CINXE.COM
Search results for: complex geometry
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: complex geometry</title> <meta name="description" content="Search results for: complex geometry"> <meta name="keywords" content="complex geometry"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="complex geometry" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="complex geometry"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 6208</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: complex geometry</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6208</span> Numerical Analysis of Laminar Mixed Convection within a Complex Geometry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Y.%20Lasbet">Y. Lasbet</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20L.%20Boukhalkhal"> A. L. Boukhalkhal</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Loubar"> K. Loubar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study of mixed convection is, usually, focused on the straight channels in which the onset of the mixed convection is well defined as function of the ratio between Grashof number and Reynolds number, Gr/Re. This is not the case for a complex channel wherein the mixed convection is not sufficiently examined in the literature. Our paper focuses on the study of the mixed convection in a complex geometry in which our main contribution reveals that the critical value of the ratio Gr/Re for the onset of the mixed convection increases highly in the type of geometry contrary to the straight channel. Furthermore, the accentuated secondary flow in this geometry prevents the thermal stratification in the flow and consequently the buoyancy driven becomes negligible. To perform these objectives, a numerical study in complex geometry for several values of the ratio Gr/Re with prescribed wall heat flux (H2), was realized by using the CFD code. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=complex%20geometry" title="complex geometry">complex geometry</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer" title=" heat transfer"> heat transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=laminar%20flow" title=" laminar flow"> laminar flow</a>, <a href="https://publications.waset.org/abstracts/search?q=mixed%20convection" title=" mixed convection"> mixed convection</a>, <a href="https://publications.waset.org/abstracts/search?q=Nusselt%20number" title=" Nusselt number"> Nusselt number</a> </p> <a href="https://publications.waset.org/abstracts/35925/numerical-analysis-of-laminar-mixed-convection-within-a-complex-geometry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35925.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">493</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6207</span> Investigation of the Capability of REALP5 to Solve Complex Fuel Geometry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=D.%20Abdelrazek">D. Abdelrazek</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20NaguibAly"> M. NaguibAly</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20A.%20Badawi"> A. A. Badawi</a>, <a href="https://publications.waset.org/abstracts/search?q=Asmaa%20G.%20Abo%20Elnour"> Asmaa G. Abo Elnour</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20A.%20El-Kafas"> A. A. El-Kafas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work is developed within IAEA Coordinated Research Program 1496, “Innovative methods in research reactor analysis: Benchmark against experimental data on neutronics and thermal-hydraulic computational methods and tools for operation and safety analysis of research reactors.” The study investigates the capability of Code RELAP5/Mod3.4 to solve complex geometry complexity. Its results are compared to the results of PARET, a common code in thermal hydraulic analysis for research reactors, belonging to MTR-PC groups. The WWR-SM reactor at the Institute of Nuclear Physics (INP) in the Republic of Uzbekistan is simulated using both PARET and RELAP5 at steady state. Results from the two codes are compared. REALP5 code succeeded in solving the complex fuel geometry. The PARET code needed some calculations to obtain the final result. Although the final results from the PARET are more accurate, the small differences in both results makes using RELAP5 code recommended in case of complex fuel assemblies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=complex%20fuel%20geometry" title="complex fuel geometry">complex fuel geometry</a>, <a href="https://publications.waset.org/abstracts/search?q=PARET" title=" PARET"> PARET</a>, <a href="https://publications.waset.org/abstracts/search?q=RELAP5" title=" RELAP5"> RELAP5</a>, <a href="https://publications.waset.org/abstracts/search?q=WWR-SM%20reactor" title=" WWR-SM reactor"> WWR-SM reactor</a> </p> <a href="https://publications.waset.org/abstracts/4164/investigation-of-the-capability-of-realp5-to-solve-complex-fuel-geometry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4164.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">333</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6206</span> The Geometry of Natural Formation: an Application of Geometrical Analysis for Complex Natural Order of Pomegranate </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anahita%20Aris">Anahita Aris</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Geometry always plays a key role in natural structures, which can be a source of inspiration for architects and urban designers to create spaces. By understanding formative principles in nature, a variety of options can be provided that lead to freedom of formation. The main purpose of this paper is to analyze the geometrical order found in pomegranate to find formative principles explaining its complex structure. The point is how spherical arils of pomegranate pressed together inside the fruit and filled the space as they expand in the growing process, which made a self-organized system leads to the formation of each of the arils are unique in size, topology and shape. The main challenge of this paper would be using advanced architectural modeling techniques to discover these principles. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=advanced%20modeling%20techniques" title="advanced modeling techniques">advanced modeling techniques</a>, <a href="https://publications.waset.org/abstracts/search?q=architectural%20modeling" title=" architectural modeling"> architectural modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=computational%20design" title=" computational design"> computational design</a>, <a href="https://publications.waset.org/abstracts/search?q=the%20geometry%20of%20natural%20formation" title=" the geometry of natural formation"> the geometry of natural formation</a>, <a href="https://publications.waset.org/abstracts/search?q=geometrical%20analysis" title=" geometrical analysis"> geometrical analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=the%20natural%20order%20of%20pomegranate" title=" the natural order of pomegranate"> the natural order of pomegranate</a>, <a href="https://publications.waset.org/abstracts/search?q=voronoi%20diagrams" title=" voronoi diagrams"> voronoi diagrams</a> </p> <a href="https://publications.waset.org/abstracts/138493/the-geometry-of-natural-formation-an-application-of-geometrical-analysis-for-complex-natural-order-of-pomegranate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/138493.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">220</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6205</span> Methodology of Geometry Simplification for Conjugate Heat Transfer of Electrical Rotating Machines Using Computational Fluid Dynamics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sachin%20Aggarwal">Sachin Aggarwal</a>, <a href="https://publications.waset.org/abstracts/search?q=Sarah%20Kassinger"> Sarah Kassinger</a>, <a href="https://publications.waset.org/abstracts/search?q=Nicholas%20Hoffman"> Nicholas Hoffman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Geometry simplification is a key step in performing conjugate heat transfer analysis using CFD. This paper proposes a standard methodology for the geometry simplification of rotating machines, such as electrical generators and electrical motors (both air and liquid-cooled). These machines are extensively deployed throughout the aerospace and automotive industries, where optimization of weight, volume, and performance is paramount -especially given the current global transition to renewable energy sources and vehicle hybridization and electrification. Conjugate heat transfer analysis is an essential step in optimizing their complex design. This methodology will help in reducing convergence issues due to poor mesh quality, thus decreasing computational cost and overall analysis time. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CFD" title="CFD">CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=electrical%20machines" title=" electrical machines"> electrical machines</a>, <a href="https://publications.waset.org/abstracts/search?q=Geometry%20simplification" title=" Geometry simplification"> Geometry simplification</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer" title=" heat transfer"> heat transfer</a> </p> <a href="https://publications.waset.org/abstracts/150058/methodology-of-geometry-simplification-for-conjugate-heat-transfer-of-electrical-rotating-machines-using-computational-fluid-dynamics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/150058.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">132</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6204</span> Liquid Bridges in a Complex Geometry: Microfluidic Drop Manipulation Inside a Wedge</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=D.%20Baratian">D. Baratian</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Cavalli"> A. Cavalli</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20van%20den%20Ende"> D. van den Ende</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Mugele"> F. Mugele </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The morphology of liquid bridges inside complex geometries is the subject of interest for many years. These efforts try to find stable liquid configuration considering the boundary condition and the physical properties of the system. On the other hand precise manipulation of droplets is highly significant in many microfluidic applications. The liquid configuration in a complex geometry can be switched by means of external stimuli. We show manipulation of droplets in a wedge structure. The profile and position of a drop in a wedge geometry has been calculated analytically assuming negligible contact angle hysteresis. The characteristic length of liquid bridge and its interfacial tension inside the surrounding medium along with the geometrical parameters of the system determine the morphology and equilibrium position of drop in the system. We use electrowetting to modify one the governing parameters to manipulate the droplet. Electrowetting provides the capability to have precise control on the drop position through tuning the voltage and consequently changing the contact angle. This technique is employed to tune drop displacement and control its position inside the wedge. Experiments demonstrate precise drop movement to its predefined position inside the wedge geometry. Experimental results show promising consistency as it is compared to our geometrical model predictions. For such a drop manipulation, appealing applications in microfluidics have been considered. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=liquid%20bridges" title="liquid bridges">liquid bridges</a>, <a href="https://publications.waset.org/abstracts/search?q=microfluidics" title=" microfluidics"> microfluidics</a>, <a href="https://publications.waset.org/abstracts/search?q=drop%20manipulation" title=" drop manipulation"> drop manipulation</a>, <a href="https://publications.waset.org/abstracts/search?q=wetting" title=" wetting"> wetting</a>, <a href="https://publications.waset.org/abstracts/search?q=electrowetting" title=" electrowetting"> electrowetting</a>, <a href="https://publications.waset.org/abstracts/search?q=capillarity" title=" capillarity "> capillarity </a> </p> <a href="https://publications.waset.org/abstracts/23905/liquid-bridges-in-a-complex-geometry-microfluidic-drop-manipulation-inside-a-wedge" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23905.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">478</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6203</span> Aspects and Studies of Fractal Geometry in Automatic Breast Cancer Detection</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mrinal%20Kanti%20Bhowmik">Mrinal Kanti Bhowmik</a>, <a href="https://publications.waset.org/abstracts/search?q=Kakali%20Das%20Jr."> Kakali Das Jr.</a>, <a href="https://publications.waset.org/abstracts/search?q=Barin%20Kumar%20De"> Barin Kumar De</a>, <a href="https://publications.waset.org/abstracts/search?q=Debotosh%20Bhattacharjee"> Debotosh Bhattacharjee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Breast cancer is the most common cancer and a leading cause of death for women in the 35 to 55 age group. Early detection of breast cancer can decrease the mortality rate of breast cancer. Mammography is considered as a ‘Gold Standard’ for breast cancer detection and a very popular modality, presently used for breast cancer screening and detection. The screening of digital mammograms often leads to over diagnosis and a consequence to unnecessary traumatic & painful biopsies. For that reason recent studies involving the use of thermal imaging as a screening technique have generated a growing interest especially in cases where the mammography is limited, as in young patients who have dense breast tissue. Tumor is a significant sign of breast cancer in both mammography and thermography. The tumors are complex in structure and they also exhibit a different statistical and textural features compared to the breast background tissue. Fractal geometry is a geometry which is used to describe this type of complex structure as per their main characteristic, where traditional Euclidean geometry fails. Over the last few years, fractal geometrics have been applied mostly in many medical image (1D, 2D, or 3D) analysis applications. In breast cancer detection using digital mammogram images, also it plays a significant role. Fractal is also used in thermography for early detection of the masses using the thermal texture. This paper presents an overview of the recent aspects and initiatives of fractals in breast cancer detection in both mammography and thermography. The scope of fractal geometry in automatic breast cancer detection using digital mammogram and thermogram images are analysed, which forms a foundation for further study on application of fractal geometry in medical imaging for improving the efficiency of automatic detection. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fractal" title="fractal">fractal</a>, <a href="https://publications.waset.org/abstracts/search?q=tumor" title=" tumor"> tumor</a>, <a href="https://publications.waset.org/abstracts/search?q=thermography" title=" thermography"> thermography</a>, <a href="https://publications.waset.org/abstracts/search?q=mammography" title=" mammography"> mammography</a> </p> <a href="https://publications.waset.org/abstracts/22188/aspects-and-studies-of-fractal-geometry-in-automatic-breast-cancer-detection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22188.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">388</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6202</span> Function of Fractals: Application of Non-Linear Geometry in Continental Architecture</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammadsadegh%20Zanganehfar">Mohammadsadegh Zanganehfar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Since the introduction of fractal geometry in 1970, numerous efforts have been made by architects and researchers to transfer this area of mathematical knowledge in the discipline of architecture and postmodernist discourse. The discourse of complexity and architecture is one of the most significant ongoing discourses in the discipline of architecture from the '70s until today and has generated significant styles such as deconstructivism and parametrism in architecture. During these years, several projects were designed and presented by designers and architects using fractal geometry, but due to the lack of sufficient knowledge and appropriate comprehension of the features and characteristics of this nonlinear geometry, none of the fractal-based designs have been successful and satisfying. Fractal geometry as a geometric technology has a long presence in the history of architecture. The current research attempts to identify and discover the characteristics, features, potentials, and functionality of fractals despite their aesthetic aspect by examining case studies of pre-modern architecture in Asia and investigating the function of fractals. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Asian%20architecture" title="Asian architecture">Asian architecture</a>, <a href="https://publications.waset.org/abstracts/search?q=fractal%20geometry" title=" fractal geometry"> fractal geometry</a>, <a href="https://publications.waset.org/abstracts/search?q=fractal%20technique" title=" fractal technique"> fractal technique</a>, <a href="https://publications.waset.org/abstracts/search?q=geometric%20properties" title=" geometric properties"> geometric properties</a> </p> <a href="https://publications.waset.org/abstracts/139987/function-of-fractals-application-of-non-linear-geometry-in-continental-architecture" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/139987.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">257</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6201</span> Universality and Synchronization in Complex Quadratic Networks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anca%20Radulescu">Anca Radulescu</a>, <a href="https://publications.waset.org/abstracts/search?q=Danae%20Evans"> Danae Evans</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The relationship between a network’s hardwiring and its emergent dynamics are central to neuroscience. We study the principles of this correspondence in a canonical setup (in which network nodes exhibit well-studied complex quadratic dynamics), then test their universality in biological networks. By extending methods from discrete dynamics, we study the effects of network connectivity on temporal patterns, encapsulating long-term behavior into the rich topology of network Mandelbrot sets. Then elements of fractal geometry can be used to predict and classify network behavior. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=canonical%20model" title="canonical model">canonical model</a>, <a href="https://publications.waset.org/abstracts/search?q=complex%20dynamics" title=" complex dynamics"> complex dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20networks" title=" dynamic networks"> dynamic networks</a>, <a href="https://publications.waset.org/abstracts/search?q=fractals" title=" fractals"> fractals</a>, <a href="https://publications.waset.org/abstracts/search?q=Mandelbrot%20set" title=" Mandelbrot set"> Mandelbrot set</a>, <a href="https://publications.waset.org/abstracts/search?q=network%20connectivity" title=" network connectivity"> network connectivity</a> </p> <a href="https://publications.waset.org/abstracts/146585/universality-and-synchronization-in-complex-quadratic-networks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/146585.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">308</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6200</span> Inverse Mapping of Weld Bead Geometry in Shielded Metal Arc-Welding: Genetic Algorithm Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=D.%20S.%20Nagesh">D. S. Nagesh</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20L.%20Datta"> G. L. Datta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the field of welding, various studies had been made by some of the previous investigators to predict as well as optimize weld bead geometric descriptors. Modeling of weld bead shape is important for predicting the quality of welds. In most of the cases, design of experiments technique to postulate multiple linear regression equations have been used. Nowadays, Genetic Algorithm (GA) an intelligent information treatment system with the characteristics of treating complex relationships as seen in welding processes used as a tool for inverse mapping/optimization of the process is attempted. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=smaw" title="smaw">smaw</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20algorithm" title=" genetic algorithm"> genetic algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=bead%20geometry" title=" bead geometry"> bead geometry</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization%2Finverse%20mapping" title=" optimization/inverse mapping"> optimization/inverse mapping</a> </p> <a href="https://publications.waset.org/abstracts/30261/inverse-mapping-of-weld-bead-geometry-in-shielded-metal-arc-welding-genetic-algorithm-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30261.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">453</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6199</span> Genetic Algorithm Approach for Inverse Mapping of Weld Bead Geometry in Shielded Metal Arc-Welding</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=D.%20S.%20Nagesh">D. S. Nagesh</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20L.%20Datta"> G. L. Datta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the field of welding, various studies had been made by some of the previous investigators to predict as well as optimize weld bead geometric descriptors. Modeling of weld bead shape is important for predicting the quality of welds. In most of the cases design of experiments technique to postulate multiple linear regression equations have been used. Nowadays Genetic Algorithm (GA) an intelligent information treatment system with the characteristics of treating complex relationships as seen in welding processes used as a tool for inverse mapping/optimization of the process is attempted. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=SMAW" title="SMAW">SMAW</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20algorithm" title=" genetic algorithm"> genetic algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=bead%20geometry" title=" bead geometry"> bead geometry</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization%2Finverse%20mapping" title=" optimization/inverse mapping"> optimization/inverse mapping</a> </p> <a href="https://publications.waset.org/abstracts/30262/genetic-algorithm-approach-for-inverse-mapping-of-weld-bead-geometry-in-shielded-metal-arc-welding" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30262.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">421</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6198</span> A Geometrical Perspective on the Insulin Evolution</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yuhei%20Kunihiro">Yuhei Kunihiro</a>, <a href="https://publications.waset.org/abstracts/search?q=Sorin%20V.%20Sabau"> Sorin V. Sabau</a>, <a href="https://publications.waset.org/abstracts/search?q=Kazuhiro%20Shibuya"> Kazuhiro Shibuya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We study the molecular evolution of insulin from the metric geometry point of view. In mathematics, and particularly in geometry, distances and metrics between objects are of fundamental importance. Using a weaker notion than the classical distance, namely the weighted quasi-metrics, one can study the geometry of biological sequences (DNA, mRNA, or proteins) space. We analyze from the geometrical point of view a family of 60 insulin homologous sequences ranging on a large variety of living organisms from human to the nematode C. elegans. We show that the distances between sequences provide important information about the evolution and function of insulin. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=metric%20geometry" title="metric geometry">metric geometry</a>, <a href="https://publications.waset.org/abstracts/search?q=evolution" title=" evolution"> evolution</a>, <a href="https://publications.waset.org/abstracts/search?q=insulin" title=" insulin"> insulin</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20elegans" title=" C. elegans "> C. elegans </a> </p> <a href="https://publications.waset.org/abstracts/1430/a-geometrical-perspective-on-the-insulin-evolution" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1430.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">337</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6197</span> Computational Fluids Dynamics Investigation of the Effect of Geometric Parameters on the Ejector Performance</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Michel%20Wakim">Michel Wakim</a>, <a href="https://publications.waset.org/abstracts/search?q=Rodrigo%20Rivera%20Tinoco"> Rodrigo Rivera Tinoco</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Supersonic ejector is an economical device that use high pressure vapor to compress a low pressure vapor without any rotating parts or external power sources. Entrainment ratio is a major characteristic of the ejector performance, so the ejector performance is highly dependent on its geometry. The aim of this paper is to design ejector geometry, based on pre-specified operating conditions, and to study the flow behavior inside the ejector by using computational fluid dynamics ‘CFD’ by using ‘ANSYS FLUENT 15.0’ software. In the first section; 1-D mathematical model is carried out to predict the ejector geometry. The second part describes the flow behavior inside the designed model. CFD is the most reliable tool to reveal the mixing process at different parts of the supersonic turbulent flow and to study the effect of the geometry on the effective ejector area. Finally, the results show the effect of the geometry on the entrainment ratio. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=computational%20fluids%20dynamics" title="computational fluids dynamics">computational fluids dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=ejector" title=" ejector"> ejector</a>, <a href="https://publications.waset.org/abstracts/search?q=entrainment%20ratio" title=" entrainment ratio"> entrainment ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=geometry%20optimization" title=" geometry optimization"> geometry optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=performance" title=" performance"> performance</a> </p> <a href="https://publications.waset.org/abstracts/60609/computational-fluids-dynamics-investigation-of-the-effect-of-geometric-parameters-on-the-ejector-performance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60609.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">274</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6196</span> Vanadium (V) Complexes of a Tripodal Ligand, Their Characterization and Biological Implications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mannar%20R.%20Maurya">Mannar R. Maurya</a>, <a href="https://publications.waset.org/abstracts/search?q=Bhawna%20Uprety"> Bhawna Uprety</a>, <a href="https://publications.waset.org/abstracts/search?q=Fernando%20Avecilla"> Fernando Avecilla</a>, <a href="https://publications.waset.org/abstracts/search?q=Pedro%20Ad%C3%A3o"> Pedro Adão</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Costa%20Pessoa"> J. Costa Pessoa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The reaction of the tripodal tetradentate dibasic ligand 6,6'–(2–(pyridin–2–yl)ethylazanediyl)bis(methylene)bis(2,4–di–tert–butylphenol), H2L1 I, with [VIVO(acac)2] in CH3CN gives the VVO–complex, [VVO(acac)(L1)] 1. Crystallization of 1 in CH3CN at ~0 ºC, gives dark blue crystals of 1, while at room temperature it affords dark green crystals of [{VVO(L1)}2µ–O] 3. Upon prolonged treatment of 1 in MeOH [VVO(OMe)(MeOH)(L1)] 2 is obtained. All three complexes are analyzed by single–crystal X–ray diffraction, depicting distorted octahedral geometry around vanadium. In the reaction of H2L1 with VIVOSO4 partial hydrolysis of the tripodal ligand results in elimination of the pyridyl fragment of L1 and the formation of H[VVO2(L2)] 4, containing the ONO tridentate ligand 6,6'–azanediylbis(methylene)bis(2,4–di–tert–butylphenol), H2L2 II. Compound 4, which was not fully characterized, undergoes dimerization in acetone yielding the hydroxido–bridged [{VVO(L2)}2µ–(HO)2] 5, having distorted octahedral geometry around each vanadium. In contrast, from a solution of 4 in acetonitrile, the dinuclear compound [{VVO(L2)}2µ–O] 6 is obtained, with trigonal bipyramidal geometry around each vanadium. The methoxido complex 2 is successfully employed as a functional catechol–oxidase mimic in the oxidation of catechol to o–quinone under air. The process is confirmed to follow a Michaelis–Menten type kinetics with respect to catechol, the Vmax and KM values obtained being 7.66×10–6 M min -1 and 0.0557 M, respectively, and the turnover frequency is 0.0541 min–1. Complex 2 is also used as a catalyst precursor for the oxidative bromination of thymol in aqueous medium. The selectivity shows quite interesting trends, namely when not using excess of primary oxidizing agent, H2O2 the para mono–brominated product corresponds to ~93 % of the products and no dibromo derivative is formed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=oxidovanadium%20%28V%29%20complexes" title="oxidovanadium (V) complexes">oxidovanadium (V) complexes</a>, <a href="https://publications.waset.org/abstracts/search?q=tripodal%20ligand" title=" tripodal ligand"> tripodal ligand</a>, <a href="https://publications.waset.org/abstracts/search?q=crystal%20structure" title=" crystal structure"> crystal structure</a>, <a href="https://publications.waset.org/abstracts/search?q=catechol%20oxidase%20mimetic%20activity" title=" catechol oxidase mimetic activity"> catechol oxidase mimetic activity</a> </p> <a href="https://publications.waset.org/abstracts/39537/vanadium-v-complexes-of-a-tripodal-ligand-their-characterization-and-biological-implications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39537.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">341</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6195</span> Pressure Losses on Realistic Geometry of Tracheobronchial Tree</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Michaela%20Chovancova">Michaela Chovancova</a>, <a href="https://publications.waset.org/abstracts/search?q=Jakub%20Elcner"> Jakub Elcner</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Real bronchial tree is very complicated piping system. Analysis of flow and pressure losses in this system is very difficult. Due to the complex geometry and the very small size in the lower generations is examination by CFD possible only in the central part of bronchial tree. For specify the pressure losses of lower generations is necessary to provide a mathematical equation. Determination of mathematical formulas for calculating the pressure losses in the real lungs is due to its complexity and diversity lengthy and inefficient process. For these calculations is necessary the lungs to slightly simplify (same cross-section over the length of individual generation) or use one of the models of lungs. The simplification could cause deviations from real values. The article compares the values of pressure losses obtained from CFD simulation of air flow in the central part of the real bronchial tree with the values calculated in a slightly simplified real lungs by using a mathematical relationship derived from the Bernoulli equation and continuity equation. Then, evaluate the desirability of using this formula to determine the pressure loss across the bronchial tree. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pressure%20gradient" title="pressure gradient">pressure gradient</a>, <a href="https://publications.waset.org/abstracts/search?q=airways%20resistance" title=" airways resistance"> airways resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=real%20geometry%20of%20bronchial%20tree" title=" real geometry of bronchial tree"> real geometry of bronchial tree</a>, <a href="https://publications.waset.org/abstracts/search?q=breathing" title=" breathing"> breathing</a> </p> <a href="https://publications.waset.org/abstracts/27498/pressure-losses-on-realistic-geometry-of-tracheobronchial-tree" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27498.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">323</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6194</span> Flap Structure Geometry in Breakthrough Structure: A Case Study from the Southern Tunisian Atlas Example, Orbata Anticline</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Soulef%20Amamria">Soulef Amamria</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Sadok%20Bensalem"> Mohamed Sadok Bensalem</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Ghanmi"> Mohamed Ghanmi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The structural and sedimentological study of fault-related- folds in the Southern Tunisian Atlas is distinguished by a special geometry of the gravitational structures. This distinct geometry is observable in the example of a flap structure in Jebel Ben Zannouch with the formation of a stuck syncline. This geometry can be explained by the mechanism of major thrusting in Orbata anticline in the occidental extremity of Gafsa chains, with asymmetrical flank dips and hinge migration kinematics. These kinematics was originally controlled by the Breakthrough structure; the study of this special geometry of gravity flap structure depends on the sedimentation domain, shortening ratios, and erosion speed. This study constitutes one of the complete examples of kinematic model validation on a field scale. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fault-related-folds" title="fault-related-folds">fault-related-folds</a>, <a href="https://publications.waset.org/abstracts/search?q=southern%20Tunisian%20Atlas" title=" southern Tunisian Atlas"> southern Tunisian Atlas</a>, <a href="https://publications.waset.org/abstracts/search?q=flap%20structure" title=" flap structure"> flap structure</a>, <a href="https://publications.waset.org/abstracts/search?q=breakthrough" title=" breakthrough"> breakthrough</a> </p> <a href="https://publications.waset.org/abstracts/161486/flap-structure-geometry-in-breakthrough-structure-a-case-study-from-the-southern-tunisian-atlas-example-orbata-anticline" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/161486.