CINXE.COM
John Clague | Simon Fraser University - Academia.edu
<!DOCTYPE html> <html lang="en" xmlns:fb="http://www.facebook.com/2008/fbml" class="wf-loading"> <head prefix="og: https://ogp.me/ns# fb: https://ogp.me/ns/fb# academia: https://ogp.me/ns/fb/academia#"> <meta charset="utf-8"> <meta name=viewport content="width=device-width, initial-scale=1"> <meta rel="search" type="application/opensearchdescription+xml" href="/open_search.xml" title="Academia.edu"> <title>John Clague | Simon Fraser University - Academia.edu</title> <!-- _ _ _ | | (_) | | __ _ ___ __ _ __| | ___ _ __ ___ _ __ _ ___ __| |_ _ / _` |/ __/ _` |/ _` |/ _ \ '_ ` _ \| |/ _` | / _ \/ _` | | | | | (_| | (_| (_| | (_| | __/ | | | | | | (_| || __/ (_| | |_| | \__,_|\___\__,_|\__,_|\___|_| |_| |_|_|\__,_(_)___|\__,_|\__,_| We're hiring! See https://www.academia.edu/hiring --> <link href="//a.academia-assets.com/images/favicons/favicon-production.ico" rel="shortcut icon" type="image/vnd.microsoft.icon"> <link rel="apple-touch-icon" sizes="57x57" href="//a.academia-assets.com/images/favicons/apple-touch-icon-57x57.png"> <link rel="apple-touch-icon" sizes="60x60" href="//a.academia-assets.com/images/favicons/apple-touch-icon-60x60.png"> <link rel="apple-touch-icon" sizes="72x72" href="//a.academia-assets.com/images/favicons/apple-touch-icon-72x72.png"> <link rel="apple-touch-icon" sizes="76x76" href="//a.academia-assets.com/images/favicons/apple-touch-icon-76x76.png"> <link rel="apple-touch-icon" sizes="114x114" href="//a.academia-assets.com/images/favicons/apple-touch-icon-114x114.png"> <link rel="apple-touch-icon" sizes="120x120" href="//a.academia-assets.com/images/favicons/apple-touch-icon-120x120.png"> <link rel="apple-touch-icon" sizes="144x144" href="//a.academia-assets.com/images/favicons/apple-touch-icon-144x144.png"> <link rel="apple-touch-icon" sizes="152x152" href="//a.academia-assets.com/images/favicons/apple-touch-icon-152x152.png"> <link rel="apple-touch-icon" sizes="180x180" href="//a.academia-assets.com/images/favicons/apple-touch-icon-180x180.png"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-32x32.png" sizes="32x32"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-194x194.png" sizes="194x194"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-96x96.png" sizes="96x96"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/android-chrome-192x192.png" sizes="192x192"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-16x16.png" sizes="16x16"> <link rel="manifest" href="//a.academia-assets.com/images/favicons/manifest.json"> <meta name="msapplication-TileColor" content="#2b5797"> <meta name="msapplication-TileImage" content="//a.academia-assets.com/images/favicons/mstile-144x144.png"> <meta name="theme-color" content="#ffffff"> <script> window.performance && window.performance.measure && window.performance.measure("Time To First Byte", "requestStart", "responseStart"); </script> <script> (function() { if (!window.URLSearchParams || !window.history || !window.history.replaceState) { return; } var searchParams = new URLSearchParams(window.location.search); var paramsToDelete = [ 'fs', 'sm', 'swp', 'iid', 'nbs', 'rcc', // related content category 'rcpos', // related content carousel position 'rcpg', // related carousel page 'rchid', // related content hit id 'f_ri', // research interest id, for SEO tracking 'f_fri', // featured research interest, for SEO tracking (param key without value) 'f_rid', // from research interest directory for SEO tracking 'f_loswp', // from research interest pills on LOSWP sidebar for SEO tracking 'rhid', // referrring hit id ]; if (paramsToDelete.every((key) => searchParams.get(key) === null)) { return; } paramsToDelete.forEach((key) => { searchParams.delete(key); }); var cleanUrl = new URL(window.location.href); cleanUrl.search = searchParams.toString(); history.replaceState({}, document.title, cleanUrl); })(); </script> <script async src="https://www.googletagmanager.com/gtag/js?id=G-5VKX33P2DS"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-5VKX33P2DS', { cookie_domain: 'academia.edu', send_page_view: false, }); gtag('event', 'page_view', { 'controller': "profiles/works", 'action': "summary", 'controller_action': 'profiles/works#summary', 'logged_in': 'false', 'edge': 'unknown', // Send nil if there is no A/B test bucket, in case some records get logged // with missing data - that way we can distinguish between the two cases. // ab_test_bucket should be of the form <ab_test_name>:<bucket> 'ab_test_bucket': null, }) </script> <script type="text/javascript"> window.sendUserTiming = function(timingName) { if (!(window.performance && window.performance.measure)) return; var entries = window.performance.getEntriesByName(timingName, "measure"); if (entries.length !== 1) return; var timingValue = Math.round(entries[0].duration); gtag('event', 'timing_complete', { name: timingName, value: timingValue, event_category: 'User-centric', }); }; window.sendUserTiming("Time To First Byte"); </script> <meta name="csrf-param" content="authenticity_token" /> <meta name="csrf-token" content="DVdnhMIvMV2AhraJ2kTyFLlIN_GynZfS3mw7DlnRtmvHTLeO9B-MtXpndD6Kj-TlnK2EsAWyP5aV-jOveTwuKA" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/wow-3d36c19b4875b226bfed0fcba1dcea3f2fe61148383d97c0465c016b8c969290.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/social/home-79e78ce59bef0a338eb6540ec3d93b4a7952115b56c57f1760943128f4544d42.css" /><script type="application/ld+json">{"@context":"https://schema.org","@type":"ProfilePage","mainEntity":{"@context":"https://schema.org","@type":"Person","name":"John Clague","url":"https://sfu.academia.edu/JohnClague","image":"https://0.academia-photos.com/30937520/18648109/18835474/s200_john.clague.jpg","sameAs":[]},"dateCreated":"2015-05-09T12:05:01-07:00","dateModified":"2022-12-18T12:16:23-08:00","name":"John Clague","description":"My research is aimed at reducing the risk from natural hazards, and encompasses a range of natural phenomena including earthquakes, tsunamis, floods, landslides, and climate change","image":"https://0.academia-photos.com/30937520/18648109/18835474/s200_john.clague.jpg","thumbnailUrl":"https://0.academia-photos.com/30937520/18648109/18835474/s65_john.clague.jpg","primaryImageOfPage":{"@type":"ImageObject","url":"https://0.academia-photos.com/30937520/18648109/18835474/s200_john.clague.jpg","width":200},"sameAs":[],"relatedLink":"https://www.academia.edu/88171084/Relationship_between_the_spatial_distribution_of_landslides_and_rock_mass_strength_and_implications_for_the_driving_mechanism_of_landslides_in_tectonically_active_mountain_ranges"}</script><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/heading-95367dc03b794f6737f30123738a886cf53b7a65cdef98a922a98591d60063e3.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/button-8c9ae4b5c8a2531640c354d92a1f3579c8ff103277ef74913e34c8a76d4e6c00.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/body-170d1319f0e354621e81ca17054bb147da2856ec0702fe440a99af314a6338c5.css" /><style type="text/css">@media(max-width: 567px){:root{--token-mode: Parity;--dropshadow: 0 2px 4px 0 #22223340;--primary-brand: #0645b1;--error-dark: #b60000;--success-dark: #05b01c;--inactive-fill: #ebebee;--hover: #0c3b8d;--pressed: #082f75;--button-primary-fill-inactive: #ebebee;--button-primary-fill: #0645b1;--button-primary-text: #ffffff;--button-primary-fill-hover: #0c3b8d;--button-primary-fill-press: #082f75;--button-primary-icon: #ffffff;--button-primary-fill-inverse: #ffffff;--button-primary-text-inverse: #082f75;--button-primary-icon-inverse: #0645b1;--button-primary-fill-inverse-hover: #cddaef;--button-primary-stroke-inverse-pressed: #0645b1;--button-secondary-stroke-inactive: #b1b1ba;--button-secondary-fill: #eef2f9;--button-secondary-text: #082f75;--button-secondary-fill-press: #cddaef;--button-secondary-fill-inactive: #ebebee;--button-secondary-stroke: #cddaef;--button-secondary-stroke-hover: #386ac1;--button-secondary-stroke-press: #0645b1;--button-secondary-text-inactive: #b1b1ba;--button-secondary-icon: #082f75;--button-secondary-fill-hover: #e6ecf7;--button-secondary-stroke-inverse: #ffffff;--button-secondary-fill-inverse: rgba(255, 255, 255, 0);--button-secondary-icon-inverse: #ffffff;--button-secondary-icon-hover: #082f75;--button-secondary-icon-press: #082f75;--button-secondary-text-inverse: #ffffff;--button-secondary-text-hover: #082f75;--button-secondary-text-press: #082f75;--button-secondary-fill-inverse-hover: #043059;--button-xs-stroke: #141413;--button-xs-stroke-hover: #0c3b8d;--button-xs-stroke-press: #082f75;--button-xs-stroke-inactive: #ebebee;--button-xs-text: #141413;--button-xs-text-hover: #0c3b8d;--button-xs-text-press: #082f75;--button-xs-text-inactive: #91919e;--button-xs-icon: #141413;--button-xs-icon-hover: #0c3b8d;--button-xs-icon-press: #082f75;--button-xs-icon-inactive: #91919e;--button-xs-fill: #ffffff;--button-xs-fill-hover: #f4f7fc;--button-xs-fill-press: #eef2f9;--buttons-button-text-inactive: #91919e;--buttons-button-focus: #0645b1;--buttons-button-icon-inactive: #91919e;--buttons-small-buttons-corner-radius: 8px;--buttons-small-buttons-l-r-padding: 12px;--buttons-small-buttons-height: 44px;--buttons-small-buttons-gap: 8px;--buttons-small-buttons-icon-only-width: 44px;--buttons-small-buttons-icon-size: 20px;--buttons-small-buttons-stroke-default: 1px;--buttons-small-buttons-stroke-thick: 2px;--buttons-large-buttons-l-r-padding: 20px;--buttons-large-buttons-height: 54px;--buttons-large-buttons-icon-only-width: 54px;--buttons-large-buttons-icon-size: 20px;--buttons-large-buttons-gap: 8px;--buttons-large-buttons-corner-radius: 8px;--buttons-large-buttons-stroke-default: 1px;--buttons-large-buttons-stroke-thick: 2px;--buttons-extra-small-buttons-l-r-padding: 8px;--buttons-extra-small-buttons-height: 32px;--buttons-extra-small-buttons-icon-size: 16px;--buttons-extra-small-buttons-gap: 4px;--buttons-extra-small-buttons-corner-radius: 8px;--buttons-stroke-default: 1px;--buttons-stroke-thick: 2px;--background-beige: #f9f7f4;--error-light: #fff2f2;--text-placeholder: #6d6d7d;--stroke-dark: #141413;--stroke-light: #dddde2;--stroke-medium: #535366;--accent-green: #ccffd4;--accent-turquoise: #ccf7ff;--accent-yellow: #f7ffcc;--accent-peach: #ffd4cc;--accent-violet: #f7ccff;--accent-purple: #f4f7fc;--text-primary: #141413;--secondary-brand: #141413;--text-hover: #0c3b8d;--text-white: #ffffff;--text-link: #0645b1;--text-press: #082f75;--success-light: #f0f8f1;--background-light-blue: #eef2f9;--background-white: #ffffff;--premium-dark: #877440;--premium-light: #f9f6ed;--stroke-white: #ffffff;--inactive-content: #b1b1ba;--annotate-light: #a35dff;--annotate-dark: #824acc;--grid: #eef2f9;--inactive-stroke: #ebebee;--shadow: rgba(34, 34, 51, 0.25);--text-inactive: #6d6d7d;--text-error: #b60000;--stroke-error: #b60000;--background-error: #fff2f2;--background-black: #141413;--icon-default: #141413;--icon-blue: #0645b1;--background-grey: #dddde2;--icon-grey: #b1b1ba;--text-focus: #082f75;--brand-colors-neutral-black: #141413;--brand-colors-neutral-900: #535366;--brand-colors-neutral-800: #6d6d7d;--brand-colors-neutral-700: #91919e;--brand-colors-neutral-600: #b1b1ba;--brand-colors-neutral-500: #c8c8cf;--brand-colors-neutral-400: #dddde2;--brand-colors-neutral-300: #ebebee;--brand-colors-neutral-200: #f8f8fb;--brand-colors-neutral-100: #fafafa;--brand-colors-neutral-white: #ffffff;--brand-colors-blue-900: #043059;--brand-colors-blue-800: #082f75;--brand-colors-blue-700: #0c3b8d;--brand-colors-blue-600: #0645b1;--brand-colors-blue-500: #386ac1;--brand-colors-blue-400: #cddaef;--brand-colors-blue-300: #e6ecf7;--brand-colors-blue-200: #eef2f9;--brand-colors-blue-100: #f4f7fc;--brand-colors-gold-500: #877440;--brand-colors-gold-400: #e9e3d4;--brand-colors-gold-300: #f2efe8;--brand-colors-gold-200: #f9f6ed;--brand-colors-gold-100: #f9f7f4;--brand-colors-error-900: #920000;--brand-colors-error-500: #b60000;--brand-colors-success-900: #035c0f;--brand-colors-green: #ccffd4;--brand-colors-turquoise: #ccf7ff;--brand-colors-yellow: #f7ffcc;--brand-colors-peach: #ffd4cc;--brand-colors-violet: #f7ccff;--brand-colors-error-100: #fff2f2;--brand-colors-success-500: #05b01c;--brand-colors-success-100: #f0f8f1;--text-secondary: #535366;--icon-white: #ffffff;--background-beige-darker: #f2efe8;--icon-dark-grey: #535366;--type-font-family-sans-serif: Roboto;--type-font-family-serif: Georgia;--type-font-family-mono: IBM Plex Mono;--type-weights-300: 300;--type-weights-400: 400;--type-weights-500: 500;--type-weights-700: 700;--type-sizes-12: 12px;--type-sizes-14: 14px;--type-sizes-16: 16px;--type-sizes-18: 18px;--type-sizes-20: 20px;--type-sizes-22: 22px;--type-sizes-24: 24px;--type-sizes-28: 28px;--type-sizes-30: 30px;--type-sizes-32: 32px;--type-sizes-40: 40px;--type-sizes-42: 42px;--type-sizes-48-2: 48px;--type-line-heights-16: 16px;--type-line-heights-20: 20px;--type-line-heights-23: 23px;--type-line-heights-24: 24px;--type-line-heights-25: 25px;--type-line-heights-26: 26px;--type-line-heights-29: 29px;--type-line-heights-30: 30px;--type-line-heights-32: 32px;--type-line-heights-34: 34px;--type-line-heights-35: 35px;--type-line-heights-36: 36px;--type-line-heights-38: 38px;--type-line-heights-40: 40px;--type-line-heights-46: 46px;--type-line-heights-48: 48px;--type-line-heights-52: 52px;--type-line-heights-58: 58px;--type-line-heights-68: 68px;--type-line-heights-74: 74px;--type-line-heights-82: 82px;--type-paragraph-spacings-0: 0px;--type-paragraph-spacings-4: 4px;--type-paragraph-spacings-8: 8px;--type-paragraph-spacings-16: 16px;--type-sans-serif-xl-font-weight: 400;--type-sans-serif-xl-size: 32px;--type-sans-serif-xl-line-height: 46px;--type-sans-serif-xl-paragraph-spacing: 16px;--type-sans-serif-lg-font-weight: 400;--type-sans-serif-lg-size: 30px;--type-sans-serif-lg-line-height: 36px;--type-sans-serif-lg-paragraph-spacing: 16px;--type-sans-serif-md-font-weight: 400;--type-sans-serif-md-line-height: 30px;--type-sans-serif-md-paragraph-spacing: 16px;--type-sans-serif-md-size: 24px;--type-sans-serif-xs-font-weight: 700;--type-sans-serif-xs-line-height: 24px;--type-sans-serif-xs-paragraph-spacing: 0px;--type-sans-serif-xs-size: 18px;--type-sans-serif-sm-font-weight: 400;--type-sans-serif-sm-line-height: 32px;--type-sans-serif-sm-paragraph-spacing: 16px;--type-sans-serif-sm-size: 20px;--type-body-xl-font-weight: 400;--type-body-xl-size: 24px;--type-body-xl-line-height: 36px;--type-body-xl-paragraph-spacing: 0px;--type-body-sm-font-weight: 400;--type-body-sm-size: 14px;--type-body-sm-line-height: 20px;--type-body-sm-paragraph-spacing: 8px;--type-body-xs-font-weight: 400;--type-body-xs-size: 12px;--type-body-xs-line-height: 16px;--type-body-xs-paragraph-spacing: 0px;--type-body-md-font-weight: 400;--type-body-md-size: 16px;--type-body-md-line-height: 20px;--type-body-md-paragraph-spacing: 4px;--type-body-lg-font-weight: 400;--type-body-lg-size: 20px;--type-body-lg-line-height: 26px;--type-body-lg-paragraph-spacing: 16px;--type-body-lg-medium-font-weight: 500;--type-body-lg-medium-size: 20px;--type-body-lg-medium-line-height: 32px;--type-body-lg-medium-paragraph-spacing: 16px;--type-body-md-medium-font-weight: 500;--type-body-md-medium-size: 16px;--type-body-md-medium-line-height: 20px;--type-body-md-medium-paragraph-spacing: 4px;--type-body-sm-bold-font-weight: 700;--type-body-sm-bold-size: 14px;--type-body-sm-bold-line-height: 20px;--type-body-sm-bold-paragraph-spacing: 8px;--type-body-sm-medium-font-weight: 500;--type-body-sm-medium-size: 14px;--type-body-sm-medium-line-height: 20px;--type-body-sm-medium-paragraph-spacing: 8px;--type-serif-md-font-weight: 400;--type-serif-md-size: 32px;--type-serif-md-paragraph-spacing: 0px;--type-serif-md-line-height: 40px;--type-serif-sm-font-weight: 400;--type-serif-sm-size: 24px;--type-serif-sm-paragraph-spacing: 0px;--type-serif-sm-line-height: 26px;--type-serif-lg-font-weight: 400;--type-serif-lg-size: 48px;--type-serif-lg-paragraph-spacing: 0px;--type-serif-lg-line-height: 52px;--type-serif-xs-font-weight: 400;--type-serif-xs-size: 18px;--type-serif-xs-line-height: 24px;--type-serif-xs-paragraph-spacing: 0px;--type-serif-xl-font-weight: 400;--type-serif-xl-size: 48px;--type-serif-xl-paragraph-spacing: 0px;--type-serif-xl-line-height: 58px;--type-mono-md-font-weight: 400;--type-mono-md-size: 22px;--type-mono-md-line-height: 24px;--type-mono-md-paragraph-spacing: 0px;--type-mono-lg-font-weight: 400;--type-mono-lg-size: 40px;--type-mono-lg-line-height: 40px;--type-mono-lg-paragraph-spacing: 0px;--type-mono-sm-font-weight: 400;--type-mono-sm-size: 14px;--type-mono-sm-line-height: 24px;--type-mono-sm-paragraph-spacing: 0px;--spacing-xs-4: 4px;--spacing-xs-8: 8px;--spacing-xs-16: 16px;--spacing-sm-24: 24px;--spacing-sm-32: 32px;--spacing-md-40: 40px;--spacing-md-48: 48px;--spacing-lg-64: 64px;--spacing-lg-80: 80px;--spacing-xlg-104: 104px;--spacing-xlg-152: 152px;--spacing-xs-12: 12px;--spacing-page-section: 80px;--spacing-card-list-spacing: 48px;--spacing-text-section-spacing: 64px;--spacing-md-xs-headings: 40px;--corner-radius-radius-lg: 16px;--corner-radius-radius-sm: 4px;--corner-radius-radius-md: 8px;--corner-radius-radius-round: 104px}}@media(min-width: 568px)and (max-width: 1279px){:root{--token-mode: Parity;--dropshadow: 0 2px 4px 0 #22223340;--primary-brand: #0645b1;--error-dark: #b60000;--success-dark: #05b01c;--inactive-fill: #ebebee;--hover: #0c3b8d;--pressed: #082f75;--button-primary-fill-inactive: #ebebee;--button-primary-fill: #0645b1;--button-primary-text: #ffffff;--button-primary-fill-hover: #0c3b8d;--button-primary-fill-press: #082f75;--button-primary-icon: #ffffff;--button-primary-fill-inverse: #ffffff;--button-primary-text-inverse: #082f75;--button-primary-icon-inverse: #0645b1;--button-primary-fill-inverse-hover: #cddaef;--button-primary-stroke-inverse-pressed: #0645b1;--button-secondary-stroke-inactive: #b1b1ba;--button-secondary-fill: #eef2f9;--button-secondary-text: #082f75;--button-secondary-fill-press: #cddaef;--button-secondary-fill-inactive: #ebebee;--button-secondary-stroke: #cddaef;--button-secondary-stroke-hover: #386ac1;--button-secondary-stroke-press: #0645b1;--button-secondary-text-inactive: #b1b1ba;--button-secondary-icon: #082f75;--button-secondary-fill-hover: #e6ecf7;--button-secondary-stroke-inverse: #ffffff;--button-secondary-fill-inverse: rgba(255, 255, 255, 0);--button-secondary-icon-inverse: #ffffff;--button-secondary-icon-hover: #082f75;--button-secondary-icon-press: #082f75;--button-secondary-text-inverse: #ffffff;--button-secondary-text-hover: #082f75;--button-secondary-text-press: #082f75;--button-secondary-fill-inverse-hover: #043059;--button-xs-stroke: #141413;--button-xs-stroke-hover: #0c3b8d;--button-xs-stroke-press: #082f75;--button-xs-stroke-inactive: #ebebee;--button-xs-text: #141413;--button-xs-text-hover: #0c3b8d;--button-xs-text-press: #082f75;--button-xs-text-inactive: #91919e;--button-xs-icon: #141413;--button-xs-icon-hover: #0c3b8d;--button-xs-icon-press: #082f75;--button-xs-icon-inactive: #91919e;--button-xs-fill: #ffffff;--button-xs-fill-hover: #f4f7fc;--button-xs-fill-press: #eef2f9;--buttons-button-text-inactive: #91919e;--buttons-button-focus: #0645b1;--buttons-button-icon-inactive: #91919e;--buttons-small-buttons-corner-radius: 8px;--buttons-small-buttons-l-r-padding: 12px;--buttons-small-buttons-height: 44px;--buttons-small-buttons-gap: 8px;--buttons-small-buttons-icon-only-width: 44px;--buttons-small-buttons-icon-size: 20px;--buttons-small-buttons-stroke-default: 1px;--buttons-small-buttons-stroke-thick: 2px;--buttons-large-buttons-l-r-padding: 20px;--buttons-large-buttons-height: 54px;--buttons-large-buttons-icon-only-width: 54px;--buttons-large-buttons-icon-size: 20px;--buttons-large-buttons-gap: 8px;--buttons-large-buttons-corner-radius: 8px;--buttons-large-buttons-stroke-default: 1px;--buttons-large-buttons-stroke-thick: 2px;--buttons-extra-small-buttons-l-r-padding: 8px;--buttons-extra-small-buttons-height: 32px;--buttons-extra-small-buttons-icon-size: 16px;--buttons-extra-small-buttons-gap: 4px;--buttons-extra-small-buttons-corner-radius: 8px;--buttons-stroke-default: 1px;--buttons-stroke-thick: 2px;--background-beige: #f9f7f4;--error-light: #fff2f2;--text-placeholder: #6d6d7d;--stroke-dark: #141413;--stroke-light: #dddde2;--stroke-medium: #535366;--accent-green: #ccffd4;--accent-turquoise: #ccf7ff;--accent-yellow: #f7ffcc;--accent-peach: #ffd4cc;--accent-violet: #f7ccff;--accent-purple: #f4f7fc;--text-primary: #141413;--secondary-brand: #141413;--text-hover: #0c3b8d;--text-white: #ffffff;--text-link: #0645b1;--text-press: #082f75;--success-light: #f0f8f1;--background-light-blue: #eef2f9;--background-white: #ffffff;--premium-dark: #877440;--premium-light: #f9f6ed;--stroke-white: #ffffff;--inactive-content: #b1b1ba;--annotate-light: #a35dff;--annotate-dark: #824acc;--grid: #eef2f9;--inactive-stroke: #ebebee;--shadow: rgba(34, 34, 51, 0.25);--text-inactive: #6d6d7d;--text-error: #b60000;--stroke-error: #b60000;--background-error: #fff2f2;--background-black: #141413;--icon-default: #141413;--icon-blue: #0645b1;--background-grey: #dddde2;--icon-grey: #b1b1ba;--text-focus: #082f75;--brand-colors-neutral-black: #141413;--brand-colors-neutral-900: #535366;--brand-colors-neutral-800: #6d6d7d;--brand-colors-neutral-700: #91919e;--brand-colors-neutral-600: #b1b1ba;--brand-colors-neutral-500: #c8c8cf;--brand-colors-neutral-400: #dddde2;--brand-colors-neutral-300: #ebebee;--brand-colors-neutral-200: #f8f8fb;--brand-colors-neutral-100: #fafafa;--brand-colors-neutral-white: #ffffff;--brand-colors-blue-900: #043059;--brand-colors-blue-800: #082f75;--brand-colors-blue-700: #0c3b8d;--brand-colors-blue-600: #0645b1;--brand-colors-blue-500: #386ac1;--brand-colors-blue-400: #cddaef;--brand-colors-blue-300: #e6ecf7;--brand-colors-blue-200: #eef2f9;--brand-colors-blue-100: #f4f7fc;--brand-colors-gold-500: #877440;--brand-colors-gold-400: #e9e3d4;--brand-colors-gold-300: #f2efe8;--brand-colors-gold-200: #f9f6ed;--brand-colors-gold-100: #f9f7f4;--brand-colors-error-900: #920000;--brand-colors-error-500: #b60000;--brand-colors-success-900: #035c0f;--brand-colors-green: #ccffd4;--brand-colors-turquoise: #ccf7ff;--brand-colors-yellow: #f7ffcc;--brand-colors-peach: #ffd4cc;--brand-colors-violet: #f7ccff;--brand-colors-error-100: #fff2f2;--brand-colors-success-500: #05b01c;--brand-colors-success-100: #f0f8f1;--text-secondary: #535366;--icon-white: #ffffff;--background-beige-darker: #f2efe8;--icon-dark-grey: #535366;--type-font-family-sans-serif: Roboto;--type-font-family-serif: Georgia;--type-font-family-mono: IBM Plex Mono;--type-weights-300: 300;--type-weights-400: 400;--type-weights-500: 500;--type-weights-700: 700;--type-sizes-12: 12px;--type-sizes-14: 14px;--type-sizes-16: 16px;--type-sizes-18: 18px;--type-sizes-20: 20px;--type-sizes-22: 22px;--type-sizes-24: 24px;--type-sizes-28: 28px;--type-sizes-30: 30px;--type-sizes-32: 32px;--type-sizes-40: 40px;--type-sizes-42: 42px;--type-sizes-48-2: 48px;--type-line-heights-16: 16px;--type-line-heights-20: 20px;--type-line-heights-23: 23px;--type-line-heights-24: 24px;--type-line-heights-25: 25px;--type-line-heights-26: 26px;--type-line-heights-29: 29px;--type-line-heights-30: 30px;--type-line-heights-32: 32px;--type-line-heights-34: 34px;--type-line-heights-35: 35px;--type-line-heights-36: 36px;--type-line-heights-38: 38px;--type-line-heights-40: 40px;--type-line-heights-46: 46px;--type-line-heights-48: 48px;--type-line-heights-52: 52px;--type-line-heights-58: 58px;--type-line-heights-68: 68px;--type-line-heights-74: 74px;--type-line-heights-82: 82px;--type-paragraph-spacings-0: 0px;--type-paragraph-spacings-4: 4px;--type-paragraph-spacings-8: 8px;--type-paragraph-spacings-16: 16px;--type-sans-serif-xl-font-weight: 400;--type-sans-serif-xl-size: 42px;--type-sans-serif-xl-line-height: 46px;--type-sans-serif-xl-paragraph-spacing: 16px;--type-sans-serif-lg-font-weight: 400;--type-sans-serif-lg-size: 32px;--type-sans-serif-lg-line-height: 36px;--type-sans-serif-lg-paragraph-spacing: 16px;--type-sans-serif-md-font-weight: 400;--type-sans-serif-md-line-height: 34px;--type-sans-serif-md-paragraph-spacing: 16px;--type-sans-serif-md-size: 28px;--type-sans-serif-xs-font-weight: 700;--type-sans-serif-xs-line-height: 25px;--type-sans-serif-xs-paragraph-spacing: 0px;--type-sans-serif-xs-size: 20px;--type-sans-serif-sm-font-weight: 400;--type-sans-serif-sm-line-height: 30px;--type-sans-serif-sm-paragraph-spacing: 16px;--type-sans-serif-sm-size: 24px;--type-body-xl-font-weight: 400;--type-body-xl-size: 24px;--type-body-xl-line-height: 36px;--type-body-xl-paragraph-spacing: 0px;--type-body-sm-font-weight: 400;--type-body-sm-size: 14px;--type-body-sm-line-height: 20px;--type-body-sm-paragraph-spacing: 8px;--type-body-xs-font-weight: 400;--type-body-xs-size: 12px;--type-body-xs-line-height: 16px;--type-body-xs-paragraph-spacing: 0px;--type-body-md-font-weight: 400;--type-body-md-size: 16px;--type-body-md-line-height: 20px;--type-body-md-paragraph-spacing: 4px;--type-body-lg-font-weight: 400;--type-body-lg-size: 20px;--type-body-lg-line-height: 26px;--type-body-lg-paragraph-spacing: 16px;--type-body-lg-medium-font-weight: 500;--type-body-lg-medium-size: 20px;--type-body-lg-medium-line-height: 32px;--type-body-lg-medium-paragraph-spacing: 16px;--type-body-md-medium-font-weight: 500;--type-body-md-medium-size: 16px;--type-body-md-medium-line-height: 20px;--type-body-md-medium-paragraph-spacing: 4px;--type-body-sm-bold-font-weight: 700;--type-body-sm-bold-size: 14px;--type-body-sm-bold-line-height: 20px;--type-body-sm-bold-paragraph-spacing: 8px;--type-body-sm-medium-font-weight: 500;--type-body-sm-medium-size: 14px;--type-body-sm-medium-line-height: 20px;--type-body-sm-medium-paragraph-spacing: 8px;--type-serif-md-font-weight: 400;--type-serif-md-size: 40px;--type-serif-md-paragraph-spacing: 0px;--type-serif-md-line-height: 48px;--type-serif-sm-font-weight: 400;--type-serif-sm-size: 28px;--type-serif-sm-paragraph-spacing: 0px;--type-serif-sm-line-height: 32px;--type-serif-lg-font-weight: 400;--type-serif-lg-size: 58px;--type-serif-lg-paragraph-spacing: 0px;--type-serif-lg-line-height: 68px;--type-serif-xs-font-weight: 400;--type-serif-xs-size: 18px;--type-serif-xs-line-height: 24px;--type-serif-xs-paragraph-spacing: 0px;--type-serif-xl-font-weight: 400;--type-serif-xl-size: 74px;--type-serif-xl-paragraph-spacing: 0px;--type-serif-xl-line-height: 82px;--type-mono-md-font-weight: 400;--type-mono-md-size: 22px;--type-mono-md-line-height: 24px;--type-mono-md-paragraph-spacing: 0px;--type-mono-lg-font-weight: 400;--type-mono-lg-size: 40px;--type-mono-lg-line-height: 40px;--type-mono-lg-paragraph-spacing: 0px;--type-mono-sm-font-weight: 400;--type-mono-sm-size: 14px;--type-mono-sm-line-height: 24px;--type-mono-sm-paragraph-spacing: 0px;--spacing-xs-4: 4px;--spacing-xs-8: 8px;--spacing-xs-16: 16px;--spacing-sm-24: 24px;--spacing-sm-32: 32px;--spacing-md-40: 40px;--spacing-md-48: 48px;--spacing-lg-64: 64px;--spacing-lg-80: 80px;--spacing-xlg-104: 104px;--spacing-xlg-152: 152px;--spacing-xs-12: 12px;--spacing-page-section: 104px;--spacing-card-list-spacing: 48px;--spacing-text-section-spacing: 80px;--spacing-md-xs-headings: 40px;--corner-radius-radius-lg: 16px;--corner-radius-radius-sm: 4px;--corner-radius-radius-md: 8px;--corner-radius-radius-round: 104px}}@media(min-width: 1280px){:root{--token-mode: Parity;--dropshadow: 0 2px 4px 0 #22223340;--primary-brand: #0645b1;--error-dark: #b60000;--success-dark: #05b01c;--inactive-fill: #ebebee;--hover: #0c3b8d;--pressed: #082f75;--button-primary-fill-inactive: #ebebee;--button-primary-fill: #0645b1;--button-primary-text: #ffffff;--button-primary-fill-hover: #0c3b8d;--button-primary-fill-press: #082f75;--button-primary-icon: #ffffff;--button-primary-fill-inverse: #ffffff;--button-primary-text-inverse: #082f75;--button-primary-icon-inverse: #0645b1;--button-primary-fill-inverse-hover: #cddaef;--button-primary-stroke-inverse-pressed: #0645b1;--button-secondary-stroke-inactive: #b1b1ba;--button-secondary-fill: #eef2f9;--button-secondary-text: #082f75;--button-secondary-fill-press: #cddaef;--button-secondary-fill-inactive: #ebebee;--button-secondary-stroke: #cddaef;--button-secondary-stroke-hover: #386ac1;--button-secondary-stroke-press: #0645b1;--button-secondary-text-inactive: #b1b1ba;--button-secondary-icon: #082f75;--button-secondary-fill-hover: #e6ecf7;--button-secondary-stroke-inverse: #ffffff;--button-secondary-fill-inverse: rgba(255, 255, 255, 0);--button-secondary-icon-inverse: #ffffff;--button-secondary-icon-hover: #082f75;--button-secondary-icon-press: #082f75;--button-secondary-text-inverse: #ffffff;--button-secondary-text-hover: #082f75;--button-secondary-text-press: #082f75;--button-secondary-fill-inverse-hover: #043059;--button-xs-stroke: #141413;--button-xs-stroke-hover: #0c3b8d;--button-xs-stroke-press: #082f75;--button-xs-stroke-inactive: #ebebee;--button-xs-text: #141413;--button-xs-text-hover: #0c3b8d;--button-xs-text-press: #082f75;--button-xs-text-inactive: #91919e;--button-xs-icon: #141413;--button-xs-icon-hover: #0c3b8d;--button-xs-icon-press: #082f75;--button-xs-icon-inactive: #91919e;--button-xs-fill: #ffffff;--button-xs-fill-hover: #f4f7fc;--button-xs-fill-press: #eef2f9;--buttons-button-text-inactive: #91919e;--buttons-button-focus: #0645b1;--buttons-button-icon-inactive: #91919e;--buttons-small-buttons-corner-radius: 8px;--buttons-small-buttons-l-r-padding: 12px;--buttons-small-buttons-height: 44px;--buttons-small-buttons-gap: 8px;--buttons-small-buttons-icon-only-width: 44px;--buttons-small-buttons-icon-size: 20px;--buttons-small-buttons-stroke-default: 1px;--buttons-small-buttons-stroke-thick: 2px;--buttons-large-buttons-l-r-padding: 20px;--buttons-large-buttons-height: 54px;--buttons-large-buttons-icon-only-width: 54px;--buttons-large-buttons-icon-size: 20px;--buttons-large-buttons-gap: 8px;--buttons-large-buttons-corner-radius: 8px;--buttons-large-buttons-stroke-default: 1px;--buttons-large-buttons-stroke-thick: 2px;--buttons-extra-small-buttons-l-r-padding: 8px;--buttons-extra-small-buttons-height: 32px;--buttons-extra-small-buttons-icon-size: 16px;--buttons-extra-small-buttons-gap: 4px;--buttons-extra-small-buttons-corner-radius: 8px;--buttons-stroke-default: 1px;--buttons-stroke-thick: 2px;--background-beige: #f9f7f4;--error-light: #fff2f2;--text-placeholder: #6d6d7d;--stroke-dark: #141413;--stroke-light: #dddde2;--stroke-medium: #535366;--accent-green: #ccffd4;--accent-turquoise: #ccf7ff;--accent-yellow: #f7ffcc;--accent-peach: #ffd4cc;--accent-violet: #f7ccff;--accent-purple: #f4f7fc;--text-primary: #141413;--secondary-brand: #141413;--text-hover: #0c3b8d;--text-white: #ffffff;--text-link: #0645b1;--text-press: #082f75;--success-light: #f0f8f1;--background-light-blue: #eef2f9;--background-white: #ffffff;--premium-dark: #877440;--premium-light: #f9f6ed;--stroke-white: #ffffff;--inactive-content: #b1b1ba;--annotate-light: #a35dff;--annotate-dark: #824acc;--grid: #eef2f9;--inactive-stroke: #ebebee;--shadow: rgba(34, 34, 51, 0.25);--text-inactive: #6d6d7d;--text-error: #b60000;--stroke-error: #b60000;--background-error: #fff2f2;--background-black: #141413;--icon-default: #141413;--icon-blue: #0645b1;--background-grey: #dddde2;--icon-grey: #b1b1ba;--text-focus: #082f75;--brand-colors-neutral-black: #141413;--brand-colors-neutral-900: #535366;--brand-colors-neutral-800: #6d6d7d;--brand-colors-neutral-700: #91919e;--brand-colors-neutral-600: #b1b1ba;--brand-colors-neutral-500: #c8c8cf;--brand-colors-neutral-400: #dddde2;--brand-colors-neutral-300: #ebebee;--brand-colors-neutral-200: #f8f8fb;--brand-colors-neutral-100: #fafafa;--brand-colors-neutral-white: #ffffff;--brand-colors-blue-900: #043059;--brand-colors-blue-800: #082f75;--brand-colors-blue-700: #0c3b8d;--brand-colors-blue-600: #0645b1;--brand-colors-blue-500: #386ac1;--brand-colors-blue-400: #cddaef;--brand-colors-blue-300: #e6ecf7;--brand-colors-blue-200: #eef2f9;--brand-colors-blue-100: #f4f7fc;--brand-colors-gold-500: #877440;--brand-colors-gold-400: #e9e3d4;--brand-colors-gold-300: #f2efe8;--brand-colors-gold-200: #f9f6ed;--brand-colors-gold-100: #f9f7f4;--brand-colors-error-900: #920000;--brand-colors-error-500: #b60000;--brand-colors-success-900: #035c0f;--brand-colors-green: #ccffd4;--brand-colors-turquoise: #ccf7ff;--brand-colors-yellow: #f7ffcc;--brand-colors-peach: #ffd4cc;--brand-colors-violet: #f7ccff;--brand-colors-error-100: #fff2f2;--brand-colors-success-500: #05b01c;--brand-colors-success-100: #f0f8f1;--text-secondary: #535366;--icon-white: #ffffff;--background-beige-darker: #f2efe8;--icon-dark-grey: #535366;--type-font-family-sans-serif: Roboto;--type-font-family-serif: Georgia;--type-font-family-mono: IBM Plex Mono;--type-weights-300: 300;--type-weights-400: 400;--type-weights-500: 500;--type-weights-700: 700;--type-sizes-12: 12px;--type-sizes-14: 14px;--type-sizes-16: 16px;--type-sizes-18: 18px;--type-sizes-20: 20px;--type-sizes-22: 22px;--type-sizes-24: 24px;--type-sizes-28: 28px;--type-sizes-30: 30px;--type-sizes-32: 32px;--type-sizes-40: 40px;--type-sizes-42: 42px;--type-sizes-48-2: 48px;--type-line-heights-16: 16px;--type-line-heights-20: 20px;--type-line-heights-23: 23px;--type-line-heights-24: 24px;--type-line-heights-25: 25px;--type-line-heights-26: 26px;--type-line-heights-29: 29px;--type-line-heights-30: 30px;--type-line-heights-32: 32px;--type-line-heights-34: 34px;--type-line-heights-35: 35px;--type-line-heights-36: 36px;--type-line-heights-38: 38px;--type-line-heights-40: 40px;--type-line-heights-46: 46px;--type-line-heights-48: 48px;--type-line-heights-52: 52px;--type-line-heights-58: 58px;--type-line-heights-68: 68px;--type-line-heights-74: 74px;--type-line-heights-82: 82px;--type-paragraph-spacings-0: 0px;--type-paragraph-spacings-4: 4px;--type-paragraph-spacings-8: 8px;--type-paragraph-spacings-16: 16px;--type-sans-serif-xl-font-weight: 400;--type-sans-serif-xl-size: 42px;--type-sans-serif-xl-line-height: 46px;--type-sans-serif-xl-paragraph-spacing: 16px;--type-sans-serif-lg-font-weight: 400;--type-sans-serif-lg-size: 32px;--type-sans-serif-lg-line-height: 38px;--type-sans-serif-lg-paragraph-spacing: 16px;--type-sans-serif-md-font-weight: 400;--type-sans-serif-md-line-height: 34px;--type-sans-serif-md-paragraph-spacing: 16px;--type-sans-serif-md-size: 28px;--type-sans-serif-xs-font-weight: 700;--type-sans-serif-xs-line-height: 25px;--type-sans-serif-xs-paragraph-spacing: 0px;--type-sans-serif-xs-size: 20px;--type-sans-serif-sm-font-weight: 400;--type-sans-serif-sm-line-height: 30px;--type-sans-serif-sm-paragraph-spacing: 16px;--type-sans-serif-sm-size: 24px;--type-body-xl-font-weight: 400;--type-body-xl-size: 24px;--type-body-xl-line-height: 36px;--type-body-xl-paragraph-spacing: 0px;--type-body-sm-font-weight: 400;--type-body-sm-size: 14px;--type-body-sm-line-height: 20px;--type-body-sm-paragraph-spacing: 8px;--type-body-xs-font-weight: 400;--type-body-xs-size: 12px;--type-body-xs-line-height: 16px;--type-body-xs-paragraph-spacing: 0px;--type-body-md-font-weight: 400;--type-body-md-size: 16px;--type-body-md-line-height: 20px;--type-body-md-paragraph-spacing: 4px;--type-body-lg-font-weight: 400;--type-body-lg-size: 20px;--type-body-lg-line-height: 26px;--type-body-lg-paragraph-spacing: 16px;--type-body-lg-medium-font-weight: 500;--type-body-lg-medium-size: 20px;--type-body-lg-medium-line-height: 32px;--type-body-lg-medium-paragraph-spacing: 16px;--type-body-md-medium-font-weight: 500;--type-body-md-medium-size: 16px;--type-body-md-medium-line-height: 20px;--type-body-md-medium-paragraph-spacing: 4px;--type-body-sm-bold-font-weight: 700;--type-body-sm-bold-size: 14px;--type-body-sm-bold-line-height: 20px;--type-body-sm-bold-paragraph-spacing: 8px;--type-body-sm-medium-font-weight: 500;--type-body-sm-medium-size: 14px;--type-body-sm-medium-line-height: 20px;--type-body-sm-medium-paragraph-spacing: 8px;--type-serif-md-font-weight: 400;--type-serif-md-size: 40px;--type-serif-md-paragraph-spacing: 0px;--type-serif-md-line-height: 48px;--type-serif-sm-font-weight: 400;--type-serif-sm-size: 28px;--type-serif-sm-paragraph-spacing: 0px;--type-serif-sm-line-height: 32px;--type-serif-lg-font-weight: 400;--type-serif-lg-size: 58px;--type-serif-lg-paragraph-spacing: 0px;--type-serif-lg-line-height: 68px;--type-serif-xs-font-weight: 400;--type-serif-xs-size: 18px;--type-serif-xs-line-height: 24px;--type-serif-xs-paragraph-spacing: 0px;--type-serif-xl-font-weight: 400;--type-serif-xl-size: 74px;--type-serif-xl-paragraph-spacing: 0px;--type-serif-xl-line-height: 82px;--type-mono-md-font-weight: 400;--type-mono-md-size: 22px;--type-mono-md-line-height: 24px;--type-mono-md-paragraph-spacing: 0px;--type-mono-lg-font-weight: 400;--type-mono-lg-size: 40px;--type-mono-lg-line-height: 40px;--type-mono-lg-paragraph-spacing: 0px;--type-mono-sm-font-weight: 400;--type-mono-sm-size: 14px;--type-mono-sm-line-height: 24px;--type-mono-sm-paragraph-spacing: 0px;--spacing-xs-4: 4px;--spacing-xs-8: 8px;--spacing-xs-16: 16px;--spacing-sm-24: 24px;--spacing-sm-32: 32px;--spacing-md-40: 40px;--spacing-md-48: 48px;--spacing-lg-64: 64px;--spacing-lg-80: 80px;--spacing-xlg-104: 104px;--spacing-xlg-152: 152px;--spacing-xs-12: 12px;--spacing-page-section: 152px;--spacing-card-list-spacing: 48px;--spacing-text-section-spacing: 80px;--spacing-md-xs-headings: 40px;--corner-radius-radius-lg: 16px;--corner-radius-radius-sm: 4px;--corner-radius-radius-md: 8px;--corner-radius-radius-round: 104px}}</style><link crossorigin="" href="https://fonts.gstatic.com/" rel="preconnect" /><link href="https://fonts.googleapis.com/css2?family=DM+Sans:ital,opsz,wght@0,9..40,100..1000;1,9..40,100..1000&family=Gupter:wght@400;500;700&family=IBM+Plex+Mono:wght@300;400&family=Material+Symbols+Outlined:opsz,wght,FILL,GRAD@20,400,0,0&display=swap" rel="stylesheet" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/common-57f9da13cef3fd4e2a8b655342c6488eded3e557e823fe67571f2ac77acd7b6f.css" /> <meta name="author" content="john clague" /> <meta name="description" content="My research is aimed at reducing the risk from natural hazards, and encompasses a range of natural phenomena including earthquakes, tsunamis, floods,…" /> <meta name="google-site-verification" content="bKJMBZA7E43xhDOopFZkssMMkBRjvYERV-NaN4R6mrs" /> <script> var $controller_name = 'works'; var $action_name = "summary"; var $rails_env = 'production'; var $app_rev = '6ef822d7e766f9161c56b2e45cc17c9d5b7d9468'; var $domain = 'academia.edu'; var $app_host = "academia.edu"; var $asset_host = "academia-assets.com"; var $start_time = new Date().getTime(); var $recaptcha_key = "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB"; var $recaptcha_invisible_key = "6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj"; var $disableClientRecordHit = false; </script> <script> window.Aedu = { hit_data: null }; window.Aedu.SiteStats = {"premium_universities_count":13945,"monthly_visitors":"136 million","monthly_visitor_count":136579771,"monthly_visitor_count_in_millions":136,"user_count":285140563,"paper_count":55203019,"paper_count_in_millions":55,"page_count":432000000,"page_count_in_millions":432,"pdf_count":16500000,"pdf_count_in_millions":16}; window.Aedu.serverRenderTime = new Date(1742193566000); window.Aedu.timeDifference = new Date().getTime() - 1742193566000; window.Aedu.isUsingCssV1 = false; window.Aedu.enableLocalization = true; window.Aedu.activateFullstory = false; window.Aedu.serviceAvailability = { status: {"attention_db":"on","bibliography_db":"on","contacts_db":"on","email_db":"on","indexability_db":"on","mentions_db":"on","news_db":"on","notifications_db":"on","offsite_mentions_db":"on","redshift":"on","redshift_exports_db":"on","related_works_db":"on","ring_db":"on","user_tests_db":"on"}, serviceEnabled: function(service) { return this.status[service] === "on"; }, readEnabled: function(service) { return this.serviceEnabled(service) || this.status[service] === "read_only"; }, }; window.Aedu.viewApmTrace = function() { // Check if x-apm-trace-id meta tag is set, and open the trace in APM // in a new window if it is. var apmTraceId = document.head.querySelector('meta[name="x-apm-trace-id"]'); if (apmTraceId) { var traceId = apmTraceId.content; // Use trace ID to construct URL, an example URL looks like: // https://app.datadoghq.com/apm/traces?query=trace_id%31298410148923562634 var apmUrl = 'https://app.datadoghq.com/apm/traces?query=trace_id%3A' + traceId; window.open(apmUrl, '_blank'); } }; </script> <!--[if lt IE 9]> <script src="//cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.2/html5shiv.min.js"></script> <![endif]--> <link href="https://fonts.googleapis.com/css?family=Roboto:100,100i,300,300i,400,400i,500,500i,700,700i,900,900i" rel="stylesheet"> <link rel="preload" href="//maxcdn.bootstrapcdn.com/font-awesome/4.3.0/css/font-awesome.min.css" as="style" onload="this.rel='stylesheet'"> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/libraries-a9675dcb01ec4ef6aa807ba772c7a5a00c1820d3ff661c1038a20f80d06bb4e4.css" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/academia-9982828ed1de4777566441c35ccf7157c55ca779141fce69380d727ebdbbb926.css" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system_legacy-056a9113b9a0f5343d013b29ee1929d5a18be35fdcdceb616600b4db8bd20054.css" /> <script src="//a.academia-assets.com/assets/webpack_bundles/runtime-bundle-005434038af4252ca37c527588411a3d6a0eabb5f727fac83f8bbe7fd88d93bb.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/webpack_libraries_and_infrequently_changed.wjs-bundle-948be8fa2cdf77e0edc9d37d89e2ceac6298a9cec36b295126fe6066d89fe4f6.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/core_webpack.wjs-bundle-3f0732fc165186a3e70d3de1b749e1a47b279db87e2188a19da2a0c42b75cab9.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/sentry.wjs-bundle-5fe03fddca915c8ba0f7edbe64c194308e8ce5abaed7bffe1255ff37549c4808.js"></script> <script> jade = window.jade || {}; jade.helpers = window.$h; jade._ = window._; </script> <!-- Google Tag Manager --> <script id="tag-manager-head-root">(function(w,d,s,l,i){w[l]=w[l]||[];w[l].push({'gtm.start': new Date().getTime(),event:'gtm.js'});var f=d.getElementsByTagName(s)[0], j=d.createElement(s),dl=l!='dataLayer'?'&l='+l:'';j.async=true;j.src= 'https://www.googletagmanager.com/gtm.js?id='+i+dl;f.parentNode.insertBefore(j,f); })(window,document,'script','dataLayer_old','GTM-5G9JF7Z');</script> <!-- End Google Tag Manager --> <script> window.gptadslots = []; window.googletag = window.googletag || {}; window.googletag.cmd = window.googletag.cmd || []; </script> <script type="text/javascript"> // TODO(jacob): This should be defined, may be rare load order problem. // Checking if null is just a quick fix, will default to en if unset. // Better fix is to run this immedietely after I18n is set. if (window.I18n != null) { I18n.defaultLocale = "en"; I18n.locale = "en"; I18n.fallbacks = true; } </script> <link rel="canonical" href="https://sfu.academia.edu/JohnClague" /> </head> <!--[if gte IE 9 ]> <body class='ie ie9 c-profiles/works a-summary logged_out'> <![endif]--> <!--[if !(IE) ]><!--> <body class='c-profiles/works a-summary logged_out'> <!--<![endif]--> <div id="fb-root"></div><script>window.fbAsyncInit = function() { FB.init({ appId: "2369844204", version: "v8.0", status: true, cookie: true, xfbml: true }); // Additional initialization code. if (window.InitFacebook) { // facebook.ts already loaded, set it up. window.InitFacebook(); } else { // Set a flag for facebook.ts to find when it loads. window.academiaAuthReadyFacebook = true; } };</script><script>window.fbAsyncLoad = function() { // Protection against double calling of this function if (window.FB) { return; } (function(d, s, id){ var js, fjs = d.getElementsByTagName(s)[0]; if (d.getElementById(id)) {return;} js = d.createElement(s); js.id = id; js.src = "//connect.facebook.net/en_US/sdk.js"; fjs.parentNode.insertBefore(js, fjs); }(document, 'script', 'facebook-jssdk')); } if (!window.defer_facebook) { // Autoload if not deferred window.fbAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.fbAsyncLoad(); }, 5000); }</script> <div id="google-root"></div><script>window.loadGoogle = function() { if (window.InitGoogle) { // google.ts already loaded, set it up. window.InitGoogle("331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"); } else { // Set a flag for google.ts to use when it loads. window.GoogleClientID = "331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"; } };</script><script>window.googleAsyncLoad = function() { // Protection against double calling of this function (function(d) { var js; var id = 'google-jssdk'; var ref = d.getElementsByTagName('script')[0]; if (d.getElementById(id)) { return; } js = d.createElement('script'); js.id = id; js.async = true; js.onload = loadGoogle; js.src = "https://accounts.google.com/gsi/client" ref.parentNode.insertBefore(js, ref); }(document)); } if (!window.defer_google) { // Autoload if not deferred window.googleAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.googleAsyncLoad(); }, 5000); }</script> <div id="tag-manager-body-root"> <!