CINXE.COM
Applied Mechanics and Materials Vol. 922 | Scientific.Net
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <meta name="format-detection" content="telephone=no"> <meta name="viewport" content="width=device-width, initial-scale=1.0" /> <meta charset="utf-8"> <meta http-equiv="X-UA-Compatible" content="IE=edge"> <meta name="description" content="The presented special edition is dedicated to some actual issues in engineering practice in mechanical engineering and will be interesting to a wide range of engineers and researchers." /> <link rel="canonical" href="https://www.scientific.net/AMM.922" /> <meta property="og:title" content="Applied Mechanics and Materials Vol. 922 | Scientific.Net" /> <meta property="og:type" content="website" /> <meta property="og:url" content="https://www.scientific.net/AMM.922" /> <meta property="og:image" content="/Content/app/scinet5/images/metadata_logo.png" /> <meta property="og:image:type" content="image/png" /> <meta property="og:image:width" content="261" /> <meta property="og:image:height" content="260" /> <meta property="og:image:alt" content="Scientific.Net Logo" /> <title>Applied Mechanics and Materials Vol. 922 | Scientific.Net</title> <link href="/Content/app/scinet5/images/favicon.ico" rel="shortcut icon" /> <link href="/Content/public.min.css?v=BKBihgCkUm340JBGsNjEPtWz8I22CUsubMPC3V1WYzw" rel="stylesheet" /> <link rel="preconnect" href="https://www.google-analytics.com"> <link rel="preconnect" href="https://www.gstatic.com"> <link rel="preconnect" href="https://www.googletagmanager.com"> <link rel="icon" href="/Content/app/scinet5/images/favicon.ico"> <link rel="apple-touch-icon" href="/Content/app/scinet5/images/apple-touch-icon.png"> <link rel="preconnect" href="https://fonts.googleapis.com"> <link rel="preconnect" href="https://fonts.gstatic.com" crossorigin> <link href="https://fonts.googleapis.com/css?family=Open+Sans+Condensed:300,700%7COpen+Sans:300i,400,400i,600,600i,700&display=swap" rel="stylesheet"> <!-- HTML5 shim support of HTML5 elements and media queries --> <!--[if lte IE 9]> <script src="https://oss.maxcdn.com/html5shiv/3.7.3/html5shiv.min.js"></script> <![endif]--> <!-- Google Tag Manager --> <script> (function(w,d,s,l,i){w[l]=w[l]||[];w[l].push({'gtm.start': new Date().getTime(),event:'gtm.js'});var f=d.getElementsByTagName(s)[0], j=d.createElement(s),dl=l!='dataLayer'?'&l='+l:'';j.async=true;j.src= 'https://www.googletagmanager.com/gtm.js?id='+i+dl;f.parentNode.insertBefore(j,f); })(window,document,'script','dataLayer','GTM-T3VDKWV');</script> <!-- End Google Tag Manager --> </head> <body> <noscript> <!-- Google Tag Manager (noscript) --> <iframe src="https://www.googletagmanager.com/ns.html?id=GTM-T3VDKWV" height="0" width="0" style="display:none;visibility:hidden"></iframe> </noscript> <div class="sc-content-container"> <div class="sc-content"> <div class="header-menu-container"> <div class="identity-menu-container header-menu-container-not-logged-in"> <div class="container"> <div class="row"> <ul class="role-menu"> <li class="user-menu between normal-user-menu"> <div class="hdivider-100"></div> <div class="cart-info"> <a href="https://main.scientific.net/Payment/Cart"> <i class="inline-icon cart-icon-white"></i> <span id="cartInfoTotalItemsCount"></span> </a> </div> <div class="user-menu-login-or-register"> <a href="https://main.scientific.net/Account/Registration?ReturnUrl=https%3A%2F%2Fwww.scientific.net%2FAMM.922" rel="nofollow"> Registration </a> <a href="https://main.scientific.net/Account/Login?ReturnUrl=https%3A%2F%2Fwww.scientific.net%2FAMM.922" rel="nofollow"> Log In </a> </div> </li> </ul> </div> </div> </div> <div class="header-fluid"> <div class="container"> <div class="row"> <div class="block-header"> <div class="logo-block"> <a href="/" class="application-logo inline-icon logo-icon"></a> <div class="burger-menu-button visible-xs"> <div class="hamburger-box"> <div class="hamburger-inner"></div> </div> </div> </div> <div class="menu-and-search-block"> <div class="burger-menu"> <nav class="burger-menu-items"> <div class="public-menu"> <ul> <li><a href="/ForLibraries">For Libraries</a></li> <li><a href="/ForPublication/Paper">For Publication</a></li> <li><a href="/DocuCenter">Downloads</a></li> <li><a href="/news/all">News</a></li> <li><a href="/Home/AboutUs">About Us</a></li> <li><a href="/Home/Contacts">Contact Us</a></li> </ul> </div> </nav> </div> <div class="header-menu-top"> <div class="header-menu-list"> <a href="/ForLibraries">For Libraries</a> <a href="/ForPublication/Paper">For Publication</a> <a href="/DocuCenter">Downloads</a> <a