CINXE.COM

Search results for: organic residue

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: organic residue</title> <meta name="description" content="Search results for: organic residue"> <meta name="keywords" content="organic residue"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="organic residue" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="organic residue"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 2711</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: organic residue</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2711</span> Detoxification of Hazardous Organic/Inorganic Contaminants in Automobile Shredder Residue by Multi-Functioned Nano-Size Metallic Calcium Composite</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Srinivasa%20Reddy%20Mallampati">Srinivasa Reddy Mallampati</a>, <a href="https://publications.waset.org/abstracts/search?q=Byoung%20Ho%20Lee"> Byoung Ho Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Yoshiharu%20Mitoma"> Yoshiharu Mitoma</a>, <a href="https://publications.waset.org/abstracts/search?q=Simion%20Cristian"> Simion Cristian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent years, environmental nanotechnology has risen to the forefront and the new properties and enhanced reactivates offered by nanomaterial may offer a new, low-cost paradigm to solving complex environmental pollution problems. This study assessed the synthesis and application of multi-functioned nano-size metallic calcium (nMC) composite for detoxification of hazardous inorganic (heavy metals (HMs)/organic chlorinated/brominated compound (CBCs) contaminants in automobile shredder residue (ASR). ASR residues ball milled with nMC composite can achieve about 90-100% of HMs immobilization and CBCs decomposition. The results highlight the low quantity of HMs leached from ASR residues after treatment with nMC, which was found to be lower than the standard regulatory limit for hazardous waste landfills. The use of nMC composite in a mechanochemical process to treat hazardous ASR (dry conditions) is a simple and innovative approach to remediate hazardous inorganic/organic cross-contaminates in ASR. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nano-sized%20metallic%20calcium" title="nano-sized metallic calcium">nano-sized metallic calcium</a>, <a href="https://publications.waset.org/abstracts/search?q=automobile%20shredder%20residue" title=" automobile shredder residue"> automobile shredder residue</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%2Finorganic%20contaminants" title=" organic/inorganic contaminants"> organic/inorganic contaminants</a>, <a href="https://publications.waset.org/abstracts/search?q=immobilization" title=" immobilization"> immobilization</a>, <a href="https://publications.waset.org/abstracts/search?q=detoxification" title=" detoxification"> detoxification</a> </p> <a href="https://publications.waset.org/abstracts/72507/detoxification-of-hazardous-organicinorganic-contaminants-in-automobile-shredder-residue-by-multi-functioned-nano-size-metallic-calcium-composite" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72507.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">227</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2710</span> Effect of Curing Temperature on Unconfined Compression Strength of Bagasse Ash-Calcium Carbide Residue Treated Organic Clay</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=John%20Trihatmoko">John Trihatmoko</a>, <a href="https://publications.waset.org/abstracts/search?q=Luky%20Handoko"> Luky Handoko</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A series of experimental program was undertaken to study the effect of curing temperature on the unconfined compression strength of bagasse ash (BA) - calcium carbide residue (CCR) stabilized organic clay (OC). A preliminary experiment was performed to get the physical properties of OC, and to get the optimum water content (OMC), the standard compaction test was done. The stabilizing agents used in this research was (40% BA + 60% CCR) . Then to obtain the best binder proportion, unconfined compression test was undertaken for OC + 3, 6, 9, 12 and 15% of binder with 7, 14, 21, 28 and 56 days curing period. The best quantity of the binder was found on 9%. Finally, to study the effect of curing temperature, the unconfined compression test was performed on OC + 9% binder with 7, 14, 21, 28 and 56 days curing time with 20O, 25O, 30O, 40O, and 50O C curing temperature. The result indicates that unconfined compression strength (UCS) of treated OC improve according to the increase of curing temperature at the same curing time. The improvement of UCS is probably due to the degree of cementation and pozzolanic reactions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=curing%20temperature" title="curing temperature">curing temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20clay" title=" organic clay"> organic clay</a>, <a href="https://publications.waset.org/abstracts/search?q=bagasse%20ash" title=" bagasse ash"> bagasse ash</a>, <a href="https://publications.waset.org/abstracts/search?q=calcium%20carbide%20residue" title=" calcium carbide residue"> calcium carbide residue</a>, <a href="https://publications.waset.org/abstracts/search?q=unconfined%20compression%20strength" title=" unconfined compression strength"> unconfined compression strength</a> </p> <a href="https://publications.waset.org/abstracts/123381/effect-of-curing-temperature-on-unconfined-compression-strength-of-bagasse-ash-calcium-carbide-residue-treated-organic-clay" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/123381.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">125</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2709</span> Utilization of Soymilk Residue for Wheat Flour Substitution in Gyoza skin</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Naruemon%20Prapasuwannakul">Naruemon Prapasuwannakul</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Soy milk residue is obtained as a byproduct from soy milk and tofu production with little economic value. It contains high protein and fiber as well as various minerals and phyto-chemical compounds. The objective of this research was to substitute soy milk residue for wheat flour in gyoza skin in order to enhance value of soy milk residue and increase protein and fiber content of gyoza skin. Wheat flour was replaced with soy milk residue from 0 to 40%. The soy milk residue prepared in this research contains 26.92% protein, 3.58% fiber, 2.88% lipid, 6.29% ash and 60.33% carbohydrate. The results showed that increasing soy milk residue decreased lightness (L*value), tensile strength and sensory attributes but increased redness (a*), yellowness (b*), protein and fiber contents of product. The result also showed that the gyoza skin substituted with 30% soy milk residue was the most acceptable (p≤0.05) and its protein and fiber content increased up to 45 % and 867 % respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gyoza%20skin" title="Gyoza skin">Gyoza skin</a>, <a href="https://publications.waset.org/abstracts/search?q=sensory" title=" sensory"> sensory</a>, <a href="https://publications.waset.org/abstracts/search?q=soymilk%20residue" title=" soymilk residue"> soymilk residue</a>, <a href="https://publications.waset.org/abstracts/search?q=wheat%20flour" title=" wheat flour"> wheat flour</a> </p> <a href="https://publications.waset.org/abstracts/1611/utilization-of-soymilk-residue-for-wheat-flour-substitution-in-gyoza-skin" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1611.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">401</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2708</span> Effects of Tillage and Crop Residues Management in Improving Rainfall-Use Efficiency in Dryland Crops under Sandy Soils</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cosmas%20Parwada">Cosmas Parwada</a>, <a href="https://publications.waset.org/abstracts/search?q=Ronald%20Mandumbu"> Ronald Mandumbu</a>, <a href="https://publications.waset.org/abstracts/search?q=Handseni%20Tibugari"> Handseni Tibugari</a>, <a href="https://publications.waset.org/abstracts/search?q=Trust%20Chinyama"> Trust Chinyama</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A 3-yr field experiment to evaluate effects of tillage and residue management on soil water storage (SWS), grain yield, harvest index (HI) and water use efficiency (WUE) of sorghum was done in sandy soils. Treatments were conventional (CT) and minimum (MT) tillage without residue retention and conventional (CT × RT) and minimum (MT × RT) tillage with residue retention. Change in SWS was higher under CT and MT than in CT × RT and MT × RT, especially in the 0-10 cm soil layer. Grain yield and HI were significantly (P < 0.05) lower in CT and MT than CT × RT and MT × RT. Grain yield and HI were significantly (P < 0.05) positively correlated to WUE but WUE significantly (P < 0.05) negatively correlated to sand (%) particle content. The SWS was lower in winter but higher in summer and was significantly correlated to soil organic carbon (SOC), sand (%), grain yield (t/ha), HI and WUE. The WUE linearly increasing from first to last cropping seasons in tillage with returned residues; higher in CT × RT and MT × RT that promoted SOC buildup than where crop residues were removed. Soil tillage decreased effects of residues on SWS, WUE, grain yield and HI. Minimum tillage coupled to residue retention sustainably enhanced WUE but further research to investigate the interaction effects of the tillage on WUE and soil fertility management is required. Understanding and considering the WUE in crops can be a primary condition for cropping system designs. The findings pave way for further research and crop management programmes, allowing to valorize the water in crop production. