CINXE.COM
Search results for: non-Fourier heat conduction
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: non-Fourier heat conduction</title> <meta name="description" content="Search results for: non-Fourier heat conduction"> <meta name="keywords" content="non-Fourier heat conduction"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="non-Fourier heat conduction" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="non-Fourier heat conduction"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 3182</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: non-Fourier heat conduction</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3182</span> Unsteady Temperature Distribution in a Finite Functionally Graded Cylinder</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Amiri%20Delouei">A. Amiri Delouei</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the current study, two-dimensional unsteady heat conduction in a functionally graded cylinder is studied analytically. The temperature distribution is in radial and longitudinal directions. Heat conduction coefficients are considered a power function of radius both in radial and longitudinal directions. The proposed solution can exactly satisfy the boundary conditions. Analytical unsteady temperature distribution for different parameters of functionally graded cylinder is investigated. The achieved exact solution is useful for thermal stress analysis of functionally graded cylinders. Regarding the analytical approach, this solution can be used to understand the concepts of heat conduction in functionally graded materials. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=functionally%20graded%20materials" title="functionally graded materials">functionally graded materials</a>, <a href="https://publications.waset.org/abstracts/search?q=unsteady%20heat%20conduction" title=" unsteady heat conduction"> unsteady heat conduction</a>, <a href="https://publications.waset.org/abstracts/search?q=cylinder" title=" cylinder"> cylinder</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature%20distribution" title=" temperature distribution"> temperature distribution</a> </p> <a href="https://publications.waset.org/abstracts/75750/unsteady-temperature-distribution-in-a-finite-functionally-graded-cylinder" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75750.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">300</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3181</span> Solving the Nonlinear Heat Conduction in a Spherical Coordinate with Electrical Simulation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20M.%20Gheitaghy">A. M. Gheitaghy</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Saffari"> H. Saffari</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Q.%20Zhang"> G. Q. Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Numerical approach based on the electrical simulation method is proposed to solve a nonlinear transient heat conduction problem with nonlinear boundary for a spherical body. This problem represents a strong nonlinearity in both the governing equation for temperature dependent thermal property and the boundary condition for combined convective and radiative cooling. By analysing the equivalent electrical model using the electrical circuit simulation program HSPICE, transient temperature and heat flux distributions at sphere can be obtained easily and fast. The solutions clearly illustrate the effect of the radiation-conduction parameter Nrc, the Biot number and the linear coefficient of temperature dependent conductivity and heat capacity. On comparing the results with corresponding numerical solutions, the accuracy and efficiency of this computational method are found to be good. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=convective%20and%20radiative%20boundary" title="convective and radiative boundary">convective and radiative boundary</a>, <a href="https://publications.waset.org/abstracts/search?q=electrical%20simulation%20method" title=" electrical simulation method"> electrical simulation method</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20heat%20conduction" title=" nonlinear heat conduction"> nonlinear heat conduction</a>, <a href="https://publications.waset.org/abstracts/search?q=spherical%20coordinate" title=" spherical coordinate"> spherical coordinate</a> </p> <a href="https://publications.waset.org/abstracts/44491/solving-the-nonlinear-heat-conduction-in-a-spherical-coordinate-with-electrical-simulation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44491.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">332</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3180</span> Study of Heat Transfer in the Absorber Plates of a Flat-Plate Solar Collector Using Dual-Phase-Lag Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yu-Ching%20Yang">Yu-Ching Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=Haw-Long%20Lee"> Haw-Long Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Win-Jin%20Chang"> Win-Jin Chang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present work numerically analyzes the transient heat transfer in the absorber plates of a flat-plate solar collector based on the dual-phase-lag (DPL) heat conduction model. An efficient numerical scheme involving the hybrid application of the Laplace transform and control volume methods is used to solve the linear hyperbolic heat conduction equation. This work also examines the effect of different medium parameters on the behavior of heat transfer. Results show that, while the heat-flux phase lag induces thermal waves in the medium, the temperature-gradient phase lag smoothens the thermal waves by promoting non-Fourier diffusion-like conduction into the medium. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=absorber%20plates" title="absorber plates">absorber plates</a>, <a href="https://publications.waset.org/abstracts/search?q=dual-phase-lag" title=" dual-phase-lag"> dual-phase-lag</a>, <a href="https://publications.waset.org/abstracts/search?q=non-Fourier" title=" non-Fourier"> non-Fourier</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20collector" title=" solar collector"> solar collector</a> </p> <a href="https://publications.waset.org/abstracts/46764/study-of-heat-transfer-in-the-absorber-plates-of-a-flat-plate-solar-collector-using-dual-phase-lag-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46764.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">390</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3179</span> Transient Heat Conduction in Nonuniform Hollow Cylinders with Time Dependent Boundary Condition at One Surface</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sen%20Yung%20Lee">Sen Yung Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Chih%20Cheng%20Huang"> Chih Cheng Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Te%20Wen%20Tu"> Te Wen Tu </a> </p> <p class="card-text"><strong>Abstract:</strong></p> A solution methodology without using integral transformation is proposed to develop analytical solutions for transient heat conduction in nonuniform hollow cylinders with time-dependent boundary condition at the outer surface. It is shown that if the thermal conductivity and the specific heat of the medium are in arbitrary polynomial function forms, the closed solutions of the system can be developed. The influence of physical properties on the temperature distribution of the system is studied. A numerical example is given to illustrate the efficiency and the accuracy of the solution methodology. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=analytical%20solution" title="analytical solution">analytical solution</a>, <a href="https://publications.waset.org/abstracts/search?q=nonuniform%20hollow%20cylinder" title=" nonuniform hollow cylinder"> nonuniform hollow cylinder</a>, <a href="https://publications.waset.org/abstracts/search?q=time-dependent%20boundary%20condition" title=" time-dependent boundary condition"> time-dependent boundary condition</a>, <a href="https://publications.waset.org/abstracts/search?q=transient%20heat%20conduction" title=" transient heat conduction"> transient heat conduction</a> </p> <a href="https://publications.waset.org/abstracts/25068/transient-heat-conduction-in-nonuniform-hollow-cylinders-with-time-dependent-boundary-condition-at-one-surface" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25068.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">505</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3178</span> An Accurate Prediction of Surface Temperature History in a Supersonic Flight </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20M.