href="/news/all">News</a> <a href="/Home/AboutUs">About Us</a> <a href="/Home/Contacts">Contact Us</a> </div> </div> <div class="search-block"> <input class="search-control" type="search" placeholder="Search" data-url="/Search"> <button class="button button-95 button-grey search-btn button-simple"> <span class="hidden-xs">Search</span> <i class="inline-icon search-icon-grey visible-xs"></i> </button> </div> </div> </div> </div> </div> </div> </div> <div class="container-fluid"> <div class="row"> <div class="banner-new"></div> </div> </div> <div class="content"> <div class="container"> <div class="row content-container"> <div class="left-content col-md-4 col-sm-5"> <div class="left-content-first-line icon-container mobile-collapse-button"> <div class="page-name-block underline-begin sibling-name-block"> <div class="page-name-block-text"> Volumes <a class="left-content-expand-button"><i class="inline-icon arrow-right-black no-hover-icon on-focus-arrow-down-black"></i></a> </div> </div> </div> <div class="row mobile-collapse-content"> <a href="/AMM.922" class="normal-large-text icon-container active-element active"> <div class="element-list"> <div class="element-list-text"> Applied Mechanics and Materials <br /> <span class="paper-volume-number">Vol. 922</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> <a href="/AMM.921" class="normal-large-text icon-container"> <div class="element-list"> <div class="element-list-text"> Applied Mechanics and Materials <br /> <span class="paper-volume-number">Vol. 921</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> <a href="/AMM.920" class="normal-large-text icon-container"> <div class="element-list"> <div class="element-list-text"> Applied Mechanics and Materials <br /> <span class="paper-volume-number">Vol. 920</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> <a href="/AMM.919" class="normal-large-text icon-container"> <div class="element-list"> <div class="element-list-text"> Applied Mechanics and Materials <br /> <span class="paper-volume-number">Vol. 919</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> <a href="/AMM.918" class="normal-large-text icon-container"> <div class="element-list"> <div class="element-list-text"> Applied Mechanics and Materials <br /> <span class="paper-volume-number">Vol. 918</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> <a href="/AMM.917" class="normal-large-text icon-container"> <div class="element-list"> <div class="element-list-text"> Applied Mechanics and Materials <br /> <span class="paper-volume-number">Vol. 917</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> <a href="/AMM.916" class="normal-large-text icon-container"> <div class="element-list"> <div class="element-list-text"> Applied Mechanics and Materials <br /> <span class="paper-volume-number">Vol. 916</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> <a href="/AMM.915" class="normal-large-text icon-container"> <div class="element-list"> <div class="element-list-text"> Applied Mechanics and Materials <br /> <span class="paper-volume-number">Vol. 915</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> <a href="/AMM.914" class="normal-large-text icon-container"> <div class="element-list"> <div class="element-list-text"> Applied Mechanics and Materials <br /> <span class="paper-volume-number">Vol. 914</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> <a href="/AMM.913" class="normal-large-text icon-container"> <div class="element-list"> <div class="element-list-text"> Applied Mechanics and Materials <br /> <span class="paper-volume-number">Vol. 913</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> <a href="/AMM.912" class="normal-large-text icon-container"> <div class="element-list"> <div class="element-list-text"> Applied Mechanics and Materials <br /> <span class="paper-volume-number">Vol. 912</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> <a href="/AMM.911" class="normal-large-text icon-container"> <div class="element-list"> <div class="element-list-text"> Applied Mechanics and Materials <br /> <span class="paper-volume-number">Vol. 911</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> <a href="/AMM.910" class="normal-large-text icon-container"> <div class="element-list"> <div class="element-list-text"> Applied Mechanics and Materials <br /> <span class="paper-volume-number">Vol. 910</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> </div> </div> <div class="right-content col-md-8 col-sm-7 col-xs-12"> <div class="bread-crumbs hidden-xs"> <a class="bread-crumbs-first" href="/">Home</a><i