-- Google Tag Manager (noscript) --> <noscript><iframe src="https://www.googletagmanager.com/ns.html?id=GTM-5G9JF7Z" height="0" width="0" style="display:none;visibility:hidden"></iframe></noscript> <!-- End Google Tag Manager (noscript) --> <!-- Event listeners for analytics --> <script> window.addEventListener('load', function() { if (document.querySelector('input[name="commit"]')) { document.querySelector('input[name="commit"]').addEventListener('click', function() { gtag('event', 'click', { event_category: 'button', event_label: 'Log In' }) }) } }); </script> </div> <script>var _comscore = _comscore || []; _comscore.push({ c1: "2", c2: "26766707" }); (function() { var s = document.createElement("script"), el = document.getElementsByTagName("script")[0]; s.async = true; s.src = (document.location.protocol == "https:" ? "https://sb" : "http://b") + ".scorecardresearch.com/beacon.js"; el.parentNode.insertBefore(s, el); })();</script><img src="https://sb.scorecardresearch.com/p?c1=2&c2=26766707&cv=2.0&cj=1" style="position: absolute; visibility: hidden" /> <div id='react-modal'></div> <div class='DesignSystem'> <a class='u-showOnFocus' href='#site'> Skip to main content </a> </div> <div id="upgrade_ie_banner" style="display: none;"><p>Academia.edu no longer supports Internet Explorer.</p><p>To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to <a href="https://www.academia.edu/upgrade-browser">upgrade your browser</a>.</p></div><script>// Show this banner for all versions of IE if (!!window.MSInputMethodContext || /(MSIE)/.test(navigator.userAgent)) { document.getElementById('upgrade_ie_banner').style.display = 'block'; }</script> <div class="DesignSystem bootstrap ShrinkableNav"><div class="navbar navbar-default main-header"><div class="container-wrapper" id="main-header-container"><div class="container"><div class="navbar-header"><div class="nav-left-wrapper u-mt0x"><div class="nav-logo"><a data-main-header-link-target="logo_home" href="https://www.academia.edu/"><img class="visible-xs-inline-block" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015-A.svg" width="24" height="24" /><img width="145.2" height="18" class="hidden-xs" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015.svg" /></a></div><div class="nav-search"><div class="SiteSearch-wrapper select2-no-default-pills"><form class="js-SiteSearch-form DesignSystem" action="https://www.academia.edu/search" accept-charset="UTF-8" method="get"><i class="SiteSearch-icon fa fa-search u-fw700 u-positionAbsolute u-tcGrayDark"></i><input class="js-SiteSearch-form-input SiteSearch-form-input form-control" data-main-header-click-target="search_input" name="q" placeholder="Search" type="text" value="" /></form></div></div></div><div class="nav-right-wrapper pull-right"><ul class="NavLinks js-main-nav list-unstyled"><li class="NavLinks-link"><a class="js-header-login-url Button Button--inverseGray Button--sm u-mb4x" id="nav_log_in" rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="NavLinks-link u-p0x"><a class="Button Button--inverseGray Button--sm u-mb4x" rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li></ul><button class="hidden-lg hidden-md hidden-sm u-ml4x navbar-toggle collapsed" data-target=".js-mobile-header-links" data-toggle="collapse" type="button"><span class="icon-bar"></span><span class="icon-bar"></span><span class="icon-bar"></span></button></div></div><div class="collapse navbar-collapse js-mobile-header-links"><ul class="nav navbar-nav"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li><li class="u-borderColorGrayLight u-borderBottom1 js-mobile-nav-expand-trigger"><a href="#">more <span class="caret"></span></a></li><li><ul class="js-mobile-nav-expand-section nav navbar-nav u-m0x collapse"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/about">About</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/press">Press</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/documents">Papers</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/hiring"><i class="fa fa-briefcase"></i> We're Hiring!</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://support.academia.edu/hc/en-us"><i class="fa fa-question-circle"></i> Help Center</a></li><li class="js-mobile-nav-collapse-trigger u-borderColorGrayLight u-borderBottom1 dropup" style="display:none"><a href="#">less <span class="caret"></span></a></li></ul></li></ul></div></div></div><script>(function(){ var $moreLink = $(".js-mobile-nav-expand-trigger"); var $lessLink = $(".js-mobile-nav-collapse-trigger"); var $section = $('.js-mobile-nav-expand-section'); $moreLink.click(function(ev){ ev.preventDefault(); $moreLink.hide(); $lessLink.show(); $section.collapse('show'); }); $lessLink.click(function(ev){ ev.preventDefault(); $moreLink.show(); $lessLink.hide(); $section.collapse('hide'); }); })() if ($a.is_logged_in() || false) { new Aedu.NavigationController({ el: '.js-main-nav', showHighlightedNotification: false }); } else { $(".js-header-login-url").attr("href", $a.loginUrlWithRedirect()); } Aedu.autocompleteSearch = new AutocompleteSearch({el: '.js-SiteSearch-form'});</script></div></div> <div id='site' class='fixed'> <div id="content" class="clearfix"> <script>document.addEventListener('DOMContentLoaded', function(){ var $dismissible = $(".dismissible_banner"); $dismissible.click(function(ev) { $dismissible.hide(); }); });</script> <script src="//a.academia-assets.com/assets/webpack_bundles/profile.wjs-bundle-e1d575982904827f1397a4a8ee10c2382667df3df47448516361b995ce9464bd.js" defer="defer"></script><script>$viewedUser = Aedu.User.set_viewed( {"id":30937520,"first_name":"John","middle_initials":null,"last_name":"Clague","page_name":"JohnClague","domain_name":"sfu","created_at":"2015-05-09T12:05:01.456-07:00","display_name":"John Clague","url":"https://sfu.academia.edu/JohnClague","photo":"https://0.academia-photos.com/30937520/18648109/18835474/s65_john.clague.jpg","has_photo":true,"department":{"id":34517,"name":"Earth Sciences","url":"https://sfu.academia.edu/Departments/Earth_Sciences/Documents","university":{"id":563,"name":"Simon Fraser University","url":"https://sfu.academia.edu/"}},"position":"Faculty Member","position_id":1,"is_analytics_public":false,"interests":[{"id":209240,"name":"Slope Stability and Landslides","url":"https://www.academia.edu/Documents/in/Slope_Stability_and_Landslides"},{"id":3157,"name":"Seismic Hazard","url":"https://www.academia.edu/Documents/in/Seismic_Hazard"},{"id":17566,"name":"Costa Rica","url":"https://www.academia.edu/Documents/in/Costa_Rica"},{"id":20054,"name":"Landslides","url":"https://www.academia.edu/Documents/in/Landslides"},{"id":13460,"name":"Risk communication","url":"https://www.academia.edu/Documents/in/Risk_communication"}]} ); if ($a.is_logged_in() && $viewedUser.is_current_user()) { $('body').addClass('profile-viewed-by-owner'); } $socialProfiles = []</script><div id="js-react-on-rails-context" style="display:none" data-rails-context="{"inMailer":false,"i18nLocale":"en","i18nDefaultLocale":"en","href":"https://sfu.academia.edu/JohnClague","location":"/JohnClague","scheme":"https","host":"sfu.academia.edu","port":null,"pathname":"/JohnClague","search":null,"httpAcceptLanguage":null,"serverSide":false}"></div> <div class="js-react-on-rails-component" style="display:none" data-component-name="ProfileCheckPaperUpdate" data-props="{}" data-trace="false" data-dom-id="ProfileCheckPaperUpdate-react-component-24389a51-66a5-4017-83f6-5b2aaf851bab"></div> <div id="ProfileCheckPaperUpdate-react-component-24389a51-66a5-4017-83f6-5b2aaf851bab"></div> <div class="DesignSystem"><div class="onsite-ping" id="onsite-ping"></div></div><div class="profile-user-info DesignSystem"><div class="social-profile-container"><div class="left-panel-container"><div class="user-info-component-wrapper"><div class="user-summary-cta-container"><div class="user-summary-container"><div class="social-profile-avatar-container"><img class="profile-avatar u-positionAbsolute" alt="John Clague" border="0" onerror="if (this.src != '//a.academia-assets.com/images/s200_no_pic.png') this.src = '//a.academia-assets.com/images/s200_no_pic.png';" width="200" height="200" src="https://0.academia-photos.com/30937520/18648109/18835474/s200_john.clague.jpg" /></div><div class="title-container"><h1 class="ds2-5-heading-sans-serif-sm">John Clague</h1><div class="affiliations-container fake-truncate js-profile-affiliations"><div><a class="u-tcGrayDarker" href="https://sfu.academia.edu/">Simon Fraser University</a>, <a class="u-tcGrayDarker" href="https://sfu.academia.edu/Departments/Earth_Sciences/Documents">Earth Sciences</a>, <span class="u-tcGrayDarker">Faculty Member</span></div></div></div></div><div class="sidebar-cta-container"><button class="ds2-5-button hidden profile-cta-button grow js-profile-follow-button" data-broccoli-component="user-info.follow-button" data-click-track="profile-user-info-follow-button" data-follow-user-fname="John" data-follow-user-id="30937520" data-follow-user-source="profile_button" data-has-google="false"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">add</span>Follow</button><button class="ds2-5-button hidden profile-cta-button grow js-profile-unfollow-button" data-broccoli-component="user-info.unfollow-button" data-click-track="profile-user-info-unfollow-button" data-unfollow-user-id="30937520"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">done</span>Following</button></div></div><div class="user-stats-container"><a><div class="stat-container js-profile-followers"><p class="label">Followers</p><p class="data">285</p></div></a><a><div class="stat-container js-profile-followees" data-broccoli-component="user-info.followees-count" data-click-track="profile-expand-user-info-following"><p class="label">Following</p><p class="data">42</p></div></a><a><div class="stat-container js-profile-coauthors" data-broccoli-component="user-info.coauthors-count" data-click-track="profile-expand-user-info-coauthors"><p class="label">Co-authors</p><p class="data">40</p></div></a><div class="js-mentions-count-container" style="display: none;"><a href="/JohnClague/mentions"><div class="stat-container"><p class="label">Mentions</p><p class="data"></p></div></a></div><span><div class="stat-container"><p class="label"><span class="js-profile-total-view-text">Public Views</span></p><p class="data"><span class="js-profile-view-count"></span></p></div></span></div><div class="user-bio-container"><div class="profile-bio fake-truncate js-profile-about" style="margin: 0px;">My research is aimed at reducing the risk from natural hazards, and encompasses a range of natural phenomena including earthquakes, tsunamis, floods, landslides, and climate change<br /><span class="u-fw700">Phone: </span>+1.778.782.4924<br /><b>Address: </b>Department of Earth Sciences<br />Simon Fraser University<br />8888 University Dr.<br />Burnaby, BC V5A 1S6 <br />Canada<br /><div class="js-profile-less-about u-linkUnstyled u-tcGrayDarker u-textDecorationUnderline u-displayNone">less</div></div></div><div class="suggested-academics-container"><div class="suggested-academics--header"><p class="ds2-5-body-md-bold">Related Authors</p></div><ul class="suggested-user-card-list"><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://kent.academia.edu/AdamBurgess"><img class="profile-avatar u-positionAbsolute" alt="Adam Burgess" border="0" onerror="if (this.src != '//a.academia-assets.com/images/s200_no_pic.png') this.src = '//a.academia-assets.com/images/s200_no_pic.png';" width="200" height="200" src="https://0.academia-photos.com/67408/18930/9018291/s200_adam.burgess.png" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://kent.academia.edu/AdamBurgess">Adam Burgess</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">University of Kent</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://itc.academia.edu/DrCJvanWesten"><img class="profile-avatar u-positionAbsolute" alt="Cees van Westen" border="0" onerror="if (this.src != '//a.academia-assets.com/images/s200_no_pic.png') this.src = '//a.academia-assets.com/images/s200_no_pic.png';" width="200" height="200" src="https://0.academia-photos.com/101246/27885/15526568/s200_dr..c.j_van_westen.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://itc.academia.edu/DrCJvanWesten">Cees van Westen</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">University of Twente, Faculty of Geoinformation Science and Earth Observation (ITC)</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://udg.academia.edu/MariaElenaHernandezRamirez"><img class="profile-avatar u-positionAbsolute" alt="María Elena Hernández Ramírez" border="0" onerror="if (this.src != '//a.academia-assets.com/images/s200_no_pic.png') this.src = '//a.academia-assets.com/images/s200_no_pic.png';" width="200" height="200" src="https://0.academia-photos.com/151133/39785/36551/s200_mar_a_elena.hern_ndez_ram_rez.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://udg.academia.edu/MariaElenaHernandezRamirez">María Elena Hernández Ramírez</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">University of Guadalajara</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://ucr.academia.edu/IvanMolinaJimenez"><img class="profile-avatar u-positionAbsolute" alt="Iván Molina Jiménez" border="0" onerror="if (this.src != '//a.academia-assets.com/images/s200_no_pic.png') this.src = '//a.academia-assets.com/images/s200_no_pic.png';" width="200" height="200" src="https://0.academia-photos.com/249077/7323722/8236661/s200_ivan.molina-jimenez.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://ucr.academia.edu/IvanMolinaJimenez">Iván Molina Jiménez</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">Universidad de Costa Rica</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://ursinus.academia.edu/VictorRicciardi"><img class="profile-avatar u-positionAbsolute" alt="Victor Ricciardi" border="0" onerror="if (this.src != '//a.academia-assets.com/images/s200_no_pic.png') this.src = '//a.academia-assets.com/images/s200_no_pic.png';" width="200" height="200" src="https://0.academia-photos.com/310851/62544/3457927/s200_victor.ricciardi.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://ursinus.academia.edu/VictorRicciardi">Victor Ricciardi</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">Ursinus College</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://mcmaster.academia.edu/ThomasMarois"><img class="profile-avatar u-positionAbsolute" alt="Thomas Marois" border="0" onerror="if (this.src != '//a.academia-assets.com/images/s200_no_pic.png') this.src = '//a.academia-assets.com/images/s200_no_pic.png';" width="200" height="200" src="https://0.academia-photos.com/1263084/519109/126241765/s200_thomas.marois.jpeg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://mcmaster.academia.edu/ThomasMarois">Thomas Marois</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">McMaster University</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://cnr-it.academia.edu/sabinaporfido"><img class="profile-avatar u-positionAbsolute" alt="sabina porfido" border="0" onerror="if (this.src != '//a.academia-assets.com/images/s200_no_pic.png') this.src = '//a.academia-assets.com/images/s200_no_pic.png';" width="200" height="200" src="https://0.academia-photos.com/1308763/1299881/16671913/s200_sabina.porfido.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://cnr-it.academia.edu/sabinaporfido">sabina porfido</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">Consiglio Nazionale delle Ricerche (CNR)</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://su-se.academia.edu/ViacheslavKuleshov"><img class="profile-avatar u-positionAbsolute" alt="Viacheslav Kuleshov" border="0" onerror="if (this.src != '//a.academia-assets.com/images/s200_no_pic.png') this.src = '//a.academia-assets.com/images/s200_no_pic.png';" width="200" height="200" src="https://0.academia-photos.com/1895779/1756649/167070895/s200_viacheslav.kuleshov.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://su-se.academia.edu/ViacheslavKuleshov">Viacheslav Kuleshov</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">Stockholm University</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://uruguay.academia.edu/RobertoGarc%C3%ADaFerreira"><img class="profile-avatar u-positionAbsolute" alt="Roberto García Ferreira" border="0" onerror="if (this.src != '//a.academia-assets.com/images/s200_no_pic.png') this.src = '//a.academia-assets.com/images/s200_no_pic.png';" width="200" height="200" src="https://0.academia-photos.com/2585066/2360011/146587453/s200_roberto.garc_a_ferreira.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://uruguay.academia.edu/RobertoGarc%C3%ADaFerreira">Roberto García Ferreira</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">Universidad de la República</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://helwan.academia.edu/AminKhalil"><img class="profile-avatar u-positionAbsolute" alt="Amin E Khalil" border="0" onerror="if (this.src != '//a.academia-assets.com/images/s200_no_pic.png') this.src = '//a.academia-assets.com/images/s200_no_pic.png';" width="200" height="200" src="https://0.academia-photos.com/3298270/1097282/1368525/s200_amin.khalil.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://helwan.academia.edu/AminKhalil">Amin E Khalil</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">Helwan University</p></div></div></ul></div><div class="ri-section"><div class="ri-section-header"><span>Interests</span></div><div class="ri-tags-container"><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="30937520" href="https://www.academia.edu/Documents/in/Slope_Stability_and_Landslides"><div id="js-react-on-rails-context" style="display:none" data-rails-context="{"inMailer":false,"i18nLocale":"en","i18nDefaultLocale":"en","href":"https://sfu.academia.edu/JohnClague","location":"/JohnClague","scheme":"https","host":"sfu.academia.edu","port":null,"pathname":"/JohnClague","search":null,"httpAcceptLanguage":null,"serverSide":false}"></div> <div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{"color":"gray","children":["Slope Stability and Landslides"]}" data-trace="false" data-dom-id="Pill-react-component-bfefec84-1308-483a-b374-36d89b858246"></div> <div id="Pill-react-component-bfefec84-1308-483a-b374-36d89b858246"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="30937520" href="https://www.academia.edu/Documents/in/Seismic_Hazard"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{"color":"gray","children":["Seismic Hazard"]}" data-trace="false" data-dom-id="Pill-react-component-9455904f-b8d1-4859-828d-ddd613cdd73a"></div> <div id="Pill-react-component-9455904f-b8d1-4859-828d-ddd613cdd73a"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="30937520" href="https://www.academia.edu/Documents/in/Risk_communication"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{"color":"gray","children":["Risk communication"]}" data-trace="false" data-dom-id="Pill-react-component-02e789bf-9fae-4f83-a4cc-e907195a4458"></div> <div id="Pill-react-component-02e789bf-9fae-4f83-a4cc-e907195a4458"></div> </a></div></div><div class="external-links-container"><ul class="profile-links new-profile js-UserInfo-social"><li class="profile-profiles js-social-profiles-container"><i class="fa fa-spin fa-spinner"></i></li></ul></div></div></div><div class="right-panel-container"><div class="user-content-wrapper"><div class="uploads-container" id="social-redesign-work-container"><div class="upload-header"><h2 class="ds2-5-heading-sans-serif-xs">Uploads</h2></div><div class="documents-container backbone-social-profile-documents" style="width: 100%;"><div class="u-taCenter"></div><div class="profile--tab_content_container js-tab-pane tab-pane active" id="all"><div class="profile--tab_heading_container js-section-heading" data-section="Papers" id="Papers"><h3 class="profile--tab_heading_container">Papers by John Clague</h3></div><div class="js-work-strip profile--work_container" data-work-id="88171084"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/88171084/Relationship_between_the_spatial_distribution_of_landslides_and_rock_mass_strength_and_implications_for_the_driving_mechanism_of_landslides_in_tectonically_active_mountain_ranges"><img alt="Research paper thumbnail of Relationship between the spatial distribution of landslides and rock mass strength, and implications for the driving mechanism of landslides in tectonically active mountain ranges" class="work-thumbnail" src="https://attachments.academia-assets.com/92249226/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/88171084/Relationship_between_the_spatial_distribution_of_landslides_and_rock_mass_strength_and_implications_for_the_driving_mechanism_of_landslides_in_tectonically_active_mountain_ranges">Relationship between the spatial distribution of landslides and rock mass strength, and implications for the driving mechanism of landslides in tectonically active mountain ranges</a></div><div class="wp-workCard_item"><span>Engineering Geology</span><span>, 2021</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Abstract The relationship between landslides and rock mass strength is fundamental for assessing ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Abstract The relationship between landslides and rock mass strength is fundamental for assessing landslide hazards. Some researchers have proposed that there is an inverse relationship between the number of landslides and rock mass strength. However, in some tectonically active mountain ranges, higher rates of landsliding appear to be associated with greater rock mass strength. We investigated the relation between landslides and rock mass strength in the Langxian (LX), Lulang (LL), and Tongmai (TM) regions in southeastern Tibet by identifying and mapping 294 large bedrock landslides using 10-m resolution lidar bare-earth imagery. An inverse relationship between topographic relief and the slope angle of historical landslides demonstrates that rock mass strength is an important factor controlling relief in the study area. Applying Culmann&#39;s method, we back-calculated rock mass strengths ranging from 60 to 770 kPa at the landscape scale. Our data show that, at the landscape scale, more landslides have occurred on the hillslopes with greater rock mass strength than on those with lower rock mass strength. We conclude that the stability of slopes in our study areas is controlled by rock mass strength, but the dominant drivers of failure are rock uplift and river incision, rather than a reduction in rock strength as has been proposed in some tectonically passive regions.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="88135a00966db73afe34d91635a6367b" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":92249226,"asset_id":88171084,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/92249226/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="88171084"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="88171084"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 88171084; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=88171084]").text(description); $(".js-view-count[data-work-id=88171084]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 88171084; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='88171084']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "88135a00966db73afe34d91635a6367b" } } $('.js-work-strip[data-work-id=88171084]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":88171084,"title":"Relationship between the spatial distribution of landslides and rock mass strength, and implications for the driving mechanism of landslides in tectonically active mountain ranges","translated_title":"","metadata":{"abstract":"Abstract The relationship between landslides and rock mass strength is fundamental for assessing landslide hazards. Some researchers have proposed that there is an inverse relationship between the number of landslides and rock mass strength. However, in some tectonically active mountain ranges, higher rates of landsliding appear to be associated with greater rock mass strength. We investigated the relation between landslides and rock mass strength in the Langxian (LX), Lulang (LL), and Tongmai (TM) regions in southeastern Tibet by identifying and mapping 294 large bedrock landslides using 10-m resolution lidar bare-earth imagery. An inverse relationship between topographic relief and the slope angle of historical landslides demonstrates that rock mass strength is an important factor controlling relief in the study area. Applying Culmann\u0026#39;s method, we back-calculated rock mass strengths ranging from 60 to 770 kPa at the landscape scale. Our data show that, at the landscape scale, more landslides have occurred on the hillslopes with greater rock mass strength than on those with lower rock mass strength. We conclude that the stability of slopes in our study areas is controlled by rock mass strength, but the dominant drivers of failure are rock uplift and river incision, rather than a reduction in rock strength as has been proposed in some tectonically passive regions.","publisher":"Elsevier BV","publication_date":{"day":null,"month":null,"year":2021,"errors":{}},"publication_name":"Engineering Geology"},"translated_abstract":"Abstract The relationship between landslides and rock mass strength is fundamental for assessing landslide hazards. Some researchers have proposed that there is an inverse relationship between the number of landslides and rock mass strength. However, in some tectonically active mountain ranges, higher rates of landsliding appear to be associated with greater rock mass strength. We investigated the relation between landslides and rock mass strength in the Langxian (LX), Lulang (LL), and Tongmai (TM) regions in southeastern Tibet by identifying and mapping 294 large bedrock landslides using 10-m resolution lidar bare-earth imagery. An inverse relationship between topographic relief and the slope angle of historical landslides demonstrates that rock mass strength is an important factor controlling relief in the study area. Applying Culmann\u0026#39;s method, we back-calculated rock mass strengths ranging from 60 to 770 kPa at the landscape scale. Our data show that, at the landscape scale, more landslides have occurred on the hillslopes with greater rock mass strength than on those with lower rock mass strength. We conclude that the stability of slopes in our study areas is controlled by rock mass strength, but the dominant drivers of failure are rock uplift and river incision, rather than a reduction in rock strength as has been proposed in some tectonically passive regions.","internal_url":"https://www.academia.edu/88171084/Relationship_between_the_spatial_distribution_of_landslides_and_rock_mass_strength_and_implications_for_the_driving_mechanism_of_landslides_in_tectonically_active_mountain_ranges","translated_internal_url":"","created_at":"2022-10-09T07:47:46.629-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":30937520,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":92249226,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/92249226/thumbnails/1.jpg","file_name":"Wang_et_al._Engineering_Geology_2021.pdf","download_url":"https://www.academia.edu/attachments/92249226/download_file","bulk_download_file_name":"Relationship_between_the_spatial_distrib.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/92249226/Wang_et_al._Engineering_Geology_2021-libre.pdf?1665419387=\u0026response-content-disposition=attachment%3B+filename%3DRelationship_between_the_spatial_distrib.pdf\u0026Expires=1741733721\u0026Signature=QIHG4Nx62PyY0JDNwKJ1iH-NvBk8OTknYgEG3OYPwkuec~lPvl4iQr1Jh8JPXNTsD17UgxO92CZ-ZldCxU2zKeXslCHknU1tYH4OuMe~dUxmW1KFXiwnt2-M2aKY57ICWQpOYlJKA6s7x~BRZARDUod0brOnjbt0AenysPdzkX8qDrz-wD~OnyppWJeU3oJOzldZ5Q4a9ESXYe-ApDyM28obzZLawthWYojLNaAqQkEbfhlZr6tbNxc8zPUSDq3160rDVgPo-RI-1MtRUf6bSTXnzmdIkWWvtpz-PueILpPhB~-Db-Y9it9EL1-Z5zMB02gnIUGNTh2LoG7n~fU9FQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Relationship_between_the_spatial_distribution_of_landslides_and_rock_mass_strength_and_implications_for_the_driving_mechanism_of_landslides_in_tectonically_active_mountain_ranges","translated_slug":"","page_count":8,"language":"en","content_type":"Work","summary":"Abstract The relationship between landslides and rock mass strength is fundamental for assessing landslide hazards. Some researchers have proposed that there is an inverse relationship between the number of landslides and rock mass strength. However, in some tectonically active mountain ranges, higher rates of landsliding appear to be associated with greater rock mass strength. We investigated the relation between landslides and rock mass strength in the Langxian (LX), Lulang (LL), and Tongmai (TM) regions in southeastern Tibet by identifying and mapping 294 large bedrock landslides using 10-m resolution lidar bare-earth imagery. An inverse relationship between topographic relief and the slope angle of historical landslides demonstrates that rock mass strength is an important factor controlling relief in the study area. Applying Culmann\u0026#39;s method, we back-calculated rock mass strengths ranging from 60 to 770 kPa at the landscape scale. Our data show that, at the landscape scale, more landslides have occurred on the hillslopes with greater rock mass strength than on those with lower rock mass strength. We conclude that the stability of slopes in our study areas is controlled by rock mass strength, but the dominant drivers of failure are rock uplift and river incision, rather than a reduction in rock strength as has been proposed in some tectonically passive regions.","owner":{"id":30937520,"first_name":"John","middle_initials":null,"last_name":"Clague","page_name":"JohnClague","domain_name":"sfu","created_at":"2015-05-09T12:05:01.456-07:00","display_name":"John Clague","url":"https://sfu.academia.edu/JohnClague"},"attachments":[{"id":92249226,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/92249226/thumbnails/1.jpg","file_name":"Wang_et_al._Engineering_Geology_2021.pdf","download_url":"https://www.academia.edu/attachments/92249226/download_file","bulk_download_file_name":"Relationship_between_the_spatial_distrib.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/92249226/Wang_et_al._Engineering_Geology_2021-libre.pdf?1665419387=\u0026response-content-disposition=attachment%3B+filename%3DRelationship_between_the_spatial_distrib.pdf\u0026Expires=1741733721\u0026Signature=QIHG4Nx62PyY0JDNwKJ1iH-NvBk8OTknYgEG3OYPwkuec~lPvl4iQr1Jh8JPXNTsD17UgxO92CZ-ZldCxU2zKeXslCHknU1tYH4OuMe~dUxmW1KFXiwnt2-M2aKY57ICWQpOYlJKA6s7x~BRZARDUod0brOnjbt0AenysPdzkX8qDrz-wD~OnyppWJeU3oJOzldZ5Q4a9ESXYe-ApDyM28obzZLawthWYojLNaAqQkEbfhlZr6tbNxc8zPUSDq3160rDVgPo-RI-1MtRUf6bSTXnzmdIkWWvtpz-PueILpPhB~-Db-Y9it9EL1-Z5zMB02gnIUGNTh2LoG7n~fU9FQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":73,"name":"Civil Engineering","url":"https://www.academia.edu/Documents/in/Civil_Engineering"},{"id":406,"name":"Geology","url":"https://www.academia.edu/Documents/in/Geology"},{"id":408,"name":"Geomorphology","url":"https://www.academia.edu/Documents/in/Geomorphology"},{"id":20564,"name":"Engineering Geology","url":"https://www.academia.edu/Documents/in/Engineering_Geology"},{"id":199886,"name":"Landslide","url":"https://www.academia.edu/Documents/in/Landslide"},{"id":206804,"name":"Rock mass classification","url":"https://www.academia.edu/Documents/in/Rock_mass_classification"},{"id":289583,"name":"Geological strength index","url":"https://www.academia.edu/Documents/in/Geological_strength_index"},{"id":1736724,"name":"Bedrock","url":"https://www.academia.edu/Documents/in/Bedrock"}],"urls":[{"id":24610508,"url":"https://api.elsevier.com/content/article/PII:S0013795221002921?httpAccept=text/xml"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="84625277"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/84625277/Exploration_of_the_kinematics_of_the_1963_vajont_slide_Italy_using_a_numerical_modelling_toolbox"><img alt="Research paper thumbnail of Exploration of the kinematics of the 1963 vajont slide, Italy, using a numerical modelling toolbox" class="work-thumbnail" src="https://attachments.academia-assets.com/89582016/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/84625277/Exploration_of_the_kinematics_of_the_1963_vajont_slide_Italy_using_a_numerical_modelling_toolbox">Exploration of the kinematics of the 1963 vajont slide, Italy, using a numerical modelling toolbox</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Col Tramontin Fault and Erto Syncline, as well as block size, on the failure. Finally, preliminar...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Col Tramontin Fault and Erto Syncline, as well as block size, on the failure. Finally, preliminary simulations in a new 3D lattice-spring code show that crack clusters developed, and became concentrated in the transition zone between the back and seat of the chair-shaped failure surface.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="f49a1fde59f874a631a72c4cc2f61ca6" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":89582016,"asset_id":84625277,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/89582016/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="84625277"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="84625277"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 84625277; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=84625277]").text(description); $(".js-view-count[data-work-id=84625277]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 84625277; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='84625277']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "f49a1fde59f874a631a72c4cc2f61ca6" } } $('.js-work-strip[data-work-id=84625277]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":84625277,"title":"Exploration of the kinematics of the 1963 vajont slide, Italy, using a numerical modelling toolbox","translated_title":"","metadata":{"grobid_abstract":"Col Tramontin Fault and Erto Syncline, as well as block size, on the failure. Finally, preliminary simulations in a new 3D lattice-spring code show that crack clusters developed, and became concentrated in the transition zone between the back and seat of the chair-shaped failure surface.","publication_date":{"day":null,"month":null,"year":2013,"errors":{}},"grobid_abstract_attachment_id":89582016},"translated_abstract":null,"internal_url":"https://www.academia.edu/84625277/Exploration_of_the_kinematics_of_the_1963_vajont_slide_Italy_using_a_numerical_modelling_toolbox","translated_internal_url":"","created_at":"2022-08-13T07:15:23.819-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":30937520,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":89582016,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/89582016/thumbnails/1.jpg","file_name":"download.pdf","download_url":"https://www.academia.edu/attachments/89582016/download_file","bulk_download_file_name":"Exploration_of_the_kinematics_of_the_196.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/89582016/download-libre.pdf?1660400534=\u0026response-content-disposition=attachment%3B+filename%3DExploration_of_the_kinematics_of_the_196.pdf\u0026Expires=1741733721\u0026Signature=KtAoPQTBqbQR4FrOCEVFCSSDLY9gPRLtaqWXG1aVxOMoznG5uKfbpu0ao2HfNKvxDLFiS2trwOgviAsEldd9FSvwBVIM4JmwDMOoBhVqjR7Jaw4cbvp6-rOppcZaWkIn1HwCss84pv-OxwIdq7DmIH6W1TKO8Q7uGVJTpZ3lzJ0QL0jDLElO0roQNQBcONmLn6F~qBG109h-njcdHp1KuX5rkd1Nq9J0y1Sf5W7XUnERmXdwjpNh2qlhifvaP537IvPsb-EixDlUiSZMvuQiDTsva9breQ-1Yr-aFWlOYn3GcV8rkiV9P7TiUf3EGbW~ebIQRsPK4ulvcYiGhvVq5w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Exploration_of_the_kinematics_of_the_1963_vajont_slide_Italy_using_a_numerical_modelling_toolbox","translated_slug":"","page_count":14,"language":"en","content_type":"Work","summary":"Col Tramontin Fault and Erto Syncline, as well as block size, on the failure. Finally, preliminary simulations in a new 3D lattice-spring code show that crack clusters developed, and became concentrated in the transition zone between the back and seat of the chair-shaped failure surface.","owner":{"id":30937520,"first_name":"John","middle_initials":null,"last_name":"Clague","page_name":"JohnClague","domain_name":"sfu","created_at":"2015-05-09T12:05:01.456-07:00","display_name":"John Clague","url":"https://sfu.academia.edu/JohnClague"},"attachments":[{"id":89582016,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/89582016/thumbnails/1.jpg","file_name":"download.pdf","download_url":"https://www.academia.edu/attachments/89582016/download_file","bulk_download_file_name":"Exploration_of_the_kinematics_of_the_196.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/89582016/download-libre.pdf?1660400534=\u0026response-content-disposition=attachment%3B+filename%3DExploration_of_the_kinematics_of_the_196.pdf\u0026Expires=1741733721\u0026Signature=KtAoPQTBqbQR4FrOCEVFCSSDLY9gPRLtaqWXG1aVxOMoznG5uKfbpu0ao2HfNKvxDLFiS2trwOgviAsEldd9FSvwBVIM4JmwDMOoBhVqjR7Jaw4cbvp6-rOppcZaWkIn1HwCss84pv-OxwIdq7DmIH6W1TKO8Q7uGVJTpZ3lzJ0QL0jDLElO0roQNQBcONmLn6F~qBG109h-njcdHp1KuX5rkd1Nq9J0y1Sf5W7XUnERmXdwjpNh2qlhifvaP537IvPsb-EixDlUiSZMvuQiDTsva9breQ-1Yr-aFWlOYn3GcV8rkiV9P7TiUf3EGbW~ebIQRsPK4ulvcYiGhvVq5w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":406,"name":"Geology","url":"https://www.academia.edu/Documents/in/Geology"},{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":22930,"name":"Numerical Modelling","url":"https://www.academia.edu/Documents/in/Numerical_Modelling"},{"id":90162,"name":"Kinematics","url":"https://www.academia.edu/Documents/in/Kinematics"},{"id":199886,"name":"Landslide","url":"https://www.academia.edu/Documents/in/Landslide"},{"id":810759,"name":"Vajont","url":"https://www.academia.edu/Documents/in/Vajont"},{"id":2699636,"name":"Toolbox","url":"https://www.academia.edu/Documents/in/Toolbox"}],"urls":[{"id":22866526,"url":"http://www.ijege.uniroma1.it/rivista/international-conference-on-vajont-1963-2013-thoughts-and-analyses-after-50-years-since-the-catastrophic-landslide/topic-6-the-vajont-rockslide/exploration-of-the-kinematics-of-the-1963-vajont-slide-italy-using-a-numerical-modelling-toolbox/ijege-13_bs-wolter-et-alii-1.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="84625276"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/84625276/Late_cenozoic_geology_and_geomorphology_of_the_Laguna_de_Agnia_Area_Argentina"><img alt="Research paper thumbnail of Late cenozoic geology and geomorphology of the Laguna de Agnia Area, Argentina" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/84625276/Late_cenozoic_geology_and_geomorphology_of_the_Laguna_de_Agnia_Area_Argentina">Late cenozoic geology and geomorphology of the Laguna de Agnia Area, Argentina</a></div><div class="wp-workCard_item"><span>Journal of South American Earth Sciences</span><span>, 2021</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Abstract Laguna de Agnia is located within an endorheic basin in arid extra-Andean Patagonia. A v...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Abstract Laguna de Agnia is located within an endorheic basin in arid extra-Andean Patagonia. A variety of erosional and depositional landforms, most of which are relict, are well preserved in the basin. Geological, geomorphological, and sedimentological studies, 14C and 40Ar/39Ar ages, and paleomagnetic data allow us to modify the published interpretation of the late Cenozoic stratigraphy of the area and provide an improved understanding of local landscape evolution, and paleoenvironments and paleoclimates in the region. The basin formed during or before the late Oligocene. Miocene pyroclastic deposits, which are widely distributed in this part of Patagonia, were not found within the basin. However, a bajada sloping down toward the east side of the lake likely dates to the Miocene. Basalt lava flows reached the west margin of the Laguna de Agnia depression 3.39 ± 0.02 Ma. A lacustrine phase is manifest in numerous shorelines and related features east of and above the modern lake. This shoreline system, one of the most extensive in Patagonia, provides evidence for high paleo-lake levels associated with cooler and wetter conditions during the late Pleistocene and even in some periods during the Holocene, when Southern Hemisphere Westerlies were more intense than today.