%20Tahsini">A. M. Tahsini</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20A.%20Hosseini"> S. A. Hosseini</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the present study, the surface temperature history of the adaptor part in a two-stage supersonic launch vehicle is accurately predicted. The full Navier-Stokes equations are used to estimate the aerodynamic heat flux. The one-dimensional heat conduction in solid phase is used to compute the temperature history. The instantaneous surface temperature is used to improve the applied heat flux, to improve the accuracy of the results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aerodynamic%20heating" title="aerodynamic heating">aerodynamic heating</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20conduction" title=" heat conduction"> heat conduction</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20simulation" title=" numerical simulation"> numerical simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=supersonic%20flight" title=" supersonic flight"> supersonic flight</a>, <a href="https://publications.waset.org/abstracts/search?q=launch%20vehicle" title=" launch vehicle"> launch vehicle</a> </p> <a href="https://publications.waset.org/abstracts/1462/an-accurate-prediction-of-surface-temperature-history-in-a-supersonic-flight" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1462.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">452</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3177</span> Solving Transient Conduction and Radiation using Finite Volume Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ashok%20K.%20Satapathy">Ashok K. Satapathy</a>, <a href="https://publications.waset.org/abstracts/search?q=Prerana%20Nashine"> Prerana Nashine</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Radiative heat transfer in participating medium was anticipated using the finite volume method. The radiative transfer equations are formulated for absorbing and anisotropically scattering and emitting medium. The solution strategy is discussed and the conditions for computational stability are conferred. The equations have been solved for transient radiative medium and transient radiation incorporated with transient conduction. Results have been obtained for irradiation and corresponding heat fluxes for both the cases. The solutions can be used to conclude incident energy and surface heat flux. Transient solutions were obtained for a slab of heat conducting in slab by thermal radiation. The effect of heat conduction during the transient phase is to partially equalize the internal temperature distribution. The solution procedure provides accurate temperature distributions in these regions. A finite volume procedure with variable space and time increments is used to solve the transient energy equation. The medium in the enclosure absorbs, emits, and anisotropically scatters radiative energy. The incident radiations and the radiative heat fluxes are presented in graphical forms. The phase function anisotropy plays a significant role in the radiation heat transfer when the boundary condition is non-symmetric. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=participating%20media" title="participating media">participating media</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20volume%20method" title=" finite volume method"> finite volume method</a>, <a href="https://publications.waset.org/abstracts/search?q=radiation%20coupled%20with%20conduction" title=" radiation coupled with conduction"> radiation coupled with conduction</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer" title=" heat transfer"> heat transfer</a> </p> <a href="https://publications.waset.org/abstracts/6346/solving-transient-conduction-and-radiation-using-finite-volume-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6346.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">381</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3176</span> A New Analytic Solution for the Heat Conduction with Time-Dependent Heat Transfer Coefficient</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Te%20Wen%20Tu">Te Wen Tu</a>, <a href="https://publications.waset.org/abstracts/search?q=Sen%20Yung%20Lee"> Sen Yung Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An alternative approach is proposed to develop the analytic solution for one dimensional heat conduction with one mixed type boundary condition and general time-dependent heat transfer coefficient. In this study, the physic meaning of the solution procedure is revealed. It is shown that the shifting function takes the physic meaning of the reciprocal of Biot function in the initial time. Numerical results show the accuracy of this study. Comparing with those given in the existing literature, the difference is less than 0.3%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=analytic%20solution" title="analytic solution">analytic solution</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer%20coefficient" title=" heat transfer coefficient"> heat transfer coefficient</a>, <a href="https://publications.waset.org/abstracts/search?q=shifting%20function%20method" title=" shifting function method"> shifting function method</a>, <a href="https://publications.waset.org/abstracts/search?q=time-dependent%20boundary%20condition" title=" time-dependent boundary condition"> time-dependent boundary condition</a> </p> <a href="https://publications.waset.org/abstracts/7436/a-new-analytic-solution-for-the-heat-conduction-with-time-dependent-heat-transfer-coefficient" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7436.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">431</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3175</span> Numerical Method for Heat Transfer Problem in a Block Having an Interface</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Beghdadi%20Lotfi">Beghdadi Lotfi</a>, <a href="https://publications.waset.org/abstracts/search?q=Bouziane%20Abdelhafid"> Bouziane Abdelhafid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A finite volume method for quadrilaterals unstructured mesh is developed to predict the two dimensional steady-state solutions of conduction equation. In this scheme, based on the integration around the polygonal control volume, the derivatives of conduction equation must be converted into closed line integrals using same formulation of the Stokes theorem. To valid the accuracy of the method two numerical experiments s are used: conduction in a regular block (with known analytical solution) and conduction in a rotated block (case with curved boundaries).The numerical results show good agreement with analytical results. To demonstrate the accuracy of the method, the absolute and root-mean square errors versus the grid size are examined quantitatively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Stokes%20theorem" title="Stokes theorem">Stokes theorem</a>, <a href="https://publications.waset.org/abstracts/search?q=unstructured%20grid" title=" unstructured grid"> unstructured grid</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer" title=" heat transfer"> heat transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=complex%20geometry" title=" complex geometry"> complex geometry</a> </p> <a href="https://publications.waset.org/abstracts/45081/numerical-method-for-heat-transfer-problem-in-a-block-having-an-interface" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45081.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">290</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3174</span> Analysis of an Error Estimate for the Asymptotic Solution of the Heat Conduction Problem in a Dilated Pipe</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=E.