CINXE.COM

Bond-Based Peridynamic Model for Tensile Deformation and Fracture of Polycarbonate and Polypropylene | Scientific.Net

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <meta name="format-detection" content="telephone=no"> <meta name="viewport" content="width=device-width, initial-scale=1.0" /> <meta charset="utf-8"> <meta http-equiv="X-UA-Compatible" content="IE=edge"> <link rel="canonical" href="https://www.scientific.net/AMM.922.3" /> <meta property="og:title" content="Bond-Based Peridynamic Model for Tensile Deformation and Fracture of Polycarbonate and Polypropylene | Scientific.Net" /> <meta property="og:type" content="website" /> <meta property="og:url" content="https://www.scientific.net/AMM.922.3" /> <meta property="og:image" content="/Content/app/scinet5/images/metadata_logo.png" /> <meta property="og:image:type" content="image/png" /> <meta property="og:image:width" content="261" /> <meta property="og:image:height" content="260" /> <meta property="og:image:alt" content="Scientific.Net Logo" /> <meta name="citation_language" content="en" /> <meta name="citation_publisher" content="Trans Tech Publications Ltd" /> <meta name="citation_title" content="Bond-Based Peridynamic Model for Tensile Deformation and Fracture of Polycarbonate and Polypropylene" /> <meta name="citation_publication_date" content="2024" /> <meta name="citation_online_date" content="2024/08/19" /> <meta name="citation_journal_title" content="Applied Mechanics and Materials" /> <meta name="citation_issn" content="1662-7482" /> <meta name="citation_volume" content="922" /> <meta name="citation_firstpage" content="3" /> <meta name="citation_lastpage" content="22" /> <meta name="citation_pdf_url" content="https://www.scientific.net/AMM.922.3.pdf" /> <meta name="citation_abstract_html_url" content="https://www.scientific.net/AMM.922.3" /> <meta name="citation_keywords" content="Fracture;Notched Specimen;Peridynamic;Polycarbonate;Polypropylene;Tensile" /> <meta name="citation_doi" content="10.4028/p-M9ebBJ" /> <meta name="citation_author" content="Muhammad Azim Azizi" /> <meta name="citation_author" content="Muhammad Amin Azman" /> <meta name="citation_author" content="Muhammad Farhan Aqil Norazak" /> <meta name="citation_author" content="Muhammad Amirul Hakim Fauzi" /> <meta name="citation_reference" content="citation_title=Self-wrinkling coating for impact resistance and mechanical enhancement; citation_author=Jin Li; citation_author=Xiaoliang Zhang; citation_author=Zhilong Su; citation_author=Tiantian Li; citation_author=Zehong Wang; citation_author=Shilong Dong; citation_author=Fan Xu; citation_author=Xiaodong Ma; citation_author=Jie Yin; citation_author=Xuesong Jiang; citation_volume=68; citation_issue=19; citation_publication_date=2023/10; citation_pages=2200-2209; citation_doi=10.1016/j.scib.2023.08.021" /> <meta name="citation_reference" content="citation_title=Specimen geometry design for plasticity and fracture characterization of sheet metal under high testing speed and various stress states; citation_author=Chongyang Zeng; citation_author=Xiangfan Fang; citation_volume=186; citation_publication_date=2023/5; citation_pages=110688; citation_doi=10.1016/j.tws.2023.110688" /> <meta name="citation_reference" content="citation_title=Review on the design of an aircraft crashworthy passenger seat; citation_author=M. Guida; citation_author=G. Lamanna; citation_author=F. Marulo; citation_author=F. Caputo; citation_volume=129; citation_publication_date=2022/2; citation_pages=100785; citation_doi=10.1016/j.paerosci.2021.100785" /> <meta name="citation_reference" content="citation_title=Numerical Fracture Analysis of a Reactor Pressure Vessel based on Abaqus-FRANC3D Co-simulation Method; citation_author=M. Annor-Nyarko; citation_author=Hong Xia; citation_volume=37; citation_publication_date=2022; citation_pages=225-232; citation_doi=10.1016/j.prostr.2022.01.078" /> <meta name="citation_reference" content="citation_title=Characterization of SA500 material - determination of J and CTOD resistant curves; citation_author=Mirza Manjgo; citation_author=Tomaž Vuherer; citation_author=Gorazd Lojen; citation_volume=48; citation_publication_date=2023; citation_pages=161-168; citation_doi=10.1016/j.prostr.2023.07.143" /> <meta name="citation_reference" content="citation_title=Comparison of the reliability-based and safety factor methods for structural design; citation_author=Xiaojun Wang; citation_author=Qinghe Shi; citation_author=Weichao Fan; citation_author=Ruixing Wang; citation_author=Lei Wang; citation_volume=72; citation_publication_date=2019/8; citation_pages=68-84; citation_doi=10.1016/j.apm.2019.03.018" /> <meta name="citation_reference" content="citation_title=Reliability analysis and partial safety factors approach for rockfall protection structures; citation_author=Valerio De Biagi; citation_author=Maddalena Marchelli; citation_author=Daniele Peila; citation_volume=213; citation_publication_date=2020/6; citation_pages=110553; citation_doi=10.1016/j.engstruct.2020.110553" /> <meta name="citation_reference" content="Qing L., Hai-Xia S., Chang L., Cai-Feng W., Liangliang Z., Su C. (2022). Advances in frontal polymerization strategy: From fundamentals to applications, Progress in Polymer Science, 127:101514." /> <meta name="citation_reference" content="citation_title=Poly(butylene succinate) (PBS): Materials, processing, and industrial applications; citation_author=Massimiliano Barletta; citation_author=Clizia Aversa; citation_author=Muhammad Ayyoob; citation_author=Annamaria Gisario; citation_author=Kotiba Hamad; citation_author=Mehrshad Mehrpouya; citation_author=Henri Vahabi; citation_volume=132; citation_publication_date=2022/9; citation_pages=101579; citation_doi=10.1016/j.progpolymsci.2022.101579" /> <meta name="citation_reference" content="citation_title=Peridynamic micromechanical prediction of nonlocal damage initiation and propagation in DP steels based on real microstructure; citation_author=B. Anbarlooie; citation_author=H. Hosseini-Toudeshky; citation_volume=153-154; citation_publication_date=2019/4; citation_pages=64-74; citation_doi=10.1016/j.ijmecsci.2019.01.042" /> <meta name="citation_reference" content="citation_title=An ordinary state based peridynamic correspondence model for metal creep; citation_author=Shank S. Kulkarni; citation_author=Alireza Tabarraei; citation_volume=233; citation_publication_date=2020/6; citation_pages=107042; citation_doi=10.1016/j.engfracmech.2020.107042" /> <meta name="citation_reference" content="citation_title=A rate-dependent peridynamic model for predicting the dynamic response of particle reinforced metal matrix composites; citation_author=Jiaming Zhan; citation_author=Xiaohu Yao; citation_author=Fei Han; citation_author=Xiaoqing Zhang; citation_volume=263; citation_publication_date=2021/5; citation_pages=113673; citation_doi=10.1016/j.compstruct.2021.113673" /> <meta name="citation_reference" content="citation_title=Peridynamic analysis of curved elastic beams; citation_author=Zhenghao Yang; citation_author=Konstantin Naumenko; citation_author=Chien-Ching Ma; citation_author=Erkan Oterkus; citation_author=Selda Oterkus; citation_volume=101; citation_publication_date=2023/9; citation_pages=105075; citation_doi=10.1016/j.euromechsol.2023.105075" /> <meta name="citation_reference" content="citation_title=XFEM crack growth virtual monitoring in self-sensing CNT reinforced polymer nanocomposite plates using ANSYS; citation_author=L. Rodr&#237;guez-Tembleque; citation_author=J. Vargas; citation_author=E. Garc&#237;a-Mac&#237;as; citation_author=F.C. Buroni; citation_author=A. S&#225;ez; citation_volume=284; citation_publication_date=2022/3; citation_pages=115137; citation_doi=10.1016/j.compstruct.2021.115137" /> <meta name="citation_reference" content="citation_title=An XFEM-based numerical strategy to model three-dimensional fracture propagation regarding crack front segmentation; citation_author=Fang Shi; citation_author=Daobing Wang; citation_author=Quanquan Yang; citation_volume=118; citation_publication_date=2022/4; citation_pages=103250; citation_doi=10.1016/j.tafmec.2022.103250" /> <meta name="citation_reference" content="citation_title=Three-dimensional dynamic and quasi-static crack growth by a hybrid XFEM-peridynamics approach; citation_author=Bing Chen; citation_author=Tiantang Yu; citation_author=Sundararajan Natarajan; citation_author=Qing Zhang; citation_author=Tinh Quoc Bui; citation_volume=261; citation_publication_date=2022/2; citation_pages=108205; citation_doi=10.1016/j.engfracmech.2021.108205" /> <meta name="citation_reference" content="citation_title=Peridynamics-based simulation of semi-circular bending (SCB) testing; citation_author=Wenyao Liu; citation_author=Kezhen Yan; citation_author=Joshua Qiang Li; citation_author=Shu Yang; citation_volume=268; citation_publication_date=2021/1; citation_pages=121190; citation_doi=10.1016/j.conbuildmat.2020.121190" /> <meta name="citation_reference" content="citation_title=A vector form conjugated-shear bond-based peridynamic model for crack initiation and propagation in linear elastic solids; citation_author=Xiao-Ping Zhou; citation_author=Xiang-Long Yu; citation_volume=256; citation_publication_date=2021/10; citation_pages=107944; citation_doi=10.1016/j.engfracmech.2021.107944" /> <meta name="citation_reference" content="citation_title=A fully-discrete peridynamic modeling approach for tensile fracture of fiber-reinforced cementitious composites; citation_author=Yong Zhang; citation_author=Pizhong Qiao; citation_volume=242; citation_publication_date=2021/2; citation_pages=107454; citation_doi=10.1016/j.engfracmech.2020.107454" /> <meta name="citation_reference" content="citation_title=A stochastically homogenized peridynamic model for intraply fracture in fiber-reinforced composites; citation_author=Javad Mehrmashhadi; citation_author=Ziguang Chen; citation_author=Jiangming Zhao; citation_author=Florin Bobaru; citation_volume=182; citation_publication_date=2019/9; citation_pages=107770; citation_doi=10.1016/j.compscitech.2019.107770" /> <meta