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=evapotranspiration" title="evapotranspiration">evapotranspiration</a>, <a href="https://publications.waset.org/abstracts/search?q=infiltration%20rate" title=" infiltration rate"> infiltration rate</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20mulch" title=" organic mulch"> organic mulch</a>, <a href="https://publications.waset.org/abstracts/search?q=sand" title=" sand"> sand</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20use%20efficiency" title=" water use efficiency"> water use efficiency</a> </p> <a href="https://publications.waset.org/abstracts/95785/effects-of-tillage-and-crop-residues-management-in-improving-rainfall-use-efficiency-in-dryland-crops-under-sandy-soils" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/95785.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">215</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2707</span> Conservation Agriculture in North America</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ying%20Chen">Ying Chen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Conservation Agriculture in a sustainable way of farming, as it brings many benefits, such as preventing soil from erosion and degradation, improving soil health, conserving energy, and sequestrating carbon. However, adoption of conservation agriculture has been progressing slowly in some part of the world due to some challenges. Among them, seeding in heavy crop residue is challenging, especially in corn production systems. Weed control is also challenging in conservation agriculture. This research aimed to investigate some technologies that can address these challenges. For crop residue management, vertical tillage and vertical seeding have been studied in multiple research projects. Results showed that vertical tillage and seeding were able to deal with crop residue through cutting residue into small segments, which would not plug seeder in the sub-sequent seeding. Vertical tillage is a conservation tillage system, as it leaves more than 30% crop residue on soil surface while incorporating some residue into the shallow soil layer for fast residue decomposition. For weed control, mechanical weeding can reduce chemical inputs in crop production. A tine weeder was studied for weed control during the early growing season of several field crops (corn, soybean, flax, and pea). Detail results of these studies will be shared at the conference. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tillage" title="tillage">tillage</a>, <a href="https://publications.waset.org/abstracts/search?q=seeding" title=" seeding"> seeding</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20weeding" title=" mechanical weeding"> mechanical weeding</a>, <a href="https://publications.waset.org/abstracts/search?q=crop%20residue" title=" crop residue"> crop residue</a> </p> <a href="https://publications.waset.org/abstracts/172388/conservation-agriculture-in-north-america" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/172388.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">75</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2706</span> Determination of Carbofuran Residue in Brinjal (Solanum melongena L.) and Soil of Brinjal Field</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20Islam">R. Islam</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Haque"> M. A. Haque</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20H.%20Kabir"> K. H. Kabir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A supervised trail was set with brinjal at research field, Entomology Division, Bangladesh Agricultural Research Institute, Joydebpur, Gazipur to determine the residue of Carbofuran in soil and fruit samples at different days after application (DAA) of Furadan 5 G @ 2 kg AI/ ha. Field collected samples were analyzed by GCMS-EI. Results of the experiment indicated the presence of Carbofuran residue up to 60 DAA in soil samples and 25 DAA in brinjal fruit samples. In case of soil samples, the detected residues were 7.04, 2.78, 0.79, 0.43, 0.12, 0.06 and 0.05 ppm at 0, 2, 5, 10, 20, 30 and 60 DAA respectively. On the other hand, in brinjal fruit samples Carbofuran residues were 0.005 ppm, 0.095 ppm, 0.084 ppm, 0.065 ppm, 0.063 ppm, 0.056 ppm, 0.050 ppm, 0.030 ppm and 0.016 ppm at 0, 2, 4, 6, 8, 10, 12, 15 and 25-DAA, respectively. None of this amount was above the recommended MRL (0.1 mg / kg crop) of Carborufan for agricultural crops. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=brinjal" title="brinjal">brinjal</a>, <a href="https://publications.waset.org/abstracts/search?q=carbofuran" title=" carbofuran"> carbofuran</a>, <a href="https://publications.waset.org/abstracts/search?q=MRL" title=" MRL"> MRL</a>, <a href="https://publications.waset.org/abstracts/search?q=residue" title=" residue"> residue</a> </p> <a href="https://publications.waset.org/abstracts/29583/determination-of-carbofuran-residue-in-brinjal-solanum-melongena-l-and-soil-of-brinjal-field" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29583.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">511</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2705</span> Generalized Model Estimating Strength of Bauxite Residue-Lime Mix</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sujeet%20Kumar">Sujeet Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Arun%20Prasad"> Arun Prasad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present work investigates the effect of multiple parameters on the unconfined compressive strength of the bauxite residue-lime mix. A number of unconfined compressive strength tests considering various curing time, lime content, dry density and moisture content were carried out. The results show that an empirical correlation may be successfully developed using volumetric lime content, porosity, moisture content, curing time unconfined compressive strength for the range of the bauxite residue-lime mix studied. The proposed empirical correlations efficiently predict the strength of bauxite residue-lime mix, and it can be used as a generalized empirical equation to estimate unconfined compressive strength. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bauxite%20residue" title="bauxite residue">bauxite residue</a>, <a href="https://publications.waset.org/abstracts/search?q=curing%20time" title=" curing time"> curing time</a>, <a href="https://publications.waset.org/abstracts/search?q=porosity%2Fvolumetric%20lime%20ratio" title=" porosity/volumetric lime ratio"> porosity/volumetric lime ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=unconfined%20compressive%20strength" title=" unconfined compressive strength"> unconfined compressive strength</a> </p> <a href="https://publications.waset.org/abstracts/80378/generalized-model-estimating-strength-of-bauxite-residue-lime-mix" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80378.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">236</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2704</span> Fractional Residue Number System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Parisa%20Khoshvaght">Parisa Khoshvaght</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehdi%20Hosseinzadeh"> Mehdi Hosseinzadeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> During the past few years, the Residue Number System (RNS) has been receiving considerable interest due to its parallel and fault-tolerant properties. This system is a useful tool for Digital Signal Processing (DSP) since it can support parallel, carry-free, high-speed and low power arithmetic. One of the drawbacks of Residue Number System is the fractional numbers, that is, the corresponding circuit is very hard to realize in conventional CMOS technology. In this paper, we propose a method in which the numbers of transistors are significantly reduced. The related delay is extremely diminished, in the first glance we use this method to solve concerning problem of one decimal functional number some how this proposition can be extended to generalize the idea. Another advantage of this method is the independency on the kind of moduli. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=computer%20arithmetic" title="computer arithmetic">computer arithmetic</a>, <a href="https://publications.waset.org/abstracts/search?q=residue%20number%20system" title=" residue number system"> residue number system</a>, <a href="https://publications.waset.org/abstracts/search?q=number%20system" title=" number system"> number system</a>, <a href="https://publications.waset.org/abstracts/search?q=one-Hot" title=" one-Hot"> one-Hot</a>, <a href="https://publications.waset.org/abstracts/search?q=VLSI" title=" VLSI"> VLSI</a> </p> <a href="https://publications.waset.org/abstracts/30341/fractional-residue-number-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30341.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">495</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2703</span> Iranian Refinery Vacuum Residue Upgrading Using Microwave Irradiation: Effects of Catalyst Type and Amount</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zarrin%20Nasri">Zarrin Nasri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Microwave irradiation is an innovative technology in the petroleum industry. This kind of energy has been considered to convert vacuum residue of oil refineries into useful products. The advantages of microwaves energy are short time, fast heating, high energy efficiency, and precise process control. In this paper, the effects of catalyst type and amount have been investigated on upgrading of vacuum residue using microwave irradiation. The vacuum residue used in this research is from Tehran oil refinery, Iran. Additives include different catalysts, active carbon as sensitizer, and sodium borohydride as a solid hydrogen donor. Various catalysts contain iron, nickel, molybdenum disulfide, iron oxide and copper. The amount of catalysts in two cases of presence and absence of sodium borohydride have been evaluated. The objective parameters include temperature, asphaltene, viscosity, and API. The specifications of vacuum residue are API, 8.79, viscosity, 16391 cSt (60°C), asphaltene, 13.3 wt %. The results show that there is a significant difference between the effects of catalysts. Among the used catalysts, Fe powder is the best catalyst for upgrading vacuum residue using microwave irradiation and resulted in asphaltene reduction, 31.3 %; viscosity reduction, 76.43 %; and 23.43 % in API increase. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=asphaltene" title="asphaltene">asphaltene</a>, <a href="https://publications.waset.org/abstracts/search?q=microwave" title=" microwave"> microwave</a>, <a href="https://publications.waset.org/abstracts/search?q=upgrading" title=" upgrading"> upgrading</a>, <a href="https://publications.waset.org/abstracts/search?q=vacuum%20residue" title=" vacuum residue"> vacuum residue</a>, <a href="https://publications.waset.org/abstracts/search?q=viscosity" title=" viscosity"> viscosity</a> </p> <a href="https://publications.waset.org/abstracts/81731/iranian-refinery-vacuum-residue-upgrading-using-microwave-irradiation-effects-of-catalyst-type-and-amount" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81731.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">255</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2702</span> Utilization of Logging Residue to Reduce Soil Disturbance of Timber Harvesting</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Juang%20R.%20Matangaran">Juang R. Matangaran</a>, <a href="https://publications.waset.org/abstracts/search?q=Qi%20Adlan"> Qi Adlan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Industrial plantation forest in Indonesia was developed in 1983, and since then, several companies have been successfully planted a total area of concessionaire approximately 10 million hectares. Currently, these plantation forests have their annual harvesting period. In the timber harvesting process, amount part of the trees generally become logging residue. Tree parts such as branches, twigs, defected stem and leaves are unused section of tree on the ground after timber harvesting. The use of heavy machines in timber harvesting area has caused damage to the forest soil. The negative impact of such machines includes loss of topsoil, soil erosion, and soil compaction. Forest soil compaction caused reduction of forest water infiltration, increase runoff and causes difficulty for root penetration. In this study, we used logging residue as soil covers on the passages passed by skidding machines in order to observe the reduction soil compaction. Bulk density of soil was measured and analyzed after several times of skidding machines passage on skid trail. The objective of the research was to analyze the effect of logging residue on reducing soil compaction. The research was taken place at one of the industrial plantation forest area of South Sumatra Indonesia. The result of the study showed that percentage increase of soil compaction bare soil was larger than soil surface covered by logging residue. The maximum soil compaction occurred after 4 to 5 passes on soil without logging residue or bare soil and after 7 to 8 passes on soil cover by logging residue. The use of logging residue coverings could reduce soil compaction from 45% to 60%. The logging residue was effective in decreasing soil disturbance of timber harvesting at the plantation forest area. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bulk%20density" title="bulk density">bulk density</a>, <a href="https://publications.waset.org/abstracts/search?q=logging%20residue" title=" logging residue"> logging residue</a>, <a href="https://publications.waset.org/abstracts/search?q=plantation%20forest" title=" plantation forest"> plantation forest</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20compaction" title=" soil compaction"> soil compaction</a>, <a href="https://publications.waset.org/abstracts/search?q=timber%20harvesting" title=" timber harvesting"> timber harvesting</a> </p> <a href="https://publications.waset.org/abstracts/73651/utilization-of-logging-residue-to-reduce-soil-disturbance-of-timber-harvesting" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73651.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">405</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2701</span> Degradation of Endosulfan in Different Soils by Indigenous and Adapted Microorganisms</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20%C3%96zyer">A. Özyer</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20G.%20Turan"> N. G. Turan</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Ardal%C4%B1"> Y. Ardalı</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The environmental fate of organic contaminants in soils is influenced significantly by the pH, texture of soil, water content and also presence of organic matter. In this study, biodegradation of endosulfan isomers was studied in two different soils (Soil A and Soil B) that have contrasting properties in terms of their texture, pH, organic content, etc. Two <em>Nocardia </em>sp., which were isolated from soil, were used for degradation of endosulfan. Soils were contaminated with commercial endosulfan. Six sets were maintained from two different soils, contaminated with different endosulfan concentrations for degradation experiments. Inoculated and uninoculated mineral media with <em>Nocardia</em> isolates were added to the soils and mixed. Soils were incubated at a certain temperature (30 &deg;C) during ten weeks. Residue endosulfan and its metabolites&rsquo; concentrations were determined weekly during the incubation period. The changes of the soil microorganisms were investigated weekly. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=endosulfan" title="endosulfan">endosulfan</a>, <a href="https://publications.waset.org/abstracts/search?q=biodegradation" title=" biodegradation"> biodegradation</a>, <a href="https://publications.waset.org/abstracts/search?q=Nocardia%20sp.%20soil" title=" Nocardia sp. soil"> Nocardia sp. soil</a>, <a href="https://publications.waset.org/abstracts/search?q=organochlorine%20pesticide" title=" organochlorine pesticide"> organochlorine pesticide</a> </p> <a href="https://publications.waset.org/abstracts/48178/degradation-of-endosulfan-in-different-soils-by-indigenous-and-adapted-microorganisms" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48178.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">382</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2700</span> Mechanical Properties Analysis of Masonry Residue Mortar as Cement Replacement</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Camila%20Parodi">Camila Parodi</a>, <a href="https://publications.waset.org/abstracts/search?q=Viviana%20Letelier"> Viviana Letelier</a>, <a href="https://publications.waset.org/abstracts/search?q=Giacomo%20Moriconi"> Giacomo Moriconi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The cement industry is responsible for around a 5% of the CO2 emissions worldwide and considering that concrete is one of the most used materials in construction its total effect is important. An alternative to reduce the environmental impact of concrete production is to incorporate certain amount of residues in the dosing, limiting the replacement percentages to avoid significant losses in the mechanical properties of the final material. Previous researches demonstrate the feasibility of using brick and rust residues, separately, as a cement replacement. This study analyses the variation in the mechanical properties of mortars by incorporating masonry residue composed of clay bricks and cement mortar. In order to improve the mechanical properties of masonry residue, this was subjected to a heat treatment of 650 ° C for four hours and its effect is analyzed in this study. Masonry residue was obtained from a demolition of masonry perimetral walls. The residues were crushed and sieved and the maximum size of particles used was 75 microns. The percentages of cement replaced by masonry residue were 0%, 10%, 20% and 30%. The effect of masonry residue addition and its heat treatment in the mechanical properties of mortars is evaluated through compressive and flexural strength tests after 7, 14 and 28 curing days. Results show that increasing the amount of masonry residue used increases the losses in compressive strength and flexural strength. However, the use of up to a 20% of masonry residue, when a heat treatment is applied, allows obtaining mortars with similar compressive strength to the control mortar. Masonry residues mortars without a heat treatment show losses in compressive strengths between 15% and 27% with respect to masonry residues with heat treatment, which demonstrates the effectiveness of the heat treatment. From this analysis it can be conclude that it is possible to use up to 20% of masonry residue with heat treatment as cement replacement without significant losses in mortars mechanical properties, reducing considerably the environmental impact of the final material. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cement%20replacement" title="cement replacement">cement replacement</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20impact" title=" environmental impact"> environmental impact</a>, <a href="https://publications.waset.org/abstracts/search?q=masonry%20residue" title=" masonry residue"> masonry residue</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties%20of%20recycled%20mortars" title=" mechanical properties of recycled mortars"> mechanical properties of recycled mortars</a> </p> <a href="https://publications.waset.org/abstracts/67858/mechanical-properties-analysis-of-masonry-residue-mortar-as-cement-replacement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67858.