%20Maru%C5%A1i%C4%87-Paloka">E. Maru拧i膰-Paloka</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Pa%C5%BEanin"> I. Pa啪anin</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Pr%C5%A1a"> M. Pr拧a</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Subject of this study is the stationary heat conduction problem through a pipe filled with incompressible viscous fluid. In previous work, we observed the existence and uniqueness theorems for the corresponding boundary-value problem and within we have taken into account the effects of the pipe's dilatation due to the temperature of the fluid inside of the pipe. The main difficulty comes from the fact that flow domain changes depending on the solution of the observed heat equation leading to a non-standard coupled governing problem. The goal of this work is to find solution estimate since the exact solution of the studied problem is not possible to determine. We use an asymptotic expansion in order of a small parameter which is presented as a heat expansion coefficient of the pipe's material. Furthermore, an error estimate is provided for the mentioned asymptotic approximation of the solution for inner area of the pipe. Close to the boundary, problem becomes more complex so different approaches are observed, mainly Theory of Perturbations and Separations of Variables. In view of that, error estimate for the whole approximation will be provided with additional software simulations of gotten situation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=asymptotic%20analysis" title="asymptotic analysis">asymptotic analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=dilated%20pipe" title=" dilated pipe"> dilated pipe</a>, <a href="https://publications.waset.org/abstracts/search?q=error%20estimate" title=" error estimate"> error estimate</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20conduction" title=" heat conduction"> heat conduction</a> </p> <a href="https://publications.waset.org/abstracts/77208/analysis-of-an-error-estimate-for-the-asymptotic-solution-of-the-heat-conduction-problem-in-a-dilated-pipe" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77208.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">236</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3173</span> Investigation of Heat Transfer Mechanism Inside Shell and Tube Latent Heat Thermal Energy Storage Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saeid%20Seddegh">Saeid Seddegh</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiaolin%20Wang"> Xiaolin Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Alan%20D.%20Henderson"> Alan D. Henderson</a>, <a href="https://publications.waset.org/abstracts/search?q=Dong%20Chen"> Dong Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Oliver%20Oims"> Oliver Oims</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main objective of this research is to study the heat transfer processes and phase change behaviour of a phase change material (PCM) in shell and tube latent heat thermal energy storage (LHTES) systems. The thermal behaviour in a vertical and horizontal shell-and-tube heat energy storage system using a pure thermal conduction model and a combined conduction-convection heat transfer model is compared in this paper. The model is first validated using published experimental data available in literature and then used to study the temperature variation, solid-liquid interface, phase distribution, total melting and solidification time during melting and solidification processes of PCMs. The simulated results show that the combined convection and conduction model can better describe the energy transfer in PCMs during melting process. In contrast, heat transfer by conduction is more significant during the solidification process since the two models show little difference. Also, it was concluded that during the charging process for the horizontal orientation, convective heat transfer has a strong effect on melting of the upper part of the solid PCM and is less significant during melting of the lower half of the solid PCM. However, in the vertical orientation, convective heat transfer is the same active during the entire charging process. In the solidification process, the thermal behavior does not show any difference between horizontal and vertical systems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=latent%20heat%20thermal%20energy%20storage" title="latent heat thermal energy storage">latent heat thermal energy storage</a>, <a href="https://publications.waset.org/abstracts/search?q=phase%20change%20material" title=" phase change material"> phase change material</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20convection" title=" natural convection"> natural convection</a>, <a href="https://publications.waset.org/abstracts/search?q=melting" title=" melting"> melting</a>, <a href="https://publications.waset.org/abstracts/search?q=shell%20and%20tube%20heat%20exchanger" title=" shell and tube heat exchanger"> shell and tube heat exchanger</a>, <a href="https://publications.waset.org/abstracts/search?q=melting" title=" melting"> melting</a>, <a href="https://publications.waset.org/abstracts/search?q=solidification" title=" solidification"> solidification</a> </p> <a href="https://publications.waset.org/abstracts/35186/investigation-of-heat-transfer-mechanism-inside-shell-and-tube-latent-heat-thermal-energy-storage-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35186.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">554</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3172</span> Application of Residual Correction Method on Hyperbolic Thermoelastic Response of Hollow Spherical Medium in Rapid Transient Heat Conduction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Po-Jen%20Su">Po-Jen Su</a>, <a href="https://publications.waset.org/abstracts/search?q=Huann-Ming%20Chou"> Huann-Ming Chou</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this article we uses the residual correction method to deal with transient thermoelastic problems with a hollow spherical region when the continuum medium possesses spherically isotropic thermoelastic properties. Based on linear thermoelastic theory, the equations of hyperbolic heat conduction and thermoelastic motion were combined to establish the thermoelastic dynamic model with consideration of the deformation acceleration effect and non-Fourier effect under the condition of transient thermal shock. The approximate solutions of temperature and displacement distributions are obtained using the residual correction method based on the maximum principle in combination with the finite difference method, making it easier and faster to obtain upper and lower approximations of exact solutions. The proposed method is found to be an effective numerical method with satisfactory accuracy. Moreover, the result shows that the effect of transient thermal shock induced by deformation acceleration is enhanced by non-Fourier heat conduction with increased peak stress. The influence on the stress increases with the thermal relaxation time. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=maximum%20principle" title="maximum principle">maximum principle</a>, <a href="https://publications.waset.org/abstracts/search?q=non-Fourier%20heat%20conduction" title=" non-Fourier heat conduction"> non-Fourier heat conduction</a>, <a href="https://publications.waset.org/abstracts/search?q=residual%20correction%20method" title=" residual correction method"> residual correction method</a>, <a href="https://publications.waset.org/abstracts/search?q=thermo-elastic%20response" title=" thermo-elastic response"> thermo-elastic response</a> </p> <a href="https://publications.waset.org/abstracts/30884/application-of-residual-correction-method-on-hyperbolic-thermoelastic-response-of-hollow-spherical-medium-in-rapid-transient-heat-conduction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30884.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">425</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3171</span> Vibration of Nanobeam Subjected to Constant Magnetic Field and Ramp-Type Thermal Loading under Non-Fourier Heat Conduction Law of Lord-Shulman</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hamdy%20M.%20Youssef">Hamdy M. Youssef</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, the usual Euler鈥揃ernoulli nanobeam has been modeled in the context of Lord-Shulman thermoelastic theorem, which contains non-Fourier heat conduction law. The nanobeam has been subjected to a constant magnetic field and ramp-type thermal loading. The Laplace transform definition has been applied to the governing equations, and the solutions have been obtained by using a direct approach. The inversions of the Laplace transform have been calculated numerically by using Tzou approximation method. The solutions have been applied to a nanobeam made of silicon nitride. The distributions of the temperature increment, lateral deflection, strain, stress, and strain-energy density have been represented in figures with different values of the magnetic field intensity and ramp-time heat parameter. The value of the magnetic field intensity and ramp-time heat parameter have significant effects on all the studied functions, and they could be used as tuners to control the energy which has been generated through the nanobeam. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanobeam" title="nanobeam">nanobeam</a>, <a href="https://publications.waset.org/abstracts/search?q=vibration" title=" vibration"> vibration</a>, <a href="https://publications.waset.org/abstracts/search?q=constant%20magnetic%20field" title=" constant magnetic field"> constant magnetic field</a>, <a href="https://publications.waset.org/abstracts/search?q=ramp-type%20thermal%20loading" title=" ramp-type thermal loading"> ramp-type thermal loading</a>, <a href="https://publications.waset.org/abstracts/search?q=non-Fourier%20heat%20conduction%20law" title=" non-Fourier heat conduction law"> non-Fourier heat conduction law</a> </p> <a href="https://publications.waset.org/abstracts/155279/vibration-of-nanobeam-subjected-to-constant-magnetic-field-and-ramp-type-thermal-loading-under-non-fourier-heat-conduction-law-of-lord-shulman" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/155279.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">138</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3170</span> Conduction Accompanied With Transient Radiative Heat Transfer Using Finite Volume Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Ashok">A. Ashok</a>, <a href="https://publications.waset.org/abstracts/search?q=K.Satapathy"> K.Satapathy</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Prerana%20Nashine"> B. Prerana Nashine</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this research work is to investigate for one dimensional transient radiative transfer equations with conduction using finite volume method. Within the infrastructure of finite-volume, we obtain the conservative discretization of the terms in order to preserve the overall conservative property of finitevolume schemes. Coupling of conductive and radiative equation resulting in fluxes is governed by the magnitude of emissivity, extinction coefficient, and temperature of the medium as well as geometry of the problem. The problem under consideration has been solved, for a slab dominating radiation coupled with transient conduction based on finite volume method. The boundary conditions are also chosen so as to give a good model of the discretized form of radiation transfer equation. The important feature of the present method is flexibility in specifying the control angles in the FVM, while keeping the simplicity in the solution procedure. Effects of various model parameters are examined on the distributions of temperature, radiative and conductive heat fluxes and incident radiation energy etc. The finite volume method is considered to effectively evaluate the propagation of radiation intensity through a participating medium. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=participating%20media" title="participating media">participating media</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20volume%20method" title=" finite volume method"> finite volume method</a>, <a href="https://publications.waset.org/abstracts/search?q=radiation%20coupled%20with%20conduction" title=" radiation coupled with conduction"> radiation coupled with conduction</a>, <a href="https://publications.waset.org/abstracts/search?q=transient%20radiative%20heat%20transfer" title=" transient radiative heat transfer "> transient radiative heat transfer </a> </p> <a href="https://publications.waset.org/abstracts/9579/conduction-accompanied-with-transient-radiative-heat-transfer-using-finite-volume-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9579.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">389</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3169</span> Numerical Investigation of Hot Oil Velocity Effect on Force Heat Convection and Impact of Wind Velocity on Convection Heat Transfer in Receiver Tube of Parabolic Trough Collector System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=O.%20Afshar">O. Afshar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A solar receiver is designed for operation under extremely uneven heat flux distribution, cyclic weather, and cloud transient cycle conditions, which can include large thermal stress and even receiver failure. In this study, the effect of different oil velocity on convection coefficient factor and impact of wind velocity on local Nusselt number by Finite Volume Method will be analyzed. This study is organized to give an overview of the numerical modeling using a MATLAB software, as an accurate, time efficient and economical way of analyzing the heat transfer trends over stationary receiver tube for different Reynolds number. The results reveal when oil velocity is below 0.33m/s, the value of convection coefficient is negligible at low temperature. The numerical graphs indicate that when oil velocity increases up to 1.2 m/s, heat convection coefficient increases significantly. In fact, a reduction in oil velocity causes a reduction in heat conduction through the glass envelope. In addition, the different local Nusselt number is reduced when the wind blows toward the concave side of the collector and it has a significant effect on heat losses reduction through the glass envelope. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=receiver%20tube" title="receiver tube">receiver tube</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20convection" title=" heat convection"> heat convection</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20conduction" title=" heat conduction"> heat conduction</a>, <a href="https://publications.waset.org/abstracts/search?q=Nusselt%20number" title=" Nusselt number"> Nusselt number</a> </p> <a href="https://publications.waset.org/abstracts/38149/numerical-investigation-of-hot-oil-velocity-effect-on-force-heat-convection-and-impact-of-wind-velocity-on-convection-heat-transfer-in-receiver-tube-of-parabolic-trough-collector-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38149.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">356</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3168</span> A Multigrid Approach for Three-Dimensional Inverse Heat Conduction Problems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jianhua%20Zhou">Jianhua Zhou</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuwen%20Zhang"> Yuwen Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A two-step multigrid approach is proposed to solve the inverse heat conduction problem in a 3-D object under laser irradiation. In the first step, the location of the laser center is estimated using a coarse and uniform grid system. In the second step, the front-surface temperature is recovered in good accuracy using a multiple grid system in which fine mesh is used at laser spot center to capture the drastic temperature rise in this region but coarse mesh is employed in the peripheral region to reduce the total number of sensors required. The effectiveness of the two-step approach and the multiple grid system are demonstrated by the illustrative inverse solutions. If the measurement data for the temperature and heat flux on the back surface do not contain random error, the proposed multigrid approach can yield more accurate inverse solutions. When the back-surface measurement data contain random noise, accurate inverse solutions cannot be obtained if both temperature and heat flux are measured on the back surface. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=conduction" title="conduction">conduction</a>, <a href="https://publications.waset.org/abstracts/search?q=inverse%20problems" title=" inverse problems"> inverse problems</a>, <a href="https://publications.waset.org/abstracts/search?q=conjugated%20gradient%20method" title=" conjugated gradient method"> conjugated gradient method</a>, <a href="https://publications.waset.org/abstracts/search?q=laser" title=" laser"> laser</a> </p> <a href="https://publications.waset.org/abstracts/91353/a-multigrid-approach-for-three-dimensional-inverse-heat-conduction-problems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/91353.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">369</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3167</span> Effect of Viscous Dissipation and Axial Conduction in Thermally Developing Region of the Channel Partially Filled with a Porous Material Subjected to Constant Wall Heat Flux</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=D%20Bhargavi">D Bhargavi</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Sharath%20Kumar%20Reddy"> J. Sharath Kumar Reddy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present investigation has been undertaken to assess the effect of viscous dissipation and axial conduction on forced convection heat transfer in the entrance region of a parallel plate channel with the porous insert attached to both walls of the channel. The flow field is unidirectional. Flow in the porous region corresponds to Darcy-Brinkman model and the clear fluid region to that of plane Poiseuille flow. The effects of the parameters Darcy number, <em>Da</em>, Peclet number, <em>Pe</em>, Brinkman number, <em>Br</em> and a porous fraction <em>γ<sub>p</sub></em> on the local heat transfer coefficient are analyzed graphically. Effects of viscous dissipation employing the Darcy model and the clear fluid compatible model have been studied. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=porous%20material" title="porous material">porous material</a>, <a href="https://publications.waset.org/abstracts/search?q=channel%20partially%20filled%20with%20a%20porous%20material" title=" channel partially filled with a porous material"> channel partially filled with a porous material</a>, <a href="https://publications.waset.org/abstracts/search?q=axial%20conduction" title=" axial conduction"> axial conduction</a>, <a href="https://publications.waset.org/abstracts/search?q=viscous%20dissipation" title=" viscous dissipation"> viscous dissipation</a> </p> <a href="https://publications.waset.org/abstracts/114671/effect-of-viscous-dissipation-and-axial-conduction-in-thermally-developing-region-of-the-channel-partially-filled-with-a-porous-material-subjected-to-constant-wall-heat-flux" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/114671.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">158</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3166</span> Heat Transfer from Block Heat Sources Mounted on the Wall of a 3-D Cabinet to Ambient Natural Convective Air Stream</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20C.%20Cheng">J. C. Cheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20L.%20Tsay"> Y. L. Tsay</a>, <a href="https://publications.waset.org/abstracts/search?q=Z.%20D.%20Chan"> Z. D. Chan</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20H.%20Yang"> C. H. Yang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study the physical system under consideration is a three-dimensional (3-D) cabinet with arrays of block heat sources mounted on one of the walls of the cabinet. The block heat sources dissipate heat to the cabinet surrounding through the conjugate conduction and natural convection. The results illustrate that the difference in hot spot temperatures of the system (胃H) for the situations with and without consideration of thermal interaction is higher for smaller Rayleigh number (Ra), and can be up to 94.73% as Ra=10^5. In addition, the heat transfer characteristics depends strongly on the dimensionless heat conductivity of cabinet wall (Kwf), heat conductivity of block (Kpf) and length of cabinet (Ax). The maximum reduction in 胃H is 70.01% when Kwf varies from 10 to 1000, and it is 30.07% for Ax from 0.5 to 1. While the hot spot temperature of system is not sensitive to the cabinet angle (桅). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=block%20heat%20sources" title="block heat sources">block heat sources</a>, <a href="https://publications.waset.org/abstracts/search?q=3-D%20cabinet" title=" 3-D cabinet"> 3-D cabinet</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20interaction" title=" thermal interaction"> thermal interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer" title=" heat transfer"> heat transfer</a> </p> <a href="https://publications.waset.org/abstracts/16075/heat-transfer-from-block-heat-sources-mounted-on-the-wall-of-a-3-d-cabinet-to-ambient-natural-convective-air-stream" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16075.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">555</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3165</span> Numerical Investigation of Thermal Energy Storage System with Phase Change Materials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mrityunjay%20Kumar%20Sinha">Mrityunjay Kumar Sinha</a>, <a href="https://publications.waset.org/abstracts/search?q=Mayank%20Srivastava"> Mayank Srivastava</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The position of interface and temperature variation of phase change thermal energy storage system under constant heat injection and radiative heat injection is analysed during charging/discharging process by Heat balance integral method. The charging/discharging process is solely governed by conduction. Phase change material is kept inside a rectangular cavity. Time-dependent fixed temperature and radiative boundary condition applied on one wall, all other walls are thermally insulated. Interface location and temperature variation are analysed by using MATLAB. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=conduction" title="conduction">conduction</a>, <a href="https://publications.waset.org/abstracts/search?q=melting%2Fsolidification" title=" melting/solidification"> melting/solidification</a>, <a href="https://publications.waset.org/abstracts/search?q=phase%20change%20materials" title=" phase change materials"> phase change materials</a>, <a href="https://publications.waset.org/abstracts/search?q=Stefan%E2%80%99s%20number" title=" Stefan鈥檚 number"> Stefan鈥檚 number</a> </p> <a href="https://publications.waset.org/abstracts/56671/numerical-investigation-of-thermal-energy-storage-system-with-phase-change-materials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56671.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">392</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3164</span> Heat Transfer Enhancement Due to the Optimal Porosity in Plate Heat Exchangers with Sinusoidal Plates</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hossein%20Shokouhmand">Hossein Shokouhmand</a>, <a href="https://publications.waset.org/abstracts/search?q=Seyyed%20Mostafa%20Saadat"> Seyyed Mostafa Saadat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, the effect of thermal dispersion on the performance of plate heat exchangers (PHEs) with sinusoidal plates is investigated. In this regard, the PHE is considered as a porous medium. The important property of a porous medium is porosity that is defined as the total fluid volume divided by the total volume occupied by the solid and fluid. A 2D array of parallel sinusoidal plates with laminar periodically developed forced convection and single-phase constant property flows and conduction in a homogenous solid phase in two directions is considered. The array of flows is counter and the flows heat capacities are equal. Numerical study of conjugate heat transfer and axial conduction in the solid phase with different plate thicknesses showed that there is an optimal porosity in which the efficiency of heat transfer is up to 4% more than the time when the porosity is near one. It is shown that the optimal porosity at zero angle of inclination depends both on Reynolds number and the aspect ratio. The optimal porosity increased while either the Reynolds number or waviness of plates increased. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=plate%20heat%20exchanger" title="plate heat exchanger">plate heat exchanger</a>, <a href="https://publications.waset.org/abstracts/search?q=optimal%20porosity" title=" optimal porosity"> optimal porosity</a>, <a href="https://publications.waset.org/abstracts/search?q=efficiency" title=" efficiency"> efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=aspect%20ratio" title=" aspect ratio"> aspect ratio</a> </p> <a href="https://publications.waset.org/abstracts/11031/heat-transfer-enhancement-due-to-the-optimal-porosity-in-plate-heat-exchangers-with-sinusoidal-plates" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11031.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">405</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3163</span> Numerical Method of Heat Transfer in Fin Profiles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Beghdadi%20Lotfi">Beghdadi Lotfi</a>, <a href="https://publications.waset.org/abstracts/search?q=Belkacem%20Abdellah"> Belkacem Abdellah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, a numerical method is proposed in order to solve the thermal performance problems of heat transfer of fins surfaces. The bidimensional temperature distribution on the longitudinal section of the fin is calculated by restoring to the finite volumes method. The heat flux dissipated by a generic profile fin is compared with the heat flux removed by the rectangular profile fin with the same length and volume. In this study, it is shown that a finite volume method for quadrilaterals unstructured mesh is developed to predict the two dimensional steady-state solutions of conduction equation, in order to determine the sinusoidal parameter values which optimize the fin effectiveness. In this scheme, based on the integration around the polygonal control volume, the derivatives of conduction equation must be converted into closed line integrals using same formulation of the Stokes theorem. The numerical results show good agreement with analytical results. To demonstrate the accuracy of the method, the absolute and root-mean square errors versus the grid size are examined quantitatively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Stokes%20theorem" title="Stokes theorem">Stokes theorem</a>, <a href="https://publications.waset.org/abstracts/search?q=unstructured%20grid" title=" unstructured grid"> unstructured grid</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer" title=" heat transfer"> heat transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=complex%20geometry" title=" complex geometry"> complex geometry</a> </p> <a href="https://publications.waset.org/abstracts/10461/numerical-method-of-heat-transfer-in-fin-profiles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10461.