode. In this paper, for the first time, we present a statistical study on harmonic EMIC waves by the Van Allen Probes. The EMIC waves are categorized into three types based on their harmonics: (1) fundamental mode only (without higher harmonics), (2) electrostatic (ES) harmonics, and (3) electromagnetic (EM) harmonics. Our statistical study shows that ES and EM harmonic EMIC waves predominantly occur on the dayside, outside the plasmasphere with $L &gt;5$ and are associated with a low $f_{pe}/f_{ce}$, a high proton $尾_H$, and a strong fundamental EMIC mode. The results will advance our understanding of harmonic EMIC waves and their generation mechanisms. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.16124v1-abstract-full').style.display = 'none'; document.getElementById('2412.16124v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.14440">arXiv:2412.14440</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.14440">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> </div> <p class="title is-5 mathjax"> Dual atom (87Rb-133Cs) grating magneto-optical trap </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Xu%2C+L">Lei Xu</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+M">Muming Li</a>, <a href="/search/physics?searchtype=author&amp;query=Yu%2C+Z">Zhilong Yu</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Z">Zheyu Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Duan%2C+J">Junyi Duan</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+F">Fang Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Zhao%2C+F">Feng Zhao</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+X">Xiaochi Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.14440v1-abstract-short" style="display: inline;"> This paper proposes a dual-color grating chip design method for simultaneously capturing dual atomic clouds (87Rb and 133Cs). By simulating key parameters such as the grating period, etching depth, duty cycle, coating material, and thickness, the optimal design parameters were determined to ensure efficient dual-wavelength diffraction and maximize the number of captured atoms. Experimental results&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.14440v1-abstract-full').style.display = 'inline'; document.getElementById('2412.14440v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.14440v1-abstract-full" style="display: none;"> This paper proposes a dual-color grating chip design method for simultaneously capturing dual atomic clouds (87Rb and 133Cs). By simulating key parameters such as the grating period, etching depth, duty cycle, coating material, and thickness, the optimal design parameters were determined to ensure efficient dual-wavelength diffraction and maximize the number of captured atoms. Experimental results demonstrate the simultaneous trapping of 1.6E8 87Rb atoms and 7.8E6 133Cs atoms, thereby offering an approach for multi-species cold atom systems. This dual-species grating magneto-optical trap (GMOT) system has potential applications in precision measurements such as cold atom clocks, quantum interferometers, and quantum electrometry. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.14440v1-abstract-full').style.display = 'none'; document.getElementById('2412.14440v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.13417">arXiv:2412.13417</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.13417">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Geophysics">physics.geo-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Hugoniot equation of state and sound velocity of CaSiO3 glass under shock compression </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Wu%2C+Y">Ye Wu</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+Q">Qing Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+Y">Yishi Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Hu%2C+Y">Yu Hu</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+Z">Zehui Li</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+Z">Zining Li</a>, <a href="/search/physics?searchtype=author&amp;query=Gao%2C+C">Chang Gao</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+X">Xun Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Huang%2C+H">Haijun Huang</a>, <a href="/search/physics?searchtype=author&amp;query=Fei%2C+Y">Yingwei Fei</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.13417v1-abstract-short" style="display: inline;"> Davemaoite, as the third most abundant mineral in the lower mantle, constitutes significant amounts in pyrolite and mid-ocean ridge basalts. Due to its unquenchable nature, measurements by static compression techniques on physical properties of davemaoite at lower mantle conditions are rare and technically challenging, and those are essential to constrain compositions and properties of mineralogic&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.13417v1-abstract-full').style.display = 'inline'; document.getElementById('2412.13417v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.13417v1-abstract-full" style="display: none;"> Davemaoite, as the third most abundant mineral in the lower mantle, constitutes significant amounts in pyrolite and mid-ocean ridge basalts. Due to its unquenchable nature, measurements by static compression techniques on physical properties of davemaoite at lower mantle conditions are rare and technically challenging, and those are essential to constrain compositions and properties of mineralogical models in the lower mantle. Here, we present Hugoniot equation of state and sound velocity of CaSiO3 glass under shock compression. The CaSiO3 glass transforms into the crystalline phase above 34 GPa and completely transforms into davemaoite above 120 GPa. Thermal equation of state and Hugoniot temperature of davemaoite have been derived from the shock wave data. The CaSiO3 glass under shcok compression has very high shock temperature. Shock wave experiments for sound velocity of CaSiO3 glass indicate that no melting is observed at Hugoniot pressure up to 117.6 GPa. We propose that the melting temperature of davemaoite should be higher than those reported theoretically by now. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.13417v1-abstract-full').style.display = 'none'; document.getElementById('2412.13417v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.12908">arXiv:2412.12908</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.12908">pdf</a>, <a href="https://arxiv.org/format/2412.12908">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> Magnetism and weak electronic correlations in Kagome metal ScV$_6$Sn$_6$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Yu%2C+T">Tianye Yu</a>, <a href="/search/physics?searchtype=author&amp;query=Lai%2C+J">Junwen Lai</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+X">Xiangyang Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+P">Peitao Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+X">Xing-Qiu Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Sun%2C+Y">Yan Sun</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.12908v1-abstract-short" style="display: inline;"> As one class of typical quantum materials, Kagome metals in $A$V$_3$Sb$_5$($A$ = K, Rb, Cs) have attracted extensive attentions due to their interesting physical properties and different quantum phases of charge density wave (CDW), superconductivity and nontrivial topology. Recently, a new CDW phase in ScV$_6$Sn$_6$ was experimentally observed and inspired a wide study of the mechanism of driving&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.12908v1-abstract-full').style.display = 'inline'; document.getElementById('2412.12908v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.12908v1-abstract-full" style="display: none;"> As one class of typical quantum materials, Kagome metals in $A$V$_3$Sb$_5$($A$ = K, Rb, Cs) have attracted extensive attentions due to their interesting physical properties and different quantum phases of charge density wave (CDW), superconductivity and nontrivial topology. Recently, a new CDW phase in ScV$_6$Sn$_6$ was experimentally observed and inspired a wide study of the mechanism of driving force. To have a clear understanding of the correlation effect in the CDW phase in ScV$_6$Sn$_6$, we performed a systematic density functional theory plus dynamical mean field theory (DFT + DMFT) calculations. The resulting static local spin susceptibility is nearly independent of temperature, indicating the absence of local moment on atom V, in full agreement with experimental measurements. The mass enhancements of quasiparticles and bandwidth renormalizations near the Fermi level show a weak correlation strength in ScV$_6$Sn$_6$. In addition, the comparable mass enhancements of quasiparticles in ScV$_6$Sn$_6$ with CDW order and YV$_6$Sn$_6$ without CDW phase suggests that electronic correlations corresponding to Fermi surface nesting do not play the dominant role in the formation of CDW order in ScV$_6$Sn$_6$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.12908v1-abstract-full').style.display = 'none'; document.getElementById('2412.12908v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.12521">arXiv:2412.12521</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.12521">pdf</a>, <a href="https://arxiv.org/format/2412.12521">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Updates on the Tsinghua Tabletop Kibble Balance </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Li%2C+S">Shisong Li</a>, <a href="/search/physics?searchtype=author&amp;query=Ma%2C+Y">Yongchao Ma</a>, <a href="/search/physics?searchtype=author&amp;query=Ma%2C+K">Kang Ma</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+W">Weibo Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+N">Nanjia Li</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+X">Xiaohu Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Peng%2C+L">Lisha Peng</a>, <a href="/search/physics?searchtype=author&amp;query=Zhao%2C+W">Wei Zhao</a>, <a href="/search/physics?searchtype=author&amp;query=Huang%2C+S">Songling Huang</a>, <a href="/search/physics?searchtype=author&amp;query=Yu%2C+X">Xinjie Yu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.12521v1-abstract-short" style="display: inline;"> With the adoption of the revised International System of Units (SI), the Kibble balance has become a pivotal instrument for mass calibrations against the Planck constant, $h$. One of the major focuses in the Kibble balance community is prioritizing experiments that achieve both high accuracy and compactness. The Tsinghua tabletop Kibble balance experiment seeks to develop a compact, high-precision&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.12521v1-abstract-full').style.display = 'inline'; document.getElementById('2412.12521v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.12521v1-abstract-full" style="display: none;"> With the adoption of the revised International System of Units (SI), the Kibble balance has become a pivotal instrument for mass calibrations against the Planck constant, $h$. One of the major focuses in the Kibble balance community is prioritizing experiments that achieve both high accuracy and compactness. The Tsinghua tabletop Kibble balance experiment seeks to develop a compact, high-precision, user-friendly, cost-effective, and open-hardware apparatus for mass realization, specifically within the kilogram range. This paper reports on the progress of the Tsinghua tabletop Kibble balance project over the past two years. Various aspects of the Tsinghua tabletop system, including electrical, magnetic, mechanical, and optical components, are summarized. Key achievements, such as the construction and characterization of the magnet system, determination of absolute gravitational acceleration, investigation of a capacitor-sensor-based weighing unit, and development of a high-precision current source, are presented to provide a comprehensive understanding of the experiment&#39;s status. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.12521v1-abstract-full').style.display = 'none'; document.getElementById('2412.12521v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.11942">arXiv:2412.11942</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.11942">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Geophysics">physics.geo-ph</span> </div> </div> <p class="title is-5 mathjax"> DRUM: Diffusion-based runoff model for probabilistic flood forecasting </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Ou%2C+Z">Zhigang Ou</a>, <a href="/search/physics?searchtype=author&amp;query=Nai%2C+C">Congyi Nai</a>, <a href="/search/physics?searchtype=author&amp;query=Pan%2C+B">Baoxiang Pan</a>, <a href="/search/physics?searchtype=author&amp;query=Pan%2C+M">Ming Pan</a>, <a href="/search/physics?searchtype=author&amp;query=Shen%2C+C">Chaopeng Shen</a>, <a href="/search/physics?searchtype=author&amp;query=Jiang%2C+P">Peishi Jiang</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+X">Xingcai Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Tang%2C+Q">Qiuhong Tang</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+W">Wenqing Li</a>, <a href="/search/physics?searchtype=author&amp;query=Zheng%2C+Y">Yi Zheng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.11942v1-abstract-short" style="display: inline;"> Reliable flood forecasting remains a critical challenge due to persistent underestimation of peak flows and inadequate uncertainty quantification in current approaches. We present DRUM (Diffusion-based Runoff Model), a generative AI solution for probabilistic runoff prediction. DRUM builds up an iterative refinement process that generates ensemble runoff estimates from noise, guided by past meteor&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.11942v1-abstract-full').style.display = 'inline'; document.getElementById('2412.11942v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.11942v1-abstract-full" style="display: none;"> Reliable flood forecasting remains a critical challenge due to persistent underestimation of peak flows and inadequate uncertainty quantification in current approaches. We present DRUM (Diffusion-based Runoff Model), a generative AI solution for probabilistic runoff prediction. DRUM builds up an iterative refinement process that generates ensemble runoff estimates from noise, guided by past meteorological conditions, present meteorological forecasts, and static catchment attributes. This framework allows learning complex hydrological behaviors without imposing explicit distributional assumptions, particularly benefiting extreme event prediction and uncertainty quantification. Using data from 531 representative basins across the contiguous United States, DRUM outperforms state-of-the-art deep learning methods in runoff forecasting regarding both deterministic and probabilistic skills, with particular advantages in extreme flow (0.1%) predictions. DRUM demonstrates superior flood early warning skill across all magnitudes and lead times (1-7 days), achieving F1 scores near 0.4 for extreme events under perfect forecasts and maintaining robust performance with operational forecasts, especially for longer lead times and high-magnitude floods. When applied to climate projections through the 21st century, DRUM reveals increasing flood vulnerability in 47.8-57.1% of basins across emission scenarios, with particularly elevated risks along the West Coast and Southeast regions. These advances demonstrate significant potential for improving both operational flood forecasting and long-term risk assessment in a changing climate. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.11942v1-abstract-full').style.display = 'none'; document.getElementById('2412.11942v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">40 pages, 12 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.11357">arXiv:2412.11357</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.11357">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> van der Waals Torque in 2D Materials Induced by Interaction between Many-Body Charge Density Fluctuations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Kou%2C+Z">Zepu Kou</a>, <a href="/search/physics?searchtype=author&amp;query=Zhou%2C+Y">Yuquan Zhou</a>, <a href="/search/physics?searchtype=author&amp;query=Jiang%2C+Z">Zonghuiyi Jiang</a>, <a href="/search/physics?searchtype=author&amp;query=Tkatchenko%2C+A">Alexandre Tkatchenko</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+X">Xiaofei Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.11357v1-abstract-short" style="display: inline;"> Van der Waals torque determines the relative rotational motion between anisotropic objects, being of relevance to low-dimensional systems. Here we demonstrate a substantial torque between anisotropic two-dimensional materials that arises from the interaction between many-body charge density fluctuations, exceeding by twenty-fold the torque computed with atom-pairwise models. The dependence of torq&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.11357v1-abstract-full').style.display = 'inline'; document.getElementById('2412.11357v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.11357v1-abstract-full" style="display: none;"> Van der Waals torque determines the relative rotational motion between anisotropic objects, being of relevance to low-dimensional systems. Here we demonstrate a substantial torque between anisotropic two-dimensional materials that arises from the interaction between many-body charge density fluctuations, exceeding by twenty-fold the torque computed with atom-pairwise models. The dependence of torque on the disorientation angle, the positive correlation between torque and in-planar dielectric anisotropy, the linear relation between torque and area, and the decaying torque with increasing separation are rediscovered using the fully atomistic many-body dispersion model. Unlike continuum Casimir-Lifshitz theory, the advantage of the molecular theory relies on describing the collective torque and the effects of atomic details on an equal footing. These findings open an avenue for incorporating quantum fluctuation-induced torque into molecular modeling, being instrumental to the design of nanoelectromechanical systems and the understanding of rotational dynamics of anisotropic layered materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.11357v1-abstract-full').style.display = 'none'; document.getElementById('2412.11357v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">35 pages, 15 figures, 4 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.15221">arXiv:2411.15221</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.15221">pdf</a>, <a href="https://arxiv.org/format/2411.15221">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> </div> <p class="title is-5 mathjax"> Reflections from the 2024 Large Language Model (LLM) Hackathon for Applications in Materials Science and Chemistry </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Zimmermann%2C+Y">Yoel Zimmermann</a>, <a href="/search/physics?searchtype=author&amp;query=Bazgir%2C+A">Adib Bazgir</a>, <a href="/search/physics?searchtype=author&amp;query=Afzal%2C+Z">Zartashia Afzal</a>, <a href="/search/physics?searchtype=author&amp;query=Agbere%2C+F">Fariha Agbere</a>, <a href="/search/physics?searchtype=author&amp;query=Ai%2C+Q">Qianxiang Ai</a>, <a href="/search/physics?searchtype=author&amp;query=Alampara%2C+N">Nawaf Alampara</a>, <a href="/search/physics?searchtype=author&amp;query=Al-Feghali%2C+A">Alexander Al-Feghali</a>, <a href="/search/physics?searchtype=author&amp;query=Ansari%2C+M">Mehrad Ansari</a>, <a href="/search/physics?searchtype=author&amp;query=Antypov%2C+D">Dmytro Antypov</a>, <a href="/search/physics?searchtype=author&amp;query=Aswad%2C+A">Amro Aswad</a>, <a href="/search/physics?searchtype=author&amp;query=Bai%2C+J">Jiaru Bai</a>, <a href="/search/physics?searchtype=author&amp;query=Baibakova%2C+V">Viktoriia Baibakova</a>, <a href="/search/physics?searchtype=author&amp;query=Biswajeet%2C+D+D">Devi Dutta Biswajeet</a>, <a href="/search/physics?searchtype=author&amp;query=Bitzek%2C+E">Erik Bitzek</a>, <a href="/search/physics?searchtype=author&amp;query=Bocarsly%2C+J+D">Joshua D. Bocarsly</a>, <a href="/search/physics?searchtype=author&amp;query=Borisova%2C+A">Anna Borisova</a>, <a href="/search/physics?searchtype=author&amp;query=Bran%2C+A+M">Andres M Bran</a>, <a href="/search/physics?searchtype=author&amp;query=Brinson%2C+L+C">L. Catherine Brinson</a>, <a href="/search/physics?searchtype=author&amp;query=Calderon%2C+M+M">Marcel Moran Calderon</a>, <a href="/search/physics?searchtype=author&amp;query=Canalicchio%2C+A">Alessandro Canalicchio</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+V">Victor Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chiang%2C+Y">Yuan Chiang</a>, <a href="/search/physics?searchtype=author&amp;query=Circi%2C+D">Defne Circi</a>, <a href="/search/physics?searchtype=author&amp;query=Charmes%2C+B">Benjamin Charmes</a>, <a