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="84625276"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="84625276"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 84625276; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=84625276]").text(description); $(".js-view-count[data-work-id=84625276]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 84625276; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='84625276']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=84625276]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":84625276,"title":"Late cenozoic geology and geomorphology of the Laguna de Agnia Area, Argentina","translated_title":"","metadata":{"abstract":"Abstract Laguna de Agnia is located within an endorheic basin in arid extra-Andean Patagonia. A variety of erosional and depositional landforms, most of which are relict, are well preserved in the basin. Geological, geomorphological, and sedimentological studies, 14C and 40Ar/39Ar ages, and paleomagnetic data allow us to modify the published interpretation of the late Cenozoic stratigraphy of the area and provide an improved understanding of local landscape evolution, and paleoenvironments and paleoclimates in the region. The basin formed during or before the late Oligocene. Miocene pyroclastic deposits, which are widely distributed in this part of Patagonia, were not found within the basin. However, a bajada sloping down toward the east side of the lake likely dates to the Miocene. Basalt lava flows reached the west margin of the Laguna de Agnia depression 3.39 ± 0.02 Ma. A lacustrine phase is manifest in numerous shorelines and related features east of and above the modern lake. This shoreline system, one of the most extensive in Patagonia, provides evidence for high paleo-lake levels associated with cooler and wetter conditions during the late Pleistocene and even in some periods during the Holocene, when Southern Hemisphere Westerlies were more intense than today.","publisher":"Elsevier BV","publication_date":{"day":null,"month":null,"year":2021,"errors":{}},"publication_name":"Journal of South American Earth Sciences"},"translated_abstract":"Abstract Laguna de Agnia is located within an endorheic basin in arid extra-Andean Patagonia. A variety of erosional and depositional landforms, most of which are relict, are well preserved in the basin. Geological, geomorphological, and sedimentological studies, 14C and 40Ar/39Ar ages, and paleomagnetic data allow us to modify the published interpretation of the late Cenozoic stratigraphy of the area and provide an improved understanding of local landscape evolution, and paleoenvironments and paleoclimates in the region. The basin formed during or before the late Oligocene. Miocene pyroclastic deposits, which are widely distributed in this part of Patagonia, were not found within the basin. However, a bajada sloping down toward the east side of the lake likely dates to the Miocene. Basalt lava flows reached the west margin of the Laguna de Agnia depression 3.39 ± 0.02 Ma. A lacustrine phase is manifest in numerous shorelines and related features east of and above the modern lake. This shoreline system, one of the most extensive in Patagonia, provides evidence for high paleo-lake levels associated with cooler and wetter conditions during the late Pleistocene and even in some periods during the Holocene, when Southern Hemisphere Westerlies were more intense than today.","internal_url":"https://www.academia.edu/84625276/Late_cenozoic_geology_and_geomorphology_of_the_Laguna_de_Agnia_Area_Argentina","translated_internal_url":"","created_at":"2022-08-13T07:15:21.803-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":30937520,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Late_cenozoic_geology_and_geomorphology_of_the_Laguna_de_Agnia_Area_Argentina","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"Abstract Laguna de Agnia is located within an endorheic basin in arid extra-Andean Patagonia. A variety of erosional and depositional landforms, most of which are relict, are well preserved in the basin. Geological, geomorphological, and sedimentological studies, 14C and 40Ar/39Ar ages, and paleomagnetic data allow us to modify the published interpretation of the late Cenozoic stratigraphy of the area and provide an improved understanding of local landscape evolution, and paleoenvironments and paleoclimates in the region. The basin formed during or before the late Oligocene. Miocene pyroclastic deposits, which are widely distributed in this part of Patagonia, were not found within the basin. However, a bajada sloping down toward the east side of the lake likely dates to the Miocene. Basalt lava flows reached the west margin of the Laguna de Agnia depression 3.39 ± 0.02 Ma. A lacustrine phase is manifest in numerous shorelines and related features east of and above the modern lake. This shoreline system, one of the most extensive in Patagonia, provides evidence for high paleo-lake levels associated with cooler and wetter conditions during the late Pleistocene and even in some periods during the Holocene, when Southern Hemisphere Westerlies were more intense than today.","owner":{"id":30937520,"first_name":"John","middle_initials":null,"last_name":"Clague","page_name":"JohnClague","domain_name":"sfu","created_at":"2015-05-09T12:05:01.456-07:00","display_name":"John Clague","url":"https://sfu.academia.edu/JohnClague"},"attachments":[],"research_interests":[{"id":406,"name":"Geology","url":"https://www.academia.edu/Documents/in/Geology"},{"id":409,"name":"Geophysics","url":"https://www.academia.edu/Documents/in/Geophysics"},{"id":417,"name":"Paleontology","url":"https://www.academia.edu/Documents/in/Paleontology"},{"id":9813,"name":"Argentina","url":"https://www.academia.edu/Documents/in/Argentina"},{"id":108245,"name":"Geología","url":"https://www.academia.edu/Documents/in/Geolog%C3%ADa"},{"id":146480,"name":"Cenozoic","url":"https://www.academia.edu/Documents/in/Cenozoic"},{"id":903559,"name":"Enseñanza - Aprendizaje Ciencias Naturales Y Exactas","url":"https://www.academia.edu/Documents/in/Ensenanza_-_Aprendizaje_Ciencias_Naturales_Y_Exactas"}],"urls":[{"id":22866525,"url":"https://api.elsevier.com/content/article/PII:S0895981121001036?httpAccept=text/xml"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="84625275"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/84625275/Preliminary_results_of_a_photogrammetric_characterization_of_the_1963_Vajont_landslide"><img alt="Research paper thumbnail of Preliminary results of a photogrammetric characterization of the 1963 Vajont landslide" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/84625275/Preliminary_results_of_a_photogrammetric_characterization_of_the_1963_Vajont_landslide">Preliminary results of a photogrammetric characterization of the 1963 Vajont landslide</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Cited By (since 1996):1, Export Date: 3 October 2014</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="84625275"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="84625275"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 84625275; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=84625275]").text(description); $(".js-view-count[data-work-id=84625275]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 84625275; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='84625275']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=84625275]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":84625275,"title":"Preliminary results of a photogrammetric characterization of the 1963 Vajont landslide","translated_title":"","metadata":{"abstract":"Cited By (since 1996):1, Export Date: 3 October 2014"},"translated_abstract":"Cited By (since 1996):1, Export Date: 3 October 2014","internal_url":"https://www.academia.edu/84625275/Preliminary_results_of_a_photogrammetric_characterization_of_the_1963_Vajont_landslide","translated_internal_url":"","created_at":"2022-08-13T07:15:19.924-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":30937520,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Preliminary_results_of_a_photogrammetric_characterization_of_the_1963_Vajont_landslide","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"Cited By (since 1996):1, Export Date: 3 October 2014","owner":{"id":30937520,"first_name":"John","middle_initials":null,"last_name":"Clague","page_name":"JohnClague","domain_name":"sfu","created_at":"2015-05-09T12:05:01.456-07:00","display_name":"John Clague","url":"https://sfu.academia.edu/JohnClague"},"attachments":[],"research_interests":[{"id":406,"name":"Geology","url":"https://www.academia.edu/Documents/in/Geology"},{"id":1282,"name":"Photogrammetry","url":"https://www.academia.edu/Documents/in/Photogrammetry"},{"id":199886,"name":"Landslide","url":"https://www.academia.edu/Documents/in/Landslide"},{"id":810759,"name":"Vajont","url":"https://www.academia.edu/Documents/in/Vajont"},{"id":1114697,"name":"Digital Terrestrial Photogrammetry","url":"https://www.academia.edu/Documents/in/Digital_Terrestrial_Photogrammetry"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="84625273"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/84625273/Hanson_et_al_QR_2014"><img alt="Research paper thumbnail of Hanson et al QR 2014" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/84625273/Hanson_et_al_QR_2014">Hanson et al QR 2014</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="84625273"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="84625273"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 84625273; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=84625273]").text(description); $(".js-view-count[data-work-id=84625273]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 84625273; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='84625273']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=84625273]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":84625273,"title":"Hanson et al QR 2014","translated_title":"","metadata":{},"translated_abstract":null,"internal_url":"https://www.academia.edu/84625273/Hanson_et_al_QR_2014","translated_internal_url":"","created_at":"2022-08-13T07:15:17.953-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":30937520,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Hanson_et_al_QR_2014","translated_slug":"","page_count":null,"language":"fr","content_type":"Work","summary":null,"owner":{"id":30937520,"first_name":"John","middle_initials":null,"last_name":"Clague","page_name":"JohnClague","domain_name":"sfu","created_at":"2015-05-09T12:05:01.456-07:00","display_name":"John Clague","url":"https://sfu.academia.edu/JohnClague"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="84625271"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/84625271/Landslides_on_Haida_Gwaii_during_and_after_the_Earthquake"><img alt="Research paper thumbnail of Landslides on Haida Gwaii during and after the Earthquake" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/84625271/Landslides_on_Haida_Gwaii_during_and_after_the_Earthquake">Landslides on Haida Gwaii during and after the Earthquake</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="84625271"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="84625271"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 84625271; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=84625271]").text(description); $(".js-view-count[data-work-id=84625271]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 84625271; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='84625271']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=84625271]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":84625271,"title":"Landslides on Haida Gwaii during and after the Earthquake","translated_title":"","metadata":{},"translated_abstract":null,"internal_url":"https://www.academia.edu/84625271/Landslides_on_Haida_Gwaii_during_and_after_the_Earthquake","translated_internal_url":"","created_at":"2022-08-13T07:15:16.643-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":30937520,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Landslides_on_Haida_Gwaii_during_and_after_the_Earthquake","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":null,"owner":{"id":30937520,"first_name":"John","middle_initials":null,"last_name":"Clague","page_name":"JohnClague","domain_name":"sfu","created_at":"2015-05-09T12:05:01.456-07:00","display_name":"John Clague","url":"https://sfu.academia.edu/JohnClague"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="84625268"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/84625268/Reply_to_letter_to_the_editor_from_Easterbrook_and_Kovanen_re_Quaternary_Research_61_193_203"><img alt="Research paper thumbnail of Reply to letter to the editor from Easterbrook and Kovanen re Quaternary Research 61, 193–203" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/84625268/Reply_to_letter_to_the_editor_from_Easterbrook_and_Kovanen_re_Quaternary_Research_61_193_203">Reply to letter to the editor from Easterbrook and Kovanen re Quaternary Research 61, 193–203</a></div><div class="wp-workCard_item"><span>Quaternary Research</span><span>, 2005</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Palaeoecology 203, 337–342. Easterbrook, D.J., Kovanen, D.J., 1998. dPre-younger Dryas resurgence...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Palaeoecology 203, 337–342. Easterbrook, D.J., Kovanen, D.J., 1998. dPre-younger Dryas resurgence of the southwestern margin of the Cordilleran Ice Sheet, British Columbia, CanadaT: comments: Boreas 27, 225–230. Heier-Nielsen, S., Heinemeier, J., Nielsen, H.L., Rud, N., 1995. Recent reservoir ages for Danish fjords and marine waters. Radiocarbon 37, 875–882. Hutchinson, I., James, T.S., Reimer, P.J., Bornhold, B.D., Clague, J.J., 2004. Marine and limnic radiocarbon reservoir corrections for studies of lateand postglacial environments in Georgia Basin and Puget Lowland, British Columbia, Canada and Washington, USA. Quaternary Research 61, 193–203. Kovanen, D.J., 2002. Morphologic and stratigraphic evidence for Allerbd and Younger Dryas age glacier fluctuations of the Cordilleran Ice Sheet, British Columbia, Canada and Northwestern Washington, U.S.A. Boreas 31, 163–184. Kovanen, D.J., Easterbrook, D.J., 2002a. Paleodeviations of radiocarbon marine reservoir values for the NE Pacific. Geology 30, 243–246. Kovanen, D.J., Easterbrook, D.J., 2002b. Timing and extent of Allerod and Younger Dryas age (ca. 12,500–10,000 14C yr B.P.) oscillation of the Cordilleran Ice Sheet in the Fraser Lowland, western North America. Quaternary Research 57, 208–224. Pellatt, M.G., Mathewes, R.W., Clague, J.J., 2004. Reply to comments on bImplication of a late-glacial pollen record for the glacial and climatic history of the Fraser Lowland, British ColumbiaQ by Easterbrook, 2004. Palaeogeography, Palaeoclimatology, Palaeoecology 203, 343–346. Rodrigues, C., 1988. Late Quaternary invertebrate faunal associations and chronology of the western Champlain Sea. In: Gadd, N.R. (Ed.), The Late Quaternary Development of the Champlain Sea Basin, Special Paper 35, pp. 155–176. Geological Association of Canada, Ottawa. Southon, J.R., Nelson, D.E., Vogel, J.S., 1990. A record of past ocean– atmosphere radiocarbon differences from the northeast Pacific. Paleoceanography 5, 197–206. Stuiver,M., Braziunas, T.F., 1993.Modelling atmospheric C influences and C ages of marine samples to 10,000 BC. Radiocarbon 35, 137–189.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="84625268"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="84625268"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 84625268; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=84625268]").text(description); $(".js-view-count[data-work-id=84625268]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 84625268; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='84625268']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=84625268]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":84625268,"title":"Reply to letter to the editor from Easterbrook and Kovanen re Quaternary Research 61, 193–203","translated_title":"","metadata":{"abstract":"Palaeoecology 203, 337–342. Easterbrook, D.J., Kovanen, D.J., 1998. dPre-younger Dryas resurgence of the southwestern margin of the Cordilleran Ice Sheet, British Columbia, CanadaT: comments: Boreas 27, 225–230. Heier-Nielsen, S., Heinemeier, J., Nielsen, H.L., Rud, N., 1995. Recent reservoir ages for Danish fjords and marine waters. Radiocarbon 37, 875–882. Hutchinson, I., James, T.S., Reimer, P.J., Bornhold, B.D., Clague, J.J., 2004. Marine and limnic radiocarbon reservoir corrections for studies of lateand postglacial environments in Georgia Basin and Puget Lowland, British Columbia, Canada and Washington, USA. Quaternary Research 61, 193–203. Kovanen, D.J., 2002. Morphologic and stratigraphic evidence for Allerbd and Younger Dryas age glacier fluctuations of the Cordilleran Ice Sheet, British Columbia, Canada and Northwestern Washington, U.S.A. Boreas 31, 163–184. Kovanen, D.J., Easterbrook, D.J., 2002a. Paleodeviations of radiocarbon marine reservoir values for the NE Pacific. Geology 30, 243–246. Kovanen, D.J., Easterbrook, D.J., 2002b. Timing and extent of Allerod and Younger Dryas age (ca. 12,500–10,000 14C yr B.P.) oscillation of the Cordilleran Ice Sheet in the Fraser Lowland, western North America. Quaternary Research 57, 208–224. Pellatt, M.G., Mathewes, R.W., Clague, J.J., 2004. Reply to comments on bImplication of a late-glacial pollen record for the glacial and climatic history of the Fraser Lowland, British ColumbiaQ by Easterbrook, 2004. Palaeogeography, Palaeoclimatology, Palaeoecology 203, 343–346. Rodrigues, C., 1988. Late Quaternary invertebrate faunal associations and chronology of the western Champlain Sea. In: Gadd, N.R. (Ed.), The Late Quaternary Development of the Champlain Sea Basin, Special Paper 35, pp. 155–176. Geological Association of Canada, Ottawa. Southon, J.R., Nelson, D.E., Vogel, J.S., 1990. A record of past ocean– atmosphere radiocarbon differences from the northeast Pacific. Paleoceanography 5, 197–206. Stuiver,M., Braziunas, T.F., 1993.Modelling atmospheric C influences and C ages of marine samples to 10,000 BC. Radiocarbon 35, 137–189.","publisher":"Cambridge University Press (CUP)","publication_date":{"day":null,"month":null,"year":2005,"errors":{}},"publication_name":"Quaternary Research"},"translated_abstract":"Palaeoecology 203, 337–342. Easterbrook, D.J., Kovanen, D.J., 1998. dPre-younger Dryas resurgence of the southwestern margin of the Cordilleran Ice Sheet, British Columbia, CanadaT: comments: Boreas 27, 225–230. Heier-Nielsen, S., Heinemeier, J., Nielsen, H.L., Rud, N., 1995. Recent reservoir ages for Danish fjords and marine waters. Radiocarbon 37, 875–882. Hutchinson, I., James, T.S., Reimer, P.J., Bornhold, B.D., Clague, J.J., 2004. Marine and limnic radiocarbon reservoir corrections for studies of lateand postglacial environments in Georgia Basin and Puget Lowland, British Columbia, Canada and Washington, USA. Quaternary Research 61, 193–203. Kovanen, D.J., 2002. Morphologic and stratigraphic evidence for Allerbd and Younger Dryas age glacier fluctuations of the Cordilleran Ice Sheet, British Columbia, Canada and Northwestern Washington, U.S.A. Boreas 31, 163–184. Kovanen, D.J., Easterbrook, D.J., 2002a. Paleodeviations of radiocarbon marine reservoir values for the NE Pacific. Geology 30, 243–246. Kovanen, D.J., Easterbrook, D.J., 2002b. Timing and extent of Allerod and Younger Dryas age (ca. 12,500–10,000 14C yr B.P.) oscillation of the Cordilleran Ice Sheet in the Fraser Lowland, western North America. Quaternary Research 57, 208–224. Pellatt, M.G., Mathewes, R.W., Clague, J.J., 2004. Reply to comments on bImplication of a late-glacial pollen record for the glacial and climatic history of the Fraser Lowland, British ColumbiaQ by Easterbrook, 2004. Palaeogeography, Palaeoclimatology, Palaeoecology 203, 343–346. Rodrigues, C., 1988. Late Quaternary invertebrate faunal associations and chronology of the western Champlain Sea. In: Gadd, N.R. (Ed.), The Late Quaternary Development of the Champlain Sea Basin, Special Paper 35, pp. 155–176. Geological Association of Canada, Ottawa. Southon, J.R., Nelson, D.E., Vogel, J.S., 1990. A record of past ocean– atmosphere radiocarbon differences from the northeast Pacific. Paleoceanography 5, 197–206. Stuiver,M., Braziunas, T.F., 1993.Modelling atmospheric C influences and C ages of marine samples to 10,000 BC. Radiocarbon 35, 137–189.","internal_url":"https://www.academia.edu/84625268/Reply_to_letter_to_the_editor_from_Easterbrook_and_Kovanen_re_Quaternary_Research_61_193_203","translated_internal_url":"","created_at":"2022-08-13T07:15:15.178-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":30937520,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Reply_to_letter_to_the_editor_from_Easterbrook_and_Kovanen_re_Quaternary_Research_61_193_203","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"Palaeoecology 203, 337–342. Easterbrook, D.J., Kovanen, D.J., 1998. dPre-younger Dryas resurgence of the southwestern margin of the Cordilleran Ice Sheet, British Columbia, CanadaT: comments: Boreas 27, 225–230. Heier-Nielsen, S., Heinemeier, J., Nielsen, H.L., Rud, N., 1995. Recent reservoir ages for Danish fjords and marine waters. Radiocarbon 37, 875–882. Hutchinson, I., James, T.S., Reimer, P.J., Bornhold, B.D., Clague, J.J., 2004. Marine and limnic radiocarbon reservoir corrections for studies of lateand postglacial environments in Georgia Basin and Puget Lowland, British Columbia, Canada and Washington, USA. Quaternary Research 61, 193–203. Kovanen, D.J., 2002. Morphologic and stratigraphic evidence for Allerbd and Younger Dryas age glacier fluctuations of the Cordilleran Ice Sheet, British Columbia, Canada and Northwestern Washington, U.S.A. Boreas 31, 163–184. Kovanen, D.J., Easterbrook, D.J., 2002a. Paleodeviations of radiocarbon marine reservoir values for the NE Pacific. Geology 30, 243–246. Kovanen, D.J., Easterbrook, D.J., 2002b. Timing and extent of Allerod and Younger Dryas age (ca. 12,500–10,000 14C yr B.P.) oscillation of the Cordilleran Ice Sheet in the Fraser Lowland, western North America. Quaternary Research 57, 208–224. Pellatt, M.G., Mathewes, R.W., Clague, J.J., 2004. Reply to comments on bImplication of a late-glacial pollen record for the glacial and climatic history of the Fraser Lowland, British ColumbiaQ by Easterbrook, 2004. Palaeogeography, Palaeoclimatology, Palaeoecology 203, 343–346. Rodrigues, C., 1988. Late Quaternary invertebrate faunal associations and chronology of the western Champlain Sea. In: Gadd, N.R. (Ed.), The Late Quaternary Development of the Champlain Sea Basin, Special Paper 35, pp. 155–176. Geological Association of Canada, Ottawa. Southon, J.R., Nelson, D.E., Vogel, J.S., 1990. A record of past ocean– atmosphere radiocarbon differences from the northeast Pacific. Paleoceanography 5, 197–206. Stuiver,M., Braziunas, T.F., 1993.Modelling atmospheric C influences and C ages of marine samples to 10,000 BC. Radiocarbon 35, 137–189.","owner":{"id":30937520,"first_name":"John","middle_initials":null,"last_name":"Clague","page_name":"JohnClague","domain_name":"sfu","created_at":"2015-05-09T12:05:01.456-07:00","display_name":"John Clague","url":"https://sfu.academia.edu/JohnClague"},"attachments":[],"research_interests":[{"id":392,"name":"Archaeology","url":"https://www.academia.edu/Documents/in/Archaeology"},{"id":406,"name":"Geology","url":"https://www.academia.edu/Documents/in/Geology"},{"id":35587,"name":"Quaternary","url":"https://www.academia.edu/Documents/in/Quaternary"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="84625265"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/84625265/The_1963_Vaiont_landslide_Italy"><img alt="Research paper thumbnail of The 1963 Vaiont landslide, Italy" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/84625265/The_1963_Vaiont_landslide_Italy">The 1963 Vaiont landslide, Italy</a></div><div class="wp-workCard_item"><span>Landslides</span><span>, 2012</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">ABSTRACT</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="84625265"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="84625265"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 84625265; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=84625265]").text(description); $(".js-view-count[data-work-id=84625265]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 84625265; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='84625265']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=84625265]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":84625265,"title":"The 1963 Vaiont landslide, Italy","translated_title":"","metadata":{"abstract":"ABSTRACT","publication_date":{"day":null,"month":null,"year":2012,"errors":{}},"publication_name":"Landslides"},"translated_abstract":"ABSTRACT","internal_url":"https://www.academia.edu/84625265/The_1963_Vaiont_landslide_Italy","translated_internal_url":"","created_at":"2022-08-13T07:15:13.146-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":30937520,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"The_1963_Vaiont_landslide_Italy","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"ABSTRACT","owner":{"id":30937520,"first_name":"John","middle_initials":null,"last_name":"Clague","page_name":"JohnClague","domain_name":"sfu","created_at":"2015-05-09T12:05:01.456-07:00","display_name":"John Clague","url":"https://sfu.academia.edu/JohnClague"},"attachments":[],"research_interests":[{"id":406,"name":"Geology","url":"https://www.academia.edu/Documents/in/Geology"},{"id":408,"name":"Geomorphology","url":"https://www.academia.edu/Documents/in/Geomorphology"},{"id":7968,"name":"Prediction","url":"https://www.academia.edu/Documents/in/Prediction"},{"id":20054,"name":"Landslides","url":"https://www.academia.edu/Documents/in/Landslides"},{"id":20564,"name":"Engineering Geology","url":"https://www.academia.edu/Documents/in/Engineering_Geology"},{"id":56351,"name":"Creep","url":"https://www.academia.edu/Documents/in/Creep"},{"id":149210,"name":"Mechanism","url":"https://www.academia.edu/Documents/in/Mechanism"},{"id":199886,"name":"Landslide","url":"https://www.academia.edu/Documents/in/Landslide"},{"id":482561,"name":"Shear Strength","url":"https://www.academia.edu/Documents/in/Shear_Strength"},{"id":810759,"name":"Vajont","url":"https://www.academia.edu/Documents/in/Vajont"},{"id":1137275,"name":"Discontinuous Deformation Analysis","url":"https://www.academia.edu/Documents/in/Discontinuous_Deformation_Analysis"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="84625262"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/84625262/Area_change_of_glaciers_in_the_Canadian_Rocky_Mountains_1919_to_2006"><img alt="Research paper thumbnail of Area change of glaciers in the Canadian Rocky Mountains, 1919 to 2006" class="work-thumbnail" src="https://attachments.academia-assets.com/89582004/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/84625262/Area_change_of_glaciers_in_the_Canadian_Rocky_Mountains_1919_to_2006">Area change of glaciers in the Canadian Rocky Mountains, 1919 to 2006</a></div><div class="wp-workCard_item"><span>The Cryosphere Discussions</span><span>, 2012</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Glaciers in the Canadian Rocky Mountains constitute an important freshwater resource. To enhance ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Glaciers in the Canadian Rocky Mountains constitute an important freshwater resource. To enhance our understanding of the influence climate and local topography have on glacier area, large numbers of glaciers of different sizes and attributes need to be monitored over periods of many decades. We used Interprovincial Boundary Commission Survey (IBCS) maps of the Alberta-British Columbia (BC) border (1903-1924), BC Terrain Resource Information Management (TRIM) data (1982-1987), and Landsat Thematic Mapper (TM) and Enhanced Thematic Mapper (ETM+) imagery (2000-2002 and 2006) to document planimetric changes in glacier cover in the central and southern Canadian Rocky Mountains between 1919 and 2006. Over this period, glacier cover in the study area decreased by 590 ± 70 km 2 (40 ± 5 %), 17 of 523 glaciers disappeared and 124 glaciers fragmented into multiple ice masses. Glaciers smaller than 1.0 km 2 experienced the greatest relative area loss (64 ± 8 %), and relative area loss is more variable with small glaciers, suggesting that the local topographic setting controls the response of these glaciers to climate change. Small glaciers with low slopes, low mean/median elevations, south to west aspects, and high insolation experienced the largest reduction in area. Similar rates of area change characterize the periods 1919-1985 and 1985-2001; −6.3 ± 0.6 km 2 yr −1 (−0.4 ± 0.1 % yr −1) and −5.0 ± 0.5 km 2 yr −1 (−0.5 ± 0.1 % yr −1), respectively. The rate of area loss, however, increased over the period 2001-2006; −19.3 ± 2.4 km 2 yr −1 (−2.0 ± 0.2 % yr −1). Applying size class-specific scaling factors, we estimate a total reduction in glacier cover in the central and southern Canadian Rocky Mountains for the period 1919-2006 of 750 km 2 (30 %). 1 Introduction Glaciers in the Canadian Rocky Mountains constitute an important freshwater resource. Glacier meltwater flows into four major watersheds, those of the Mackenzie, Nelson, Fraser, and Columbia river basins and drains into the Arctic, Atlantic, and Pacific oceans. The contribution of meltwater to total discharge may be low, but glacier runoff supplements summer flow and regulates stream temperature, both of which are important for aquatic ecosystems, irrigation, industry, hydro power and human consumption (</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="92ccc411feabf31cedd0640aaccdffb1" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":89582004,"asset_id":84625262,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/89582004/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="84625262"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="84625262"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 84625262; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=84625262]").text(description); $(".js-view-count[data-work-id=84625262]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 84625262; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='84625262']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "92ccc411feabf31cedd0640aaccdffb1" } } $('.js-work-strip[data-work-id=84625262]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":84625262,"title":"Area change of glaciers in the Canadian Rocky Mountains, 1919 to 2006","translated_title":"","metadata":{"publisher":"Copernicus GmbH","grobid_abstract":"Glaciers in the Canadian Rocky Mountains constitute an important freshwater resource. To enhance our understanding of the influence climate and local topography have on glacier area, large numbers of glaciers of different sizes and attributes need to be monitored over periods of many decades. We used Interprovincial Boundary Commission Survey (IBCS) maps of the Alberta-British Columbia (BC) border (1903-1924), BC Terrain Resource Information Management (TRIM) data (1982-1987), and Landsat Thematic Mapper (TM) and Enhanced Thematic Mapper (ETM+) imagery (2000-2002 and 2006) to document planimetric changes in glacier cover in the central and southern Canadian Rocky Mountains between 1919 and 2006. Over this period, glacier cover in the study area decreased by 590 ± 70 km 2 (40 ± 5 %), 17 of 523 glaciers disappeared and 124 glaciers fragmented into multiple ice masses. Glaciers smaller than 1.0 km 2 experienced the greatest relative area loss (64 ± 8 %), and relative area loss is more variable with small glaciers, suggesting that the local topographic setting controls the response of these glaciers to climate change. Small glaciers with low slopes, low mean/median elevations, south to west aspects, and high insolation experienced the largest reduction in area. Similar rates of area change characterize the periods 1919-1985 and 1985-2001; −6.3 ± 0.6 km 2 yr −1 (−0.4 ± 0.1 % yr −1) and −5.0 ± 0.5 km 2 yr −1 (−0.5 ± 0.1 % yr −1), respectively. The rate of area loss, however, increased over the period 2001-2006; −19.3 ± 2.4 km 2 yr −1 (−2.0 ± 0.2 % yr −1). Applying size class-specific scaling factors, we estimate a total reduction in glacier cover in the central and southern Canadian Rocky Mountains for the period 1919-2006 of 750 km 2 (30 %). 1 Introduction Glaciers in the Canadian Rocky Mountains constitute an important freshwater resource. Glacier meltwater flows into four major watersheds, those of the Mackenzie, Nelson, Fraser, and Columbia river basins and drains into the Arctic, Atlantic, and Pacific oceans. The contribution of meltwater to total discharge may be low, but glacier runoff supplements summer flow and regulates stream temperature, both of which are important for aquatic ecosystems, irrigation, industry, hydro power and human consumption (","publication_date":{"day":null,"month":null,"year":2012,"errors":{}},"publication_name":"The Cryosphere Discussions","grobid_abstract_attachment_id":89582004},"translated_abstract":null,"internal_url":"https://www.academia.edu/84625262/Area_change_of_glaciers_in_the_Canadian_Rocky_Mountains_1919_to_2006","translated_internal_url":"","created_at":"2022-08-13T07:15:10.291-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":30937520,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":89582004,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/89582004/thumbnails/1.jpg","file_name":"tc-6-1541-2012.pdf","download_url":"https://www.academia.edu/attachments/89582004/download_file","bulk_download_file_name":"Area_change_of_glaciers_in_the_Canadian.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/89582004/tc-6-1541-2012-libre.pdf?1660400532=\u0026response-content-disposition=attachment%3B+filename%3DArea_change_of_glaciers_in_the_Canadian.pdf\u0026Expires=1741733721\u0026Signature=B0kbPGk9-pP2LNka-ix7ud8be0y98xjRi-gADE4zTZ6tBSkkFaVPFb0cvBOnKHW4SmKxwf~XcYC~jlc125XL1kJAgEXBkB0kxDb84~hVG3~76vnB4huByVRiKxHJ~-y2ElIeJ9ThQV22221Or90Dm3wSG2i4oQh9G3yHTvV6KiQamHHvCQc3j3MZivusZynWHdFH-NJR1RAG9P5xkYqmMHCUMtl6yEZ9TZQtdPWS-SkV4O2NquZqAR3F-Z0TSfd0VZ7vw6OAQNkNcqNImUxC9TneLc07TnxZ6NaPE5KL87JJRiAyBabqedwLkUmrUjWzrrPayl~GF~4aDZB7e4iPtg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Area_change_of_glaciers_in_the_Canadian_Rocky_Mountains_1919_to_2006","translated_slug":"","page_count":12,"language":"en","content_type":"Work","summary":"Glaciers in the Canadian Rocky Mountains constitute an important freshwater resource. To enhance our understanding of the influence climate and local topography have on glacier area, large numbers of glaciers of different sizes and attributes need to be monitored over periods of many decades. We used Interprovincial Boundary Commission Survey (IBCS) maps of the Alberta-British Columbia (BC) border (1903-1924), BC Terrain Resource Information Management (TRIM) data (1982-1987), and Landsat Thematic Mapper (TM) and Enhanced Thematic Mapper (ETM+) imagery (2000-2002 and 2006) to document planimetric changes in glacier cover in the central and southern Canadian Rocky Mountains between 1919 and 2006. Over this period, glacier cover in the study area decreased by 590 ± 70 km 2 (40 ± 5 %), 17 of 523 glaciers disappeared and 124 glaciers fragmented into multiple ice masses. Glaciers smaller than 1.0 km 2 experienced the greatest relative area loss (64 ± 8 %), and relative area loss is more variable with small glaciers, suggesting that the local topographic setting controls the response of these glaciers to climate change. Small glaciers with low slopes, low mean/median elevations, south to west aspects, and high insolation experienced the largest reduction in area. Similar rates of area change characterize the periods 1919-1985 and 1985-2001; −6.3 ± 0.6 km 2 yr −1 (−0.4 ± 0.1 % yr −1) and −5.0 ± 0.5 km 2 yr −1 (−0.5 ± 0.1 % yr −1), respectively. The rate of area loss, however, increased over the period 2001-2006; −19.3 ± 2.4 km 2 yr −1 (−2.0 ± 0.2 % yr −1). Applying size class-specific scaling factors, we estimate a total reduction in glacier cover in the central and southern Canadian Rocky Mountains for the period 1919-2006 of 750 km 2 (30 %). 1 Introduction Glaciers in the Canadian Rocky Mountains constitute an important freshwater resource. Glacier meltwater flows into four major watersheds, those of the Mackenzie, Nelson, Fraser, and Columbia river basins and drains into the Arctic, Atlantic, and Pacific oceans. The contribution of meltwater to total discharge may be low, but glacier runoff supplements summer flow and regulates stream temperature, both of which are important for aquatic ecosystems, irrigation, industry, hydro power and human consumption (","owner":{"id":30937520,"first_name":"John","middle_initials":null,"last_name":"Clague","page_name":"JohnClague","domain_name":"sfu","created_at":"2015-05-09T12:05:01.456-07:00","display_name":"John Clague","url":"https://sfu.academia.edu/JohnClague"},"attachments":[{"id":89582004,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/89582004/thumbnails/1.jpg","file_name":"tc-6-1541-2012.pdf","download_url":"https://www.academia.edu/attachments/89582004/download_file","bulk_download_file_name":"Area_change_of_glaciers_in_the_Canadian.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/89582004/tc-6-1541-2012-libre.pdf?1660400532=\u0026response-content-disposition=attachment%3B+filename%3DArea_change_of_glaciers_in_the_Canadian.pdf\u0026Expires=1741733721\u0026Signature=B0kbPGk9-pP2LNka-ix7ud8be0y98xjRi-gADE4zTZ6tBSkkFaVPFb0cvBOnKHW4SmKxwf~XcYC~jlc125XL1kJAgEXBkB0kxDb84~hVG3~76vnB4huByVRiKxHJ~-y2ElIeJ9ThQV22221Or90Dm3wSG2i4oQh9G3yHTvV6KiQamHHvCQc3j3MZivusZynWHdFH-NJR1RAG9P5xkYqmMHCUMtl6yEZ9TZQtdPWS-SkV4O2NquZqAR3F-Z0TSfd0VZ7vw6OAQNkNcqNImUxC9TneLc07TnxZ6NaPE5KL87JJRiAyBabqedwLkUmrUjWzrrPayl~GF~4aDZB7e4iPtg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":415,"name":"Oceanography","url":"https://www.academia.edu/Documents/in/Oceanography"},{"id":326378,"name":"The cryosphere","url":"https://www.academia.edu/Documents/in/The_cryosphere"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="84625259"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/84625259/Climate_change_and_geomorphological_hazards_in_the_eastern_European_Alps"><img alt="Research paper thumbnail of Climate change and geomorphological hazards in the eastern European Alps" class="work-thumbnail" src="https://attachments.academia-assets.com/89581963/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/84625259/Climate_change_and_geomorphological_hazards_in_the_eastern_European_Alps">Climate change and geomorphological hazards in the eastern European Alps</a></div><div class="wp-workCard_item"><span>Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences</span><span>, 2010</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Climate and environmental changes associated with anthropogenic global warming are being increasi...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Climate and environmental changes associated with anthropogenic global warming are being increasingly identified in the European Alps, as seen by changes in long-term high-alpine temperature, precipitation, glacier cover and permafrost. In turn, these changes impact on land-surface stability, and lead to increased frequency and magnitude of natural mountain hazards, including rock falls, debris flows, landslides, avalanches and floods. These hazards also impact on infrastructure, and socio-economic and cultural activities in mountain regions. This paper presents two case studies (2003 heatwave, 2005 floods) that demonstrate some of the interlinkages between physical processes and human activity in climatically sensitive alpine regions that are responding to ongoing climate change. Based on this evidence, we outline future implications of climate change on mountain environments and its impact on hazards and hazard management in paraglacial mountain systems.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="343e639a4975a126d90c90fdf8a982dc" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":89581963,"asset_id":84625259,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/89581963/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="84625259"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="84625259"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 84625259; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=84625259]").text(description); $(".js-view-count[data-work-id=84625259]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 84625259; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='84625259']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "343e639a4975a126d90c90fdf8a982dc" } } $('.js-work-strip[data-work-id=84625259]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":84625259,"title":"Climate change and geomorphological hazards in the eastern European Alps","translated_title":"","metadata":{"abstract":"Climate and environmental changes associated with anthropogenic global warming are being increasingly identified in the European Alps, as seen by changes in long-term high-alpine temperature, precipitation, glacier cover and permafrost. In turn, these changes impact on land-surface stability, and lead to increased frequency and magnitude of natural mountain hazards, including rock falls, debris flows, landslides, avalanches and floods. These hazards also impact on infrastructure, and socio-economic and cultural activities in mountain regions. This paper presents two case studies (2003 heatwave, 2005 floods) that demonstrate some of the interlinkages between physical processes and human activity in climatically sensitive alpine regions that are responding to ongoing climate change. Based on this evidence, we outline future implications of climate change on mountain environments and its impact on hazards and hazard management in paraglacial mountain systems.","publisher":"The Royal Society","ai_title_tag":"Climate Change Impacts on Alpine Hazards","publication_date":{"day":null,"month":null,"year":2010,"errors":{}},"publication_name":"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences"},"translated_abstract":"Climate and environmental changes associated with anthropogenic global warming are being increasingly identified in the European Alps, as seen by changes in long-term high-alpine temperature, precipitation, glacier cover and permafrost. In turn, these changes impact on land-surface stability, and lead to increased frequency and magnitude of natural mountain hazards, including rock falls, debris flows, landslides, avalanches and floods. These hazards also impact on infrastructure, and socio-economic and cultural activities in mountain regions. This paper presents two case studies (2003 heatwave, 2005 floods) that demonstrate some of the interlinkages between physical processes and human activity in climatically sensitive alpine regions that are responding to ongoing climate change. Based on this evidence, we outline future implications of climate change on mountain environments and its impact on hazards and hazard management in paraglacial mountain systems.","internal_url":"https://www.academia.edu/84625259/Climate_change_and_geomorphological_hazards_in_the_eastern_European_Alps","translated_internal_url":"","created_at":"2022-08-13T07:15:06.944-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":30937520,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":89581963,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/89581963/thumbnails/1.jpg","file_name":"rsta.2010.pdf","download_url":"https://www.academia.edu/attachments/89581963/download_file","bulk_download_file_name":"Climate_change_and_geomorphological_haza.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/89581963/rsta.2010-libre.pdf?1660400527=\u0026response-content-disposition=attachment%3B+filename%3DClimate_change_and_geomorphological_haza.pdf\u0026Expires=1741733722\u0026Signature=KH4bZFdcJmYBL~mGjmk6V717NpHKd~Ef4O~eWT7BvLGAMe~qxuRSwAQGXIYiAuJVhD48~grYvYxw8SxUrXL-Z6ZOlWwrsjpzyStsEyGTHyPBiFE5v2m9SJHQugDKjwdIR-dAnjLOmPQ5EGp7SmoYS88u007-pGbkb3SWqUUxl4GP4MPaWvvGz8ixfEUELSr5F06BF1-AoUxpYV6LAlWXi7nNK~GiDH0wuZIufZ3KF3AndFSAIEa8cOMsg~VQCgtosl7uOHgA30icfCh-ZuJp9hnDu52xAs1hZ011hFDfAFIUbw0mIQ1Ex-c6tUwkxEPR3GxOs7ikYkOBasU66ECcEQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Climate_change_and_geomorphological_hazards_in_the_eastern_European_Alps","translated_slug":"","page_count":19,"language":"en","content_type":"Work","summary":"Climate and environmental changes associated with anthropogenic global warming are being increasingly identified in the European Alps, as seen by changes in long-term high-alpine temperature, precipitation, glacier cover and permafrost. In turn, these changes impact on land-surface stability, and lead to increased frequency and magnitude of natural mountain hazards, including rock falls, debris flows, landslides, avalanches and floods. These hazards also impact on infrastructure, and socio-economic and cultural activities in mountain regions. This paper presents two case studies (2003 heatwave, 2005 floods) that demonstrate some of the interlinkages between physical processes and human activity in climatically sensitive alpine regions that are responding to ongoing climate change. Based on this evidence, we outline future implications of climate change on mountain environments and its impact on hazards and hazard management in paraglacial mountain systems.","owner":{"id":30937520,"first_name":"John","middle_initials":null,"last_name":"Clague","page_name":"JohnClague","domain_name":"sfu","created_at":"2015-05-09T12:05:01.456-07:00","display_name":"John Clague","url":"https://sfu.academia.edu/JohnClague"},"attachments":[{"id":89581963,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/89581963/thumbnails/1.jpg","file_name":"rsta.2010.pdf","download_url":"https://www.academia.edu/attachments/89581963/download_file","bulk_download_file_name":"Climate_change_and_geomorphological_haza.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/89581963/rsta.2010-libre.pdf?1660400527=\u0026response-content-disposition=attachment%3B+filename%3DClimate_change_and_geomorphological_haza.pdf\u0026Expires=1741733722\u0026Signature=KH4bZFdcJmYBL~mGjmk6V717NpHKd~Ef4O~eWT7BvLGAMe~qxuRSwAQGXIYiAuJVhD48~grYvYxw8SxUrXL-Z6ZOlWwrsjpzyStsEyGTHyPBiFE5v2m9SJHQugDKjwdIR-dAnjLOmPQ5EGp7SmoYS88u007-pGbkb3SWqUUxl4GP4MPaWvvGz8ixfEUELSr5F06BF1-AoUxpYV6LAlWXi7nNK~GiDH0wuZIufZ3KF3AndFSAIEa8cOMsg~VQCgtosl7uOHgA30icfCh-ZuJp9hnDu52xAs1hZ011hFDfAFIUbw0mIQ1Ex-c6tUwkxEPR3GxOs7ikYkOBasU66ECcEQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":402,"name":"Environmental Science","url":"https://www.academia.edu/Documents/in/Environmental_Science"},{"id":408,"name":"Geomorphology","url":"https://www.academia.edu/Documents/in/Geomorphology"},{"id":1512,"name":"Climate Change","url":"https://www.academia.edu/Documents/in/Climate_Change"},{"id":3349,"name":"Alpine Research","url":"https://www.academia.edu/Documents/in/Alpine_Research"},{"id":8618,"name":"Natural Hazards","url":"https://www.academia.edu/Documents/in/Natural_Hazards"},{"id":15816,"name":"Risk and Vulnerability - Natural Hazards","url":"https://www.academia.edu/Documents/in/Risk_and_Vulnerability_-_Natural_Hazards"},{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"},{"id":28235,"name":"Multidisciplinary","url":"https://www.academia.edu/Documents/in/Multidisciplinary"},{"id":61932,"name":"Mountains","url":"https://www.academia.edu/Documents/in/Mountains"},{"id":510097,"name":"Indian Geography and Travel","url":"https://www.academia.edu/Documents/in/Indian_Geography_and_Travel"}],"urls":[{"id":22866520,"url":"https://royalsocietypublishing.org/doi/pdf/10.1098/rsta.2010.0047"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="84625255"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/84625255/Identification_and_Characterization_of_Dynamic_Alpine_Subglacial_Lakes_Using_a_Fusion_of_InSAR_and_GIS"><img alt="Research paper thumbnail of Identification and Characterization of Dynamic Alpine Subglacial Lakes Using a Fusion of InSAR and GIS" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/84625255/Identification_and_Characterization_of_Dynamic_Alpine_Subglacial_Lakes_Using_a_Fusion_of_InSAR_and_GIS">Identification and Characterization of Dynamic Alpine Subglacial Lakes Using a Fusion of InSAR and GIS</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We use interferometric synthetic aperture radar (InSAR) and a geographic information system (GIS)...