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">392</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2699</span> Advancing Environmental Remediation Through the Production of Functional Porous Materials from Phosphorite Residue Tailings</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Mohammed%20Yimer">Ali Mohammed Yimer</a>, <a href="https://publications.waset.org/abstracts/search?q=Ayalew%20Assen"> Ayalew Assen</a>, <a href="https://publications.waset.org/abstracts/search?q=Youssef%20Belmabkhout"> Youssef Belmabkhout</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Environmental remediation is a pressing global concern, necessitating innovative strategies to address the challenges posed by industrial waste and pollution. This study aims to advance environmental remediation by developing cutting-edge functional porous materials from phosphorite residue tailings. Phosphorite mining activities generate vast amounts of waste, which pose significant environmental risks due to their contaminants. The proposed approach involved transforming these phosphorite residue tailings into valuable porous materials through a series of physico-chemical processes including milling, acid-base leaching, designing or templating as well as formation processes. The key components of the tailings were extracted and processed to produce porous arrays with high surface area and porosity. These materials were engineered to possess specific properties suitable for environmental remediation applications, such as enhanced adsorption capacity and selectivity for target contaminants. The synthesized porous materials were thoroughly characterized using advanced analytical techniques (XRD, SEM-EDX, N2 sorption, TGA, FTIR) to assess their structural, morphological, and chemical properties. The performance of the materials in removing various pollutants, including heavy metals and organic compounds, were evaluated through batch adsorption experiments. Additionally, the potential for material regeneration and reusability was investigated to enhance the sustainability of the proposed remediation approach. The outdoors of this research holds significant promise for addressing the environmental challenges associated with phosphorite residue tailings. By valorizing these waste materials into porous materials with exceptional remediation capabilities, this study contributes to the development of sustainable and cost-effective solutions for environmental cleanup. Furthermore, the utilization of phosphorite residue tailings in this manner offers a potential avenue for the remediation of other contaminated sites, thereby fostering a circular economy approach to waste management. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=functional%20porous%20materials" title="functional porous materials">functional porous materials</a>, <a href="https://publications.waset.org/abstracts/search?q=phosphorite%20residue%20tailings" title=" phosphorite residue tailings"> phosphorite residue tailings</a>, <a href="https://publications.waset.org/abstracts/search?q=adsorption" title=" adsorption"> adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20remediation" title=" environmental remediation"> environmental remediation</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20solutions" title=" sustainable solutions"> sustainable solutions</a> </p> <a href="https://publications.waset.org/abstracts/181998/advancing-environmental-remediation-through-the-production-of-functional-porous-materials-from-phosphorite-residue-tailings" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/181998.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">59</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2698</span> Impact of Organic Farming on Soil Fertility and Microbial Activity </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Menuka%20Maharjan">Menuka Maharjan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the name of food security, agriculture intensification through conventional farming is being implemented in Nepal. Government focus on increasing agriculture production completely ignores soil as well human health. This leads to create serious soil degradation, i.e., reduction of soil fertility and microbial activity and health hazard in the country. On this note, organic farming is sustainable agriculture approach which can address challenge of sustaining food security while protecting the environment. This creates a win-win situation both for people and the environment. However, people have limited knowledge on significance of organic farming for environment conservation and food security especially developing countries like Nepal. Thus, the objective of the study was to assess the impacts of organic farming on soil fertility and microbial activity compared to conventional farming and forest in Chitwan, Nepal. Total soil organic carbon (C) was highest in organic farming (24 mg C g⁻¹ soil) followed by conventional farming (15 mg C g⁻¹ soil) and forest (9 mg C g⁻¹ soil) in the topsoil layer (0-10 cm depth). A similar trend was found for total nitrogen (N) content in all three land uses with organic farming soil possessing the highest total N content in both 0-10 cm and 10-20 cm depth. Microbial biomass C and N were also highest under organic farming, especially in the topsoil layer (350 and 46 mg g⁻¹ soil, respectively). Similarly, microbial biomass phosphorus (P) was higher (3.6 and 1.0 mg P kg⁻¹ at 0-10 and 10-20 cm depth, respectively) in organic farming compared to conventional farming and forest at both depths. However, conventional farming and forest soils had similar microbial biomass (C, N, and P) content. After conversion of forest, the P stock significantly increased by 373% and 170% in soil under organic farming at 0-10 and 10-20 cm depth, respectively. In conventional farming, the P stock increased by 64% and 36% at 0-10 cm and 10-20 cm depth, respectively, compared to forest. Overall, organic farming practices, i.e., crop rotation, residue input and farmyard manure application, significantly alters soil fertility and microbial activity. Organic farming system is emerging as a sustainable land use system which can address the issues of food security and environment conservation by increasing sustainable agriculture production and carbon sequestration, respectively, supporting to achieve goals of sustainable development. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=organic%20farming" title="organic farming">organic farming</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20fertility" title=" soil fertility"> soil fertility</a>, <a href="https://publications.waset.org/abstracts/search?q=micobial%20biomas" title=" micobial biomas"> micobial biomas</a>, <a href="https://publications.waset.org/abstracts/search?q=food%20security" title=" food security"> food security</a> </p> <a href="https://publications.waset.org/abstracts/124928/impact-of-organic-farming-on-soil-fertility-and-microbial-activity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/124928.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">176</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2697</span> Pesticide Residue Determination on Cumin Plant (Nigella orientalis L.) with LC-MS/MS and GC-MS</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nilda%20Ersoy">Nilda Ersoy</a>, <a href="https://publications.waset.org/abstracts/search?q=Sevin%C3%A7%20%C5%9Eener"> Sevinç Şener</a>, <a href="https://publications.waset.org/abstracts/search?q=Ay%C5%9Fe%20Yal%C3%A7%C4%B1n%20Elidemir"> Ayşe Yalçın Elidemir</a>, <a href="https://publications.waset.org/abstracts/search?q=Ebru%20Evcil"> Ebru Evcil</a>, <a href="https://publications.waset.org/abstracts/search?q=Erg%C3%BCn%20D%C3%B6%C4%9Fen"> Ergün Döğen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, pesticide residues were investigated in black cumin (Nigella orientalis L.) seeds grown in Turkey. GC-MS and LC-MS/MS analytical instruments are used in high precision when determining residue limits. A total of 100 pesticide active ingredients in LC-MS/MS devices have been performed in Nigella orientalis L. seeds samples. Also for the same aim, 103 pesticide active ingredients were analyzed in GC-MS. This study was conducted in 2012 and 2013. Sample residues were not found in detectable levels for two years. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pesticide" title="pesticide">pesticide</a>, <a href="https://publications.waset.org/abstracts/search?q=residue" title=" residue"> residue</a>, <a href="https://publications.waset.org/abstracts/search?q=black%20cumin" title=" black cumin"> black cumin</a>, <a href="https://publications.waset.org/abstracts/search?q=Nigella%20orientalis%20L." title=" Nigella orientalis L."> Nigella orientalis L.</a> </p> <a href="https://publications.waset.org/abstracts/14955/pesticide-residue-determination-on-cumin-plant-nigella-orientalis-l-with-lc-msms-and-gc-ms" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14955.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">392</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2696</span> Conservation Agriculture and Precision Water Management in Alkaline Soils under Rice-Wheat Cropping System: Effect on Wheat Productivity and Irrigation Water Use-a Case Study from India</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20K.%20Kakraliya">S. K. Kakraliya</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20S.%20Jat"> H. S. Jat</a>, <a href="https://publications.waset.org/abstracts/search?q=Manish%20Kakraliya"> Manish Kakraliya</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20C.%20Sharma"> P. C. Sharma</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20L.