href="/search/physics?searchtype=author&amp;query=Chaudhary%2C+V">Vikrant Chaudhary</a> , et al. (119 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.15221v2-abstract-short" style="display: inline;"> Here, we present the outcomes from the second Large Language Model (LLM) Hackathon for Applications in Materials Science and Chemistry, which engaged participants across global hybrid locations, resulting in 34 team submissions. The submissions spanned seven key application areas and demonstrated the diverse utility of LLMs for applications in (1) molecular and material property prediction; (2) mo&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.15221v2-abstract-full').style.display = 'inline'; document.getElementById('2411.15221v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.15221v2-abstract-full" style="display: none;"> Here, we present the outcomes from the second Large Language Model (LLM) Hackathon for Applications in Materials Science and Chemistry, which engaged participants across global hybrid locations, resulting in 34 team submissions. The submissions spanned seven key application areas and demonstrated the diverse utility of LLMs for applications in (1) molecular and material property prediction; (2) molecular and material design; (3) automation and novel interfaces; (4) scientific communication and education; (5) research data management and automation; (6) hypothesis generation and evaluation; and (7) knowledge extraction and reasoning from scientific literature. Each team submission is presented in a summary table with links to the code and as brief papers in the appendix. Beyond team results, we discuss the hackathon event and its hybrid format, which included physical hubs in Toronto, Montreal, San Francisco, Berlin, Lausanne, and Tokyo, alongside a global online hub to enable local and virtual collaboration. Overall, the event highlighted significant improvements in LLM capabilities since the previous year&#39;s hackathon, suggesting continued expansion of LLMs for applications in materials science and chemistry research. These outcomes demonstrate the dual utility of LLMs as both multipurpose models for diverse machine learning tasks and platforms for rapid prototyping custom applications in scientific research. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.15221v2-abstract-full').style.display = 'none'; document.getElementById('2411.15221v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Updating author information, the submission remains largely unchanged. 98 pages total</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.14378">arXiv:2411.14378</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.14378">pdf</a>, <a href="https://arxiv.org/format/2411.14378">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> CoNFiLD-inlet: Synthetic Turbulence Inflow Using Generative Latent Diffusion Models with Neural Fields </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Liu%2C+X">Xin-Yang Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Parikh%2C+M+H">Meet Hemant Parikh</a>, <a href="/search/physics?searchtype=author&amp;query=Fan%2C+X">Xiantao Fan</a>, <a href="/search/physics?searchtype=author&amp;query=Du%2C+P">Pan Du</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+Q">Qing Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Y">Yi-Fan Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+J">Jian-Xun Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.14378v1-abstract-short" style="display: inline;"> Eddy-resolving turbulence simulations require stochastic inflow conditions that accurately replicate the complex, multi-scale structures of turbulence. Traditional recycling-based methods rely on computationally expensive precursor simulations, while existing synthetic inflow generators often fail to reproduce realistic coherent structures of turbulence. Recent advances in deep learning (DL) have&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.14378v1-abstract-full').style.display = 'inline'; document.getElementById('2411.14378v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.14378v1-abstract-full" style="display: none;"> Eddy-resolving turbulence simulations require stochastic inflow conditions that accurately replicate the complex, multi-scale structures of turbulence. Traditional recycling-based methods rely on computationally expensive precursor simulations, while existing synthetic inflow generators often fail to reproduce realistic coherent structures of turbulence. Recent advances in deep learning (DL) have opened new possibilities for inflow turbulence generation, yet many DL-based methods rely on deterministic, autoregressive frameworks prone to error accumulation, resulting in poor robustness for long-term predictions. In this work, we present CoNFiLD-inlet, a novel DL-based inflow turbulence generator that integrates diffusion models with a conditional neural field (CNF)-encoded latent space to produce realistic, stochastic inflow turbulence. By parameterizing inflow conditions using Reynolds numbers, CoNFiLD-inlet generalizes effectively across a wide range of Reynolds numbers ($Re_蟿$ between $10^3$ and $10^4$) without requiring retraining or parameter tuning. Comprehensive validation through a priori and a posteriori tests in Direct Numerical Simulation (DNS) and Wall-Modeled Large Eddy Simulation (WMLES) demonstrates its high fidelity, robustness, and scalability, positioning it as an efficient and versatile solution for inflow turbulence synthesis. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.14378v1-abstract-full').style.display = 'none'; document.getElementById('2411.14378v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">27 pages, 10 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.11348">arXiv:2411.11348</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.11348">pdf</a>, <a href="https://arxiv.org/format/2411.11348">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> Modeling Multivariable High-resolution 3D Urban Microclimate Using Localized Fourier Neural Operator </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Qin%2C+S">Shaoxiang Qin</a>, <a href="/search/physics?searchtype=author&amp;query=Zhan%2C+D">Dongxue Zhan</a>, <a href="/search/physics?searchtype=author&amp;query=Geng%2C+D">Dingyang Geng</a>, <a href="/search/physics?searchtype=author&amp;query=Peng%2C+W">Wenhui Peng</a>, <a href="/search/physics?searchtype=author&amp;query=Tian%2C+G">Geng Tian</a>, <a href="/search/physics?searchtype=author&amp;query=Shi%2C+Y">Yurong Shi</a>, <a href="/search/physics?searchtype=author&amp;query=Gao%2C+N">Naiping Gao</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+X">Xue Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+L+L">Liangzhu Leon Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.11348v1-abstract-short" style="display: inline;"> Accurate urban microclimate analysis with wind velocity and temperature is vital for energy-efficient urban planning, supporting carbon reduction, enhancing public health and comfort, and advancing the low-altitude economy. However, traditional computational fluid dynamics (CFD) simulations that couple velocity and temperature are computationally expensive. Recent machine learning advancements off&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.11348v1-abstract-full').style.display = 'inline'; document.getElementById('2411.11348v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.11348v1-abstract-full" style="display: none;"> Accurate urban microclimate analysis with wind velocity and temperature is vital for energy-efficient urban planning, supporting carbon reduction, enhancing public health and comfort, and advancing the low-altitude economy. However, traditional computational fluid dynamics (CFD) simulations that couple velocity and temperature are computationally expensive. Recent machine learning advancements offer promising alternatives for accelerating urban microclimate simulations. The Fourier neural operator (FNO) has shown efficiency and accuracy in predicting single-variable velocity magnitudes in urban wind fields. Yet, for multivariable high-resolution 3D urban microclimate prediction, FNO faces three key limitations: blurry output quality, high GPU memory demand, and substantial data requirements. To address these issues, we propose a novel localized Fourier neural operator (Local-FNO) model that employs local training, geometry encoding, and patch overlapping. Local-FNO provides accurate predictions for rapidly changing turbulence in urban microclimate over 60 seconds, four times the average turbulence integral time scale, with an average error of 0.35 m/s in velocity and 0.30 掳C in temperature. It also accurately captures turbulent heat flux represented by the velocity-temperature correlation. In a 2 km by 2 km domain, Local-FNO resolves turbulence patterns down to a 10 m resolution. It provides high-resolution predictions with 150 million feature dimensions on a single 32 GB GPU at nearly 50 times the speed of a CFD solver. Compared to FNO, Local-FNO achieves a 23.9% reduction in prediction error and a 47.3% improvement in turbulent fluctuation correlation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.11348v1-abstract-full').style.display = 'none'; document.getElementById('2411.11348v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.10331">arXiv:2411.10331</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.10331">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.scib.2024.11.004">10.1016/j.scib.2024.11.004 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A facile route to synthesize cubic gauche polymeric nitrogen </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Chen%2C+R">Runteng Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+J">Jun Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+Z">Zelong Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Lu%2C+K">Ke Lu</a>, <a href="/search/physics?searchtype=author&amp;query=Peng%2C+Y">Yi Peng</a>, <a href="/search/physics?searchtype=author&amp;query=Zhao%2C+J">Jianfa Zhao</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+X">Xiaodong Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Feng%2C+S">Shaomin Feng</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+R">Ruibin Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Xiao%2C+C">Chuan Xiao</a>, <a href="/search/physics?searchtype=author&amp;query=Jin%2C+C">Changqing Jin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.10331v3-abstract-short" style="display: inline;"> In this work, the