name="citation_reference" content="citation_title=Peridynamic simulation of crack propagation of non-homogeneous brittle rock-like materials; citation_author=Yanan Zhang; citation_author=Hongwei Deng; citation_author=Junren Deng; citation_author=Chuanju Liu; citation_author=Songtao Yu; citation_volume=106; citation_publication_date=2020/4; citation_pages=102438; citation_doi=10.1016/j.tafmec.2019.102438" /> <meta name="citation_reference" content="citation_title=Peridynamic simulation of finite elastic deformation and rupture in polymers; citation_author=Pranesh Roy; citation_author=Deepak Behera; citation_author=Erdogan Madenci; citation_volume=236; citation_publication_date=2020/9; citation_pages=107226; citation_doi=10.1016/j.engfracmech.2020.107226" /> <meta name="citation_reference" content="citation_title=Peridynamic Simulations of Nanoindentation Tests to Determine Elastic Modulus of Polymer Thin Films; citation_author=Emrah Celik; citation_author=Erkan Oterkus; citation_author=Ibrahim Guven; citation_volume=1; citation_issue=1; citation_publication_date=2019/3/12; citation_pages=36-44; citation_doi=10.1007/s42102-019-0005-4" /> <meta name="citation_reference" content="citation_title=Peridynamic Method for Behaviour of Polycarbonate Specimen in Impact Test; citation_author=M. A. Azizi; citation_author=A. A. Fahad; citation_author=S. A. Rahim; citation_publisher=Springer International Publishing; citation_publication_date=2022/1/24; citation_pages=29-43" /> <meta name="citation_reference" content="citation_title=Peridynamic model for nonlinear viscoelastic creep and creep rupture of Polypropylene; citation_author=M. A. Azizi; citation_author=A. K. Ariffin; citation_volume=13; citation_issue=4; citation_publication_date=2019/12/19; citation_pages=5735-5752; citation_doi=10.15282/jmes.13.4.2019.02.0458" /> <meta name="citation_reference" content="citation_title=Impact Simulation of Polycarbonates in Aeronautical and Aerospace Applications; citation_author=Weihong Zhang; citation_author=Yingjie Xu; citation_publisher=Elsevier; citation_publication_date=2019; citation_pages=79-112" /> <meta name="citation_reference" content="citation_title=Editors-in-Chief; citation_author=K.H. J&#252;rgen Buschow; citation_author=Robert W. Cahn; citation_author=Merton C. Flemings; citation_author=Bernhard Ilschner; citation_author=Edward J. Kramer; citation_author=Subhash Mahajan; citation_author=Patrick Veyssi&#232;re; citation_publisher=Elsevier; citation_publication_date=2002; citation_pages=iii" /> <meta name="citation_reference" content="citation_title=Polyesters; citation_author=Laurence W. McKeen; citation_publisher=Elsevier; citation_publication_date=2012; citation_pages=91-123" /> <meta name="citation_reference" content="Tripathi,&#160;D.&#160;(2002).&#160;Practical Guide to Polypropylene.&#160;United Kingdom:&#160;RAPRA Technology." /> <meta name="citation_reference" content="Polypropylene: Polymerization and Characterization of Mechanical and Thermal Properties.&#160;(2020).&#160;Croatia:&#160;IntechOpen." /> <meta name="citation_reference" content="Allison Calhoun, Chapter 3 - Polypropylene, Editor(s): John R. Wagner, In Plastics Design Library, Multilayer Flexible Packaging, William Andrew Publishing, 2010, Pages 31-36." /> <meta name="citation_reference" content="citation_title=A viscoelastic micropolar peridynamic model for quasi-brittle materials incorporating loading-rate effects; citation_author=Haitao Yu; citation_author=Xizhuo Chen; citation_volume=383; citation_publication_date=2021/9; citation_pages=113897; citation_doi=10.1016/j.cma.2021.113897" /> <meta name="citation_reference" content="citation_title=The peridynamic model of viscoelastic creep and recovery; citation_author=Muhammad Azim bin Azizi; citation_author=Ahmad Kamal Ariffin bin Mohd Ihsan; citation_author=Nik Abdullah bin Nik Mohamed; citation_volume=11; citation_issue=4; citation_publication_date=2015/11/9; citation_pages=579-597; citation_doi=10.1108/mmms-03-2015-0017" /> <meta name="citation_reference" content="citation_title=Reformulation of elasticity theory for discontinuities and long-range forces; citation_author=S.A. Silling; citation_volume=48; citation_issue=1; citation_publication_date=2000/1; citation_pages=175-209; citation_doi=10.1016/s0022-5096(99)00029-0" /> <meta name="citation_reference" content="citation_title=Peridynamic modeling of membranes and fibers; citation_author=S.A. Silling; citation_author=F. Bobaru; citation_volume=40; citation_issue=2-3; citation_publication_date=2005/3; citation_pages=395-409; citation_doi=10.1016/j.ijnonlinmec.2004.08.004" /> <meta name="citation_reference" content="citation_title=Material and structural behaviour of PMMA from low temperatures to over the glass transition: Quasi-static and dynamic loading; citation_author=D. Garcia-Gonzalez; citation_author=A. Rusinek; citation_author=A. Bendarma; citation_author=R. Bernier; citation_author=M. Klosak; citation_author=S. Bahi; citation_volume=81; citation_publication_date=2020/1; citation_pages=106263; citation_doi=10.1016/j.polymertesting.2019.106263" /> <meta name="citation_reference" content="Irgens, F. 2008. Chapter 9: Viscoelasticity, in: Irgens, F. Continuum Mechanics, 2008 Springer-Verlag Berlin." /> <meta name="citation_reference" content="Bura, E., Seweryn, A. (2018). Mode I fracture in PMMA specimens with notches – Experimental and numerical studies. Theoretical and Applied Fracture Mechanics, 97(July), 140–155" /> <meta name="person" content="Muhammad Azim Azizi, Muhammad Amin Azman, Muhammad Farhan Aqil Norazak, Muhammad Amirul Hakim Fauzi" /> <meta name="description" content="Fracture mechanics has been a crucial aspect in the field of engineering science as technologies are rapidly growing nowadays. Various numerical methods have been developed to analyze fracture behaviour in different types of materials used in industries. Meanwhile, the application of polymers garners attention worldwide due to outstanding characteristics such as good strength, lightweight, and high temperature resistance, exemplified by polymers like polycarbonate (PC) and polypropylene (PP). Hence, failure aspects of such materials must be taken into consideration when conditions arise that may lead to failure, such as high-load impact, fatigue, and extreme temperatures. In this study, a bond-based Peridynamic model (PD) for the tensile behaviour, including fracture, of polymers has been developed. The PD model is constructed using the Centos software and encompasses both brittle and ductile fracture behaviours. Numerical results, including crack propagation, damage zone, and force-extension curves of notched specimens, are validated by comparison with experimental results of PC and PP. Through the validation process, PC specimens exhibit a difference percentage range for maximum load and rupture extension of 2.9% to 18.8% and 2.4% to 4.6%, respectively. PP specimens show a difference percentage range for maximum load and rupture extension of 31.2% to 43.5% and 0.9% to 30%, respectively. Consequently, the validation results indicate that the PD model for brittle specimens aligns more closely with experimental data compared to the PD model for ductile specimens." /> <meta name="keywords" content="Fracture, Notched Specimen, Peridynamic, Polycarbonate, Polypropylene, Tensile" /> <meta name="copyright" content="2024 Trans Tech Publications Ltd. All Rights Reserved" /> <title>Bond-Based Peridynamic Model for Tensile Deformation and Fracture of Polycarbonate and Polypropylene | Scientific.Net</title> <link href="/Content/app/scinet5/images/favicon.ico" rel="shortcut icon" /> <link href="/Content/public.min.css?v=BKBihgCkUm340JBGsNjEPtWz8I22CUsubMPC3V1WYzw" rel="stylesheet" /> <link rel="preconnect" href="https://www.google-analytics.com"> <link rel="preconnect" href="https://www.gstatic.com"> <link rel="preconnect" href="https://www.googletagmanager.com"> <link rel="icon" href="/Content/app/scinet5/images/favicon.ico"> <link rel="apple-touch-icon" href="/Content/app/scinet5/images/apple-touch-icon.png"> <link rel="preconnect" href="https://fonts.googleapis.com"> <link rel="preconnect" href="https://fonts.gstatic.com" crossorigin> <link href="https://fonts.googleapis.com/css?family=Open&#x2B;Sans&#x2B;Condensed:300,700%7COpen&#x2B;Sans:300i,400,400i,600,600i,700&amp;display=swap" rel="stylesheet"> <!-- HTML5 shim support of HTML5 elements and media queries --> <!--[if lte IE 9]> <script src="https://oss.maxcdn.com/html5shiv/3.7.3/html5shiv.min.js"></script> <![endif]--> <!-- Google Tag Manager --> <script> (function(w,d,s,l,i){w[l]=w[l]||[];w[l].push({'gtm.start': new Date().getTime(),event:'gtm.js'});var f=d.getElementsByTagName(s)[0], j=d.createElement(s),dl=l!='dataLayer'?'&l='+l:'';j.async=true;j.src= 'https://www.googletagmanager.com/gtm.js?id='+i+dl;f.parentNode.insertBefore(j,f); })(window,document,'script','dataLayer','GTM-T3VDKWV');</script> <!-- End Google Tag Manager --> </head> <body> <noscript> <!