%20Jat"> M. L. Jat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The biggest challenge in agriculture is to produce more food for the continually increasing world population with in the limited land and water resources. Serious water deficits and reducing natural resources are some of the major threats to the agricultural sustainability in many regions of South Asia. Food and water security may be gained by bringing improvement in the crop water productivity and the amount produced per unit of water consumed. Improvement in the crop water productivity may be achieved by pursuing alternative modern agronomics approaches, which are more friendly and efficient in utilizing natural resources. Therefore, a research trial on conservation agriculture (CA) and precision water management (PWM) was conducted in 2018-19 at Karnal, India to evaluate the effect on crop productivity and irrigation in sodic soils under rice-wheat (RW) systems of Indo-Gangetic Plains (IGP). Eight scenarios were compared varied in the tillage, crop establishment, residue and irrigarion management i.e., {First four scenarios irrigated with flood irrigation method;Sc1-Conventional tillage (CT) without residue, Sc2-CT with residue, Sc3- Zero tillage (ZT) without residue, Sc4-ZT with residue}, and {last four scenarios irrigated with sub-surface drip irrigation method; Sc5-ZT without residue, Sc6- ZT with residue, Sc7-ZT inclusion legume without residue and Sc8- ZT inclusion legume with residue}. Results revealed that CA-flood irrigation (S3, Sc4) and CA-PWM system (Sc5, Sc6, Sc7 and Sc8) recorded about ~5% and ~15% higher wheat yield, respectively compared to Sc1. Similar, CA-PWM saved ~40% irrigation water compared to Sc1. Rice yield was not different under different scenarios in the first year (kharif 2019) but almost half irrigation water saved under CA-PWM system. Therefore, results of our study on modern agronomic practices including CA and precision water management (subsurface drip irrigation) for RW rotation would be addressed the existing and future challenges in the RW system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sub-surface%20drip" title="Sub-surface drip">Sub-surface drip</a>, <a href="https://publications.waset.org/abstracts/search?q=Crop%20residue" title=" Crop residue"> Crop residue</a>, <a href="https://publications.waset.org/abstracts/search?q=Crop%20yield" title=" Crop yield "> Crop yield </a>, <a href="https://publications.waset.org/abstracts/search?q=Zero%20tillage" title=" Zero tillage"> Zero tillage</a> </p> <a href="https://publications.waset.org/abstracts/123897/conservation-agriculture-and-precision-water-management-in-alkaline-soils-under-rice-wheat-cropping-system-effect-on-wheat-productivity-and-irrigation-water-use-a-case-study-from-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/123897.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">120</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2695</span> Pesticide Residue Determination on Cumin Plant (Nigella orientalis L.) Grown through Agricultural Practices with LC-MS/MS and GC-MS</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nilda%20Ersoy">Nilda Ersoy</a>, <a href="https://publications.waset.org/abstracts/search?q=Sevin%C3%A7%20%C5%9Eener"> Sevinç Şener</a>, <a href="https://publications.waset.org/abstracts/search?q=Ay%C5%9Fe%20Yal%C3%A7%C4%B1n%20Elidemir"> Ayşe Yalçın Elidemir</a>, <a href="https://publications.waset.org/abstracts/search?q=Ebru%20Evcil"> Ebru Evcil</a>, <a href="https://publications.waset.org/abstracts/search?q=Erg%C3%BCn%20D%C3%B6%C4%9Fen"> Ergün Döğen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, pesticide residues were investigated in black cumin (Nigella orientalis L.) seeds which grown in Turkey. GC-MS and LC-MS/MS analytical instruments are used in high precision, when determining residue limits. A total of 100 pesticide active ingredients in LC-MS/MS devices have been performed in Nigella orientalis L. seeds samples. Moreover, for same aim, 103 pesticide active ingredients were analyzed in GC-MS. This study conducted in 2012 and 2013. Samples residues were not found in detectable levels for two years. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pesticide" title="pesticide">pesticide</a>, <a href="https://publications.waset.org/abstracts/search?q=residue" title=" residue"> residue</a>, <a href="https://publications.waset.org/abstracts/search?q=black%20cumin" title=" black cumin"> black cumin</a>, <a href="https://publications.waset.org/abstracts/search?q=Nigella%20orientalis%20L." title=" Nigella orientalis L."> Nigella orientalis L.</a> </p> <a href="https://publications.waset.org/abstracts/14753/pesticide-residue-determination-on-cumin-plant-nigella-orientalis-l-grown-through-agricultural-practices-with-lc-msms-and-gc-ms" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14753.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">336</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2694</span> Energy Budgeting, Carbon and Water Footprints Under Conventional and Conservation Tillage Practices of Rice-Wheat Double Cropping System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmad%20Latif%20Virk">Ahmad Latif Virk</a>, <a href="https://publications.waset.org/abstracts/search?q=Naeem%20Ahmad"> Naeem Ahmad</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Ishaq%20Asif%20Rehmani"> Muhammad Ishaq Asif Rehmani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Amid the present environmental crises, developing environment-resilient and cost-effective conservation agriculture strategies to feed the world's ever-growing population is pertinent. Therefore, a field study was conducted to test the hypothesis that residue retention under no-till (NTR) would enhance energy productivity (EP) and energy use efficiency (EUE) while offsetting the carbon footprints (CF), water footprints (WF) and greenhouse gases emissions (GHGs) in rice (Oryza sativa L.)-wheat (Triticum aestivum L.) double cropping system. Two tillage systems viz., conventional tillage (CT) and conservation tillage (no-till; NT), with or without residue retention, were combined into four treatments as CT0 (puddled rice, conventional wheat - residue); CTR (puddled rice, conventional wheat + residue); NT0 (direct rice seeding, zero-tilled wheat - residue); NTR (direct rice seeding, zero-tilled wheat + residue) were evaluated. Overall, results showed that the NT system had 34.2% lower energy consumption, 1.2 times more EP than CT system. Moreover, NTR had 19.8% higher EUE than CT0. The overall system grain yield ranged from 7.8 to 9.3 Mg ha−1 under NT0 and CTR, respectively. The NTR had 56.6% and 17.9% lesser CF and WF, respectively, than CT0. The net GHGs emissions (CO2-eq kg ha−1) under CT0 were the highest, while NTR had the lowest emissions. The NTR enhanced carbon sequestration in soil that can offset half of the system's CO2 emissions. The findings of this study might help develop a suitable strategy for resource/energy conservation and higher productivity while offsetting GHGs emissions in the Indo-Gangetic Plains. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=residue" title="residue">residue</a>, <a href="https://publications.waset.org/abstracts/search?q=yield" title=" yield"> yield</a>, <a href="https://publications.waset.org/abstracts/search?q=indirect%20emissions" title=" indirect emissions"> indirect emissions</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20use%20efficiency" title=" energy use efficiency"> energy use efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20sequestration" title=" carbon sequestration"> carbon sequestration</a> </p> <a href="https://publications.waset.org/abstracts/164551/energy-budgeting-carbon-and-water-footprints-under-conventional-and-conservation-tillage-practices-of-rice-wheat-double-cropping-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/164551.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">92</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2693</span> Utilization of Bauxite Residue in Construction Materials: An Experimental Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ryan%20Masoodi">Ryan Masoodi</a>, <a href="https://publications.waset.org/abstracts/search?q=Hossein%20Rostami"> Hossein Rostami</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aluminum has been credited for the massive advancement of many industrial products, from aerospace and automotive to electronics and even household appliances. These developments have come with a cost, which is a toxic by-product. The rise of aluminum production has been accompanied by the rise of a waste material called Bauxite Residue or Red Mud. This toxic material has been proved to be harmful to the environment, yet, there is no proper way to dispose or recycle it. Herewith, a new experimental method to utilize this waste in the building material is proposed. A method to mix red mud, fly ash, and some other ingredients is explored to create a new construction material that can satisfy the minimum required strength for bricks. It concludes that it is possible to produce bricks with enough strength that is suitable for constriction in environments with low to moderate weather conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bauxite%20residue" title="bauxite residue">bauxite residue</a>, <a href="https://publications.waset.org/abstracts/search?q=brick" title=" brick"> brick</a>, <a href="https://publications.waset.org/abstracts/search?q=red%20mud" title=" red mud"> red mud</a>, <a href="https://publications.waset.org/abstracts/search?q=recycling" title=" recycling"> recycling</a> </p> <a href="https://publications.waset.org/abstracts/109004/utilization-of-bauxite-residue-in-construction-materials-an-experimental-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/109004.