class="inline-icon arrow-breadcrumbs"></i><a class="bread-crumbs-first" href="/AMM">Applied Mechanics and Materials</a><i class="inline-icon arrow-breadcrumbs"></i><span class="bread-crumbs-second">Applied Mechanics and Materials Vol. 922</span></div> <div class="page-name-block underline-begin"> <h1 class="page-name-block-text">Applied Mechanics and Materials Vol. 922</h1> </div> <div class="clearfix title-details"> <div class="papers-block-info col-lg-12"> <div class="row"> <div class="info-row-name normal-text-gray col-md-2 col-sm-3 col-xs-4"> <div class="row"> <p>DOI:</p> </div> </div> <div class="info-row-content semibold-middle-text col-md-10 col-sm-9 col-xs-8"> <div class="row"> <p><a href="https://doi.org/10.4028/v-l6Nkha">https://doi.org/10.4028/v-l6Nkha</a></p> </div> </div> </div> </div> <div id="titleMarcXmlLink" style="display: none" class="papers-block-info col-lg-12"> <div class="row"> <div class="info-row-name normal-text-gray col-md-2 col-sm-3 col-xs-4"> <div class="row"> <p>Export:</p> </div> </div> <div class="info-row-content semibold-middle-text col-md-10 col-sm-9 col-xs-8"> <div class="row"> <p><a href="/AMM.922/marc.xml">MARCXML</a></p> </div> </div> </div> </div> <div class="papers-block-info col-lg-12"> <div class="row"> <div class="info-row-name normal-text-gray col-md-2 col-sm-3 col-xs-4"> <div class="row"> <p>ToC:</p> </div> </div> <div class="info-row-content semibold-middle-text col-md-10 col-sm-9 col-xs-8"> <div class="row"> <p><a href="/AMM.922_toc.pdf">Table of Contents</a></p> </div> </div> </div> </div> </div> <div class="volume-tabs"> </div> <div class=""> <div class="volume-papers-page"> <div class="block-search-pagination clearfix"> <div class="block-search-volume"> <input id="paper-search" type="search" placeholder="Search" maxlength="65"> </div> <div class="pagination-container"><ul class="pagination"><li class="active"><span>1</span></li><li><a href="/AMM.922/2">2</a></li><li class="PagedList-skipToNext"><a href="/AMM.922/2" rel="next">></a></li></ul></div> </div> <div class="block-volume-title normal-text-gray"> <p> Paper Title <span>Page</span> </p> </div> <div class="item-block"> <div class="item-link"> <a href="/AMM.922.-1">Preface</a> </div> </div> <div class="item-block"> <div class="item-link"> <a href="/AMM.922.3">Bond-Based Peridynamic Model for Tensile Deformation and Fracture of Polycarbonate and Polypropylene</a> </div> <div class="item-link volume-authors"> <div class="semibold-middle-text"> Authors: Muhammad Azim Azizi, Muhammad Amin Azman, Muhammad Farhan Aqil Norazak, Muhammad Amirul Hakim Fauzi </div> </div> <div id="abstractTextBlock604927" class="volume-info volume-info-text volume-info-description"> Abstract: Fracture mechanics has been a crucial aspect in the field of engineering science as technologies are rapidly growing nowadays. Various numerical methods have been developed to analyze fracture behaviour in different types of materials used in industries. Meanwhile, the application of polymers garners attention worldwide due to outstanding characteristics such as good strength, lightweight, and high temperature resistance, exemplified by polymers like polycarbonate (PC) and polypropylene (PP). Hence, failure aspects of such materials must be taken into consideration when conditions arise that may lead to failure, such as high-load impact, fatigue, and extreme temperatures. In this study, a bond-based Peridynamic model (PD) for the tensile behaviour, including fracture, of polymers has been developed. The PD model is constructed using the Centos software and encompasses both brittle and ductile fracture behaviours. Numerical results, including crack propagation, damage zone, and force-extension curves of notched specimens, are validated by comparison with experimental results of PC and PP. Through the validation process, PC specimens exhibit a difference percentage range for maximum load and rupture extension of 2.9% to 18.8% and 2.4% to 4.6%, respectively. PP specimens show a difference percentage range for maximum load and rupture extension of 31.2% to 43.5% and 0.9% to 30%, respectively. Consequently, the validation results indicate that the PD model for brittle specimens aligns more closely with experimental data compared to the PD model for ductile specimens. </div> <div> <a data-readmore="{ block: '#abstractTextBlock604927', lines: 2, expandText: '...more', collapseText: '...less' }"></a> </div> <div class="page-number semibold-large-text"> 3 </div> </div> <div class="item-block"> <div class="item-link"> <a href="/AMM.922.23">Investigation of Strength