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">405</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3162</span> Study of Heat Conduction in Multicore Chips</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20N.%20Seetharamu">K. N. Seetharamu</a>, <a href="https://publications.waset.org/abstracts/search?q=Naveen%20Teggi"> Naveen Teggi</a>, <a href="https://publications.waset.org/abstracts/search?q=Kiranakumar%20Dhavalagi"> Kiranakumar Dhavalagi</a>, <a href="https://publications.waset.org/abstracts/search?q=Narayana%20Kamath"> Narayana Kamath</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A method of temperature calculations is developed to study the conditions leading to hot spot occurrence on multicore chips. A physical model which has salient features of multicore chips is incorporated for the analysis. The model consists of active and background cell laid out in a checkered pattern, and this pattern repeats itself in each fine grain active cells. The die has three layers i) body ii) buried oxide layer iii) wiring layer, stacked one above the other with heat source placed at the interface between wiring and buried oxide layer. With this model we propose analytical method to calculate the target hotspot temperature, heat flow to top and bottom layers of the die and thermal resistance components at each granularity level, assuming appropriate values of die dimensions and parameters. Finally we attempt to find an easier method for the calculation of the target hotspot temperature using graph. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=checkered%20pattern" title="checkered pattern">checkered pattern</a>, <a href="https://publications.waset.org/abstracts/search?q=granularity%20level" title=" granularity level"> granularity level</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20conduction" title=" heat conduction"> heat conduction</a>, <a href="https://publications.waset.org/abstracts/search?q=multicore%20chips" title=" multicore chips"> multicore chips</a>, <a href="https://publications.waset.org/abstracts/search?q=target%20hotspot%20temperature" title=" target hotspot temperature"> target hotspot temperature</a> </p> <a href="https://publications.waset.org/abstracts/73987/study-of-heat-conduction-in-multicore-chips" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73987.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">466</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3161</span> Comparative Syudy Of Heat Transfer Capacity Limits of Heat Pipe</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Shokouhmand">H. Shokouhmand</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Ghanami"> A. Ghanami</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Heat pipe is simple heat transfer device which combines the conduction and phase change phenomena to control the heat transfer without any need for external power source. At hot surface of heat pipe, the liquid phase absorbs heat and changes to vapor phase. The vapor phase flows to condenser region and with the loss of heat changes to liquid phase. Due to gravitational force the liquid phase flows to evaporator section.In HVAC systems the working fluid is chosen based on the operating temperature. The heat pipe has significant capability to reduce the humidity in HVAC systems. Each HVAC system which uses heater, humidifier or dryer is a suitable nominate for the utilization of heat pipes. Generally heat pipes have three main sections: condenser, adiabatic region and evaporator.Performance investigation and optimization of heat pipes operation in order to increase their efficiency is crucial. In present article, a parametric study is performed to improve the heat pipe performance. Therefore, the heat capacity of heat pipe with respect to geometrical and confining parameters is investigated. For the better observation of heat pipe operation in HVAC systems, a CFD simulation in Eulerian- Eulerian multiphase approach is also performed. The results show that heat pipe heat transfer capacity is higher for water as working fluid with the operating temperature of 340 K. It is also observed that the vertical orientation of heat pipe enhances it鈥檚 heat transfer capacity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heat%20pipe" title="heat pipe">heat pipe</a>, <a href="https://publications.waset.org/abstracts/search?q=HVAC%20system" title=" HVAC system"> HVAC system</a>, <a href="https://publications.waset.org/abstracts/search?q=grooved%20heat%20pipe" title=" grooved heat pipe"> grooved heat pipe</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20pipe%20limits" title=" heat pipe limits "> heat pipe limits </a> </p> <a href="https://publications.waset.org/abstracts/22754/comparative-syudy-of-heat-transfer-capacity-limits-of-heat-pipe" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22754.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">376</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3160</span> Steady Conjugate Heat Transfer of Two Connected Thermal Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20El-Sayed%20Mosaad">Mohamed El-Sayed Mosaad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An analytic approach is obtained for the steady heat transfer problem of two fluid systems, in thermal communication via heat conduction across a solid wall separating them. The two free convection layers created on wall sides are assumed to be in parallel flow. Fluid-solid interface temperature on wall sides is not prescribed in analysis in advance; rather, determined from conjugate solution among other unknown parameters. The analysis highlights the main conjugation parameters controlling thermal interaction process of involved heat transfer modes. Heat transfer results of engineering importance are obtained. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=conjugate%20heat%20transfer" title="conjugate heat transfer">conjugate heat transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=boundary%20layer" title=" boundary layer"> boundary layer</a>, <a href="https://publications.waset.org/abstracts/search?q=convection" title=" convection"> convection</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20systems" title=" thermal systems"> thermal systems</a> </p> <a href="https://publications.waset.org/abstracts/23261/steady-conjugate-heat-transfer-of-two-connected-thermal-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23261.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">379</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3159</span> Comparative Study of Heat Transfer Capacity Limits of Heat Pipes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Shokouhmand">H. Shokouhmand</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Ghanami"> A. Ghanami</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Heat pipe is simple heat transfer device which combines the conduction and phase change phenomena to control the heat transfer without any need for external power source. At hot surface of heat pipe, the liquid phase absorbs heat and changes to vapor phase. The vapor phase flows to condenser region and with the loss of heat changes to liquid phase. Due to gravitational force the liquid phase flows to evaporator section.In HVAC systems the working fluid is chosen based on the operating temperature. The heat pipe has significant capability to reduce the humidity in HVAC systems. Each HVAC system which uses heater, humidifier or dryer is a suitable nominate for the utilization of heat pipes. Generally heat pipes have three main sections: condenser, adiabatic region and evaporator.Performance investigation and optimization of heat pipes operation in order to increase their efficiency is crucial. In present article, a parametric study is performed to improve the heat pipe performance. Therefore, the heat capacity of heat pipe with respect to geometrical and confining parameters is investigated. For the better observation of heat pipe operation in HVAC systems, a CFD simulation in Eulerian- Eulerian multiphase approach is also performed. The results show that heat pipe heat transfer capacity is higher for water as working fluid with the operating temperature of 340 K. It is also showed that the vertical orientation of heat pipe enhances it鈥檚 heat transfer capacity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heat%20pipe" title="heat pipe">heat pipe</a>, <a href="https://publications.waset.org/abstracts/search?q=HVAC%20system" title=" HVAC system"> HVAC system</a>, <a href="https://publications.waset.org/abstracts/search?q=grooved%20Heat%20pipe" title=" grooved Heat pipe"> grooved Heat pipe</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20pipe%20limits" title=" heat pipe limits"> heat pipe limits</a> </p> <a href="https://publications.waset.org/abstracts/22791/comparative-study-of-heat-transfer-capacity-limits-of-heat-pipes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22791.