-- Google Tag Manager (noscript) --> <iframe src="https://www.googletagmanager.com/ns.html?id=GTM-T3VDKWV" height="0" width="0" style="display:none;visibility:hidden"></iframe> </noscript> <div class="sc-content-container"> <div class="sc-content"> <div class="header-menu-container"> <div class="identity-menu-container header-menu-container-not-logged-in"> <div class="container"> <div class="row"> <ul class="role-menu"> <li class="user-menu between normal-user-menu"> <div class="hdivider-100"></div> <div class="cart-info"> <a href="https://main.scientific.net/Payment/Cart"> <i class="inline-icon cart-icon-white"></i> <span id="cartInfoTotalItemsCount"></span> </a> </div> <div class="user-menu-login-or-register"> <a href="https://main.scientific.net/Account/Registration?ReturnUrl=https%3A%2F%2Fwww.scientific.net%2FAMM.922.3" rel="nofollow"> Registration </a> <a href="https://main.scientific.net/Account/Login?ReturnUrl=https%3A%2F%2Fwww.scientific.net%2FAMM.922.3" rel="nofollow"> Log In </a> </div> </li> </ul> </div> </div> </div> <div class="header-fluid"> <div class="container"> <div class="row"> <div class="block-header"> <div class="logo-block"> <a href="/" class="application-logo inline-icon logo-icon"></a> <div class="burger-menu-button visible-xs"> <div class="hamburger-box"> <div class="hamburger-inner"></div> </div> </div> </div> <div class="menu-and-search-block"> <div class="burger-menu"> <nav class="burger-menu-items"> <div class="public-menu"> <ul> <li><a href="/ForLibraries">For Libraries</a></li> <li><a href="/ForPublication/Paper">For Publication</a></li> <li><a href="/DocuCenter">Downloads</a></li> <li><a href="/news/all">News</a></li> <li><a href="/Home/AboutUs">About Us</a></li> <li><a href="/Home/Contacts">Contact Us</a></li> </ul> </div> </nav> </div> <div class="header-menu-top"> <div class="header-menu-list"> <a href="/ForLibraries">For Libraries</a> <a href="/ForPublication/Paper">For Publication</a> <a href="/DocuCenter">Downloads</a> <a href="/news/all">News</a> <a href="/Home/AboutUs">About Us</a> <a href="/Home/Contacts">Contact Us</a> </div> </div> <div class="search-block"> <input class="search-control" type="search" placeholder="Search" data-url="/Search"> <button class="button button-95 button-grey search-btn button-simple"> <span class="hidden-xs">Search</span> <i class="inline-icon search-icon-grey visible-xs"></i> </button> </div> </div> </div> </div> </div> </div> </div> <div class="container-fluid"> <div class="row"> <div class="banner-new"></div> </div> </div> <div class="content"> <div class="container"> <div class="row content-container"> <div class="left-content col-md-4 col-sm-5"> <div class="left-content-first-line icon-container mobile-collapse-button"> <div class="page-name-block underline-begin sibling-name-block"> <div class="page-name-block-text"> Paper Titles <a class="left-content-expand-button"><i class="inline-icon arrow-right-black no-hover-icon on-focus-arrow-down-black"></i></a> </div> </div> </div> <div class="row mobile-collapse-content"> <a href="/AMM.922.-1" class="normal-large-text icon-container"> <div class="element-list"> <div class="element-list-text"> Preface </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> <a href="/AMM.922.3" class="normal-large-text icon-container active-element active"> <div class="element-list"> <div class="element-list-text"> Bond-Based Peridynamic Model for Tensile Deformation and Fracture of Polycarbonate and Polypropylene <br /> <span class="paper-volume-number">p.3</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> <a href="/AMM.922.23" class="normal-large-text icon-container"> <div class="element-list"> <div class="element-list-text"> Investigation of Strength Concrete Materials Using Pozzolanic Additives <br /> <span class="paper-volume-number">p.23</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> <a href="/AMM.922.35" class="normal-large-text icon-container"> <div class="element-list"> <div class="element-list-text"> Development of a Cost-Effective Twin-Disc Test Rig for Railway Wear Simulation <br /> <span class="paper-volume-number">p.35</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> <a href="/AMM.922.55" class="normal-large-text icon-container"> <div class="element-list"> <div class="element-list-text"> Dielectric Fluids for the Electrical Discharge Machining: A Review <br /> <span class="paper-volume-number">p.55</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> <a href="/AMM.922.67" class="normal-large-text icon-container"> <div class="element-list"> <div class="element-list-text"> Powder Bed Fusion Techniques in Metal 3D Printing: A Review <br /> <span class="paper-volume-number">p.67</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> <a href="/AMM.922.77" class="normal-large-text icon-container"> <div class="element-list"> <div class="element-list-text"> Optimization of Machining Process on Coated Tungsten Carbide Electrode Tool and Titanium Alloy Workpiece Using EDM: A Critical Review <br /> <span class="paper-volume-number">p.77</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> <a href="/AMM.922.89" class="normal-large-text icon-container"> <div class="element-list"> <div class="element-list-text"> Forging Die Wear Optimization: A Combined Approach with Finite Element Analysis and Taguchi Methodology <br /> <span class="paper-volume-number">p.89</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> <a href="/AMM.922.97" class="normal-large-text icon-container"> <div class="element-list"> <div class="element-list-text"> Thermal Analysis of Micro-Channel Internal Cooling in Cutting Tools: A Machine Learning Approach <br /> <span class="paper-volume-number">p.97</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> </div> </div> <div class="right-content col-md-8 col-sm-7 col-xs-12 paper-title-main-page"> <div class="bread-crumbs hidden-xs"> <a class="bread-crumbs-first" href="/">Home</a><i class="inline-icon arrow-breadcrumbs"></i><a class="bread-crumbs-first" href="/AMM">Applied Mechanics and Materials</a><i class="inline-icon arrow-breadcrumbs"></i><a class="bread-crumbs-first" href="/AMM.922">Applied Mechanics and Materials Vol. 922</a><i class="inline-icon arrow-breadcrumbs"></i><span class="bread-crumbs-second">Bond-Based Peridynamic Model for Tensile...</span></div> <div class="page-name-block underline-begin"> <h1 class="page-name-block-text">Bond-Based Peridynamic Model for Tensile Deformation and Fracture of Polycarbonate and Polypropylene</h1> </div> <div class="paper-statistics"> <div class="loading"> <i class="inline-icon download-and-visitor-statistics-icon"></i> <span class="normal-text" id="paperDownloadsAndVisitorsCount"></span> </div> </div> <div class="clearfix"></div> <div class="page-paper-title"> <div class="preview-block"> <img alt="Article Preview" width="128" height="180" src="/AMM.922.3/thumbnail.gif"> <div id="preview-button" data-url-preview-log="/Paper/PreviewImageLog?paperId=604927"> <i class="inline-icon preview-icon"></i> </div> <!--Modal window for article preview--> <div id="paper-preview-modal" class="modal fade"> <div class="modal-dialog" role="document"> <div class="popup-page-name underline-begin"> <div class="page-name-block-text">Article Preview</div> </div> <img alt="Article Preview" class="preview-image lazyload" data-src="/AMM.922.3/preview.gif"> <a data-dismiss="modal" title="Close" class="inline-icon close-icon"></a> </div> </div> <!--End modal--> </div> <div class="abstract-block-description"> <h3 class="page-paper-first-header">Abstract:</h3> <p class="normal-text"> Fracture mechanics has been a crucial aspect in the field of engineering science as technologies are rapidly growing nowadays. Various numerical methods have been developed to analyze fracture behaviour in different types of materials used in industries. Meanwhile, the application of polymers garners attention worldwide due to outstanding characteristics such as good strength, lightweight, and high temperature resistance, exemplified by polymers like polycarbonate (PC) and polypropylene (PP). Hence, failure aspects of such materials must be taken into consideration when conditions arise that may lead to failure, such as high-load impact, fatigue, and extreme temperatures. In this study, a bond-based Peridynamic model (PD) for the tensile behaviour, including fracture, of polymers has been developed. The PD model is constructed using the Centos software and encompasses both brittle and ductile fracture behaviours. Numerical results, including crack propagation, damage zone, and force-extension curves of notched specimens, are validated by comparison with experimental results of PC and PP. Through the validation process, PC specimens exhibit a difference percentage range for maximum load and rupture extension of 2.9% to 18.8% and 2.4% to 4.6%, respectively. PP specimens show a difference percentage range for maximum load and rupture extension of 31.2% to 43.5% and 0.9% to 30%, respectively. Consequently, the validation results indicate that the PD model for brittle specimens aligns more closely with experimental data compared to the PD model for ductile specimens. </p> </div> <div class="paper-access-buttons col-xs-12"> <div class="row"> <div class="sa-button-wrap"> <a id="sa-button" class="wayfinder-login d-flex sa-button" href="javascript:;"> <div class="sa-button-logo-wrap"> <i class="inline-icon sa-white"></i> </div> <div class="d-flex justify-content-center align-items-center sa-button-text text-truncate"> <div class="sa-button-text-primary text-truncate">Access through your institution</div> </div> </a> </div> <div class="title-button-pdf"> <button id="readPaperButton" data-url-read-paper-log="/Paper/ReadThePaperLog?paperId=604927" class="button button-160"> <span class="inline-element">Read The Paper</span> </button> </div> </div> <div class="row"> </div> </div> <div class="clearfix"></div> <div class="connected-title-container"> <div class="connected-title-text semibold-middle-text">You might also be interested in these eBooks</div> <div class="connected-title-list-container"> <div class="connected-title-list-item"> <a href="/book/tribology-research-machining-tools-and-mechatronics/978-3-0364-1637-3" title="Tribology Research, Machining Tools and Mechatronics"> <img class="ls-is-cached lazyloaded" src="/Image/TitleCover/7249?width=190" alt="Tribology Research, Machining Tools and Mechatronics" /> </a> <a id="downloadPdfButton" href="/book/tribology-research-machining-tools-and-mechatronics/978-3-0364-1637-3/ebook" class="button"> <span>View Preview</span> <i class="inline-icon book-icon-white small-icon button-icon-right"></i> </a> </div> </div> </div> <div class="papers-block-info-title"> <h2>Info:</h2> </div> <div class="clearfix"></div> <div class="papers-block-info-list"> <div class="papers-block-info col-lg-12"> <div class="row"> <div class="info-row-name normal-text-gray col-md-2 col-sm-3 col-xs-4"> <div class="row"> <p>Periodical:</p> </div> </div> <div class="info-row-content semibold-middle-text col-md-10 col-sm-9 col-xs-8"> <div class="row"> <a href="/AMM">Applied Mechanics and Materials</a> <span>(Volume 