Concrete Materials Using Pozzolanic Additives</a> </div> <div class="item-link volume-authors"> <div class="semibold-middle-text"> Authors: Andi Yusra, Muttaqin Hasan, Teuku Budi Aulia, Fachruddin Fachruddin </div> </div> <div id="abstractTextBlock604731" class="volume-info volume-info-text volume-info-description"> Abstract: In the study, pozzolanic materials serve as replacements for additives, namely Palm Shell Ash (PSA), Coal Fly Ash (CFA), and Rice Husk Ash (RHA). The purpose of the study is to determine the optimum proportion of additives used in high-performance concrete. The addition of 15% PSA resulted in a strength of 69.227 MPa over a test period of 56 days, while the addition of 15% CFA yielded a strength of 69.369 MPa, and the addition of 5% RHA resulted in a strength of 59.984 MPa. The maximum concrete strength is achieved by adding 15% PSA. Correlation analysis between stress-strain indicates that aggregates exhibit higher strength compared to cement paste, mortar, and concrete, highlighting the relationship between the aggregate, cement paste, mortar components, and concrete as a composite material. Aggregate strength values found to be the highest among concrete, cement paste, and mortar, indicating that cement paste contributes the least to the strength of concrete, followed by mortar as concrete reinforcement. The results suggest that aggregates remain the primary strength component supporting concrete. The finding indicates that the relationship between the basic substances in this study aligns closely with existing theory. Moreover, it suggests that all concrete materials with pozzolan variants can classified as high-quality concrete. The optimum percentage is obtained by adding 15% palm shell ash, resulting in the highest compressive strength compared to counterparts and test objects with other types of pozzolan additions. The relationships between the constituents of concrete demonstrate that aggregates continue to be important contributors to concrete strength, with the cement paste contributing the least. Concrete strength values fall between those of aggregates and those of cement and mortar pastes. </div> <div> <a data-readmore="{ block: '#abstractTextBlock604731', lines: 2, expandText: '...more', collapseText: '...less' }"></a> </div> <div class="page-number semibold-large-text"> 23 </div> </div> <div class="item-block"> <div class="item-link"> <a href="/AMM.922.35">Development of a Cost-Effective Twin-Disc Test Rig for Railway Wear Simulation</a> </div> <div class="item-link volume-authors"> <div class="semibold-middle-text"> Authors: Tshenolo P. Leso, Charles Witness Siyasiya, Roelf J. Mostert, Joseph Moema </div> </div> <div id="abstractTextBlock613588" class="volume-info volume-info-text volume-info-description"> Abstract: Maintenance due to the replacement of damaged wheels and rails due to rolling contact fatigue (RCF) and wear has been found to be the major problem to rail operating companies. This problem tends to lead to unavailability of railway networks. To solve this problem, costly wear simulators are developed to predict the wear behaviour of the rails and wheels to improve the preventive maintenance in pursuit of operational efficiency. Therefore, more studies that simulate a combination of rolling and sliding wear, together with RCF, are required, specifically for the Southern African, where good and cost-effective rail wear simulators are not readily available. The problem with wear and RCF simulators is high production costs, so this work aims to solve this problem by developing a cost-effective wear test rig that is capable of simulating RCF, sliding and rolling wear as experienced by the train wheel while moving along railway tracks. For this work, it was decided that twin-disc concept would be used, since literature clearly shown that the method was able to simulate the three damage mechanisms mentioned. The developed twin-disc wear simulator was able to simulate both rolling and sliding wear and parameters including contact load and slip ratio could be changed with ease so to simulate the actual contact conditions between the wheel and rail. Outputs such as coefficient of friction and wheel disc temperature were obtained. The results showed that the severity of wear is heavily dependent on slip ratio i.e., increased with slip ratio, with both coefficient of friction and wear rate increasing with slip ratio. </div> <div> <a data-readmore="{ block: '#abstractTextBlock613588', lines: 2, expandText: '...more', collapseText: '...less' }"></a> </div> <div class="page-number