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We use interferometric synthetic aperture radar (InSAR) and a geographic information system (GIS) to identify and characterize three dynamic alpine subglacial lakes in Glacier Bay National Park, Alaska. Subglacial and subaerial glacier-dammed lakes and the catastrophic floods (jokulhlaups) they release are a hazard in glacierized mountain regions around the world. Many subglacial lakes are not identified until they become subaerially exposed or release a jokulhlaup. The lakes discussed here are dammed by the Brady Glacier in southeast Alaska, 120 km west of Juneau. For InSAR analysis, we utilized 20 ascending and descending ERS-1/-2 tandem radar images (1-day repeat interval) provided by the European Space Agency and a Shuttle Radar Topography Mission (SRTM) digital elevation model (DEM). We processed SAR data into unwrapped interferograms using standard techniques. Two interferograms have very poor coherence and the remaining eight show significant line of sight (LOS) displacement ...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="84625255"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="84625255"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 84625255; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=84625255]").text(description); $(".js-view-count[data-work-id=84625255]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 84625255; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='84625255']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=84625255]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":84625255,"title":"Identification and Characterization of Dynamic Alpine Subglacial Lakes Using a Fusion of InSAR and GIS","translated_title":"","metadata":{"abstract":"We use interferometric synthetic aperture radar (InSAR) and a geographic information system (GIS) to identify and characterize three dynamic alpine subglacial lakes in Glacier Bay National Park, Alaska. Subglacial and subaerial glacier-dammed lakes and the catastrophic floods (jokulhlaups) they release are a hazard in glacierized mountain regions around the world. Many subglacial lakes are not identified until they become subaerially exposed or release a jokulhlaup. The lakes discussed here are dammed by the Brady Glacier in southeast Alaska, 120 km west of Juneau. For InSAR analysis, we utilized 20 ascending and descending ERS-1/-2 tandem radar images (1-day repeat interval) provided by the European Space Agency and a Shuttle Radar Topography Mission (SRTM) digital elevation model (DEM). We processed SAR data into unwrapped interferograms using standard techniques. Two interferograms have very poor coherence and the remaining eight show significant line of sight (LOS) displacement ...","publication_date":{"day":null,"month":null,"year":2008,"errors":{}}},"translated_abstract":"We use interferometric synthetic aperture radar (InSAR) and a geographic information system (GIS) to identify and characterize three dynamic alpine subglacial lakes in Glacier Bay National Park, Alaska. Subglacial and subaerial glacier-dammed lakes and the catastrophic floods (jokulhlaups) they release are a hazard in glacierized mountain regions around the world. Many subglacial lakes are not identified until they become subaerially exposed or release a jokulhlaup. The lakes discussed here are dammed by the Brady Glacier in southeast Alaska, 120 km west of Juneau. For InSAR analysis, we utilized 20 ascending and descending ERS-1/-2 tandem radar images (1-day repeat interval) provided by the European Space Agency and a Shuttle Radar Topography Mission (SRTM) digital elevation model (DEM). We processed SAR data into unwrapped interferograms using standard techniques. Two interferograms have very poor coherence and the remaining eight show significant line of sight (LOS) displacement ...","internal_url":"https://www.academia.edu/84625255/Identification_and_Characterization_of_Dynamic_Alpine_Subglacial_Lakes_Using_a_Fusion_of_InSAR_and_GIS","translated_internal_url":"","created_at":"2022-08-13T07:15:04.821-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":30937520,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Identification_and_Characterization_of_Dynamic_Alpine_Subglacial_Lakes_Using_a_Fusion_of_InSAR_and_GIS","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"We use interferometric synthetic aperture radar (InSAR) and a geographic information system (GIS) to identify and characterize three dynamic alpine subglacial lakes in Glacier Bay National Park, Alaska. Subglacial and subaerial glacier-dammed lakes and the catastrophic floods (jokulhlaups) they release are a hazard in glacierized mountain regions around the world. Many subglacial lakes are not identified until they become subaerially exposed or release a jokulhlaup. The lakes discussed here are dammed by the Brady Glacier in southeast Alaska, 120 km west of Juneau. For InSAR analysis, we utilized 20 ascending and descending ERS-1/-2 tandem radar images (1-day repeat interval) provided by the European Space Agency and a Shuttle Radar Topography Mission (SRTM) digital elevation model (DEM). We processed SAR data into unwrapped interferograms using standard techniques. Two interferograms have very poor coherence and the remaining eight show significant line of sight (LOS) displacement ...","owner":{"id":30937520,"first_name":"John","middle_initials":null,"last_name":"Clague","page_name":"JohnClague","domain_name":"sfu","created_at":"2015-05-09T12:05:01.456-07:00","display_name":"John Clague","url":"https://sfu.academia.edu/JohnClague"},"attachments":[],"research_interests":[{"id":1252,"name":"Remote Sensing","url":"https://www.academia.edu/Documents/in/Remote_Sensing"},{"id":4456,"name":"Time Series","url":"https://www.academia.edu/Documents/in/Time_Series"},{"id":17038,"name":"Stress field","url":"https://www.academia.edu/Documents/in/Stress_field"},{"id":48218,"name":"Global change","url":"https://www.academia.edu/Documents/in/Global_change"},{"id":139202,"name":"Synthetic Aperture Radar","url":"https://www.academia.edu/Documents/in/Synthetic_Aperture_Radar"},{"id":210607,"name":"Radio-echo sounding","url":"https://www.academia.edu/Documents/in/Radio-echo_sounding"},{"id":284544,"name":"Digital Elevation Model","url":"https://www.academia.edu/Documents/in/Digital_Elevation_Model"},{"id":284869,"name":"National Park","url":"https://www.academia.edu/Documents/in/National_Park"},{"id":437147,"name":"Glacier mass balance","url":"https://www.academia.edu/Documents/in/Glacier_mass_balance"},{"id":542508,"name":"Optical Remote Sensing","url":"https://www.academia.edu/Documents/in/Optical_Remote_Sensing"},{"id":822358,"name":"Ground Truth","url":"https://www.academia.edu/Documents/in/Ground_Truth"},{"id":1211138,"name":"Geographic Information System","url":"https://www.academia.edu/Documents/in/Geographic_Information_System"},{"id":1778241,"name":"Radar Imaging","url":"https://www.academia.edu/Documents/in/Radar_Imaging"},{"id":3311855,"name":"Line of sight","url":"https://www.academia.edu/Documents/in/Line_of_sight"},{"id":3845308,"name":"Interferometric Synthetic Aperture Radar","url":"https://www.academia.edu/Documents/in/Interferometric_Synthetic_Aperture_Radar"}],"urls":[{"id":22866517,"url":"http://adsabs.harvard.edu/abs/2008AGUFM.C31E0566C"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="84625250"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/84625250/A_Sand_Sheet_Deposited_by_the_1964_Alaska_Tsunami_at_Port_Alberni_British_Columbia"><img alt="Research paper thumbnail of A Sand Sheet Deposited by the 1964 Alaska Tsunami at Port Alberni, British Columbia" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/84625250/A_Sand_Sheet_Deposited_by_the_1964_Alaska_Tsunami_at_Port_Alberni_British_Columbia">A Sand Sheet Deposited by the 1964 Alaska Tsunami at Port Alberni, British Columbia</a></div><div class="wp-workCard_item"><span>Estuarine, Coastal and Shelf Science</span><span>, 1994</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">... All rights reserved. Permissions &amp;amp;amp; Reprints. Regular Article. A Sand Sheet Deposi...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">... All rights reserved. Permissions &amp;amp;amp; Reprints. Regular Article. A Sand Sheet Deposited by the 1964 Alaska Tsunami at Port Alberni, British Columbia. John J. Clague , Peter T. Bobrowsky and TS Hamilton. Geological Survey of Canada ...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="84625250"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="84625250"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 84625250; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=84625250]").text(description); $(".js-view-count[data-work-id=84625250]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 84625250; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='84625250']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=84625250]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":84625250,"title":"A Sand Sheet Deposited by the 1964 Alaska Tsunami at Port Alberni, British Columbia","translated_title":"","metadata":{"abstract":"... All rights reserved. Permissions \u0026amp;amp;amp; Reprints. Regular Article. A Sand Sheet Deposited by the 1964 Alaska Tsunami at Port Alberni, British Columbia. John J. Clague , Peter T. Bobrowsky and TS Hamilton. Geological Survey of Canada ...","publisher":"Elsevier BV","publication_date":{"day":null,"month":null,"year":1994,"errors":{}},"publication_name":"Estuarine, Coastal and Shelf Science"},"translated_abstract":"... All rights reserved. Permissions \u0026amp;amp;amp; Reprints. Regular Article. A Sand Sheet Deposited by the 1964 Alaska Tsunami at Port Alberni, British Columbia. John J. Clague , Peter T. Bobrowsky and TS Hamilton. Geological Survey of Canada ...","internal_url":"https://www.academia.edu/84625250/A_Sand_Sheet_Deposited_by_the_1964_Alaska_Tsunami_at_Port_Alberni_British_Columbia","translated_internal_url":"","created_at":"2022-08-13T07:15:01.936-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":30937520,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"A_Sand_Sheet_Deposited_by_the_1964_Alaska_Tsunami_at_Port_Alberni_British_Columbia","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"... All rights reserved. Permissions \u0026amp;amp;amp; Reprints. Regular Article. A Sand Sheet Deposited by the 1964 Alaska Tsunami at Port Alberni, British Columbia. John J. Clague , Peter T. Bobrowsky and TS Hamilton. Geological Survey of Canada ...","owner":{"id":30937520,"first_name":"John","middle_initials":null,"last_name":"Clague","page_name":"JohnClague","domain_name":"sfu","created_at":"2015-05-09T12:05:01.456-07:00","display_name":"John Clague","url":"https://sfu.academia.edu/JohnClague"},"attachments":[],"research_interests":[{"id":400,"name":"Earth Sciences","url":"https://www.academia.edu/Documents/in/Earth_Sciences"},{"id":47884,"name":"Biological Sciences","url":"https://www.academia.edu/Documents/in/Biological_Sciences"},{"id":58054,"name":"Environmental Sciences","url":"https://www.academia.edu/Documents/in/Environmental_Sciences"},{"id":198379,"name":"British Columbia","url":"https://www.academia.edu/Documents/in/British_Columbia"},{"id":1131312,"name":"Academic","url":"https://www.academia.edu/Documents/in/Academic"}],"urls":[{"id":22866515,"url":"https://api.elsevier.com/content/article/PII:S0272771484710286?httpAccept=text/xml"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="84625246"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/84625246/Reconnaissance_observations_of_the_July_24_2007_rock_and_ice_avalanche_at_Mount_Steele_St_Elias_Mountains_Yukon_Canada"><img alt="Research paper thumbnail of Reconnaissance observations of the July 24, 2007 rock and ice avalanche at Mount Steele, St. Elias Mountains, Yukon, Canada" class="work-thumbnail" src="https://attachments.academia-assets.com/89581961/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/84625246/Reconnaissance_observations_of_the_July_24_2007_rock_and_ice_avalanche_at_Mount_Steele_St_Elias_Mountains_Yukon_Canada">Reconnaissance observations of the July 24, 2007 rock and ice avalanche at Mount Steele, St. Elias Mountains, Yukon, Canada</a></div><div class="wp-workCard_item"><span>4th Canadian Conference on Geohazards: From Causes to Management, J. Locat, D. Perret, D. Turmel, D. Demers and S. Leroueil (eds.), Quebec City</span><span>, 2008</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">A catastrophic rock and ice avalanche occurred on the north face of Mount Steele, Yukon Territory...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">A catastrophic rock and ice avalanche occurred on the north face of Mount Steele, Yukon Territory, on July 24, 2007, depositing debris onto Steele Glacier. In the days and weeks preceding the event, at least three smaller landslides initiated from the same slope. Earlier landslide activity at this location is evident on historical photographs dating back to the 1930s. The July 24 event was one of the largest rock avalanches documented in the St. Elias Mountains in the past century and is one of 16 rock avalanches known to ...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="fa2269399fe90a4510130558598172c8" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":89581961,"asset_id":84625246,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/89581961/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="84625246"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="84625246"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 84625246; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=84625246]").text(description); $(".js-view-count[data-work-id=84625246]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 84625246; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='84625246']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "fa2269399fe90a4510130558598172c8" } } $('.js-work-strip[data-work-id=84625246]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":84625246,"title":"Reconnaissance observations of the July 24, 2007 rock and ice avalanche at Mount Steele, St. Elias Mountains, Yukon, Canada","translated_title":"","metadata":{"abstract":"A catastrophic rock and ice avalanche occurred on the north face of Mount Steele, Yukon Territory, on July 24, 2007, depositing debris onto Steele Glacier. In the days and weeks preceding the event, at least three smaller landslides initiated from the same slope. Earlier landslide activity at this location is evident on historical photographs dating back to the 1930s. The July 24 event was one of the largest rock avalanches documented in the St. Elias Mountains in the past century and is one of 16 rock avalanches known to ...","publisher":"geohazards.ggl.ulaval.ca","publication_date":{"day":null,"month":null,"year":2008,"errors":{}},"publication_name":"4th Canadian Conference on Geohazards: From Causes to Management, J. Locat, D. Perret, D. Turmel, D. Demers and S. Leroueil (eds.), Quebec City"},"translated_abstract":"A catastrophic rock and ice avalanche occurred on the north face of Mount Steele, Yukon Territory, on July 24, 2007, depositing debris onto Steele Glacier. In the days and weeks preceding the event, at least three smaller landslides initiated from the same slope. Earlier landslide activity at this location is evident on historical photographs dating back to the 1930s. The July 24 event was one of the largest rock avalanches documented in the St. Elias Mountains in the past century and is one of 16 rock avalanches known to ...","internal_url":"https://www.academia.edu/84625246/Reconnaissance_observations_of_the_July_24_2007_rock_and_ice_avalanche_at_Mount_Steele_St_Elias_Mountains_Yukon_Canada","translated_internal_url":"","created_at":"2022-08-13T07:14:59.375-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":30937520,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":89581961,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/89581961/thumbnails/1.jpg","file_name":"lipovsky.pdf","download_url":"https://www.academia.edu/attachments/89581961/download_file","bulk_download_file_name":"Reconnaissance_observations_of_the_July.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/89581961/lipovsky-libre.pdf?1660400534=\u0026response-content-disposition=attachment%3B+filename%3DReconnaissance_observations_of_the_July.pdf\u0026Expires=1741733722\u0026Signature=FJNgNrH1oyo~IhVI44FSNi3c6lW4LkwWWiKS~qtteBSZJ2PjD0bApvxxUHmpTEyK8xy3CyG5FLZz40HrpSKaKws3AB13lAMO8zPht4tJ4ujSsY-9NGW8RaSUMc2-iNHF80YEJs-ORtPukmzmMRT-2uuXgMcXcQ5EyVGiLltsnosNiuIvVYhmFImPfvUpy01kaWeGPRX7dWXq7TuA5SdzatyE0UFZJGwu0C1NIS5aZzyLYH2VrSl6mjECT0SRK5rFMrsmmAJUY3LM1oRJT4DdAD1c0MFWkFBxHLlb-q87lqpsKtk12a3Kyo5j-PdUgciGOdFuAPKmf5WXTW-GhMA0Tg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Reconnaissance_observations_of_the_July_24_2007_rock_and_ice_avalanche_at_Mount_Steele_St_Elias_Mountains_Yukon_Canada","translated_slug":"","page_count":8,"language":"en","content_type":"Work","summary":"A catastrophic rock and ice avalanche occurred on the north face of Mount Steele, Yukon Territory, on July 24, 2007, depositing debris onto Steele Glacier. In the days and weeks preceding the event, at least three smaller landslides initiated from the same slope. Earlier landslide activity at this location is evident on historical photographs dating back to the 1930s. The July 24 event was one of the largest rock avalanches documented in the St. Elias Mountains in the past century and is one of 16 rock avalanches known to ...","owner":{"id":30937520,"first_name":"John","middle_initials":null,"last_name":"Clague","page_name":"JohnClague","domain_name":"sfu","created_at":"2015-05-09T12:05:01.456-07:00","display_name":"John Clague","url":"https://sfu.academia.edu/JohnClague"},"attachments":[{"id":89581961,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/89581961/thumbnails/1.jpg","file_name":"lipovsky.pdf","download_url":"https://www.academia.edu/attachments/89581961/download_file","bulk_download_file_name":"Reconnaissance_observations_of_the_July.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/89581961/lipovsky-libre.pdf?1660400534=\u0026response-content-disposition=attachment%3B+filename%3DReconnaissance_observations_of_the_July.pdf\u0026Expires=1741733722\u0026Signature=FJNgNrH1oyo~IhVI44FSNi3c6lW4LkwWWiKS~qtteBSZJ2PjD0bApvxxUHmpTEyK8xy3CyG5FLZz40HrpSKaKws3AB13lAMO8zPht4tJ4ujSsY-9NGW8RaSUMc2-iNHF80YEJs-ORtPukmzmMRT-2uuXgMcXcQ5EyVGiLltsnosNiuIvVYhmFImPfvUpy01kaWeGPRX7dWXq7TuA5SdzatyE0UFZJGwu0C1NIS5aZzyLYH2VrSl6mjECT0SRK5rFMrsmmAJUY3LM1oRJT4DdAD1c0MFWkFBxHLlb-q87lqpsKtk12a3Kyo5j-PdUgciGOdFuAPKmf5WXTW-GhMA0Tg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[{"id":22866513,"url":"http://www.geohazards.ggl.ulaval.ca/histoire/lipovsky.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="84625180"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/84625180/Structure_stability_and_tsunami_hazard_associated_with_a_rock_slope_in_Knight_Inlet_British_Columbia"><img alt="Research paper thumbnail of Structure, stability, and tsunami hazard associated with a rock slope in Knight Inlet, British Columbia" class="work-thumbnail" src="https://attachments.academia-assets.com/89581918/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/84625180/Structure_stability_and_tsunami_hazard_associated_with_a_rock_slope_in_Knight_Inlet_British_Columbia">Structure, stability, and tsunami hazard associated with a rock slope in Knight Inlet, British Columbia</a></div><div class="wp-workCard_item"><span>Natural Hazards and Earth System Sciences</span><span>, 2015</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Rockfalls and rockslides during the past 12 000 years have deposited bouldery debris cones on the...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Rockfalls and rockslides during the past 12 000 years have deposited bouldery debris cones on the seafloor beneath massive rock slopes throughout the inner part of Knight Inlet. The 885 m high rock slope, located across from a former First Nations village destroyed in the late 1500s by a slide-induced wave, exposes the contact between a Late Cretaceous dioritic pluton and metamorphic rocks of the Upper Triassic Karmutsen Formation. The pluton margin is strongly foliated parallel to primary and secondary fabrics in the metamorphic rocks, resulting in highly persistent brittle structures. Other important structures include a set of sheeting joints and highly persistent mafic dykes and faults. Stability analysis indicates that planar and wedge rock slope failures up to about 500 000 m 3 in volume could occur. We suspect that failures of this size in this setting would have the potential to generate locally hazardous waves. As several similar rock slopes fronted by large submarine debris cones exist in the inner part of Knight Inlet, it is clear that tsunami hazards should be considered in coastal infrastructure development and land-use planning in this area.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="24aa7d834bce0cc95a3309ff3a8821ee" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":89581918,"asset_id":84625180,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/89581918/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="84625180"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="84625180"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 84625180; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=84625180]").text(description); $(".js-view-count[data-work-id=84625180]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 84625180; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='84625180']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "24aa7d834bce0cc95a3309ff3a8821ee" } } $('.js-work-strip[data-work-id=84625180]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":84625180,"title":"Structure, stability, and tsunami hazard associated with a rock slope in Knight Inlet, British Columbia","translated_title":"","metadata":{"publisher":"Copernicus GmbH","grobid_abstract":"Rockfalls and rockslides during the past 12 000 years have deposited bouldery debris cones on the seafloor beneath massive rock slopes throughout the inner part of Knight Inlet. The 885 m high rock slope, located across from a former First Nations village destroyed in the late 1500s by a slide-induced wave, exposes the contact between a Late Cretaceous dioritic pluton and metamorphic rocks of the Upper Triassic Karmutsen Formation. The pluton margin is strongly foliated parallel to primary and secondary fabrics in the metamorphic rocks, resulting in highly persistent brittle structures. Other important structures include a set of sheeting joints and highly persistent mafic dykes and faults. Stability analysis indicates that planar and wedge rock slope failures up to about 500 000 m 3 in volume could occur. We suspect that failures of this size in this setting would have the potential to generate locally hazardous waves. As several similar rock slopes fronted by large submarine debris cones exist in the inner part of Knight Inlet, it is clear that tsunami hazards should be considered in coastal infrastructure development and land-use planning in this area.","publication_date":{"day":null,"month":null,"year":2015,"errors":{}},"publication_name":"Natural Hazards and Earth System Sciences","grobid_abstract_attachment_id":89581918},"translated_abstract":null,"internal_url":"https://www.academia.edu/84625180/Structure_stability_and_tsunami_hazard_associated_with_a_rock_slope_in_Knight_Inlet_British_Columbia","translated_internal_url":"","created_at":"2022-08-13T07:13:38.594-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":30937520,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":89581918,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/89581918/thumbnails/1.jpg","file_name":"nhess-15-1425-2015.pdf","download_url":"https://www.academia.edu/attachments/89581918/download_file","bulk_download_file_name":"Structure_stability_and_tsunami_hazard_a.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/89581918/nhess-15-1425-2015-libre.pdf?1660400658=\u0026response-content-disposition=attachment%3B+filename%3DStructure_stability_and_tsunami_hazard_a.pdf\u0026Expires=1741733722\u0026Signature=KUENv~v8eOSGymB42eDXiP0E~cqHl1j4gAwmqv27R0lCSOXltFZExcCB2-AwDaTwIIz2CKDtvSaJQ5k4kYtVyscSTeRDCvhJuSzweuyEhnAJnhV8pue945lFaLwMMM2cKjRvaIzMnkVA27DO4Qm1ufZGqjsfmfnGEne45aIRru7Ahna~ZImv0jF-jXuSM6AL1M2vt5iQDKru6AObwty3mfd3msEeZQSuhIasVYfsuF1YUC-np~W5wVmkwRlr0-UQymucLZkLyAB1DfaDNikjW2ADqO-yb0qINSZfTX1Q0QN2V~Fnp-2nVgAPifkT~cm7deV36ictdoRVvr1XoNLWUQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Structure_stability_and_tsunami_hazard_associated_with_a_rock_slope_in_Knight_Inlet_British_Columbia","translated_slug":"","page_count":12,"language":"en","content_type":"Work","summary":"Rockfalls and rockslides during the past 12 000 years have deposited bouldery debris cones on the seafloor beneath massive rock slopes throughout the inner part of Knight Inlet. The 885 m high rock slope, located across from a former First Nations village destroyed in the late 1500s by a slide-induced wave, exposes the contact between a Late Cretaceous dioritic pluton and metamorphic rocks of the Upper Triassic Karmutsen Formation. The pluton margin is strongly foliated parallel to primary and secondary fabrics in the metamorphic rocks, resulting in highly persistent brittle structures. Other important structures include a set of sheeting joints and highly persistent mafic dykes and faults. Stability analysis indicates that planar and wedge rock slope failures up to about 500 000 m 3 in volume could occur. We suspect that failures of this size in this setting would have the potential to generate locally hazardous waves. As several similar rock slopes fronted by large submarine debris cones exist in the inner part of Knight Inlet, it is clear that tsunami hazards should be considered in coastal infrastructure development and land-use planning in this area.","owner":{"id":30937520,"first_name":"John","middle_initials":null,"last_name":"Clague","page_name":"JohnClague","domain_name":"sfu","created_at":"2015-05-09T12:05:01.456-07:00","display_name":"John Clague","url":"https://sfu.academia.edu/JohnClague"},"attachments":[{"id":89581918,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/89581918/thumbnails/1.jpg","file_name":"nhess-15-1425-2015.pdf","download_url":"https://www.academia.edu/attachments/89581918/download_file","bulk_download_file_name":"Structure_stability_and_tsunami_hazard_a.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/89581918/nhess-15-1425-2015-libre.pdf?1660400658=\u0026response-content-disposition=attachment%3B+filename%3DStructure_stability_and_tsunami_hazard_a.pdf\u0026Expires=1741733722\u0026Signature=KUENv~v8eOSGymB42eDXiP0E~cqHl1j4gAwmqv27R0lCSOXltFZExcCB2-AwDaTwIIz2CKDtvSaJQ5k4kYtVyscSTeRDCvhJuSzweuyEhnAJnhV8pue945lFaLwMMM2cKjRvaIzMnkVA27DO4Qm1ufZGqjsfmfnGEne45aIRru7Ahna~ZImv0jF-jXuSM6AL1M2vt5iQDKru6AObwty3mfd3msEeZQSuhIasVYfsuF1YUC-np~W5wVmkwRlr0-UQymucLZkLyAB1DfaDNikjW2ADqO-yb0qINSZfTX1Q0QN2V~Fnp-2nVgAPifkT~cm7deV36ictdoRVvr1XoNLWUQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":406,"name":"Geology","url":"https://www.academia.edu/Documents/in/Geology"}],"urls":[{"id":22866483,"url":"https://nhess.copernicus.org/articles/15/1425/2015/nhess-15-1425-2015.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="78046920"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/78046920/Hazards_posed_by_large_mass_movements_at_Mount_Meager_volcano_Canada"><img alt="Research paper thumbnail of Hazards posed by large mass movements at Mount Meager volcano, Canada" class="work-thumbnail" src="https://attachments.academia-assets.com/85229876/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/78046920/Hazards_posed_by_large_mass_movements_at_Mount_Meager_volcano_Canada">Hazards posed by large mass movements at Mount Meager volcano, Canada</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="b624ebbb6b4bda56c273f761b45868bc" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":85229876,"asset_id":78046920,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/85229876/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="78046920"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="78046920"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 78046920; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=78046920]").text(description); $(".js-view-count[data-work-id=78046920]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 78046920; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='78046920']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "b624ebbb6b4bda56c273f761b45868bc" } } $('.js-work-strip[data-work-id=78046920]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":78046920,"title":"Hazards posed by large mass movements at Mount Meager volcano, Canada","translated_title":"","metadata":{"ai_abstract":"Large mass movements at volcanoes represent significant hazards, potentially causing extensive damage beyond their immediate vicinity. At Mount Meager in British Columbia, a recorded collapse in 2010 resulted in the largest landslide in Canadian history. Analysis of deformation patterns and identification of numerous unstable slopes via advanced surveying techniques reveals the likelihood of future catastrophic failures, which may trigger eruptions due to shifts in magmatic pressure. A permanent monitoring system is recommended to assess and mitigate risks associated with these geological threats.","publication_date":{"day":null,"month":null,"year":2018,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/78046920/Hazards_posed_by_large_mass_movements_at_Mount_Meager_volcano_Canada","translated_internal_url":"","created_at":"2022-04-30T07:17:23.740-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":30937520,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":85229876,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/85229876/thumbnails/1.jpg","file_name":"EGU2018-912.pdf","download_url":"https://www.academia.edu/attachments/85229876/download_file","bulk_download_file_name":"Hazards_posed_by_large_mass_movements_at.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/85229876/EGU2018-912-libre.pdf?1651328548=\u0026response-content-disposition=attachment%3B+filename%3DHazards_posed_by_large_mass_movements_at.pdf\u0026Expires=1741733722\u0026Signature=HHF9znpbA866aRyLseBNT3LVBE1WsvzqGW8cq6CG6lfQt8jyijXZKLx~l8d-pMMMsuyZ0tvE5NO4AYFPdOp1OwE37kRHwQ30eVKunwci8phcDs1nTElAtd8rmusxmeVZxlKFGC9AV533zo7ph~0mUpO60flzCG0tgGGUXfnXvKs2m-Y-z4~QkpRtInuDnEi4XDZgjQtVECo2LKJHM-BebEQc9CJcnTP04SDar-jWZm~lA69PPAv6cEr0i3XGdrfotK5TOr4JNu01yaHWSDUARV6Hdk~r~OOJtJNhbtzvkTx9AGE80RYEyELR6HuXPycq89R8zGZRZq3-SMgOSg~0iQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Hazards_posed_by_large_mass_movements_at_Mount_Meager_volcano_Canada","translated_slug":"","page_count":1,"language":"en","content_type":"Work","summary":null,"owner":{"id":30937520,"first_name":"John","middle_initials":null,"last_name":"Clague","page_name":"JohnClague","domain_name":"sfu","created_at":"2015-05-09T12:05:01.456-07:00","display_name":"John Clague","url":"https://sfu.academia.edu/JohnClague"},"attachments":[{"id":85229876,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/85229876/thumbnails/1.jpg","file_name":"EGU2018-912.pdf","download_url":"https://www.academia.edu/attachments/85229876/download_file","bulk_download_file_name":"Hazards_posed_by_large_mass_movements_at.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/85229876/EGU2018-912-libre.pdf?1651328548=\u0026response-content-disposition=attachment%3B+filename%3DHazards_posed_by_large_mass_movements_at.pdf\u0026Expires=1741733722\u0026Signature=HHF9znpbA866aRyLseBNT3LVBE1WsvzqGW8cq6CG6lfQt8jyijXZKLx~l8d-pMMMsuyZ0tvE5NO4AYFPdOp1OwE37kRHwQ30eVKunwci8phcDs1nTElAtd8rmusxmeVZxlKFGC9AV533zo7ph~0mUpO60flzCG0tgGGUXfnXvKs2m-Y-z4~QkpRtInuDnEi4XDZgjQtVECo2LKJHM-BebEQc9CJcnTP04SDar-jWZm~lA69PPAv6cEr0i3XGdrfotK5TOr4JNu01yaHWSDUARV6Hdk~r~OOJtJNhbtzvkTx9AGE80RYEyELR6HuXPycq89R8zGZRZq3-SMgOSg~0iQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":406,"name":"Geology","url":"https://www.academia.edu/Documents/in/Geology"},{"id":108863,"name":"Volcano","url":"https://www.academia.edu/Documents/in/Volcano"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="78046918"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/78046918/Data_for_Pliocene_and_Early_Pleistocene_Glaciation_and_Landscape_Evolution_on_the_Patagonian_Steppe_Santa_Cruz_Province_Argentina"><img alt="Research paper thumbnail of Data for: Pliocene and Early Pleistocene Glaciation and Landscape Evolution on the Patagonian Steppe, Santa Cruz Province, Argentina" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/78046918/Data_for_Pliocene_and_Early_Pleistocene_Glaciation_and_Landscape_Evolution_on_the_Patagonian_Steppe_Santa_Cruz_Province_Argentina">Data for: Pliocene and Early Pleistocene Glaciation and Landscape Evolution on the Patagonian Steppe, Santa Cruz Province, Argentina</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Representative paleomagnetic data (Figures 1, 2, and 3), and published K40/Ar40 and Ar40-Ar39 age...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Representative paleomagnetic data (Figures 1, 2, and 3), and published K40/Ar40 and Ar40-Ar39 ages from the study area.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="78046918"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="78046918"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 78046918; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=78046918]").text(description); $(".js-view-count[data-work-id=78046918]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 78046918; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='78046918']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=78046918]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":78046918,"title":"Data for: Pliocene and Early Pleistocene Glaciation and Landscape Evolution on the Patagonian Steppe, Santa Cruz Province, Argentina","translated_title":"","metadata":{"abstract":"Representative paleomagnetic data (Figures 1, 2, and 3), and published K40/Ar40 and Ar40-Ar39 ages from the study area.","publisher":"Mendeley","publication_date":{"day":20,"month":9,"year":2019,"errors":{}}},"translated_abstract":"Representative paleomagnetic data (Figures 1, 2, and 3), and published K40/Ar40 and Ar40-Ar39 ages from the study area.","internal_url":"https://www.academia.edu/78046918/Data_for_Pliocene_and_Early_Pleistocene_Glaciation_and_Landscape_Evolution_on_the_Patagonian_Steppe_Santa_Cruz_Province_Argentina","translated_internal_url":"","created_at":"2022-04-30T07:17:23.607-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":30937520,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Data_for_Pliocene_and_Early_Pleistocene_Glaciation_and_Landscape_Evolution_on_the_Patagonian_Steppe_Santa_Cruz_Province_Argentina","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"Representative paleomagnetic data (Figures 1, 2, and 3), and published K40/Ar40 and Ar40-Ar39 ages from the study area.","owner":{"id":30937520,"first_name":"John","middle_initials":null,"last_name":"Clague","page_name":"JohnClague","domain_name":"sfu","created_at":"2015-05-09T12:05:01.456-07:00","display_name":"John Clague","url":"https://sfu.academia.edu/JohnClague"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="78046916"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/78046916/A_Robust_SAR_Speckle_Tracking_Workflow_for_Measuring_and_Interpreting_the_3D_Surface_Displacement_of_Landslides"><img alt="Research paper thumbnail of A Robust SAR Speckle Tracking Workflow for Measuring and Interpreting the 3D Surface Displacement of Landslides" class="work-thumbnail" src="https://attachments.academia-assets.com/85229789/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/78046916/A_Robust_SAR_Speckle_Tracking_Workflow_for_Measuring_and_Interpreting_the_3D_Surface_Displacement_of_Landslides">A Robust SAR Speckle Tracking Workflow for Measuring and Interpreting the 3D Surface Displacement of Landslides</a></div><div class="wp-workCard_item"><span>Remote Sensing</span><span>, 2021</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We present a workflow for investigating large, slow-moving landslides which combines the syntheti...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We present a workflow for investigating large, slow-moving landslides which combines the synthetic aperture radar (SAR) technique, GIS post-processing, and airborne laser scanning (ALS), and apply it to Fels landslide in Alaska, US. First, we exploit a speckle tracking (ST) approach to derive the easting, northing, and vertical components of the displacement vectors across the rock slope for two five-year windows, 2010–2015 and 2015–2020. Then, we perform post-processing in a GIS environment to derive displacement magnitude, trend, and plunge maps of the landslide area. Finally, we compare the ST-derived displacement data with structural lineament maps and profiles extracted from the ALS dataset. Relying on remotely sensed data, we estimate that the thickness of the slide mass is more than 100 m and displacements occur through a combination of slumping at the toe and planar sliding in the central and upper slope. Our approach provides information and interpretations that can assist ...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="3c8c8d5583a5b5a5c9dc8fbcb7bcc8ca" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":85229789,"asset_id":78046916,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/85229789/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="78046916"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="78046916"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 78046916; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=78046916]").text(description); $(".js-view-count[data-work-id=78046916]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 78046916; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='78046916']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "3c8c8d5583a5b5a5c9dc8fbcb7bcc8ca" } } $('.js-work-strip[data-work-id=78046916]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":78046916,"title":"A Robust SAR Speckle Tracking Workflow for Measuring and Interpreting the 3D Surface Displacement of Landslides","translated_title":"","metadata":{"abstract":"We present a workflow for investigating large, slow-moving landslides which combines the synthetic aperture radar (SAR) technique, GIS post-processing, and airborne laser scanning (ALS), and apply it to Fels landslide in Alaska, US. First, we exploit a speckle tracking (ST) approach to derive the easting, northing, and vertical components of the displacement vectors across the rock slope for two five-year windows, 2010–2015 and 2015–2020. Then, we perform post-processing in a GIS environment to derive displacement magnitude, trend, and plunge maps of the landslide area. Finally, we compare the ST-derived displacement data with structural lineament maps and profiles extracted from the ALS dataset. Relying on remotely sensed data, we estimate that the thickness of the slide mass is more than 100 m and displacements occur through a combination of slumping at the toe and planar sliding in the central and upper slope. Our approach provides information and interpretations that can assist ...","publisher":"MDPI AG","ai_title_tag":"SAR Workflow for 3D Landslide Displacement Analysis","publication_date":{"day":null,"month":null,"year":2021,"errors":{}},"publication_name":"Remote Sensing"},"translated_abstract":"We present a workflow for investigating large, slow-moving landslides which combines the synthetic aperture radar (SAR) technique, GIS post-processing, and airborne laser scanning (ALS), and apply it to Fels landslide in Alaska, US. First, we exploit a speckle tracking (ST) approach to derive the easting, northing, and vertical components of the displacement vectors across the rock slope for two five-year windows, 2010–2015 and 2015–2020. Then, we perform post-processing in a GIS environment to derive displacement magnitude, trend, and plunge maps of the landslide area. Finally, we compare the ST-derived displacement data with structural lineament maps and profiles extracted from the ALS dataset. Relying on remotely sensed data, we estimate that the thickness of the slide mass is more than 100 m and displacements occur through a combination of slumping at the toe and planar sliding in the central and upper slope. Our approach provides information and interpretations that can assist ...","internal_url":"https://www.academia.edu/78046916/A_Robust_SAR_Speckle_Tracking_Workflow_for_Measuring_and_Interpreting_the_3D_Surface_Displacement_of_Landslides","translated_internal_url":"","created_at":"2022-04-30T07:17:23.419-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":30937520,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":85229789,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/85229789/thumbnails/1.jpg","file_name":"pdf.pdf","download_url":"https://www.academia.edu/attachments/85229789/download_file","bulk_download_file_name":"A_Robust_SAR_Speckle_Tracking_Workflow_f.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/85229789/pdf-libre.pdf?1651328559=\u0026response-content-disposition=attachment%3B+filename%3DA_Robust_SAR_Speckle_Tracking_Workflow_f.pdf\u0026Expires=1741733722\u0026Signature=BuaUijKRJHFuN3-lJ66E1hoTXfWQE-tbHLOK~zx1TfBDVg1ZJzh82Wl~U84Sa-8QsPvb1IwKUgDhUoZ49P4mnhKQfrrtvsMw53AXAZHd-OYP5YDpj7j33VKNWDm6eN7uIAjSKn5dCnVV9fX4Bam2pUF1tm5oeWbibogi-69iGXIvdiPfWf-YbFpOHJDuVus4mdwlAifJdUGbSqIyfrCQBOxvkKacveECEzpau-faniUDnhWe2q-V7f~1NlZ1KqEPLXKcBh0H3XqK-aryHGPBcsbZ943RD6RdUw9Dwa1WuAIybEUstTwHxUmltzsYBpjhtAfRutgsMFfSWRNVrG89bg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"A_Robust_SAR_Speckle_Tracking_Workflow_for_Measuring_and_Interpreting_the_3D_Surface_Displacement_of_Landslides","translated_slug":"","page_count":19,"language":"en","content_type":"Work","summary":"We present a workflow for investigating large, slow-moving landslides which combines the synthetic aperture radar (SAR) technique, GIS post-processing, and airborne laser scanning (ALS), and apply it to Fels landslide in Alaska, US. First, we exploit a speckle tracking (ST) approach to derive the easting, northing, and vertical components of the displacement vectors across the rock slope for two five-year windows, 2010–2015 and 2015–2020. Then, we perform post-processing in a GIS environment to derive displacement magnitude, trend, and plunge maps of the landslide area. Finally, we compare the ST-derived displacement data with structural lineament maps and profiles extracted from the ALS dataset. Relying on remotely sensed data, we estimate that the thickness of the slide mass is more than 100 m and displacements occur through a combination of slumping at the toe and planar sliding in the central and upper slope. Our approach provides information and interpretations that can assist ...","owner":{"id":30937520,"first_name":"John","middle_initials":null,"last_name":"Clague","page_name":"JohnClague","domain_name":"sfu","created_at":"2015-05-09T12:05:01.456-07:00","display_name":"John Clague","url":"https://sfu.academia.edu/JohnClague"},"attachments":[{"id":85229789,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/85229789/thumbnails/1.jpg","file_name":"pdf.pdf","download_url":"https://www.academia.edu/attachments/85229789/download_file","bulk_download_file_name":"A_Robust_SAR_Speckle_Tracking_Workflow_f.