922)</span> </div> </div> </div> </div> <div class="papers-block-info col-lg-12"> <div class="row"> <div class="info-row-name normal-text-gray col-md-2 col-sm-3 col-xs-4"> <div class="row"> <p>Pages:</p> </div> </div> <div class="info-row-content semibold-middle-text col-md-10 col-sm-9 col-xs-8"> <div class="row"> <p>3-22</p> </div> </div> </div> </div> <div class="papers-block-info col-lg-12"> <div class="row"> <div class="info-row-name normal-text-gray col-md-2 col-sm-3 col-xs-4"> <div class="row"> <p>DOI:</p> </div> </div> <div class="info-row-content semibold-middle-text col-md-10 col-sm-9 col-xs-8"> <div class="row"> <p><a href="https://doi.org/10.4028/p-M9ebBJ">https://doi.org/10.4028/p-M9ebBJ</a></p> </div> </div> </div> </div> <div class="papers-block-info col-lg-12"> <div class="row"> <div class="info-row-name normal-text-gray col-md-2 col-sm-3 col-xs-4"> <div class="row"> <p>Citation:</p> </div> </div> <div class="info-row-content semibold-middle-text col-md-10 col-sm-9 col-xs-8"> <div class="row"> <p><a id="paperCitationsButton" href="#">Cite this paper</a></p> </div> </div> </div> </div> <div class="papers-block-info col-lg-12"> <div class="row"> <div class="info-row-name normal-text-gray col-md-2 col-sm-3 col-xs-4"> <div class="row"> <p>Online since:</p> </div> </div> <div class="info-row-content semibold-middle-text col-md-10 col-sm-9 col-xs-8"> <div class="row"> <p>August 2024</p> </div> </div> </div> </div> <div class="papers-block-info col-lg-12"> <div class="row"> <div class="info-row-name normal-text-gray col-md-2 col-sm-3 col-xs-4"> <div class="row"> <p>Authors:</p> </div> </div> <div class="info-row-content semibold-middle-text col-md-10 col-sm-9 col-xs-8"> <div class="row"> <a class="inline-icon mail-icon-red author-send-message" href="#" data-url="/Paper/_Message?paperId=604927&amp;personId=1545346&amp;urlSent=https%3A%2F%2Fwww.scientific.net%2FAMM.922.3" title="Send message to Corresponding Author"> </a> <a href="/author-papers/muhammad-azim-azizi">Muhammad Azim Azizi</a>*, <a href="/author-papers/muhammad-amin-azman">Muhammad Amin Azman</a>, <a href="/author-papers/muhammad-farhan-aqil-norazak">Muhammad Farhan Aqil Norazak</a>, <a href="/author-papers/muhammad-amirul-hakim-fauzi">Muhammad Amirul Hakim Fauzi</a> </div> </div> </div> </div> <div class="papers-block-info col-lg-12"> <div class="row"> <div class="info-row-name normal-text-gray col-md-2 col-sm-3 col-xs-4"> <div class="row"> <p>Keywords:</p> </div> </div> <div class="info-row-content semibold-middle-text col-md-10 col-sm-9 col-xs-8"> <div class="row"> <a href="/paper-keyword/fracture">Fracture</a>, <a href="/paper-keyword/notched-specimen">Notched Specimen</a>, <a href="/paper-keyword/peridynamic">Peridynamic</a>, <a href="/paper-keyword/polycarbonate">Polycarbonate</a>, <a href="/paper-keyword/polypropylene">Polypropylene</a>, <a href="/paper-keyword/tensile">Tensile</a> </div> </div> </div> </div> <div class="papers-block-info col-lg-12"> <div class="row"> <div class="info-row-name normal-text-gray col-md-2 col-sm-3 col-xs-4"> <div class="row"> <p>Export:</p> </div> </div> <div class="info-row-content semibold-middle-text col-md-10 col-sm-9 col-xs-8"> <div class="row"> <a href="/AMM.922.3.ris">RIS</a>, <a href="/AMM.922.3.bib">BibTeX</a> </div> </div> </div> </div> <div class="papers-block-info col-lg-12"> <div class="row"> <div class="info-row-name normal-text-gray col-md-2 col-sm-3 col-xs-4"> <div class="row"> <p>Price:</p> </div> </div> <div class="info-row-content semibold-middle-text col-md-10 col-sm-9 col-xs-8"> <div class="row"> <p id="paper-price-info"></p> </div> </div> </div> </div> <div class="papers-block-info col-lg-12"> <div class="row"> <div class="info-row-name normal-text-gray col-md-2 col-sm-3 col-xs-4"> <div class="row"> <p>Permissions:</p> </div> </div> <div class="info-row-content semibold-middle-text col-md-10 col-sm-9 col-xs-8"> <div class="row"> <p> <i class="inline-icon icon-permission"></i> <a href="https://marketplace.copyright.com/rs-ui-web/mp/search/article/10.4028%2Fp-M9ebBJ" target="_blank"> Request Permissions </a> </p> </div> </div> </div> </div> <div class="papers-block-info col-lg-12"> <div class="row"> <div class="info-row-name normal-text-gray col-md-2 col-sm-3 col-xs-4"> <div class="row"> <p>&#x421;opyright:</p> </div> </div> <div class="info-row-content semibold-middle-text col-md-10 col-sm-9 col-xs-8"> <div class="row"> <p> © 2024 Trans Tech Publications Ltd. All Rights Reserved </p> </div> </div> </div> </div> <div class="papers-block-info col-lg-12"> <div class="row"> <div class="info-row-name normal-text-gray col-md-2 col-sm-3 col-xs-4"> <div class="row"> <p>Share:</p> </div> </div> <div class="info-row-content share-icons semibold-middle-text col-md-10 col-sm-9 col-xs-8"> <div class="row"> <!-- AddToAny BEGIN --> <div id="" class="a2a_kit a2a_kit_size_32 a2a_default_style"> <a class="a2a_button_linkedin"></a> <a class="a2a_button_mendeley"></a> <a class="a2a_button_email"></a> <a class="a2a_button_x"></a> <a class="a2a_button_twitter"></a> <a class="a2a_button_whatsapp"></a> <a class="a2a_button_microsoft_teams"></a> <a class="a2a_button_skype"></a> <a class="a2a_button_outlook_com"></a> <a class="a2a_dd" href="https://www.addtoany.com/share"></a> </div> <script async src="https://static.addtoany.com/menu/page.js"></script> <!-- AddToAny END --> </div> </div> </div> </div> <div class="papers-block-info col-lg-12"> <div class="row"> <div class="info-row-name normal-text-gray col-md-2 col-sm-3 col-xs-4"> <div class="row"> <p>Citation:</p> </div> </div> <div class="info-row-content semibold-middle-text col-md-10 col-sm-9 col-xs-8"> <div class="row"> <div class="scite-badge" data-doi="10.4028/p-M9ebBJ" data-layout="horizontal" data-show-zero="true" data-small="false" data-show-labels="false" data-tally-show="true"> </div> </div> </div> </div> </div> </div> <div class="block-corresponding-buttons col-xs-12"> <div class="row"> <div class="block-corresponding normal-text-gray col-md-4 col-xs-12"> <div class="row"> <p><span>*</span> - Corresponding Author</p> </div> </div> </div> </div> <div class="related-article reference-collapse col-xs-12"> <div class="row"> <div class="view"> <div class="panel-group" id="references-panel"> <div class="panel panel-default"> <div class="panel-heading"> <a class="panel-title bold-large-text icon-container" data-toggle="collapse" data-parent="#references-panel" href="#reference-panel-element"> References <i class="inline-icon arrow-right-black"></i> </a> </div> <div id="reference-panel-element" class="panel-collapse collapse"> <div class="panel-body"> <div class="references-block"> <div class="reference-text volume-info-text"> <p> <span>[1]</span> Li J., Zhang X., Su Z., Li T., Wang Z., Dong S., Xu F., Ma X., Yin J., Jiang X. (2023), Self-wrinkling coating for impact resistance and mechanical enhancement, Science Bulletin, 68(19): 2200-2209. </p> <p> DOI: <a href="https://doi.org/10.1016/j.scib.2023.08.021">10.1016/j.scib.2023.08.021</a> </p> <p><a href="https://scholar.google.com/scholar_lookup?title=Self-wrinkling%20coating%20for%20impact%20resistance%20and%20mechanical%20enhancement&amp;author=Jin%20Li&amp;author=Xiaoliang%20Zhang&amp;author=Zhilong%20Su&amp;author=Tiantian%20Li&amp;author=Zehong%20Wang&amp;author=Shilong%20Dong&amp;author=Fan%20Xu&amp;author=Xiaodong%20Ma&amp;author=Jie%20Yin&amp;author=Xuesong%20Jiang&amp;publication_year=2023&amp;journal=Science%20Bulletin&amp;volume=68&amp;issue=19&amp;pages=2200-2209&amp;doi=10.1016%2Fj.scib.2023.08.021">Google Scholar</a></p> </div> <div class="reference-text volume-info-text"> <p> <span>[2]</span> Zeng C., Fang X. (2023), Specimen geometry design for plasticity and fracture characterization of sheet metal under high testing speed and various stress states, Thin-Walled Structures, 186: 110688. </p> <p> DOI: <a href="https://doi.org/10.1016/j.tws.2023.110688">10.1016/j.tws.2023.110688</a> </p> <p><a href="https://scholar.google.com/scholar_lookup?title=Specimen%20geometry%20design%20for%20plasticity%20and%20fracture%20characterization%20of%20sheet%20metal%20under%20high%20testing%20speed%20and%20various%20stress%20states&amp;author=Chongyang%20Zeng&amp;author=Xiangfan%20Fang&amp;publication_year=2023&amp;journal=Thin-Walled%20Structures&amp;volume=186&amp;pages=110688&amp;doi=10.1016%2Fj.tws.2023.110688">Google Scholar</a></p> </div> <div class="reference-text volume-info-text"> <p> <span>[3]</span> Guida M., Lamanna G., Marulo F., Caputo F. (2022). Review on the design of an aircraft crashworthy passenger seat, Progress in Aerospace Sciences, 129: 100785. </p> <p> DOI: <a href="https://doi.org/10.1016/j.paerosci.2021.100785">10.1016/j.paerosci.2021.100785</a> </p> <p><a href="https://scholar.google.com/scholar_lookup?title=Review%20on%20the%20design%20of%20an%20aircraft%20crashworthy%20passenger%20seat&amp;author=M.%20Guida&amp;author=G.%20Lamanna&amp;author=F.%20Marulo&amp;author=F.%20Caputo&amp;publication_year=2022&amp;journal=Progress%20in%20Aerospace%20Sciences&amp;volume=129&amp;pages=100785&amp;doi=10.1016%2Fj.paerosci.2021.100785">Google Scholar</a></p> </div> <div class="reference-text volume-info-text"> <p> <span>[4]</span> Annor-Nyarko M., Hong X. (2022), Numerical Fracture Analysis of a Reactor Pressure Vessel based on Abaqus-FRANC3D Co-simulation Method, Procedia Structural Integrity, 37: 225-232. </p> <p> DOI: <a href="https://doi.org/10.1016/j.prostr.2022.01.078">10.1016/j.prostr.2022.01.078</a> </p> <p><a href="https://scholar.google.com/scholar_lookup?title=Numerical%20Fracture%20Analysis%20of%20a%20Reactor%20Pressure%20Vessel%20based%20on%20Abaqus-FRANC3D%20Co-simulation%20Method&amp;author=M.