CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;20 of 20 results for author: <span class="mathjax">Rupak, G</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/hep-lat" aria-role="search"> Searching in archive <strong>hep-lat</strong>. <a href="/search/?searchtype=author&amp;query=Rupak%2C+G">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Rupak, G"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Rupak%2C+G&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Rupak, G"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.17488">arXiv:2210.17488</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2210.17488">pdf</a>, <a href="https://arxiv.org/format/2210.17488">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41586-024-07422-z">10.1038/s41586-024-07422-z <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Wavefunction matching for solving quantum many-body problems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Elhatisari%2C+S">Serdar Elhatisari</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bovermann%2C+L">Lukas Bovermann</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Ma%2C+Y">Yuanzhuo Ma</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Epelbaum%2C+E">Evgeny Epelbaum</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Frame%2C+D">Dillon Frame</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hildenbrand%2C+F">Fabian Hildenbrand</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kim%2C+M">Myungkuk Kim</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kim%2C+Y">Youngman Kim</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Krebs%2C+H">Hermann Krebs</a>, <a href="/search/hep-lat?searchtype=author&amp;query=L%C3%A4hde%2C+T+A">Timo A. L盲hde</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lee%2C+D">Dean Lee</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Li%2C+N">Ning Li</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lu%2C+B">Bing-Nan Lu</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Mei%C3%9Fner%2C+U">Ulf-G. Mei脽ner</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Rupak%2C+G">Gautam Rupak</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Shen%2C+S">Shihang Shen</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Song%2C+Y">Young-Ho Song</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Stellin%2C+G">Gianluca Stellin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.17488v4-abstract-short" style="display: inline;"> Ab initio calculations play an essential role in our fundamental understanding of quantum many-body systems across many subfields, from strongly correlated fermions to quantum chemistry and from atomic and molecular systems to nuclear physics. One of the primary challenges is to perform accurate calculations for systems where the interactions may be complicated and difficult for the chosen computa&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.17488v4-abstract-full').style.display = 'inline'; document.getElementById('2210.17488v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.17488v4-abstract-full" style="display: none;"> Ab initio calculations play an essential role in our fundamental understanding of quantum many-body systems across many subfields, from strongly correlated fermions to quantum chemistry and from atomic and molecular systems to nuclear physics. One of the primary challenges is to perform accurate calculations for systems where the interactions may be complicated and difficult for the chosen computational method to handle. Here we address the problem by introducing a new approach called wavefunction matching. Wavefunction matching transforms the interaction between particles so that the wavefunctions up to some finite range match that of an easily computable interaction. This allows for calculations of systems that would otherwise be impossible due to problems such as Monte Carlo sign cancellations. We apply the method to lattice Monte Carlo simulations of light nuclei, medium-mass nuclei, neutron matter, and nuclear matter. We use high-fidelity chiral effective field theory interactions and find good agreement with empirical data. These results are accompanied by new insights on the nuclear interactions that may help to resolve long-standing challenges in accurately reproducing nuclear binding energies, charge radii, and nuclear matter saturation in ab initio calculations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.17488v4-abstract-full').style.display = 'none'; document.getElementById('2210.17488v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 31 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">24 pages, 10 figues, 13 tables. This version is the same as the version arXiv:2210.17488v2, and the final version is available at the Nature website</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature 630, 59-63 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1702.05177">arXiv:1702.05177</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1702.05177">pdf</a>, <a href="https://arxiv.org/format/1702.05177">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.119.222505">10.1103/PhysRevLett.119.222505 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Ab initio calculations of the isotopic dependence of nuclear clustering </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Elhatisari%2C+S">Serdar Elhatisari</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Epelbaum%2C+E">Evgeny Epelbaum</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Krebs%2C+H">Hermann Krebs</a>, <a href="/search/hep-lat?searchtype=author&amp;query=L%C3%A4hde%2C+T+A">Timo A. L盲hde</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lee%2C+D">Dean Lee</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Li%2C+N">Ning Li</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lu%2C+B">Bing-nan Lu</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Mei%C3%9Fner%2C+U">Ulf-G. Mei脽ner</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Rupak%2C+G">Gautam Rupak</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1702.05177v2-abstract-short" style="display: inline;"> Nuclear clustering describes the appearance of structures resembling smaller nuclei such as alpha particles (4He nuclei) within the interior of a larger nucleus. While clustering is important for several well-known examples, much remains to be discovered about the general nature of clustering in nuclei. In this letter we present lattice Monte Carlo calculations based on chiral effective field theo&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1702.05177v2-abstract-full').style.display = 'inline'; document.getElementById('1702.05177v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1702.05177v2-abstract-full" style="display: none;"> Nuclear clustering describes the appearance of structures resembling smaller nuclei such as alpha particles (4He nuclei) within the interior of a larger nucleus. While clustering is important for several well-known examples, much remains to be discovered about the general nature of clustering in nuclei. In this letter we present lattice Monte Carlo calculations based on chiral effective field theory for the ground states of helium, beryllium, carbon, and oxygen isotopes. By computing model-independent measures that probe three- and four-nucleon correlations at short distances, we determine the shape of the alpha clusters and the entanglement of nucleons comprising each alpha cluster with the outside medium. We also introduce a new computational approach called the pinhole algorithm, which solves a long-standing deficiency of auxiliary-field Monte Carlo simulations in computing density correlations relative to the center of mass. We use the pinhole algorithm to determine the proton and neutron density distributions and the geometry of cluster correlations in 12C, 14C, and 16C. The structural similarities among the carbon isotopes suggest that 14C and 16C have excitations analogous to the well-known Hoyle state resonance in 12C. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1702.05177v2-abstract-full').style.display = 'none'; document.getElementById('1702.05177v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 November, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 February, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Version to appear in Physical Review Letters. 5 + 12 pages (main + supplemental materials), 3 + 12 figures (main + supplemental materials)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 119, 222505 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1610.09095">arXiv:1610.09095</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1610.09095">pdf</a>, <a href="https://arxiv.org/format/1610.09095">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.physletb.2017.03.011">10.1016/j.physletb.2017.03.011 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Universal dimer-dimer scattering in lattice effective field theory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Elhatisari%2C+S">Serdar Elhatisari</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Katterjohn%2C+K">Kris Katterjohn</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lee%2C+D">Dean Lee</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Mei%C3%9Fner%2C+U">Ulf-G. Mei脽ner</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Rupak%2C+G">Gautam Rupak</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1610.09095v2-abstract-short" style="display: inline;"> We consider two-component fermions with short-range interactions and large scattering length. This system has universal properties that are realized in several different fields of physics. In the limit of large fermion-fermion scattering length $a_\mathrm{ff}$ and zero-range interaction, all properties of the system scale proportionally with $a_\mathrm{ff}$. For the case with shallow bound dimers,&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1610.09095v2-abstract-full').style.display = 'inline'; document.getElementById('1610.09095v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1610.09095v2-abstract-full" style="display: none;"> We consider two-component fermions with short-range interactions and large scattering length. This system has universal properties that are realized in several different fields of physics. In the limit of large fermion-fermion scattering length $a_\mathrm{ff}$ and zero-range interaction, all properties of the system scale proportionally with $a_\mathrm{ff}$. For the case with shallow bound dimers, we calculate the dimer-dimer scattering phase shifts using lattice effective field theory. We extract the universal dimer-dimer scattering length $a_\mathrm{dd}/a_\mathrm{ff}=0.618(30)$ and effective range $r_\mathrm{dd}/a_\mathrm{ff}=-0.431(48)$. This result for the effective range is the first calculation with quantified and controlled systematic errors. We also benchmark our methods by computing the fermion-dimer scattering parameters and testing some predictions of conformal scaling of irrelevant operators near the unitarity limit. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1610.09095v2-abstract-full').style.display = 'none'; document.getElementById('1610.09095v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 March, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 October, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 6 figures, version accepted for publication in Phys. Lett. B</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1603.02333">arXiv:1603.02333</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1603.02333">pdf</a>, <a href="https://arxiv.org/format/1603.02333">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epja/i2016-16174-2">10.1140/epja/i2016-16174-2 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Nucleon-deuteron scattering using the adiabatic projection method </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Elhatisari%2C+S">Serdar Elhatisari</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lee%2C+D">Dean Lee</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Mei%C3%9Fner%2C+U">Ulf-G. Mei脽ner</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Rupak%2C+G">Gautam Rupak</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1603.02333v2-abstract-short" style="display: inline;"> In this paper we discuss the adiabatic projection method, a general framework for scattering and reaction calculations on the lattice. We also introduce several new techniques developed to study nucleus-nucleus scattering and reactions on the lattice. We present technical details of the method for large-scale problems. To estimate the systematic errors of the calculations we consider simple two-pa&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1603.02333v2-abstract-full').style.display = 'inline'; document.getElementById('1603.02333v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1603.02333v2-abstract-full" style="display: none;"> In this paper we discuss the adiabatic projection method, a general framework for scattering and reaction calculations on the lattice. We also introduce several new techniques developed to study nucleus-nucleus scattering and reactions on the lattice. We present technical details of the method for large-scale problems. To estimate the systematic errors of the calculations we consider simple two-particle scattering on the lattice. Then we benchmark the accuracy and efficiency of the numerical methods by applying these to calculate fermion-dimer scattering in lattice effective field theory with and without a long-range Coulomb potential. The fermion-dimer calculations correspond to neutron-deuteron and proton-deuteron scattering in the spin-quartet channel at leading order in the pionless effective field theory. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1603.02333v2-abstract-full').style.display = 'none'; document.getElementById('1603.02333v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 June, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 March, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">26 pages, 17 figures, and 1 table; version published in EPJA</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Eur. Phys. J. A (2016) 52: 174 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1602.04539">arXiv:1602.04539</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1602.04539">pdf</a>, <a href="https://arxiv.org/format/1602.04539">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.117.132501">10.1103/PhysRevLett.117.132501 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Nuclear binding near a quantum phase transition </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Elhatisari%2C+S">Serdar Elhatisari</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Li%2C+N">Ning Li</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Rokash%2C+A">Alexander Rokash</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Alarc%C3%B3n%2C+J+M">Jose Manuel Alarc贸n</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Du%2C+D">Dechuan Du</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Klein%2C+N">Nico Klein</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lu%2C+B">Bing-nan Lu</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Mei%C3%9Fner%2C+U">Ulf-G. Mei脽ner</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Epelbaum%2C+E">Evgeny Epelbaum</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Krebs%2C+H">Hermann Krebs</a>, <a href="/search/hep-lat?searchtype=author&amp;query=L%C3%A4hde%2C+T+A">Timo A. L盲hde</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lee%2C+D">Dean Lee</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Rupak%2C+G">Gautam Rupak</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1602.04539v2-abstract-short" style="display: inline;"> How do protons and neutrons bind to form nuclei? This is the central question of ab initio nuclear structure theory. While the answer may seem as simple as the fact that nuclear forces are attractive, the full story is more complex and interesting. In this work we present numerical evidence from ab initio lattice simulations showing that nature is near a quantum phase transition, a zero-temperatur&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1602.04539v2-abstract-full').style.display = 'inline'; document.getElementById('1602.04539v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1602.04539v2-abstract-full" style="display: none;"> How do protons and neutrons bind to form nuclei? This is the central question of ab initio nuclear structure theory. While the answer may seem as simple as the fact that nuclear forces are attractive, the full story is more complex and interesting. In this work we present numerical evidence from ab initio lattice simulations showing that nature is near a quantum phase transition, a zero-temperature transition driven by quantum fluctuations. Using lattice effective field theory, we perform Monte Carlo simulations for systems with up to twenty nucleons. For even and equal numbers of protons and neutrons, we discover a first-order transition at zero temperature from a Bose-condensed gas of alpha particles (4He nuclei) to a nuclear liquid. Whether one has an alpha-particle gas or nuclear liquid is determined by the strength of the alpha-alpha interactions, and we show that the alpha-alpha interactions depend on the strength and locality of the nucleon-nucleon interactions. This insight should be useful in improving calculations of nuclear structure and important astrophysical reactions involving alpha capture on nuclei. Our findings also provide a tool to probe the structure of alpha cluster states such as the Hoyle state responsible for the production of carbon in red giant stars and point to a connection between nuclear states and the universal physics of bosons at large scattering length. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1602.04539v2-abstract-full').style.display = 'none'; document.getElementById('1602.04539v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 July, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 February, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Published version to appear in Physical Review Letters. Main: 5 pages, 3 figures. Supplemental material: 13 pages, 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 117, 132501 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1506.03513">arXiv:1506.03513</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1506.03513">pdf</a>, <a href="https://arxiv.org/format/1506.03513">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/nature16067">10.1038/nature16067 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Ab initio alpha-alpha scattering </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Elhatisari%2C+S">Serdar Elhatisari</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lee%2C+D">Dean Lee</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Rupak%2C+G">Gautam Rupak</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Epelbaum%2C+E">Evgeny Epelbaum</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Krebs%2C+H">Hermann Krebs</a>, <a href="/search/hep-lat?searchtype=author&amp;query=L%C3%A4hde%2C+T+A">Timo A. L盲hde</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Luu%2C+T">Thomas Luu</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Mei%C3%9Fner%2C+U">Ulf-G. Mei脽ner</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1506.03513v1-abstract-short" style="display: inline;"> Processes involving alpha particles and alpha-like nuclei comprise a major part of stellar nucleosynthesis and hypothesized mechanisms for thermonuclear supernovae. In an effort towards understanding alpha processes from first principles, we describe in this letter the first ab initio calculation of alpha-alpha scattering. We use lattice effective field theory to describe the low-energy interactio&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1506.03513v1-abstract-full').style.display = 'inline'; document.getElementById('1506.03513v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1506.03513v1-abstract-full" style="display: none;"> Processes involving alpha particles and alpha-like nuclei comprise a major part of stellar nucleosynthesis and hypothesized mechanisms for thermonuclear supernovae. In an effort towards understanding alpha processes from first principles, we describe in this letter the first ab initio calculation of alpha-alpha scattering. We use lattice effective field theory to describe the low-energy interactions of nucleons and apply a technique called the adiabatic projection method to reduce the eight-body system to an effective two-cluster system. We find good agreement between lattice results and experimental phase shifts for S-wave and D-wave scattering. The computational scaling with particle number suggests that alpha processes involving heavier nuclei are also within reach in the near future. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1506.03513v1-abstract-full').style.display = 'none'; document.getElementById('1506.03513v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 June, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature 528, 111 (2015) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1502.06787">arXiv:1502.06787</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1502.06787">pdf</a>, <a href="https://arxiv.org/ps/1502.06787">ps</a>, <a href="https://arxiv.org/format/1502.06787">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Nuclear Lattice Simulations using Symmetry-Sign Extrapolation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=L%C3%A4hde%2C+T+A">Timo A. L盲hde</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Luu%2C+T">Thomas Luu</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lee%2C+D">Dean Lee</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Mei%C3%9Fner%2C+U">Ulf-G. Mei脽ner</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Epelbaum%2C+E">Evgeny Epelbaum</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Krebs%2C+H">Hermann Krebs</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Rupak%2C+G">Gautam Rupak</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1502.06787v2-abstract-short" style="display: inline;"> Projection Monte Carlo calculations of lattice Chiral Effective Field Theory suffer from sign oscillations to a varying degree dependent on the number of protons and neutrons. Hence, such studies have hitherto been concentrated on nuclei with equal numbers of protons and neutrons, and especially on the alpha nuclei where the sign oscillations are smallest. Here, we introduce the &#34;symmetry-sign ext&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1502.06787v2-abstract-full').style.display = 'inline'; document.getElementById('1502.06787v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1502.06787v2-abstract-full" style="display: none;"> Projection Monte Carlo calculations of lattice Chiral Effective Field Theory suffer from sign oscillations to a varying degree dependent on the number of protons and neutrons. Hence, such studies have hitherto been concentrated on nuclei with equal numbers of protons and neutrons, and especially on the alpha nuclei where the sign oscillations are smallest. Here, we introduce the &#34;symmetry-sign extrapolation&#34; method, which allows us to use the approximate Wigner SU(4) symmetry of the nuclear interaction to systematically extend the Projection Monte Carlo calculations to nuclear systems where the sign problem is severe. We benchmark this method by calculating the ground-state energies of the $^{12}$C, $^6$He and $^6$Be nuclei, and discuss its potential for studies of neutron-rich halo nuclei and asymmetric nuclear matter. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1502.06787v2-abstract-full').style.display = 'none'; document.getElementById('1502.06787v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 July, 2015; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 February, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">25 pages, 12 figures, version to appear in Eur. Phys. J. A</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1409.7538">arXiv:1409.7538</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1409.7538">pdf</a>, <a href="https://arxiv.org/ps/1409.7538">ps</a>, <a href="https://arxiv.org/format/1409.7538">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/0954-3899/42/3/034012">10.1088/0954-3899/42/3/034012 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Uncertainties of Euclidean Time Extrapolation in Lattice Effective Field Theory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=L%C3%A4hde%2C+T+A">Timo A. L盲hde</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Epelbaum%2C+E">Evgeny Epelbaum</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Krebs%2C+H">Hermann Krebs</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lee%2C+D">Dean Lee</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Mei%C3%9Fner%2C+U">Ulf-G. Mei脽ner</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Rupak%2C+G">Gautam Rupak</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1409.7538v1-abstract-short" style="display: inline;"> Extrapolations in Euclidean time form a central part of Nuclear Lattice Effective Field Theory (NLEFT) calculations using the Projection Monte Carlo method, as the sign problem in many cases prevents simulations at large Euclidean time. We review the next-to-next-to-leading order NLEFT results for the alpha nuclei up to $^{28}$Si, with emphasis on the Euclidean time extrapolations, their expected&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1409.7538v1-abstract-full').style.display = 'inline'; document.getElementById('1409.7538v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1409.7538v1-abstract-full" style="display: none;"> Extrapolations in Euclidean time form a central part of Nuclear Lattice Effective Field Theory (NLEFT) calculations using the Projection Monte Carlo method, as the sign problem in many cases prevents simulations at large Euclidean time. We review the next-to-next-to-leading order NLEFT results for the alpha nuclei up to $^{28}$Si, with emphasis on the Euclidean time extrapolations, their expected accuracy and potential pitfalls. We also discuss possible avenues for improving the reliability of Euclidean time extrapolations in NLEFT. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1409.7538v1-abstract-full').style.display = 'none'; document.getElementById('1409.7538v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 September, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 8 figures, to be published in J. Phys. G</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1403.5451">arXiv:1403.5451</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1403.5451">pdf</a>, <a href="https://arxiv.org/ps/1403.5451">ps</a>, <a href="https://arxiv.org/format/1403.5451">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/s12043-014-0861-z">10.1007/s12043-014-0861-z <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Hoyle state in Nuclear Lattice EFT </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=L%C3%A4hde%2C+T+A">Timo A. L盲hde</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Epelbaum%2C+E">Evgeny Epelbaum</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Krebs%2C+H">Hermann Krebs</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lee%2C+D">Dean Lee</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Mei%C3%9Fner%2C+U">Ulf-G. Mei脽ner</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Rupak%2C+G">Gautam Rupak</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1403.5451v1-abstract-short" style="display: inline;"> We review the calculation of the Hoyle state of $^{12}$C in Nuclear Lattice Effective Field Theory (NLEFT) and its anthropic implications for the nucleosynthesis of $^{12}$C and $^{16}$O in red giant stars. We also review the extension of NLEFT to the regime of medium-mass nuclei, with emphasis on the determination of the ground-state energies of the alpha nuclei $^{16}$O, $^{20}$Ne, $^{24}$Mg and&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1403.5451v1-abstract-full').style.display = 'inline'; document.getElementById('1403.5451v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1403.5451v1-abstract-full" style="display: none;"> We review the calculation of the Hoyle state of $^{12}$C in Nuclear Lattice Effective Field Theory (NLEFT) and its anthropic implications for the nucleosynthesis of $^{12}$C and $^{16}$O in red giant stars. We also review the extension of NLEFT to the regime of medium-mass nuclei, with emphasis on the determination of the ground-state energies of the alpha nuclei $^{16}$O, $^{20}$Ne, $^{24}$Mg and $^{28}$Si by means of Euclidean time projection. Finally, we review recent NLEFT results for the spectrum, electromagnetic properties, and alpha-cluster structure of $^{16}$O. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1403.5451v1-abstract-full').style.display = 'none'; document.getElementById('1403.5451v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 March, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 1 figure, 5 tables, invited talk at the DAE symposium on nuclear physics, December 2-6 2013, Anushakti Nagar, Mumbai, India. To appear in Pramana - Journal of Physics</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Pramana - J. Phys., Vol. 83, No. 5 (2014), pp. 651-659 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1312.7703">arXiv:1312.7703</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1312.7703">pdf</a>, <a href="https://arxiv.org/format/1312.7703">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.112.102501">10.1103/PhysRevLett.112.102501 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Ab initio calculation of the spectrum and structure of $^{16}$O </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Epelbaum%2C+E">Evgeny Epelbaum</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Krebs%2C+H">Hermann Krebs</a>, <a href="/search/hep-lat?searchtype=author&amp;query=L%C3%A4hde%2C+T+A">Timo A. L盲hde</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lee%2C+D">Dean Lee</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Mei%C3%9Fner%2C+U">Ulf-G. Mei脽ner</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Rupak%2C+G">Gautam Rupak</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1312.7703v2-abstract-short" style="display: inline;"> We present ab initio lattice calculations of the low-energy even-parity states of $^{16}$O using chiral nuclear effective field theory. We find good agreement with the empirical energy spectrum, and with the electromagnetic properties and transition rates. For the ground state, we find that the nucleons are arranged in a tetrahedral configuration of alpha clusters. For the first excited spin-0 sta&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1312.7703v2-abstract-full').style.display = 'inline'; document.getElementById('1312.7703v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1312.7703v2-abstract-full" style="display: none;"> We present ab initio lattice calculations of the low-energy even-parity states of $^{16}$O using chiral nuclear effective field theory. We find good agreement with the empirical energy spectrum, and with the electromagnetic properties and transition rates. For the ground state, we find that the nucleons are arranged in a tetrahedral configuration of alpha clusters. For the first excited spin-0 state, we find that the predominant structure is a square configuration of alpha clusters, with rotational excitations that include the first spin-2 state. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1312.7703v2-abstract-full').style.display = 'none'; document.getElementById('1312.7703v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 February, 2014; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 December, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 pages, 4 figures, final version to appear in Phys. Rev. Lett</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 112, 102501 (2014) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1311.1968">arXiv:1311.1968</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1311.1968">pdf</a>, <a href="https://arxiv.org/ps/1311.1968">ps</a>, <a href="https://arxiv.org/format/1311.1968">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Lattice effective field theory for nuclei from A = 4 to A = 28 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=L%C3%A4hde%2C+T+A">Timo A. L盲hde</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Epelbaum%2C+E">Evgeny Epelbaum</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Krebs%2C+H">Hermann Krebs</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lee%2C+D">Dean Lee</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Mei%C3%9Fner%2C+U">Ulf-G. Mei脽ner</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Rupak%2C+G">Gautam Rupak</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1311.1968v1-abstract-short" style="display: inline;"> We present an overview of the extension of Nuclear Lattice Effective Field Theory simulations to the regime of medium-mass nuclei. We focus on the determination of the ground-state energies of the alpha nuclei $^{16}$O, $^{20}$Ne, $^{24}$Mg and $^{28}$Si by means of Euclidean time projection. </span> <span class="abstract-full has-text-grey-dark mathjax" id="1311.1968v1-abstract-full" style="display: none;"> We present an overview of the extension of Nuclear Lattice Effective Field Theory simulations to the regime of medium-mass nuclei. We focus on the determination of the ground-state energies of the alpha nuclei $^{16}$O, $^{20}$Ne, $^{24}$Mg and $^{28}$Si by means of Euclidean time projection. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1311.1968v1-abstract-full').style.display = 'none'; document.getElementById('1311.1968v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 November, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 4 figures, presented at the 31st International Symposium on Lattice Field Theory (LATTICE 2013), July 29 - August 3, 2013, Mainz, Germany</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> PoS (Lattice 2013) 231 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1311.0477">arXiv:1311.0477</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1311.0477">pdf</a>, <a href="https://arxiv.org/ps/1311.0477">ps</a>, <a href="https://arxiv.org/format/1311.0477">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.physletb.2014.03.023">10.1016/j.physletb.2014.03.023 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Lattice Effective Field Theory for Medium-Mass Nuclei </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=L%C3%A4hde%2C+T+A">Timo A. L盲hde</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Epelbaum%2C+E">Evgeny Epelbaum</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Krebs%2C+H">Hermann Krebs</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lee%2C+D">Dean Lee</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Mei%C3%9Fner%2C+U">Ulf-G. Mei脽ner</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Rupak%2C+G">Gautam Rupak</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1311.0477v2-abstract-short" style="display: inline;"> We extend Nuclear Lattice Effective Field Theory (NLEFT) to medium-mass nuclei, and present results for the ground states of alpha nuclei from $^4$He to $^{28}$Si, calculated up to next-to-next-to-leading order (NNLO) in the EFT expansion. This computational advance is made possible by extrapolations of lattice data using multiple initial and final states. For our soft two-nucleon interaction, we&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1311.0477v2-abstract-full').style.display = 'inline'; document.getElementById('1311.0477v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1311.0477v2-abstract-full" style="display: none;"> We extend Nuclear Lattice Effective Field Theory (NLEFT) to medium-mass nuclei, and present results for the ground states of alpha nuclei from $^4$He to $^{28}$Si, calculated up to next-to-next-to-leading order (NNLO) in the EFT expansion. This computational advance is made possible by extrapolations of lattice data using multiple initial and final states. For our soft two-nucleon interaction, we find that the overall contribution from multi-nucleon forces must change sign from attractive to repulsive with increasing nucleon number. This effect is not produced by