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">101</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6193</span> Biomechanics of Atalantoaxial Complex for Various Posterior Fixation Techniques</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arun%20C.%20O.">Arun C. O.</a>, <a href="https://publications.waset.org/abstracts/search?q=Shrijith%20M.%20B."> Shrijith M. B.</a>, <a href="https://publications.waset.org/abstracts/search?q=Thakur%20Rajesh%20Singh"> Thakur Rajesh Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study aims to analyze and understand the biomechanical stability of the atlantoaxial complex under different posterior fixation techniques using the finite element method in the Indian context. The conventional cadaveric studies performed show heterogeneity in biomechanical properties. The finite element method being a versatile numerical tool, is being wisely used for biomechanics analysis of atlantoaxial complex. However, the biomechanics of posterior fixation techniques for an Indian subject is missing in the literature. It is essential to study in this context as the bone density and geometry of vertebrae vary from region to region, thereby requiring different screw lengths and it can affect the range of motion(ROM), stresses generated. The current study uses CT images for developing a 3D finite element model with C1-C2 geometry without ligaments. Instrumentation is added to this geometry to develop four models for four fixation techniques, namely C1-C2 TA, C1LM-C2PS, C1LM-C2Pars, C1LM-C2TL. To simulate Flexion, extension, lateral bending, axial rotation, 1.5 Nm is applied to C1 while the bottom nodes of C2 are fixed. Then Range of Motion (ROM) is compared with the unstable model(without ligaments). All the fixation techniques showed more than 97 percent reduction in the Range of Motion. The von-mises stresses developed in the screw constructs are obtained. From the studies, it is observed that Transarticular technique is most stable in Lateral Bending, C1LM-C2 Translaminar is found most stable in Flexion/extension. The Von-Mises stresses developed minimum in Trasarticular technique in lateral bending and axial rotation, whereas stress developed in C2 pars construct minimum in Flexion/ Extension. On average, the TA technique is stable in all motions and also stresses in constructs are less in TA. Tarnsarticular technique is found to be the best fixation technique for Indian subjects among the 4 methods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biomechanics" title="biomechanics">biomechanics</a>, <a href="https://publications.waset.org/abstracts/search?q=cervical%20spine" title=" cervical spine"> cervical spine</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20model" title=" finite element model"> finite element model</a>, <a href="https://publications.waset.org/abstracts/search?q=posterior%20fixation" title=" posterior fixation"> posterior fixation</a> </p> <a href="https://publications.waset.org/abstracts/143907/biomechanics-of-atalantoaxial-complex-for-various-posterior-fixation-techniques" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/143907.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">143</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6192</span> Effect of the Cross-Sectional Geometry on Heat Transfer and Particle Motion of Circulating Fluidized Bed Riser for CO2 Capture</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seungyeong%20Choi">Seungyeong Choi</a>, <a href="https://publications.waset.org/abstracts/search?q=Namkyu%20Lee"> Namkyu Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Dong%20Il%20Shim"> Dong Il Shim</a>, <a href="https://publications.waset.org/abstracts/search?q=Young%20Mun%20Lee"> Young Mun Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Yong-Ki%20Park"> Yong-Ki Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyung%20Hee%20Cho"> Hyung Hee Cho</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Effect of the cross-sectional geometry on heat transfer and particle motion of circulating fluidized bed riser for CO<sub>2</sub> capture was investigated. Numerical simulation using Eulerian-eulerian method with kinetic theory of granular flow was adopted to analyze gas-solid flow consisting in circulating fluidized bed riser. Circular, square, and rectangular cross-sectional geometry cases of the same area were carried out. Rectangular cross-sectional geometries were analyzed having aspect ratios of 1: 2, 1: 4, 1: 8, and 1:16. The cross-sectional geometry significantly influenced the particle motion and heat transfer. The downward flow pattern of solid particles near the wall was changed. The gas-solid mixing degree of the riser with the rectangular cross section of the high aspect ratio was the lowest. There were differences in bed-to-wall heat transfer coefficient according to rectangular geometry with different aspect ratios. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bed%20geometry" title="bed geometry">bed geometry</a>, <a href="https://publications.waset.org/abstracts/search?q=computational%20fluid%20dynamics" title=" computational fluid dynamics"> computational fluid dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=circulating%20fluidized%20bed%20riser" title=" circulating fluidized bed riser"> circulating fluidized bed riser</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer" title=" heat transfer"> heat transfer</a> </p> <a href="https://publications.waset.org/abstracts/80529/effect-of-the-cross-sectional-geometry-on-heat-transfer-and-particle-motion-of-circulating-fluidized-bed-riser-for-co2-capture" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80529.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">260</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6191</span> On Musical Information Geometry with Applications to Sonified Image Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shannon%20Steinmetz">Shannon Steinmetz</a>, <a href="https://publications.waset.org/abstracts/search?q=Ellen%20Gethner"> Ellen Gethner</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, a theoretical foundation is developed for patterned segmentation of audio using the geometry of music and statistical manifold. We demonstrate image content clustering using conic space sonification. The algorithm takes a geodesic curve as a model estimator of the three-parameter Gamma distribution. The random variable is parameterized by musical centricity and centric velocity. Model parameters predict audio segmentation in the form of duration and frame count based on the likelihood of musical geometry transition. We provide an example using a database of randomly selected images, resulting in statistically significant clusters of similar image content. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sonification" title="sonification">sonification</a>, <a href="https://publications.waset.org/abstracts/search?q=musical%20information%20geometry" title=" musical information geometry"> musical information geometry</a>, <a href="https://publications.waset.org/abstracts/search?q=image" title=" image"> image</a>, <a href="https://publications.waset.org/abstracts/search?q=content%20extraction" title=" content extraction"> content extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=automated%20quantification" title=" automated quantification"> automated quantification</a>, <a href="https://publications.waset.org/abstracts/search?q=audio%20segmentation" title=" audio segmentation"> audio segmentation</a>, <a href="https://publications.waset.org/abstracts/search?q=pattern%20recognition" title=" pattern recognition"> pattern recognition</a> </p> <a href="https://publications.waset.org/abstracts/133600/on-musical-information-geometry-with-applications-to-sonified-image-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/133600.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">237</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6190</span> English Complex Aspectuality: A Functional Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cunyu%20Zhang">Cunyu Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Based on Systemic Functional Linguistics, this paper aims to explore the complex aspectuality system of English. This study shows that the complex aspectuality is classified into complex viewpoint aspect which refers to the homogeneous or heterogeneous ways continuously viewing on the same situation by the speaker and complex situation aspect which is the combined configuration of the internal time schemata of situation. Through viewpoint shifting and repeating, the complex viewpoint aspect is formed in two combination ways. Complex situation aspect is combined by the way of hypotactic verbal complex and the limitation of participant and circumstance in a clause. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aspect%20series" title="aspect series">aspect series</a>, <a href="https://publications.waset.org/abstracts/search?q=complex%20situation%20aspect" title=" complex situation aspect"> complex situation aspect</a>, <a href="https://publications.waset.org/abstracts/search?q=complex%20viewpoint%20aspect" title=" complex viewpoint aspect"> complex viewpoint aspect</a>, <a href="https://publications.waset.org/abstracts/search?q=systemic%20functional%20linguistics" title=" systemic functional linguistics"> systemic functional linguistics</a> </p> <a href="https://publications.waset.org/abstracts/41687/english-complex-aspectuality-a-functional-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41687.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">356</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6189</span> Jointly Learning Python Programming and Analytic Geometry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cristina-Maria%20P%C4%83curar">Cristina-Maria Păcurar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper presents an original Python-based application that outlines the advantages of combining some elementary notions of mathematics with the study of a programming language. The application support refers to some of the first lessons of analytic geometry, meaning conics and quadrics and their reduction to a standard form, as well as some related notions. The chosen programming language is Python, not only for its closer to an everyday language syntax – and therefore, enhanced readability – but also for its highly reusable code, which is of utmost importance for a mathematician that is accustomed to exploit already known and used problems to solve new ones. The purpose of this paper is, on one hand, to support the idea that one of the most appropriate means to initiate one into programming is throughout mathematics, and reciprocal, one of the most facile and handy ways to assimilate some basic knowledge in the study of mathematics is to apply them in a personal project. On the other hand, besides being a mean of learning both programming and analytic geometry, the application subject to this paper is itself a useful tool for it can be seen as an independent original Python package for analytic geometry. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=analytic%20geometry" title="analytic geometry">analytic geometry</a>, <a href="https://publications.waset.org/abstracts/search?q=conics" title=" conics"> conics</a>, <a href="https://publications.waset.org/abstracts/search?q=python" title=" python"> python</a>, <a href="https://publications.waset.org/abstracts/search?q=quadrics" title=" quadrics"> quadrics</a> </p> <a href="https://publications.waset.org/abstracts/64133/jointly-learning-python-programming-and-analytic-geometry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64133.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">294</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6188</span> Generalized Chaplygin Gas and Varying Bulk Viscosity in Lyra Geometry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20K.%20Sethi">A. K. Sethi</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20N.%20Patra"> R. N. Patra</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Nayak"> B. Nayak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we have considered Friedmann-Robertson-Walker (FRW) metric with generalized Chaplygin gas which has viscosity in the context of Lyra geometry. The viscosity is considered in two different ways (i.e. zero viscosity, non-constant <em>r</em> (rho)-dependent bulk viscosity) using constant deceleration parameter which concluded that, for a special case, the viscous generalized Chaplygin gas reduces to modified Chaplygin gas. The represented model indicates on the presence of Chaplygin gas in the Universe. Observational constraints are applied and discussed on the physical and geometrical nature of the Universe. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bulk%20viscosity" title="bulk viscosity">bulk viscosity</a>, <a href="https://publications.waset.org/abstracts/search?q=lyra%20geometry" title=" lyra geometry"> lyra geometry</a>, <a href="https://publications.waset.org/abstracts/search?q=generalized%20chaplygin%20gas" title=" generalized chaplygin gas"> generalized chaplygin gas</a>, <a href="https://publications.waset.org/abstracts/search?q=cosmology" title=" cosmology"> cosmology</a> </p> <a href="https://publications.waset.org/abstracts/105557/generalized-chaplygin-gas-and-varying-bulk-viscosity-in-lyra-geometry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/105557.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">176</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6187</span> Synthesis, Structural, Spectroscopic and Nonlinear Optical Properties of New Picolinate Complex of Manganese (II) Ion</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=%C3%96mer%20Tamer">Ömer Tamer</a>, <a href="https://publications.waset.org/abstracts/search?q=Davut%20Avc%C4%B1"> Davut Avcı</a>, <a href="https://publications.waset.org/abstracts/search?q=Yusuf%20Atalay"> Yusuf Atalay</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Novel picolinate complex of manganese(II) ion, [Mn(pic)2] [pic: picolinate or 2-pyridinecarboxylate], was prepared and fully characterized by single crystal X-ray structure determination. The manganese(II) complex was characterized by FT-IR, FT-Raman and UV–Vis spectroscopic techniques. The C=O, C=N and C=C stretching vibrations were found to be strong and simultaneously active in IR and spectra. In order to support these experimental techniques, density functional theory (DFT) calculations were performed at Gaussian 09W. Although the supramolecular interactions have some influences on the molecular geometry in solid state phase, the calculated data show that the predicted geometries can reproduce the structural parameters. The molecular modeling and calculations of IR, Raman and UV-vis spectra were performed by using DFT levels. Nonlinear optical (NLO) properties of synthesized complex were evaluated by the determining of dipole moment (µ), polarizability (α) and hyperpolarizability (β). Obtained results demonstrated that the manganese(II) complex is a good candidate for NLO material. Stability of the molecule arising from hyperconjugative interactions and charge delocalization was analyzed using natural bond orbital (NBO) analysis. The highest occupied and the lowest unoccupied molecular orbitals (HOMO and LUMO) which is also known the frontier molecular orbitals were simulated, and obtained energy gap confirmed that charge transfer occurs within manganese(II) complex. Molecular electrostatic potential (MEP) for synthesized manganese(II) complex displays the electrophilic and nucleophilic regions. From MEP, the the most negative region is located over carboxyl O atoms while positive region is located over H atoms. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DFT" title="DFT">DFT</a>, <a href="https://publications.waset.org/abstracts/search?q=picolinate" title=" picolinate"> picolinate</a>, <a href="https://publications.waset.org/abstracts/search?q=IR" title=" IR"> IR</a>, <a href="https://publications.waset.org/abstracts/search?q=Raman" title=" Raman"> Raman</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20optic" title=" nonlinear optic"> nonlinear optic</a> </p> <a href="https://publications.waset.org/abstracts/25057/synthesis-structural-spectroscopic-and-nonlinear-optical-properties-of-new-picolinate-complex-of-manganese-ii-ion" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25057.