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/85229789/pdf-libre.pdf?1651328559=\u0026response-content-disposition=attachment%3B+filename%3DA_Robust_SAR_Speckle_Tracking_Workflow_f.pdf\u0026Expires=1741733722\u0026Signature=BuaUijKRJHFuN3-lJ66E1hoTXfWQE-tbHLOK~zx1TfBDVg1ZJzh82Wl~U84Sa-8QsPvb1IwKUgDhUoZ49P4mnhKQfrrtvsMw53AXAZHd-OYP5YDpj7j33VKNWDm6eN7uIAjSKn5dCnVV9fX4Bam2pUF1tm5oeWbibogi-69iGXIvdiPfWf-YbFpOHJDuVus4mdwlAifJdUGbSqIyfrCQBOxvkKacveECEzpau-faniUDnhWe2q-V7f~1NlZ1KqEPLXKcBh0H3XqK-aryHGPBcsbZ943RD6RdUw9Dwa1WuAIybEUstTwHxUmltzsYBpjhtAfRutgsMFfSWRNVrG89bg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":85229786,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/85229786/thumbnails/1.jpg","file_name":"pdf.pdf","download_url":"https://www.academia.edu/attachments/85229786/download_file","bulk_download_file_name":"A_Robust_SAR_Speckle_Tracking_Workflow_f.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/85229786/pdf-libre.pdf?1651328559=\u0026response-content-disposition=attachment%3B+filename%3DA_Robust_SAR_Speckle_Tracking_Workflow_f.pdf\u0026Expires=1741733722\u0026Signature=JXprNgQRZLc7KOjvs0fXe2doKfg8wE~QkHKN3Y0QJwpJqCoMRnMxKX0p4e5DQLoBzofGQLzaQVhm8F6wJ09L7vrqT21moOKgdrZloMsN7zGJVc4j6ztkNy4JYZa4gFayy9fPl2o4U21otDmdlaSNNjQId3Nl9txh52pjWCqUqZqkVg~bTWkIhOzWeWsk91ERhSld~7bh0~D~IAMJWdFLkaeFu6KUNhP-tCFrbwb7NDb56cL26n1fvmLmbZh1zUTu45C2IU86T~J2zwxvnbZHJf5bCQPwoqnJrvD2Fh7BS8ASZX8lMSnQZYjS0il84J4FxgBynoFxb-4kUGa8fdtLaw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":1252,"name":"Remote Sensing","url":"https://www.academia.edu/Documents/in/Remote_Sensing"}],"urls":[{"id":20065752,"url":"https://www.mdpi.com/2072-4292/13/15/3048/pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="78046915"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/78046915/Exploring_new_methods_to_analyse_spatial_impact_distributions_on_debris_flow_fans_using_data_from_south_western_British_Columbia"><img alt="Research paper thumbnail of Exploring new methods to analyse spatial impact distributions on debris‐flow fans using data from south‐western British Columbia" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/78046915/Exploring_new_methods_to_analyse_spatial_impact_distributions_on_debris_flow_fans_using_data_from_south_western_British_Columbia">Exploring new methods to analyse spatial impact distributions on debris‐flow fans using data from south‐western British Columbia</a></div><div class="wp-workCard_item"><span>Earth Surface Processes and Landforms</span><span>, 2021</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Predicting the spatial impact of debris flows on fans is challenging due to complex runout behavi...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Predicting the spatial impact of debris flows on fans is challenging due to complex runout behaviour. Debris flow mobility is highly variable and flows can sporadically avulse the channel. For hazard and risk assessments, practitioners typically base the probability of spatial impact or avulsion on their experience and expert judgement. To support decision-making with empirical observations, we studied spatial impact distributions on 30 active debris-flow fans in southwestern British Columbia, Canada. We mapped 146 debris-flow impact areas over an average observation period of 74 years using orthorectified airphotos, satellite imagery, topographic base</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="78046915"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="78046915"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 78046915; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=78046915]").text(description); $(".js-view-count[data-work-id=78046915]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 78046915; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='78046915']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=78046915]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":78046915,"title":"Exploring new methods to analyse spatial impact distributions on debris‐flow fans using data from south‐western British Columbia","translated_title":"","metadata":{"abstract":"Predicting the spatial impact of debris flows on fans is challenging due to complex runout behaviour. Debris flow mobility is highly variable and flows can sporadically avulse the channel. For hazard and risk assessments, practitioners typically base the probability of spatial impact or avulsion on their experience and expert judgement. To support decision-making with empirical observations, we studied spatial impact distributions on 30 active debris-flow fans in southwestern British Columbia, Canada. We mapped 146 debris-flow impact areas over an average observation period of 74 years using orthorectified airphotos, satellite imagery, topographic base","publisher":"Earth Surface Processes and Landforms","publication_date":{"day":null,"month":null,"year":2021,"errors":{}},"publication_name":"Earth Surface Processes and Landforms"},"translated_abstract":"Predicting the spatial impact of debris flows on fans is challenging due to complex runout behaviour. Debris flow mobility is highly variable and flows can sporadically avulse the channel. For hazard and risk assessments, practitioners typically base the probability of spatial impact or avulsion on their experience and expert judgement. To support decision-making with empirical observations, we studied spatial impact distributions on 30 active debris-flow fans in southwestern British Columbia, Canada. We mapped 146 debris-flow impact areas over an average observation period of 74 years using orthorectified airphotos, satellite imagery, topographic base","internal_url":"https://www.academia.edu/78046915/Exploring_new_methods_to_analyse_spatial_impact_distributions_on_debris_flow_fans_using_data_from_south_western_British_Columbia","translated_internal_url":"","created_at":"2022-04-30T07:17:23.284-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":30937520,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Exploring_new_methods_to_analyse_spatial_impact_distributions_on_debris_flow_fans_using_data_from_south_western_British_Columbia","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"Predicting the spatial impact of debris flows on fans is challenging due to complex runout behaviour. Debris flow mobility is highly variable and flows can sporadically avulse the channel. For hazard and risk assessments, practitioners typically base the probability of spatial impact or avulsion on their experience and expert judgement. To support decision-making with empirical observations, we studied spatial impact distributions on 30 active debris-flow fans in southwestern British Columbia, Canada. We mapped 146 debris-flow impact areas over an average observation period of 74 years using orthorectified airphotos, satellite imagery, topographic base","owner":{"id":30937520,"first_name":"John","middle_initials":null,"last_name":"Clague","page_name":"JohnClague","domain_name":"sfu","created_at":"2015-05-09T12:05:01.456-07:00","display_name":"John Clague","url":"https://sfu.academia.edu/JohnClague"},"attachments":[],"research_interests":[{"id":406,"name":"Geology","url":"https://www.academia.edu/Documents/in/Geology"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="78046913"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/78046913/Relations_between_climate_change_and_mass_movement_Perspectives_from_the_Canadian_Cordillera_and_the_European_Alps"><img alt="Research paper thumbnail of Relations between climate change and mass movement: Perspectives from the Canadian Cordillera and the European Alps" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/78046913/Relations_between_climate_change_and_mass_movement_Perspectives_from_the_Canadian_Cordillera_and_the_European_Alps">Relations between climate change and mass movement: Perspectives from the Canadian Cordillera and the European Alps</a></div><div class="wp-workCard_item"><span>Global and Planetary Change</span><span>, 2021</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Abstract Earth&#39;s climate is warming and will continue to warm as the century progresses. High...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Abstract Earth&#39;s climate is warming and will continue to warm as the century progresses. High mountains and high latitudes are experiencing the greatest warming of all regions on Earth and also are some of the most sensitive areas to climate change, in part because ecosystems and natural processes in these areas are intimately linked to the cryosphere. Evidence is mounting that warming will further reduce permafrost and snow and ice cover in high mountains, which in turn will destabilize many slopes, alter sediment delivery to streams, and change subalpine and alpine ecosystems. This paper contributes to the continuing discussion of impacts of climate change on mountain environments by comparing and discussing processes and trends in the mountains of western Canada and the European Alps. We highlight the effects of physiography and climate on physical processes occurring in the two regions. Processes of interest include landslides and debris flows induced by glacier debuttressing, alpine permafrost thaw, changes in rainfall regime, formation and sudden drainage of glacier- and moraine-dammed lakes, ice avalanches, glacier surges, and large-scale sediment transfers due to rapid deglacierization. Our analysis points out the value of integrating observations and data from different areas of the world to better understand these processes and their impacts.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="78046913"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="78046913"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 78046913; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=78046913]").text(description); $(".js-view-count[data-work-id=78046913]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 78046913; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='78046913']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=78046913]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":78046913,"title":"Relations between climate change and mass movement: Perspectives from the Canadian Cordillera and the European Alps","translated_title":"","metadata":{"abstract":"Abstract Earth\u0026#39;s climate is warming and will continue to warm as the century progresses. High mountains and high latitudes are experiencing the greatest warming of all regions on Earth and also are some of the most sensitive areas to climate change, in part because ecosystems and natural processes in these areas are intimately linked to the cryosphere. Evidence is mounting that warming will further reduce permafrost and snow and ice cover in high mountains, which in turn will destabilize many slopes, alter sediment delivery to streams, and change subalpine and alpine ecosystems. This paper contributes to the continuing discussion of impacts of climate change on mountain environments by comparing and discussing processes and trends in the mountains of western Canada and the European Alps. We highlight the effects of physiography and climate on physical processes occurring in the two regions. Processes of interest include landslides and debris flows induced by glacier debuttressing, alpine permafrost thaw, changes in rainfall regime, formation and sudden drainage of glacier- and moraine-dammed lakes, ice avalanches, glacier surges, and large-scale sediment transfers due to rapid deglacierization. Our analysis points out the value of integrating observations and data from different areas of the world to better understand these processes and their impacts.","publisher":"Elsevier BV","publication_date":{"day":null,"month":null,"year":2021,"errors":{}},"publication_name":"Global and Planetary Change"},"translated_abstract":"Abstract Earth\u0026#39;s climate is warming and will continue to warm as the century progresses. High mountains and high latitudes are experiencing the greatest warming of all regions on Earth and also are some of the most sensitive areas to climate change, in part because ecosystems and natural processes in these areas are intimately linked to the cryosphere. Evidence is mounting that warming will further reduce permafrost and snow and ice cover in high mountains, which in turn will destabilize many slopes, alter sediment delivery to streams, and change subalpine and alpine ecosystems. This paper contributes to the continuing discussion of impacts of climate change on mountain environments by comparing and discussing processes and trends in the mountains of western Canada and the European Alps. We highlight the effects of physiography and climate on physical processes occurring in the two regions. Processes of interest include landslides and debris flows induced by glacier debuttressing, alpine permafrost thaw, changes in rainfall regime, formation and sudden drainage of glacier- and moraine-dammed lakes, ice avalanches, glacier surges, and large-scale sediment transfers due to rapid deglacierization. Our analysis points out the value of integrating observations and data from different areas of the world to better understand these processes and their impacts.","internal_url":"https://www.academia.edu/78046913/Relations_between_climate_change_and_mass_movement_Perspectives_from_the_Canadian_Cordillera_and_the_European_Alps","translated_internal_url":"","created_at":"2022-04-30T07:17:23.086-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":30937520,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Relations_between_climate_change_and_mass_movement_Perspectives_from_the_Canadian_Cordillera_and_the_European_Alps","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"Abstract Earth\u0026#39;s climate is warming and will continue to warm as the century progresses. High mountains and high latitudes are experiencing the greatest warming of all regions on Earth and also are some of the most sensitive areas to climate change, in part because ecosystems and natural processes in these areas are intimately linked to the cryosphere. Evidence is mounting that warming will further reduce permafrost and snow and ice cover in high mountains, which in turn will destabilize many slopes, alter sediment delivery to streams, and change subalpine and alpine ecosystems. This paper contributes to the continuing discussion of impacts of climate change on mountain environments by comparing and discussing processes and trends in the mountains of western Canada and the European Alps. We highlight the effects of physiography and climate on physical processes occurring in the two regions. Processes of interest include landslides and debris flows induced by glacier debuttressing, alpine permafrost thaw, changes in rainfall regime, formation and sudden drainage of glacier- and moraine-dammed lakes, ice avalanches, glacier surges, and large-scale sediment transfers due to rapid deglacierization. Our analysis points out the value of integrating observations and data from different areas of the world to better understand these processes and their impacts.","owner":{"id":30937520,"first_name":"John","middle_initials":null,"last_name":"Clague","page_name":"JohnClague","domain_name":"sfu","created_at":"2015-05-09T12:05:01.456-07:00","display_name":"John Clague","url":"https://sfu.academia.edu/JohnClague"},"attachments":[],"research_interests":[{"id":400,"name":"Earth Sciences","url":"https://www.academia.edu/Documents/in/Earth_Sciences"},{"id":402,"name":"Environmental Science","url":"https://www.academia.edu/Documents/in/Environmental_Science"},{"id":897823,"name":"Elsevier","url":"https://www.academia.edu/Documents/in/Elsevier"}],"urls":[{"id":20065750,"url":"https://api.elsevier.com/content/article/PII:S0921818121000849?httpAccept=text/xml"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="78046912"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/78046912/Can_deep_learning_algorithms_outperform_benchmark_machine_learning_algorithms_in_flood_susceptibility_modeling"><img alt="Research paper thumbnail of Can deep learning algorithms outperform benchmark machine learning algorithms in flood susceptibility modeling?" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/78046912/Can_deep_learning_algorithms_outperform_benchmark_machine_learning_algorithms_in_flood_susceptibility_modeling">Can deep learning algorithms outperform benchmark machine learning algorithms in flood susceptibility modeling?</a></div><div class="wp-workCard_item"><span>Journal of Hydrology</span><span>, 2021</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Abstract This paper introduces a new deep-learning algorithm of deep belief network (DBN) based o...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Abstract This paper introduces a new deep-learning algorithm of deep belief network (DBN) based on an extreme learning machine (ELM) that is structured by back propagation (BN) and optimized by particle swarm optimization (PSO) algorithm, named DEBP, for flood susceptibility mapping in the Vu Gia-Thu Bon watershed, central Vietnam. We use 847 locations of floods that occurred in 2007, 2009, and 2013 and 16 flood conditioning factors evaluated by an information gain ratio (IGR) technique to construct and validate the proposed model. Statistical metrics, including sensitivity, specificity, accuracy, F1-measure, Jaccard coefficient, Matthews correlation coefficient (MCC), root mean square error (RMSE), and area under the receiver operating characteristic curve (AUC), are used to assess the goodness-of-fit/performance and prediction accuracy of the new deep learning model. We further compare the proposed model with several well-known machine learning algorithms, including artificial neural network-based radial base function (ANNRBF), logistic regression (LR), logistic model tree (LMTree), functional tree (FTree), and alternating decision tree (ADTree). The new proposed model, DEBP, has the highest goodness-of-fit (AUC = 0.970) and prediction accuracy (AUC = 0.967) of all of the tested models and thus shows promise as a tool for flood susceptibility modeling. We conclude that novel deep learning algorithms such as the one used in this study can improve the accuracy of flood susceptibility maps that are required by planners, decision makers, and government agencies to manage of areas vulnerable to flood-induced damage.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="78046912"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="78046912"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 78046912; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=78046912]").text(description); $(".js-view-count[data-work-id=78046912]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 78046912; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='78046912']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=78046912]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":78046912,"title":"Can deep learning algorithms outperform benchmark machine learning algorithms in flood susceptibility modeling?","translated_title":"","metadata":{"abstract":"Abstract This paper introduces a new deep-learning algorithm of deep belief network (DBN) based on an extreme learning machine (ELM) that is structured by back propagation (BN) and optimized by particle swarm optimization (PSO) algorithm, named DEBP, for flood susceptibility mapping in the Vu Gia-Thu Bon watershed, central Vietnam. We use 847 locations of floods that occurred in 2007, 2009, and 2013 and 16 flood conditioning factors evaluated by an information gain ratio (IGR) technique to construct and validate the proposed model. Statistical metrics, including sensitivity, specificity, accuracy, F1-measure, Jaccard coefficient, Matthews correlation coefficient (MCC), root mean square error (RMSE), and area under the receiver operating characteristic curve (AUC), are used to assess the goodness-of-fit/performance and prediction accuracy of the new deep learning model. We further compare the proposed model with several well-known machine learning algorithms, including artificial neural network-based radial base function (ANNRBF), logistic regression (LR), logistic model tree (LMTree), functional tree (FTree), and alternating decision tree (ADTree). The new proposed model, DEBP, has the highest goodness-of-fit (AUC = 0.970) and prediction accuracy (AUC = 0.967) of all of the tested models and thus shows promise as a tool for flood susceptibility modeling. We conclude that novel deep learning algorithms such as the one used in this study can improve the accuracy of flood susceptibility maps that are required by planners, decision makers, and government agencies to manage of areas vulnerable to flood-induced damage.","publisher":"Elsevier BV","publication_date":{"day":null,"month":null,"year":2021,"errors":{}},"publication_name":"Journal of Hydrology"},"translated_abstract":"Abstract This paper introduces a new deep-learning algorithm of deep belief network (DBN) based on an extreme learning machine (ELM) that is structured by back propagation (BN) and optimized by particle swarm optimization (PSO) algorithm, named DEBP, for flood susceptibility mapping in the Vu Gia-Thu Bon watershed, central Vietnam. We use 847 locations of floods that occurred in 2007, 2009, and 2013 and 16 flood conditioning factors evaluated by an information gain ratio (IGR) technique to construct and validate the proposed model. Statistical metrics, including sensitivity, specificity, accuracy, F1-measure, Jaccard coefficient, Matthews correlation coefficient (MCC), root mean square error (RMSE), and area under the receiver operating characteristic curve (AUC), are used to assess the goodness-of-fit/performance and prediction accuracy of the new deep learning model. We further compare the proposed model with several well-known machine learning algorithms, including artificial neural network-based radial base function (ANNRBF), logistic regression (LR), logistic model tree (LMTree), functional tree (FTree), and alternating decision tree (ADTree). The new proposed model, DEBP, has the highest goodness-of-fit (AUC = 0.970) and prediction accuracy (AUC = 0.967) of all of the tested models and thus shows promise as a tool for flood susceptibility modeling. We conclude that novel deep learning algorithms such as the one used in this study can improve the accuracy of flood susceptibility maps that are required by planners, decision makers, and government agencies to manage of areas vulnerable to flood-induced damage.","internal_url":"https://www.academia.edu/78046912/Can_deep_learning_algorithms_outperform_benchmark_machine_learning_algorithms_in_flood_susceptibility_modeling","translated_internal_url":"","created_at":"2022-04-30T07:17:22.858-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":30937520,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Can_deep_learning_algorithms_outperform_benchmark_machine_learning_algorithms_in_flood_susceptibility_modeling","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"Abstract This paper introduces a new deep-learning algorithm of deep belief network (DBN) based on an extreme learning machine (ELM) that is structured by back propagation (BN) and optimized by particle swarm optimization (PSO) algorithm, named DEBP, for flood susceptibility mapping in the Vu Gia-Thu Bon watershed, central Vietnam. We use 847 locations of floods that occurred in 2007, 2009, and 2013 and 16 flood conditioning factors evaluated by an information gain ratio (IGR) technique to construct and validate the proposed model. Statistical metrics, including sensitivity, specificity, accuracy, F1-measure, Jaccard coefficient, Matthews correlation coefficient (MCC), root mean square error (RMSE), and area under the receiver operating characteristic curve (AUC), are used to assess the goodness-of-fit/performance and prediction accuracy of the new deep learning model. We further compare the proposed model with several well-known machine learning algorithms, including artificial neural network-based radial base function (ANNRBF), logistic regression (LR), logistic model tree (LMTree), functional tree (FTree), and alternating decision tree (ADTree). The new proposed model, DEBP, has the highest goodness-of-fit (AUC = 0.970) and prediction accuracy (AUC = 0.967) of all of the tested models and thus shows promise as a tool for flood susceptibility modeling. We conclude that novel deep learning algorithms such as the one used in this study can improve the accuracy of flood susceptibility maps that are required by planners, decision makers, and government agencies to manage of areas vulnerable to flood-induced damage.","owner":{"id":30937520,"first_name":"John","middle_initials":null,"last_name":"Clague","page_name":"JohnClague","domain_name":"sfu","created_at":"2015-05-09T12:05:01.456-07:00","display_name":"John Clague","url":"https://sfu.academia.edu/JohnClague"},"attachments":[],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":2008,"name":"Machine Learning","url":"https://www.academia.edu/Documents/in/Machine_Learning"},{"id":2549,"name":"Hydrology","url":"https://www.academia.edu/Documents/in/Hydrology"},{"id":26817,"name":"Algorithm","url":"https://www.academia.edu/Documents/in/Algorithm"},{"id":28235,"name":"Multidisciplinary","url":"https://www.academia.edu/Documents/in/Multidisciplinary"}],"urls":[{"id":20065749,"url":"https://api.elsevier.com/content/article/PII:S0022169420310763?httpAccept=text/xml"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> </div><div class="profile--tab_content_container js-tab-pane tab-pane" data-section-id="2925221" id="papers"><div class="js-work-strip profile--work_container" data-work-id="88171084"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/88171084/Relationship_between_the_spatial_distribution_of_landslides_and_rock_mass_strength_and_implications_for_the_driving_mechanism_of_landslides_in_tectonically_active_mountain_ranges"><img alt="Research paper thumbnail of Relationship between the spatial distribution of landslides and rock mass strength, and implications for the driving mechanism of landslides in tectonically active mountain ranges" class="work-thumbnail" src="https://attachments.academia-assets.com/92249226/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/88171084/Relationship_between_the_spatial_distribution_of_landslides_and_rock_mass_strength_and_implications_for_the_driving_mechanism_of_landslides_in_tectonically_active_mountain_ranges">Relationship between the spatial distribution of landslides and rock mass strength, and implications for the driving mechanism of landslides in tectonically active mountain ranges</a></div><div class="wp-workCard_item"><span>Engineering Geology</span><span>, 2021</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Abstract The relationship between landslides and rock mass strength is fundamental for assessing ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Abstract The relationship between landslides and rock mass strength is fundamental for assessing landslide hazards. Some researchers have proposed that there is an inverse relationship between the number of landslides and rock mass strength. However, in some tectonically active mountain ranges, higher rates of landsliding appear to be associated with greater rock mass strength. We investigated the relation between landslides and rock mass strength in the Langxian (LX), Lulang (LL), and Tongmai (TM) regions in southeastern Tibet by identifying and mapping 294 large bedrock landslides using 10-m resolution lidar bare-earth imagery. An inverse relationship between topographic relief and the slope angle of historical landslides demonstrates that rock mass strength is an important factor controlling relief in the study area. Applying Culmann&#39;s method, we back-calculated rock mass strengths ranging from 60 to 770 kPa at the landscape scale. Our data show that, at the landscape scale, more landslides have occurred on the hillslopes with greater rock mass strength than on those with lower rock mass strength. We conclude that the stability of slopes in our study areas is controlled by rock mass strength, but the dominant drivers of failure are rock uplift and river incision, rather than a reduction in rock strength as has been proposed in some tectonically passive regions.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="88135a00966db73afe34d91635a6367b" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":92249226,"asset_id":88171084,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/92249226/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="88171084"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="88171084"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 88171084; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=88171084]").text(description); $(".js-view-count[data-work-id=88171084]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 88171084; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='88171084']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "88135a00966db73afe34d91635a6367b" } } $('.js-work-strip[data-work-id=88171084]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":88171084,"title":"Relationship between the spatial distribution of landslides and rock mass strength, and implications for the driving mechanism of landslides in tectonically active mountain ranges","translated_title":"","metadata":{"abstract":"Abstract The relationship between landslides and rock mass strength is fundamental for assessing landslide hazards. Some researchers have proposed that there is an inverse relationship between the number of landslides and rock mass strength. However, in some tectonically active mountain ranges, higher rates of landsliding appear to be associated with greater rock mass strength. We investigated the relation between landslides and rock mass strength in the Langxian (LX), Lulang (LL), and Tongmai (TM) regions in southeastern Tibet by identifying and mapping 294 large bedrock landslides using 10-m resolution lidar bare-earth imagery. An inverse relationship between topographic relief and the slope angle of historical landslides demonstrates that rock mass strength is an important factor controlling relief in the study area. Applying Culmann\u0026#39;s method, we back-calculated rock mass strengths ranging from 60 to 770 kPa at the landscape scale. Our data show that, at the landscape scale, more landslides have occurred on the hillslopes with greater rock mass strength than on those with lower rock mass strength. We conclude that the stability of slopes in our study areas is controlled by rock mass strength, but the dominant drivers of failure are rock uplift and river incision, rather than a reduction in rock strength as has been proposed in some tectonically passive regions.","publisher":"Elsevier BV","publication_date":{"day":null,"month":null,"year":2021,"errors":{}},"publication_name":"Engineering Geology"},"translated_abstract":"Abstract The relationship between landslides and rock mass strength is fundamental for assessing landslide hazards. Some researchers have proposed that there is an inverse relationship between the number of landslides and rock mass strength. However, in some tectonically active mountain ranges, higher rates of landsliding appear to be associated with greater rock mass strength. We investigated the relation between landslides and rock mass strength in the Langxian (LX), Lulang (LL), and Tongmai (TM) regions in southeastern Tibet by identifying and mapping 294 large bedrock landslides using 10-m resolution lidar bare-earth imagery. An inverse relationship between topographic relief and the slope angle of historical landslides demonstrates that rock mass strength is an important factor controlling relief in the study area. Applying Culmann\u0026#39;s method, we back-calculated rock mass strengths ranging from 60 to 770 kPa at the landscape scale. Our data show that, at the landscape scale, more landslides have occurred on the hillslopes with greater rock mass strength than on those with lower rock mass strength. We conclude that the stability of slopes in our study areas is controlled by rock mass strength, but the dominant drivers of failure are rock uplift and river incision, rather than a reduction in rock strength as has been proposed in some tectonically passive regions.","internal_url":"https://www.academia.edu/88171084/Relationship_between_the_spatial_distribution_of_landslides_and_rock_mass_strength_and_implications_for_the_driving_mechanism_of_landslides_in_tectonically_active_mountain_ranges","translated_internal_url":"","created_at":"2022-10-09T07:47:46.629-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":30937520,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":92249226,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/92249226/thumbnails/1.jpg","file_name":"Wang_et_al._Engineering_Geology_2021.pdf","download_url":"https://www.academia.edu/attachments/92249226/download_file","bulk_download_file_name":"Relationship_between_the_spatial_distrib.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/92249226/Wang_et_al._Engineering_Geology_2021-libre.pdf?1665419387=\u0026response-content-disposition=attachment%3B+filename%3DRelationship_between_the_spatial_distrib.pdf\u0026Expires=1741733721\u0026Signature=QIHG4Nx62PyY0JDNwKJ1iH-NvBk8OTknYgEG3OYPwkuec~lPvl4iQr1Jh8JPXNTsD17UgxO92CZ-ZldCxU2zKeXslCHknU1tYH4OuMe~dUxmW1KFXiwnt2-M2aKY57ICWQpOYlJKA6s7x~BRZARDUod0brOnjbt0AenysPdzkX8qDrz-wD~OnyppWJeU3oJOzldZ5Q4a9ESXYe-ApDyM28obzZLawthWYojLNaAqQkEbfhlZr6tbNxc8zPUSDq3160rDVgPo-RI-1MtRUf6bSTXnzmdIkWWvtpz-PueILpPhB~-Db-Y9it9EL1-Z5zMB02gnIUGNTh2LoG7n~fU9FQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Relationship_between_the_spatial_distribution_of_landslides_and_rock_mass_strength_and_implications_for_the_driving_mechanism_of_landslides_in_tectonically_active_mountain_ranges","translated_slug":"","page_count":8,"language":"en","content_type":"Work","summary":"Abstract The relationship between landslides and rock mass strength is fundamental for assessing landslide hazards. Some researchers have proposed that there is an inverse relationship between the number of landslides and rock mass strength. However, in some tectonically active mountain ranges, higher rates of landsliding appear to be associated with greater rock mass strength. We investigated the relation between landslides and rock mass strength in the Langxian (LX), Lulang (LL), and Tongmai (TM) regions in southeastern Tibet by identifying and mapping 294 large bedrock landslides using 10-m resolution lidar bare-earth imagery. An inverse relationship between topographic relief and the slope angle of historical landslides demonstrates that rock mass strength is an important factor controlling relief in the study area. Applying Culmann\u0026#39;s method, we back-calculated rock mass strengths ranging from 60 to 770 kPa at the landscape scale. Our data show that, at the landscape scale, more landslides have occurred on the hillslopes with greater rock mass strength than on those with lower rock mass strength. We conclude that the stability of slopes in our study areas is controlled by rock mass strength, but the dominant drivers of failure are rock uplift and river incision, rather than a reduction in rock strength as has been proposed in some tectonically passive regions.","owner":{"id":30937520,"first_name":"John","middle_initials":null,"last_name":"Clague","page_name":"JohnClague","domain_name":"sfu","created_at":"2015-05-09T12:05:01.456-07:00","display_name":"John Clague","url":"https://sfu.academia.edu/JohnClague"},"attachments":[{"id":92249226,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/92249226/thumbnails/1.jpg","file_name":"Wang_et_al._Engineering_Geology_2021.pdf","download_url":"https://www.academia.edu/attachments/92249226/download_file","bulk_download_file_name":"Relationship_between_the_spatial_distrib.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/92249226/Wang_et_al._Engineering_Geology_2021-libre.pdf?1665419387=\u0026response-content-disposition=attachment%3B+filename%3DRelationship_between_the_spatial_distrib.pdf\u0026Expires=1741733721\u0026Signature=QIHG4Nx62PyY0JDNwKJ1iH-NvBk8OTknYgEG3OYPwkuec~lPvl4iQr1Jh8JPXNTsD17UgxO92CZ-ZldCxU2zKeXslCHknU1tYH4OuMe~dUxmW1KFXiwnt2-M2aKY57ICWQpOYlJKA6s7x~BRZARDUod0brOnjbt0AenysPdzkX8qDrz-wD~OnyppWJeU3oJOzldZ5Q4a9ESXYe-ApDyM28obzZLawthWYojLNaAqQkEbfhlZr6tbNxc8zPUSDq3160rDVgPo-RI-1MtRUf6bSTXnzmdIkWWvtpz-PueILpPhB~-Db-Y9it9EL1-Z5zMB02gnIUGNTh2LoG7n~fU9FQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":73,"name":"Civil Engineering","url":"https://www.academia.edu/Documents/in/Civil_Engineering"},{"id":406,"name":"Geology","url":"https://www.academia.edu/Documents/in/Geology"},{"id":408,"name":"Geomorphology","url":"https://www.academia.edu/Documents/in/Geomorphology"},{"id":20564,"name":"Engineering Geology","url":"https://www.academia.edu/Documents/in/Engineering_Geology"},{"id":199886,"name":"Landslide","url":"https://www.academia.edu/Documents/in/Landslide"},{"id":206804,"name":"Rock mass classification","url":"https://www.academia.edu/Documents/in/Rock_mass_classification"},{"id":289583,"name":"Geological strength index","url":"https://www.academia.edu/Documents/in/Geological_strength_index"},{"id":1736724,"name":"Bedrock","url":"https://www.academia.edu/Documents/in/Bedrock"}],"urls":[{"id":24610508,"url":"https://api.elsevier.com/content/article/PII:S0013795221002921?httpAccept=text/xml"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="84625277"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/84625277/Exploration_of_the_kinematics_of_the_1963_vajont_slide_Italy_using_a_numerical_modelling_toolbox"><img alt="Research paper thumbnail of Exploration of the kinematics of the 1963 vajont slide, Italy, using a numerical modelling toolbox" class="work-thumbnail" src="https://attachments.academia-assets.com/89582016/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/84625277/Exploration_of_the_kinematics_of_the_1963_vajont_slide_Italy_using_a_numerical_modelling_toolbox">Exploration of the kinematics of the 1963 vajont slide, Italy, using a numerical modelling toolbox</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Col Tramontin Fault and Erto Syncline, as well as block size, on the failure. Finally, preliminar...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Col Tramontin Fault and Erto Syncline, as well as block size, on the failure. Finally, preliminary simulations in a new 3D lattice-spring code show that crack clusters developed, and became concentrated in the transition zone between the back and seat of the chair-shaped failure surface.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="f49a1fde59f874a631a72c4cc2f61ca6" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":89582016,"asset_id":84625277,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/89582016/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="84625277"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="84625277"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 84625277; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=84625277]").text(description); $(".js-view-count[data-work-id=84625277]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 84625277; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='84625277']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "f49a1fde59f874a631a72c4cc2f61ca6" } } $('.js-work-strip[data-work-id=84625277]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":84625277,"title":"Exploration of the kinematics of the 1963 vajont slide, Italy, using a numerical modelling toolbox","translated_title":"","metadata":{"grobid_abstract":"Col Tramontin Fault and Erto Syncline, as well as block size, on the failure. Finally, preliminary simulations in a new 3D lattice-spring code show that crack clusters developed, and became concentrated in the transition zone between the back and seat of the chair-shaped failure surface.","publication_date":{"day":null,"month":null,"year":2013,"errors":{}},"grobid_abstract_attachment_id":89582016},"translated_abstract":null,"internal_url":"https://www.academia.edu/84625277/Exploration_of_the_kinematics_of_the_1963_vajont_slide_Italy_using_a_numerical_modelling_toolbox","translated_internal_url":"","created_at":"2022-08-13T07:15:23.819-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":30937520,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":89582016,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/89582016/thumbnails/1.jpg","file_name":"download.pdf","download_url":"https://www.academia.edu/attachments/89582016/download_file","bulk_download_file_name":"Exploration_of_the_kinematics_of_the_196.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/89582016/download-libre.pdf?1660400534=\u0026response-content-disposition=attachment%3B+filename%3DExploration_of_the_kinematics_of_the_196.pdf\u0026Expires=1741733721\u0026Signature=KtAoPQTBqbQR4FrOCEVFCSSDLY9gPRLtaqWXG1aVxOMoznG5uKfbpu0ao2HfNKvxDLFiS2trwOgviAsEldd9FSvwBVIM4JmwDMOoBhVqjR7Jaw4cbvp6-rOppcZaWkIn1HwCss84pv-OxwIdq7DmIH6W1TKO8Q7uGVJTpZ3lzJ0QL0jDLElO0roQNQBcONmLn6F~qBG109h-njcdHp1KuX5rkd1Nq9J0y1Sf5W7XUnERmXdwjpNh2qlhifvaP537IvPsb-EixDlUiSZMvuQiDTsva9breQ-1Yr-aFWlOYn3GcV8rkiV9P7TiUf3EGbW~ebIQRsPK4ulvcYiGhvVq5w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Exploration_of_the_kinematics_of_the_1963_vajont_slide_Italy_using_a_numerical_modelling_toolbox","translated_slug":"","page_count":14,"language":"en","content_type":"Work","summary":"Col Tramontin Fault and Erto Syncline, as well as block size, on the failure. Finally, preliminary simulations in a new 3D lattice-spring code show that crack clusters developed, and became concentrated in the transition zone between the back and seat of the chair-shaped failure surface.","owner":{"id":30937520,"first_name":"John","middle_initials":null,"last_name":"Clague","page_name":"JohnClague","domain_name":"sfu","created_at":"2015-05-09T12:05:01.456-07:00","display_name":"John Clague","url":"https://sfu.academia.edu/JohnClague"},"attachments":[{"id":89582016,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/89582016/thumbnails/1.jpg","file_name":"download.pdf","download_url":"https://www.academia.edu/attachments/89582016/download_file","bulk_download_file_name":"Exploration_of_the_kinematics_of_the_196.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/89582016/download-libre.pdf?1660400534=\u0026response-content-disposition=attachment%3B+filename%3DExploration_of_the_kinematics_of_the_196.pdf\u0026Expires=1741733721\u0026Signature=KtAoPQTBqbQR4FrOCEVFCSSDLY9gPRLtaqWXG1aVxOMoznG5uKfbpu0ao2HfNKvxDLFiS2trwOgviAsEldd9FSvwBVIM4JmwDMOoBhVqjR7Jaw4cbvp6-rOppcZaWkIn1HwCss84pv-OxwIdq7DmIH6W1TKO8Q7uGVJTpZ3lzJ0QL0jDLElO0roQNQBcONmLn6F~qBG109h-njcdHp1KuX5rkd1Nq9J0y1Sf5W7XUnERmXdwjpNh2qlhifvaP537IvPsb-EixDlUiSZMvuQiDTsva9breQ-1Yr-aFWlOYn3GcV8rkiV9P7TiUf3EGbW~ebIQRsPK4ulvcYiGhvVq5w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":406,"name":"Geology","url":"https://www.academia.edu/Documents/in/Geology"},{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":22930,"name":"Numerical Modelling","url":"https://www.academia.edu/Documents/in/Numerical_Modelling"},{"id":90162,"name":"Kinematics","url":"https://www.academia.edu/Documents/in/Kinematics"},{"id":199886,"name":"Landslide","url":"https://www.academia.edu/Documents/in/Landslide"},{"id":810759,"name":"Vajont","url":"https://www.academia.edu/Documents/in/Vajont"},{"id":2699636,"name":"Toolbox","url":"https://www.academia.edu/Documents/in/Toolbox"}],"urls":[{"id":22866526,"url":"http://www.ijege.uniroma1.it/rivista/international-conference-on-vajont-1963-2013-thoughts-and-analyses-after-50-years-since-the-catastrophic-landslide/topic-6-the-vajont-rockslide/exploration-of-the-kinematics-of-the-1963-vajont-slide-italy-using-a-numerical-modelling-toolbox/ijege-13_bs-wolter-et-alii-1.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="84625276"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/84625276/Late_cenozoic_geology_and_geomorphology_of_the_Laguna_de_Agnia_Area_Argentina"><img alt="Research paper thumbnail of Late cenozoic geology and geomorphology of the Laguna de Agnia Area, Argentina" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/84625276/Late_cenozoic_geology_and_geomorphology_of_the_Laguna_de_Agnia_Area_Argentina">Late cenozoic geology and geomorphology of the Laguna de Agnia Area, Argentina</a></div><div class="wp-workCard_item"><span>Journal of South American Earth Sciences</span><span>, 2021</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Abstract Laguna de Agnia is located within an endorheic basin in arid extra-Andean Patagonia. A v...