%20Annor-Nyarko&amp;author=Hong%20Xia&amp;publication_year=2022&amp;journal=Procedia%20Structural%20Integrity&amp;volume=37&amp;pages=225-232&amp;doi=10.1016%2Fj.prostr.2022.01.078">Google Scholar</a></p> </div> <div class="reference-text volume-info-text"> <p> <span>[5]</span> Manjgo M., Vuherer T., Lojen G. (2023), Characterization of SA500 material - determination of J and CTOD resistant curves, Procedia Structural Integrity, 48: 161-168 </p> <p> DOI: <a href="https://doi.org/10.1016/j.prostr.2023.07.143">10.1016/j.prostr.2023.07.143</a> </p> <p><a href="https://scholar.google.com/scholar_lookup?title=Characterization%20of%20SA500%20material%20-%20determination%20of%20J%20and%20CTOD%20resistant%20curves&amp;author=Mirza%20Manjgo&amp;author=Toma%C5%BE%20Vuherer&amp;author=Gorazd%20Lojen&amp;publication_year=2023&amp;journal=Procedia%20Structural%20Integrity&amp;volume=48&amp;pages=161-168&amp;doi=10.1016%2Fj.prostr.2023.07.143">Google Scholar</a></p> </div> <div class="reference-text volume-info-text"> <p> <span>[6]</span> Wang. X. J., Shi Q., Fan W., Wang R., Wang Lei. (2019). Comparison of the reliability-based and safety factor methods for structural design, Applied Mathematical Modelling, 72, 68-84. </p> <p> DOI: <a href="https://doi.org/10.1016/j.apm.2019.03.018">10.1016/j.apm.2019.03.018</a> </p> <p><a href="https://scholar.google.com/scholar_lookup?title=Comparison%20of%20the%20reliability-based%20and%20safety%20factor%20methods%20for%20structural%20design&amp;author=Xiaojun%20Wang&amp;author=Qinghe%20Shi&amp;author=Weichao%20Fan&amp;author=Ruixing%20Wang&amp;author=Lei%20Wang&amp;publication_year=2019&amp;journal=Applied%20Mathematical%20Modelling&amp;volume=72&amp;pages=68-84&amp;doi=10.1016%2Fj.apm.2019.03.018">Google Scholar</a></p> </div> <div class="reference-text volume-info-text"> <p> <span>[7]</span> Valerio D. B., Marchelli M., Peila D. (2020), Reliability analysis and partial safety factors approach for rockfall protection structures, Engineering Structures, 213: 110553. </p> <p> DOI: <a href="https://doi.org/10.1016/j.engstruct.2020.110553">10.1016/j.engstruct.2020.110553</a> </p> <p><a href="https://scholar.google.com/scholar_lookup?title=Reliability%20analysis%20and%20partial%20safety%20factors%20approach%20for%20rockfall%20protection%20structures&amp;author=Valerio%20De%20Biagi&amp;author=Maddalena%20Marchelli&amp;author=Daniele%20Peila&amp;publication_year=2020&amp;journal=Engineering%20Structures&amp;volume=213&amp;pages=110553&amp;doi=10.1016%2Fj.engstruct.2020.110553">Google Scholar</a></p> </div> <div class="reference-text volume-info-text"> <p> <span>[8]</span> Qing L., Hai-Xia S., Chang L., Cai-Feng W., Liangliang Z., Su C. (2022). Advances in frontal polymerization strategy: From fundamentals to applications, Progress in Polymer Science, 127:101514. </p> <p><a href="https://scholar.google.com/scholar?q=Qing%20L.%2C%20Hai-Xia%20S.%2C%20Chang%20L.%2C%20Cai-Feng%20W.%2C%20Liangliang%20Z.%2C%20Su%20C.%20%282022%29.%20Advances%20in%20frontal%20polymerization%20strategy%3A%20From%20fundamentals%20to%20applications%2C%20Progress%20in%20Polymer%20Science%2C%20127%3A101514.">Google Scholar</a></p> </div> <div class="reference-text volume-info-text"> <p> <span>[9]</span> Barletta M., Aversa C., Ayyoob M., Gisario A., Hamad K., Mehrpouya M., Vahabi H. (2022), Poly(butylene succinate) (PBS): Materials, processing, and industrial applications, Progress in Polymer Science, 132: 101579. </p> <p> DOI: <a href="https://doi.org/10.1016/j.progpolymsci.2022.101579">10.1016/j.progpolymsci.2022.101579</a> </p> <p><a href="https://scholar.google.com/scholar_lookup?title=Poly%28butylene%20succinate%29%20%28PBS%29%3A%20Materials%2C%20processing%2C%20and%20industrial%20applications&amp;author=Massimiliano%20Barletta&amp;author=Clizia%20Aversa&amp;author=Muhammad%20Ayyoob&amp;author=Annamaria%20Gisario&amp;author=Kotiba%20Hamad&amp;author=Mehrshad%20Mehrpouya&amp;author=Henri%20Vahabi&amp;publication_year=2022&amp;journal=Progress%20in%20Polymer%20Science&amp;volume=132&amp;pages=101579&amp;doi=10.1016%2Fj.progpolymsci.2022.101579">Google Scholar</a></p> </div> <div class="reference-text volume-info-text"> <p> <span>[10]</span> Anbarlooie B., Hosseini-Toudeshky H. (2019). Peridynamic micromechanical prediction of nonlocal damage initiation and propagation in DP steels based on real microstructure, International Journal of Mechanical Sciences, 153&#x2013;154: 64&#x2013;74. </p> <p> DOI: <a href="https://doi.org/10.1016/j.ijmecsci.2019.01.042">10.1016/j.ijmecsci.2019.01.042</a> </p> <p><a href="https://scholar.google.com/scholar_lookup?title=Peridynamic%20micromechanical%20prediction%20of%20nonlocal%20damage%20initiation%20and%20propagation%20in%20DP%20steels%20based%20on%20real%20microstructure&amp;author=B.%20Anbarlooie&amp;author=H.%20Hosseini-Toudeshky&amp;publication_year=2019&amp;journal=International%20Journal%20of%20Mechanical%20Sciences&amp;volume=153-154&amp;pages=64-74&amp;doi=10.1016%2Fj.ijmecsci.2019.01.042">Google Scholar</a></p> </div> <div class="reference-text volume-info-text"> <p> <span>[11]</span> Shank S. K., Alireza T. (2020). An ordinary state based peridynamic correspondence model for metal creep, Engineering Fracture Mechanics, 233: 107042. </p> <p> DOI: <a href="https://doi.org/10.1016/j.engfracmech.2020.107042">10.1016/j.engfracmech.2020.107042</a> </p> <p><a href="https://scholar.google.com/scholar_lookup?title=An%20ordinary%20state%20based%20peridynamic%20correspondence%20model%20for%20metal%20creep&amp;author=Shank%20S.%20Kulkarni&amp;author=Alireza%20Tabarraei&amp;publication_year=2020&amp;journal=Engineering%20Fracture%20Mechanics&amp;volume=233&amp;pages=107042&amp;doi=10.1016%2Fj.engfracmech.2020.107042">Google Scholar</a></p> </div> <div class="reference-text volume-info-text"> <p> <span>[12]</span> Jiaming Z., Xiaohu Y., Fei H., Xiaoqing Z. (2021). A rate-dependent peridynamic model for predicting the dynamic response of particle reinforced metal matrix composites, Composite Structures, 263: 113673. </p> <p> DOI: <a href="https://doi.org/10.1016/j.compstruct.2021.113673">10.1016/j.compstruct.2021.113673</a> </p> <p><a href="https://scholar.google.com/scholar_lookup?title=A%20rate-dependent%20peridynamic%20model%20for%20predicting%20the%20dynamic%20response%20of%20particle%20reinforced%20metal%20matrix%20composites&amp;author=Jiaming%20Zhan&amp;author=Xiaohu%20Yao&amp;author=Fei%20Han&amp;author=Xiaoqing%20Zhang&amp;publication_year=2021&amp;journal=Composite%20Structures&amp;volume=263&amp;pages=113673&amp;doi=10.1016%2Fj.compstruct.2021.113673">Google Scholar</a></p> </div> <div class="reference-text volume-info-text"> <p> <span>[13]</span> Yang Z., Naumenko K., Ma C., Oterkus E., Oterkus S. (2023), Peridynamic analysis of curved elastic beams, European Journal of Mechanics - A/Solids, 101: 105075. </p> <p> DOI: <a href="https://doi.org/10.1016/j.euromechsol.2023.105075">10.1016/j.euromechsol.2023.105075</a> </p> <p><a href="https://scholar.google.com/scholar_lookup?title=Peridynamic%20analysis%20of%20curved%20elastic%20beams&amp;author=Zhenghao%20Yang&amp;author=Konstantin%20Naumenko&amp;author=Chien-Ching%20Ma&amp;author=Erkan%20Oterkus&amp;author=Selda%20Oterkus&amp;publication_year=2023&amp;journal=European%20Journal%20of%20Mechanics%20-%20A%2FSolids&amp;volume=101&amp;pages=105075&amp;doi=10.1016%2Fj.euromechsol.2023.105075">Google Scholar</a></p> </div> <div class="reference-text volume-info-text"> <p> <span>[14]</span> Rodr&#xED;guez-Tembleque L., Vargas J., Garc&#xED;a-Mac&#xED;as E., Buroni F.C., S&#xE1;ez A. (2022). XFEM crack growth virtual monitoring in self-sensing CNT reinforced polymer nanocomposite plates using ANSYS, Composite Structures, 284: 115137. </p> <p> DOI: <a href="https://doi.org/10.1016/j.compstruct.2021.115137">10.1016/j.compstruct.2021.115137</a> </p> <p><a href="https://scholar.google.com/scholar_lookup?title=XFEM%20crack%20growth%20virtual%20monitoring%20in%20self-sensing%20CNT%20reinforced%20polymer%20nanocomposite%20plates%20using%20ANSYS&amp;author=L.%20Rodr%C3%ADguez-Tembleque&amp;author=J.%20Vargas&amp;author=E.%20Garc%C3%ADa-Mac%C3%ADas&amp;author=F.C.%20Buroni&amp;author=A.%20S%C3%A1ez&amp;publication_year=2022&amp;journal=Composite%20Structures&amp;volume=284&amp;pages=115137&amp;doi=10.1016%2Fj.compstruct.2021.115137">Google Scholar</a></p> </div> <div class="reference-text volume-info-text"> <p> <span>[15]</span> Fang S., Daobing W., Quanquan Y. (2022). An XFEM-based numerical strategy to model three-dimensional fracture propagation regarding crack front segmentation, Theoretical and Applied Fracture Mechanics, 118: 103250. </p> <p> DOI: <a href="https://doi.org/10.1016/j.tafmec.2022.103250">10.1016/j.tafmec.2022.103250</a> </p> <p><a href="https://scholar.google.com/scholar_lookup?title=An%20XFEM-based%20numerical%20strategy%20to%20model%20three-dimensional%20fracture%20propagation%20regarding%20crack%20front%20segmentation&amp;author=Fang%20Shi&amp;author=Daobing%20Wang&amp;author=Quanquan%20Yang&amp;publication_year=2022&amp;journal=Theoretical%20and%20Applied%20Fracture%20Mechanics&amp;volume=118&amp;pages=103250&amp;doi=10.1016%2Fj.tafmec.2022.103250">Google Scholar</a></p> </div> <div class="reference-text volume-info-text"> <p> <span>[16]</span> Chen B., Yu T., Natarajan S., Zhang Q., Bui T. Q. (2022), Three-dimensional dynamic and quasi-static crack growth by a hybrid XFEM-peridynamics approach, Engineering Fracture Mechanics, 261: 108205. </p> <p> DOI: <a href="https://doi.org/10.1016/j.engfracmech.2021.108205">10.1016/j.engfracmech.2021.108205</a> </p> <p><a href="https://scholar.google.com/scholar_lookup?title=Three-dimensional%20dynamic%20and%20quasi-static%20crack%20growth%20by%20a%20hybrid%20XFEM-peridynamics%20approach&amp;author=Bing%20Chen&amp;author=Tiantang%20Yu&amp;author=Sundararajan%20Natarajan&amp;author=Qing%20Zhang&amp;author=Tinh%20Quoc%20Bui&amp;publication_year=2022&amp;journal=Engineering%20Fracture%20Mechanics&amp;volume=261&amp;pages=108205&amp;doi=10.1016%2Fj.engfracmech.2021.108205">Google Scholar</a></p> </div> <div class="reference-text volume-info-text"> <p> <span>[17]</span> Wenyao L., Kezhen Y., Joshua Q. L., Shu Y. (2021). Peridynamics-based simulation of semicircular bending (SCB) testing, Construction and Building Materials, 268, 121190. </p> <p> DOI: <a href="https://doi.org/10.1016/j.conbuildmat.2020.121190">10.1016/j.conbuildmat.2020.121190</a> </p> <p><a