semibold-large-text"> 35 </div> </div> <div class="item-block"> <div class="item-link"> <a href="/AMM.922.55">Dielectric Fluids for the Electrical Discharge Machining: A Review</a> </div> <div class="item-link volume-authors"> <div class="semibold-middle-text"> Authors: Kunal Kunal, Kishan Pal Singh, Mohd. Yunus Khan </div> </div> <div id="abstractTextBlock607873" class="volume-info volume-info-text volume-info-description"> Abstract: An extensive examination of the effect of dielectric properties of the Electrical Discharge Machining (EDM) operation machining variables is being done in the present study. Irrespective of the material's hardness, an EDM is an unconventional thermo-erosion machining procedure. It gave the workpiece a better and more detailed surface topography. Dielectric is an essential EDM component that typically affects the operation's high material removal rate and surface integrity. The dielectric fluid acts as a medium that modulates electrical sparks and traps energy due to the operation. It cleans up the trash and cools the workpiece. Whenever powders like Ti, Si, graphite, Cu, Al<sub>2</sub>O<sub>3</sub>, and others are added to the dielectric fluid, the fluid's conductivity increases the micro-hardness of the substance. For executing studies in EDM, choosing a proper dielectric from the number of fluids now offered is crucial. Adopting different additives in the dielectric fluid impacts the optimization of machining parameters and related characteristics are addressed in this study in light of existing research. The studies show the effect on various output parameters. </div> <div> <a data-readmore="{ block: '#abstractTextBlock607873', lines: 2, expandText: '...more', collapseText: '...less' }"></a> </div> <div class="page-number semibold-large-text"> 55 </div> </div> <div class="item-block"> <div class="item-link"> <a href="/AMM.922.67">Powder Bed Fusion Techniques in Metal 3D Printing: A Review</a> </div> <div class="item-link volume-authors"> <div class="semibold-middle-text"> Authors: Rehbar Khan, Inayat Rasool, Mohammad Afzal, Ateeb Ahmad Khan </div> </div> <div id="abstractTextBlock608176" class="volume-info volume-info-text volume-info-description"> Abstract: The use of 3D printing (additive manufacturing) with metal has grown significantly in demand recently, greatly reducing the time and expense required to produce complex interconnected metal components. This method minimizes material wastage, facilitates material recycling, and eliminates the need for support materials. Among the various Metal Additive Manufacturing techniques, Powder Bed Fusion (PBF) processes stands out as the most prevalent for manufacturing parts. Within the realm of PBF, electron beam melting technique, selective laser sintering technique, and selective laser melting technique are the primary methods employed. Selective laser melting and selective laser sintering operate without the need for any special conditions, unlike EBM, which necessitates a vacuum environment. Regarding the choice of materials, laser melting/sintering processes are suitable for almost all types of metals except those which surpasses beam melting capabilities. While electron beam melting is constrained to a few materials such as titanium alloys, cobalt and chromium alloys, and nickel alloys, whereas selective laser melting and sintering allows for a broad range of materials, including iron and steel alloys. However, electron beam melting exhibit the ability to process brittle materials that would typically be challenging for melting and sintering through laser. Nevertheless, the ductility, yield testing, and ultimate testing of materials created through EBM are inferior to those processed by laser methods. Although all PBF techniques excel at creating complex structures, finishing products to have a smooth surface directly over a rough surface remains a subject of ongoing research. To attain suitable mechanical properties such as hardness, tensile strength, and endurance, critical process factors include power of laser or beam, speed for scanning, density for powder bed, thickness of laser or beam, and material characteristics. Inadequate material selection coupled with incorrect process settings can lead to issues such as porosity, slag formation, and other flaws. </div> <div> <a data-readmore="{ block: '#abstractTextBlock608176', lines: 2, expandText: '...more', collapseText: '...less' }"></a> </div> <div class="page-number semibold-large-text"> 67 </div> </div> <div class="item-block"> <div class="item-link"> <a href="/AMM.922.77">Optimization