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Abstract Laguna de Agnia is located within an endorheic basin in arid extra-Andean Patagonia. A variety of erosional and depositional landforms, most of which are relict, are well preserved in the basin. Geological, geomorphological, and sedimentological studies, 14C and 40Ar/39Ar ages, and paleomagnetic data allow us to modify the published interpretation of the late Cenozoic stratigraphy of the area and provide an improved understanding of local landscape evolution, and paleoenvironments and paleoclimates in the region. The basin formed during or before the late Oligocene. Miocene pyroclastic deposits, which are widely distributed in this part of Patagonia, were not found within the basin. However, a bajada sloping down toward the east side of the lake likely dates to the Miocene. Basalt lava flows reached the west margin of the Laguna de Agnia depression 3.39 ± 0.02 Ma. A lacustrine phase is manifest in numerous shorelines and related features east of and above the modern lake. This shoreline system, one of the most extensive in Patagonia, provides evidence for high paleo-lake levels associated with cooler and wetter conditions during the late Pleistocene and even in some periods during the Holocene, when Southern Hemisphere Westerlies were more intense than today.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="84625276"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="84625276"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 84625276; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=84625276]").text(description); $(".js-view-count[data-work-id=84625276]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 84625276; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='84625276']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=84625276]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":84625276,"title":"Late cenozoic geology and geomorphology of the Laguna de Agnia Area, Argentina","translated_title":"","metadata":{"abstract":"Abstract Laguna de Agnia is located within an endorheic basin in arid extra-Andean Patagonia. A variety of erosional and depositional landforms, most of which are relict, are well preserved in the basin. Geological, geomorphological, and sedimentological studies, 14C and 40Ar/39Ar ages, and paleomagnetic data allow us to modify the published interpretation of the late Cenozoic stratigraphy of the area and provide an improved understanding of local landscape evolution, and paleoenvironments and paleoclimates in the region. The basin formed during or before the late Oligocene. Miocene pyroclastic deposits, which are widely distributed in this part of Patagonia, were not found within the basin. However, a bajada sloping down toward the east side of the lake likely dates to the Miocene. Basalt lava flows reached the west margin of the Laguna de Agnia depression 3.39 ± 0.02 Ma. A lacustrine phase is manifest in numerous shorelines and related features east of and above the modern lake. This shoreline system, one of the most extensive in Patagonia, provides evidence for high paleo-lake levels associated with cooler and wetter conditions during the late Pleistocene and even in some periods during the Holocene, when Southern Hemisphere Westerlies were more intense than today.","publisher":"Elsevier BV","publication_date":{"day":null,"month":null,"year":2021,"errors":{}},"publication_name":"Journal of South American Earth Sciences"},"translated_abstract":"Abstract Laguna de Agnia is located within an endorheic basin in arid extra-Andean Patagonia. A variety of erosional and depositional landforms, most of which are relict, are well preserved in the basin. Geological, geomorphological, and sedimentological studies, 14C and 40Ar/39Ar ages, and paleomagnetic data allow us to modify the published interpretation of the late Cenozoic stratigraphy of the area and provide an improved understanding of local landscape evolution, and paleoenvironments and paleoclimates in the region. The basin formed during or before the late Oligocene. Miocene pyroclastic deposits, which are widely distributed in this part of Patagonia, were not found within the basin. However, a bajada sloping down toward the east side of the lake likely dates to the Miocene. Basalt lava flows reached the west margin of the Laguna de Agnia depression 3.39 ± 0.02 Ma. A lacustrine phase is manifest in numerous shorelines and related features east of and above the modern lake. This shoreline system, one of the most extensive in Patagonia, provides evidence for high paleo-lake levels associated with cooler and wetter conditions during the late Pleistocene and even in some periods during the Holocene, when Southern Hemisphere Westerlies were more intense than today.","internal_url":"https://www.academia.edu/84625276/Late_cenozoic_geology_and_geomorphology_of_the_Laguna_de_Agnia_Area_Argentina","translated_internal_url":"","created_at":"2022-08-13T07:15:21.803-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":30937520,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Late_cenozoic_geology_and_geomorphology_of_the_Laguna_de_Agnia_Area_Argentina","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"Abstract Laguna de Agnia is located within an endorheic basin in arid extra-Andean Patagonia. A variety of erosional and depositional landforms, most of which are relict, are well preserved in the basin. Geological, geomorphological, and sedimentological studies, 14C and 40Ar/39Ar ages, and paleomagnetic data allow us to modify the published interpretation of the late Cenozoic stratigraphy of the area and provide an improved understanding of local landscape evolution, and paleoenvironments and paleoclimates in the region. The basin formed during or before the late Oligocene. Miocene pyroclastic deposits, which are widely distributed in this part of Patagonia, were not found within the basin. However, a bajada sloping down toward the east side of the lake likely dates to the Miocene. Basalt lava flows reached the west margin of the Laguna de Agnia depression 3.39 ± 0.02 Ma. A lacustrine phase is manifest in numerous shorelines and related features east of and above the modern lake. This shoreline system, one of the most extensive in Patagonia, provides evidence for high paleo-lake levels associated with cooler and wetter conditions during the late Pleistocene and even in some periods during the Holocene, when Southern Hemisphere Westerlies were more intense than today.","owner":{"id":30937520,"first_name":"John","middle_initials":null,"last_name":"Clague","page_name":"JohnClague","domain_name":"sfu","created_at":"2015-05-09T12:05:01.456-07:00","display_name":"John Clague","url":"https://sfu.academia.edu/JohnClague"},"attachments":[],"research_interests":[{"id":406,"name":"Geology","url":"https://www.academia.edu/Documents/in/Geology"},{"id":409,"name":"Geophysics","url":"https://www.academia.edu/Documents/in/Geophysics"},{"id":417,"name":"Paleontology","url":"https://www.academia.edu/Documents/in/Paleontology"},{"id":9813,"name":"Argentina","url":"https://www.academia.edu/Documents/in/Argentina"},{"id":108245,"name":"Geología","url":"https://www.academia.edu/Documents/in/Geolog%C3%ADa"},{"id":146480,"name":"Cenozoic","url":"https://www.academia.edu/Documents/in/Cenozoic"},{"id":903559,"name":"Enseñanza - Aprendizaje Ciencias Naturales Y Exactas","url":"https://www.academia.edu/Documents/in/Ensenanza_-_Aprendizaje_Ciencias_Naturales_Y_Exactas"}],"urls":[{"id":22866525,"url":"https://api.elsevier.com/content/article/PII:S0895981121001036?httpAccept=text/xml"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="84625275"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/84625275/Preliminary_results_of_a_photogrammetric_characterization_of_the_1963_Vajont_landslide"><img alt="Research paper thumbnail of Preliminary results of a photogrammetric characterization of the 1963 Vajont landslide" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/84625275/Preliminary_results_of_a_photogrammetric_characterization_of_the_1963_Vajont_landslide">Preliminary results of a photogrammetric characterization of the 1963 Vajont landslide</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Cited By (since 1996):1, Export Date: 3 October 2014</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="84625275"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="84625275"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 84625275; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=84625275]").text(description); $(".js-view-count[data-work-id=84625275]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 84625275; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='84625275']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=84625275]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":84625275,"title":"Preliminary results of a photogrammetric characterization of the 1963 Vajont landslide","translated_title":"","metadata":{"abstract":"Cited By (since 1996):1, Export Date: 3 October 2014"},"translated_abstract":"Cited By (since 1996):1, Export Date: 3 October 2014","internal_url":"https://www.academia.edu/84625275/Preliminary_results_of_a_photogrammetric_characterization_of_the_1963_Vajont_landslide","translated_internal_url":"","created_at":"2022-08-13T07:15:19.924-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":30937520,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Preliminary_results_of_a_photogrammetric_characterization_of_the_1963_Vajont_landslide","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"Cited By (since 1996):1, Export Date: 3 October 2014","owner":{"id":30937520,"first_name":"John","middle_initials":null,"last_name":"Clague","page_name":"JohnClague","domain_name":"sfu","created_at":"2015-05-09T12:05:01.456-07:00","display_name":"John Clague","url":"https://sfu.academia.edu/JohnClague"},"attachments":[],"research_interests":[{"id":406,"name":"Geology","url":"https://www.academia.edu/Documents/in/Geology"},{"id":1282,"name":"Photogrammetry","url":"https://www.academia.edu/Documents/in/Photogrammetry"},{"id":199886,"name":"Landslide","url":"https://www.academia.edu/Documents/in/Landslide"},{"id":810759,"name":"Vajont","url":"https://www.academia.edu/Documents/in/Vajont"},{"id":1114697,"name":"Digital Terrestrial Photogrammetry","url":"https://www.academia.edu/Documents/in/Digital_Terrestrial_Photogrammetry"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="84625273"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/84625273/Hanson_et_al_QR_2014"><img alt="Research paper thumbnail of Hanson et al QR 2014" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/84625273/Hanson_et_al_QR_2014">Hanson et al QR 2014</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="84625273"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="84625273"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 84625273; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=84625273]").text(description); $(".js-view-count[data-work-id=84625273]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 84625273; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='84625273']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=84625273]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":84625273,"title":"Hanson et al QR 2014","translated_title":"","metadata":{},"translated_abstract":null,"internal_url":"https://www.academia.edu/84625273/Hanson_et_al_QR_2014","translated_internal_url":"","created_at":"2022-08-13T07:15:17.953-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":30937520,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Hanson_et_al_QR_2014","translated_slug":"","page_count":null,"language":"fr","content_type":"Work","summary":null,"owner":{"id":30937520,"first_name":"John","middle_initials":null,"last_name":"Clague","page_name":"JohnClague","domain_name":"sfu","created_at":"2015-05-09T12:05:01.456-07:00","display_name":"John Clague","url":"https://sfu.academia.edu/JohnClague"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="84625271"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/84625271/Landslides_on_Haida_Gwaii_during_and_after_the_Earthquake"><img alt="Research paper thumbnail of Landslides on Haida Gwaii during and after the Earthquake" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/84625271/Landslides_on_Haida_Gwaii_during_and_after_the_Earthquake">Landslides on Haida Gwaii during and after the Earthquake</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="84625271"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="84625271"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 84625271; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=84625271]").text(description); $(".js-view-count[data-work-id=84625271]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 84625271; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='84625271']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=84625271]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":84625271,"title":"Landslides on Haida Gwaii during and after the Earthquake","translated_title":"","metadata":{},"translated_abstract":null,"internal_url":"https://www.academia.edu/84625271/Landslides_on_Haida_Gwaii_during_and_after_the_Earthquake","translated_internal_url":"","created_at":"2022-08-13T07:15:16.643-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":30937520,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Landslides_on_Haida_Gwaii_during_and_after_the_Earthquake","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":null,"owner":{"id":30937520,"first_name":"John","middle_initials":null,"last_name":"Clague","page_name":"JohnClague","domain_name":"sfu","created_at":"2015-05-09T12:05:01.456-07:00","display_name":"John Clague","url":"https://sfu.academia.edu/JohnClague"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="84625268"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/84625268/Reply_to_letter_to_the_editor_from_Easterbrook_and_Kovanen_re_Quaternary_Research_61_193_203"><img alt="Research paper thumbnail of Reply to letter to the editor from Easterbrook and Kovanen re Quaternary Research 61, 193–203" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/84625268/Reply_to_letter_to_the_editor_from_Easterbrook_and_Kovanen_re_Quaternary_Research_61_193_203">Reply to letter to the editor from Easterbrook and Kovanen re Quaternary Research 61, 193–203</a></div><div class="wp-workCard_item"><span>Quaternary Research</span><span>, 2005</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Palaeoecology 203, 337–342. Easterbrook, D.J., Kovanen, D.J., 1998. dPre-younger Dryas resurgence...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Palaeoecology 203, 337–342. Easterbrook, D.J., Kovanen, D.J., 1998. dPre-younger Dryas resurgence of the southwestern margin of the Cordilleran Ice Sheet, British Columbia, CanadaT: comments: Boreas 27, 225–230. Heier-Nielsen, S., Heinemeier, J., Nielsen, H.L., Rud, N., 1995. Recent reservoir ages for Danish fjords and marine waters. Radiocarbon 37, 875–882. Hutchinson, I., James, T.S., Reimer, P.J., Bornhold, B.D., Clague, J.J., 2004. Marine and limnic radiocarbon reservoir corrections for studies of lateand postglacial environments in Georgia Basin and Puget Lowland, British Columbia, Canada and Washington, USA. Quaternary Research 61, 193–203. Kovanen, D.J., 2002. Morphologic and stratigraphic evidence for Allerbd and Younger Dryas age glacier fluctuations of the Cordilleran Ice Sheet, British Columbia, Canada and Northwestern Washington, U.S.A. Boreas 31, 163–184. Kovanen, D.J., Easterbrook, D.J., 2002a. Paleodeviations of radiocarbon marine reservoir values for the NE Pacific. Geology 30, 243–246. Kovanen, D.J., Easterbrook, D.J., 2002b. Timing and extent of Allerod and Younger Dryas age (ca. 12,500–10,000 14C yr B.P.) oscillation of the Cordilleran Ice Sheet in the Fraser Lowland, western North America. Quaternary Research 57, 208–224. Pellatt, M.G., Mathewes, R.W., Clague, J.J., 2004. Reply to comments on bImplication of a late-glacial pollen record for the glacial and climatic history of the Fraser Lowland, British ColumbiaQ by Easterbrook, 2004. Palaeogeography, Palaeoclimatology, Palaeoecology 203, 343–346. Rodrigues, C., 1988. Late Quaternary invertebrate faunal associations and chronology of the western Champlain Sea. In: Gadd, N.R. (Ed.), The Late Quaternary Development of the Champlain Sea Basin, Special Paper 35, pp. 155–176. Geological Association of Canada, Ottawa. Southon, J.R., Nelson, D.E., Vogel, J.S., 1990. A record of past ocean– atmosphere radiocarbon differences from the northeast Pacific. Paleoceanography 5, 197–206. Stuiver,M., Braziunas, T.F., 1993.Modelling atmospheric C influences and C ages of marine samples to 10,000 BC. Radiocarbon 35, 137–189.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="84625268"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="84625268"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 84625268; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=84625268]").text(description); $(".js-view-count[data-work-id=84625268]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 84625268; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='84625268']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=84625268]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":84625268,"title":"Reply to letter to the editor from Easterbrook and Kovanen re Quaternary Research 61, 193–203","translated_title":"","metadata":{"abstract":"Palaeoecology 203, 337–342. Easterbrook, D.J., Kovanen, D.J., 1998. dPre-younger Dryas resurgence of the southwestern margin of the Cordilleran Ice Sheet, British Columbia, CanadaT: comments: Boreas 27, 225–230. Heier-Nielsen, S., Heinemeier, J., Nielsen, H.L., Rud, N., 1995. Recent reservoir ages for Danish fjords and marine waters. Radiocarbon 37, 875–882. Hutchinson, I., James, T.S., Reimer, P.J., Bornhold, B.D., Clague, J.J., 2004. Marine and limnic radiocarbon reservoir corrections for studies of lateand postglacial environments in Georgia Basin and Puget Lowland, British Columbia, Canada and Washington, USA. Quaternary Research 61, 193–203. Kovanen, D.J., 2002. Morphologic and stratigraphic evidence for Allerbd and Younger Dryas age glacier fluctuations of the Cordilleran Ice Sheet, British Columbia, Canada and Northwestern Washington, U.S.A. Boreas 31, 163–184. Kovanen, D.J., Easterbrook, D.J., 2002a. Paleodeviations of radiocarbon marine reservoir values for the NE Pacific. Geology 30, 243–246. Kovanen, D.J., Easterbrook, D.J., 2002b. Timing and extent of Allerod and Younger Dryas age (ca. 12,500–10,000 14C yr B.P.) oscillation of the Cordilleran Ice Sheet in the Fraser Lowland, western North America. Quaternary Research 57, 208–224. Pellatt, M.G., Mathewes, R.W., Clague, J.J., 2004. Reply to comments on bImplication of a late-glacial pollen record for the glacial and climatic history of the Fraser Lowland, British ColumbiaQ by Easterbrook, 2004. Palaeogeography, Palaeoclimatology, Palaeoecology 203, 343–346. Rodrigues, C., 1988. Late Quaternary invertebrate faunal associations and chronology of the western Champlain Sea. In: Gadd, N.R. (Ed.), The Late Quaternary Development of the Champlain Sea Basin, Special Paper 35, pp. 155–176. Geological Association of Canada, Ottawa. Southon, J.R., Nelson, D.E., Vogel, J.S., 1990. A record of past ocean– atmosphere radiocarbon differences from the northeast Pacific. Paleoceanography 5, 197–206. Stuiver,M., Braziunas, T.F., 1993.Modelling atmospheric C influences and C ages of marine samples to 10,000 BC. Radiocarbon 35, 137–189.","publisher":"Cambridge University Press (CUP)","publication_date":{"day":null,"month":null,"year":2005,"errors":{}},"publication_name":"Quaternary Research"},"translated_abstract":"Palaeoecology 203, 337–342. Easterbrook, D.J., Kovanen, D.J., 1998. dPre-younger Dryas resurgence of the southwestern margin of the Cordilleran Ice Sheet, British Columbia, CanadaT: comments: Boreas 27, 225–230. Heier-Nielsen, S., Heinemeier, J., Nielsen, H.L., Rud, N., 1995. Recent reservoir ages for Danish fjords and marine waters. Radiocarbon 37, 875–882. Hutchinson, I., James, T.S., Reimer, P.J., Bornhold, B.D., Clague, J.J., 2004. Marine and limnic radiocarbon reservoir corrections for studies of lateand postglacial environments in Georgia Basin and Puget Lowland, British Columbia, Canada and Washington, USA. Quaternary Research 61, 193–203. Kovanen, D.J., 2002. Morphologic and stratigraphic evidence for Allerbd and Younger Dryas age glacier fluctuations of the Cordilleran Ice Sheet, British Columbia, Canada and Northwestern Washington, U.S.A. Boreas 31, 163–184. Kovanen, D.J., Easterbrook, D.J., 2002a. Paleodeviations of radiocarbon marine reservoir values for the NE Pacific. Geology 30, 243–246. Kovanen, D.J., Easterbrook, D.J., 2002b. Timing and extent of Allerod and Younger Dryas age (ca. 12,500–10,000 14C yr B.P.) oscillation of the Cordilleran Ice Sheet in the Fraser Lowland, western North America. Quaternary Research 57, 208–224. Pellatt, M.G., Mathewes, R.W., Clague, J.J., 2004. Reply to comments on bImplication of a late-glacial pollen record for the glacial and climatic history of the Fraser Lowland, British ColumbiaQ by Easterbrook, 2004. Palaeogeography, Palaeoclimatology, Palaeoecology 203, 343–346. Rodrigues, C., 1988. Late Quaternary invertebrate faunal associations and chronology of the western Champlain Sea. In: Gadd, N.R. (Ed.), The Late Quaternary Development of the Champlain Sea Basin, Special Paper 35, pp. 155–176. Geological Association of Canada, Ottawa. Southon, J.R., Nelson, D.E., Vogel, J.S., 1990. A record of past ocean– atmosphere radiocarbon differences from the northeast Pacific. Paleoceanography 5, 197–206. Stuiver,M., Braziunas, T.F., 1993.Modelling atmospheric C influences and C ages of marine samples to 10,000 BC. Radiocarbon 35, 137–189.","internal_url":"https://www.academia.edu/84625268/Reply_to_letter_to_the_editor_from_Easterbrook_and_Kovanen_re_Quaternary_Research_61_193_203","translated_internal_url":"","created_at":"2022-08-13T07:15:15.178-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":30937520,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Reply_to_letter_to_the_editor_from_Easterbrook_and_Kovanen_re_Quaternary_Research_61_193_203","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"Palaeoecology 203, 337–342. Easterbrook, D.J., Kovanen, D.J., 1998. dPre-younger Dryas resurgence of the southwestern margin of the Cordilleran Ice Sheet, British Columbia, CanadaT: comments: Boreas 27, 225–230. Heier-Nielsen, S., Heinemeier, J., Nielsen, H.L., Rud, N., 1995. Recent reservoir ages for Danish fjords and marine waters. Radiocarbon 37, 875–882. Hutchinson, I., James, T.S., Reimer, P.J., Bornhold, B.D., Clague, J.J., 2004. Marine and limnic radiocarbon reservoir corrections for studies of lateand postglacial environments in Georgia Basin and Puget Lowland, British Columbia, Canada and Washington, USA. Quaternary Research 61, 193–203. Kovanen, D.J., 2002. Morphologic and stratigraphic evidence for Allerbd and Younger Dryas age glacier fluctuations of the Cordilleran Ice Sheet, British Columbia, Canada and Northwestern Washington, U.S.A. Boreas 31, 163–184. Kovanen, D.J., Easterbrook, D.J., 2002a. Paleodeviations of radiocarbon marine reservoir values for the NE Pacific. Geology 30, 243–246. Kovanen, D.J., Easterbrook, D.J., 2002b. Timing and extent of Allerod and Younger Dryas age (ca. 12,500–10,000 14C yr B.P.) oscillation of the Cordilleran Ice Sheet in the Fraser Lowland, western North America. Quaternary Research 57, 208–224. Pellatt, M.G., Mathewes, R.W., Clague, J.J., 2004. Reply to comments on bImplication of a late-glacial pollen record for the glacial and climatic history of the Fraser Lowland, British ColumbiaQ by Easterbrook, 2004. Palaeogeography, Palaeoclimatology, Palaeoecology 203, 343–346. Rodrigues, C., 1988. Late Quaternary invertebrate faunal associations and chronology of the western Champlain Sea. In: Gadd, N.R. (Ed.), The Late Quaternary Development of the Champlain Sea Basin, Special Paper 35, pp. 155–176. Geological Association of Canada, Ottawa. Southon, J.R., Nelson, D.E., Vogel, J.S., 1990. A record of past ocean– atmosphere radiocarbon differences from the northeast Pacific. Paleoceanography 5, 197–206. Stuiver,M., Braziunas, T.F., 1993.Modelling atmospheric C influences and C ages of marine samples to 10,000 BC. Radiocarbon 35, 137–189.","owner":{"id":30937520,"first_name":"John","middle_initials":null,"last_name":"Clague","page_name":"JohnClague","domain_name":"sfu","created_at":"2015-05-09T12:05:01.456-07:00","display_name":"John Clague","url":"https://sfu.academia.edu/JohnClague"},"attachments":[],"research_interests":[{"id":392,"name":"Archaeology","url":"https://www.academia.edu/Documents/in/Archaeology"},{"id":406,"name":"Geology","url":"https://www.academia.edu/Documents/in/Geology"},{"id":35587,"name":"Quaternary","url":"https://www.academia.edu/Documents/in/Quaternary"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="84625265"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/84625265/The_1963_Vaiont_landslide_Italy"><img alt="Research paper thumbnail of The 1963 Vaiont landslide, Italy" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/84625265/The_1963_Vaiont_landslide_Italy">The 1963 Vaiont landslide, Italy</a></div><div class="wp-workCard_item"><span>Landslides</span><span>, 2012</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">ABSTRACT</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="84625265"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="84625265"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 84625265; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=84625265]").text(description); $(".js-view-count[data-work-id=84625265]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 84625265; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='84625265']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=84625265]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":84625265,"title":"The 1963 Vaiont landslide, Italy","translated_title":"","metadata":{"abstract":"ABSTRACT","publication_date":{"day":null,"month":null,"year":2012,"errors":{}},"publication_name":"Landslides"},"translated_abstract":"ABSTRACT","internal_url":"https://www.academia.edu/84625265/The_1963_Vaiont_landslide_Italy","translated_internal_url":"","created_at":"2022-08-13T07:15:13.146-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":30937520,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"The_1963_Vaiont_landslide_Italy","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"ABSTRACT","owner":{"id":30937520,"first_name":"John","middle_initials":null,"last_name":"Clague","page_name":"JohnClague","domain_name":"sfu","created_at":"2015-05-09T12:05:01.456-07:00","display_name":"John Clague","url":"https://sfu.academia.edu/JohnClague"},"attachments":[],"research_interests":[{"id":406,"name":"Geology","url":"https://www.academia.edu/Documents/in/Geology"},{"id":408,"name":"Geomorphology","url":"https://www.academia.edu/Documents/in/Geomorphology"},{"id":7968,"name":"Prediction","url":"https://www.academia.edu/Documents/in/Prediction"},{"id":20054,"name":"Landslides","url":"https://www.academia.edu/Documents/in/Landslides"},{"id":20564,"name":"Engineering Geology","url":"https://www.academia.edu/Documents/in/Engineering_Geology"},{"id":56351,"name":"Creep","url":"https://www.academia.edu/Documents/in/Creep"},{"id":149210,"name":"Mechanism","url":"https://www.academia.edu/Documents/in/Mechanism"},{"id":199886,"name":"Landslide","url":"https://www.academia.edu/Documents/in/Landslide"},{"id":482561,"name":"Shear Strength","url":"https://www.academia.edu/Documents/in/Shear_Strength"},{"id":810759,"name":"Vajont","url":"https://www.academia.edu/Documents/in/Vajont"},{"id":1137275,"name":"Discontinuous Deformation Analysis","url":"https://www.academia.edu/Documents/in/Discontinuous_Deformation_Analysis"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="84625262"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/84625262/Area_change_of_glaciers_in_the_Canadian_Rocky_Mountains_1919_to_2006"><img alt="Research paper thumbnail of Area change of glaciers in the Canadian Rocky Mountains, 1919 to 2006" class="work-thumbnail" src="https://attachments.academia-assets.com/89582004/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/84625262/Area_change_of_glaciers_in_the_Canadian_Rocky_Mountains_1919_to_2006">Area change of glaciers in the Canadian Rocky Mountains, 1919 to 2006</a></div><div class="wp-workCard_item"><span>The Cryosphere Discussions</span><span>, 2012</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Glaciers in the Canadian Rocky Mountains constitute an important freshwater resource. To enhance ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Glaciers in the Canadian Rocky Mountains constitute an important freshwater resource. To enhance our understanding of the influence climate and local topography have on glacier area, large numbers of glaciers of different sizes and attributes need to be monitored over periods of many decades. We used Interprovincial Boundary Commission Survey (IBCS) maps of the Alberta-British Columbia (BC) border (1903-1924), BC Terrain Resource Information Management (TRIM) data (1982-1987), and Landsat Thematic Mapper (TM) and Enhanced Thematic Mapper (ETM+) imagery (2000-2002 and 2006) to document planimetric changes in glacier cover in the central and southern Canadian Rocky Mountains between 1919 and 2006. Over this period, glacier cover in the study area decreased by 590 ± 70 km 2 (40 ± 5 %), 17 of 523 glaciers disappeared and 124 glaciers fragmented into multiple ice masses. Glaciers smaller than 1.0 km 2 experienced the greatest relative area loss (64 ± 8 %), and relative area loss is more variable with small glaciers, suggesting that the local topographic setting controls the response of these glaciers to climate change. Small glaciers with low slopes, low mean/median elevations, south to west aspects, and high insolation experienced the largest reduction in area. Similar rates of area change characterize the periods 1919-1985 and 1985-2001; −6.3 ± 0.6 km 2 yr −1 (−0.4 ± 0.1 % yr −1) and −5.0 ± 0.5 km 2 yr −1 (−0.5 ± 0.1 % yr −1), respectively. The rate of area loss, however, increased over the period 2001-2006; −19.3 ± 2.4 km 2 yr −1 (−2.0 ± 0.2 % yr −1). Applying size class-specific scaling factors, we estimate a total reduction in glacier cover in the central and southern Canadian Rocky Mountains for the period 1919-2006 of 750 km 2 (30 %). 1 Introduction Glaciers in the Canadian Rocky Mountains constitute an important freshwater resource. Glacier meltwater flows into four major watersheds, those of the Mackenzie, Nelson, Fraser, and Columbia river basins and drains into the Arctic, Atlantic, and Pacific oceans. The contribution of meltwater to total discharge may be low, but glacier runoff supplements summer flow and regulates stream temperature, both of which are important for aquatic ecosystems, irrigation, industry, hydro power and human consumption (</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="92ccc411feabf31cedd0640aaccdffb1" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":89582004,"asset_id":84625262,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/89582004/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="84625262"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="84625262"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 84625262; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=84625262]").text(description); $(".js-view-count[data-work-id=84625262]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 84625262; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='84625262']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "92ccc411feabf31cedd0640aaccdffb1" } } $('.js-work-strip[data-work-id=84625262]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":84625262,"title":"Area change of glaciers in the Canadian Rocky Mountains, 1919 to 2006","translated_title":"","metadata":{"publisher":"Copernicus GmbH","grobid_abstract":"Glaciers in the Canadian Rocky Mountains constitute an important freshwater resource. To enhance our understanding of the influence climate and local topography have on glacier area, large numbers of glaciers of different sizes and attributes need to be monitored over periods of many decades. We used Interprovincial Boundary Commission Survey (IBCS) maps of the Alberta-British Columbia (BC) border (1903-1924), BC Terrain Resource Information Management (TRIM) data (1982-1987), and Landsat Thematic Mapper (TM) and Enhanced Thematic Mapper (ETM+) imagery (2000-2002 and 2006) to document planimetric changes in glacier cover in the central and southern Canadian Rocky Mountains between 1919 and 2006. Over this period, glacier cover in the study area decreased by 590 ± 70 km 2 (40 ± 5 %), 17 of 523 glaciers disappeared and 124 glaciers fragmented into multiple ice masses. Glaciers smaller than 1.0 km 2 experienced the greatest relative area loss (64 ± 8 %), and relative area loss is more variable with small glaciers, suggesting that the local topographic setting controls the response of these glaciers to climate change. Small glaciers with low slopes, low mean/median elevations, south to west aspects, and high insolation experienced the largest reduction in area. Similar rates of area change characterize the periods 1919-1985 and 1985-2001; −6.3 ± 0.6 km 2 yr −1 (−0.4 ± 0.1 % yr −1) and −5.0 ± 0.5 km 2 yr −1 (−0.5 ± 0.1 % yr −1), respectively. The rate of area loss, however, increased over the period 2001-2006; −19.3 ± 2.4 km 2 yr −1 (−2.0 ± 0.2 % yr −1). Applying size class-specific scaling factors, we estimate a total reduction in glacier cover in the central and southern Canadian Rocky Mountains for the period 1919-2006 of 750 km 2 (30 %). 1 Introduction Glaciers in the Canadian Rocky Mountains constitute an important freshwater resource. Glacier meltwater flows into four major watersheds, those of the Mackenzie, Nelson, Fraser, and Columbia river basins and drains into the Arctic, Atlantic, and Pacific oceans. The contribution of meltwater to total discharge may be low, but glacier runoff supplements summer flow and regulates stream temperature, both of which are important for aquatic ecosystems, irrigation, industry, hydro power and human consumption (","publication_date":{"day":null,"month":null,"year":2012,"errors":{}},"publication_name":"The Cryosphere Discussions","grobid_abstract_attachment_id":89582004},"translated_abstract":null,"internal_url":"https://www.academia.edu/84625262/Area_change_of_glaciers_in_the_Canadian_Rocky_Mountains_1919_to_2006","translated_internal_url":"","created_at":"2022-08-13T07:15:10.291-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":30937520,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":89582004,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/89582004/thumbnails/1.jpg","file_name":"tc-6-1541-2012.pdf","download_url":"https://www.academia.edu/attachments/89582004/download_file","bulk_download_file_name":"Area_change_of_glaciers_in_the_Canadian.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/89582004/tc-6-1541-2012-libre.pdf?1660400532=\u0026response-content-disposition=attachment%3B+filename%3DArea_change_of_glaciers_in_the_Canadian.pdf\u0026Expires=1741733721\u0026Signature=B0kbPGk9-pP2LNka-ix7ud8be0y98xjRi-gADE4zTZ6tBSkkFaVPFb0cvBOnKHW4SmKxwf~XcYC~jlc125XL1kJAgEXBkB0kxDb84~hVG3~76vnB4huByVRiKxHJ~-y2ElIeJ9ThQV22221Or90Dm3wSG2i4oQh9G3yHTvV6KiQamHHvCQc3j3MZivusZynWHdFH-NJR1RAG9P5xkYqmMHCUMtl6yEZ9TZQtdPWS-SkV4O2NquZqAR3F-Z0TSfd0VZ7vw6OAQNkNcqNImUxC9TneLc07TnxZ6NaPE5KL87JJRiAyBabqedwLkUmrUjWzrrPayl~GF~4aDZB7e4iPtg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Area_change_of_glaciers_in_the_Canadian_Rocky_Mountains_1919_to_2006","translated_slug":"","page_count":12,"language":"en","content_type":"Work","summary":"Glaciers in the Canadian Rocky Mountains constitute an important freshwater resource. To enhance our understanding of the influence climate and local topography have on glacier area, large numbers of glaciers of different sizes and attributes need to be monitored over periods of many decades. We used Interprovincial Boundary Commission Survey (IBCS) maps of the Alberta-British Columbia (BC) border (1903-1924), BC Terrain Resource Information Management (TRIM) data (1982-1987), and Landsat Thematic Mapper (TM) and Enhanced Thematic Mapper (ETM+) imagery (2000-2002 and 2006) to document planimetric changes in glacier cover in the central and southern Canadian Rocky Mountains between 1919 and 2006. Over this period, glacier cover in the study area decreased by 590 ± 70 km 2 (40 ± 5 %), 17 of 523 glaciers disappeared and 124 glaciers fragmented into multiple ice masses. Glaciers smaller than 1.0 km 2 experienced the greatest relative area loss (64 ± 8 %), and relative area loss is more variable with small glaciers, suggesting that the local topographic setting controls the response of these glaciers to climate change. Small glaciers with low slopes, low mean/median elevations, south to west aspects, and high insolation experienced the largest reduction in area. Similar rates of area change characterize the periods 1919-1985 and 1985-2001; −6.3 ± 0.6 km 2 yr −1 (−0.4 ± 0.1 % yr −1) and −5.0 ± 0.5 km 2 yr −1 (−0.5 ± 0.1 % yr −1), respectively. The rate of area loss, however, increased over the period 2001-2006; −19.3 ± 2.4 km 2 yr −1 (−2.0 ± 0.2 % yr −1). Applying size class-specific scaling factors, we estimate a total reduction in glacier cover in the central and southern Canadian Rocky Mountains for the period 1919-2006 of 750 km 2 (30 %). 1 Introduction Glaciers in the Canadian Rocky Mountains constitute an important freshwater resource. Glacier meltwater flows into four major watersheds, those of the Mackenzie, Nelson, Fraser, and Columbia river basins and drains into the Arctic, Atlantic, and Pacific oceans. The contribution of meltwater to total discharge may be low, but glacier runoff supplements summer flow and regulates stream temperature, both of which are important for aquatic ecosystems, irrigation, industry, hydro power and human consumption (","owner":{"id":30937520,"first_name":"John","middle_initials":null,"last_name":"Clague","page_name":"JohnClague","domain_name":"sfu","created_at":"2015-05-09T12:05:01.456-07:00","display_name":"John Clague","url":"https://sfu.academia.edu/JohnClague"},"attachments":[{"id":89582004,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/89582004/thumbnails/1.jpg","file_name":"tc-6-1541-2012.pdf","download_url":"https://www.academia.edu/attachments/89582004/download_file","bulk_download_file_name":"Area_change_of_glaciers_in_the_Canadian.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/89582004/tc-6-1541-2012-libre.pdf?1660400532=\u0026response-content-disposition=attachment%3B+filename%3DArea_change_of_glaciers_in_the_Canadian.pdf\u0026Expires=1741733721\u0026Signature=B0kbPGk9-pP2LNka-ix7ud8be0y98xjRi-gADE4zTZ6tBSkkFaVPFb0cvBOnKHW4SmKxwf~XcYC~jlc125XL1kJAgEXBkB0kxDb84~hVG3~76vnB4huByVRiKxHJ~-y2ElIeJ9ThQV22221Or90Dm3wSG2i4oQh9G3yHTvV6KiQamHHvCQc3j3MZivusZynWHdFH-NJR1RAG9P5xkYqmMHCUMtl6yEZ9TZQtdPWS-SkV4O2NquZqAR3F-Z0TSfd0VZ7vw6OAQNkNcqNImUxC9TneLc07TnxZ6NaPE5KL87JJRiAyBabqedwLkUmrUjWzrrPayl~GF~4aDZB7e4iPtg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":415,"name":"Oceanography","url":"https://www.academia.edu/Documents/in/Oceanography"},{"id":326378,"name":"The cryosphere","url":"https://www.academia.edu/Documents/in/The_cryosphere"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="84625259"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/84625259/Climate_change_and_geomorphological_hazards_in_the_eastern_European_Alps"><img alt="Research paper thumbnail of Climate change and geomorphological hazards in the eastern European Alps" class="work-thumbnail" src="https://attachments.academia-assets.com/89581963/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/84625259/Climate_change_and_geomorphological_hazards_in_the_eastern_European_Alps">Climate change and geomorphological hazards in the eastern European Alps</a></div><div class="wp-workCard_item"><span>Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences</span><span>, 2010</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Climate and environmental changes associated with anthropogenic global warming are being increasi...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Climate and environmental changes associated with anthropogenic global warming are being increasingly identified in the European Alps, as seen by changes in long-term high-alpine temperature, precipitation, glacier cover and permafrost. In turn, these changes impact on land-surface stability, and lead to increased frequency and magnitude of natural mountain hazards, including rock falls, debris flows, landslides, avalanches and floods. These hazards also impact on infrastructure, and socio-economic and cultural activities in mountain regions. This paper presents two case studies (2003 heatwave, 2005 floods) that demonstrate some of the interlinkages between physical processes and human activity in climatically sensitive alpine regions that are responding to ongoing climate change. Based on this evidence, we outline future implications of climate change on mountain environments and its impact on hazards and hazard management in paraglacial mountain systems.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="343e639a4975a126d90c90fdf8a982dc" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":89581963,"asset_id":84625259,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/89581963/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="84625259"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="84625259"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 84625259; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=84625259]").text(description); $(".js-view-count[data-work-id=84625259]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 84625259; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='84625259']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "343e639a4975a126d90c90fdf8a982dc" } } $('.js-work-strip[data-work-id=84625259]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":84625259,"title":"Climate change and geomorphological hazards in the eastern European Alps","translated_title":"","metadata":{"abstract":"Climate and environmental changes associated with anthropogenic global warming are being increasingly identified in the European Alps, as seen by changes in long-term high-alpine temperature, precipitation, glacier cover and permafrost. In turn, these changes impact on land-surface stability, and lead to increased frequency and magnitude of natural mountain hazards, including rock falls, debris flows, landslides, avalanches and floods. These hazards also impact on infrastructure, and socio-economic and cultural activities in mountain regions. This paper presents two case studies (2003 heatwave, 2005 floods) that demonstrate some of the interlinkages between physical processes and human activity in climatically sensitive alpine regions that are responding to ongoing climate change. Based on this evidence, we outline future implications of climate change on mountain environments and its impact on hazards and hazard management in paraglacial mountain systems.","publisher":"The Royal Society","ai_title_tag":"Climate Change Impacts on Alpine Hazards","publication_date":{"day":null,"month":null,"year":2010,"errors":{}},"publication_name":"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences"},"translated_abstract":"Climate and environmental changes associated with anthropogenic global warming are being increasingly identified in the European Alps, as seen by changes in long-term high-alpine temperature, precipitation, glacier cover and permafrost. In turn, these changes impact on land-surface stability, and lead to increased frequency and magnitude of natural mountain hazards, including rock falls, debris flows, landslides, avalanches and floods. These hazards also impact on infrastructure, and socio-economic and cultural activities in mountain regions. This paper presents two case studies (2003 heatwave, 2005 floods) that demonstrate some of the interlinkages between physical processes and human activity in climatically sensitive alpine regions that are responding to ongoing climate change. Based on this evidence, we outline future implications of climate change on mountain environments and its impact on hazards and hazard management in paraglacial mountain systems.","internal_url":"https://www.academia.edu/84625259/Climate_change_and_geomorphological_hazards_in_the_eastern_European_Alps","translated_internal_url":"","created_at":"2022-08-13T07:15:06.944-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":30937520,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":89581963,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/89581963/thumbnails/1.jpg","file_name":"rsta.2010.pdf","download_url":"https://www.academia.edu/attachments/89581963/download_file","bulk_download_file_name":"Climate_change_and_geomorphological_haza.