three-nucleon forces at NNLO, but it can be approximated by an effective four-nucleon interaction. We discuss the convergence of the EFT expansion and the broad significance of our findings for future ab initio calculations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1311.0477v2-abstract-full').style.display = 'none'; document.getElementById('1311.0477v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 March, 2014; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 November, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 3 figures, 1 table, to appear in Physics Letters B</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Lett. B732, 110 (2014) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1309.2616">arXiv:1309.2616</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1309.2616">pdf</a>, <a href="https://arxiv.org/format/1309.2616">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epja/i2013-13151-3">10.1140/epja/i2013-13151-3 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Adiabatic projection method for scattering and reactions on the lattice </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Pine%2C+M">Michelle Pine</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lee%2C+D">Dean Lee</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Rupak%2C+G">Gautam Rupak</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1309.2616v2-abstract-short" style="display: inline;"> We demonstrate and test the adiabatic projection method, a general new framework for calculating scattering and reactions on the lattice. The method is based upon calculating a low-energy effective theory for clusters which becomes exact in the limit of large Euclidean projection time. As a detailed example we calculate the adiabatic two-body Hamiltonian for elastic fermion-dimer scattering in lat&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1309.2616v2-abstract-full').style.display = 'inline'; document.getElementById('1309.2616v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1309.2616v2-abstract-full" style="display: none;"> We demonstrate and test the adiabatic projection method, a general new framework for calculating scattering and reactions on the lattice. The method is based upon calculating a low-energy effective theory for clusters which becomes exact in the limit of large Euclidean projection time. As a detailed example we calculate the adiabatic two-body Hamiltonian for elastic fermion-dimer scattering in lattice effective field theory. Our calculation corresponds to neutron-deuteron scattering in the spin-quartet channel at leading order in pionless effective field theory. We show that the spectrum of the adiabatic Hamiltonian reproduces the spectrum of the original Hamiltonian below the inelastic threshold to arbitrary accuracy. We also show that the calculated s-wave phase shift reproduces the known exact result in the continuum and infinite-volume limits. When extended to more than one scattering channel, the adiabatic projection method can be used to calculate inelastic reactions on the lattice in future work. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1309.2616v2-abstract-full').style.display = 'none'; document.getElementById('1309.2616v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 November, 2013; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 September, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 4 figures, version to appear in Eur. Phys. J. A</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Eur. Phys. J. A (2013) 49: 151 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1302.4158">arXiv:1302.4158</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1302.4158">pdf</a>, <a href="https://arxiv.org/format/1302.4158">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.111.032502">10.1103/PhysRevLett.111.032502 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Radiative capture reactions in lattice effective field theory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Rupak%2C+G">Gautam Rupak</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lee%2C+D">Dean Lee</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1302.4158v1-abstract-short" style="display: inline;"> We outline a general method for computing nuclear capture reactions on the lattice. The method consists of two major parts. In this study we detail the second part which consists of calculating an effective two-body capture reaction on the lattice at finite volume. We solve this problem by calculating the two-point Green&#39;s function using an infrared regulator and the capture amplitude to a two-bod&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1302.4158v1-abstract-full').style.display = 'inline'; document.getElementById('1302.4158v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1302.4158v1-abstract-full" style="display: none;"> We outline a general method for computing nuclear capture reactions on the lattice. The method consists of two major parts. In this study we detail the second part which consists of calculating an effective two-body capture reaction on the lattice at finite volume. We solve this problem by calculating the two-point Green&#39;s function using an infrared regulator and the capture amplitude to a two-body bound state. We demonstrate the details of this method by calculating on the lattice the leading M1 contribution to the radiative neutron capture on proton at low energies using pionless effective field theory. We find good agreement with exact continuum results. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1302.4158v1-abstract-full').style.display = 'none'; document.getElementById('1302.4158v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 February, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> INT-PUB-13-007 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 111, 032502 (2013) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/hep-lat/0503009">arXiv:hep-lat/0503009</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/hep-lat/0503009">pdf</a>, <a href="https://arxiv.org/ps/hep-lat/0503009">ps</a>, <a href="https://arxiv.org/format/hep-lat/0503009">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.72.054502">10.1103/PhysRevD.72.054502 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Chiral Perturbation Theory for Staggered Sea Quarks and Ginsparg-Wilson Valence Quarks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Baer%2C+O">Oliver Baer</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bernard%2C+C">Claude Bernard</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Rupak%2C+G">Gautam Rupak</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Shoresh%2C+N">Noam Shoresh</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="hep-lat/0503009v2-abstract-short" style="display: inline;"> We study lattice QCD with staggered sea and Ginsparg-Wilson valence quarks. The Symanzik effective action for this mixed lattice theory, including the lattice spacing contributions of O(a^2), is derived. Using this effective theory we construct the leading order chiral Lagrangian. The masses and decay constants of pseudoscalars containing two Ginsparg-Wilson valence quarks are computed at one lo&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('hep-lat/0503009v2-abstract-full').style.display = 'inline'; document.getElementById('hep-lat/0503009v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="hep-lat/0503009v2-abstract-full" style="display: none;"> We study lattice QCD with staggered sea and Ginsparg-Wilson valence quarks. The Symanzik effective action for this mixed lattice theory, including the lattice spacing contributions of O(a^2), is derived. Using this effective theory we construct the leading order chiral Lagrangian. The masses and decay constants of pseudoscalars containing two Ginsparg-Wilson valence quarks are computed at one loop order. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('hep-lat/0503009v2-abstract-full').style.display = 'none'; document.getElementById('hep-lat/0503009v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 March, 2005; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 March, 2005; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2005. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">38 pages, 5 figures, LaTeX2e; references added and typos corrected</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> UTHEP-503, LA-UR-04-8892, BUHEP-05-02 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys.Rev. D72 (2005) 054502 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/hep-lat/0407009">arXiv:hep-lat/0407009</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/hep-lat/0407009">pdf</a>, <a href="https://arxiv.org/ps/hep-lat/0407009">ps</a>, <a href="https://arxiv.org/format/hep-lat/0407009">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.71.054015">10.1103/PhysRevD.71.054015 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A nucleon in a tiny box </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Bedaque%2C+P+F">Paulo F. Bedaque</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Griesshammer%2C+H+W">Harald W. Griesshammer</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Rupak%2C+G">Gautam Rupak</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="hep-lat/0407009v3-abstract-short" style="display: inline;"> We use Chiral Perturbation Theory to compute the nucleon mass-shift due to finite volume and temperature effects. Our results are valid up to next-to-leading order in the &#34;\eps-regime&#34; (mL ~ m尾&lt;&lt; 1) as well as in the &#34;p-regime&#34; (mL ~ m尾&gt;&gt; 1). Based on the two leading orders, we discuss the convergence of the expansion as a function of the lattice size and quark masses. This result can be used to&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('hep-lat/0407009v3-abstract-full').style.display = 'inline'; document.getElementById('hep-lat/0407009v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="hep-lat/0407009v3-abstract-full" style="display: none;"> We use Chiral Perturbation Theory to compute the nucleon mass-shift due to finite volume and temperature effects. Our results are valid up to next-to-leading order in the &#34;\eps-regime&#34; (mL ~ m尾&lt;&lt; 1) as well as in the &#34;p-regime&#34; (mL ~ m尾&gt;&gt; 1). Based on the two leading orders, we discuss the convergence of the expansion as a function of the lattice size and quark masses. This result can be used to extrapolate lattice results obtained from lattice sizes smaller than the pion cloud, avoiding the numerical simulation of physics under theoretical control. An extraction of the low-energy coefficient c_3 of the chiral Lagrangean from lattice simulations at small volumes and a ``magic&#39;&#39; ratio 尾=1.22262 L might be possible. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('hep-lat/0407009v3-abstract-full').style.display = 'none'; document.getElementById('hep-lat/0407009v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 March, 2005; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 July, 2004; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2004. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 figures, numerical examples and discussion changed. Minor misprints corrected. Version accepted by Phys Rev D</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> TUM-T39-04-10, LA-UR-04-4810, LBNL-55716 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys.Rev. D71 (2005) 054015 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/hep-lat/0309033">arXiv:hep-lat/0309033</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/hep-lat/0309033">pdf</a>, <a href="https://arxiv.org/ps/hep-lat/0309033">ps</a>, <a href="https://arxiv.org/format/hep-lat/0309033">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/S0920-5632(03)02524-6">10.1016/S0920-5632(03)02524-6 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Chiral perturbation theory for lattice QCD including O(a^2) </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Baer%2C+O">O. Baer</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Rupak%2C+G">G. Rupak</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Shoresh%2C+N">N. Shoresh</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="hep-lat/0309033v1-abstract-short" style="display: inline;"> The O(a^2) contributions to the chiral effective Lagrangian for lattice QCD with Wilson fermions are constructed. The results are generalized to partially quenched QCD with Wilson fermions as well as to the &#34;mixed&#39;&#39; lattice theory with Wilson sea quarks and Ginsparg-Wilson valence quarks. </span> <span class="abstract-full has-text-grey-dark mathjax" id="hep-lat/0309033v1-abstract-full" style="display: none;"> The O(a^2) contributions to the chiral effective Lagrangian for lattice QCD with Wilson fermions are constructed. The results are generalized to partially quenched QCD with Wilson fermions as well as to the &#34;mixed&#39;&#39; lattice theory with Wilson sea quarks and Ginsparg-Wilson valence quarks. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('hep-lat/0309033v1-abstract-full').style.display = 'none'; document.getElementById('hep-lat/0309033v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 September, 2003; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2003. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">3 pages, Lattice2003 (spectrum)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nucl.Phys.Proc.Suppl.129:185-187,2004 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/hep-lat/0306021">arXiv:hep-lat/0306021</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/hep-lat/0306021">pdf</a>, <a href="https://arxiv.org/ps/hep-lat/0306021">ps</a>, <a href="https://arxiv.org/format/hep-lat/0306021">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.70.034508">10.1103/PhysRevD.70.034508 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Chiral perturbation theory at O(a^2) for lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Baer%2C+O">Oliver Baer</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Rupak%2C+G">Gautam Rupak</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Shoresh%2C+N">Noam Shoresh</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="hep-lat/0306021v2-abstract-short" style="display: inline;"> We construct the chiral effective Lagrangian for two lattice theories: one with Wilson fermions and the other with Wilson sea fermions and Ginsparg-Wilson valence fermions. For each of these theories we construct the Symanzik action through order $a^2$. The chiral Lagrangian is then derived, including