of Machining Process on Coated Tungsten Carbide Electrode Tool and Titanium Alloy Workpiece Using EDM: A Critical Review</a> </div> <div class="item-link volume-authors"> <div class="semibold-middle-text"> Authors: Newton Kumar Singh, P. Sudhakar Rao, Kalakonda Saidaiah </div> </div> <div id="abstractTextBlock611215" class="volume-info volume-info-text volume-info-description"> Abstract: Commercial applications for Ti 6Al 4V, an alloy composed of titanium, aluminium, and vanadium, are possible. The features of titanium alloy include: Lightweight, non-magnetic, high melting point, outstanding fatigue strength, superior specific strength, great corrosion resistance, and biocompatibility. Reviewing the electro-discharge machining of titanium alloy (Ti 6Al 4V) as a workpiece, silicon carbide particle combined with EDM oil, and coated tungsten carbide electrode, this research examines this process. Dielectric fluid's impact on microhardness, surface finishing, TWR, and MRR. MRR is raised by silicon particles and coated tungsten carbide electrodes with EDM fluid. According to the study, the most important input parameters for determining TWR, MRR, surface finishing, and micro-hardness are voltage, current, pulse on time (Tonne), and pulse off time (Toff). </div> <div> <a data-readmore="{ block: '#abstractTextBlock611215', lines: 2, expandText: '...more', collapseText: '...less' }"></a> </div> <div class="page-number semibold-large-text"> 77 </div> </div> <div class="item-block"> <div class="item-link"> <a href="/AMM.922.89">Forging Die Wear Optimization: A Combined Approach with Finite Element Analysis and Taguchi Methodology</a> </div> <div class="item-link volume-authors"> <div class="semibold-middle-text"> Authors: Md. Israr Equbal, Ahmad Saood, V.M.S. Hussain </div> </div> <div id="abstractTextBlock610059" class="volume-info volume-info-text volume-info-description"> Abstract: Forging dies serve as essential tools in shaping workpieces during the forging process to achieve the desired shape and geometry. In hot forging processes, wear is a significant concern due to the high temperatures involved. The repeated contact between the die and the hot workpiece can lead to abrasive and adhesive wear, where material is gradually removed from the die surface. This wear directly impacts the overall production cost. It also affects the shape, dimensions, and surface quality of the final product. The present study focuses on a comprehensive wear analysis of a hot forging die. The influence of critical process variables, including billet temperature, die temperature, friction coefficient, and percentage deformation on die wear, was examined. Employing three-dimensional finite element analysis with DEFORM software, the study utilizes the Taguchi experimental method to systematically design parametric combinations. Analysis of Variance (ANOVA) is then applied to determine the parameters significantly influencing die wear. The results highlight that the billet temperature and percentage deformation are critical factors affecting die wear. The optimal process settings, which lead to minimal die wear, were validated through a confirmation experiment. Additionally, empirical models were developed to establish correlations between die wear and various forging parameters. </div> <div> <a data-readmore="{ block: '#abstractTextBlock610059', lines: 2, expandText: '...more', collapseText: '...less' }"></a> </div> <div class="page-number semibold-large-text"> 89 </div> </div> <div class="item-block"> <div class="item-link"> <a href="/AMM.922.97">Thermal Analysis of Micro-Channel Internal Cooling in Cutting Tools: A Machine Learning Approach</a> </div> <div class="item-link volume-authors"> <div class="semibold-middle-text"> Authors: Aman Abid, Syed Mohd Hamza, Md Kashif Alim, Muhammed Muaz, Shahid Hussain, Sajjad Arif </div> </div> <div id="abstractTextBlock607697" class="volume-info volume-info-text volume-info-description"> Abstract: The use of coolants for cutting process in metal cutting operations is customary. Turning causes high cutting heat in nickel base super alloy Inconel 718. Nonetheless, it should be acknowledged that although flooding techniques are commonly used in the machining of super alloys, these flood cooling methods have extremely poor efficiencies. Another alternative to increase the cooling capabilities of fluids would be an internal-cooling approach that would enable to lower machining temperatures significantly. The heat dissipation ability in the tool is also greatly influenced by the micro-channel