long-sought cg-N with N-N single bond has been synthesized for the first time by a thermal-driven-only chemical route at ambient conditions. The successful synthesis of cg-N was achieved by first creating a solution of azides, which was then pretreated under vacuum conditions. Following the pretreatment, the resultant concentrated azide was heated at temperatures ranging from 260&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.10331v3-abstract-full').style.display = 'inline'; document.getElementById('2411.10331v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.10331v3-abstract-full" style="display: none;"> In this work, the long-sought cg-N with N-N single bond has been synthesized for the first time by a thermal-driven-only chemical route at ambient conditions. The successful synthesis of cg-N was achieved by first creating a solution of azides, which was then pretreated under vacuum conditions. Following the pretreatment, the resultant concentrated azide was heated at temperatures ranging from 260掳C to 330掳C for a reaction time of 3 hours, ultimately leading to the formation of cg-N. The emergent intense Raman peak characterized of cg-N provides solid evidence that the double bonded nitrogen-nitrogen transforms into a single bond form, which agrees well with cg-N structure. To date, this is the only work achieving the quantity of cg-N synthesized at ambient conditions by a facile route that can be further developed for the scalable synthesis and applications of polymerized nitrogen-based materials as high energy density materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.10331v3-abstract-full').style.display = 'none'; document.getElementById('2411.10331v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 2 figures, published in Science Bulletin</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Science Bulletin, 69(24):3812 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.10196">arXiv:2411.10196</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.10196">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Erbium doped yttrium oxide thin films grown by chemical vapour deposition for quantum technologies </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Blin%2C+A">Anna Blin</a>, <a href="/search/physics?searchtype=author&amp;query=Kolar%2C+A">Alexander Kolar</a>, <a href="/search/physics?searchtype=author&amp;query=Kamen%2C+A">Andrew Kamen</a>, <a href="/search/physics?searchtype=author&amp;query=Lin%2C+Q">Qian Lin</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+X">Xiaogang Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Benamrouche%2C+A">Aziz Benamrouche</a>, <a href="/search/physics?searchtype=author&amp;query=Bachelet%2C+R">Romain Bachelet</a>, <a href="/search/physics?searchtype=author&amp;query=Goldner%2C+P">Philippe Goldner</a>, <a href="/search/physics?searchtype=author&amp;query=Zhong%2C+T">Tian Zhong</a>, <a href="/search/physics?searchtype=author&amp;query=Serrano%2C+D">Diana Serrano</a>, <a href="/search/physics?searchtype=author&amp;query=Tallaire%2C+A">Alexandre Tallaire</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.10196v1-abstract-short" style="display: inline;"> The obtention of quantum-grade rare-earth doped oxide thin films that can be integrated with optical cavities and microwave resonators is of great interest for the development of scalable quantum devices. Among the different growth methods, Chemical Vapour Deposition (CVD) offers high flexibility and has demonstrated the ability to produce oxide films hosting rare-earth ions with narrow linewidths&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.10196v1-abstract-full').style.display = 'inline'; document.getElementById('2411.10196v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.10196v1-abstract-full" style="display: none;"> The obtention of quantum-grade rare-earth doped oxide thin films that can be integrated with optical cavities and microwave resonators is of great interest for the development of scalable quantum devices. Among the different growth methods, Chemical Vapour Deposition (CVD) offers high flexibility and has demonstrated the ability to produce oxide films hosting rare-earth ions with narrow linewidths. However, growing epitaxial films directly on silicon is challenging by CVD due to a native amorphous oxide layer formation at the interface. In this manuscript, we investigate the CVD growth of erbium-doped yttrium oxide (Er:Y2O3) thin films on different substrates, including silicon, sapphire, quartz or yttria stabilized zirconia (YSZ). Alternatively, growth was also attempted on an epitaxial Y2O3 template layer on Si (111) prepared by molecular beam epitaxy (MBE) in order to circumvent the issue of the amorphous interlayer. We found that the substrate impacts the film morphology and the crystalline orientations, with different textures observed for the CVD film on the MBE-oxide/Si template (111) and epitaxial growth on YSZ (001). In terms of optical properties, Er3+ ions exhibit visible and IR emission features that are comparable for all samples, indicating a high-quality local crystalline environment regardless of the substrate. Our approach opens interesting prospects to integrate such films into scalable devices for optical quantum technologies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.10196v1-abstract-full').style.display = 'none'; document.getElementById('2411.10196v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 8 figures, 2 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.08122">arXiv:2411.08122</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.08122">pdf</a>, <a href="https://arxiv.org/format/2411.08122">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> Physics-Informed Neural Networks with Complementary Soft and Hard Constraints for Solving Complex Boundary Navier-Stokes Equations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Zhou%2C+C">Chuyu Zhou</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+T">Tianyu Li</a>, <a href="/search/physics?searchtype=author&amp;query=Lan%2C+C">Chenxi Lan</a>, <a href="/search/physics?searchtype=author&amp;query=Du%2C+R">Rongyu Du</a>, <a href="/search/physics?searchtype=author&amp;query=Xin%2C+G">Guoguo Xin</a>, <a href="/search/physics?searchtype=author&amp;query=Nan%2C+P">Pengyu Nan</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+H">Hangzhou Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+G">Guoqing Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+X">Xun Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+W">Wei Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.08122v1-abstract-short" style="display: inline;"> Soft- and hard-constrained Physics Informed Neural Networks (PINNs) have achieved great success in solving partial differential equations (PDEs). However, these methods still face great challenges when solving the Navier-Stokes equations (NSEs) with complex boundary conditions. To address these challenges, this paper introduces a novel complementary scheme combining soft and hard constraint PINN m&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.08122v1-abstract-full').style.display = 'inline'; document.getElementById('2411.08122v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.08122v1-abstract-full" style="display: none;"> Soft- and hard-constrained Physics Informed Neural Networks (PINNs) have achieved great success in solving partial differential equations (PDEs). However, these methods still face great challenges when solving the Navier-Stokes equations (NSEs) with complex boundary conditions. To address these challenges, this paper introduces a novel complementary scheme combining soft and hard constraint PINN methods. The soft-constrained part is thus formulated to obtain the preliminary results with a lighter training burden, upon which refined results are then achieved using a more sophisticated hard-constrained mechanism with a primary network and a distance metric network. Specifically, the soft-constrained part focuses on boundary points, while the primary network emphasizes inner domain points, primarily through PDE loss. Additionally, the novel distance metric network is proposed to predict the power function of the distance from a point to the boundaries, which serves as the weighting factor for the first two components. This approach ensures accurate predictions for both boundary and inner domain areas. The effectiveness of the proposed method on the NSEs problem with complex boundary conditions is demonstrated by solving a 2D cylinder wake problem and a 2D blocked cavity flow with a segmented inlet problem, achieving significantly higher accuracy compared to traditional soft- and hard-constrained PINN approaches. Given PINN&#39;s inherent advantages in solving the inverse and the large-scale problems, which are challenging for traditional computational fluid dynamics (CFD) methods, this approach holds promise for the inverse design of required flow fields by specifically-designed boundary conditions and the reconstruction of large-scale flow fields by adding a limited number of training input points. The code for our approach will be made publicly available. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.08122v1-abstract-full').style.display = 'none'; document.getElementById('2411.08122v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.06373">arXiv:2411.06373</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.06373">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> </div> <p class="title is-5 mathjax"> Improved scaling of the scrape-off layer particle flux width by the Bayes theorem on EAST </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Liu%2C+D+C">D. C. Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+X">X. Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+L">L. Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Zheng%2C+X+F">X. F. Zheng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.06373v1-abstract-short" style="display: inline;"> The scaling of scrape-off layer (SOL) power width (位q) is essential for advancing the understanding of particle and heat transport in the SOL. Due to the sparse layout of divertor Langmuir probes (Div-LPs) and probe erosion during long-pulse, high-performance operations on EAST, estimating SOL particle flux width (位js, used to approximate 位q) from the ion saturation current density profile (js) of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.06373v1-abstract-full').style.display = 'inline'; document.getElementById('2411.06373v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.06373v1-abstract-full" style="display: none;"> The scaling of scrape-off layer (SOL) power width (位q) is essential for advancing the understanding of particle and heat transport in the SOL. Due to the sparse layout of divertor Langmuir probes (Div-LPs) and probe erosion during long-pulse, high-performance operations on EAST, estimating SOL particle flux width (位js, used to approximate 位q) from the ion saturation current density profile (js) often incurs substantial uncertainty. This study presents a maximum a posteriori (MAP) estimation method based on Bayes&#39; theorem, achieving approximately 30% improvement in fitting accuracy over traditional ordinary least squares. Using this method and the FreeGS equilibrium code, we updated databases from Liu et al., Nucl. Fusion 64 (2024). Revised 位js scalings for L-mode and H-mode in deuterium and helium plasmas demonstrate better regression quality and slightly altered regression results. Unified L-mode and H-mode scalings in deuterium and helium are: 位_js^L = 0.11 L_c^1.06 n_e^0.35 Z^0.32 P_SOL^0.25 p^(-0.26) and 位_js^H = 0.11 L_c^1.28 n_e^0.56 Z^0.36 P_SOL^0.30, where L_c is the average SOL connection length, n_e the line-averaged electron density, Z the charge number, PSOL the power crossing the last closed flux surface, and p the core-averaged plasma pressure. Key findings include: (i) 位js strongly depends on SOL connection length, indicating a machine size dependence absent in the Eich scaling, and (ii) helium 位js is slightly larger than deuterium 位js. Extrapolated scalings suggest 位q ~ 6 mm for ITER L-mode (Ip = 12 MA) and ~13 mm for H-mode (Ip = 15 MA). <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.06373v1-abstract-full').style.display = 'none'; document.getElementById('2411.06373v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.21611">arXiv:2410.21611</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.21611">pdf</a>, <a href="https://arxiv.org/format/2410.21611">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> CaloChallenge 2022: A Community Challenge for Fast Calorimeter Simulation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Krause%2C+C">Claudius Krause</a>, <a href="/search/physics?searchtype=author&amp;query=Giannelli%2C+M+F">Michele Faucci Giannelli</a>, <a href="/search/physics?searchtype=author&amp;query=Kasieczka%2C+G">Gregor Kasieczka</a>, <a href="/search/physics?searchtype=author&amp;query=Nachman%2C+B">Benjamin Nachman</a>, <a href="/search/physics?searchtype=author&amp;query=Salamani%2C+D">Dalila Salamani</a>, <a href="/search/physics?searchtype=author&amp;query=Shih%2C+D">David Shih</a>, <a href="/search/physics?searchtype=author&amp;query=Zaborowska%2C+A">Anna Zaborowska</a>, <a href="/search/physics?searchtype=author&amp;query=Amram%2C+O">Oz Amram</a>, <a href="/search/physics?searchtype=author&amp;query=Borras%2C+K">Kerstin Borras</a>, <a href="/search/physics?searchtype=author&amp;query=Buckley%2C+M+R">Matthew R. Buckley</a>, <a href="/search/physics?searchtype=author&amp;query=Buhmann%2C+E">Erik Buhmann</a>, <a href="/search/physics?searchtype=author&amp;query=Buss%2C+T">Thorsten Buss</a>, <a href="/search/physics?searchtype=author&amp;query=Cardoso%2C+R+P+D+C">Renato Paulo Da Costa Cardoso</a>, <a href="/search/physics?searchtype=author&amp;query=Caterini%2C+A+L">Anthony L. Caterini</a>, <a href="/search/physics?searchtype=author&amp;query=Chernyavskaya%2C+N">Nadezda Chernyavskaya</a>, <a href="/search/physics?searchtype=author&amp;query=Corchia%2C+F+A+G">Federico A. G. Corchia</a>, <a href="/search/physics?searchtype=author&amp;query=Cresswell%2C+J+C">Jesse C. Cresswell</a>, <a href="/search/physics?searchtype=author&amp;query=Diefenbacher%2C+S">Sascha Diefenbacher</a>, <a href="/search/physics?searchtype=author&amp;query=Dreyer%2C+E">Etienne Dreyer</a>, <a href="/search/physics?searchtype=author&amp;query=Ekambaram%2C+V">Vijay Ekambaram</a>, <a href="/search/physics?searchtype=author&amp;query=Eren%2C+E">Engin Eren</a>, <a href="/search/physics?searchtype=author&amp;query=Ernst%2C+F">Florian Ernst</a>, <a href="/search/physics?searchtype=author&amp;query=Favaro%2C+L">Luigi Favaro</a>, <a href="/search/physics?searchtype=author&amp;query=Franchini%2C+M">Matteo Franchini</a>, <a href="/search/physics?searchtype=author&amp;query=Gaede%2C+F">Frank Gaede</a> , et al. (44 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.21611v1-abstract-short" style="display: inline;"> We present the results of the &#34;Fast Calorimeter Simulation Challenge 2022&#34; - the CaloChallenge. We study state-of-the-art generative models on four calorimeter shower datasets of increasing dimensionality, ranging from a few hundred voxels to a few tens of thousand voxels. The 31 individual submissions span a wide range of current popular generative architectures, including Variational AutoEncoder&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.21611v1-abstract-full').style.display = 'inline'; document.getElementById('2410.21611v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.21611v1-abstract-full" style="display: none;"> We present the results of the &#34;Fast Calorimeter Simulation Challenge 2022&#34; - the CaloChallenge. We study state-of-the-art generative models on four calorimeter shower datasets of increasing dimensionality, ranging from a few hundred voxels to a few tens of thousand voxels. The 31 individual submissions span a wide range of current popular generative architectures, including Variational AutoEncoders (VAEs), Generative Adversarial Networks (GANs), Normalizing Flows, Diffusion models, and models based on Conditional Flow Matching. We compare all submissions in terms of quality of generated calorimeter showers, as well as shower generation time and model size. To assess the quality we use a broad range of different metrics including differences in 1-dimensional histograms of observables, KPD/FPD scores, AUCs of binary classifiers, and the log-posterior of a multiclass classifier. The results of the CaloChallenge provide the most complete and comprehensive survey of cutting-edge approaches to calorimeter fast simulation to date. In addition, our work provides a uniquely detailed perspective on the important problem of how to evaluate generative models. As such, the results presented here should be applicable for other domains that use generative AI and require fast and faithful generation of samples in a large phase space. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.21611v1-abstract-full').style.display = 'none'; document.getElementById('2410.21611v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">204 pages, 100+ figures, 30+ tables</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> HEPHY-ML-24-05, FERMILAB-PUB-24-0728-CMS, TTK-24-43 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.06461">arXiv:2410.06461</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.06461">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Shortcuts to adiabatic non-Abelian braiding on silicon photonic chips </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Song%2C+W">Wange Song</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+X">Xuanyu Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Sun%2C+J">Jiacheng Sun</a>, <a href="/search/physics?searchtype=author&amp;query=You%2C+O">Oubo You</a>, <a href="/search/physics?searchtype=author&amp;query=Wu%2C+S">Shengjie Wu</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+C">Chen Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Zhu%2C+S">Shining Zhu</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+T">Tao Li</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+S">Shuang Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.06461v1-abstract-short" style="display: inline;"> The non-Abelian braiding describes the exchange behavior of anyons, which can be leveraged to encode qubits for quantum computing. Recently, this concept has been realized in classical photonic and acoustic systems. However, these implementations are constrained by adiabatic conditions, necessitating long operation distances and impeding practical applications. Here, we conceive and demonstrate a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.06461v1-abstract-full').style.display = 'inline'; document.getElementById('2410.06461v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.06461v1-abstract-full" style="display: none;"> The non-Abelian braiding describes the exchange behavior of anyons, which can be leveraged to encode qubits for quantum computing. Recently, this concept has been realized in classical photonic and acoustic systems. However, these implementations are constrained by adiabatic conditions, necessitating long operation distances and impeding practical applications. Here, we conceive and demonstrate a shortcut to adiabatic (STA) braiding of telecommunication light in three-dimensional silicon photonic chips. Our device comprises tri-layer silicon waveguides stacked and embedded in the SU-8 polymer, employing an STA strategy to expedite the braiding operations and give rise to compact devices that function as photonic quantum X, Y, and Z gates. We further experimentally observed non-Abelian braiding behaviors based on this STA-braiding scheme. Remarkably, this achievement represents the most compact braiding apparatus ever reported, with a size reduction of nearly three orders of magnitude compared to previous works. This work presents a feasible approach to accelerating adiabatic braiding evolutions, paving the way for compact, CMOS-compatible non-Abelian photonic devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.06461v1-abstract-full').style.display = 'none'; document.getElementById('2410.06461v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.03274">arXiv:2410.03274</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.03274">pdf</a>, <a href="https://arxiv.org/format/2410.03274">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> Performance assessment of the HERD calorimeter with a photo-diode read-out system for high-energy electron beams </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Adriani%2C+O">O. Adriani</a>, <a href="/search/physics?searchtype=author&amp;query=Ambrosi%2C+G">G. Ambrosi</a>, <a href="/search/physics?searchtype=author&amp;query=Antonelli%2C+M">M. Antonelli</a>, <a href="/search/physics?searchtype=author&amp;query=Bai%2C+Y">Y. Bai</a>, <a href="/search/physics?searchtype=author&amp;query=Bai%2C+X">X. Bai</a>, <a href="/search/physics?searchtype=author&amp;query=Bao%2C+T">T. Bao</a>, <a href="/search/physics?searchtype=author&amp;query=Barbanera%2C+M">M. Barbanera</a>, <a href="/search/physics?searchtype=author&amp;query=Berti%2C+E">E. Berti</a>, <a href="/search/physics?searchtype=author&amp;query=Betti%2C+P">P. Betti</a>, <a href="/search/physics?searchtype=author&amp;query=Bigongiari%2C+G">G. Bigongiari</a>, <a href="/search/physics?searchtype=author&amp;query=Bongi%2C+M">M. Bongi</a>, <a href="/search/physics?searchtype=author&amp;query=Bonvicini%2C+V">V. Bonvicini</a>, <a href="/search/physics?searchtype=author&amp;query=Bottai%2C+S">S. Bottai</a>, <a href="/search/physics?searchtype=author&amp;query=Cagnoli%2C+I">I. Cagnoli</a>, <a href="/search/physics?searchtype=author&amp;query=Cao%2C+W">W. Cao</a>, <a href="/search/physics?searchtype=author&amp;query=Casaus%2C+J">J. Casaus</a>, <a href="/search/physics?searchtype=author&amp;query=Cerasole%2C+D">D. Cerasole</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Z">Z. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Cui%2C+X">X. Cui</a>, <a href="/search/physics?searchtype=author&amp;query=D%27Alessandro%2C+R">R. D&#39;Alessandro</a>, <a href="/search/physics?searchtype=author&amp;query=Di+Venere%2C+L">L. Di Venere</a>, <a href="/search/physics?searchtype=author&amp;query=Diaz%2C+C">C. Diaz</a>, <a href="/search/physics?searchtype=author&amp;query=Dong%2C+Y">Y. Dong</a>, <a href="/search/physics?searchtype=author&amp;query=Detti%2C+S">S. Detti</a>, <a href="/search/physics?searchtype=author&amp;query=Duranti%2C+M">M. Duranti</a> , et al. (41 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.03274v1-abstract-short" style="display: inline;"> The measurement of cosmic rays at energies exceeding 100 TeV per nucleon is crucial for enhancing the understanding of high-energy particle propagation and acceleration models in the Galaxy. HERD is a space-borne calorimetric experiment that aims to extend the current direct measurements of cosmic rays to unexplored energies. The payload is scheduled to be installed on the Chinese Space Station in&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.03274v1-abstract-full').style.display = 'inline'; document.getElementById('2410.03274v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.03274v1-abstract-full" style="display: none;"> The measurement of cosmic rays at energies exceeding 100 TeV per nucleon is crucial for enhancing the understanding of high-energy particle propagation and acceleration models in the Galaxy. HERD is a space-borne calorimetric experiment that aims to extend the current direct measurements of cosmic rays to unexplored energies. The payload is scheduled to be installed on the Chinese Space Station in 2027. The primary peculiarity of the instrument is its capability to measure particles coming from all directions, with the main detector being a deep, homogeneous, 3D calorimeter. The active elements are read out using two independent systems: one based on wavelength shifter fibers coupled to CMOS cameras, and the other based on photo-diodes read-out with custom front-end electronics. A large calorimeter prototype was tested in 2023 during an extensive beam test campaign at CERN. In this paper, the performance of the calorimeter for high-energy electron beams, as obtained from the photo-diode system data, is presented. The prototype demonstrated excellent performance, e.g., an energy resolution better than 1% for electrons at 250 GeV. A comparison between beam test data and Monte Carlo simulation data is also presented. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.03274v1-abstract-full').style.display = 'none'; document.getElementById('2410.03274v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.02594">arXiv:2410.02594</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.02594">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Classical Physics">physics.class-ph</span> </div> </div> <p class="title is-5 mathjax"> Extremal micropolar materials for elastic wave cloaking </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Sun%2C+D">Dinxin Sun</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Y">Yi Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+X">Xiaoning Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Hu%2C+G">Gengkai Hu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.02594v1-abstract-short" style="display: inline;"> The asymmetric transformation elasticity offers a promising method to control elastic waves. However, this method requires elastic materials that support asymmetric stresses, which is not objective within the Cauchy elasticity framework. Nevertheless, asymmetric stress tensor is a typical feature of micropolar continuum theory. Yet, possible connection between micropolar continuum theory and the a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.02594v1-abstract-full').style.display = 'inline'; document.getElementById('2410.02594v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.02594v1-abstract-full" style="display: none;"> The asymmetric transformation elasticity offers a promising method to control elastic waves. However, this method requires elastic materials that support asymmetric stresses, which is not objective within the Cauchy elasticity framework. Nevertheless, asymmetric stress tensor is a typical feature of micropolar continuum theory. Yet, possible connection between micropolar continuum theory and the asymmetric elasticity transformation has remained elusive. Here, we demonstrate that extremal micropolar media, which refer to micropolar media with easy deformation modes, can be used to design elastic cloaks following the asymmetric transformation method. A metamaterial model is proposed to achieve the required extremal micropolar parameters for cloaking. We further design a two-dimensional metamaterial cloak and verify its cloaking performance numerically. An excellent agreement between the metamaterial cloak simulation and an effective-medium calculation is obtained. This study unveils a novel strategy for controlling elastic waves through micropolar media and also sheds light on interesting properties of extremal micropolar materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.02594v1-abstract-full').style.display = 'none'; document.getElementById('2410.02594v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22 pages, 7 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">MSC Class:</span> 74B05; 74A20 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.19927">arXiv:2409.19927</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.19927">pdf</a>, <a href="https://arxiv.org/format/2409.19927">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> </div> </div> <p class="title is-5 mathjax"> High frame rate characterization of interaction between twin-nozzle jet in crossflow </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Liu%2C+X">Xunchen Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.19927v1-abstract-short" style="display: inline;"> The twin-nozzle jet in crossflow is a canonical flow structure in various engineering equipment, yet there are limited detailed studies focusing on its dynamical characteristics. In this study, the flow field of a twin-nozzle jet in crossflow, under different velocity ratios (3, 5, and 7) and jet spacing (2d, 3d, and 4d), was measured using particle image velocimetry (PIV) at 40 kHz. Two-dimension&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.19927v1-abstract-full').style.display = 'inline'; document.getElementById('2409.19927v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.19927v1-abstract-full" style="display: none;"> The twin-nozzle jet in crossflow is a canonical flow structure in various engineering equipment, yet there are limited detailed studies focusing on its dynamical characteristics. In this study, the flow field of a twin-nozzle jet in crossflow, under different velocity ratios (3, 5, and 7) and jet spacing (2d, 3d, and 4d), was measured using particle image velocimetry (PIV) at 40 kHz. Two-dimensional velocity field measurements revealed that the interaction between the front and rear jets is strongly influenced by the jet spacing, leading to variations in jet trajectories, velocity along the trajectories, and vortex dynamics. Notably, both the front and rear jet trajectories are elevated compared to those of a single jet due to the blocking and pressure effects. The trajectories can be fitted to a scaling equation with $r^{(1.5l-5)}d$ as the scaling length. Additionally, the velocity variation, dynamics of the shear layer vortices, local pressure distribution, and turbulent kinetic energy distribution were examined. The findings emphasize the distinctions between single-nozzle and twin-nozzle jets in crossflow while also uncovering the interactions between the front and rear jets. The results demonstrate how varying velocity ratios and jet spacing influence these interactions, providing deeper insights into the complex dynamics at play in twin-nozzle configurations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.19927v1-abstract-full').style.display = 'none'; document.getElementById('2409.19927v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">28 pages, 19 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.18887">arXiv:2409.18887</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.18887">pdf</a>, <a href="https://arxiv.org/format/2409.18887">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1186/s43074-024-00155-2">10.1186/s43074-024-00155-2 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Deep Learning Enhanced Quantum Holography with Undetected Photons </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Fan%2C+W">Weiru Fan</a>, <a href="/search/physics?searchtype=author&amp;query=Qian%2C+G">Gewei Qian</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+Y">Yutong Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Xu%2C+C">Chen-Ran Xu</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Z">Ziyang Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+X">Xun Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+W">Wei Li</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+X">Xu Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+F">Feng Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Xu%2C+X">Xingqi Xu</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+D">Da-Wei Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Yakovlev%2C+V+V">Vladislav