terms of order $a^2$, which have not been calculated before. We find that there are only few ne&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('hep-lat/0306021v2-abstract-full').style.display = 'inline'; document.getElementById('hep-lat/0306021v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="hep-lat/0306021v2-abstract-full" style="display: none;"> We construct the chiral effective Lagrangian for two lattice theories: one with Wilson fermions and the other with Wilson sea fermions and Ginsparg-Wilson valence fermions. For each of these theories we construct the Symanzik action through order $a^2$. The chiral Lagrangian is then derived, including terms of order $a^2$, which have not been calculated before. We find that there are only few new terms at this order. Corrections to existing coefficients in the continuum chiral Lagrangian are proportional to $a^2$, and appear in the Lagrangian at order $a^2 p^2$ or higher. Similarly, O(4) symmetry breaking terms enter the Symanzik action at order $a^2$, but contribute to the chiral Lagrangian at order $a^2 p^4$ or higher. We calculate the light meson masses in chiral perturbation theory for both lattice theories. At next-to-leading order, we find that there are no order $a^2$ corrections to the valence-valence meson mass in the mixed theory due to the enhanced chiral symmetry of the valence sector. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('hep-lat/0306021v2-abstract-full').style.display = 'none'; document.getElementById('hep-lat/0306021v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 July, 2003; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 June, 2003; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2003. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">25 pages, LaTeX2e; references added</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> UTHEP-469, LBNL-52989, BUHEP-03-13 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys.Rev.D70:034508,2004 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/hep-lat/0210050">arXiv:hep-lat/0210050</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/hep-lat/0210050">pdf</a>, <a href="https://arxiv.org/ps/hep-lat/0210050">ps</a>, <a href="https://arxiv.org/format/hep-lat/0210050">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.67.114505">10.1103/PhysRevD.67.114505 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Simulations with different lattice Dirac operators for valence and sea quarks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Baer%2C+O">O. Baer</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Rupak%2C+G">G. Rupak</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Shoresh%2C+N">N. Shoresh</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="hep-lat/0210050v2-abstract-short" style="display: inline;"> We discuss simulations with different lattice Dirac operators for sea and valence quarks. A goal of such a &#34;mixed&#34; action approach is to probe deeper the chiral regime of QCD by enabling simulations with light valence quarks. This is achieved by using chiral fermions as valence quarks while computationally inexpensive fermions are used in the sea sector. Specifically, we consider Wilson sea quar&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('hep-lat/0210050v2-abstract-full').style.display = 'inline'; document.getElementById('hep-lat/0210050v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="hep-lat/0210050v2-abstract-full" style="display: none;"> We discuss simulations with different lattice Dirac operators for sea and valence quarks. A goal of such a &#34;mixed&#34; action approach is to probe deeper the chiral regime of QCD by enabling simulations with light valence quarks. This is achieved by using chiral fermions as valence quarks while computationally inexpensive fermions are used in the sea sector. Specifically, we consider Wilson sea quarks and Ginsparg-Wilson valence quarks. The local Symanzik action for this mixed theory is derived to O(a), and the appropriate low energy chiral effective Lagrangian is constructed, including the leading O(a) contributions. Using this Lagrangian one can calculate expressions for physical observables and determine the Gasser-Leutwyler coefficients by fitting them to the lattice data. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('hep-lat/0210050v2-abstract-full').style.display = 'none'; document.getElementById('hep-lat/0210050v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 February, 2003; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 October, 2002; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2002. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 1 ps figure (2 clarification paragraphs added)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> MIT-CTP 3319, LBNL-51684, BUHEP-02-36 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys.Rev.D67:114505,2003 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/hep-lat/0201019">arXiv:hep-lat/0201019</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/hep-lat/0201019">pdf</a>, <a href="https://arxiv.org/ps/hep-lat/0201019">ps</a>, <a href="https://arxiv.org/format/hep-lat/0201019">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.66.054503">10.1103/PhysRevD.66.054503 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Chiral perturbation theory for the Wilson lattice action </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Rupak%2C+G">Gautam Rupak</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Shoresh%2C+N">Noam Shoresh</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="hep-lat/0201019v1-abstract-short" style="display: inline;"> We extend chiral perturbation theory to include linear dependence on the lattice spacing $a$ for the Wilson action. The perturbation theory is written as a double expansion in the small quark mass $m_q$ and lattice spacing $a$. We present formulae for the mass and decay constant of a flavor-non-singlet meson in this scheme to order $a$ and $m_q^2$. The extension to the partially quenched theory&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('hep-lat/0201019v1-abstract-full').style.display = 'inline'; document.getElementById('hep-lat/0201019v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="hep-lat/0201019v1-abstract-full" style="display: none;"> We extend chiral perturbation theory to include linear dependence on the lattice spacing $a$ for the Wilson action. The perturbation theory is written as a double expansion in the small quark mass $m_q$ and lattice spacing $a$. We present formulae for the mass and decay constant of a flavor-non-singlet meson in this scheme to order $a$ and $m_q^2$. The extension to the partially quenched theory is also described. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('hep-lat/0201019v1-abstract-full').style.display = 'none'; document.getElementById('hep-lat/0201019v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 January, 2002; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2002. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages LaTeX2e</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> TRI-PP-01-38, BUHEP-02-04 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys.Rev. D66 (2002) 054503 </p> </li> </ol> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10