href="https://scholar.google.com/scholar_lookup?title=Peridynamics-based%20simulation%20of%20semi-circular%20bending%20%28SCB%29%20testing&amp;author=Wenyao%20Liu&amp;author=Kezhen%20Yan&amp;author=Joshua%20Qiang%20Li&amp;author=Shu%20Yang&amp;publication_year=2021&amp;journal=Construction%20and%20Building%20Materials&amp;volume=268&amp;pages=121190&amp;doi=10.1016%2Fj.conbuildmat.2020.121190">Google Scholar</a></p> </div> <div class="reference-text volume-info-text"> <p> <span>[18]</span> Xiao-Ping Z., Xiang-Long Y. (2021). A vector form conjugated-shear bond-based peridynamic model for crack initiation and propagation in linear elastic solids, Engineering Fracture Mechanics, 256, 107944. </p> <p> DOI: <a href="https://doi.org/10.1016/j.engfracmech.2021.107944">10.1016/j.engfracmech.2021.107944</a> </p> <p><a href="https://scholar.google.com/scholar_lookup?title=A%20vector%20form%20conjugated-shear%20bond-based%20peridynamic%20model%20for%20crack%20initiation%20and%20propagation%20in%20linear%20elastic%20solids&amp;author=Xiao-Ping%20Zhou&amp;author=Xiang-Long%20Yu&amp;publication_year=2021&amp;journal=Engineering%20Fracture%20Mechanics&amp;volume=256&amp;pages=107944&amp;doi=10.1016%2Fj.engfracmech.2021.107944">Google Scholar</a></p> </div> <div class="reference-text volume-info-text"> <p> <span>[19]</span> Yong Z., Pizhong Q. (2021). A fully-discrete peridynamic modeling approach for tensile fracture of fiber-reinforced cementitious composites, Engineering Fracture Mechanics, 242: 107454. </p> <p> DOI: <a href="https://doi.org/10.1016/j.engfracmech.2020.107454">10.1016/j.engfracmech.2020.107454</a> </p> <p><a href="https://scholar.google.com/scholar_lookup?title=A%20fully-discrete%20peridynamic%20modeling%20approach%20for%20tensile%20fracture%20of%20fiber-reinforced%20cementitious%20composites&amp;author=Yong%20Zhang&amp;author=Pizhong%20Qiao&amp;publication_year=2021&amp;journal=Engineering%20Fracture%20Mechanics&amp;volume=242&amp;pages=107454&amp;doi=10.1016%2Fj.engfracmech.2020.107454">Google Scholar</a></p> </div> <div class="reference-text volume-info-text"> <p> <span>[20]</span> Javad, M., Ziguang, C., Jiangming, Z., Florin, B. (2019). A stochastically homogenized peridynamic model for intraply fracture in fiber-reinforced composites. Composites Science and Technology, 182, 107770. </p> <p> DOI: <a href="https://doi.org/10.1016/j.compscitech.2019.107770">10.1016/j.compscitech.2019.107770</a> </p> <p><a href="https://scholar.google.com/scholar_lookup?title=A%20stochastically%20homogenized%20peridynamic%20model%20for%20intraply%20fracture%20in%20fiber-reinforced%20composites&amp;author=Javad%20Mehrmashhadi&amp;author=Ziguang%20Chen&amp;author=Jiangming%20Zhao&amp;author=Florin%20Bobaru&amp;publication_year=2019&amp;journal=Composites%20Science%20and%20Technology&amp;volume=182&amp;pages=107770&amp;doi=10.1016%2Fj.compscitech.2019.107770">Google Scholar</a></p> </div> <div class="reference-text volume-info-text"> <p> <span>[21]</span> Yanan, Z., Hongwei, D., Junren, D., Chuanju, L., Songtao, Y. (2020). Peridynamic simulation of crack propagation of non-homogeneous brittle rock-like materials. Theoretical and Applied Fracture Mechanics, 106, 102438. </p> <p> DOI: <a href="https://doi.org/10.1016/j.tafmec.2019.102438">10.1016/j.tafmec.2019.102438</a> </p> <p><a href="https://scholar.google.com/scholar_lookup?title=Peridynamic%20simulation%20of%20crack%20propagation%20of%20non-homogeneous%20brittle%20rock-like%20materials&amp;author=Yanan%20Zhang&amp;author=Hongwei%20Deng&amp;author=Junren%20Deng&amp;author=Chuanju%20Liu&amp;author=Songtao%20Yu&amp;publication_year=2020&amp;journal=Theoretical%20and%20Applied%20Fracture%20Mechanics&amp;volume=106&amp;pages=102438&amp;doi=10.1016%2Fj.tafmec.2019.102438">Google Scholar</a></p> </div> <div class="reference-text volume-info-text"> <p> <span>[22]</span> Pranesh Roy, Deepak Behera, Erdogan Madenci, Peridynamic simulation of finite elastic deformation and rupture in polymers, Engineering Fracture Mechanics, Volume 236, 2020, 107226. </p> <p> DOI: <a href="https://doi.org/10.1016/j.engfracmech.2020.107226">10.1016/j.engfracmech.2020.107226</a> </p> <p><a href="https://scholar.google.com/scholar_lookup?title=Peridynamic%20simulation%20of%20finite%20elastic%20deformation%20and%20rupture%20in%20polymers&amp;author=Pranesh%20Roy&amp;author=Deepak%20Behera&amp;author=Erdogan%20Madenci&amp;publication_year=2020&amp;journal=Engineering%20Fracture%20Mechanics&amp;volume=236&amp;pages=107226&amp;doi=10.1016%2Fj.engfracmech.2020.107226">Google Scholar</a></p> </div> <div class="reference-text volume-info-text"> <p> <span>[23]</span> Celik, E., Oterkus, E. &amp; Guven, I. Peridynamic Simulations of Nanoindentation Tests to Determine Elastic Modulus of Polymer Thin Films.&#xA0;J Peridyn Nonlocal Model&#xA0;1, 36&#x2013;44 (2019) </p> <p> DOI: <a href="https://doi.org/10.1007/s42102-019-0005-4">10.1007/s42102-019-0005-4</a> </p> <p><a href="https://scholar.google.com/scholar_lookup?title=Peridynamic%20Simulations%20of%20Nanoindentation%20Tests%20to%20Determine%20Elastic%20Modulus%20of%20Polymer%20Thin%20Films&amp;author=Emrah%20Celik&amp;author=Erkan%20Oterkus&amp;author=Ibrahim%20Guven&amp;publication_year=2019&amp;journal=Journal%20of%20Peridynamics%20and%20Nonlocal%20Modeling&amp;volume=1&amp;issue=1&amp;pages=36-44&amp;doi=10.1007%2Fs42102-019-0005-4">Google Scholar</a></p> </div> <div class="reference-text volume-info-text"> <p> <span>[24]</span> Azizi M. A., Fahad A. A., Rahim S. A. (2022), Peridynamic&#xA0;Method for Behaviour of&#xA0;Polycarbonate&#xA0;Specimen in Impact Test, Structural Integrity, Volume 23, Pages 29 &#x2013; 43 </p> <p> DOI: <a href="https://doi.org/10.1007/978-3-030-85646-5_3">10.1007/978-3-030-85646-5_3</a> </p> <p><a href="https://scholar.google.com/scholar_lookup?title=Peridynamic%20Method%20for%20Behaviour%20of%20Polycarbonate%20Specimen%20in%20Impact%20Test&amp;author=M.%20A.%20Azizi&amp;author=A.%20A.%20Fahad&amp;author=S.%20A.%20Rahim&amp;publication_year=2022&amp;pages=29-43">Google Scholar</a></p> </div> <div class="reference-text volume-info-text"> <p> <span>[25]</span> Azizi, M. A., Ariffin, A. K. (2019). Peridynamic model for nonlinear viscoelastic creep and creep rupture of polypropylene. Journal of Mechanical Engineering and Sciences, 13(4), 5735-5752. </p> <p> DOI: <a href="https://doi.org/10.15282/jmes.13.4.2019.02.0458">10.15282/jmes.13.4.2019.02.0458</a> </p> <p><a href="https://scholar.google.com/scholar_lookup?title=Peridynamic%20model%20for%20nonlinear%20viscoelastic%20creep%20and%20creep%20rupture%20of%20Polypropylene&amp;author=M.%20A.%20Azizi&amp;author=A.%20K.%20Ariffin&amp;publication_year=2019&amp;journal=Journal%20of%20Mechanical%20Engineering%20and%20Sciences&amp;volume=13&amp;issue=4&amp;pages=5735-5752&amp;doi=10.15282%2Fjmes.13.4.2019.02.0458">Google Scholar</a></p> </div> <div class="reference-text volume-info-text"> <p> <span>[26]</span> Zhang W., Xu Y. (2019), 3 - Impact Simulation of Polycarbonates in Aeronautical and Aerospace Applications, Editor(s): Zhang W., Xu Y., Mechanical Properties of Polycarbonate, Elsevier, Pages 79-112 </p> <p> DOI: <a href="https://doi.org/10.1016/b978-1-78548-313-4.50003-0">10.1016/b978-1-78548-313-4.50003-0</a> </p> <p><a href="https://scholar.google.com/scholar_lookup?title=Impact%20Simulation%20of%20Polycarbonates%20in%20Aeronautical%20and%20Aerospace%20Applications&amp;author=Weihong%20Zhang&amp;author=Yingjie%20Xu&amp;publication_year=2019&amp;pages=79-112">Google Scholar</a></p> </div> <div class="reference-text volume-info-text"> <p> <span>[27]</span> R. Wehrmann, Polycarbonate, Editor(s): K.H. J&#xFC;rgen Buschow, Robert W. Cahn, Merton C. Flemings, Bernhard Ilschner, Edward J. Kramer, Subhash Mahajan, Patrick Veyssi&#xE8;re, Encyclopedia of Materials: Science and Technology, Elsevier, 2001, Pages 7149-7151. </p> <p> DOI: <a href="https://doi.org/10.1016/b0-08-043152-6/01865-9">10.1016/b0-08-043152-6/01865-9</a> </p> <p><a href="https://scholar.google.com/scholar_lookup?title=Editors-in-Chief&amp;author=K.H.%20J%C3%BCrgen%20Buschow&amp;author=Robert%20W.%20Cahn&amp;author=Merton%20C.%20Flemings&amp;author=Bernhard%20Ilschner&amp;author=Edward%20J.%20Kramer&amp;author=Subhash%20Mahajan&amp;author=Patrick%20Veyssi%C3%A8re&amp;publication_year=2002&amp;pages=iii">Google Scholar</a></p> </div> <div class="reference-text volume-info-text"> <p> <span>[28]</span> Laurence W. McKeen, 6 - Polyesters, Editor(s): Laurence W. McKeen, In Plastics Design Library, Film Properties of Plastics and Elastomers (Third Edition), William Andrew Publishing, 2012, Pages 91-123. </p> <p> DOI: <a href="https://doi.org/10.1016/b978-1-4557-2551-9.00006-2">10.1016/b978-1-4557-2551-9.00006-2</a> </p> <p><a href="https://scholar.google.com/scholar_lookup?title=Polyesters&amp;author=Laurence%20W.%20McKeen&amp;publication_year=2012&amp;pages=91-123">Google Scholar</a></p> </div> <div class="reference-text volume-info-text"> <p> <span>[29]</span> Tripathi,&#xA0;D.&#xA0;(2002).&#xA0;Practical Guide to Polypropylene.&#xA0;United Kingdom:&#xA0;RAPRA Technology. </p> <p><a href="https://scholar.google.com/scholar?q=Tripathi%2C%C2%A0D.%C2%A0%282002%29.%C2%A0Practical%20Guide%20to%20Polypropylene.%C2%A0United%20Kingdom%3A%C2%A0RAPRA%20Technology.">Google Scholar</a></p> </div> <div class="reference-text volume-info-text"> <p> <span>[30]</span> Polypropylene: Polymerization and Characterization of Mechanical and Thermal Properties.&#xA0;(2020).&#xA0;Croatia:&#xA0;IntechOpen. </p> <p><a href="https://scholar.google.com/scholar?q=Polypropylene%3A%20Polymerization%20and%20Characterization%20of%20Mechanical%20and%20Thermal%20Properties.%C2%A0%282020%29.%C2%A0Croatia%3A%C2%A0IntechOpen.">Google Scholar</a></p> </div> <div class="reference-text volume-info-text"> <p> <span>[31]</span> Allison Calhoun, Chapter 3 - Polypropylene, Editor(s): John R. Wagner, In Plastics Design Library, Multilayer Flexible Packaging, William Andrew Publishing, 2010, Pages 31-36. </p> <p><a href="https://scholar.google.com/scholar?q=Allison%20Calhoun%2C%20Chapter%203%20-%20Polypropylene%2C%20Editor%28s%29%3A%20John%20R.