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">499</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6186</span> Multi-Factor Optimization Method through Machine Learning in Building Envelope Design: Focusing on Perforated Metal Façade</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jinwooung%20Kim">Jinwooung Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Jae-Hwan%20Jung"> Jae-Hwan Jung</a>, <a href="https://publications.waset.org/abstracts/search?q=Seong-Jun%20Kim"> Seong-Jun Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Sung-Ah%20Kim"> Sung-Ah Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Because the building envelope has a significant impact on the operation and maintenance stage of the building, designing the facade considering the performance can improve the performance of the building and lower the maintenance cost of the building. In general, however, optimizing two or more performance factors confronts the limits of time and computational tools. The optimization phase typically repeats infinitely until a series of processes that generate alternatives and analyze the generated alternatives achieve the desired performance. In particular, as complex geometry or precision increases, computational resources and time are prohibitive to find the required performance, so an optimization methodology is needed to deal with this. Instead of directly analyzing all the alternatives in the optimization process, applying experimental techniques (heuristic method) learned through experimentation and experience can reduce resource waste. This study proposes and verifies a method to optimize the double envelope of a building composed of a perforated panel using machine learning to the design geometry and quantitative performance. The proposed method is to achieve the required performance with fewer resources by supplementing the existing method which cannot calculate the complex shape of the perforated panel. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=building%20envelope" title="building envelope">building envelope</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title=" machine learning"> machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=perforated%20metal" title=" perforated metal"> perforated metal</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-factor%20optimization" title=" multi-factor optimization"> multi-factor optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=fa%C3%A7ade" title=" façade"> façade</a> </p> <a href="https://publications.waset.org/abstracts/81902/multi-factor-optimization-method-through-machine-learning-in-building-envelope-design-focusing-on-perforated-metal-facade" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81902.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">224</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6185</span> Reducing Support Structures in Design for Additive Manufacturing: A Neural Networks Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Olivia%20Borgue">Olivia Borgue</a>, <a href="https://publications.waset.org/abstracts/search?q=Massimo%20Panarotto"> Massimo Panarotto</a>, <a href="https://publications.waset.org/abstracts/search?q=Ola%20Isaksson"> Ola Isaksson</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This article presents a neural networks-based strategy for reducing the need for support structures when designing for additive manufacturing (AM). Additive manufacturing is a relatively new and immature industrial technology, and the information to make confident decisions when designing for AM is limited. This lack of information impacts especially the early stages of engineering design, for instance, it is difficult to actively consider the support structures needed for manufacturing a part. This difficulty is related to the challenge of designing a product geometry accounting for customer requirements, manufacturing constraints and minimization of support structure. The approach presented in this article proposes an automatized geometry modification technique for reducing the use of the support structures while designing for AM. This strategy starts with a neural network-based strategy for shape recognition to achieve product classification, using an STL file of the product as input. Based on the classification, an automatic part geometry modification based on MATLAB© is implemented. At the end of the process, the strategy presents different geometry modification alternatives depending on the type of product to be designed. The geometry alternatives are then evaluated adopting a QFD-like decision support tool. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=additive%20manufacturing" title="additive manufacturing">additive manufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=engineering%20design" title=" engineering design"> engineering design</a>, <a href="https://publications.waset.org/abstracts/search?q=geometry%20modification%20optimization" title=" geometry modification optimization"> geometry modification optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=neural%20networks" title=" neural networks"> neural networks</a> </p> <a href="https://publications.waset.org/abstracts/97282/reducing-support-structures-in-design-for-additive-manufacturing-a-neural-networks-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/97282.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">253</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6184</span> Use of Fractal Geometry in Machine Learning</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fuad%20M.%20Alkoot">Fuad M. Alkoot</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main component of a machine learning system is the classifier. Classifiers are mathematical models that can perform classification tasks for a specific application area. Additionally, many classifiers are combined using any of the available methods to reduce the classifier error rate. The benefits gained from the combination of multiple classifier designs has motivated the development of diverse approaches to multiple classifiers. We aim to investigate using fractal geometry to develop an improved classifier combiner. Initially we experiment with measuring the fractal dimension of data and use the results in the development of a combiner strategy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fractal%20geometry" title="fractal geometry">fractal geometry</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title=" machine learning"> machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=classifier" title=" classifier"> classifier</a>, <a href="https://publications.waset.org/abstracts/search?q=fractal%20dimension" title=" fractal dimension"> fractal dimension</a> </p> <a href="https://publications.waset.org/abstracts/141274/use-of-fractal-geometry-in-machine-learning" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/141274.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">217</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6183</span> Effectiveness of GeoGebra in Developing Conceptual Understanding of Transformation Geometry Case of Grade 11 Students</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gebreegziabher%20Hailu%20Gebrecherkos">Gebreegziabher Hailu Gebrecherkos</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study examines the effectiveness of GeoGebra in developing the conceptual understanding of transformation geometry among Grade 11 students. Utilizing a quasi-experimental design, the research compares the learning outcomes of students who engaged with GeoGebra against those who received traditional instruction. Pre- and post-tests were administered to assess students' grasp of key transformation concepts, including translations, rotations, reflections, and dilations. Additionally, qualitative data were gathered through student interviews and classroom observations to explore their experiences and perceptions of using GeoGebra. Results indicate that students utilizing GeoGebra showed significantly greater improvement in their understanding of transformation geometry concepts. The interactive features of GeoGebra facilitated visualization and exploration, leading to enhanced engagement and deeper conceptual insights. The findings underscore the potential of GeoGebra as a powerful educational tool that not only fosters mathematical understanding but also accommodates diverse learning styles in the classroom. This study contributes valuable insights for educators seeking to improve the teaching and learning of transformation geometry in secondary education. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=calculus" title="calculus">calculus</a>, <a href="https://publications.waset.org/abstracts/search?q=conceptual%20understanding" title=" conceptual understanding"> conceptual understanding</a>, <a href="https://publications.waset.org/abstracts/search?q=GeoGebra" title=" GeoGebra"> GeoGebra</a>, <a href="https://publications.waset.org/abstracts/search?q=transformation%20geometry" title=" transformation geometry"> transformation geometry</a> </p> <a href="https://publications.waset.org/abstracts/192217/effectiveness-of-geogebra-in-developing-conceptual-understanding-of-transformation-geometry-case-of-grade-11-students" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/192217.