V. Yakovlev</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.18887v1-abstract-short" style="display: inline;"> Holography is an essential technique of generating three-dimensional images. Recently, quantum holography with undetected photons (QHUP) has emerged as a groundbreaking method capable of capturing complex amplitude images. Despite its potential, the practical application of QHUP has been limited by susceptibility to phase disturbances, low interference visibility, and limited spatial resolution. D&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.18887v1-abstract-full').style.display = 'inline'; document.getElementById('2409.18887v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.18887v1-abstract-full" style="display: none;"> Holography is an essential technique of generating three-dimensional images. Recently, quantum holography with undetected photons (QHUP) has emerged as a groundbreaking method capable of capturing complex amplitude images. Despite its potential, the practical application of QHUP has been limited by susceptibility to phase disturbances, low interference visibility, and limited spatial resolution. Deep learning, recognized for its ability in processing complex data, holds significant promise in addressing these challenges. In this report, we present an ample advancement in QHUP achieved by harnessing the power of deep learning to extract images from single-shot holograms, resulting in vastly reduced noise and distortion, alongside a notable enhancement in spatial resolution. The proposed and demonstrated deep learning QHUP (DL-QHUP) methodology offers a transformative solution by delivering high-speed imaging, improved spatial resolution, and superior noise resilience, making it suitable for diverse applications across an array of research fields stretching from biomedical imaging to remote sensing. DL-QHUP signifies a crucial leap forward in the realm of holography, demonstrating its immense potential to revolutionize imaging capabilities and pave the way for advancements in various scientific disciplines. The integration of DL-QHUP promises to unlock new possibilities in imaging applications, transcending existing limitations and offering unparalleled performance in challenging environments. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.18887v1-abstract-full').style.display = 'none'; document.getElementById('2409.18887v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> PhotoniX 5, 40 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.18437">arXiv:2409.18437</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.18437">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Giant Magneto-Exciton Coupling in 2D van der Waals CrSBr </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Shi%2C+J">Jia Shi</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+D">Dan Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Jiang%2C+N">Nai Jiang</a>, <a href="/search/physics?searchtype=author&amp;query=Xin%2C+Z">Ziqian Xin</a>, <a href="/search/physics?searchtype=author&amp;query=Zheng%2C+H">Houzhi Zheng</a>, <a href="/search/physics?searchtype=author&amp;query=Shen%2C+C">Chao Shen</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+X">Xinping Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+X">Xinfeng Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.18437v1-abstract-short" style="display: inline;"> Controlling magnetic order via external fields or heterostructures enables precise manipulation and tracking of spin and exciton information, facilitating the development of high-performance optical spin valves. However, the weak magneto-optical signals and instability of two dimensional (2D) antiferromagnetic (AFM) materials have hindered comprehensive studies on the complex coupling between magn&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.18437v1-abstract-full').style.display = 'inline'; document.getElementById('2409.18437v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.18437v1-abstract-full" style="display: none;"> Controlling magnetic order via external fields or heterostructures enables precise manipulation and tracking of spin and exciton information, facilitating the development of high-performance optical spin valves. However, the weak magneto-optical signals and instability of two dimensional (2D) antiferromagnetic (AFM) materials have hindered comprehensive studies on the complex coupling between magnetic order and excitons in bulk-like systems. Here, we leverage magneto-optical spectroscopy to reveal the impact of magnetic order on exciton-phonon coupling and exciton-magnetic order coupling which remains robust even under non-extreme temperature conditions (80 K) in thick layered CrSBr. A 0.425T in-plane magnetic field is sufficient to induce spin flipping and transition from AFM to ferromagnetic (FM) magnetic order in CrSBr, while magnetic circular dichroism (MCD) spectroscopy under an out-of-plane magnetic field provides direct insight into the complex spin canting behavior in thicker layers. Theoretical calculations reveal that the strong coupling between excitons and magnetic order, especially the 32 meV exciton energy shift during magnetic transitions, stems from the hybridization of Cr and S orbitals and the larger exciton wavefunction radius of higher-energy B excitons. These findings offer new opportunities and a solid foundation for future exploration of 2D AFM materials in magneto-optical sensors and quantum communication using excitons as spin carriers. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.18437v1-abstract-full').style.display = 'none'; document.getElementById('2409.18437v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.17559">arXiv:2409.17559</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.17559">pdf</a>, <a href="https://arxiv.org/format/2409.17559">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Zak Phase Induced Topological Nonreciprocity </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Liu%2C+X">Xiao Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+J">Jiefei Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Mao%2C+R">Ruosong Mao</a>, <a href="/search/physics?searchtype=author&amp;query=Hu%2C+H">Huizhu Hu</a>, <a href="/search/physics?searchtype=author&amp;query=Zhu%2C+S">Shi-Yao Zhu</a>, <a href="/search/physics?searchtype=author&amp;query=Xu%2C+X">Xingqi Xu</a>, <a href="/search/physics?searchtype=author&amp;query=Cai%2C+H">Han Cai</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+D">Da-Wei Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.17559v1-abstract-short" style="display: inline;"> Topological physics provides novel insights for designing functional photonic devices, such as magnetic-free optical diodes, which are important in optical engineering and quantum information processing. Past efforts mostly focus on the topological edge modes in two-dimensional (2D) photonic Chern lattices, which, however, require delicate fabrication and temporal modulation. In particular, the 1D&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.17559v1-abstract-full').style.display = 'inline'; document.getElementById('2409.17559v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.17559v1-abstract-full" style="display: none;"> Topological physics provides novel insights for designing functional photonic devices, such as magnetic-free optical diodes, which are important in optical engineering and quantum information processing. Past efforts mostly focus on the topological edge modes in two-dimensional (2D) photonic Chern lattices, which, however, require delicate fabrication and temporal modulation. In particular, the 1D nonreciprocal edge mode needs to be embedded in a 2D lattice, contradicting with the compactness of integrated photonics. To address these challenges, we investigate the optical nonreciprocity of the 1D Su-Schrieffer-Heeger (SSH) superradiance lattices in room-temperature atoms. The probe fields propagating in two opposite directions perceive two different SSH topological phases, which have different absorption spectra due to the interplay between the Zak phase and the thermal motion of atoms, resulting in optical nonreciprocity. Our findings reveal the relationship between 1D topological matter and optical nonreciprocity, simplifying the design of topologically resilient nonreciprocal devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.17559v1-abstract-full').style.display = 'none'; document.getElementById('2409.17559v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.10259">arXiv:2409.10259</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.10259">pdf</a>, <a href="https://arxiv.org/format/2409.10259">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Geophysics">physics.geo-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Signal Processing">eess.SP</span> </div> </div> <p class="title is-5 mathjax"> Self-Updating Vehicle Monitoring Framework Employing Distributed Acoustic Sensing towards Real-World Settings </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Wang%2C+X">Xi Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+X">Xin Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Zhu%2C+S">Songming Zhu</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+Z">Zhanwen Li</a>, <a href="/search/physics?searchtype=author&amp;query=Gao%2C+L">Lina Gao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.10259v1-abstract-short" style="display: inline;"> The recent emergence of Distributed Acoustic Sensing (DAS) technology has facilitated the effective capture of traffic-induced seismic data. The traffic-induced seismic wave is a prominent contributor to urban vibrations and contain crucial information to advance urban exploration and governance. However, identifying vehicular movements within massive noisy data poses a significant challenge. In t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.10259v1-abstract-full').style.display = 'inline'; document.getElementById('2409.10259v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.10259v1-abstract-full" style="display: none;"> The recent emergence of Distributed Acoustic Sensing (DAS) technology has facilitated the effective capture of traffic-induced seismic data. The traffic-induced seismic wave is a prominent contributor to urban vibrations and contain crucial information to advance urban exploration and governance. However, identifying vehicular movements within massive noisy data poses a significant challenge. In this study, we introduce a real-time semi-supervised vehicle monitoring framework tailored to urban settings. It requires only a small fraction of manual labels for initial training and exploits unlabeled data for model improvement. Additionally, the framework can autonomously adapt to newly collected unlabeled data. Before DAS data undergo object detection as two-dimensional images to preserve spatial information, we leveraged comprehensive one-dimensional signal preprocessing to mitigate noise. Furthermore, we propose a novel prior loss that incorporates the shapes of vehicular traces to track a single vehicle with varying speeds. To evaluate our model, we conducted experiments with seismic data from the Stanford 2 DAS Array. The results showed that our model outperformed the baseline model Efficient Teacher and its supervised counterpart, YOLO (You Only Look Once), in both accuracy and robustness. With only 35 labeled images, our model surpassed YOLO&#39;s mAP 0.5:0.95 criterion by 18% and showed a 7% increase over Efficient Teacher. We conducted comparative experiments with multiple update strategies for self-updating and identified an optimal approach. This approach surpasses the performance of non-overfitting training conducted with all data in a single pass. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.10259v1-abstract-full').style.display = 'none'; document.getElementById('2409.10259v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.09587">arXiv:2409.09587</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.09587">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Electrical detection in two-terminal perpendicularly magnetized devices via geometric anomalous Nernst effect </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Liu%2C+J">Jiuming Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Rong%2C+B">Bin Rong</a>, <a href="/search/physics?searchtype=author&amp;query=Bai%2C+H">Hua Bai</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+X">Xinqi Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Y">Yanghui Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+Y">Yifan Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Xiao%2C+Y">Yujie Xiao</a>, <a href="/search/physics?searchtype=author&amp;query=Liang%2C+Y">Yuzhen Liang</a>, <a href="/search/physics?searchtype=author&amp;query=Yao%2C+Q">Qi Yao</a>, <a href="/search/physics?searchtype=author&amp;query=Liao%2C+L">Liyang Liao</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+Y">Yumeng Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Song%2C+C">Cheng Song</a>, <a href="/search/physics?searchtype=author&amp;query=Kou%2C+X">Xufeng Kou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.09587v1-abstract-short" style="display: inline;"> The non-uniform current distribution arisen from either current crowding effect or hot spot effect provides a method to tailor the interaction between thermal gradient and electron transport in magnetically ordered systems. Here we apply the device structural engineering to realize an in-plane inhomogeneous temperature distribution within the conduction channel, and the resulting geometric anomalo&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.09587v1-abstract-full').style.display = 'inline'; document.getElementById('2409.09587v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.09587v1-abstract-full" style="display: none;"> The non-uniform current distribution arisen from either current crowding effect or hot spot effect provides a method to tailor the interaction between thermal gradient and electron transport in magnetically ordered systems. Here we apply the device structural engineering to realize an in-plane inhomogeneous temperature distribution within the conduction channel, and the resulting geometric anomalous Nernst effect (GANE) gives rise to a non-zero 2nd -harmonic resistance whose polarity corresponds to the out-of-plane magnetization of Co/Pt multi-layer thin film, and its amplitude is linearly proportional to the applied current. By optimizing the aspect ratio of convex-shaped device, the effective temperature gradient can reach up to 0.3 K/$渭$m along the y-direction, leading to a GANE signal of 28.3 $渭$V. Moreover, we demonstrate electrical write and read operations in the perpendicularly-magnetized Co/Pt-based spin-orbit torque device with a simple two-terminal structure. Our results unveil a new pathway to utilize thermoelectric effects for constructing high-density magnetic memories <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.09587v1-abstract-full').style.display = 'none'; document.getElementById('2409.09587v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.08452">arXiv:2409.08452</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.08452">pdf</a>, <a href="https://arxiv.org/format/2409.08452">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> </div> </div> <p class="title is-5 mathjax"> Principles of hydrodynamic particle manipulation in internal Stokes flow </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Liu%2C+X">Xuchen Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Das%2C+P+K">Partha Kumar Das</a>, <a href="/search/physics?searchtype=author&amp;query=Hilgenfeldt%2C+S">Sascha Hilgenfeldt</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.08452v2-abstract-short" style="display: inline;"> Manipulation of small-scale particles across streamlines is the elementary task of microfluidic devices. Many such devices operate at very low Reynolds numbers and deflect particles using arrays of obstacles, but a systematic quantification of relevant hydrodynamic effects has been lacking. Here, we explore an alternate approach, rigorously modeling the displacement of force-free spherical particl&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.08452v2-abstract-full').style.display = 'inline'; document.getElementById('2409.08452v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.08452v2-abstract-full" style="display: none;"> Manipulation of small-scale particles across streamlines is the elementary task of microfluidic devices. Many such devices operate at very low Reynolds numbers and deflect particles using arrays of obstacles, but a systematic quantification of relevant hydrodynamic effects has been lacking. Here, we explore an alternate approach, rigorously modeling the displacement of force-free spherical particles in vortical Stokes flows under hydrodynamic particle-wall interaction. Certain Moffatt-like eddy geometries with broken symmetry allow for systematic deflection of particles across streamlines, leading to particle accumulation at either Faxen field fixed points or limit cycles. Moreover, particles can be forced onto trajectories approaching channel walls exponentially closely, making quantitative predictions of particle capture (sticking) by short-range forces possible. This rich, particle size-dependent behavior suggests the versatile use of inertial-less flow in devices with a long particle residence time for concentration, sorting, or filtering. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.08452v2-abstract-full').style.display = 'none'; document.getElementById('2409.08452v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.08070">arXiv:2409.08070</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.08070">pdf</a>, <a href="https://arxiv.org/format/2409.08070">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> All-optical Fourier neural network using partially coherent light </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Qin%2C+J">Jianwei Qin</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Y">Yanbing Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Y">Yan Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+X">Xun Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+W">Wei Li</a>, <a href="/search/physics?searchtype=author&amp;query=Ye%2C+F">Fangwei Ye</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.08070v2-abstract-short" style="display: inline;"> Optical neural networks present distinct advantages over traditional electrical counterparts, such as accelerated data processing and reduced energy consumption. While coherent light is conventionally employed in optical neural networks, our study proposes harnessing spatially incoherent light in all-optical Fourier neural networks. Contrary to numerical predictions of declining target recognition&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.08070v2-abstract-full').style.display = 'inline'; document.getElementById('2409.08070v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.08070v2-abstract-full" style="display: none;"> Optical neural networks present distinct advantages over traditional electrical counterparts, such as accelerated data processing and reduced energy consumption. While coherent light is conventionally employed in optical neural networks, our study proposes harnessing spatially incoherent light in all-optical Fourier neural networks. Contrary to numerical predictions of declining target recognition accuracy with increased incoherence, our experimental results demonstrate a surprising outcome: improved accuracy with incoherent light. We attribute this unexpected enhancement to spatially incoherent light&#39;s ability to alleviate experimental errors like diffraction rings, laser speckle, and edge effects. Our controlled experiments introduced spatial incoherence by passing monochromatic light through a spatial light modulator featuring a dynamically changing random phase array. These findings underscore partially coherent light&#39;s potential to optimize optical neural networks, delivering dependable and efficient solutions for applications demanding consistent accuracy and robustness across diverse conditions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.08070v2-abstract-full').style.display = 'none'; document.getElementById('2409.08070v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages,5 figures</span> </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Liu%2C+X&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Liu%2C+X&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Liu%2C+X&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Liu%2C+X&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Liu%2C+X&amp;start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Liu%2C+X&amp;start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> <li><span class="pagination-ellipsis">&hellip;</span></li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10