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">167</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2692</span> Factors Influencing the Resistance of the Purchase of Organic Food and Market Education Process in Indonesia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fety%20Nurlia%20Muzayanah">Fety Nurlia Muzayanah</a>, <a href="https://publications.waset.org/abstracts/search?q=Arif%20Imam%20Suroso"> Arif Imam Suroso</a>, <a href="https://publications.waset.org/abstracts/search?q=Mukhamad%20Najib"> Mukhamad Najib</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The market share of organic food in Indonesia just reaches 0.5-2 percents from the entire of agricultural products. The aim of this research is to analyze the relation of gender, work, age and final education toward the buying interest of organic food, to identify the factors influencing the resistance of the purchase of organic food, and to identify the market education process. The analysis result of Structural Equation Modeling (SEM) shows the factors causing the resistance of the purchase of organic food are the negative attitude toward organic food, the lack of affordable in range for organic food product and the lack of awareness toward organic food, while the subjective norms have no significant effect toward the buying interest. The market education process which can be done is the education about the use of the health of organic food, the organic certification and the economic value. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=market%20education" title="market education">market education</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20food" title=" organic food"> organic food</a>, <a href="https://publications.waset.org/abstracts/search?q=consumer%20behavior" title=" consumer behavior"> consumer behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20equation%20modeling" title=" structural equation modeling"> structural equation modeling</a> </p> <a href="https://publications.waset.org/abstracts/21708/factors-influencing-the-resistance-of-the-purchase-of-organic-food-and-market-education-process-in-indonesia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21708.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">613</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2691</span> Carbon Dioxide (CO₂) and Methane (CH₄) Fluxes from Irrigated Wheat in a Subtropical Floodplain Soil Increased by Reduced Tillage, Residue Retention, and Nitrogen Application Rate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20Begum">R. Begum</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20M.%20R.%20Jahangir"> M. M. R. Jahangir</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Jahiruddin"> M. Jahiruddin</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20R.%20Islam"> M. R. Islam</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20M.%20Rahman"> M. M. Rahman</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20B.%20Hossain"> M. B. Hossain</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Hossain"> P. Hossain</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Quantifying carbon (C) sequestration in soils is necessary to help better understand the effect of agricultural practices on the C cycle. The estimated contribution of agricultural carbon dioxide (CO₂) and methane (CH₄) to global warming potential (GWP) has a wide range. The underlying causes of this huge uncertainty are the difficulties to predict the regional CO₂ and CH₄ loss due to the lack of experimental evidence on CO₂ and CH₄ emissions and associated drivers. The CH₄ and CO₂ emissions were measured in irrigated wheat in subtropical floodplain soils which have been under two soil disturbance levels (strip vs. conventional tillage; ST vs. CT being both with 30% residue retention) and three N fertilizer rates (60, 100, and 140% of the recommended N fertilizer dose, RD) in annual wheat (Triticum aestivum)-mungbean (Vigna radiata)-rice (Oryza sativa L) for seven consecutive years. The highest CH₄ and CO₂ emission peak was observed on day 3 after urea application in both tillages except CO₂ flux in CT. Nitrogen fertilizer application rate significantly influenced mean and cumulative CH₄ and CO₂ fluxes. The CH₄ and CO₂ fluxes decreased in an optimum dose of N fertilizer except for ST for CH₄. The CO₂ emission significantly showed higher emission at minimum (60% of RD) fertilizer application at both tillages. Soil microbial biomass carbon (MBC), organic carbon (SOC), Particulate organic carbon (POC), permanganate oxidisable carbon (POXC), basal respiration (BR) were significantly higher in ST which were negative and significantly correlated with CO₂. However, POC and POXC were positively and significantly correlated with CH₄ emission. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon%20dioxide%20emissions" title="carbon dioxide emissions">carbon dioxide emissions</a>, <a href="https://publications.waset.org/abstracts/search?q=methane%20emission" title=" methane emission"> methane emission</a>, <a href="https://publications.waset.org/abstracts/search?q=nitrogen%20rate" title=" nitrogen rate"> nitrogen rate</a>, <a href="https://publications.waset.org/abstracts/search?q=tillage" title=" tillage"> tillage</a> </p> <a href="https://publications.waset.org/abstracts/168130/carbon-dioxide-co2-and-methane-ch4-fluxes-from-irrigated-wheat-in-a-subtropical-floodplain-soil-increased-by-reduced-tillage-residue-retention-and-nitrogen-application-rate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168130.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">116</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2690</span> Enzyme Linked Immuno Sorbent Assay Based Detection of Aflatoxin M1 and Ochratoxin A in Raw Milk in Punjab, India</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pallavi%20Moudgil">Pallavi Moudgil</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20S.%20Bedi"> J. S. Bedi</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20S.%20Aulakh"> R. S. Aulakh</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20P.%20S.%20Gill"> J. P. S. Gill</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Mycotoxins in milk are of major public health concern. The present study was envisaged with an aim to monitor the occurrence of aflatoxin M1 and ochratoxin A in raw milk samples collected from individual animals from dairy farms located in Punjab (India). A total of 168 raw milk samples were collected and analysed using competitive ELISA kits. Out of these, 9 (5.4%) samples were found positive for aflatoxin M1 with the mean concentration of 0.006-0.13 ng/ml and 2 (1.2%) samples exceeded the established maximum residue limit of 0.05 ng/ml established by the European Union. For ochratoxin A, 2 (0.1%) samples were found positive with the mean concentration of 0.61-0.83 ng/ml with both the samples below the established maximum residue limit of 2 ng/ml. The results showed that the milk of dairy cattle is safe with respect to ochratoxin A contamination but occurrence of aflatoxin M1 above maximum residue limit suggested that feed contaminated with mycotoxins might have been offered to dairy cattle that can pose serious health risks to consumers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aflatoxin%20M1" title="Aflatoxin M1">Aflatoxin M1</a>, <a href="https://publications.waset.org/abstracts/search?q=health%20risks" title=" health risks"> health risks</a>, <a href="https://publications.waset.org/abstracts/search?q=maximum%20residue%20limit" title=" maximum residue limit"> maximum residue limit</a>, <a href="https://publications.waset.org/abstracts/search?q=milk" title=" milk"> milk</a>, <a href="https://publications.waset.org/abstracts/search?q=Ochratoxin%20A" title=" Ochratoxin A"> Ochratoxin A</a> </p> <a href="https://publications.waset.org/abstracts/65718/enzyme-linked-immuno-sorbent-assay-based-detection-of-aflatoxin-m1-and-ochratoxin-a-in-raw-milk-in-punjab-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65718.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">482</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2689</span> Consumer Attitude and Purchase Intention towards Organic Food: Insights from Pakistan</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muneshia%20Maheshwar">Muneshia Maheshwar</a>, <a href="https://publications.waset.org/abstracts/search?q=Kanwal%20Gul"> Kanwal Gul</a>, <a href="https://publications.waset.org/abstracts/search?q=Shakira%20%20Fareed"> Shakira Fareed</a>, <a href="https://publications.waset.org/abstracts/search?q=Ume-Amama%20Areeb%20Gul"> Ume-Amama Areeb Gul</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Organic food is commonly known for its healthier content without the use of pesticides, herbicides, inorganic fertilizers, antibiotics and growth hormones. The aim of this research is to examine the effect of health consciousness, environmental concern and organic food knowledge on both the intention to buy organic foods and the attitude towards organic foods and the effect of attitude towards organic foods on the intention to buy organic foods in Pakistan. Primary data was used which was collected through adopted questionnaire from previous research. Non- probability convenience sampling was used to select sample size of 200 consumers based on Karachi. The data was analyzed through Descriptive statistics and Multi regression method. The findings of the study showed that the attitude and the intention to buy organic food were affected by health consciousness, environmental concern, and organic food knowledge. The results also revealed that attitude also affects the intention to buy organic food. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=health%20consciousness" title="health consciousness">health consciousness</a>, <a href="https://publications.waset.org/abstracts/search?q=attitude" title=" attitude"> attitude</a>, <a href="https://publications.waset.org/abstracts/search?q=intention%20to%20purchase" title=" intention to purchase"> intention to purchase</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20concern" title=" environmental concern"> environmental concern</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20food%20knowledge" title=" organic food knowledge"> organic food knowledge</a> </p> <a href="https://publications.waset.org/abstracts/78597/consumer-attitude-and-purchase-intention-towards-organic-food-insights-from-pakistan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78597.