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">421</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3158</span> Heat Pipes Thermal Performance Improvement in H-VAC Systems Using CFD Modeling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Heydari">M. Heydari</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Ghanami"> A. Ghanami </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Heat pipe is simple heat transfer device which combines the conduction and phase change phenomena to control the heat transfer without any need for external power source. At hot surface of heat pipe, the liquid phase absorbs heat and changes to vapor phase. The vapor phase flows to condenser region and with the loss of heat changes to liquid phase. Due to gravitational force the liquid phase flows to evaporator section.In HVAC systems the working fluid is chosen based on the operating temperature. The heat pipe has significant capability to reduce the humidity in HVAC systems. Each HVAC system which uses heater, humidifier or dryer is a suitable nominate for the utilization of heat pipes. Generally heat pipes have three main sections: condenser, adiabatic region and evaporator.Performance investigation and optimization of heat pipes operation in order to increase their efficiency is crucial. In present article, a parametric study is performed to improve the heat pipe performance. Therefore, the heat capacity of heat pipe with respect to geometrical and confining parameters is investigated. For the better observation of heat pipe operation in HVAC systems, a CFD simulation in Eulerian- Eulerian multiphase approach is also performed. The results show that heat pipe heat transfer capacity is higher for water as working fluid with the operating temperature of 340 K. It is also showed that the vertical orientation of heat pipe enhances it鈥檚 heat transfer capacity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heat%20pipe" title="heat pipe">heat pipe</a>, <a href="https://publications.waset.org/abstracts/search?q=HVAC%20system" title=" HVAC system"> HVAC system</a>, <a href="https://publications.waset.org/abstracts/search?q=grooved%20heat%20pipe" title=" grooved heat pipe"> grooved heat pipe</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20pipe%20limits" title=" heat pipe limits"> heat pipe limits</a> </p> <a href="https://publications.waset.org/abstracts/23313/heat-pipes-thermal-performance-improvement-in-h-vac-systems-using-cfd-modeling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23313.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">444</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3157</span> Analysis of Combined Heat Transfer through the Core Materials of VIPs with Various Scattering Properties</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jaehyug%20Lee">Jaehyug Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Tae-Ho%20Song"> Tae-Ho Song</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Vacuum insulation panel (VIP) can achieve very low thermal conductivity by evacuating its inner space. Heat transfer in the core materials of highly-evacuated VIP occurs by conduction through the solid structure and radiation through the pore. The effect of various scattering modes in combined conduction-radiation in VIP is investigated through numerical analysis. The discrete ordinates interpolation method (DOIM) incorporated with the commercial code FLUENT庐 is employed. It is found that backward scattering is more effective in reducing the total heat transfer while isotropic scattering is almost identical with pure absorbing/emitting case of the same optical thickness. For a purely scattering medium, the results agree well with additive solution with diffusion approximation, while a modified term is added in the effect of optical thickness to backward scattering is employed. For other scattering phase functions, it is also confirmed that backwardly scattering phase function gives a lower effective thermal conductivity. Thus, the materials with backward scattering properties, with radiation shields are desirable to lower the thermal conductivity of VIPs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=combined%20conduction%20and%20radiation" title="combined conduction and radiation">combined conduction and radiation</a>, <a href="https://publications.waset.org/abstracts/search?q=discrete%20ordinates%20interpolation%20method" title=" discrete ordinates interpolation method"> discrete ordinates interpolation method</a>, <a href="https://publications.waset.org/abstracts/search?q=scattering%20phase%20function" title=" scattering phase function"> scattering phase function</a>, <a href="https://publications.waset.org/abstracts/search?q=vacuum%20insulation%20panel" title=" vacuum insulation panel"> vacuum insulation panel</a> </p> <a href="https://publications.waset.org/abstracts/19426/analysis-of-combined-heat-transfer-through-the-core-materials-of-vips-with-various-scattering-properties" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19426.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">366</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3156</span> Improve Heat Pipe Thermal Performance in H-VAC Systems Using CFD Modeling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Shokouhmand">H. Shokouhmand</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Ghanami"> A. Ghanami </a> </p> <p class="card-text"><strong>Abstract:</strong></p> A heat pipe is simple heat transfer device which combines the conduction and phase change phenomena to control the heat transfer without any need for external power source. At a hot surface of the heat pipe, the liquid phase absorbs heat and changes to the vapor phase. The vapor phase flows to condenser region and with the loss of heat changes to the liquid phase. Due to gravitational force the liquid phase flows to the evaporator section. In HVAC systems, the working fluid is chosen based on the operating temperature. The heat pipe has significant capability to reduce the humidity in HVAC systems. Each HVAC system which uses the heater, humidifier, or dryer is a suitable nominate for the utilization of heat pipes. Generally, heat pipes have three main sections: condenser, adiabatic region, and evaporator. Performance investigation and optimization of heat pipes operation in order to increase their efficiency is crucial. In the present article, a parametric study is performed to improve the heat pipe performance. Therefore, the heat capacity of the heat pipe with respect to geometrical and confining parameters is investigated. For the better observation of heat pipe operation in HVAC systems, a CFD simulation in Eulerian-Eulerian multiphase approach is also performed. The results show that heat pipe heat transfer capacity is higher for water as working fluid with the operating temperature of 340 K. It is also showed that the vertical orientation of heat pipe enhances its heat transfer capacity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heat%20pipe" title="heat pipe">heat pipe</a>, <a href="https://publications.waset.org/abstracts/search?q=HVAC%20system" title=" HVAC system"> HVAC system</a>, <a href="https://publications.waset.org/abstracts/search?q=grooved%20heat%20pipe" title=" grooved heat pipe"> grooved heat pipe</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20pipe%20limits" title=" heat pipe limits"> heat pipe limits</a> </p> <a href="https://publications.waset.org/abstracts/23130/improve-heat-pipe-thermal-performance-in-h-vac-systems-using-cfd-modeling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23130.