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/89581963/rsta.2010-libre.pdf?1660400527=\u0026response-content-disposition=attachment%3B+filename%3DClimate_change_and_geomorphological_haza.pdf\u0026Expires=1741733722\u0026Signature=KH4bZFdcJmYBL~mGjmk6V717NpHKd~Ef4O~eWT7BvLGAMe~qxuRSwAQGXIYiAuJVhD48~grYvYxw8SxUrXL-Z6ZOlWwrsjpzyStsEyGTHyPBiFE5v2m9SJHQugDKjwdIR-dAnjLOmPQ5EGp7SmoYS88u007-pGbkb3SWqUUxl4GP4MPaWvvGz8ixfEUELSr5F06BF1-AoUxpYV6LAlWXi7nNK~GiDH0wuZIufZ3KF3AndFSAIEa8cOMsg~VQCgtosl7uOHgA30icfCh-ZuJp9hnDu52xAs1hZ011hFDfAFIUbw0mIQ1Ex-c6tUwkxEPR3GxOs7ikYkOBasU66ECcEQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Climate_change_and_geomorphological_hazards_in_the_eastern_European_Alps","translated_slug":"","page_count":19,"language":"en","content_type":"Work","summary":"Climate and environmental changes associated with anthropogenic global warming are being increasingly identified in the European Alps, as seen by changes in long-term high-alpine temperature, precipitation, glacier cover and permafrost. In turn, these changes impact on land-surface stability, and lead to increased frequency and magnitude of natural mountain hazards, including rock falls, debris flows, landslides, avalanches and floods. These hazards also impact on infrastructure, and socio-economic and cultural activities in mountain regions. This paper presents two case studies (2003 heatwave, 2005 floods) that demonstrate some of the interlinkages between physical processes and human activity in climatically sensitive alpine regions that are responding to ongoing climate change. Based on this evidence, we outline future implications of climate change on mountain environments and its impact on hazards and hazard management in paraglacial mountain systems.","owner":{"id":30937520,"first_name":"John","middle_initials":null,"last_name":"Clague","page_name":"JohnClague","domain_name":"sfu","created_at":"2015-05-09T12:05:01.456-07:00","display_name":"John Clague","url":"https://sfu.academia.edu/JohnClague"},"attachments":[{"id":89581963,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/89581963/thumbnails/1.jpg","file_name":"rsta.2010.pdf","download_url":"https://www.academia.edu/attachments/89581963/download_file","bulk_download_file_name":"Climate_change_and_geomorphological_haza.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/89581963/rsta.2010-libre.pdf?1660400527=\u0026response-content-disposition=attachment%3B+filename%3DClimate_change_and_geomorphological_haza.pdf\u0026Expires=1741733722\u0026Signature=KH4bZFdcJmYBL~mGjmk6V717NpHKd~Ef4O~eWT7BvLGAMe~qxuRSwAQGXIYiAuJVhD48~grYvYxw8SxUrXL-Z6ZOlWwrsjpzyStsEyGTHyPBiFE5v2m9SJHQugDKjwdIR-dAnjLOmPQ5EGp7SmoYS88u007-pGbkb3SWqUUxl4GP4MPaWvvGz8ixfEUELSr5F06BF1-AoUxpYV6LAlWXi7nNK~GiDH0wuZIufZ3KF3AndFSAIEa8cOMsg~VQCgtosl7uOHgA30icfCh-ZuJp9hnDu52xAs1hZ011hFDfAFIUbw0mIQ1Ex-c6tUwkxEPR3GxOs7ikYkOBasU66ECcEQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":402,"name":"Environmental Science","url":"https://www.academia.edu/Documents/in/Environmental_Science"},{"id":408,"name":"Geomorphology","url":"https://www.academia.edu/Documents/in/Geomorphology"},{"id":1512,"name":"Climate Change","url":"https://www.academia.edu/Documents/in/Climate_Change"},{"id":3349,"name":"Alpine Research","url":"https://www.academia.edu/Documents/in/Alpine_Research"},{"id":8618,"name":"Natural Hazards","url":"https://www.academia.edu/Documents/in/Natural_Hazards"},{"id":15816,"name":"Risk and Vulnerability - Natural Hazards","url":"https://www.academia.edu/Documents/in/Risk_and_Vulnerability_-_Natural_Hazards"},{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"},{"id":28235,"name":"Multidisciplinary","url":"https://www.academia.edu/Documents/in/Multidisciplinary"},{"id":61932,"name":"Mountains","url":"https://www.academia.edu/Documents/in/Mountains"},{"id":510097,"name":"Indian Geography and Travel","url":"https://www.academia.edu/Documents/in/Indian_Geography_and_Travel"}],"urls":[{"id":22866520,"url":"https://royalsocietypublishing.org/doi/pdf/10.1098/rsta.2010.0047"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="84625255"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/84625255/Identification_and_Characterization_of_Dynamic_Alpine_Subglacial_Lakes_Using_a_Fusion_of_InSAR_and_GIS"><img alt="Research paper thumbnail of Identification and Characterization of Dynamic Alpine Subglacial Lakes Using a Fusion of InSAR and GIS" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/84625255/Identification_and_Characterization_of_Dynamic_Alpine_Subglacial_Lakes_Using_a_Fusion_of_InSAR_and_GIS">Identification and Characterization of Dynamic Alpine Subglacial Lakes Using a Fusion of InSAR and GIS</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We use interferometric synthetic aperture radar (InSAR) and a geographic information system (GIS)...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We use interferometric synthetic aperture radar (InSAR) and a geographic information system (GIS) to identify and characterize three dynamic alpine subglacial lakes in Glacier Bay National Park, Alaska. Subglacial and subaerial glacier-dammed lakes and the catastrophic floods (jokulhlaups) they release are a hazard in glacierized mountain regions around the world. Many subglacial lakes are not identified until they become subaerially exposed or release a jokulhlaup. The lakes discussed here are dammed by the Brady Glacier in southeast Alaska, 120 km west of Juneau. For InSAR analysis, we utilized 20 ascending and descending ERS-1/-2 tandem radar images (1-day repeat interval) provided by the European Space Agency and a Shuttle Radar Topography Mission (SRTM) digital elevation model (DEM). We processed SAR data into unwrapped interferograms using standard techniques. Two interferograms have very poor coherence and the remaining eight show significant line of sight (LOS) displacement ...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="84625255"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="84625255"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 84625255; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=84625255]").text(description); $(".js-view-count[data-work-id=84625255]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 84625255; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='84625255']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=84625255]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":84625255,"title":"Identification and Characterization of Dynamic Alpine Subglacial Lakes Using a Fusion of InSAR and GIS","translated_title":"","metadata":{"abstract":"We use interferometric synthetic aperture radar (InSAR) and a geographic information system (GIS) to identify and characterize three dynamic alpine subglacial lakes in Glacier Bay National Park, Alaska. Subglacial and subaerial glacier-dammed lakes and the catastrophic floods (jokulhlaups) they release are a hazard in glacierized mountain regions around the world. Many subglacial lakes are not identified until they become subaerially exposed or release a jokulhlaup. The lakes discussed here are dammed by the Brady Glacier in southeast Alaska, 120 km west of Juneau. For InSAR analysis, we utilized 20 ascending and descending ERS-1/-2 tandem radar images (1-day repeat interval) provided by the European Space Agency and a Shuttle Radar Topography Mission (SRTM) digital elevation model (DEM). We processed SAR data into unwrapped interferograms using standard techniques. Two interferograms have very poor coherence and the remaining eight show significant line of sight (LOS) displacement ...","publication_date":{"day":null,"month":null,"year":2008,"errors":{}}},"translated_abstract":"We use interferometric synthetic aperture radar (InSAR) and a geographic information system (GIS) to identify and characterize three dynamic alpine subglacial lakes in Glacier Bay National Park, Alaska. Subglacial and subaerial glacier-dammed lakes and the catastrophic floods (jokulhlaups) they release are a hazard in glacierized mountain regions around the world. Many subglacial lakes are not identified until they become subaerially exposed or release a jokulhlaup. The lakes discussed here are dammed by the Brady Glacier in southeast Alaska, 120 km west of Juneau. For InSAR analysis, we utilized 20 ascending and descending ERS-1/-2 tandem radar images (1-day repeat interval) provided by the European Space Agency and a Shuttle Radar Topography Mission (SRTM) digital elevation model (DEM). We processed SAR data into unwrapped interferograms using standard techniques. Two interferograms have very poor coherence and the remaining eight show significant line of sight (LOS) displacement ...","internal_url":"https://www.academia.edu/84625255/Identification_and_Characterization_of_Dynamic_Alpine_Subglacial_Lakes_Using_a_Fusion_of_InSAR_and_GIS","translated_internal_url":"","created_at":"2022-08-13T07:15:04.821-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":30937520,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Identification_and_Characterization_of_Dynamic_Alpine_Subglacial_Lakes_Using_a_Fusion_of_InSAR_and_GIS","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"We use interferometric synthetic aperture radar (InSAR) and a geographic information system (GIS) to identify and characterize three dynamic alpine subglacial lakes in Glacier Bay National Park, Alaska. Subglacial and subaerial glacier-dammed lakes and the catastrophic floods (jokulhlaups) they release are a hazard in glacierized mountain regions around the world. Many subglacial lakes are not identified until they become subaerially exposed or release a jokulhlaup. The lakes discussed here are dammed by the Brady Glacier in southeast Alaska, 120 km west of Juneau. For InSAR analysis, we utilized 20 ascending and descending ERS-1/-2 tandem radar images (1-day repeat interval) provided by the European Space Agency and a Shuttle Radar Topography Mission (SRTM) digital elevation model (DEM). We processed SAR data into unwrapped interferograms using standard techniques. Two interferograms have very poor coherence and the remaining eight show significant line of sight (LOS) displacement ...","owner":{"id":30937520,"first_name":"John","middle_initials":null,"last_name":"Clague","page_name":"JohnClague","domain_name":"sfu","created_at":"2015-05-09T12:05:01.456-07:00","display_name":"John Clague","url":"https://sfu.academia.edu/JohnClague"},"attachments":[],"research_interests":[{"id":1252,"name":"Remote Sensing","url":"https://www.academia.edu/Documents/in/Remote_Sensing"},{"id":4456,"name":"Time Series","url":"https://www.academia.edu/Documents/in/Time_Series"},{"id":17038,"name":"Stress field","url":"https://www.academia.edu/Documents/in/Stress_field"},{"id":48218,"name":"Global change","url":"https://www.academia.edu/Documents/in/Global_change"},{"id":139202,"name":"Synthetic Aperture Radar","url":"https://www.academia.edu/Documents/in/Synthetic_Aperture_Radar"},{"id":210607,"name":"Radio-echo sounding","url":"https://www.academia.edu/Documents/in/Radio-echo_sounding"},{"id":284544,"name":"Digital Elevation Model","url":"https://www.academia.edu/Documents/in/Digital_Elevation_Model"},{"id":284869,"name":"National Park","url":"https://www.academia.edu/Documents/in/National_Park"},{"id":437147,"name":"Glacier mass balance","url":"https://www.academia.edu/Documents/in/Glacier_mass_balance"},{"id":542508,"name":"Optical Remote Sensing","url":"https://www.academia.edu/Documents/in/Optical_Remote_Sensing"},{"id":822358,"name":"Ground Truth","url":"https://www.academia.edu/Documents/in/Ground_Truth"},{"id":1211138,"name":"Geographic Information System","url":"https://www.academia.edu/Documents/in/Geographic_Information_System"},{"id":1778241,"name":"Radar Imaging","url":"https://www.academia.edu/Documents/in/Radar_Imaging"},{"id":3311855,"name":"Line of sight","url":"https://www.academia.edu/Documents/in/Line_of_sight"},{"id":3845308,"name":"Interferometric Synthetic Aperture Radar","url":"https://www.academia.edu/Documents/in/Interferometric_Synthetic_Aperture_Radar"}],"urls":[{"id":22866517,"url":"http://adsabs.harvard.edu/abs/2008AGUFM.C31E0566C"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="84625250"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/84625250/A_Sand_Sheet_Deposited_by_the_1964_Alaska_Tsunami_at_Port_Alberni_British_Columbia"><img alt="Research paper thumbnail of A Sand Sheet Deposited by the 1964 Alaska Tsunami at Port Alberni, British Columbia" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/84625250/A_Sand_Sheet_Deposited_by_the_1964_Alaska_Tsunami_at_Port_Alberni_British_Columbia">A Sand Sheet Deposited by the 1964 Alaska Tsunami at Port Alberni, British Columbia</a></div><div class="wp-workCard_item"><span>Estuarine, Coastal and Shelf Science</span><span>, 1994</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">... All rights reserved. Permissions &amp;amp;amp; Reprints. Regular Article. A Sand Sheet Deposi...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">... All rights reserved. Permissions &amp;amp;amp; Reprints. Regular Article. A Sand Sheet Deposited by the 1964 Alaska Tsunami at Port Alberni, British Columbia. John J. Clague , Peter T. Bobrowsky and TS Hamilton. Geological Survey of Canada ...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="84625250"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="84625250"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 84625250; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=84625250]").text(description); $(".js-view-count[data-work-id=84625250]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 84625250; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='84625250']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=84625250]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":84625250,"title":"A Sand Sheet Deposited by the 1964 Alaska Tsunami at Port Alberni, British Columbia","translated_title":"","metadata":{"abstract":"... All rights reserved. Permissions \u0026amp;amp;amp; Reprints. Regular Article. A Sand Sheet Deposited by the 1964 Alaska Tsunami at Port Alberni, British Columbia. John J. Clague , Peter T. Bobrowsky and TS Hamilton. Geological Survey of Canada ...","publisher":"Elsevier BV","publication_date":{"day":null,"month":null,"year":1994,"errors":{}},"publication_name":"Estuarine, Coastal and Shelf Science"},"translated_abstract":"... All rights reserved. Permissions \u0026amp;amp;amp; Reprints. Regular Article. A Sand Sheet Deposited by the 1964 Alaska Tsunami at Port Alberni, British Columbia. John J. Clague , Peter T. Bobrowsky and TS Hamilton. Geological Survey of Canada ...","internal_url":"https://www.academia.edu/84625250/A_Sand_Sheet_Deposited_by_the_1964_Alaska_Tsunami_at_Port_Alberni_British_Columbia","translated_internal_url":"","created_at":"2022-08-13T07:15:01.936-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":30937520,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"A_Sand_Sheet_Deposited_by_the_1964_Alaska_Tsunami_at_Port_Alberni_British_Columbia","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"... All rights reserved. Permissions \u0026amp;amp;amp; Reprints. Regular Article. A Sand Sheet Deposited by the 1964 Alaska Tsunami at Port Alberni, British Columbia. John J. Clague , Peter T. Bobrowsky and TS Hamilton. Geological Survey of Canada ...","owner":{"id":30937520,"first_name":"John","middle_initials":null,"last_name":"Clague","page_name":"JohnClague","domain_name":"sfu","created_at":"2015-05-09T12:05:01.456-07:00","display_name":"John Clague","url":"https://sfu.academia.edu/JohnClague"},"attachments":[],"research_interests":[{"id":400,"name":"Earth Sciences","url":"https://www.academia.edu/Documents/in/Earth_Sciences"},{"id":47884,"name":"Biological Sciences","url":"https://www.academia.edu/Documents/in/Biological_Sciences"},{"id":58054,"name":"Environmental Sciences","url":"https://www.academia.edu/Documents/in/Environmental_Sciences"},{"id":198379,"name":"British Columbia","url":"https://www.academia.edu/Documents/in/British_Columbia"},{"id":1131312,"name":"Academic","url":"https://www.academia.edu/Documents/in/Academic"}],"urls":[{"id":22866515,"url":"https://api.elsevier.com/content/article/PII:S0272771484710286?httpAccept=text/xml"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="84625246"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/84625246/Reconnaissance_observations_of_the_July_24_2007_rock_and_ice_avalanche_at_Mount_Steele_St_Elias_Mountains_Yukon_Canada"><img alt="Research paper thumbnail of Reconnaissance observations of the July 24, 2007 rock and ice avalanche at Mount Steele, St. Elias Mountains, Yukon, Canada" class="work-thumbnail" src="https://attachments.academia-assets.com/89581961/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/84625246/Reconnaissance_observations_of_the_July_24_2007_rock_and_ice_avalanche_at_Mount_Steele_St_Elias_Mountains_Yukon_Canada">Reconnaissance observations of the July 24, 2007 rock and ice avalanche at Mount Steele, St. Elias Mountains, Yukon, Canada</a></div><div class="wp-workCard_item"><span>4th Canadian Conference on Geohazards: From Causes to Management, J. Locat, D. Perret, D. Turmel, D. Demers and S. Leroueil (eds.), Quebec City</span><span>, 2008</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">A catastrophic rock and ice avalanche occurred on the north face of Mount Steele, Yukon Territory...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">A catastrophic rock and ice avalanche occurred on the north face of Mount Steele, Yukon Territory, on July 24, 2007, depositing debris onto Steele Glacier. In the days and weeks preceding the event, at least three smaller landslides initiated from the same slope. Earlier landslide activity at this location is evident on historical photographs dating back to the 1930s. The July 24 event was one of the largest rock avalanches documented in the St. Elias Mountains in the past century and is one of 16 rock avalanches known to ...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="fa2269399fe90a4510130558598172c8" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":89581961,"asset_id":84625246,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/89581961/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="84625246"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="84625246"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 84625246; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=84625246]").text(description); $(".js-view-count[data-work-id=84625246]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 84625246; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='84625246']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "fa2269399fe90a4510130558598172c8" } } $('.js-work-strip[data-work-id=84625246]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":84625246,"title":"Reconnaissance observations of the July 24, 2007 rock and ice avalanche at Mount Steele, St. Elias Mountains, Yukon, Canada","translated_title":"","metadata":{"abstract":"A catastrophic rock and ice avalanche occurred on the north face of Mount Steele, Yukon Territory, on July 24, 2007, depositing debris onto Steele Glacier. In the days and weeks preceding the event, at least three smaller landslides initiated from the same slope. Earlier landslide activity at this location is evident on historical photographs dating back to the 1930s. The July 24 event was one of the largest rock avalanches documented in the St. Elias Mountains in the past century and is one of 16 rock avalanches known to ...","publisher":"geohazards.ggl.ulaval.ca","publication_date":{"day":null,"month":null,"year":2008,"errors":{}},"publication_name":"4th Canadian Conference on Geohazards: From Causes to Management, J. Locat, D. Perret, D. Turmel, D. Demers and S. Leroueil (eds.), Quebec City"},"translated_abstract":"A catastrophic rock and ice avalanche occurred on the north face of Mount Steele, Yukon Territory, on July 24, 2007, depositing debris onto Steele Glacier. In the days and weeks preceding the event, at least three smaller landslides initiated from the same slope. Earlier landslide activity at this location is evident on historical photographs dating back to the 1930s. The July 24 event was one of the largest rock avalanches documented in the St. Elias Mountains in the past century and is one of 16 rock avalanches known to ...","internal_url":"https://www.academia.edu/84625246/Reconnaissance_observations_of_the_July_24_2007_rock_and_ice_avalanche_at_Mount_Steele_St_Elias_Mountains_Yukon_Canada","translated_internal_url":"","created_at":"2022-08-13T07:14:59.375-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":30937520,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":89581961,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/89581961/thumbnails/1.jpg","file_name":"lipovsky.pdf","download_url":"https://www.academia.edu/attachments/89581961/download_file","bulk_download_file_name":"Reconnaissance_observations_of_the_July.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/89581961/lipovsky-libre.pdf?1660400534=\u0026response-content-disposition=attachment%3B+filename%3DReconnaissance_observations_of_the_July.pdf\u0026Expires=1741733722\u0026Signature=FJNgNrH1oyo~IhVI44FSNi3c6lW4LkwWWiKS~qtteBSZJ2PjD0bApvxxUHmpTEyK8xy3CyG5FLZz40HrpSKaKws3AB13lAMO8zPht4tJ4ujSsY-9NGW8RaSUMc2-iNHF80YEJs-ORtPukmzmMRT-2uuXgMcXcQ5EyVGiLltsnosNiuIvVYhmFImPfvUpy01kaWeGPRX7dWXq7TuA5SdzatyE0UFZJGwu0C1NIS5aZzyLYH2VrSl6mjECT0SRK5rFMrsmmAJUY3LM1oRJT4DdAD1c0MFWkFBxHLlb-q87lqpsKtk12a3Kyo5j-PdUgciGOdFuAPKmf5WXTW-GhMA0Tg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Reconnaissance_observations_of_the_July_24_2007_rock_and_ice_avalanche_at_Mount_Steele_St_Elias_Mountains_Yukon_Canada","translated_slug":"","page_count":8,"language":"en","content_type":"Work","summary":"A catastrophic rock and ice avalanche occurred on the north face of Mount Steele, Yukon Territory, on July 24, 2007, depositing debris onto Steele Glacier. In the days and weeks preceding the event, at least three smaller landslides initiated from the same slope. Earlier landslide activity at this location is evident on historical photographs dating back to the 1930s. The July 24 event was one of the largest rock avalanches documented in the St. Elias Mountains in the past century and is one of 16 rock avalanches known to ...","owner":{"id":30937520,"first_name":"John","middle_initials":null,"last_name":"Clague","page_name":"JohnClague","domain_name":"sfu","created_at":"2015-05-09T12:05:01.456-07:00","display_name":"John Clague","url":"https://sfu.academia.edu/JohnClague"},"attachments":[{"id":89581961,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/89581961/thumbnails/1.jpg","file_name":"lipovsky.pdf","download_url":"https://www.academia.edu/attachments/89581961/download_file","bulk_download_file_name":"Reconnaissance_observations_of_the_July.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/89581961/lipovsky-libre.pdf?1660400534=\u0026response-content-disposition=attachment%3B+filename%3DReconnaissance_observations_of_the_July.pdf\u0026Expires=1741733722\u0026Signature=FJNgNrH1oyo~IhVI44FSNi3c6lW4LkwWWiKS~qtteBSZJ2PjD0bApvxxUHmpTEyK8xy3CyG5FLZz40HrpSKaKws3AB13lAMO8zPht4tJ4ujSsY-9NGW8RaSUMc2-iNHF80YEJs-ORtPukmzmMRT-2uuXgMcXcQ5EyVGiLltsnosNiuIvVYhmFImPfvUpy01kaWeGPRX7dWXq7TuA5SdzatyE0UFZJGwu0C1NIS5aZzyLYH2VrSl6mjECT0SRK5rFMrsmmAJUY3LM1oRJT4DdAD1c0MFWkFBxHLlb-q87lqpsKtk12a3Kyo5j-PdUgciGOdFuAPKmf5WXTW-GhMA0Tg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[{"id":22866513,"url":"http://www.geohazards.ggl.ulaval.ca/histoire/lipovsky.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="84625180"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/84625180/Structure_stability_and_tsunami_hazard_associated_with_a_rock_slope_in_Knight_Inlet_British_Columbia"><img alt="Research paper thumbnail of Structure, stability, and tsunami hazard associated with a rock slope in Knight Inlet, British Columbia" class="work-thumbnail" src="https://attachments.academia-assets.com/89581918/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/84625180/Structure_stability_and_tsunami_hazard_associated_with_a_rock_slope_in_Knight_Inlet_British_Columbia">Structure, stability, and tsunami hazard associated with a rock slope in Knight Inlet, British Columbia</a></div><div class="wp-workCard_item"><span>Natural Hazards and Earth System Sciences</span><span>, 2015</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Rockfalls and rockslides during the past 12 000 years have deposited bouldery debris cones on the...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Rockfalls and rockslides during the past 12 000 years have deposited bouldery debris cones on the seafloor beneath massive rock slopes throughout the inner part of Knight Inlet. The 885 m high rock slope, located across from a former First Nations village destroyed in the late 1500s by a slide-induced wave, exposes the contact between a Late Cretaceous dioritic pluton and metamorphic rocks of the Upper Triassic Karmutsen Formation. The pluton margin is strongly foliated parallel to primary and secondary fabrics in the metamorphic rocks, resulting in highly persistent brittle structures. Other important structures include a set of sheeting joints and highly persistent mafic dykes and faults. Stability analysis indicates that planar and wedge rock slope failures up to about 500 000 m 3 in volume could occur. We suspect that failures of this size in this setting would have the potential to generate locally hazardous waves. As several similar rock slopes fronted by large submarine debris cones exist in the inner part of Knight Inlet, it is clear that tsunami hazards should be considered in coastal infrastructure development and land-use planning in this area.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="24aa7d834bce0cc95a3309ff3a8821ee" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":89581918,"asset_id":84625180,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/89581918/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="84625180"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="84625180"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 84625180; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=84625180]").text(description); $(".js-view-count[data-work-id=84625180]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 84625180; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='84625180']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "24aa7d834bce0cc95a3309ff3a8821ee" } } $('.js-work-strip[data-work-id=84625180]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":84625180,"title":"Structure, stability, and tsunami hazard associated with a rock slope in Knight Inlet, British Columbia","translated_title":"","metadata":{"publisher":"Copernicus GmbH","grobid_abstract":"Rockfalls and rockslides during the past 12 000 years have deposited bouldery debris cones on the seafloor beneath massive rock slopes throughout the inner part of Knight Inlet. The 885 m high rock slope, located across from a former First Nations village destroyed in the late 1500s by a slide-induced wave, exposes the contact between a Late Cretaceous dioritic pluton and metamorphic rocks of the Upper Triassic Karmutsen Formation. The pluton margin is strongly foliated parallel to primary and secondary fabrics in the metamorphic rocks, resulting in highly persistent brittle structures. Other important structures include a set of sheeting joints and highly persistent mafic dykes and faults. Stability analysis indicates that planar and wedge rock slope failures up to about 500 000 m 3 in volume could occur. We suspect that failures of this size in this setting would have the potential to generate locally hazardous waves. As several similar rock slopes fronted by large submarine debris cones exist in the inner part of Knight Inlet, it is clear that tsunami hazards should be considered in coastal infrastructure development and land-use planning in this area.","publication_date":{"day":null,"month":null,"year":2015,"errors":{}},"publication_name":"Natural Hazards and Earth System Sciences","grobid_abstract_attachment_id":89581918},"translated_abstract":null,"internal_url":"https://www.academia.edu/84625180/Structure_stability_and_tsunami_hazard_associated_with_a_rock_slope_in_Knight_Inlet_British_Columbia","translated_internal_url":"","created_at":"2022-08-13T07:13:38.594-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":30937520,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":89581918,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/89581918/thumbnails/1.jpg","file_name":"nhess-15-1425-2015.pdf","download_url":"https://www.academia.edu/attachments/89581918/download_file","bulk_download_file_name":"Structure_stability_and_tsunami_hazard_a.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/89581918/nhess-15-1425-2015-libre.pdf?1660400658=\u0026response-content-disposition=attachment%3B+filename%3DStructure_stability_and_tsunami_hazard_a.pdf\u0026Expires=1741733722\u0026Signature=KUENv~v8eOSGymB42eDXiP0E~cqHl1j4gAwmqv27R0lCSOXltFZExcCB2-AwDaTwIIz2CKDtvSaJQ5k4kYtVyscSTeRDCvhJuSzweuyEhnAJnhV8pue945lFaLwMMM2cKjRvaIzMnkVA27DO4Qm1ufZGqjsfmfnGEne45aIRru7Ahna~ZImv0jF-jXuSM6AL1M2vt5iQDKru6AObwty3mfd3msEeZQSuhIasVYfsuF1YUC-np~W5wVmkwRlr0-UQymucLZkLyAB1DfaDNikjW2ADqO-yb0qINSZfTX1Q0QN2V~Fnp-2nVgAPifkT~cm7deV36ictdoRVvr1XoNLWUQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Structure_stability_and_tsunami_hazard_associated_with_a_rock_slope_in_Knight_Inlet_British_Columbia","translated_slug":"","page_count":12,"language":"en","content_type":"Work","summary":"Rockfalls and rockslides during the past 12 000 years have deposited bouldery debris cones on the seafloor beneath massive rock slopes throughout the inner part of Knight Inlet. The 885 m high rock slope, located across from a former First Nations village destroyed in the late 1500s by a slide-induced wave, exposes the contact between a Late Cretaceous dioritic pluton and metamorphic rocks of the Upper Triassic Karmutsen Formation. The pluton margin is strongly foliated parallel to primary and secondary fabrics in the metamorphic rocks, resulting in highly persistent brittle structures. Other important structures include a set of sheeting joints and highly persistent mafic dykes and faults. Stability analysis indicates that planar and wedge rock slope failures up to about 500 000 m 3 in volume could occur. We suspect that failures of this size in this setting would have the potential to generate locally hazardous waves. As several similar rock slopes fronted by large submarine debris cones exist in the inner part of Knight Inlet, it is clear that tsunami hazards should be considered in coastal infrastructure development and land-use planning in this area.","owner":{"id":30937520,"first_name":"John","middle_initials":null,"last_name":"Clague","page_name":"JohnClague","domain_name":"sfu","created_at":"2015-05-09T12:05:01.456-07:00","display_name":"John Clague","url":"https://sfu.academia.edu/JohnClague"},"attachments":[{"id":89581918,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/89581918/thumbnails/1.jpg","file_name":"nhess-15-1425-2015.pdf","download_url":"https://www.academia.edu/attachments/89581918/download_file","bulk_download_file_name":"Structure_stability_and_tsunami_hazard_a.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/89581918/nhess-15-1425-2015-libre.pdf?1660400658=\u0026response-content-disposition=attachment%3B+filename%3DStructure_stability_and_tsunami_hazard_a.pdf\u0026Expires=1741733722\u0026Signature=KUENv~v8eOSGymB42eDXiP0E~cqHl1j4gAwmqv27R0lCSOXltFZExcCB2-AwDaTwIIz2CKDtvSaJQ5k4kYtVyscSTeRDCvhJuSzweuyEhnAJnhV8pue945lFaLwMMM2cKjRvaIzMnkVA27DO4Qm1ufZGqjsfmfnGEne45aIRru7Ahna~ZImv0jF-jXuSM6AL1M2vt5iQDKru6AObwty3mfd3msEeZQSuhIasVYfsuF1YUC-np~W5wVmkwRlr0-UQymucLZkLyAB1DfaDNikjW2ADqO-yb0qINSZfTX1Q0QN2V~Fnp-2nVgAPifkT~cm7deV36ictdoRVvr1XoNLWUQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":406,"name":"Geology","url":"https://www.academia.edu/Documents/in/Geology"}],"urls":[{"id":22866483,"url":"https://nhess.copernicus.org/articles/15/1425/2015/nhess-15-1425-2015.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="78046920"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/78046920/Hazards_posed_by_large_mass_movements_at_Mount_Meager_volcano_Canada"><img alt="Research paper thumbnail of Hazards posed by large mass movements at Mount Meager volcano, Canada" class="work-thumbnail" src="https://attachments.academia-assets.com/85229876/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/78046920/Hazards_posed_by_large_mass_movements_at_Mount_Meager_volcano_Canada">Hazards posed by large mass movements at Mount Meager volcano, Canada</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="b624ebbb6b4bda56c273f761b45868bc" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":85229876,"asset_id":78046920,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/85229876/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="78046920"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="78046920"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 78046920; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=78046920]").text(description); $(".js-view-count[data-work-id=78046920]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 78046920; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='78046920']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "b624ebbb6b4bda56c273f761b45868bc" } } $('.js-work-strip[data-work-id=78046920]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":78046920,"title":"Hazards posed by large mass movements at Mount Meager volcano, Canada","translated_title":"","metadata":{"ai_abstract":"Large mass movements at volcanoes represent significant hazards, potentially causing extensive damage beyond their immediate vicinity. At Mount Meager in British Columbia, a recorded collapse in 2010 resulted in the largest landslide in Canadian history. Analysis of deformation patterns and identification of numerous unstable slopes via advanced surveying techniques reveals the likelihood of future catastrophic failures, which may trigger eruptions due to shifts in magmatic pressure. A permanent monitoring system is recommended to assess and mitigate risks associated with these geological threats.","publication_date":{"day":null,"month":null,"year":2018,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/78046920/Hazards_posed_by_large_mass_movements_at_Mount_Meager_volcano_Canada","translated_internal_url":"","created_at":"2022-04-30T07:17:23.740-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":30937520,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":85229876,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/85229876/thumbnails/1.jpg","file_name":"EGU2018-912.pdf","download_url":"https://www.academia.edu/attachments/85229876/download_file","bulk_download_file_name":"Hazards_posed_by_large_mass_movements_at.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/85229876/EGU2018-912-libre.pdf?1651328548=\u0026response-content-disposition=attachment%3B+filename%3DHazards_posed_by_large_mass_movements_at.pdf\u0026Expires=1741733722\u0026Signature=HHF9znpbA866aRyLseBNT3LVBE1WsvzqGW8cq6CG6lfQt8jyijXZKLx~l8d-pMMMsuyZ0tvE5NO4AYFPdOp1OwE37kRHwQ30eVKunwci8phcDs1nTElAtd8rmusxmeVZxlKFGC9AV533zo7ph~0mUpO60flzCG0tgGGUXfnXvKs2m-Y-z4~QkpRtInuDnEi4XDZgjQtVECo2LKJHM-BebEQc9CJcnTP04SDar-jWZm~lA69PPAv6cEr0i3XGdrfotK5TOr4JNu01yaHWSDUARV6Hdk~r~OOJtJNhbtzvkTx9AGE80RYEyELR6HuXPycq89R8zGZRZq3-SMgOSg~0iQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Hazards_posed_by_large_mass_movements_at_Mount_Meager_volcano_Canada","translated_slug":"","page_count":1,"language":"en","content_type":"Work","summary":null,"owner":{"id":30937520,"first_name":"John","middle_initials":null,"last_name":"Clague","page_name":"JohnClague","domain_name":"sfu","created_at":"2015-05-09T12:05:01.456-07:00","display_name":"John Clague","url":"https://sfu.academia.edu/JohnClague"},"attachments":[{"id":85229876,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/85229876/thumbnails/1.jpg","file_name":"EGU2018-912.pdf","download_url":"https://www.academia.edu/attachments/85229876/download_file","bulk_download_file_name":"Hazards_posed_by_large_mass_movements_at.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/85229876/EGU2018-912-libre.pdf?1651328548=\u0026response-content-disposition=attachment%3B+filename%3DHazards_posed_by_large_mass_movements_at.pdf\u0026Expires=1741733722\u0026Signature=HHF9znpbA866aRyLseBNT3LVBE1WsvzqGW8cq6CG6lfQt8jyijXZKLx~l8d-pMMMsuyZ0tvE5NO4AYFPdOp1OwE37kRHwQ30eVKunwci8phcDs1nTElAtd8rmusxmeVZxlKFGC9AV533zo7ph~0mUpO60flzCG0tgGGUXfnXvKs2m-Y-z4~QkpRtInuDnEi4XDZgjQtVECo2LKJHM-BebEQc9CJcnTP04SDar-jWZm~lA69PPAv6cEr0i3XGdrfotK5TOr4JNu01yaHWSDUARV6Hdk~r~OOJtJNhbtzvkTx9AGE80RYEyELR6HuXPycq89R8zGZRZq3-SMgOSg~0iQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":406,"name":"Geology","url":"https://www.academia.edu/Documents/in/Geology"},{"id":108863,"name":"Volcano","url":"https://www.academia.edu/Documents/in/Volcano"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="78046918"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/78046918/Data_for_Pliocene_and_Early_Pleistocene_Glaciation_and_Landscape_Evolution_on_the_Patagonian_Steppe_Santa_Cruz_Province_Argentina"><img alt="Research paper thumbnail of Data for: Pliocene and Early Pleistocene Glaciation and Landscape Evolution on the Patagonian Steppe, Santa Cruz Province, Argentina" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/78046918/Data_for_Pliocene_and_Early_Pleistocene_Glaciation_and_Landscape_Evolution_on_the_Patagonian_Steppe_Santa_Cruz_Province_Argentina">Data for: Pliocene and Early Pleistocene Glaciation and Landscape Evolution on the Patagonian Steppe, Santa Cruz Province, Argentina</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Representative paleomagnetic data (Figures 1, 2, and 3), and published K40/Ar40 and Ar40-Ar39 age...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Representative paleomagnetic data (Figures 1, 2, and 3), and published K40/Ar40 and Ar40-Ar39 ages from the study area.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="78046918"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="78046918"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 78046918; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=78046918]").text(description); $(".js-view-count[data-work-id=78046918]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 78046918; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='78046918']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=78046918]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":78046918,"title":"Data for: Pliocene and Early Pleistocene Glaciation and Landscape Evolution on the Patagonian Steppe, Santa Cruz Province, Argentina","translated_title":"","metadata":{"abstract":"Representative paleomagnetic data (Figures 1, 2, and 3), and published K40/Ar40 and Ar40-Ar39 ages from the study area.","publisher":"Mendeley","publication_date":{"day":20,"month":9,"year":2019,"errors":{}}},"translated_abstract":"Representative paleomagnetic data (Figures 1, 2, and 3), and published K40/Ar40 and Ar40-Ar39 ages from the study area.","internal_url":"https://www.academia.edu/78046918/Data_for_Pliocene_and_Early_Pleistocene_Glaciation_and_Landscape_Evolution_on_the_Patagonian_Steppe_Santa_Cruz_Province_Argentina","translated_internal_url":"","created_at":"2022-04-30T07:17:23.607-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":30937520,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Data_for_Pliocene_and_Early_Pleistocene_Glaciation_and_Landscape_Evolution_on_the_Patagonian_Steppe_Santa_Cruz_Province_Argentina","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"Representative paleomagnetic data (Figures 1, 2, and 3), and published K40/Ar40 and Ar40-Ar39 ages from the study area.","owner":{"id":30937520,"first_name":"John","middle_initials":null,"last_name":"Clague","page_name":"JohnClague","domain_name":"sfu","created_at":"2015-05-09T12:05:01.456-07:00","display_name":"John Clague","url":"https://sfu.academia.edu/JohnClague"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="78046916"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/78046916/A_Robust_SAR_Speckle_Tracking_Workflow_for_Measuring_and_Interpreting_the_3D_Surface_Displacement_of_Landslides"><img alt="Research paper thumbnail of A Robust SAR Speckle Tracking Workflow for Measuring and Interpreting the 3D Surface Displacement of Landslides" class="work-thumbnail" src="https://attachments.academia-assets.com/85229789/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/78046916/A_Robust_SAR_Speckle_Tracking_Workflow_for_Measuring_and_Interpreting_the_3D_Surface_Displacement_of_Landslides">A Robust SAR Speckle Tracking Workflow for Measuring and Interpreting the 3D Surface Displacement of Landslides</a></div><div class="wp-workCard_item"><span>Remote Sensing</span><span>, 2021</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We present a workflow for investigating large, slow-moving landslides which combines the syntheti...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We present a workflow for investigating large, slow-moving landslides which combines the synthetic aperture radar (SAR) technique, GIS post-processing, and airborne laser scanning (ALS), and apply it to Fels landslide in Alaska, US. First, we exploit a speckle tracking (ST) approach to derive the easting, northing, and vertical components of the displacement vectors across the rock slope for two five-year windows, 2010–2015 and 2015–2020. Then, we perform post-processing in a GIS environment to derive displacement magnitude, trend, and plunge maps of the landslide area. Finally, we compare the ST-derived displacement data with structural lineament maps and profiles extracted from the ALS dataset. Relying on remotely sensed data, we estimate that the thickness of the slide mass is more than 100 m and displacements occur through a combination of slumping at the toe and planar sliding in the central and upper slope. Our approach provides information and interpretations that can assist ...