diameter of tool which further causes a significant effect on the coolant outlet velocity. A design of an internal-cooling single point cutting tool with micro channel structures for enhanced coolant heat transfer capability and reduced machining temperature is used for turning Inconel 718 under dry, flooded cooling and internal cooling to study the effects of cooling conditions on cutting force, cutting temperature and surface quality. A regression model is built using the Random Forest (RF) and Support Vector Regression (SVR) methods in machine learning framework. These models were then used to forecast input parameters, such as channel diameter and inlet pressure, which made it easier to obtain output data, such as pressure and maximum velocities at different notches. Eighty percent of the data in the dataset is used to train the model and with the remaining twenty percent set aside for evaluating the model's functionality. When comparing internal-cooling technology to traditional flood cooling, there are clear benefits including increased heat transfer efficiency, which leads to lower cutting temperatures, less cutting force, and better surface quality. More specifically, in the internal-cooling configuration, a direct relationship is shown between rising coolant inlet pressure and falling cutting force and temperature over time. Further highlighting the advantages of this cooling strategy is the relationship between increased intake pressure and decreased surface roughness. </div> <div> <a data-readmore="{ block: '#abstractTextBlock607697', lines: 2, expandText: '...more', collapseText: '...less' }"></a> </div> <div class="page-number semibold-large-text"> 97 </div> </div> <div class="item-block"> <div class="item-link"> <a href="/AMM.922.111">Finite Element Analysis and Optimization of the Piezoelectric Circular Diaphragm Energy Harvester</a> </div> <div class="item-link volume-authors"> <div class="semibold-middle-text"> Authors: Van Duong Le </div> </div> <div id="abstractTextBlock610342" class="volume-info volume-info-text volume-info-description"> Abstract: The effectiveness of power generation of the piezoelectric energy harvester (PEH) depends on the coupling between its resonant frequency and the oscillation frequency of the vibration source. The resonant frequency of a PEH is determined by its structural design, and therefore, to improve piezoelectric energy harvester performance, the piezoelectric energy harvester must be optimally designed to achieve the resonant frequency that matches the excitation frequency of the vibration source. This paper presents the design and detailed calculation of the piezoelectric energy harvester in the form of a bimorph piezoelectric circular diaphragm (PCD) structure by finite element analysis (FEA) using the software package ANSYS. Based on analyses and calculations, the optimal structure of the piezoelectric circular diaphragm energy harvester is proposed to meet the specified resonant frequency response matching the vibration source frequency. Detailed calculations of the PEH were performed with an excitation frequency of 100 Hz. With an optimal load resistor of 10.1 k惟, an output power of 0.287 W was generated at 100 Hz (equal to the resonant frequency of the PEH) under an amplitude of harmonic excitation of 0.1mm. In addition, the research results can be used to fabricate piezoelectric circular diaphragm energy harvester operating at a resonant frequency suitable for the available vibrations. </div> <div> <a data-readmore="{ block: '#abstractTextBlock610342', lines: 2, expandText: '...more', collapseText: '...less' }"></a> </div> <div class="page-number semibold-large-text"> 111 </div> </div> <div class="block-bottom-pagination"> <div class="pager-info"> <p>Showing 1 to 10 of 12 Paper Titles</p> </div> <div class="pagination-container"><ul class="pagination"><li class="active"><span>1</span></li><li><a href="/AMM.922/2">2</a></li><li class="PagedList-skipToNext"><a href="/AMM.922/2" rel="next">></a></li></ul></div> </div> </div> </div> </div> </div> </div> </div> <div class="social-icon-popup"> <a href="https://www.facebook.com/Scientific.Net.Ltd/" target="_blank" rel="noopener" title="Scientific.Net"><i class="inline-icon facebook-popup-icon social-icon"></i></a> <a href="https://twitter.com/Scientific_Net/" target="_blank" rel="noopener" title="Scientific.Net"><i class="inline-icon twitter-popup-icon social-icon"></i></a> <a href="https://www.linkedin.com/company/scientificnet/" target="_blank" rel="noopener" title="Scientific.Net"><i class="inline-icon