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">21</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6182</span> Design and Validation of Different Steering Geometries for an All-Terrain Vehicle</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Prabhsharan%20Singh">Prabhsharan Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Rahul%20Sindhu"> Rahul Sindhu</a>, <a href="https://publications.waset.org/abstracts/search?q=Piyush%20Sikka"> Piyush Sikka</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The steering system is an integral part and medium through which the driver communicates with the vehicle and terrain, hence the most suitable steering geometry as per requirements must be chosen. The function of the chosen steering geometry of an All-Terrain Vehicle (ATV) is to provide the desired understeer gradient, minimum tire slippage, expected weight transfer during turning as these are requirements for a good steering geometry of a BAJA ATV. This research paper focuses on choosing the best suitable steering geometry for BAJA ATV tracks by reasoning the working principle and using fundamental trigonometric functions for obtaining these geometries on the same vehicle itself, namely Ackermann, Anti- Ackermann, Parallel Ackermann. Full vehicle analysis was carried out on Adams Car Analysis software, and graphical results were obtained for various parameters. Steering geometries were achieved by using a single versatile knuckle for frontward and rearward tie-rod placement and were practically tested with the help of data acquisition systems set up on the ATV. Each was having certain characteristics, setup, and parameters were observed for the BAJA ATV, and correlations were created between analytical and practical values. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=all-terrain%20vehicle" title="all-terrain vehicle">all-terrain vehicle</a>, <a href="https://publications.waset.org/abstracts/search?q=Ackermann" title=" Ackermann"> Ackermann</a>, <a href="https://publications.waset.org/abstracts/search?q=Adams%20car" title=" Adams car"> Adams car</a>, <a href="https://publications.waset.org/abstracts/search?q=Baja%20Sae" title=" Baja Sae"> Baja Sae</a>, <a href="https://publications.waset.org/abstracts/search?q=steering%20geometry" title=" steering geometry"> steering geometry</a>, <a href="https://publications.waset.org/abstracts/search?q=steering%20system" title=" steering system"> steering system</a>, <a href="https://publications.waset.org/abstracts/search?q=tire%20slip" title=" tire slip"> tire slip</a>, <a href="https://publications.waset.org/abstracts/search?q=traction" title=" traction"> traction</a>, <a href="https://publications.waset.org/abstracts/search?q=understeer%20gradient" title=" understeer gradient"> understeer gradient</a> </p> <a href="https://publications.waset.org/abstracts/121416/design-and-validation-of-different-steering-geometries-for-an-all-terrain-vehicle" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/121416.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">154</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6181</span> Complex Fuzzy Evolution Equation with Nonlocal Conditions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdelati%20El%20Allaoui">Abdelati El Allaoui</a>, <a href="https://publications.waset.org/abstracts/search?q=Said%20Melliani"> Said Melliani</a>, <a href="https://publications.waset.org/abstracts/search?q=Lalla%20Saadia%20Chadli"> Lalla Saadia Chadli</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this paper is to study the existence and uniqueness of Mild solutions for a complex fuzzy evolution equation with nonlocal conditions that accommodates the notion of fuzzy sets defined by complex-valued membership functions. We first propose definition of complex fuzzy strongly continuous semigroups. We then give existence and uniqueness result relevant to the complex fuzzy evolution equation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Complex%20fuzzy%20evolution%20equations" title="Complex fuzzy evolution equations">Complex fuzzy evolution equations</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlocal%20conditions" title=" nonlocal conditions"> nonlocal conditions</a>, <a href="https://publications.waset.org/abstracts/search?q=mild%20solution" title=" mild solution"> mild solution</a>, <a href="https://publications.waset.org/abstracts/search?q=complex%20fuzzy%20semigroups" title=" complex fuzzy semigroups"> complex fuzzy semigroups</a> </p> <a href="https://publications.waset.org/abstracts/59900/complex-fuzzy-evolution-equation-with-nonlocal-conditions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59900.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">282</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6180</span> A Comparative Case Study of the Impact of Square and Yurt-Shape Buildings on Energy Efficiency</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Valeriya%20Tyo">Valeriya Tyo</a>, <a href="https://publications.waset.org/abstracts/search?q=Serikbolat%20Yessengabulov"> Serikbolat Yessengabulov </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Regions with extreme climate conditions such as Astana city require energy saving measures to increase the energy performance of buildings which are responsible for more than 40% of total energy consumption. Identification of optimal building geometry is one of the key factors to be considered. The architectural form of a building has the impact on space heating and cooling energy use, however, the interrelationship between the geometry and resultant energy use is not always readily apparent. This paper presents a comparative case study of two prototypical buildings with compact building shape to assess its impact on energy performance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=building%20geometry" title="building geometry">building geometry</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20efficiency" title=" energy efficiency"> energy efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20gain" title=" heat gain"> heat gain</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20loss" title=" heat loss"> heat loss</a> </p> <a href="https://publications.waset.org/abstracts/37694/a-comparative-case-study-of-the-impact-of-square-and-yurt-shape-buildings-on-energy-efficiency" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37694.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">499</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6179</span> Noncommutative Differential Structure on Finite Groups</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ibtisam%20Masmali">Ibtisam Masmali</a>, <a href="https://publications.waset.org/abstracts/search?q=Edwin%20Beggs"> Edwin Beggs</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we take example of differential calculi, on the finite group A4. Then, we apply methods of non-commutative of non-commutative differential geometry to this example, and see how similar the results are to those of classical differential geometry. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=di%EF%AC%80erential%20calculi" title="differential calculi">differential calculi</a>, <a href="https://publications.waset.org/abstracts/search?q=%EF%AC%81nite%20group%20A4" title=" finite group A4"> finite group A4</a>, <a href="https://publications.waset.org/abstracts/search?q=Christo%EF%AC%80el%20symbols" title=" Christoffel symbols"> Christoffel symbols</a>, <a href="https://publications.waset.org/abstracts/search?q=covariant%20derivative" title=" covariant derivative"> covariant derivative</a>, <a href="https://publications.waset.org/abstracts/search?q=torsion%20compatible" title=" torsion compatible"> torsion compatible</a> </p> <a href="https://publications.waset.org/abstracts/3359/noncommutative-differential-structure-on-finite-groups" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3359.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">252</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=complex%20geometry&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=complex%20geometry&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=complex%20geometry&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=complex%20geometry&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=complex%20geometry&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=complex%20geometry&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=complex%20geometry&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=complex%20geometry&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=complex%20geometry&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=complex%20geometry&page=206">206</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=complex%20geometry&page=207">207</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=complex%20geometry&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>