%20Wagner%2C%20In%20Plastics%20Design%20Library%2C%20Multilayer%20Flexible%20Packaging%2C%20William%20Andrew%20Publishing%2C%202010%2C%20Pages%2031-36.">Google Scholar</a></p> </div> <div class="reference-text volume-info-text"> <p> <span>[32]</span> Haitao, Y., Xizhuo, C. (2021). A viscoelastic micropolar peridynamic model for quasi-brittle materials incorporating loading-rate effects, Computer Methods in Applied Mechanics and Engineering. 383: 113897. </p> <p> DOI: <a href="https://doi.org/10.1016/j.cma.2021.113897">10.1016/j.cma.2021.113897</a> </p> <p><a href="https://scholar.google.com/scholar_lookup?title=A%20viscoelastic%20micropolar%20peridynamic%20model%20for%20quasi-brittle%20materials%20incorporating%20loading-rate%20effects&amp;author=Haitao%20Yu&amp;author=Xizhuo%20Chen&amp;publication_year=2021&amp;journal=Computer%20Methods%20in%20Applied%20Mechanics%20and%20Engineering&amp;volume=383&amp;pages=113897&amp;doi=10.1016%2Fj.cma.2021.113897">Google Scholar</a></p> </div> <div class="reference-text volume-info-text"> <p> <span>[33]</span> Azizi, M. A., Ariffin, A. K., Nik, A. N. M. (2015). The peridynamic model of viscoelastic creep and recovery. Multidiscipline Modelling in Materials and Structures, 11(4), 579-597. </p> <p> DOI: <a href="https://doi.org/10.1108/mmms-03-2015-0017">10.1108/mmms-03-2015-0017</a> </p> <p><a href="https://scholar.google.com/scholar_lookup?title=The%20peridynamic%20model%20of%20viscoelastic%20creep%20and%20recovery&amp;author=Muhammad%20Azim%20bin%20Azizi&amp;author=Ahmad%20Kamal%20Ariffin%20bin%20Mohd%20Ihsan&amp;author=Nik%20Abdullah%20bin%20Nik%20Mohamed&amp;publication_year=2015&amp;journal=Multidiscipline%20Modeling%20in%20Materials%20and%20Structures&amp;volume=11&amp;issue=4&amp;pages=579-597&amp;doi=10.1108%2Fmmms-03-2015-0017">Google Scholar</a></p> </div> <div class="reference-text volume-info-text"> <p> <span>[34]</span> Silling. S. A. (2000). Reformulation of elasticity theory for discontinuities and long-range forces. J. Mech. Phys. Solids, vol. 48, no. 1, p.175&#x2013;209. </p> <p> DOI: <a href="https://doi.org/10.1016/s0022-5096(99)00029-0">10.1016/s0022-5096(99)00029-0</a> </p> <p><a href="https://scholar.google.com/scholar_lookup?title=Reformulation%20of%20elasticity%20theory%20for%20discontinuities%20and%20long-range%20forces&amp;author=S.A.%20Silling&amp;publication_year=2000&amp;journal=Journal%20of%20the%20Mechanics%20and%20Physics%20of%20Solids&amp;volume=48&amp;issue=1&amp;pages=175-209&amp;doi=10.1016%2Fs0022-5096%2899%2900029-0">Google Scholar</a></p> </div> <div class="reference-text volume-info-text"> <p> <span>[35]</span> Silling, S. A. and Bobaru, F. (2005). Peridynamic modeling of membranes and fibers. Int. J. Non-Linear Mech., vol. 40, no. 2-3, p.395&#x2013;409. </p> <p> DOI: <a href="https://doi.org/10.1016/j.ijnonlinmec.2004.08.004">10.1016/j.ijnonlinmec.2004.08.004</a> </p> <p><a href="https://scholar.google.com/scholar_lookup?title=Peridynamic%20modeling%20of%20membranes%20and%20fibers&amp;author=S.A.%20Silling&amp;author=F.%20Bobaru&amp;publication_year=2005&amp;journal=International%20Journal%20of%20Non-Linear%20Mechanics&amp;volume=40&amp;issue=2-3&amp;pages=395-409&amp;doi=10.1016%2Fj.ijnonlinmec.2004.08.004">Google Scholar</a></p> </div> <div class="reference-text volume-info-text"> <p> <span>[36]</span> Gonzalez, D. G., Rusinek, A., Bendarma, A., Bernier, R., Klosak, M., Bahi, S. (2020). Material and structural behaviour of PMMA from low temperatures to over the glass transition: Quasistatic and dynamic loading. Polymer Testing, 81, 106263. </p> <p> DOI: <a href="https://doi.org/10.1016/j.polymertesting.2019.106263">10.1016/j.polymertesting.2019.106263</a> </p> <p><a href="https://scholar.google.com/scholar_lookup?title=Material%20and%20structural%20behaviour%20of%20PMMA%20from%20low%20temperatures%20to%20over%20the%20glass%20transition%3A%20Quasi-static%20and%20dynamic%20loading&amp;author=D.%20Garcia-Gonzalez&amp;author=A.%20Rusinek&amp;author=A.%20Bendarma&amp;author=R.%20Bernier&amp;author=M.%20Klosak&amp;author=S.%20Bahi&amp;publication_year=2020&amp;journal=Polymer%20Testing&amp;volume=81&amp;pages=106263&amp;doi=10.1016%2Fj.polymertesting.2019.106263">Google Scholar</a></p> </div> <div class="reference-text volume-info-text"> <p> <span>[37]</span> Irgens, F. 2008. Chapter 9: Viscoelasticity, in: Irgens, F. Continuum Mechanics, 2008 Springer-Verlag Berlin. </p> <p><a href="https://scholar.google.com/scholar?q=Irgens%2C%20F.%202008.%20Chapter%209%3A%20Viscoelasticity%2C%20in%3A%20Irgens%2C%20F.%20Continuum%20Mechanics%2C%202008%20Springer-Verlag%20Berlin.">Google Scholar</a></p> </div> <div class="reference-text volume-info-text"> <p> <span>[38]</span> Bura, E., Seweryn, A. (2018). Mode I fracture in PMMA specimens with notches &#x2013; Experimental and numerical studies. Theoretical and Applied Fracture Mechanics, 97(July), 140&#x2013;155 </p> <p> DOI: <a href="https://doi.org/10.1016/j.tafmec.2018.08.002">10.1016/j.tafmec.2018.08.002</a> </p> <p><a href="https://scholar.google.com/scholar?q=Bura%2C%20E.%2C%20Seweryn%2C%20A.%20%282018%29.%20Mode%20I%20fracture%20in%20PMMA%20specimens%20with%20notches%20%E2%80%93%20Experimental%20and%20numerical%20studies.%20Theoretical%20and%20Applied%20Fracture%20Mechanics%2C%2097%28July%29%2C%20140%E2%80%93155">Google Scholar</a></p> </div> </div> </div> </div> </div> </div> </div> </div> </div> <div class="related-article cited-collapse col-xs-12"> <div class="row"> <div class="view"> <div class="panel-group" id="cited-panel"> <div class="panel panel-default"> <div class="panel-heading"> <a id="citedby-link" class="panel-title bold-large-text icon-container" data-toggle="collapse" data-parent="#cited-panel-" data-paper-id="604927" href="#citedby-root"> Cited by <i class="inline-icon arrow-right-black"></i> </a> </div> <div id="citedby-root" class="panel-collapse collapse"> <span class="busy-icon"></span> </div> </div> </div> </div> </div> </div> <div class="related-article related-collapse col-xs-12"> <div class="row"> <div class="view"> <div class="panel-group" id="related-articles-panel"> <div class="panel panel-default"> <div class="panel-heading"> <a id="related-articles-link" class="panel-title bold-large-text icon-container" data-toggle="collapse" data-parent="#related-articles-panel" href="#related-articles-root"> Related Articles <i class="inline-icon arrow-right-black"></i> </a> </div> <div id="related-articles-root" class="panel-collapse collapse"> <span class="busy-icon"></span> </div> </div> </div> </div> </div> </div> </div> </div> </div> </div> </div> <div id="author-message-modal" class="modal fade" tabindex="-1" role="dialog"></div> <div id="citations-modal" class="modal fade" role="dialog"> <div class="modal-dialog popup"> <div class="popup-page-name underline-begin"> <div class="page-name-block-text">Citation</div> </div> <a class="inline-icon close-icon" data-dismiss="modal" title="Close"></a> <div class="modal-body"> <div id="citations-modal-content"></div> </div> </div> </div> <div id="addToCart" class="modal fade" tabindex="-1" role="dialog"> <div class="modal-dialog" role="document"> <div class="popup-page-name underline-begin"> <div class="page-name-block-text">Add To Cart</div> </div> <div class="shopping-cart-block"> <div class="popup-cart-block-image"> <i class="inline-icon add-paper-icon"></i> </div> <div class="popup-cart-block-text"> <p>Paper price: <span id="popup-paper-price"></span></p> <p>After payment, you will receive an email with instructions and a link to download the purchased paper.</p> <p>You may also check the possible access via personal account by logging in or/and check access through your institution.</p> </div> </div> <div class="popup-block-buttons clearfix"> <div class="three-buttons-block"> <a data-dismiss="modal" class="button button-95 button-grey icon-container"> <i class="inline-icon button-arrow-back-black button-icon-left"></i> <span class="inline-element">Back</span> </a> <button data-url="/Cart/AddPaper" data-paperid="604927" id="addPaperButton" class="button button-160" disabled> <span class="inline-element">Add to Cart</span> <i class="inline-icon cart-icon-white button-icon-right"></i> </button> </div> </div> <a data-dismiss="modal" title="Close" class="inline-icon close-icon"></a> </div> </div> <div id="addedToCart" class="modal fade" tabindex="-1" role="dialog"> <div class="modal-dialog" role="document"> <div class="popup-page-name underline-begin"> <div class="page-name-block-text">Add To Cart</div> </div> <div class="shopping-cart-block"> <div class="popup-cart-block-image"> <i class="inline-icon add-paper-icon"></i> </div> <div class="popup-cart-block-text"> <p>This paper has been added to your cart</p> </div> </div> <div class="popup-block-buttons clearfix"> <div class="three-buttons-block"> <a data-dismiss="modal" class="button button-95 button-grey icon-container"> <i class="inline-icon button-arrow-back-black button-icon-left"></i> <span class="inline-element">Back</span> </a> <a href="https://main.scientific.net/Payment/Cart" class="button button-160"> <span class="inline-element">To Cart</span> <i class="inline-icon cart-icon-white button-icon-right"></i> </a> </div> </div> <a data-dismiss="modal" title="Close" class="inline-icon close-icon"></a> </div> </div> <div class="social-icon-popup"> <a href="https://www.facebook.com/Scientific.Net.Ltd/" target="_blank" rel="noopener" title="Scientific.Net"><i class="inline-icon facebook-popup-icon social-icon"></i></a> <a href="https://twitter.com/Scientific_Net/" target="_blank" rel="noopener" title="Scientific.Net"><i class="inline-icon twitter-popup-icon social-icon"></i></a> <a href="https://www.linkedin.com/company/scientificnet/" target="_blank" rel="noopener" title="Scientific.Net"><i class="inline-icon linkedin-popup-icon social-icon"></i></a> </div> </div> <div class="sc-footer"> <div class="footer-fluid"> <div class="container"> <div class="row"> <div class="footer-menu col-md-12 col-sm-12 col-xs-12"> <ul class="list-inline menu-font"> <li><a href="/ForLibraries">For Libraries</a></li> <li><a