linkedin-popup-icon social-icon"></i></a> </div> </div> <div class="sc-footer"> <div class="footer-fluid"> <div class="container"> <div class="row"> <div class="footer-menu col-md-12 col-sm-12 col-xs-12"> <ul class="list-inline menu-font"> <li><a href="/ForLibraries">For Libraries</a></li> <li><a href="/ForPublication/Paper">For Publication</a></li> <li><a href="/insights" target="_blank">Insights</a></li> <li><a href="/DocuCenter">Downloads</a></li> <li><a href="/Home/AboutUs">About Us</a></li> <li><a href="/PolicyAndEthics/PublishingPolicies">Policy & Ethics</a></li> <li><a href="/Home/Contacts">Contact Us</a></li> <li><a href="/Home/Imprint">Imprint</a></li> <li><a href="/Home/PrivacyPolicy">Privacy Policy</a></li> <li><a href="/Home/Sitemap">Sitemap</a></li> <li><a href="/Conferences">All Conferences</a></li> <li><a href="/special-issues">All Special Issues</a></li> <li><a href="/news/all">All News</a></li> <li><a href="/read-and-publish-agreements">Read & Publish Agreements</a></li> </ul> </div> </div> </div> </div> <div class="line-footer"></div> <div class="footer-fluid"> <div class="container"> <div class="row"> <div class="col-xs-12"> <a href="https://www.facebook.com/Scientific.Net.Ltd/" target="_blank" rel="noopener" title="Scientific.Net"><i class="inline-icon facebook-footer-icon social-icon"></i></a> <a href="https://twitter.com/Scientific_Net/" target="_blank" rel="noopener" title="Scientific.Net"><i class="inline-icon twitter-footer-icon social-icon"></i></a> <a href="https://www.linkedin.com/company/scientificnet/" target="_blank" rel="noopener" title="Scientific.Net"><i class="inline-icon linkedin-footer-icon social-icon"></i></a> </div> </div> </div> </div> <div class="line-footer"></div> <div class="footer-fluid"> <div class="container"> <div class="row"> <div class="col-xs-12 footer-copyright"> <p> © 2024 Trans Tech Publications Ltd. All rights are reserved, including those for text and data mining, AI training, and similar technologies. For open access content, terms of the Creative Commons licensing CC-BY are applied. <br />Scientific.Net is a registered trademark of Trans Tech Publications Ltd. </p> </div> </div> </div> </div> </div> <a class="scrollTop inline-icon scroll-top-icon" href="#" style="display: none"></a> </div> <script src="/Scripts/public.min.js?v=BtSq2PJEHRTW2PekpQGgIQKs7-OSPiKhsoI9rMs6kTU"></script> <script> $(function () { $("#paper-search").autocomplete({ minLength: 1, source: '/Title/Search?kurzel=AMM&volumeBegin=922&volumeEnd=922', delay: 200, select: function (event, ui) { window.location.href = ui.item.url; } }); }); </script> <script asp-render-component-scripts> $(function () { $.get("/Title/ShowMarcXmlLink") .done(function (showMarcXmlLink) { if (showMarcXmlLink) { $("#titleMarcXmlLink").show(); } }); }); Scinet.public = (function () { function loadCartInfo(onLoad) { var formatCartItemCount = function (count) { var format = (count > 1 || count === 0) ? "{0} items" : "{0} item"; $("#cartInfoTotalItemsCount").html(Scinet.stringFormat(format, count)); }, cookieCartItemCount = Cookies.get("Scinet5.CartItemsCount"); if (onLoad && cookieCartItemCount != null) { formatCartItemCount(parseInt(cookieCartItemCount, 10)); } else { $.ajax({ url: "/Cart/GetItemsCount", cache: false }) .done( function (count) { Cookies.set("Scinet5.CartItemsCount", count, { domain: ".scientific.net", secure: true }); formatCartItemCount(count); }); } } return { loadCartInfo: loadCartInfo }; })(); $(function () { Scinet.public.loadCartInfo(true); $("[data-add-book-to-cart]").on("click", function (e) { e.preventDefault(); var data = $(this).data("add-book-to-cart"); console.log(data); var url = "/Cart/AddBook"; $.post(url, data) .done( function () { Scinet.public.loadCartInfo(); $("#addToCart").modal(); }) .fail( function (xhr) { Scinet.error(xhr.responseText); }); }) }); </script> <script> var $buoop = { required: { e: 11, f: -6, o: -6, s: -3, c: -6 }, insecure: false, unsupported: false, api: 2019.11, reminder: 0, onshow: function () { window.browserUpdateOutdated = true; } }; function $buo_f() { var e = document.createElement("script"); e.src = "//browser-update.org/update.min.js"; document.body.appendChild(e); }; try { document.addEventListener("DOMContentLoaded", $buo_f, false) } catch (e) { window.attachEvent("onload", $buo_f) } </script> <!-- IE polyfills--> <!--[if lt IE 10]> <script src="/Scripts/lib/flexibility/flexibility.js"></script> <script> flexibility(document.documentElement); </script> <![endif]--> <script> window.clientErrorLogActionUrl = "/Errors/LogClientError"; </script> </body> </html>