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">248</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2688</span> Plasma-Assisted Decomposition of Cyclohexane in a Dielectric Barrier Discharge Reactor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Usman%20Dahiru">Usman Dahiru</a>, <a href="https://publications.waset.org/abstracts/search?q=Faisal%20Saleem"> Faisal Saleem</a>, <a href="https://publications.waset.org/abstracts/search?q=Kui%20Zhang"> Kui Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Adam%20Harvey"> Adam Harvey</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Volatile organic compounds (VOCs) are atmospheric contaminants predominantly derived from petroleum spills, solvent usage, agricultural processes, automobile, and chemical processing industries, which can be detrimental to the environment and human health. Environmental problems such as the formation of photochemical smog, organic aerosols, and global warming are associated with VOC emissions. Research showed a clear relationship between VOC emissions and cancer. In recent years, stricter emission regulations, especially in industrialized countries, have been put in place around the world to restrict VOC emissions. Non-thermal plasmas (NTPs) are a promising technology for reducing VOC emissions by converting them into less toxic/environmentally friendly species. The dielectric barrier discharge (DBD) plasma is of interest due to its flexibility, moderate capital cost, and ease of operation under ambient conditions. In this study, a dielectric barrier discharge (DBD) reactor has been developed for the decomposition of cyclohexane (as a VOC model compound) using nitrogen, dry, and humidified air carrier gases. The effect of specific input energy (1.2-3.0 kJ/L), residence time (1.2-2.3 s) and concentration (220-520 ppm) were investigated. It was demonstrated that the removal efficiency of cyclohexane increased with increasing plasma power and residence time. The removal of cyclohexane decreased with increasing cyclohexane inlet concentration at fixed plasma power and residence time. The decomposition products included H₂, CO₂, H₂O, lower hydrocarbons (C₁-C₅) and solid residue. The highest removal efficiency (98.2%) was observed at specific input energy of 3.0 kJ/L and a residence time of 2.3 s in humidified air plasma. The effect of humidity was investigated to determine whether it could reduce the formation of solid residue in the DBD reactor. It was observed that the solid residue completely disappeared in humidified air plasma. Furthermore, the presence of OH radicals due to humidification not only increased the removal efficiency of cyclohexane but also improves product selectivity. This work demonstrates that cyclohexane can be converted to smaller molecules by a dielectric barrier discharge (DBD) non-thermal plasma reactor by varying plasma power (SIE), residence time, reactor configuration, and carrier gas. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cyclohexane" title="cyclohexane">cyclohexane</a>, <a href="https://publications.waset.org/abstracts/search?q=dielectric%20barrier%20discharge%20reactor" title=" dielectric barrier discharge reactor"> dielectric barrier discharge reactor</a>, <a href="https://publications.waset.org/abstracts/search?q=non-thermal%20plasma" title=" non-thermal plasma"> non-thermal plasma</a>, <a href="https://publications.waset.org/abstracts/search?q=removal%20efficiency" title=" removal efficiency "> removal efficiency </a> </p> <a href="https://publications.waset.org/abstracts/115494/plasma-assisted-decomposition-of-cyclohexane-in-a-dielectric-barrier-discharge-reactor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/115494.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">136</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2687</span> Ficus carica as Adsorbent for Removal of Phenol from Aqueous Solutions: Modeling and Optimization</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tizi%20Hayet">Tizi Hayet</a>, <a href="https://publications.waset.org/abstracts/search?q=Berrama%20Tarek"> Berrama Tarek</a>, <a href="https://publications.waset.org/abstracts/search?q=Bounif%20Nadia"> Bounif Nadia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Phenol and its derivatives are organic compounds utilized in the chemical industry. They are introduced into the environment by accidental spills and the illegal release of industrial and municipal wastewater. Phenols are organic intermediaries that are considered potential pollutants. Adsorption is one of the purification and separation techniques used in this area. Algeria annually produces 131000 tons of fig; therefore, a large amount of fig leaves is generated, and the conversion of this waste into adsorbent allows the valorization of agricultural residue. The main purpose of this present work is to describe an application of a statistical method for modeling and to optimize the conditions of the phenol adsorption from agricultural by-products, locally available (fig leaves). The best experimental performance of phenol elimination on the adsorbent was obtained with: Adsorbent concentration (X₂) = 200 mg L⁻¹; Initial concentration (X₃) = 150 mg L⁻¹; Speed agitation (X₁) = 300 rpm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=low-cost%20adsorbents" title="low-cost adsorbents">low-cost adsorbents</a>, <a href="https://publications.waset.org/abstracts/search?q=adsorption" title=" adsorption"> adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=fig%20leaves" title=" fig leaves"> fig leaves</a>, <a href="https://publications.waset.org/abstracts/search?q=phenol" title=" phenol"> phenol</a>, <a href="https://publications.waset.org/abstracts/search?q=factorial%20design" title=" factorial design"> factorial design</a> </p> <a href="https://publications.waset.org/abstracts/156940/ficus-carica-as-adsorbent-for-removal-of-phenol-from-aqueous-solutions-modeling-and-optimization" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/156940.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">113</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2686</span> Ficus Carica as Adsorbent for Removal of Phenol from Aqueous Solutions: Modelling and Optimization</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tizi%20Hayet">Tizi Hayet</a>, <a href="https://publications.waset.org/abstracts/search?q=Berrama%20Tarek"> Berrama Tarek</a>, <a href="https://publications.waset.org/abstracts/search?q=Bounif%20Nadia"> Bounif Nadia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Phenol and its derivatives are organic compounds utilized in the chemical industry. They are introduced into the environment by accidental spills and illegal release of industrial and municipal wastewater. Phenols are organic intermediaries that considered as potential pollutants. Adsorption is one of the purification and separation techniques used in this area. Algeria produces annually 131000 tones of fig; therefore, a large amount of fig leaves is generated, and the conversion of this waste into adsorbent allows the valorization of agricultural residue. The main purpose of this present work is to describe an application of the statistical method for modeling and optimization of the conditions of the phenol (Ph) adsorption from agricultural by-product locally available (fig leaves). The best experimental performance of Ph elimination on the adsorbent was obtained with: Adsorbent concentration (X2) = 0.2 g L-1; Initial concentration (X3) = 150 mg L-1; Speed agitation (X1) = 300 rpm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=low-cost%20adsorbents" title="low-cost adsorbents">low-cost adsorbents</a>, <a href="https://publications.waset.org/abstracts/search?q=fig%20leaves" title=" fig leaves"> fig leaves</a>, <a href="https://publications.waset.org/abstracts/search?q=full%20factorial%20design" title=" full factorial design"> full factorial design</a>, <a href="https://publications.waset.org/abstracts/search?q=phenol" title=" phenol"> phenol</a>, <a href="https://publications.waset.org/abstracts/search?q=biosorption" title=" biosorption"> biosorption</a> </p> <a href="https://publications.waset.org/abstracts/157011/ficus-carica-as-adsorbent-for-removal-of-phenol-from-aqueous-solutions-modelling-and-optimization" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/157011.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">97</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2685</span> Computational Investigation of V599 Mutations of BRAF Protein and Its Control over the Therapeutic Outcome under the Malignant Condition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mayank">Mayank</a>, <a href="https://publications.waset.org/abstracts/search?q=Navneet%20Kaur"> Navneet Kaur</a>, <a href="https://publications.waset.org/abstracts/search?q=Narinder%20Singh"> Narinder Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The V599 mutations in the BRAF protein are extremely oncogenic, responsible for countless of malignant conditions. Along with wild type, V599E, V599D, and V599R are the important mutated variants of the BRAF proteins. The BRAF inhibitory anticancer agents are continuously developing, and sorafenib is a BRAF inhibitor that is under clinical use. The crystal structure of sorafenib bounded to wild type, and V599 is known, showing a similar interaction pattern in both the case. The mutated 599th residue, in both the case, is also found not interacting directly with the co-crystallized sorafenib molecule. However, the IC50 value of sorafenib was found extremely different in both the case, i.e., 22 nmol/L for wild and 38 nmol/L for V599E protein. Molecular docking study and MMGBSA binding energy results also revealed a significant difference in the binding pattern of sorafenib in both the case. Therefore, to explore the role of distinctively situated 599th residue, we have further conducted comprehensive computational studies. The molecular dynamics simulation, residue interaction network (RIN) analysis, and residue correlation study results revealed the importance of the 599th residue on the therapeutic outcome and overall dynamic of the BRAF protein. Therefore, although the position of 599th residue is very much distinctive from the ligand-binding cavity of BRAF, still it has exceptional control over the overall functional outcome of the protein. The insight obtained here may seem extremely important and guide us while designing ideal BRAF inhibitory anticancer molecules. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=BRAF" title="BRAF">BRAF</a>, <a href="https://publications.waset.org/abstracts/search?q=oncogenic" title=" oncogenic"> oncogenic</a>, <a href="https://publications.waset.org/abstracts/search?q=sorafenib" title=" sorafenib"> sorafenib</a>, <a href="https://publications.waset.org/abstracts/search?q=computational%20studies" title=" computational studies"> computational studies</a> </p> <a href="https://publications.waset.org/abstracts/117283/computational-investigation-of-v599-mutations-of-braf-protein-and-its-control-over-the-therapeutic-outcome-under-the-malignant-condition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/117283.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">115</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2684</span> Comparative Assessment of Organo-Chlorine Pesticides Residue in Fruits and Fruit Juices</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saidu%20Garba%20Okereafor%20Stella">Saidu Garba Okereafor Stella</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The presence of 15 organochlorine pesticides residue was assessed from 29 different fruits and fruit juice samples from selected farms in Kaduna and Niger States using the quick easy cheap effective rugged and safe (QuEChERS), followed by gas chromatography-tandem mass spectrometry (GC-MS/MS). The results showed the presence of varying concentrations of ten (10) organochlorine pesticide residues in all the samples with Endrin ketone showing the highest concentration in 3 samples from Kaduna (guava juice 1 and 2 0.099 to 0.145 mg/kg) and Niger States (orange juice J19 0.102 mg/kg). The heptachlor was detected at high concentration in 11 samples, 7 samples from Kaduna State (mango juice 0.011 mg/kg, Washington orange 0.014 mg/kg, Valencia orange fruit 0.020 mg/kg, orange juice 0.011, white guava fruit 0.024 mg/kg, guava juice 0.023 mg/kg, guava juice 2 0.024 mg/kg) and 4 samples from (mango juice 1 0.015 mg/kg, pineapple juice 1 0.0120 mg/kg pineapple juice 2 011 mg/kg and mix juice 2 0.012 mg/kg) from Niger State. Dieldrine and endosulfansulfate were detected at high levels in one sample each from Niger (guava fruit 0.019 mg/kg and mixed juice1 0.011mg/kg), respectively. However, all were above the maximum residue limits (MRLs) set by WHO/FAO which suggest that people consuming these type of contaminated fruits and fruits juices may contact diseases associated with those organochlorine pesticides residue. Minute concentrations of other organochlorines (α- BHC, δ- BHC, β- BHC, Lindane, and p’p DDT) ranged from 0.003 to 0.015 were recorded below the MRLs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fruits%20and%20fruits%20juices" title="fruits and fruits juices">fruits and fruits juices</a>, <a href="https://publications.waset.org/abstracts/search?q=organochlorine%20pesticide%20residue" title=" organochlorine pesticide residue"> organochlorine pesticide residue</a>, <a href="https://publications.waset.org/abstracts/search?q=comparative%20studies" title=" comparative studies"> comparative studies</a>, <a href="https://publications.waset.org/abstracts/search?q=gc-ms%20spectrophometer" title=" gc-ms spectrophometer"> gc-ms spectrophometer</a> </p> <a href="https://publications.waset.org/abstracts/136919/comparative-assessment-of-organo-chlorine-pesticides-residue-in-fruits-and-fruit-juices" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/136919.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">147</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2683</span> Study of Pottery And Glazed Canopic Vessels</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdelrahman%20Mohamed">Abdelrahman Mohamed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The ancient Egyptians used canopic vessels in embalming operations in order to preserve the guts of the mummified corpse. Canopic vessels were made of many materials, including pottery and glazed pottery. In this research, we study a pottery canopic vessel and a glazed pottery vessel. An analysis to find out the compounds and elements of the materials from which the container is made and the colors, and also to make some analysis for the organic materials present inside it, such as the Fourier Transform Infrared Spectroscopy analysis and the Gas chromatograph mass spectrometers analysis of the organic residue. Through the study and analysis, it was proved that some of the materials present in the pot were coniferous oil and animal fats. In the other pot, the analysis showed the presence of some plant resins (mastic) inside rolls of linen. Restoration operations were carried out, such as mechanical cleaning, strengthening, and completing the reinforcement of the pots. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=canopic%20jar" title="canopic jar">canopic jar</a>, <a href="https://publications.waset.org/abstracts/search?q=embalming" title=" embalming"> embalming</a>, <a href="https://publications.waset.org/abstracts/search?q=FTIR" title=" FTIR"> FTIR</a>, <a href="https://publications.waset.org/abstracts/search?q=GCMS" title=" GCMS"> GCMS</a>, <a href="https://publications.waset.org/abstracts/search?q=linen." title=" linen."> linen.</a> </p> <a href="https://publications.waset.org/abstracts/164726/study-of-pottery-and-glazed-canopic-vessels" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/164726.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">84</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2682</span> Consumer Behavior and Knowledge on Organic Products in Thailand</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Warunpun%20Kongsom">Warunpun Kongsom</a>, <a href="https://publications.waset.org/abstracts/search?q=Chaiwat%20Kongsom"> Chaiwat Kongsom</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this study was to investigate the awareness, knowledge and consumer behavior towards organic products in Thailand. For this study, a purposive sampling technique was used to identify a sample group of 2,575 consumers over the age of 20 years who intended or made purchases from 1) green shops; 2) supermarkets with branches; and, 3) green markets. A questionnaire was used for data collection across the country. Descriptive statistics were used for data analysis. The results showed that more than 92% of consumers were aware of organic agriculture, but had less knowledge about it. More than 60% of consumers knew that organic agriculture production and processing did not allow the use of chemicals. And about 40% of consumers were confused between the food safety logo and the certified organic logo, and whether GMO was allowed in organic agriculture practice or not. In addition, most consumers perceived that organic agricultural products, good agricultural practice (GAP) products, agricultural chemicals free products, and hydroponic vegetable products had the same standard. In the view of organic consumers, the organic Thailand label was the most seen and reliable among various organic labels. Less than 3% of consumers thought that the International Federation of Organic Agriculture Movements (IFOAM) Global Organic Mark (GOM) was the most seen and reliable. For the behaviors of organic consumers, they purchased organic products mainly at the supermarket and green shop (55.4%), one to two times per month, and with a total expenditure of about 200 to 400 baht each time. The main reason for buying organic products was safety and free from agricultural chemicals. The considered factors in organic product selection were price (29.5%), convenience (22.4%), and a reliable certification system (21.3%). The demands for organic products were mainly rice, vegetables and fruits. Processed organic products were relatively small in quantity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=consumer%20behavior" title="consumer behavior">consumer behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=consumer%20knowledge" title=" consumer knowledge"> consumer knowledge</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20products" title=" organic products"> organic products</a>, <a href="https://publications.waset.org/abstracts/search?q=Thailand" title=" Thailand"> Thailand</a> </p> <a href="https://publications.waset.org/abstracts/47388/consumer-behavior-and-knowledge-on-organic-products-in-thailand" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47388.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">296</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=organic%20residue&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=organic%20residue&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=organic%20residue&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=organic%20residue&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=organic%20residue&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=organic%20residue&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=organic%20residue&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=organic%20residue&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=organic%20residue&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=organic%20residue&amp;page=90">90</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=organic%20residue&amp;page=91">91</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=organic%20residue&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10