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="3c8c8d5583a5b5a5c9dc8fbcb7bcc8ca" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":85229789,"asset_id":78046916,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/85229789/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="78046916"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="78046916"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 78046916; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=78046916]").text(description); $(".js-view-count[data-work-id=78046916]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 78046916; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='78046916']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "3c8c8d5583a5b5a5c9dc8fbcb7bcc8ca" } } $('.js-work-strip[data-work-id=78046916]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":78046916,"title":"A Robust SAR Speckle Tracking Workflow for Measuring and Interpreting the 3D Surface Displacement of Landslides","translated_title":"","metadata":{"abstract":"We present a workflow for investigating large, slow-moving landslides which combines the synthetic aperture radar (SAR) technique, GIS post-processing, and airborne laser scanning (ALS), and apply it to Fels landslide in Alaska, US. First, we exploit a speckle tracking (ST) approach to derive the easting, northing, and vertical components of the displacement vectors across the rock slope for two five-year windows, 2010–2015 and 2015–2020. Then, we perform post-processing in a GIS environment to derive displacement magnitude, trend, and plunge maps of the landslide area. Finally, we compare the ST-derived displacement data with structural lineament maps and profiles extracted from the ALS dataset. Relying on remotely sensed data, we estimate that the thickness of the slide mass is more than 100 m and displacements occur through a combination of slumping at the toe and planar sliding in the central and upper slope. Our approach provides information and interpretations that can assist ...","publisher":"MDPI AG","ai_title_tag":"SAR Workflow for 3D Landslide Displacement Analysis","publication_date":{"day":null,"month":null,"year":2021,"errors":{}},"publication_name":"Remote Sensing"},"translated_abstract":"We present a workflow for investigating large, slow-moving landslides which combines the synthetic aperture radar (SAR) technique, GIS post-processing, and airborne laser scanning (ALS), and apply it to Fels landslide in Alaska, US. First, we exploit a speckle tracking (ST) approach to derive the easting, northing, and vertical components of the displacement vectors across the rock slope for two five-year windows, 2010–2015 and 2015–2020. Then, we perform post-processing in a GIS environment to derive displacement magnitude, trend, and plunge maps of the landslide area. Finally, we compare the ST-derived displacement data with structural lineament maps and profiles extracted from the ALS dataset. Relying on remotely sensed data, we estimate that the thickness of the slide mass is more than 100 m and displacements occur through a combination of slumping at the toe and planar sliding in the central and upper slope. Our approach provides information and interpretations that can assist ...","internal_url":"https://www.academia.edu/78046916/A_Robust_SAR_Speckle_Tracking_Workflow_for_Measuring_and_Interpreting_the_3D_Surface_Displacement_of_Landslides","translated_internal_url":"","created_at":"2022-04-30T07:17:23.419-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":30937520,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":85229789,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/85229789/thumbnails/1.jpg","file_name":"pdf.pdf","download_url":"https://www.academia.edu/attachments/85229789/download_file","bulk_download_file_name":"A_Robust_SAR_Speckle_Tracking_Workflow_f.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/85229789/pdf-libre.pdf?1651328559=\u0026response-content-disposition=attachment%3B+filename%3DA_Robust_SAR_Speckle_Tracking_Workflow_f.pdf\u0026Expires=1741733722\u0026Signature=BuaUijKRJHFuN3-lJ66E1hoTXfWQE-tbHLOK~zx1TfBDVg1ZJzh82Wl~U84Sa-8QsPvb1IwKUgDhUoZ49P4mnhKQfrrtvsMw53AXAZHd-OYP5YDpj7j33VKNWDm6eN7uIAjSKn5dCnVV9fX4Bam2pUF1tm5oeWbibogi-69iGXIvdiPfWf-YbFpOHJDuVus4mdwlAifJdUGbSqIyfrCQBOxvkKacveECEzpau-faniUDnhWe2q-V7f~1NlZ1KqEPLXKcBh0H3XqK-aryHGPBcsbZ943RD6RdUw9Dwa1WuAIybEUstTwHxUmltzsYBpjhtAfRutgsMFfSWRNVrG89bg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"A_Robust_SAR_Speckle_Tracking_Workflow_for_Measuring_and_Interpreting_the_3D_Surface_Displacement_of_Landslides","translated_slug":"","page_count":19,"language":"en","content_type":"Work","summary":"We present a workflow for investigating large, slow-moving landslides which combines the synthetic aperture radar (SAR) technique, GIS post-processing, and airborne laser scanning (ALS), and apply it to Fels landslide in Alaska, US. First, we exploit a speckle tracking (ST) approach to derive the easting, northing, and vertical components of the displacement vectors across the rock slope for two five-year windows, 2010–2015 and 2015–2020. Then, we perform post-processing in a GIS environment to derive displacement magnitude, trend, and plunge maps of the landslide area. Finally, we compare the ST-derived displacement data with structural lineament maps and profiles extracted from the ALS dataset. Relying on remotely sensed data, we estimate that the thickness of the slide mass is more than 100 m and displacements occur through a combination of slumping at the toe and planar sliding in the central and upper slope. Our approach provides information and interpretations that can assist ...","owner":{"id":30937520,"first_name":"John","middle_initials":null,"last_name":"Clague","page_name":"JohnClague","domain_name":"sfu","created_at":"2015-05-09T12:05:01.456-07:00","display_name":"John Clague","url":"https://sfu.academia.edu/JohnClague"},"attachments":[{"id":85229789,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/85229789/thumbnails/1.jpg","file_name":"pdf.pdf","download_url":"https://www.academia.edu/attachments/85229789/download_file","bulk_download_file_name":"A_Robust_SAR_Speckle_Tracking_Workflow_f.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/85229789/pdf-libre.pdf?1651328559=\u0026response-content-disposition=attachment%3B+filename%3DA_Robust_SAR_Speckle_Tracking_Workflow_f.pdf\u0026Expires=1741733722\u0026Signature=BuaUijKRJHFuN3-lJ66E1hoTXfWQE-tbHLOK~zx1TfBDVg1ZJzh82Wl~U84Sa-8QsPvb1IwKUgDhUoZ49P4mnhKQfrrtvsMw53AXAZHd-OYP5YDpj7j33VKNWDm6eN7uIAjSKn5dCnVV9fX4Bam2pUF1tm5oeWbibogi-69iGXIvdiPfWf-YbFpOHJDuVus4mdwlAifJdUGbSqIyfrCQBOxvkKacveECEzpau-faniUDnhWe2q-V7f~1NlZ1KqEPLXKcBh0H3XqK-aryHGPBcsbZ943RD6RdUw9Dwa1WuAIybEUstTwHxUmltzsYBpjhtAfRutgsMFfSWRNVrG89bg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":85229786,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/85229786/thumbnails/1.jpg","file_name":"pdf.pdf","download_url":"https://www.academia.edu/attachments/85229786/download_file","bulk_download_file_name":"A_Robust_SAR_Speckle_Tracking_Workflow_f.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/85229786/pdf-libre.pdf?1651328559=\u0026response-content-disposition=attachment%3B+filename%3DA_Robust_SAR_Speckle_Tracking_Workflow_f.pdf\u0026Expires=1741733722\u0026Signature=JXprNgQRZLc7KOjvs0fXe2doKfg8wE~QkHKN3Y0QJwpJqCoMRnMxKX0p4e5DQLoBzofGQLzaQVhm8F6wJ09L7vrqT21moOKgdrZloMsN7zGJVc4j6ztkNy4JYZa4gFayy9fPl2o4U21otDmdlaSNNjQId3Nl9txh52pjWCqUqZqkVg~bTWkIhOzWeWsk91ERhSld~7bh0~D~IAMJWdFLkaeFu6KUNhP-tCFrbwb7NDb56cL26n1fvmLmbZh1zUTu45C2IU86T~J2zwxvnbZHJf5bCQPwoqnJrvD2Fh7BS8ASZX8lMSnQZYjS0il84J4FxgBynoFxb-4kUGa8fdtLaw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":1252,"name":"Remote Sensing","url":"https://www.academia.edu/Documents/in/Remote_Sensing"}],"urls":[{"id":20065752,"url":"https://www.mdpi.com/2072-4292/13/15/3048/pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="78046915"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/78046915/Exploring_new_methods_to_analyse_spatial_impact_distributions_on_debris_flow_fans_using_data_from_south_western_British_Columbia"><img alt="Research paper thumbnail of Exploring new methods to analyse spatial impact distributions on debris‐flow fans using data from south‐western British Columbia" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/78046915/Exploring_new_methods_to_analyse_spatial_impact_distributions_on_debris_flow_fans_using_data_from_south_western_British_Columbia">Exploring new methods to analyse spatial impact distributions on debris‐flow fans using data from south‐western British Columbia</a></div><div class="wp-workCard_item"><span>Earth Surface Processes and Landforms</span><span>, 2021</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Predicting the spatial impact of debris flows on fans is challenging due to complex runout behavi...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Predicting the spatial impact of debris flows on fans is challenging due to complex runout behaviour. Debris flow mobility is highly variable and flows can sporadically avulse the channel. For hazard and risk assessments, practitioners typically base the probability of spatial impact or avulsion on their experience and expert judgement. To support decision-making with empirical observations, we studied spatial impact distributions on 30 active debris-flow fans in southwestern British Columbia, Canada. We mapped 146 debris-flow impact areas over an average observation period of 74 years using orthorectified airphotos, satellite imagery, topographic base</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="78046915"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="78046915"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 78046915; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=78046915]").text(description); $(".js-view-count[data-work-id=78046915]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 78046915; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='78046915']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=78046915]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":78046915,"title":"Exploring new methods to analyse spatial impact distributions on debris‐flow fans using data from south‐western British Columbia","translated_title":"","metadata":{"abstract":"Predicting the spatial impact of debris flows on fans is challenging due to complex runout behaviour. Debris flow mobility is highly variable and flows can sporadically avulse the channel. For hazard and risk assessments, practitioners typically base the probability of spatial impact or avulsion on their experience and expert judgement. To support decision-making with empirical observations, we studied spatial impact distributions on 30 active debris-flow fans in southwestern British Columbia, Canada. We mapped 146 debris-flow impact areas over an average observation period of 74 years using orthorectified airphotos, satellite imagery, topographic base","publisher":"Earth Surface Processes and Landforms","publication_date":{"day":null,"month":null,"year":2021,"errors":{}},"publication_name":"Earth Surface Processes and Landforms"},"translated_abstract":"Predicting the spatial impact of debris flows on fans is challenging due to complex runout behaviour. Debris flow mobility is highly variable and flows can sporadically avulse the channel. For hazard and risk assessments, practitioners typically base the probability of spatial impact or avulsion on their experience and expert judgement. To support decision-making with empirical observations, we studied spatial impact distributions on 30 active debris-flow fans in southwestern British Columbia, Canada. We mapped 146 debris-flow impact areas over an average observation period of 74 years using orthorectified airphotos, satellite imagery, topographic base","internal_url":"https://www.academia.edu/78046915/Exploring_new_methods_to_analyse_spatial_impact_distributions_on_debris_flow_fans_using_data_from_south_western_British_Columbia","translated_internal_url":"","created_at":"2022-04-30T07:17:23.284-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":30937520,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Exploring_new_methods_to_analyse_spatial_impact_distributions_on_debris_flow_fans_using_data_from_south_western_British_Columbia","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"Predicting the spatial impact of debris flows on fans is challenging due to complex runout behaviour. Debris flow mobility is highly variable and flows can sporadically avulse the channel. For hazard and risk assessments, practitioners typically base the probability of spatial impact or avulsion on their experience and expert judgement. To support decision-making with empirical observations, we studied spatial impact distributions on 30 active debris-flow fans in southwestern British Columbia, Canada. We mapped 146 debris-flow impact areas over an average observation period of 74 years using orthorectified airphotos, satellite imagery, topographic base","owner":{"id":30937520,"first_name":"John","middle_initials":null,"last_name":"Clague","page_name":"JohnClague","domain_name":"sfu","created_at":"2015-05-09T12:05:01.456-07:00","display_name":"John Clague","url":"https://sfu.academia.edu/JohnClague"},"attachments":[],"research_interests":[{"id":406,"name":"Geology","url":"https://www.academia.edu/Documents/in/Geology"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="78046913"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/78046913/Relations_between_climate_change_and_mass_movement_Perspectives_from_the_Canadian_Cordillera_and_the_European_Alps"><img alt="Research paper thumbnail of Relations between climate change and mass movement: Perspectives from the Canadian Cordillera and the European Alps" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/78046913/Relations_between_climate_change_and_mass_movement_Perspectives_from_the_Canadian_Cordillera_and_the_European_Alps">Relations between climate change and mass movement: Perspectives from the Canadian Cordillera and the European Alps</a></div><div class="wp-workCard_item"><span>Global and Planetary Change</span><span>, 2021</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Abstract Earth&#39;s climate is warming and will continue to warm as the century progresses. High...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Abstract Earth&#39;s climate is warming and will continue to warm as the century progresses. High mountains and high latitudes are experiencing the greatest warming of all regions on Earth and also are some of the most sensitive areas to climate change, in part because ecosystems and natural processes in these areas are intimately linked to the cryosphere. Evidence is mounting that warming will further reduce permafrost and snow and ice cover in high mountains, which in turn will destabilize many slopes, alter sediment delivery to streams, and change subalpine and alpine ecosystems. This paper contributes to the continuing discussion of impacts of climate change on mountain environments by comparing and discussing processes and trends in the mountains of western Canada and the European Alps. We highlight the effects of physiography and climate on physical processes occurring in the two regions. Processes of interest include landslides and debris flows induced by glacier debuttressing, alpine permafrost thaw, changes in rainfall regime, formation and sudden drainage of glacier- and moraine-dammed lakes, ice avalanches, glacier surges, and large-scale sediment transfers due to rapid deglacierization. Our analysis points out the value of integrating observations and data from different areas of the world to better understand these processes and their impacts.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="78046913"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="78046913"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 78046913; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=78046913]").text(description); $(".js-view-count[data-work-id=78046913]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 78046913; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='78046913']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=78046913]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":78046913,"title":"Relations between climate change and mass movement: Perspectives from the Canadian Cordillera and the European Alps","translated_title":"","metadata":{"abstract":"Abstract Earth\u0026#39;s climate is warming and will continue to warm as the century progresses. High mountains and high latitudes are experiencing the greatest warming of all regions on Earth and also are some of the most sensitive areas to climate change, in part because ecosystems and natural processes in these areas are intimately linked to the cryosphere. Evidence is mounting that warming will further reduce permafrost and snow and ice cover in high mountains, which in turn will destabilize many slopes, alter sediment delivery to streams, and change subalpine and alpine ecosystems. This paper contributes to the continuing discussion of impacts of climate change on mountain environments by comparing and discussing processes and trends in the mountains of western Canada and the European Alps. We highlight the effects of physiography and climate on physical processes occurring in the two regions. Processes of interest include landslides and debris flows induced by glacier debuttressing, alpine permafrost thaw, changes in rainfall regime, formation and sudden drainage of glacier- and moraine-dammed lakes, ice avalanches, glacier surges, and large-scale sediment transfers due to rapid deglacierization. Our analysis points out the value of integrating observations and data from different areas of the world to better understand these processes and their impacts.","publisher":"Elsevier BV","publication_date":{"day":null,"month":null,"year":2021,"errors":{}},"publication_name":"Global and Planetary Change"},"translated_abstract":"Abstract Earth\u0026#39;s climate is warming and will continue to warm as the century progresses. High mountains and high latitudes are experiencing the greatest warming of all regions on Earth and also are some of the most sensitive areas to climate change, in part because ecosystems and natural processes in these areas are intimately linked to the cryosphere. Evidence is mounting that warming will further reduce permafrost and snow and ice cover in high mountains, which in turn will destabilize many slopes, alter sediment delivery to streams, and change subalpine and alpine ecosystems. This paper contributes to the continuing discussion of impacts of climate change on mountain environments by comparing and discussing processes and trends in the mountains of western Canada and the European Alps. We highlight the effects of physiography and climate on physical processes occurring in the two regions. Processes of interest include landslides and debris flows induced by glacier debuttressing, alpine permafrost thaw, changes in rainfall regime, formation and sudden drainage of glacier- and moraine-dammed lakes, ice avalanches, glacier surges, and large-scale sediment transfers due to rapid deglacierization. Our analysis points out the value of integrating observations and data from different areas of the world to better understand these processes and their impacts.","internal_url":"https://www.academia.edu/78046913/Relations_between_climate_change_and_mass_movement_Perspectives_from_the_Canadian_Cordillera_and_the_European_Alps","translated_internal_url":"","created_at":"2022-04-30T07:17:23.086-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":30937520,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Relations_between_climate_change_and_mass_movement_Perspectives_from_the_Canadian_Cordillera_and_the_European_Alps","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"Abstract Earth\u0026#39;s climate is warming and will continue to warm as the century progresses. High mountains and high latitudes are experiencing the greatest warming of all regions on Earth and also are some of the most sensitive areas to climate change, in part because ecosystems and natural processes in these areas are intimately linked to the cryosphere. Evidence is mounting that warming will further reduce permafrost and snow and ice cover in high mountains, which in turn will destabilize many slopes, alter sediment delivery to streams, and change subalpine and alpine ecosystems. This paper contributes to the continuing discussion of impacts of climate change on mountain environments by comparing and discussing processes and trends in the mountains of western Canada and the European Alps. We highlight the effects of physiography and climate on physical processes occurring in the two regions. Processes of interest include landslides and debris flows induced by glacier debuttressing, alpine permafrost thaw, changes in rainfall regime, formation and sudden drainage of glacier- and moraine-dammed lakes, ice avalanches, glacier surges, and large-scale sediment transfers due to rapid deglacierization. Our analysis points out the value of integrating observations and data from different areas of the world to better understand these processes and their impacts.","owner":{"id":30937520,"first_name":"John","middle_initials":null,"last_name":"Clague","page_name":"JohnClague","domain_name":"sfu","created_at":"2015-05-09T12:05:01.456-07:00","display_name":"John Clague","url":"https://sfu.academia.edu/JohnClague"},"attachments":[],"research_interests":[{"id":400,"name":"Earth Sciences","url":"https://www.academia.edu/Documents/in/Earth_Sciences"},{"id":402,"name":"Environmental Science","url":"https://www.academia.edu/Documents/in/Environmental_Science"},{"id":897823,"name":"Elsevier","url":"https://www.academia.edu/Documents/in/Elsevier"}],"urls":[{"id":20065750,"url":"https://api.elsevier.com/content/article/PII:S0921818121000849?httpAccept=text/xml"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="78046912"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/78046912/Can_deep_learning_algorithms_outperform_benchmark_machine_learning_algorithms_in_flood_susceptibility_modeling"><img alt="Research paper thumbnail of Can deep learning algorithms outperform benchmark machine learning algorithms in flood susceptibility modeling?" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/78046912/Can_deep_learning_algorithms_outperform_benchmark_machine_learning_algorithms_in_flood_susceptibility_modeling">Can deep learning algorithms outperform benchmark machine learning algorithms in flood susceptibility modeling?</a></div><div class="wp-workCard_item"><span>Journal of Hydrology</span><span>, 2021</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Abstract This paper introduces a new deep-learning algorithm of deep belief network (DBN) based o...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Abstract This paper introduces a new deep-learning algorithm of deep belief network (DBN) based on an extreme learning machine (ELM) that is structured by back propagation (BN) and optimized by particle swarm optimization (PSO) algorithm, named DEBP, for flood susceptibility mapping in the Vu Gia-Thu Bon watershed, central Vietnam. We use 847 locations of floods that occurred in 2007, 2009, and 2013 and 16 flood conditioning factors evaluated by an information gain ratio (IGR) technique to construct and validate the proposed model. Statistical metrics, including sensitivity, specificity, accuracy, F1-measure, Jaccard coefficient, Matthews correlation coefficient (MCC), root mean square error (RMSE), and area under the receiver operating characteristic curve (AUC), are used to assess the goodness-of-fit/performance and prediction accuracy of the new deep learning model. We further compare the proposed model with several well-known machine learning algorithms, including artificial neural network-based radial base function (ANNRBF), logistic regression (LR), logistic model tree (LMTree), functional tree (FTree), and alternating decision tree (ADTree). The new proposed model, DEBP, has the highest goodness-of-fit (AUC = 0.970) and prediction accuracy (AUC = 0.967) of all of the tested models and thus shows promise as a tool for flood susceptibility modeling. We conclude that novel deep learning algorithms such as the one used in this study can improve the accuracy of flood susceptibility maps that are required by planners, decision makers, and government agencies to manage of areas vulnerable to flood-induced damage.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="78046912"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="78046912"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 78046912; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=78046912]").text(description); $(".js-view-count[data-work-id=78046912]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 78046912; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='78046912']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=78046912]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":78046912,"title":"Can deep learning algorithms outperform benchmark machine learning algorithms in flood susceptibility modeling?","translated_title":"","metadata":{"abstract":"Abstract This paper introduces a new deep-learning algorithm of deep belief network (DBN) based on an extreme learning machine (ELM) that is structured by back propagation (BN) and optimized by particle swarm optimization (PSO) algorithm, named DEBP, for flood susceptibility mapping in the Vu Gia-Thu Bon watershed, central Vietnam. We use 847 locations of floods that occurred in 2007, 2009, and 2013 and 16 flood conditioning factors evaluated by an information gain ratio (IGR) technique to construct and validate the proposed model. Statistical metrics, including sensitivity, specificity, accuracy, F1-measure, Jaccard coefficient, Matthews correlation coefficient (MCC), root mean square error (RMSE), and area under the receiver operating characteristic curve (AUC), are used to assess the goodness-of-fit/performance and prediction accuracy of the new deep learning model. We further compare the proposed model with several well-known machine learning algorithms, including artificial neural network-based radial base function (ANNRBF), logistic regression (LR), logistic model tree (LMTree), functional tree (FTree), and alternating decision tree (ADTree). The new proposed model, DEBP, has the highest goodness-of-fit (AUC = 0.970) and prediction accuracy (AUC = 0.967) of all of the tested models and thus shows promise as a tool for flood susceptibility modeling. We conclude that novel deep learning algorithms such as the one used in this study can improve the accuracy of flood susceptibility maps that are required by planners, decision makers, and government agencies to manage of areas vulnerable to flood-induced damage.","publisher":"Elsevier BV","publication_date":{"day":null,"month":null,"year":2021,"errors":{}},"publication_name":"Journal of Hydrology"},"translated_abstract":"Abstract This paper introduces a new deep-learning algorithm of deep belief network (DBN) based on an extreme learning machine (ELM) that is structured by back propagation (BN) and optimized by particle swarm optimization (PSO) algorithm, named DEBP, for flood susceptibility mapping in the Vu Gia-Thu Bon watershed, central Vietnam. We use 847 locations of floods that occurred in 2007, 2009, and 2013 and 16 flood conditioning factors evaluated by an information gain ratio (IGR) technique to construct and validate the proposed model. Statistical metrics, including sensitivity, specificity, accuracy, F1-measure, Jaccard coefficient, Matthews correlation coefficient (MCC), root mean square error (RMSE), and area under the receiver operating characteristic curve (AUC), are used to assess the goodness-of-fit/performance and prediction accuracy of the new deep learning model. We further compare the proposed model with several well-known machine learning algorithms, including artificial neural network-based radial base function (ANNRBF), logistic regression (LR), logistic model tree (LMTree), functional tree (FTree), and alternating decision tree (ADTree). The new proposed model, DEBP, has the highest goodness-of-fit (AUC = 0.970) and prediction accuracy (AUC = 0.967) of all of the tested models and thus shows promise as a tool for flood susceptibility modeling. We conclude that novel deep learning algorithms such as the one used in this study can improve the accuracy of flood susceptibility maps that are required by planners, decision makers, and government agencies to manage of areas vulnerable to flood-induced damage.","internal_url":"https://www.academia.edu/78046912/Can_deep_learning_algorithms_outperform_benchmark_machine_learning_algorithms_in_flood_susceptibility_modeling","translated_internal_url":"","created_at":"2022-04-30T07:17:22.858-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":30937520,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Can_deep_learning_algorithms_outperform_benchmark_machine_learning_algorithms_in_flood_susceptibility_modeling","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"Abstract This paper introduces a new deep-learning algorithm of deep belief network (DBN) based on an extreme learning machine (ELM) that is structured by back propagation (BN) and optimized by particle swarm optimization (PSO) algorithm, named DEBP, for flood susceptibility mapping in the Vu Gia-Thu Bon watershed, central Vietnam. We use 847 locations of floods that occurred in 2007, 2009, and 2013 and 16 flood conditioning factors evaluated by an information gain ratio (IGR) technique to construct and validate the proposed model. Statistical metrics, including sensitivity, specificity, accuracy, F1-measure, Jaccard coefficient, Matthews correlation coefficient (MCC), root mean square error (RMSE), and area under the receiver operating characteristic curve (AUC), are used to assess the goodness-of-fit/performance and prediction accuracy of the new deep learning model. We further compare the proposed model with several well-known machine learning algorithms, including artificial neural network-based radial base function (ANNRBF), logistic regression (LR), logistic model tree (LMTree), functional tree (FTree), and alternating decision tree (ADTree). The new proposed model, DEBP, has the highest goodness-of-fit (AUC = 0.970) and prediction accuracy (AUC = 0.967) of all of the tested models and thus shows promise as a tool for flood susceptibility modeling. We conclude that novel deep learning algorithms such as the one used in this study can improve the accuracy of flood susceptibility maps that are required by planners, decision makers, and government agencies to manage of areas vulnerable to flood-induced damage.","owner":{"id":30937520,"first_name":"John","middle_initials":null,"last_name":"Clague","page_name":"JohnClague","domain_name":"sfu","created_at":"2015-05-09T12:05:01.456-07:00","display_name":"John Clague","url":"https://sfu.academia.edu/JohnClague"},"attachments":[],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":2008,"name":"Machine Learning","url":"https://www.academia.edu/Documents/in/Machine_Learning"},{"id":2549,"name":"Hydrology","url":"https://www.academia.edu/Documents/in/Hydrology"},{"id":26817,"name":"Algorithm","url":"https://www.academia.edu/Documents/in/Algorithm"},{"id":28235,"name":"Multidisciplinary","url":"https://www.academia.edu/Documents/in/Multidisciplinary"}],"urls":[{"id":20065749,"url":"https://api.elsevier.com/content/article/PII:S0022169420310763?httpAccept=text/xml"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> </div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/google_contacts-0dfb882d836b94dbcb4a2d123d6933fc9533eda5be911641f20b4eb428429600.js"], function() { // from javascript_helper.rb $('.js-google-connect-button').click(function(e) { e.preventDefault(); GoogleContacts.authorize_and_show_contacts(); Aedu.Dismissibles.recordClickthrough("WowProfileImportContactsPrompt"); }); $('.js-update-biography-button').click(function(e) { e.preventDefault(); Aedu.Dismissibles.recordClickthrough("UpdateUserBiographyPrompt"); $.ajax({ url: $r.api_v0_profiles_update_about_path({ subdomain_param: 'api', about: "", }), type: 'PUT', success: function(response) { location.reload(); } }); }); $('.js-work-creator-button').click(function (e) { e.preventDefault(); window.location = $r.upload_funnel_document_path({ source: encodeURIComponent(""), }); }); $('.js-video-upload-button').click(function (e) { e.preventDefault(); window.location = $r.upload_funnel_video_path({ source: encodeURIComponent(""), }); }); $('.js-do-this-later-button').click(function() { $(this).closest('.js-profile-nag-panel').remove(); Aedu.Dismissibles.recordDismissal("WowProfileImportContactsPrompt"); }); $('.js-update-biography-do-this-later-button').click(function(){ $(this).closest('.js-profile-nag-panel').remove(); Aedu.Dismissibles.recordDismissal("UpdateUserBiographyPrompt"); }); $('.wow-profile-mentions-upsell--close').click(function(){ $('.wow-profile-mentions-upsell--panel').hide(); Aedu.Dismissibles.recordDismissal("WowProfileMentionsUpsell"); }); $('.wow-profile-mentions-upsell--button').click(function(){ Aedu.Dismissibles.recordClickthrough("WowProfileMentionsUpsell"); }); new WowProfile.SocialRedesignUserWorks({ initialWorksOffset: 20, allWorksOffset: 20, maxSections: 1 }) }); </script> </div></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile_edit-5ea339ee107c863779f560dd7275595239fed73f1a13d279d2b599a28c0ecd33.js","https://a.academia-assets.com/assets/add_coauthor-22174b608f9cb871d03443cafa7feac496fb50d7df2d66a53f5ee3c04ba67f53.js","https://a.academia-assets.com/assets/tab-dcac0130902f0cc2d8cb403714dd47454f11fc6fb0e99ae6a0827b06613abc20.js","https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js"], function() { // from javascript_helper.rb window.ae = window.ae || {}; window.ae.WowProfile = window.ae.WowProfile || {}; if(Aedu.User.current && Aedu.User.current.id === $viewedUser.id) { window.ae.WowProfile.current_user_edit = {}; new WowProfileEdit.EditUploadView({ el: '.js-edit-upload-button-wrapper', model: window.$current_user, }); new AddCoauthor.AddCoauthorsController(); } var userInfoView = new WowProfile.SocialRedesignUserInfo({ recaptcha_key: "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB" }); WowProfile.router = new WowProfile.Router({ userInfoView: userInfoView }); Backbone.history.start({ pushState: true, root: "/" + $viewedUser.page_name }); new WowProfile.UserWorksNav() }); </script> </div> <div class="bootstrap login"><div class="modal fade login-modal" id="login-modal"><div class="login-modal-dialog modal-dialog"><div class="modal-content"><div class="modal-header"><button class="close close" data-dismiss="modal" type="button"><span aria-hidden="true">×</span><span class="sr-only">Close</span></button><h4 class="modal-title text-center"><strong>Log In</strong></h4></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><button class="btn btn-fb btn-lg btn-block btn-v-center-content" id="login-facebook-oauth-button"><svg style="float: left; width: 19px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="facebook-square" class="svg-inline--fa fa-facebook-square fa-w-14" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512"><path fill="currentColor" d="M400 32H48A48 48 0 0 0 0 80v352a48 48 0 0 0 48 48h137.25V327.69h-63V256h63v-54.64c0-62.15 37-96.48 93.67-96.48 27.14 0 55.52 4.84 55.52 4.84v61h-31.27c-30.81 0-40.42 19.12-40.42 38.73V256h68.78l-11 71.69h-57.78V480H400a48 48 0 0 0 48-48V80a48 48 0 0 0-48-48z"></path></svg><small><strong>Log in</strong> with <strong>Facebook</strong></small></button><br /><button class="btn btn-google btn-lg btn-block btn-v-center-content" id="login-google-oauth-button"><svg style="float: left; width: 22px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="google-plus" class="svg-inline--fa fa-google-plus fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M256,8C119.1,8,8,119.1,8,256S119.1,504,256,504,504,392.9,504,256,392.9,8,256,8ZM185.3,380a124,124,0,0,1,0-248c31.3,0,60.1,11,83,32.3l-33.6,32.6c-13.2-12.9-31.3-19.1-49.4-19.1-42.9,0-77.2,35.5-77.2,78.1S142.3,334,185.3,334c32.6,0,64.9-19.1,70.1-53.3H185.3V238.1H302.2a109.2,109.2,0,0,1,1.9,20.7c0,70.8-47.5,121.2-118.8,121.2ZM415.5,273.8v35.5H380V273.8H344.5V238.3H380V202.8h35.5v35.5h35.2v35.5Z"></path></svg><small><strong>Log in</strong> with <strong>Google</strong></small></button><br /><style type="text/css">.sign-in-with-apple-button { width: 100%; height: 52px; border-radius: 3px; border: 1px solid black; cursor: pointer; } .sign-in-with-apple-button > div { margin: 0 auto; / This centers the Apple-rendered button horizontally }</style><script src="https://appleid.cdn-apple.com/appleauth/static/jsapi/appleid/1/en_US/appleid.auth.js" type="text/javascript"></script><div class="sign-in-with-apple-button" data-border="false" data-color="white" id="appleid-signin"><span ="Sign Up with Apple" class="u-fs11"></span></div><script>AppleID.auth.init({ clientId: 'edu.academia.applesignon', scope: 'name email', redirectURI: 'https://www.academia.edu/sessions', state: "ffad3954df66d389a9e45476869d17f4ae0b509feee865a45ad20227c3df1533", });</script><script>// Hacky way of checking if on fast loswp if (window.loswp == null) { (function() { const Google = window?.Aedu?.Auth?.OauthButton?.Login?.Google; const Facebook = window?.Aedu?.Auth?.OauthButton?.Login?.Facebook; if (Google) { new Google({ el: '#login-google-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } if (Facebook) { new Facebook({ el: '#login-facebook-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } })(); }</script></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><div class="hr-heading login-hr-heading"><span class="hr-heading-text">or</span></div></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><form class="js-login-form" action="https://www.academia.edu/sessions" accept-charset="UTF-8" method="post"><input type="hidden" name="authenticity_token" value="rQWP1UB_81msASrtBcbsSMgVtItBcJwc4kSDIVBB-9hnHl_fdk9OsVbg6FpVDfq57fAHyvZfNFip0ouAcKxjmw" autocomplete="off" /><div class="form-group"><label class="control-label" for="login-modal-email-input" style="font-size: 14px;">Email</label><input class="form-control" id="login-modal-email-input" name="login" type="email" /></div><div class="form-group"><label class="control-label" for="login-modal-password-input" style="font-size: 14px;">Password</label><input class="form-control" id="login-modal-password-input" name="password" type="password" /></div><input type="hidden" name="post_login_redirect_url" id="post_login_redirect_url" value="https://sfu.academia.edu/JohnClague" autocomplete="off" /><div class="checkbox"><label><input type="checkbox" name="remember_me" id="remember_me" value="1" checked="checked" /><small style="font-size: 12px; margin-top: 2px; display: inline-block;">Remember me on this computer</small></label></div><br><input type="submit" name="commit" value="Log In" class="btn btn-primary btn-block btn-lg js-login-submit" data-disable-with="Log In" /></br></form><script>typeof window?.Aedu?.recaptchaManagedForm === 'function' && window.Aedu.recaptchaManagedForm( document.querySelector('.js-login-form'), document.querySelector('.js-login-submit') );</script><small style="font-size: 12px;"><br />or <a data-target="#login-modal-reset-password-container" data-toggle="collapse" href="javascript:void(0)">reset password</a></small><div class="collapse" id="login-modal-reset-password-container"><br /><div class="well margin-0x"><form class="js-password-reset-form" action="https://www.academia.edu/reset_password" accept-charset="UTF-8" method="post"><input type="hidden" name="authenticity_token" value="Np4aUeLOKTnl1eve6DEEExuTNEuNYKDumPqgcWZ-iwn8hcpb1P6U0R80KWm4-hLiPnaHCjpPCKrTbKjQRpMTSg" autocomplete="off" /><p>Enter the email address you signed up with and we'll email you a reset link.</p><div class="form-group"><input class="form-control" name="email" type="email" /></div><script src="https://recaptcha.net/recaptcha/api.js" async defer></script> <script> var invisibleRecaptchaSubmit = function () { var closestForm = function (ele) { var curEle = ele.parentNode; while (curEle.nodeName !== 'FORM' && curEle.nodeName !== 'BODY'){ curEle = curEle.parentNode; } return curEle.nodeName === 'FORM' ? curEle : null }; var eles = document.getElementsByClassName('g-recaptcha'); if (eles.length > 0) { var form = closestForm(eles[0]); if (form) { form.submit(); } } }; </script> <input type="submit" data-sitekey="6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj" data-callback="invisibleRecaptchaSubmit" class="g-recaptcha btn btn-primary btn-block" value="Email me a link" value=""/> </form></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/collapse-45805421cf446ca5adf7aaa1935b08a3a8d1d9a6cc5d91a62a2a3a00b20b3e6a.js"], function() { // from javascript_helper.rb $("#login-modal-reset-password-container").on("shown.bs.collapse", function() { $(this).find("input[type=email]").focus(); }); }); </script> </div></div></div><div class="modal-footer"><div class="text-center"><small style="font-size: 12px;">Need an account? <a rel="nofollow" href="https://www.academia.edu/signup">Click here to sign up</a></small></div></div></div></div></div></div><script>// If we are on subdomain or non-bootstrapped page, redirect to login page instead of showing modal (function(){ if (typeof $ === 'undefined') return; var host = window.location.hostname; if ((host === $domain || host === "www."+$domain) && (typeof $().modal === 'function')) { $("#nav_log_in").click(function(e) { // Don't follow the link and open the modal e.preventDefault(); $("#login-modal").on('shown.bs.modal', function() { $(this).find("#login-modal-email-input").focus() }).modal('show'); }); } })()</script> <div class="bootstrap" id="footer"><div class="footer-content clearfix text-center padding-top-7x" style="width:100%;"><ul class="footer-links-secondary footer-links-wide list-inline margin-bottom-1x"><li><a href="https://www.academia.edu/about">About</a></li><li><a href="https://www.academia.edu/press">Press</a></li><li><a href="https://www.academia.edu/documents">Papers</a></li><li><a href="https://www.academia.edu/topics">Topics</a></li><li><a href="https://www.academia.edu/journals">Academia.edu Journals</a></li><li><a rel="nofollow" href="https://www.academia.edu/hiring"><svg style="width: 13px; height: 13px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="briefcase" class="svg-inline--fa fa-briefcase fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M320 336c0 8.84-7.16 16-16 16h-96c-8.84 0-16-7.16-16-16v-48H0v144c0 25.6 22.4 48 48 48h416c25.6 0 48-22.4 48-48V288H320v48zm144-208h-80V80c0-25.6-22.4-48-48-48H176c-25.6 0-48 22.4-48 48v48H48c-25.6 0-48 22.4-48 48v80h512v-80c0-25.6-22.4-48-48-48zm-144 0H192V96h128v32z"></path></svg> <strong>We're Hiring!</strong></a></li><li><a rel="nofollow" href="https://support.academia.edu/hc/en-us"><svg style="width: 12px; height: 12px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="question-circle" class="svg-inline--fa fa-question-circle fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M504 256c0 136.997-111.043 248-248 248S8 392.997 8 256C8 119.083 119.043 8 256 8s248 111.083 248 248zM262.655 90c-54.497 0-89.255 22.957-116.549 63.758-3.536 5.286-2.353 12.415 2.715 16.258l34.699 26.31c5.205 3.947 12.621 3.008 16.665-2.122 17.864-22.658 30.113-35.797 57.303-35.797 20.429 0 45.698 13.148 45.698 32.958 0 14.976-12.363 22.667-32.534 33.976C247.128 238.528 216 254.941 216 296v4c0 6.627 5.373 12 12 12h56c6.627 0 12-5.373 12-12v-1.333c0-28.462 83.186-29.647 83.186-106.667 0-58.002-60.165-102-116.531-102zM256 338c-25.365 0-46 20.635-46 46 0 25.364 20.635 46 46 46s46-20.636 46-46c0-25.365-20.635-46-46-46z"></path></svg> <strong>Help Center</strong></a></li></ul><ul class="footer-links-tertiary list-inline margin-bottom-1x"><li class="small">Find new research papers in:</li><li class="small"><a href="https://www.academia.edu/Documents/in/Physics">Physics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Chemistry">Chemistry</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Biology">Biology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Health_Sciences">Health Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Ecology">Ecology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Earth_Sciences">Earth Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Cognitive_Science">Cognitive Science</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Mathematics">Mathematics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Computer_Science">Computer Science</a></li></ul></div></div><div class="DesignSystem" id="credit" style="width:100%;"><ul class="u-pl0x footer-links-legal list-inline"><li><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li>Academia ©2025</li></ul></div><script> //<![CDATA[ window.detect_gmtoffset = true; window.Academia && window.Academia.set_gmtoffset && Academia.set_gmtoffset('/gmtoffset'); //]]> </script> <div id='overlay_background'></div> <div id='bootstrap-modal-container' class='bootstrap'></div> <div id='ds-modal-container' class='bootstrap DesignSystem'></div> <div id='full-screen-modal'></div> </div> </body> </html>