href="/ForPublication/Paper">For Publication</a></li> <li><a href="/insights" target="_blank">Insights</a></li> <li><a href="/DocuCenter">Downloads</a></li> <li><a href="/Home/AboutUs">About Us</a></li> <li><a href="/PolicyAndEthics/PublishingPolicies">Policy &amp; Ethics</a></li> <li><a href="/Home/Contacts">Contact Us</a></li> <li><a href="/Home/Imprint">Imprint</a></li> <li><a href="/Home/PrivacyPolicy">Privacy Policy</a></li> <li><a href="/Home/Sitemap">Sitemap</a></li> <li><a href="/Conferences">All Conferences</a></li> <li><a href="/special-issues">All Special Issues</a></li> <li><a href="/news/all">All News</a></li> <li><a href="/read-and-publish-agreements">Read &amp; Publish Agreements</a></li> </ul> </div> </div> </div> </div> <div class="line-footer"></div> <div class="footer-fluid"> <div class="container"> <div class="row"> <div class="col-xs-12"> <a href="https://www.facebook.com/Scientific.Net.Ltd/" target="_blank" rel="noopener" title="Scientific.Net"><i class="inline-icon facebook-footer-icon social-icon"></i></a> <a href="https://twitter.com/Scientific_Net/" target="_blank" rel="noopener" title="Scientific.Net"><i class="inline-icon twitter-footer-icon social-icon"></i></a> <a href="https://www.linkedin.com/company/scientificnet/" target="_blank" rel="noopener" title="Scientific.Net"><i class="inline-icon linkedin-footer-icon social-icon"></i></a> </div> </div> </div> </div> <div class="line-footer"></div> <div class="footer-fluid"> <div class="container"> <div class="row"> <div class="col-xs-12 footer-copyright"> <p> &#169; 2024 Trans Tech Publications Ltd. All rights are reserved, including those for text and data mining, AI training, and similar technologies. For open access content, terms of the Creative Commons licensing CC-BY are applied. <br />Scientific.Net is a registered trademark of Trans Tech Publications Ltd. </p> </div> </div> </div> </div> </div> <a class="scrollTop inline-icon scroll-top-icon" href="#" style="display: none"></a> </div> <script src="/Scripts/public.min.js?v=BtSq2PJEHRTW2PekpQGgIQKs7-OSPiKhsoI9rMs6kTU"></script> <script src="https://scholar.google.com/scholar_js/casa.js" async></script> <script async type="application/javascript" src="https://cdn.scite.ai/badge/scite-badge-latest.min.js"></script> <script> $(function () { var statisticsDownloadedHandler = function ($element) { return function (count) { $element.text(count); $element.parent().removeClass("loading"); }; }; $.get("/Paper/GetDownloadsAndVisitorsCount?paperId=604927", statisticsDownloadedHandler($("#paperDownloadsAndVisitorsCount"))); $.ajax({method: "GET", url: "/Paper/GetPrice?paperId=604927" }) .retry({times: 3, timeout: 3000 }) .done(function (price) { $("#paper-price-info").html(price); $("#popup-paper-price").html(price); $("#addPaperButton").removeAttr("disabled"); }); $("#paperCitationsButton").on("click", function (e) { e.preventDefault(); Scinet.busy.lock(); var $modal = $("#citations-modal"), $modalContent = $("#citations-modal-content"); $.get("/Paper/Citations?doi=10.4028%2Fp-M9ebBJ") .done(function (content) { Scinet.busy.unlock(); $modalContent.html(content); $modal.modal(); }) .fail(function () { Scinet.busy.unlock(); Scinet.error("The DOI has not been activated yet. Please try again later."); }); }); $("#ask-by-email-button") .on("click", function (e) { e.preventDefault(); var url = $(this).data("url"); $("#ask-by-email-modal") .load(url, function () { $("#ask-by-email-modal").modal(); }); }); $("#downloadPdfButton").on("click", function () { Scinet.busy.lock(); setTimeout(Scinet.busy.unlock, 8000); }); var readThePaperLogged = false; $("#readPaperButton").on( "click", function (e) { e.preventDefault(); $("#addToCart").modal(); if (!readThePaperLogged) { var url = $("#readPaperButton").data("urlReadPaperLog"); $.ajax({ url: url }); readThePaperLogged = true; } }); $("#addPaperButton").on( "click", function (e) { e.preventDefault(); var $button = $(this), url = $button.data("url"), paperId = $button.data("paperid"); $.post(url, { paperId: paperId }) .done( function () { Scinet.public.loadCartInfo(); $('#addToCart').modal('hide'); $("#addedToCart").modal(); }); }); $(".paper-title-main-page a.panel-title").on("click", function () { $(this).toggleClass("active"); }); $(".author-send-message").on("click", function (e) { e.preventDefault(); var url = $(this).data("url"), $modal = $("#author-message-modal"); $modal.load(url, function () { $modal.modal(); }); }); var previewLogged = false; $("#preview-button") .on("click", function () { $("#paper-preview-modal").modal(); if (!previewLogged) { var url = $(this).data("url-preview-log"); $.ajax({ url: url }); previewLogged = true; } }); function getCitedByInfo(page) { var $citedbyroot = $("#citedby-root"); var paperId = $("#citedby-link").data("paper-id"); if (paperId && page) { $.ajax( { method: "GET", url: "/Paper/CitedBy", data: { paperId: paperId, pageNumber: page } }) .done( function (response) { $citedbyroot.html(response); $(".citedby-paginator").on("click", function () { var pageNumber = $(this).attr("page"); getCitedByInfo(pageNumber); }); }) .fail( function (request, status, error) { $citedbyroot .html('<div style="color: red; padding-top: 30px; padding-bottom: 30px;"><p>' + error + "</p></div>"); }); } } $("#citedby-link") .on("click", function () { var $citedbyroot = $("#citedby-root"); if (!$citedbyroot.data("loaded")) { getCitedByInfo(1); $citedbyroot.data("loaded", true); } }); $("#citations-modal-content") .on("click", ".citations-list-item-value a", function (e) { e.preventDefault(); }); var clipboard = new ClipboardJS("#citations-modal-content .citations-list-item .inline-icon"); clipboard.on("success", function (e) { var $icon = $(e.trigger); var originalName = "data-original-title"; var prevTitle = $icon.attr(originalName); $icon.addClass("icon-copied").removeClass("icon-copy"); $icon.attr(originalName, "Copied!").tooltip("show"); setTimeout(function () { $icon.attr(originalName, prevTitle).tooltip("hide"); $icon.addClass("icon-copy").removeClass("icon-copied"); }, 3000); e.clearSelection(); }); function getRelatedArticles() { var $releatedArticlesRoot = $("#related-articles-root"); $.ajax( { method: "GET", url: "/Paper/RelatedArticles?paperId=604927" }) .done( function (response) { $releatedArticlesRoot.html(response); }) .fail( function (request, status, error) { $releatedArticlesRoot .html('<div style="color: red; padding-top: 30px; padding-bottom: 30px;"><p>Server Error. Sorry for the inconvenience. Our team is working to fix this internal error. Please check back shortly.</p></div>'); }); } $("#related-articles-link") .on("click", function () { var $releatedArticlesRoot = $("#related-articles-root"); if (!$releatedArticlesRoot.data("loaded")) { getRelatedArticles(); $releatedArticlesRoot.data("loaded", true); } }) $("body").tooltip({ selector: "[data-toggle=tooltip]" }); }); $(document) .ready( function () { var isHidden = sessionStorage.getItem('isPublicMessagesHidden'); if (isHidden === 'true') { $('.message-container').hide(); } $('#hide-button') .click( function (event) { event.preventDefault(); $('.message-container').hide(); sessionStorage.setItem('isPublicMessagesHidden', 'true'); }); }); </script> <script asp-render-component-scripts> (function (w, a, y, f) { w._wayfinder = w._wayfinder || function () { (w._wayfinder.q = w._wayfinder.q || []).push(arguments) }; p = { oaDomain: 'scientific.net', oaAppId: '9a54dd64-0769-4f59-a7ec-b249515c9de7' }; w._wayfinder.settings = p; w._wayfinder.options = { rememberCrossSite: false }; h = a.getElementsByTagName('head')[0]; s = a.createElement('script'); s.async = 1; q = Object.keys(p).map(function (key) { return key + '=' + p[key] }).join('&'); s.src = y + 'v1' + f + "?" + q; h.appendChild(s); } )(window, document, 'https://wayfinder.openathens.net/embed/', '/loader.js'); $(function () { var wayfinderEnabled = true; $("#sa-button").on("click", function (e) { if (wayfinderEnabled) { setTargetPageCookie(); } else { e.preventDefault(); setTargetPageCookie(); window.location.href = this.href; } }); function setTargetPageCookie() { var in5Minutes = 1 / 3600 * 5; Cookies.set("Scinet.TargetPage", window.location.href, { domain: ".scientific.net", expires: in5Minutes, secure: true }); } }); Scinet.public = (function () { function loadCartInfo(onLoad) { var formatCartItemCount = function (count) { var format = (count > 1 || count === 0) ? "{0} items" : "{0} item"; $("#cartInfoTotalItemsCount").html(Scinet.stringFormat(format, count)); }, cookieCartItemCount = Cookies.get("Scinet5.CartItemsCount"); if (onLoad && cookieCartItemCount != null) { formatCartItemCount(parseInt(cookieCartItemCount, 10)); } else { $.ajax({ url: "/Cart/GetItemsCount", cache: false }) .done( function (count) { Cookies.set("Scinet5.CartItemsCount", count, { domain: ".scientific.net", secure: true }); formatCartItemCount(count); }); } } return { loadCartInfo: loadCartInfo }; })(); $(function () { Scinet.public.loadCartInfo(true); $("[data-add-book-to-cart]").on("click", function (e) { e.preventDefault(); var data = $(this).data("add-book-to-cart"); console.log(data); var url = "/Cart/AddBook"; $.post(url, data) .done( function () { Scinet.public.loadCartInfo(); $("#addToCart").modal(); }) .fail( function (xhr) { Scinet.error(xhr.responseText); }); }) }); </script> <script> var $buoop = { required: { e: 11, f: -6, o: -6, s: -3, c: -6 }, insecure: false, unsupported: false, api: 2019.11, reminder: 0, onshow: function () { window.browserUpdateOutdated = true; } }; function $buo_f() { var e = document.createElement("script"); e.src = "//browser-update.org/update.min.js"; document.body.appendChild(e); }; try { document.addEventListener("DOMContentLoaded", $buo_f, false) } catch (e) { window.attachEvent("onload", $buo_f) } </script> <!-- IE polyfills--> <!--[if lt IE 10]> <script src="/Scripts/lib/flexibility/flexibility.js"></script> <script> flexibility(document.documentElement); </script> <![endif]--> <script> window.clientErrorLogActionUrl = "/Errors/LogClientError"; </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10