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">436</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3155</span> Improvement of Heat Pipes Thermal Performance in H-VAC Systems Using CFD Modeling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Shokouhmand">H. Shokouhmand</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Ghanami"> A. Ghanami</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Heat pipe is simple heat transfer device which combines the conduction and phase change phenomena to control the heat transfer without any need for external power source. At hot surface of heat pipe, the liquid phase absorbs heat and changes to vapor phase. The vapor phase flows to condenser region and with the loss of heat changes to liquid phase. Due to gravitational force the liquid phase flows to evaporator section.In HVAC systems the working fluid is chosen based on the operating temperature. The heat pipe has significant capability to reduce the humidity in HVAC systems. Each HVAC system which uses heater, humidifier or dryer is a suitable nominate for the utilization of heat pipes. Generally heat pipes have three main sections: condenser, adiabatic region and evaporator.Performance investigation and optimization of heat pipes operation in order to increase their efficiency is crucial. In present article, a parametric study is performed to improve the heat pipe performance. Therefore, the heat capacity of heat pipe with respect to geometrical and confining parameters is investigated. For the better observation of heat pipe operation in HVAC systems, a CFD simulation in Eulerian- Eulerian multiphase approach is also performed. The results show that heat pipe heat transfer capacity is higher for water as working fluid with the operating temperature of 340 K. It is also showed that the vertical orientation of heat pipe enhances it鈥檚 heat transfer capacity used in the abstract. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heat%20pipe" title="heat pipe">heat pipe</a>, <a href="https://publications.waset.org/abstracts/search?q=HVAC%20system" title=" HVAC system"> HVAC system</a>, <a href="https://publications.waset.org/abstracts/search?q=grooved%20heat%20pipe" title=" grooved heat pipe"> grooved heat pipe</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20pipe%20limits" title=" heat pipe limits "> heat pipe limits </a> </p> <a href="https://publications.waset.org/abstracts/23314/improvement-of-heat-pipes-thermal-performance-in-h-vac-systems-using-cfd-modeling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23314.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">364</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3154</span> Fouling Mitigation Using Helical Baffle Heat Exchangers and Comparative Analysis Using HTRI Xchanger Suite庐 Educational Software </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kiran%20P.%20Chadayamuri">Kiran P. Chadayamuri</a>, <a href="https://publications.waset.org/abstracts/search?q=Saransh%20Bagdi"> Saransh Bagdi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Heat exchangers are devices used to transfer heat from one fluid to another via convection and conduction. The need for effective heat transfer has made their presence vital in hundreds of industries including petroleum refineries, petrochemical plants, fertiliser plants and pharmaceutical companies. Fouling has been one of the major problems hindering efficient transfer of thermal energy in heat exchangers. Several design changes have been coined for fighting fouling. A recent development involves using helical baffles in place of conventional segmented baffles in shell and tube heat exchangers. The aim of this paper is to understand the advantages of helical baffle exchangers, how they aid in fouling mitigation and its corresponding limitations. A comparative analysis was conducted between a helical baffle heat exchanger and a conventional segmented baffle heat exchanger using HTRI Xchanger Suite庐 Educational software and conclusions were drawn to study how the heat transfer process differs in the two cases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer" title="heat transfer">heat transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20exchangers" title=" heat exchangers"> heat exchangers</a>, <a href="https://publications.waset.org/abstracts/search?q=fouling%20mitigation" title=" fouling mitigation"> fouling mitigation</a>, <a href="https://publications.waset.org/abstracts/search?q=helical%20baffles" title=" helical baffles"> helical baffles</a> </p> <a href="https://publications.waset.org/abstracts/49858/fouling-mitigation-using-helical-baffle-heat-exchangers-and-comparative-analysis-using-htri-xchanger-suite-educational-software" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49858.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">328</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3153</span> Simulation of Improving the Efficiency of a Fire-Tube Steam Boiler</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Roudane%20Mohamed">Roudane Mohamed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study we are interested in improving the efficiency of a steam boiler to 4.5T/h and minimize fume discharge temperature by the addition of a heat exchanger against the current in the energy system, the output of the boiler. The mathematical approach to the problem is based on the use of heat transfer by convection and conduction equations. These equations have been chosen because of their extensive use in a wide range of application. A software and developed for solving the equations governing these phenomena and the estimation of the thermal characteristics of boiler through the study of the thermal characteristics of the heat exchanger by both LMTD and NUT methods. Subsequently, an analysis of the thermal performance of the steam boiler by studying the influence of different operating parameters on heat flux densities, temperatures, exchanged power and performance was carried out. The study showed that the behavior of the boiler is largely influenced. In the first regime (P = 3.5 bar), the boiler efficiency has improved significantly from 93.03 to 99.43 at the rate of 6.47% and 4.5%. For maximum speed, the change is less important, it is of the order of 1.06%. The results obtained in this study of great interest to industrial utilities equipped with smoke tube boilers for the preheating air temperature intervene to calculate the actual temperature of the gas so the heat exchanged will be increased and minimize temperature smoke discharge. On the other hand, this work could be used as a model of computation in the design process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=numerical%20simulation" title="numerical simulation">numerical simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=efficiency" title=" efficiency"> efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=fire%20tube" title=" fire tube"> fire tube</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20exchanger" title=" heat exchanger"> heat exchanger</a>, <a href="https://publications.waset.org/abstracts/search?q=convection%20and%20conduction" title=" convection and conduction"> convection and conduction</a> </p> <a href="https://publications.waset.org/abstracts/38371/simulation-of-improving-the-efficiency-of-a-fire-tube-steam-boiler" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38371.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">218</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=non-Fourier%20heat%20conduction&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=non-Fourier%20heat%20conduction&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=non-Fourier%20heat%20conduction&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=non-Fourier%20heat%20conduction&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=non-Fourier%20heat%20conduction&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=non-Fourier%20heat%20conduction&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=non-Fourier%20heat%20conduction&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=non-Fourier%20heat%20conduction&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=non-Fourier%20heat%20conduction&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=non-Fourier%20heat%20conduction&page=106">106</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=non-Fourier%20heat%20conduction&page=107">107</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=non-Fourier%20heat%20conduction&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>